Merge remote-tracking branch 'asoc/topic/core' into asoc-next
[sfrench/cifs-2.6.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /*
55  * A few notes about the KSM scanning process,
56  * to make it easier to understand the data structures below:
57  *
58  * In order to reduce excessive scanning, KSM sorts the memory pages by their
59  * contents into a data structure that holds pointers to the pages' locations.
60  *
61  * Since the contents of the pages may change at any moment, KSM cannot just
62  * insert the pages into a normal sorted tree and expect it to find anything.
63  * Therefore KSM uses two data structures - the stable and the unstable tree.
64  *
65  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66  * by their contents.  Because each such page is write-protected, searching on
67  * this tree is fully assured to be working (except when pages are unmapped),
68  * and therefore this tree is called the stable tree.
69  *
70  * In addition to the stable tree, KSM uses a second data structure called the
71  * unstable tree: this tree holds pointers to pages which have been found to
72  * be "unchanged for a period of time".  The unstable tree sorts these pages
73  * by their contents, but since they are not write-protected, KSM cannot rely
74  * upon the unstable tree to work correctly - the unstable tree is liable to
75  * be corrupted as its contents are modified, and so it is called unstable.
76  *
77  * KSM solves this problem by several techniques:
78  *
79  * 1) The unstable tree is flushed every time KSM completes scanning all
80  *    memory areas, and then the tree is rebuilt again from the beginning.
81  * 2) KSM will only insert into the unstable tree, pages whose hash value
82  *    has not changed since the previous scan of all memory areas.
83  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84  *    colors of the nodes and not on their contents, assuring that even when
85  *    the tree gets "corrupted" it won't get out of balance, so scanning time
86  *    remains the same (also, searching and inserting nodes in an rbtree uses
87  *    the same algorithm, so we have no overhead when we flush and rebuild).
88  * 4) KSM never flushes the stable tree, which means that even if it were to
89  *    take 10 attempts to find a page in the unstable tree, once it is found,
90  *    it is secured in the stable tree.  (When we scan a new page, we first
91  *    compare it against the stable tree, and then against the unstable tree.)
92  *
93  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94  * stable trees and multiple unstable trees: one of each for each NUMA node.
95  */
96
97 /**
98  * struct mm_slot - ksm information per mm that is being scanned
99  * @link: link to the mm_slots hash list
100  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102  * @mm: the mm that this information is valid for
103  */
104 struct mm_slot {
105         struct hlist_node link;
106         struct list_head mm_list;
107         struct rmap_item *rmap_list;
108         struct mm_struct *mm;
109 };
110
111 /**
112  * struct ksm_scan - cursor for scanning
113  * @mm_slot: the current mm_slot we are scanning
114  * @address: the next address inside that to be scanned
115  * @rmap_list: link to the next rmap to be scanned in the rmap_list
116  * @seqnr: count of completed full scans (needed when removing unstable node)
117  *
118  * There is only the one ksm_scan instance of this cursor structure.
119  */
120 struct ksm_scan {
121         struct mm_slot *mm_slot;
122         unsigned long address;
123         struct rmap_item **rmap_list;
124         unsigned long seqnr;
125 };
126
127 /**
128  * struct stable_node - node of the stable rbtree
129  * @node: rb node of this ksm page in the stable tree
130  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132  * @list: linked into migrate_nodes, pending placement in the proper node tree
133  * @hlist: hlist head of rmap_items using this ksm page
134  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135  * @chain_prune_time: time of the last full garbage collection
136  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138  */
139 struct stable_node {
140         union {
141                 struct rb_node node;    /* when node of stable tree */
142                 struct {                /* when listed for migration */
143                         struct list_head *head;
144                         struct {
145                                 struct hlist_node hlist_dup;
146                                 struct list_head list;
147                         };
148                 };
149         };
150         struct hlist_head hlist;
151         union {
152                 unsigned long kpfn;
153                 unsigned long chain_prune_time;
154         };
155         /*
156          * STABLE_NODE_CHAIN can be any negative number in
157          * rmap_hlist_len negative range, but better not -1 to be able
158          * to reliably detect underflows.
159          */
160 #define STABLE_NODE_CHAIN -1024
161         int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163         int nid;
164 #endif
165 };
166
167 /**
168  * struct rmap_item - reverse mapping item for virtual addresses
169  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171  * @nid: NUMA node id of unstable tree in which linked (may not match page)
172  * @mm: the memory structure this rmap_item is pointing into
173  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174  * @oldchecksum: previous checksum of the page at that virtual address
175  * @node: rb node of this rmap_item in the unstable tree
176  * @head: pointer to stable_node heading this list in the stable tree
177  * @hlist: link into hlist of rmap_items hanging off that stable_node
178  */
179 struct rmap_item {
180         struct rmap_item *rmap_list;
181         union {
182                 struct anon_vma *anon_vma;      /* when stable */
183 #ifdef CONFIG_NUMA
184                 int nid;                /* when node of unstable tree */
185 #endif
186         };
187         struct mm_struct *mm;
188         unsigned long address;          /* + low bits used for flags below */
189         unsigned int oldchecksum;       /* when unstable */
190         union {
191                 struct rb_node node;    /* when node of unstable tree */
192                 struct {                /* when listed from stable tree */
193                         struct stable_node *head;
194                         struct hlist_node hlist;
195                 };
196         };
197 };
198
199 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
201 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
202
203 /* The stable and unstable tree heads */
204 static struct rb_root one_stable_tree[1] = { RB_ROOT };
205 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206 static struct rb_root *root_stable_tree = one_stable_tree;
207 static struct rb_root *root_unstable_tree = one_unstable_tree;
208
209 /* Recently migrated nodes of stable tree, pending proper placement */
210 static LIST_HEAD(migrate_nodes);
211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
212
213 #define MM_SLOTS_HASH_BITS 10
214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
215
216 static struct mm_slot ksm_mm_head = {
217         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
218 };
219 static struct ksm_scan ksm_scan = {
220         .mm_slot = &ksm_mm_head,
221 };
222
223 static struct kmem_cache *rmap_item_cache;
224 static struct kmem_cache *stable_node_cache;
225 static struct kmem_cache *mm_slot_cache;
226
227 /* The number of nodes in the stable tree */
228 static unsigned long ksm_pages_shared;
229
230 /* The number of page slots additionally sharing those nodes */
231 static unsigned long ksm_pages_sharing;
232
233 /* The number of nodes in the unstable tree */
234 static unsigned long ksm_pages_unshared;
235
236 /* The number of rmap_items in use: to calculate pages_volatile */
237 static unsigned long ksm_rmap_items;
238
239 /* The number of stable_node chains */
240 static unsigned long ksm_stable_node_chains;
241
242 /* The number of stable_node dups linked to the stable_node chains */
243 static unsigned long ksm_stable_node_dups;
244
245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
246 static int ksm_stable_node_chains_prune_millisecs = 2000;
247
248 /* Maximum number of page slots sharing a stable node */
249 static int ksm_max_page_sharing = 256;
250
251 /* Number of pages ksmd should scan in one batch */
252 static unsigned int ksm_thread_pages_to_scan = 100;
253
254 /* Milliseconds ksmd should sleep between batches */
255 static unsigned int ksm_thread_sleep_millisecs = 20;
256
257 /* Checksum of an empty (zeroed) page */
258 static unsigned int zero_checksum __read_mostly;
259
260 /* Whether to merge empty (zeroed) pages with actual zero pages */
261 static bool ksm_use_zero_pages __read_mostly;
262
263 #ifdef CONFIG_NUMA
264 /* Zeroed when merging across nodes is not allowed */
265 static unsigned int ksm_merge_across_nodes = 1;
266 static int ksm_nr_node_ids = 1;
267 #else
268 #define ksm_merge_across_nodes  1U
269 #define ksm_nr_node_ids         1
270 #endif
271
272 #define KSM_RUN_STOP    0
273 #define KSM_RUN_MERGE   1
274 #define KSM_RUN_UNMERGE 2
275 #define KSM_RUN_OFFLINE 4
276 static unsigned long ksm_run = KSM_RUN_STOP;
277 static void wait_while_offlining(void);
278
279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280 static DEFINE_MUTEX(ksm_thread_mutex);
281 static DEFINE_SPINLOCK(ksm_mmlist_lock);
282
283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284                 sizeof(struct __struct), __alignof__(struct __struct),\
285                 (__flags), NULL)
286
287 static int __init ksm_slab_init(void)
288 {
289         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290         if (!rmap_item_cache)
291                 goto out;
292
293         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294         if (!stable_node_cache)
295                 goto out_free1;
296
297         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298         if (!mm_slot_cache)
299                 goto out_free2;
300
301         return 0;
302
303 out_free2:
304         kmem_cache_destroy(stable_node_cache);
305 out_free1:
306         kmem_cache_destroy(rmap_item_cache);
307 out:
308         return -ENOMEM;
309 }
310
311 static void __init ksm_slab_free(void)
312 {
313         kmem_cache_destroy(mm_slot_cache);
314         kmem_cache_destroy(stable_node_cache);
315         kmem_cache_destroy(rmap_item_cache);
316         mm_slot_cache = NULL;
317 }
318
319 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
320 {
321         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
322 }
323
324 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
325 {
326         return dup->head == STABLE_NODE_DUP_HEAD;
327 }
328
329 static inline void stable_node_chain_add_dup(struct stable_node *dup,
330                                              struct stable_node *chain)
331 {
332         VM_BUG_ON(is_stable_node_dup(dup));
333         dup->head = STABLE_NODE_DUP_HEAD;
334         VM_BUG_ON(!is_stable_node_chain(chain));
335         hlist_add_head(&dup->hlist_dup, &chain->hlist);
336         ksm_stable_node_dups++;
337 }
338
339 static inline void __stable_node_dup_del(struct stable_node *dup)
340 {
341         VM_BUG_ON(!is_stable_node_dup(dup));
342         hlist_del(&dup->hlist_dup);
343         ksm_stable_node_dups--;
344 }
345
346 static inline void stable_node_dup_del(struct stable_node *dup)
347 {
348         VM_BUG_ON(is_stable_node_chain(dup));
349         if (is_stable_node_dup(dup))
350                 __stable_node_dup_del(dup);
351         else
352                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353 #ifdef CONFIG_DEBUG_VM
354         dup->head = NULL;
355 #endif
356 }
357
358 static inline struct rmap_item *alloc_rmap_item(void)
359 {
360         struct rmap_item *rmap_item;
361
362         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363                                                 __GFP_NORETRY | __GFP_NOWARN);
364         if (rmap_item)
365                 ksm_rmap_items++;
366         return rmap_item;
367 }
368
369 static inline void free_rmap_item(struct rmap_item *rmap_item)
370 {
371         ksm_rmap_items--;
372         rmap_item->mm = NULL;   /* debug safety */
373         kmem_cache_free(rmap_item_cache, rmap_item);
374 }
375
376 static inline struct stable_node *alloc_stable_node(void)
377 {
378         /*
379          * The allocation can take too long with GFP_KERNEL when memory is under
380          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
381          * grants access to memory reserves, helping to avoid this problem.
382          */
383         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
384 }
385
386 static inline void free_stable_node(struct stable_node *stable_node)
387 {
388         VM_BUG_ON(stable_node->rmap_hlist_len &&
389                   !is_stable_node_chain(stable_node));
390         kmem_cache_free(stable_node_cache, stable_node);
391 }
392
393 static inline struct mm_slot *alloc_mm_slot(void)
394 {
395         if (!mm_slot_cache)     /* initialization failed */
396                 return NULL;
397         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
398 }
399
400 static inline void free_mm_slot(struct mm_slot *mm_slot)
401 {
402         kmem_cache_free(mm_slot_cache, mm_slot);
403 }
404
405 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
406 {
407         struct mm_slot *slot;
408
409         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
410                 if (slot->mm == mm)
411                         return slot;
412
413         return NULL;
414 }
415
416 static void insert_to_mm_slots_hash(struct mm_struct *mm,
417                                     struct mm_slot *mm_slot)
418 {
419         mm_slot->mm = mm;
420         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
421 }
422
423 /*
424  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425  * page tables after it has passed through ksm_exit() - which, if necessary,
426  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
427  * a special flag: they can just back out as soon as mm_users goes to zero.
428  * ksm_test_exit() is used throughout to make this test for exit: in some
429  * places for correctness, in some places just to avoid unnecessary work.
430  */
431 static inline bool ksm_test_exit(struct mm_struct *mm)
432 {
433         return atomic_read(&mm->mm_users) == 0;
434 }
435
436 /*
437  * We use break_ksm to break COW on a ksm page: it's a stripped down
438  *
439  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
440  *              put_page(page);
441  *
442  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443  * in case the application has unmapped and remapped mm,addr meanwhile.
444  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
445  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
446  *
447  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448  * of the process that owns 'vma'.  We also do not want to enforce
449  * protection keys here anyway.
450  */
451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
452 {
453         struct page *page;
454         int ret = 0;
455
456         do {
457                 cond_resched();
458                 page = follow_page(vma, addr,
459                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
460                 if (IS_ERR_OR_NULL(page))
461                         break;
462                 if (PageKsm(page))
463                         ret = handle_mm_fault(vma, addr,
464                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
465                 else
466                         ret = VM_FAULT_WRITE;
467                 put_page(page);
468         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
469         /*
470          * We must loop because handle_mm_fault() may back out if there's
471          * any difficulty e.g. if pte accessed bit gets updated concurrently.
472          *
473          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474          * COW has been broken, even if the vma does not permit VM_WRITE;
475          * but note that a concurrent fault might break PageKsm for us.
476          *
477          * VM_FAULT_SIGBUS could occur if we race with truncation of the
478          * backing file, which also invalidates anonymous pages: that's
479          * okay, that truncation will have unmapped the PageKsm for us.
480          *
481          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483          * current task has TIF_MEMDIE set, and will be OOM killed on return
484          * to user; and ksmd, having no mm, would never be chosen for that.
485          *
486          * But if the mm is in a limited mem_cgroup, then the fault may fail
487          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488          * even ksmd can fail in this way - though it's usually breaking ksm
489          * just to undo a merge it made a moment before, so unlikely to oom.
490          *
491          * That's a pity: we might therefore have more kernel pages allocated
492          * than we're counting as nodes in the stable tree; but ksm_do_scan
493          * will retry to break_cow on each pass, so should recover the page
494          * in due course.  The important thing is to not let VM_MERGEABLE
495          * be cleared while any such pages might remain in the area.
496          */
497         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
498 }
499
500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501                 unsigned long addr)
502 {
503         struct vm_area_struct *vma;
504         if (ksm_test_exit(mm))
505                 return NULL;
506         vma = find_vma(mm, addr);
507         if (!vma || vma->vm_start > addr)
508                 return NULL;
509         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510                 return NULL;
511         return vma;
512 }
513
514 static void break_cow(struct rmap_item *rmap_item)
515 {
516         struct mm_struct *mm = rmap_item->mm;
517         unsigned long addr = rmap_item->address;
518         struct vm_area_struct *vma;
519
520         /*
521          * It is not an accident that whenever we want to break COW
522          * to undo, we also need to drop a reference to the anon_vma.
523          */
524         put_anon_vma(rmap_item->anon_vma);
525
526         down_read(&mm->mmap_sem);
527         vma = find_mergeable_vma(mm, addr);
528         if (vma)
529                 break_ksm(vma, addr);
530         up_read(&mm->mmap_sem);
531 }
532
533 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
534 {
535         struct mm_struct *mm = rmap_item->mm;
536         unsigned long addr = rmap_item->address;
537         struct vm_area_struct *vma;
538         struct page *page;
539
540         down_read(&mm->mmap_sem);
541         vma = find_mergeable_vma(mm, addr);
542         if (!vma)
543                 goto out;
544
545         page = follow_page(vma, addr, FOLL_GET);
546         if (IS_ERR_OR_NULL(page))
547                 goto out;
548         if (PageAnon(page)) {
549                 flush_anon_page(vma, page, addr);
550                 flush_dcache_page(page);
551         } else {
552                 put_page(page);
553 out:
554                 page = NULL;
555         }
556         up_read(&mm->mmap_sem);
557         return page;
558 }
559
560 /*
561  * This helper is used for getting right index into array of tree roots.
562  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564  * every node has its own stable and unstable tree.
565  */
566 static inline int get_kpfn_nid(unsigned long kpfn)
567 {
568         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
569 }
570
571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572                                                    struct rb_root *root)
573 {
574         struct stable_node *chain = alloc_stable_node();
575         VM_BUG_ON(is_stable_node_chain(dup));
576         if (likely(chain)) {
577                 INIT_HLIST_HEAD(&chain->hlist);
578                 chain->chain_prune_time = jiffies;
579                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581                 chain->nid = -1; /* debug */
582 #endif
583                 ksm_stable_node_chains++;
584
585                 /*
586                  * Put the stable node chain in the first dimension of
587                  * the stable tree and at the same time remove the old
588                  * stable node.
589                  */
590                 rb_replace_node(&dup->node, &chain->node, root);
591
592                 /*
593                  * Move the old stable node to the second dimension
594                  * queued in the hlist_dup. The invariant is that all
595                  * dup stable_nodes in the chain->hlist point to pages
596                  * that are wrprotected and have the exact same
597                  * content.
598                  */
599                 stable_node_chain_add_dup(dup, chain);
600         }
601         return chain;
602 }
603
604 static inline void free_stable_node_chain(struct stable_node *chain,
605                                           struct rb_root *root)
606 {
607         rb_erase(&chain->node, root);
608         free_stable_node(chain);
609         ksm_stable_node_chains--;
610 }
611
612 static void remove_node_from_stable_tree(struct stable_node *stable_node)
613 {
614         struct rmap_item *rmap_item;
615
616         /* check it's not STABLE_NODE_CHAIN or negative */
617         BUG_ON(stable_node->rmap_hlist_len < 0);
618
619         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
620                 if (rmap_item->hlist.next)
621                         ksm_pages_sharing--;
622                 else
623                         ksm_pages_shared--;
624                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625                 stable_node->rmap_hlist_len--;
626                 put_anon_vma(rmap_item->anon_vma);
627                 rmap_item->address &= PAGE_MASK;
628                 cond_resched();
629         }
630
631         /*
632          * We need the second aligned pointer of the migrate_nodes
633          * list_head to stay clear from the rb_parent_color union
634          * (aligned and different than any node) and also different
635          * from &migrate_nodes. This will verify that future list.h changes
636          * don't break STABLE_NODE_DUP_HEAD.
637          */
638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641 #endif
642
643         if (stable_node->head == &migrate_nodes)
644                 list_del(&stable_node->list);
645         else
646                 stable_node_dup_del(stable_node);
647         free_stable_node(stable_node);
648 }
649
650 /*
651  * get_ksm_page: checks if the page indicated by the stable node
652  * is still its ksm page, despite having held no reference to it.
653  * In which case we can trust the content of the page, and it
654  * returns the gotten page; but if the page has now been zapped,
655  * remove the stale node from the stable tree and return NULL.
656  * But beware, the stable node's page might be being migrated.
657  *
658  * You would expect the stable_node to hold a reference to the ksm page.
659  * But if it increments the page's count, swapping out has to wait for
660  * ksmd to come around again before it can free the page, which may take
661  * seconds or even minutes: much too unresponsive.  So instead we use a
662  * "keyhole reference": access to the ksm page from the stable node peeps
663  * out through its keyhole to see if that page still holds the right key,
664  * pointing back to this stable node.  This relies on freeing a PageAnon
665  * page to reset its page->mapping to NULL, and relies on no other use of
666  * a page to put something that might look like our key in page->mapping.
667  * is on its way to being freed; but it is an anomaly to bear in mind.
668  */
669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
670 {
671         struct page *page;
672         void *expected_mapping;
673         unsigned long kpfn;
674
675         expected_mapping = (void *)((unsigned long)stable_node |
676                                         PAGE_MAPPING_KSM);
677 again:
678         kpfn = READ_ONCE(stable_node->kpfn);
679         page = pfn_to_page(kpfn);
680
681         /*
682          * page is computed from kpfn, so on most architectures reading
683          * page->mapping is naturally ordered after reading node->kpfn,
684          * but on Alpha we need to be more careful.
685          */
686         smp_read_barrier_depends();
687         if (READ_ONCE(page->mapping) != expected_mapping)
688                 goto stale;
689
690         /*
691          * We cannot do anything with the page while its refcount is 0.
692          * Usually 0 means free, or tail of a higher-order page: in which
693          * case this node is no longer referenced, and should be freed;
694          * however, it might mean that the page is under page_freeze_refs().
695          * The __remove_mapping() case is easy, again the node is now stale;
696          * but if page is swapcache in migrate_page_move_mapping(), it might
697          * still be our page, in which case it's essential to keep the node.
698          */
699         while (!get_page_unless_zero(page)) {
700                 /*
701                  * Another check for page->mapping != expected_mapping would
702                  * work here too.  We have chosen the !PageSwapCache test to
703                  * optimize the common case, when the page is or is about to
704                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
705                  * in the freeze_refs section of __remove_mapping(); but Anon
706                  * page->mapping reset to NULL later, in free_pages_prepare().
707                  */
708                 if (!PageSwapCache(page))
709                         goto stale;
710                 cpu_relax();
711         }
712
713         if (READ_ONCE(page->mapping) != expected_mapping) {
714                 put_page(page);
715                 goto stale;
716         }
717
718         if (lock_it) {
719                 lock_page(page);
720                 if (READ_ONCE(page->mapping) != expected_mapping) {
721                         unlock_page(page);
722                         put_page(page);
723                         goto stale;
724                 }
725         }
726         return page;
727
728 stale:
729         /*
730          * We come here from above when page->mapping or !PageSwapCache
731          * suggests that the node is stale; but it might be under migration.
732          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
733          * before checking whether node->kpfn has been changed.
734          */
735         smp_rmb();
736         if (READ_ONCE(stable_node->kpfn) != kpfn)
737                 goto again;
738         remove_node_from_stable_tree(stable_node);
739         return NULL;
740 }
741
742 /*
743  * Removing rmap_item from stable or unstable tree.
744  * This function will clean the information from the stable/unstable tree.
745  */
746 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
747 {
748         if (rmap_item->address & STABLE_FLAG) {
749                 struct stable_node *stable_node;
750                 struct page *page;
751
752                 stable_node = rmap_item->head;
753                 page = get_ksm_page(stable_node, true);
754                 if (!page)
755                         goto out;
756
757                 hlist_del(&rmap_item->hlist);
758                 unlock_page(page);
759                 put_page(page);
760
761                 if (!hlist_empty(&stable_node->hlist))
762                         ksm_pages_sharing--;
763                 else
764                         ksm_pages_shared--;
765                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766                 stable_node->rmap_hlist_len--;
767
768                 put_anon_vma(rmap_item->anon_vma);
769                 rmap_item->address &= PAGE_MASK;
770
771         } else if (rmap_item->address & UNSTABLE_FLAG) {
772                 unsigned char age;
773                 /*
774                  * Usually ksmd can and must skip the rb_erase, because
775                  * root_unstable_tree was already reset to RB_ROOT.
776                  * But be careful when an mm is exiting: do the rb_erase
777                  * if this rmap_item was inserted by this scan, rather
778                  * than left over from before.
779                  */
780                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
781                 BUG_ON(age > 1);
782                 if (!age)
783                         rb_erase(&rmap_item->node,
784                                  root_unstable_tree + NUMA(rmap_item->nid));
785                 ksm_pages_unshared--;
786                 rmap_item->address &= PAGE_MASK;
787         }
788 out:
789         cond_resched();         /* we're called from many long loops */
790 }
791
792 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
793                                        struct rmap_item **rmap_list)
794 {
795         while (*rmap_list) {
796                 struct rmap_item *rmap_item = *rmap_list;
797                 *rmap_list = rmap_item->rmap_list;
798                 remove_rmap_item_from_tree(rmap_item);
799                 free_rmap_item(rmap_item);
800         }
801 }
802
803 /*
804  * Though it's very tempting to unmerge rmap_items from stable tree rather
805  * than check every pte of a given vma, the locking doesn't quite work for
806  * that - an rmap_item is assigned to the stable tree after inserting ksm
807  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
808  * rmap_items from parent to child at fork time (so as not to waste time
809  * if exit comes before the next scan reaches it).
810  *
811  * Similarly, although we'd like to remove rmap_items (so updating counts
812  * and freeing memory) when unmerging an area, it's easier to leave that
813  * to the next pass of ksmd - consider, for example, how ksmd might be
814  * in cmp_and_merge_page on one of the rmap_items we would be removing.
815  */
816 static int unmerge_ksm_pages(struct vm_area_struct *vma,
817                              unsigned long start, unsigned long end)
818 {
819         unsigned long addr;
820         int err = 0;
821
822         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
823                 if (ksm_test_exit(vma->vm_mm))
824                         break;
825                 if (signal_pending(current))
826                         err = -ERESTARTSYS;
827                 else
828                         err = break_ksm(vma, addr);
829         }
830         return err;
831 }
832
833 #ifdef CONFIG_SYSFS
834 /*
835  * Only called through the sysfs control interface:
836  */
837 static int remove_stable_node(struct stable_node *stable_node)
838 {
839         struct page *page;
840         int err;
841
842         page = get_ksm_page(stable_node, true);
843         if (!page) {
844                 /*
845                  * get_ksm_page did remove_node_from_stable_tree itself.
846                  */
847                 return 0;
848         }
849
850         if (WARN_ON_ONCE(page_mapped(page))) {
851                 /*
852                  * This should not happen: but if it does, just refuse to let
853                  * merge_across_nodes be switched - there is no need to panic.
854                  */
855                 err = -EBUSY;
856         } else {
857                 /*
858                  * The stable node did not yet appear stale to get_ksm_page(),
859                  * since that allows for an unmapped ksm page to be recognized
860                  * right up until it is freed; but the node is safe to remove.
861                  * This page might be in a pagevec waiting to be freed,
862                  * or it might be PageSwapCache (perhaps under writeback),
863                  * or it might have been removed from swapcache a moment ago.
864                  */
865                 set_page_stable_node(page, NULL);
866                 remove_node_from_stable_tree(stable_node);
867                 err = 0;
868         }
869
870         unlock_page(page);
871         put_page(page);
872         return err;
873 }
874
875 static int remove_stable_node_chain(struct stable_node *stable_node,
876                                     struct rb_root *root)
877 {
878         struct stable_node *dup;
879         struct hlist_node *hlist_safe;
880
881         if (!is_stable_node_chain(stable_node)) {
882                 VM_BUG_ON(is_stable_node_dup(stable_node));
883                 if (remove_stable_node(stable_node))
884                         return true;
885                 else
886                         return false;
887         }
888
889         hlist_for_each_entry_safe(dup, hlist_safe,
890                                   &stable_node->hlist, hlist_dup) {
891                 VM_BUG_ON(!is_stable_node_dup(dup));
892                 if (remove_stable_node(dup))
893                         return true;
894         }
895         BUG_ON(!hlist_empty(&stable_node->hlist));
896         free_stable_node_chain(stable_node, root);
897         return false;
898 }
899
900 static int remove_all_stable_nodes(void)
901 {
902         struct stable_node *stable_node, *next;
903         int nid;
904         int err = 0;
905
906         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
907                 while (root_stable_tree[nid].rb_node) {
908                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
909                                                 struct stable_node, node);
910                         if (remove_stable_node_chain(stable_node,
911                                                      root_stable_tree + nid)) {
912                                 err = -EBUSY;
913                                 break;  /* proceed to next nid */
914                         }
915                         cond_resched();
916                 }
917         }
918         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
919                 if (remove_stable_node(stable_node))
920                         err = -EBUSY;
921                 cond_resched();
922         }
923         return err;
924 }
925
926 static int unmerge_and_remove_all_rmap_items(void)
927 {
928         struct mm_slot *mm_slot;
929         struct mm_struct *mm;
930         struct vm_area_struct *vma;
931         int err = 0;
932
933         spin_lock(&ksm_mmlist_lock);
934         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
935                                                 struct mm_slot, mm_list);
936         spin_unlock(&ksm_mmlist_lock);
937
938         for (mm_slot = ksm_scan.mm_slot;
939                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
940                 mm = mm_slot->mm;
941                 down_read(&mm->mmap_sem);
942                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
943                         if (ksm_test_exit(mm))
944                                 break;
945                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
946                                 continue;
947                         err = unmerge_ksm_pages(vma,
948                                                 vma->vm_start, vma->vm_end);
949                         if (err)
950                                 goto error;
951                 }
952
953                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
954                 up_read(&mm->mmap_sem);
955
956                 spin_lock(&ksm_mmlist_lock);
957                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
958                                                 struct mm_slot, mm_list);
959                 if (ksm_test_exit(mm)) {
960                         hash_del(&mm_slot->link);
961                         list_del(&mm_slot->mm_list);
962                         spin_unlock(&ksm_mmlist_lock);
963
964                         free_mm_slot(mm_slot);
965                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
966                         mmdrop(mm);
967                 } else
968                         spin_unlock(&ksm_mmlist_lock);
969         }
970
971         /* Clean up stable nodes, but don't worry if some are still busy */
972         remove_all_stable_nodes();
973         ksm_scan.seqnr = 0;
974         return 0;
975
976 error:
977         up_read(&mm->mmap_sem);
978         spin_lock(&ksm_mmlist_lock);
979         ksm_scan.mm_slot = &ksm_mm_head;
980         spin_unlock(&ksm_mmlist_lock);
981         return err;
982 }
983 #endif /* CONFIG_SYSFS */
984
985 static u32 calc_checksum(struct page *page)
986 {
987         u32 checksum;
988         void *addr = kmap_atomic(page);
989         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
990         kunmap_atomic(addr);
991         return checksum;
992 }
993
994 static int memcmp_pages(struct page *page1, struct page *page2)
995 {
996         char *addr1, *addr2;
997         int ret;
998
999         addr1 = kmap_atomic(page1);
1000         addr2 = kmap_atomic(page2);
1001         ret = memcmp(addr1, addr2, PAGE_SIZE);
1002         kunmap_atomic(addr2);
1003         kunmap_atomic(addr1);
1004         return ret;
1005 }
1006
1007 static inline int pages_identical(struct page *page1, struct page *page2)
1008 {
1009         return !memcmp_pages(page1, page2);
1010 }
1011
1012 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1013                               pte_t *orig_pte)
1014 {
1015         struct mm_struct *mm = vma->vm_mm;
1016         struct page_vma_mapped_walk pvmw = {
1017                 .page = page,
1018                 .vma = vma,
1019         };
1020         int swapped;
1021         int err = -EFAULT;
1022         unsigned long mmun_start;       /* For mmu_notifiers */
1023         unsigned long mmun_end;         /* For mmu_notifiers */
1024
1025         pvmw.address = page_address_in_vma(page, vma);
1026         if (pvmw.address == -EFAULT)
1027                 goto out;
1028
1029         BUG_ON(PageTransCompound(page));
1030
1031         mmun_start = pvmw.address;
1032         mmun_end   = pvmw.address + PAGE_SIZE;
1033         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1034
1035         if (!page_vma_mapped_walk(&pvmw))
1036                 goto out_mn;
1037         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1038                 goto out_unlock;
1039
1040         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1041             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1042                                                 mm_tlb_flush_pending(mm)) {
1043                 pte_t entry;
1044
1045                 swapped = PageSwapCache(page);
1046                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1047                 /*
1048                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1049                  * take any lock, therefore the check that we are going to make
1050                  * with the pagecount against the mapcount is racey and
1051                  * O_DIRECT can happen right after the check.
1052                  * So we clear the pte and flush the tlb before the check
1053                  * this assure us that no O_DIRECT can happen after the check
1054                  * or in the middle of the check.
1055                  *
1056                  * No need to notify as we are downgrading page table to read
1057                  * only not changing it to point to a new page.
1058                  *
1059                  * See Documentation/vm/mmu_notifier.txt
1060                  */
1061                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1062                 /*
1063                  * Check that no O_DIRECT or similar I/O is in progress on the
1064                  * page
1065                  */
1066                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1067                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1068                         goto out_unlock;
1069                 }
1070                 if (pte_dirty(entry))
1071                         set_page_dirty(page);
1072
1073                 if (pte_protnone(entry))
1074                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1075                 else
1076                         entry = pte_mkclean(pte_wrprotect(entry));
1077                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1078         }
1079         *orig_pte = *pvmw.pte;
1080         err = 0;
1081
1082 out_unlock:
1083         page_vma_mapped_walk_done(&pvmw);
1084 out_mn:
1085         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1086 out:
1087         return err;
1088 }
1089
1090 /**
1091  * replace_page - replace page in vma by new ksm page
1092  * @vma:      vma that holds the pte pointing to page
1093  * @page:     the page we are replacing by kpage
1094  * @kpage:    the ksm page we replace page by
1095  * @orig_pte: the original value of the pte
1096  *
1097  * Returns 0 on success, -EFAULT on failure.
1098  */
1099 static int replace_page(struct vm_area_struct *vma, struct page *page,
1100                         struct page *kpage, pte_t orig_pte)
1101 {
1102         struct mm_struct *mm = vma->vm_mm;
1103         pmd_t *pmd;
1104         pte_t *ptep;
1105         pte_t newpte;
1106         spinlock_t *ptl;
1107         unsigned long addr;
1108         int err = -EFAULT;
1109         unsigned long mmun_start;       /* For mmu_notifiers */
1110         unsigned long mmun_end;         /* For mmu_notifiers */
1111
1112         addr = page_address_in_vma(page, vma);
1113         if (addr == -EFAULT)
1114                 goto out;
1115
1116         pmd = mm_find_pmd(mm, addr);
1117         if (!pmd)
1118                 goto out;
1119
1120         mmun_start = addr;
1121         mmun_end   = addr + PAGE_SIZE;
1122         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1123
1124         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1125         if (!pte_same(*ptep, orig_pte)) {
1126                 pte_unmap_unlock(ptep, ptl);
1127                 goto out_mn;
1128         }
1129
1130         /*
1131          * No need to check ksm_use_zero_pages here: we can only have a
1132          * zero_page here if ksm_use_zero_pages was enabled alreaady.
1133          */
1134         if (!is_zero_pfn(page_to_pfn(kpage))) {
1135                 get_page(kpage);
1136                 page_add_anon_rmap(kpage, vma, addr, false);
1137                 newpte = mk_pte(kpage, vma->vm_page_prot);
1138         } else {
1139                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1140                                                vma->vm_page_prot));
1141         }
1142
1143         flush_cache_page(vma, addr, pte_pfn(*ptep));
1144         /*
1145          * No need to notify as we are replacing a read only page with another
1146          * read only page with the same content.
1147          *
1148          * See Documentation/vm/mmu_notifier.txt
1149          */
1150         ptep_clear_flush(vma, addr, ptep);
1151         set_pte_at_notify(mm, addr, ptep, newpte);
1152
1153         page_remove_rmap(page, false);
1154         if (!page_mapped(page))
1155                 try_to_free_swap(page);
1156         put_page(page);
1157
1158         pte_unmap_unlock(ptep, ptl);
1159         err = 0;
1160 out_mn:
1161         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1162 out:
1163         return err;
1164 }
1165
1166 /*
1167  * try_to_merge_one_page - take two pages and merge them into one
1168  * @vma: the vma that holds the pte pointing to page
1169  * @page: the PageAnon page that we want to replace with kpage
1170  * @kpage: the PageKsm page that we want to map instead of page,
1171  *         or NULL the first time when we want to use page as kpage.
1172  *
1173  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1174  */
1175 static int try_to_merge_one_page(struct vm_area_struct *vma,
1176                                  struct page *page, struct page *kpage)
1177 {
1178         pte_t orig_pte = __pte(0);
1179         int err = -EFAULT;
1180
1181         if (page == kpage)                      /* ksm page forked */
1182                 return 0;
1183
1184         if (!PageAnon(page))
1185                 goto out;
1186
1187         /*
1188          * We need the page lock to read a stable PageSwapCache in
1189          * write_protect_page().  We use trylock_page() instead of
1190          * lock_page() because we don't want to wait here - we
1191          * prefer to continue scanning and merging different pages,
1192          * then come back to this page when it is unlocked.
1193          */
1194         if (!trylock_page(page))
1195                 goto out;
1196
1197         if (PageTransCompound(page)) {
1198                 if (split_huge_page(page))
1199                         goto out_unlock;
1200         }
1201
1202         /*
1203          * If this anonymous page is mapped only here, its pte may need
1204          * to be write-protected.  If it's mapped elsewhere, all of its
1205          * ptes are necessarily already write-protected.  But in either
1206          * case, we need to lock and check page_count is not raised.
1207          */
1208         if (write_protect_page(vma, page, &orig_pte) == 0) {
1209                 if (!kpage) {
1210                         /*
1211                          * While we hold page lock, upgrade page from
1212                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1213                          * stable_tree_insert() will update stable_node.
1214                          */
1215                         set_page_stable_node(page, NULL);
1216                         mark_page_accessed(page);
1217                         /*
1218                          * Page reclaim just frees a clean page with no dirty
1219                          * ptes: make sure that the ksm page would be swapped.
1220                          */
1221                         if (!PageDirty(page))
1222                                 SetPageDirty(page);
1223                         err = 0;
1224                 } else if (pages_identical(page, kpage))
1225                         err = replace_page(vma, page, kpage, orig_pte);
1226         }
1227
1228         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1229                 munlock_vma_page(page);
1230                 if (!PageMlocked(kpage)) {
1231                         unlock_page(page);
1232                         lock_page(kpage);
1233                         mlock_vma_page(kpage);
1234                         page = kpage;           /* for final unlock */
1235                 }
1236         }
1237
1238 out_unlock:
1239         unlock_page(page);
1240 out:
1241         return err;
1242 }
1243
1244 /*
1245  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1246  * but no new kernel page is allocated: kpage must already be a ksm page.
1247  *
1248  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1249  */
1250 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1251                                       struct page *page, struct page *kpage)
1252 {
1253         struct mm_struct *mm = rmap_item->mm;
1254         struct vm_area_struct *vma;
1255         int err = -EFAULT;
1256
1257         down_read(&mm->mmap_sem);
1258         vma = find_mergeable_vma(mm, rmap_item->address);
1259         if (!vma)
1260                 goto out;
1261
1262         err = try_to_merge_one_page(vma, page, kpage);
1263         if (err)
1264                 goto out;
1265
1266         /* Unstable nid is in union with stable anon_vma: remove first */
1267         remove_rmap_item_from_tree(rmap_item);
1268
1269         /* Must get reference to anon_vma while still holding mmap_sem */
1270         rmap_item->anon_vma = vma->anon_vma;
1271         get_anon_vma(vma->anon_vma);
1272 out:
1273         up_read(&mm->mmap_sem);
1274         return err;
1275 }
1276
1277 /*
1278  * try_to_merge_two_pages - take two identical pages and prepare them
1279  * to be merged into one page.
1280  *
1281  * This function returns the kpage if we successfully merged two identical
1282  * pages into one ksm page, NULL otherwise.
1283  *
1284  * Note that this function upgrades page to ksm page: if one of the pages
1285  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1286  */
1287 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1288                                            struct page *page,
1289                                            struct rmap_item *tree_rmap_item,
1290                                            struct page *tree_page)
1291 {
1292         int err;
1293
1294         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1295         if (!err) {
1296                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1297                                                         tree_page, page);
1298                 /*
1299                  * If that fails, we have a ksm page with only one pte
1300                  * pointing to it: so break it.
1301                  */
1302                 if (err)
1303                         break_cow(rmap_item);
1304         }
1305         return err ? NULL : page;
1306 }
1307
1308 static __always_inline
1309 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1310 {
1311         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1312         /*
1313          * Check that at least one mapping still exists, otherwise
1314          * there's no much point to merge and share with this
1315          * stable_node, as the underlying tree_page of the other
1316          * sharer is going to be freed soon.
1317          */
1318         return stable_node->rmap_hlist_len &&
1319                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1320 }
1321
1322 static __always_inline
1323 bool is_page_sharing_candidate(struct stable_node *stable_node)
1324 {
1325         return __is_page_sharing_candidate(stable_node, 0);
1326 }
1327
1328 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1329                              struct stable_node **_stable_node,
1330                              struct rb_root *root,
1331                              bool prune_stale_stable_nodes)
1332 {
1333         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1334         struct hlist_node *hlist_safe;
1335         struct page *_tree_page, *tree_page = NULL;
1336         int nr = 0;
1337         int found_rmap_hlist_len;
1338
1339         if (!prune_stale_stable_nodes ||
1340             time_before(jiffies, stable_node->chain_prune_time +
1341                         msecs_to_jiffies(
1342                                 ksm_stable_node_chains_prune_millisecs)))
1343                 prune_stale_stable_nodes = false;
1344         else
1345                 stable_node->chain_prune_time = jiffies;
1346
1347         hlist_for_each_entry_safe(dup, hlist_safe,
1348                                   &stable_node->hlist, hlist_dup) {
1349                 cond_resched();
1350                 /*
1351                  * We must walk all stable_node_dup to prune the stale
1352                  * stable nodes during lookup.
1353                  *
1354                  * get_ksm_page can drop the nodes from the
1355                  * stable_node->hlist if they point to freed pages
1356                  * (that's why we do a _safe walk). The "dup"
1357                  * stable_node parameter itself will be freed from
1358                  * under us if it returns NULL.
1359                  */
1360                 _tree_page = get_ksm_page(dup, false);
1361                 if (!_tree_page)
1362                         continue;
1363                 nr += 1;
1364                 if (is_page_sharing_candidate(dup)) {
1365                         if (!found ||
1366                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1367                                 if (found)
1368                                         put_page(tree_page);
1369                                 found = dup;
1370                                 found_rmap_hlist_len = found->rmap_hlist_len;
1371                                 tree_page = _tree_page;
1372
1373                                 /* skip put_page for found dup */
1374                                 if (!prune_stale_stable_nodes)
1375                                         break;
1376                                 continue;
1377                         }
1378                 }
1379                 put_page(_tree_page);
1380         }
1381
1382         if (found) {
1383                 /*
1384                  * nr is counting all dups in the chain only if
1385                  * prune_stale_stable_nodes is true, otherwise we may
1386                  * break the loop at nr == 1 even if there are
1387                  * multiple entries.
1388                  */
1389                 if (prune_stale_stable_nodes && nr == 1) {
1390                         /*
1391                          * If there's not just one entry it would
1392                          * corrupt memory, better BUG_ON. In KSM
1393                          * context with no lock held it's not even
1394                          * fatal.
1395                          */
1396                         BUG_ON(stable_node->hlist.first->next);
1397
1398                         /*
1399                          * There's just one entry and it is below the
1400                          * deduplication limit so drop the chain.
1401                          */
1402                         rb_replace_node(&stable_node->node, &found->node,
1403                                         root);
1404                         free_stable_node(stable_node);
1405                         ksm_stable_node_chains--;
1406                         ksm_stable_node_dups--;
1407                         /*
1408                          * NOTE: the caller depends on the stable_node
1409                          * to be equal to stable_node_dup if the chain
1410                          * was collapsed.
1411                          */
1412                         *_stable_node = found;
1413                         /*
1414                          * Just for robustneess as stable_node is
1415                          * otherwise left as a stable pointer, the
1416                          * compiler shall optimize it away at build
1417                          * time.
1418                          */
1419                         stable_node = NULL;
1420                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1421                            __is_page_sharing_candidate(found, 1)) {
1422                         /*
1423                          * If the found stable_node dup can accept one
1424                          * more future merge (in addition to the one
1425                          * that is underway) and is not at the head of
1426                          * the chain, put it there so next search will
1427                          * be quicker in the !prune_stale_stable_nodes
1428                          * case.
1429                          *
1430                          * NOTE: it would be inaccurate to use nr > 1
1431                          * instead of checking the hlist.first pointer
1432                          * directly, because in the
1433                          * prune_stale_stable_nodes case "nr" isn't
1434                          * the position of the found dup in the chain,
1435                          * but the total number of dups in the chain.
1436                          */
1437                         hlist_del(&found->hlist_dup);
1438                         hlist_add_head(&found->hlist_dup,
1439                                        &stable_node->hlist);
1440                 }
1441         }
1442
1443         *_stable_node_dup = found;
1444         return tree_page;
1445 }
1446
1447 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1448                                                struct rb_root *root)
1449 {
1450         if (!is_stable_node_chain(stable_node))
1451                 return stable_node;
1452         if (hlist_empty(&stable_node->hlist)) {
1453                 free_stable_node_chain(stable_node, root);
1454                 return NULL;
1455         }
1456         return hlist_entry(stable_node->hlist.first,
1457                            typeof(*stable_node), hlist_dup);
1458 }
1459
1460 /*
1461  * Like for get_ksm_page, this function can free the *_stable_node and
1462  * *_stable_node_dup if the returned tree_page is NULL.
1463  *
1464  * It can also free and overwrite *_stable_node with the found
1465  * stable_node_dup if the chain is collapsed (in which case
1466  * *_stable_node will be equal to *_stable_node_dup like if the chain
1467  * never existed). It's up to the caller to verify tree_page is not
1468  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1469  *
1470  * *_stable_node_dup is really a second output parameter of this
1471  * function and will be overwritten in all cases, the caller doesn't
1472  * need to initialize it.
1473  */
1474 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1475                                         struct stable_node **_stable_node,
1476                                         struct rb_root *root,
1477                                         bool prune_stale_stable_nodes)
1478 {
1479         struct stable_node *stable_node = *_stable_node;
1480         if (!is_stable_node_chain(stable_node)) {
1481                 if (is_page_sharing_candidate(stable_node)) {
1482                         *_stable_node_dup = stable_node;
1483                         return get_ksm_page(stable_node, false);
1484                 }
1485                 /*
1486                  * _stable_node_dup set to NULL means the stable_node
1487                  * reached the ksm_max_page_sharing limit.
1488                  */
1489                 *_stable_node_dup = NULL;
1490                 return NULL;
1491         }
1492         return stable_node_dup(_stable_node_dup, _stable_node, root,
1493                                prune_stale_stable_nodes);
1494 }
1495
1496 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1497                                                 struct stable_node **s_n,
1498                                                 struct rb_root *root)
1499 {
1500         return __stable_node_chain(s_n_d, s_n, root, true);
1501 }
1502
1503 static __always_inline struct page *chain(struct stable_node **s_n_d,
1504                                           struct stable_node *s_n,
1505                                           struct rb_root *root)
1506 {
1507         struct stable_node *old_stable_node = s_n;
1508         struct page *tree_page;
1509
1510         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1511         /* not pruning dups so s_n cannot have changed */
1512         VM_BUG_ON(s_n != old_stable_node);
1513         return tree_page;
1514 }
1515
1516 /*
1517  * stable_tree_search - search for page inside the stable tree
1518  *
1519  * This function checks if there is a page inside the stable tree
1520  * with identical content to the page that we are scanning right now.
1521  *
1522  * This function returns the stable tree node of identical content if found,
1523  * NULL otherwise.
1524  */
1525 static struct page *stable_tree_search(struct page *page)
1526 {
1527         int nid;
1528         struct rb_root *root;
1529         struct rb_node **new;
1530         struct rb_node *parent;
1531         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1532         struct stable_node *page_node;
1533
1534         page_node = page_stable_node(page);
1535         if (page_node && page_node->head != &migrate_nodes) {
1536                 /* ksm page forked */
1537                 get_page(page);
1538                 return page;
1539         }
1540
1541         nid = get_kpfn_nid(page_to_pfn(page));
1542         root = root_stable_tree + nid;
1543 again:
1544         new = &root->rb_node;
1545         parent = NULL;
1546
1547         while (*new) {
1548                 struct page *tree_page;
1549                 int ret;
1550
1551                 cond_resched();
1552                 stable_node = rb_entry(*new, struct stable_node, node);
1553                 stable_node_any = NULL;
1554                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1555                 /*
1556                  * NOTE: stable_node may have been freed by
1557                  * chain_prune() if the returned stable_node_dup is
1558                  * not NULL. stable_node_dup may have been inserted in
1559                  * the rbtree instead as a regular stable_node (in
1560                  * order to collapse the stable_node chain if a single
1561                  * stable_node dup was found in it). In such case the
1562                  * stable_node is overwritten by the calleee to point
1563                  * to the stable_node_dup that was collapsed in the
1564                  * stable rbtree and stable_node will be equal to
1565                  * stable_node_dup like if the chain never existed.
1566                  */
1567                 if (!stable_node_dup) {
1568                         /*
1569                          * Either all stable_node dups were full in
1570                          * this stable_node chain, or this chain was
1571                          * empty and should be rb_erased.
1572                          */
1573                         stable_node_any = stable_node_dup_any(stable_node,
1574                                                               root);
1575                         if (!stable_node_any) {
1576                                 /* rb_erase just run */
1577                                 goto again;
1578                         }
1579                         /*
1580                          * Take any of the stable_node dups page of
1581                          * this stable_node chain to let the tree walk
1582                          * continue. All KSM pages belonging to the
1583                          * stable_node dups in a stable_node chain
1584                          * have the same content and they're
1585                          * wrprotected at all times. Any will work
1586                          * fine to continue the walk.
1587                          */
1588                         tree_page = get_ksm_page(stable_node_any, false);
1589                 }
1590                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1591                 if (!tree_page) {
1592                         /*
1593                          * If we walked over a stale stable_node,
1594                          * get_ksm_page() will call rb_erase() and it
1595                          * may rebalance the tree from under us. So
1596                          * restart the search from scratch. Returning
1597                          * NULL would be safe too, but we'd generate
1598                          * false negative insertions just because some
1599                          * stable_node was stale.
1600                          */
1601                         goto again;
1602                 }
1603
1604                 ret = memcmp_pages(page, tree_page);
1605                 put_page(tree_page);
1606
1607                 parent = *new;
1608                 if (ret < 0)
1609                         new = &parent->rb_left;
1610                 else if (ret > 0)
1611                         new = &parent->rb_right;
1612                 else {
1613                         if (page_node) {
1614                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1615                                 /*
1616                                  * Test if the migrated page should be merged
1617                                  * into a stable node dup. If the mapcount is
1618                                  * 1 we can migrate it with another KSM page
1619                                  * without adding it to the chain.
1620                                  */
1621                                 if (page_mapcount(page) > 1)
1622                                         goto chain_append;
1623                         }
1624
1625                         if (!stable_node_dup) {
1626                                 /*
1627                                  * If the stable_node is a chain and
1628                                  * we got a payload match in memcmp
1629                                  * but we cannot merge the scanned
1630                                  * page in any of the existing
1631                                  * stable_node dups because they're
1632                                  * all full, we need to wait the
1633                                  * scanned page to find itself a match
1634                                  * in the unstable tree to create a
1635                                  * brand new KSM page to add later to
1636                                  * the dups of this stable_node.
1637                                  */
1638                                 return NULL;
1639                         }
1640
1641                         /*
1642                          * Lock and unlock the stable_node's page (which
1643                          * might already have been migrated) so that page
1644                          * migration is sure to notice its raised count.
1645                          * It would be more elegant to return stable_node
1646                          * than kpage, but that involves more changes.
1647                          */
1648                         tree_page = get_ksm_page(stable_node_dup, true);
1649                         if (unlikely(!tree_page))
1650                                 /*
1651                                  * The tree may have been rebalanced,
1652                                  * so re-evaluate parent and new.
1653                                  */
1654                                 goto again;
1655                         unlock_page(tree_page);
1656
1657                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1658                             NUMA(stable_node_dup->nid)) {
1659                                 put_page(tree_page);
1660                                 goto replace;
1661                         }
1662                         return tree_page;
1663                 }
1664         }
1665
1666         if (!page_node)
1667                 return NULL;
1668
1669         list_del(&page_node->list);
1670         DO_NUMA(page_node->nid = nid);
1671         rb_link_node(&page_node->node, parent, new);
1672         rb_insert_color(&page_node->node, root);
1673 out:
1674         if (is_page_sharing_candidate(page_node)) {
1675                 get_page(page);
1676                 return page;
1677         } else
1678                 return NULL;
1679
1680 replace:
1681         /*
1682          * If stable_node was a chain and chain_prune collapsed it,
1683          * stable_node has been updated to be the new regular
1684          * stable_node. A collapse of the chain is indistinguishable
1685          * from the case there was no chain in the stable
1686          * rbtree. Otherwise stable_node is the chain and
1687          * stable_node_dup is the dup to replace.
1688          */
1689         if (stable_node_dup == stable_node) {
1690                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1691                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1692                 /* there is no chain */
1693                 if (page_node) {
1694                         VM_BUG_ON(page_node->head != &migrate_nodes);
1695                         list_del(&page_node->list);
1696                         DO_NUMA(page_node->nid = nid);
1697                         rb_replace_node(&stable_node_dup->node,
1698                                         &page_node->node,
1699                                         root);
1700                         if (is_page_sharing_candidate(page_node))
1701                                 get_page(page);
1702                         else
1703                                 page = NULL;
1704                 } else {
1705                         rb_erase(&stable_node_dup->node, root);
1706                         page = NULL;
1707                 }
1708         } else {
1709                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1710                 __stable_node_dup_del(stable_node_dup);
1711                 if (page_node) {
1712                         VM_BUG_ON(page_node->head != &migrate_nodes);
1713                         list_del(&page_node->list);
1714                         DO_NUMA(page_node->nid = nid);
1715                         stable_node_chain_add_dup(page_node, stable_node);
1716                         if (is_page_sharing_candidate(page_node))
1717                                 get_page(page);
1718                         else
1719                                 page = NULL;
1720                 } else {
1721                         page = NULL;
1722                 }
1723         }
1724         stable_node_dup->head = &migrate_nodes;
1725         list_add(&stable_node_dup->list, stable_node_dup->head);
1726         return page;
1727
1728 chain_append:
1729         /* stable_node_dup could be null if it reached the limit */
1730         if (!stable_node_dup)
1731                 stable_node_dup = stable_node_any;
1732         /*
1733          * If stable_node was a chain and chain_prune collapsed it,
1734          * stable_node has been updated to be the new regular
1735          * stable_node. A collapse of the chain is indistinguishable
1736          * from the case there was no chain in the stable
1737          * rbtree. Otherwise stable_node is the chain and
1738          * stable_node_dup is the dup to replace.
1739          */
1740         if (stable_node_dup == stable_node) {
1741                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1742                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1743                 /* chain is missing so create it */
1744                 stable_node = alloc_stable_node_chain(stable_node_dup,
1745                                                       root);
1746                 if (!stable_node)
1747                         return NULL;
1748         }
1749         /*
1750          * Add this stable_node dup that was
1751          * migrated to the stable_node chain
1752          * of the current nid for this page
1753          * content.
1754          */
1755         VM_BUG_ON(!is_stable_node_chain(stable_node));
1756         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1757         VM_BUG_ON(page_node->head != &migrate_nodes);
1758         list_del(&page_node->list);
1759         DO_NUMA(page_node->nid = nid);
1760         stable_node_chain_add_dup(page_node, stable_node);
1761         goto out;
1762 }
1763
1764 /*
1765  * stable_tree_insert - insert stable tree node pointing to new ksm page
1766  * into the stable tree.
1767  *
1768  * This function returns the stable tree node just allocated on success,
1769  * NULL otherwise.
1770  */
1771 static struct stable_node *stable_tree_insert(struct page *kpage)
1772 {
1773         int nid;
1774         unsigned long kpfn;
1775         struct rb_root *root;
1776         struct rb_node **new;
1777         struct rb_node *parent;
1778         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1779         bool need_chain = false;
1780
1781         kpfn = page_to_pfn(kpage);
1782         nid = get_kpfn_nid(kpfn);
1783         root = root_stable_tree + nid;
1784 again:
1785         parent = NULL;
1786         new = &root->rb_node;
1787
1788         while (*new) {
1789                 struct page *tree_page;
1790                 int ret;
1791
1792                 cond_resched();
1793                 stable_node = rb_entry(*new, struct stable_node, node);
1794                 stable_node_any = NULL;
1795                 tree_page = chain(&stable_node_dup, stable_node, root);
1796                 if (!stable_node_dup) {
1797                         /*
1798                          * Either all stable_node dups were full in
1799                          * this stable_node chain, or this chain was
1800                          * empty and should be rb_erased.
1801                          */
1802                         stable_node_any = stable_node_dup_any(stable_node,
1803                                                               root);
1804                         if (!stable_node_any) {
1805                                 /* rb_erase just run */
1806                                 goto again;
1807                         }
1808                         /*
1809                          * Take any of the stable_node dups page of
1810                          * this stable_node chain to let the tree walk
1811                          * continue. All KSM pages belonging to the
1812                          * stable_node dups in a stable_node chain
1813                          * have the same content and they're
1814                          * wrprotected at all times. Any will work
1815                          * fine to continue the walk.
1816                          */
1817                         tree_page = get_ksm_page(stable_node_any, false);
1818                 }
1819                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1820                 if (!tree_page) {
1821                         /*
1822                          * If we walked over a stale stable_node,
1823                          * get_ksm_page() will call rb_erase() and it
1824                          * may rebalance the tree from under us. So
1825                          * restart the search from scratch. Returning
1826                          * NULL would be safe too, but we'd generate
1827                          * false negative insertions just because some
1828                          * stable_node was stale.
1829                          */
1830                         goto again;
1831                 }
1832
1833                 ret = memcmp_pages(kpage, tree_page);
1834                 put_page(tree_page);
1835
1836                 parent = *new;
1837                 if (ret < 0)
1838                         new = &parent->rb_left;
1839                 else if (ret > 0)
1840                         new = &parent->rb_right;
1841                 else {
1842                         need_chain = true;
1843                         break;
1844                 }
1845         }
1846
1847         stable_node_dup = alloc_stable_node();
1848         if (!stable_node_dup)
1849                 return NULL;
1850
1851         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1852         stable_node_dup->kpfn = kpfn;
1853         set_page_stable_node(kpage, stable_node_dup);
1854         stable_node_dup->rmap_hlist_len = 0;
1855         DO_NUMA(stable_node_dup->nid = nid);
1856         if (!need_chain) {
1857                 rb_link_node(&stable_node_dup->node, parent, new);
1858                 rb_insert_color(&stable_node_dup->node, root);
1859         } else {
1860                 if (!is_stable_node_chain(stable_node)) {
1861                         struct stable_node *orig = stable_node;
1862                         /* chain is missing so create it */
1863                         stable_node = alloc_stable_node_chain(orig, root);
1864                         if (!stable_node) {
1865                                 free_stable_node(stable_node_dup);
1866                                 return NULL;
1867                         }
1868                 }
1869                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1870         }
1871
1872         return stable_node_dup;
1873 }
1874
1875 /*
1876  * unstable_tree_search_insert - search for identical page,
1877  * else insert rmap_item into the unstable tree.
1878  *
1879  * This function searches for a page in the unstable tree identical to the
1880  * page currently being scanned; and if no identical page is found in the
1881  * tree, we insert rmap_item as a new object into the unstable tree.
1882  *
1883  * This function returns pointer to rmap_item found to be identical
1884  * to the currently scanned page, NULL otherwise.
1885  *
1886  * This function does both searching and inserting, because they share
1887  * the same walking algorithm in an rbtree.
1888  */
1889 static
1890 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1891                                               struct page *page,
1892                                               struct page **tree_pagep)
1893 {
1894         struct rb_node **new;
1895         struct rb_root *root;
1896         struct rb_node *parent = NULL;
1897         int nid;
1898
1899         nid = get_kpfn_nid(page_to_pfn(page));
1900         root = root_unstable_tree + nid;
1901         new = &root->rb_node;
1902
1903         while (*new) {
1904                 struct rmap_item *tree_rmap_item;
1905                 struct page *tree_page;
1906                 int ret;
1907
1908                 cond_resched();
1909                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1910                 tree_page = get_mergeable_page(tree_rmap_item);
1911                 if (!tree_page)
1912                         return NULL;
1913
1914                 /*
1915                  * Don't substitute a ksm page for a forked page.
1916                  */
1917                 if (page == tree_page) {
1918                         put_page(tree_page);
1919                         return NULL;
1920                 }
1921
1922                 ret = memcmp_pages(page, tree_page);
1923
1924                 parent = *new;
1925                 if (ret < 0) {
1926                         put_page(tree_page);
1927                         new = &parent->rb_left;
1928                 } else if (ret > 0) {
1929                         put_page(tree_page);
1930                         new = &parent->rb_right;
1931                 } else if (!ksm_merge_across_nodes &&
1932                            page_to_nid(tree_page) != nid) {
1933                         /*
1934                          * If tree_page has been migrated to another NUMA node,
1935                          * it will be flushed out and put in the right unstable
1936                          * tree next time: only merge with it when across_nodes.
1937                          */
1938                         put_page(tree_page);
1939                         return NULL;
1940                 } else {
1941                         *tree_pagep = tree_page;
1942                         return tree_rmap_item;
1943                 }
1944         }
1945
1946         rmap_item->address |= UNSTABLE_FLAG;
1947         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1948         DO_NUMA(rmap_item->nid = nid);
1949         rb_link_node(&rmap_item->node, parent, new);
1950         rb_insert_color(&rmap_item->node, root);
1951
1952         ksm_pages_unshared++;
1953         return NULL;
1954 }
1955
1956 /*
1957  * stable_tree_append - add another rmap_item to the linked list of
1958  * rmap_items hanging off a given node of the stable tree, all sharing
1959  * the same ksm page.
1960  */
1961 static void stable_tree_append(struct rmap_item *rmap_item,
1962                                struct stable_node *stable_node,
1963                                bool max_page_sharing_bypass)
1964 {
1965         /*
1966          * rmap won't find this mapping if we don't insert the
1967          * rmap_item in the right stable_node
1968          * duplicate. page_migration could break later if rmap breaks,
1969          * so we can as well crash here. We really need to check for
1970          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1971          * for other negative values as an undeflow if detected here
1972          * for the first time (and not when decreasing rmap_hlist_len)
1973          * would be sign of memory corruption in the stable_node.
1974          */
1975         BUG_ON(stable_node->rmap_hlist_len < 0);
1976
1977         stable_node->rmap_hlist_len++;
1978         if (!max_page_sharing_bypass)
1979                 /* possibly non fatal but unexpected overflow, only warn */
1980                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1981                              ksm_max_page_sharing);
1982
1983         rmap_item->head = stable_node;
1984         rmap_item->address |= STABLE_FLAG;
1985         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1986
1987         if (rmap_item->hlist.next)
1988                 ksm_pages_sharing++;
1989         else
1990                 ksm_pages_shared++;
1991 }
1992
1993 /*
1994  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1995  * if not, compare checksum to previous and if it's the same, see if page can
1996  * be inserted into the unstable tree, or merged with a page already there and
1997  * both transferred to the stable tree.
1998  *
1999  * @page: the page that we are searching identical page to.
2000  * @rmap_item: the reverse mapping into the virtual address of this page
2001  */
2002 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2003 {
2004         struct mm_struct *mm = rmap_item->mm;
2005         struct rmap_item *tree_rmap_item;
2006         struct page *tree_page = NULL;
2007         struct stable_node *stable_node;
2008         struct page *kpage;
2009         unsigned int checksum;
2010         int err;
2011         bool max_page_sharing_bypass = false;
2012
2013         stable_node = page_stable_node(page);
2014         if (stable_node) {
2015                 if (stable_node->head != &migrate_nodes &&
2016                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2017                     NUMA(stable_node->nid)) {
2018                         stable_node_dup_del(stable_node);
2019                         stable_node->head = &migrate_nodes;
2020                         list_add(&stable_node->list, stable_node->head);
2021                 }
2022                 if (stable_node->head != &migrate_nodes &&
2023                     rmap_item->head == stable_node)
2024                         return;
2025                 /*
2026                  * If it's a KSM fork, allow it to go over the sharing limit
2027                  * without warnings.
2028                  */
2029                 if (!is_page_sharing_candidate(stable_node))
2030                         max_page_sharing_bypass = true;
2031         }
2032
2033         /* We first start with searching the page inside the stable tree */
2034         kpage = stable_tree_search(page);
2035         if (kpage == page && rmap_item->head == stable_node) {
2036                 put_page(kpage);
2037                 return;
2038         }
2039
2040         remove_rmap_item_from_tree(rmap_item);
2041
2042         if (kpage) {
2043                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2044                 if (!err) {
2045                         /*
2046                          * The page was successfully merged:
2047                          * add its rmap_item to the stable tree.
2048                          */
2049                         lock_page(kpage);
2050                         stable_tree_append(rmap_item, page_stable_node(kpage),
2051                                            max_page_sharing_bypass);
2052                         unlock_page(kpage);
2053                 }
2054                 put_page(kpage);
2055                 return;
2056         }
2057
2058         /*
2059          * If the hash value of the page has changed from the last time
2060          * we calculated it, this page is changing frequently: therefore we
2061          * don't want to insert it in the unstable tree, and we don't want
2062          * to waste our time searching for something identical to it there.
2063          */
2064         checksum = calc_checksum(page);
2065         if (rmap_item->oldchecksum != checksum) {
2066                 rmap_item->oldchecksum = checksum;
2067                 return;
2068         }
2069
2070         /*
2071          * Same checksum as an empty page. We attempt to merge it with the
2072          * appropriate zero page if the user enabled this via sysfs.
2073          */
2074         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2075                 struct vm_area_struct *vma;
2076
2077                 down_read(&mm->mmap_sem);
2078                 vma = find_mergeable_vma(mm, rmap_item->address);
2079                 err = try_to_merge_one_page(vma, page,
2080                                             ZERO_PAGE(rmap_item->address));
2081                 up_read(&mm->mmap_sem);
2082                 /*
2083                  * In case of failure, the page was not really empty, so we
2084                  * need to continue. Otherwise we're done.
2085                  */
2086                 if (!err)
2087                         return;
2088         }
2089         tree_rmap_item =
2090                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2091         if (tree_rmap_item) {
2092                 kpage = try_to_merge_two_pages(rmap_item, page,
2093                                                 tree_rmap_item, tree_page);
2094                 put_page(tree_page);
2095                 if (kpage) {
2096                         /*
2097                          * The pages were successfully merged: insert new
2098                          * node in the stable tree and add both rmap_items.
2099                          */
2100                         lock_page(kpage);
2101                         stable_node = stable_tree_insert(kpage);
2102                         if (stable_node) {
2103                                 stable_tree_append(tree_rmap_item, stable_node,
2104                                                    false);
2105                                 stable_tree_append(rmap_item, stable_node,
2106                                                    false);
2107                         }
2108                         unlock_page(kpage);
2109
2110                         /*
2111                          * If we fail to insert the page into the stable tree,
2112                          * we will have 2 virtual addresses that are pointing
2113                          * to a ksm page left outside the stable tree,
2114                          * in which case we need to break_cow on both.
2115                          */
2116                         if (!stable_node) {
2117                                 break_cow(tree_rmap_item);
2118                                 break_cow(rmap_item);
2119                         }
2120                 }
2121         }
2122 }
2123
2124 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2125                                             struct rmap_item **rmap_list,
2126                                             unsigned long addr)
2127 {
2128         struct rmap_item *rmap_item;
2129
2130         while (*rmap_list) {
2131                 rmap_item = *rmap_list;
2132                 if ((rmap_item->address & PAGE_MASK) == addr)
2133                         return rmap_item;
2134                 if (rmap_item->address > addr)
2135                         break;
2136                 *rmap_list = rmap_item->rmap_list;
2137                 remove_rmap_item_from_tree(rmap_item);
2138                 free_rmap_item(rmap_item);
2139         }
2140
2141         rmap_item = alloc_rmap_item();
2142         if (rmap_item) {
2143                 /* It has already been zeroed */
2144                 rmap_item->mm = mm_slot->mm;
2145                 rmap_item->address = addr;
2146                 rmap_item->rmap_list = *rmap_list;
2147                 *rmap_list = rmap_item;
2148         }
2149         return rmap_item;
2150 }
2151
2152 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2153 {
2154         struct mm_struct *mm;
2155         struct mm_slot *slot;
2156         struct vm_area_struct *vma;
2157         struct rmap_item *rmap_item;
2158         int nid;
2159
2160         if (list_empty(&ksm_mm_head.mm_list))
2161                 return NULL;
2162
2163         slot = ksm_scan.mm_slot;
2164         if (slot == &ksm_mm_head) {
2165                 /*
2166                  * A number of pages can hang around indefinitely on per-cpu
2167                  * pagevecs, raised page count preventing write_protect_page
2168                  * from merging them.  Though it doesn't really matter much,
2169                  * it is puzzling to see some stuck in pages_volatile until
2170                  * other activity jostles them out, and they also prevented
2171                  * LTP's KSM test from succeeding deterministically; so drain
2172                  * them here (here rather than on entry to ksm_do_scan(),
2173                  * so we don't IPI too often when pages_to_scan is set low).
2174                  */
2175                 lru_add_drain_all();
2176
2177                 /*
2178                  * Whereas stale stable_nodes on the stable_tree itself
2179                  * get pruned in the regular course of stable_tree_search(),
2180                  * those moved out to the migrate_nodes list can accumulate:
2181                  * so prune them once before each full scan.
2182                  */
2183                 if (!ksm_merge_across_nodes) {
2184                         struct stable_node *stable_node, *next;
2185                         struct page *page;
2186
2187                         list_for_each_entry_safe(stable_node, next,
2188                                                  &migrate_nodes, list) {
2189                                 page = get_ksm_page(stable_node, false);
2190                                 if (page)
2191                                         put_page(page);
2192                                 cond_resched();
2193                         }
2194                 }
2195
2196                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2197                         root_unstable_tree[nid] = RB_ROOT;
2198
2199                 spin_lock(&ksm_mmlist_lock);
2200                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2201                 ksm_scan.mm_slot = slot;
2202                 spin_unlock(&ksm_mmlist_lock);
2203                 /*
2204                  * Although we tested list_empty() above, a racing __ksm_exit
2205                  * of the last mm on the list may have removed it since then.
2206                  */
2207                 if (slot == &ksm_mm_head)
2208                         return NULL;
2209 next_mm:
2210                 ksm_scan.address = 0;
2211                 ksm_scan.rmap_list = &slot->rmap_list;
2212         }
2213
2214         mm = slot->mm;
2215         down_read(&mm->mmap_sem);
2216         if (ksm_test_exit(mm))
2217                 vma = NULL;
2218         else
2219                 vma = find_vma(mm, ksm_scan.address);
2220
2221         for (; vma; vma = vma->vm_next) {
2222                 if (!(vma->vm_flags & VM_MERGEABLE))
2223                         continue;
2224                 if (ksm_scan.address < vma->vm_start)
2225                         ksm_scan.address = vma->vm_start;
2226                 if (!vma->anon_vma)
2227                         ksm_scan.address = vma->vm_end;
2228
2229                 while (ksm_scan.address < vma->vm_end) {
2230                         if (ksm_test_exit(mm))
2231                                 break;
2232                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2233                         if (IS_ERR_OR_NULL(*page)) {
2234                                 ksm_scan.address += PAGE_SIZE;
2235                                 cond_resched();
2236                                 continue;
2237                         }
2238                         if (PageAnon(*page)) {
2239                                 flush_anon_page(vma, *page, ksm_scan.address);
2240                                 flush_dcache_page(*page);
2241                                 rmap_item = get_next_rmap_item(slot,
2242                                         ksm_scan.rmap_list, ksm_scan.address);
2243                                 if (rmap_item) {
2244                                         ksm_scan.rmap_list =
2245                                                         &rmap_item->rmap_list;
2246                                         ksm_scan.address += PAGE_SIZE;
2247                                 } else
2248                                         put_page(*page);
2249                                 up_read(&mm->mmap_sem);
2250                                 return rmap_item;
2251                         }
2252                         put_page(*page);
2253                         ksm_scan.address += PAGE_SIZE;
2254                         cond_resched();
2255                 }
2256         }
2257
2258         if (ksm_test_exit(mm)) {
2259                 ksm_scan.address = 0;
2260                 ksm_scan.rmap_list = &slot->rmap_list;
2261         }
2262         /*
2263          * Nuke all the rmap_items that are above this current rmap:
2264          * because there were no VM_MERGEABLE vmas with such addresses.
2265          */
2266         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2267
2268         spin_lock(&ksm_mmlist_lock);
2269         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2270                                                 struct mm_slot, mm_list);
2271         if (ksm_scan.address == 0) {
2272                 /*
2273                  * We've completed a full scan of all vmas, holding mmap_sem
2274                  * throughout, and found no VM_MERGEABLE: so do the same as
2275                  * __ksm_exit does to remove this mm from all our lists now.
2276                  * This applies either when cleaning up after __ksm_exit
2277                  * (but beware: we can reach here even before __ksm_exit),
2278                  * or when all VM_MERGEABLE areas have been unmapped (and
2279                  * mmap_sem then protects against race with MADV_MERGEABLE).
2280                  */
2281                 hash_del(&slot->link);
2282                 list_del(&slot->mm_list);
2283                 spin_unlock(&ksm_mmlist_lock);
2284
2285                 free_mm_slot(slot);
2286                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2287                 up_read(&mm->mmap_sem);
2288                 mmdrop(mm);
2289         } else {
2290                 up_read(&mm->mmap_sem);
2291                 /*
2292                  * up_read(&mm->mmap_sem) first because after
2293                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2294                  * already have been freed under us by __ksm_exit()
2295                  * because the "mm_slot" is still hashed and
2296                  * ksm_scan.mm_slot doesn't point to it anymore.
2297                  */
2298                 spin_unlock(&ksm_mmlist_lock);
2299         }
2300
2301         /* Repeat until we've completed scanning the whole list */
2302         slot = ksm_scan.mm_slot;
2303         if (slot != &ksm_mm_head)
2304                 goto next_mm;
2305
2306         ksm_scan.seqnr++;
2307         return NULL;
2308 }
2309
2310 /**
2311  * ksm_do_scan  - the ksm scanner main worker function.
2312  * @scan_npages - number of pages we want to scan before we return.
2313  */
2314 static void ksm_do_scan(unsigned int scan_npages)
2315 {
2316         struct rmap_item *rmap_item;
2317         struct page *uninitialized_var(page);
2318
2319         while (scan_npages-- && likely(!freezing(current))) {
2320                 cond_resched();
2321                 rmap_item = scan_get_next_rmap_item(&page);
2322                 if (!rmap_item)
2323                         return;
2324                 cmp_and_merge_page(page, rmap_item);
2325                 put_page(page);
2326         }
2327 }
2328
2329 static int ksmd_should_run(void)
2330 {
2331         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2332 }
2333
2334 static int ksm_scan_thread(void *nothing)
2335 {
2336         set_freezable();
2337         set_user_nice(current, 5);
2338
2339         while (!kthread_should_stop()) {
2340                 mutex_lock(&ksm_thread_mutex);
2341                 wait_while_offlining();
2342                 if (ksmd_should_run())
2343                         ksm_do_scan(ksm_thread_pages_to_scan);
2344                 mutex_unlock(&ksm_thread_mutex);
2345
2346                 try_to_freeze();
2347
2348                 if (ksmd_should_run()) {
2349                         schedule_timeout_interruptible(
2350                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2351                 } else {
2352                         wait_event_freezable(ksm_thread_wait,
2353                                 ksmd_should_run() || kthread_should_stop());
2354                 }
2355         }
2356         return 0;
2357 }
2358
2359 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2360                 unsigned long end, int advice, unsigned long *vm_flags)
2361 {
2362         struct mm_struct *mm = vma->vm_mm;
2363         int err;
2364
2365         switch (advice) {
2366         case MADV_MERGEABLE:
2367                 /*
2368                  * Be somewhat over-protective for now!
2369                  */
2370                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2371                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2372                                  VM_HUGETLB | VM_MIXEDMAP))
2373                         return 0;               /* just ignore the advice */
2374
2375 #ifdef VM_SAO
2376                 if (*vm_flags & VM_SAO)
2377                         return 0;
2378 #endif
2379
2380                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2381                         err = __ksm_enter(mm);
2382                         if (err)
2383                                 return err;
2384                 }
2385
2386                 *vm_flags |= VM_MERGEABLE;
2387                 break;
2388
2389         case MADV_UNMERGEABLE:
2390                 if (!(*vm_flags & VM_MERGEABLE))
2391                         return 0;               /* just ignore the advice */
2392
2393                 if (vma->anon_vma) {
2394                         err = unmerge_ksm_pages(vma, start, end);
2395                         if (err)
2396                                 return err;
2397                 }
2398
2399                 *vm_flags &= ~VM_MERGEABLE;
2400                 break;
2401         }
2402
2403         return 0;
2404 }
2405
2406 int __ksm_enter(struct mm_struct *mm)
2407 {
2408         struct mm_slot *mm_slot;
2409         int needs_wakeup;
2410
2411         mm_slot = alloc_mm_slot();
2412         if (!mm_slot)
2413                 return -ENOMEM;
2414
2415         /* Check ksm_run too?  Would need tighter locking */
2416         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2417
2418         spin_lock(&ksm_mmlist_lock);
2419         insert_to_mm_slots_hash(mm, mm_slot);
2420         /*
2421          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2422          * insert just behind the scanning cursor, to let the area settle
2423          * down a little; when fork is followed by immediate exec, we don't
2424          * want ksmd to waste time setting up and tearing down an rmap_list.
2425          *
2426          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2427          * scanning cursor, otherwise KSM pages in newly forked mms will be
2428          * missed: then we might as well insert at the end of the list.
2429          */
2430         if (ksm_run & KSM_RUN_UNMERGE)
2431                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2432         else
2433                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2434         spin_unlock(&ksm_mmlist_lock);
2435
2436         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2437         mmgrab(mm);
2438
2439         if (needs_wakeup)
2440                 wake_up_interruptible(&ksm_thread_wait);
2441
2442         return 0;
2443 }
2444
2445 void __ksm_exit(struct mm_struct *mm)
2446 {
2447         struct mm_slot *mm_slot;
2448         int easy_to_free = 0;
2449
2450         /*
2451          * This process is exiting: if it's straightforward (as is the
2452          * case when ksmd was never running), free mm_slot immediately.
2453          * But if it's at the cursor or has rmap_items linked to it, use
2454          * mmap_sem to synchronize with any break_cows before pagetables
2455          * are freed, and leave the mm_slot on the list for ksmd to free.
2456          * Beware: ksm may already have noticed it exiting and freed the slot.
2457          */
2458
2459         spin_lock(&ksm_mmlist_lock);
2460         mm_slot = get_mm_slot(mm);
2461         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2462                 if (!mm_slot->rmap_list) {
2463                         hash_del(&mm_slot->link);
2464                         list_del(&mm_slot->mm_list);
2465                         easy_to_free = 1;
2466                 } else {
2467                         list_move(&mm_slot->mm_list,
2468                                   &ksm_scan.mm_slot->mm_list);
2469                 }
2470         }
2471         spin_unlock(&ksm_mmlist_lock);
2472
2473         if (easy_to_free) {
2474                 free_mm_slot(mm_slot);
2475                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2476                 mmdrop(mm);
2477         } else if (mm_slot) {
2478                 down_write(&mm->mmap_sem);
2479                 up_write(&mm->mmap_sem);
2480         }
2481 }
2482
2483 struct page *ksm_might_need_to_copy(struct page *page,
2484                         struct vm_area_struct *vma, unsigned long address)
2485 {
2486         struct anon_vma *anon_vma = page_anon_vma(page);
2487         struct page *new_page;
2488
2489         if (PageKsm(page)) {
2490                 if (page_stable_node(page) &&
2491                     !(ksm_run & KSM_RUN_UNMERGE))
2492                         return page;    /* no need to copy it */
2493         } else if (!anon_vma) {
2494                 return page;            /* no need to copy it */
2495         } else if (anon_vma->root == vma->anon_vma->root &&
2496                  page->index == linear_page_index(vma, address)) {
2497                 return page;            /* still no need to copy it */
2498         }
2499         if (!PageUptodate(page))
2500                 return page;            /* let do_swap_page report the error */
2501
2502         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2503         if (new_page) {
2504                 copy_user_highpage(new_page, page, address, vma);
2505
2506                 SetPageDirty(new_page);
2507                 __SetPageUptodate(new_page);
2508                 __SetPageLocked(new_page);
2509         }
2510
2511         return new_page;
2512 }
2513
2514 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2515 {
2516         struct stable_node *stable_node;
2517         struct rmap_item *rmap_item;
2518         int search_new_forks = 0;
2519
2520         VM_BUG_ON_PAGE(!PageKsm(page), page);
2521
2522         /*
2523          * Rely on the page lock to protect against concurrent modifications
2524          * to that page's node of the stable tree.
2525          */
2526         VM_BUG_ON_PAGE(!PageLocked(page), page);
2527
2528         stable_node = page_stable_node(page);
2529         if (!stable_node)
2530                 return;
2531 again:
2532         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2533                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2534                 struct anon_vma_chain *vmac;
2535                 struct vm_area_struct *vma;
2536
2537                 cond_resched();
2538                 anon_vma_lock_read(anon_vma);
2539                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2540                                                0, ULONG_MAX) {
2541                         cond_resched();
2542                         vma = vmac->vma;
2543                         if (rmap_item->address < vma->vm_start ||
2544                             rmap_item->address >= vma->vm_end)
2545                                 continue;
2546                         /*
2547                          * Initially we examine only the vma which covers this
2548                          * rmap_item; but later, if there is still work to do,
2549                          * we examine covering vmas in other mms: in case they
2550                          * were forked from the original since ksmd passed.
2551                          */
2552                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2553                                 continue;
2554
2555                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2556                                 continue;
2557
2558                         if (!rwc->rmap_one(page, vma,
2559                                         rmap_item->address, rwc->arg)) {
2560                                 anon_vma_unlock_read(anon_vma);
2561                                 return;
2562                         }
2563                         if (rwc->done && rwc->done(page)) {
2564                                 anon_vma_unlock_read(anon_vma);
2565                                 return;
2566                         }
2567                 }
2568                 anon_vma_unlock_read(anon_vma);
2569         }
2570         if (!search_new_forks++)
2571                 goto again;
2572 }
2573
2574 #ifdef CONFIG_MIGRATION
2575 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2576 {
2577         struct stable_node *stable_node;
2578
2579         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2580         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2581         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2582
2583         stable_node = page_stable_node(newpage);
2584         if (stable_node) {
2585                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2586                 stable_node->kpfn = page_to_pfn(newpage);
2587                 /*
2588                  * newpage->mapping was set in advance; now we need smp_wmb()
2589                  * to make sure that the new stable_node->kpfn is visible
2590                  * to get_ksm_page() before it can see that oldpage->mapping
2591                  * has gone stale (or that PageSwapCache has been cleared).
2592                  */
2593                 smp_wmb();
2594                 set_page_stable_node(oldpage, NULL);
2595         }
2596 }
2597 #endif /* CONFIG_MIGRATION */
2598
2599 #ifdef CONFIG_MEMORY_HOTREMOVE
2600 static void wait_while_offlining(void)
2601 {
2602         while (ksm_run & KSM_RUN_OFFLINE) {
2603                 mutex_unlock(&ksm_thread_mutex);
2604                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2605                             TASK_UNINTERRUPTIBLE);
2606                 mutex_lock(&ksm_thread_mutex);
2607         }
2608 }
2609
2610 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2611                                          unsigned long start_pfn,
2612                                          unsigned long end_pfn)
2613 {
2614         if (stable_node->kpfn >= start_pfn &&
2615             stable_node->kpfn < end_pfn) {
2616                 /*
2617                  * Don't get_ksm_page, page has already gone:
2618                  * which is why we keep kpfn instead of page*
2619                  */
2620                 remove_node_from_stable_tree(stable_node);
2621                 return true;
2622         }
2623         return false;
2624 }
2625
2626 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2627                                            unsigned long start_pfn,
2628                                            unsigned long end_pfn,
2629                                            struct rb_root *root)
2630 {
2631         struct stable_node *dup;
2632         struct hlist_node *hlist_safe;
2633
2634         if (!is_stable_node_chain(stable_node)) {
2635                 VM_BUG_ON(is_stable_node_dup(stable_node));
2636                 return stable_node_dup_remove_range(stable_node, start_pfn,
2637                                                     end_pfn);
2638         }
2639
2640         hlist_for_each_entry_safe(dup, hlist_safe,
2641                                   &stable_node->hlist, hlist_dup) {
2642                 VM_BUG_ON(!is_stable_node_dup(dup));
2643                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2644         }
2645         if (hlist_empty(&stable_node->hlist)) {
2646                 free_stable_node_chain(stable_node, root);
2647                 return true; /* notify caller that tree was rebalanced */
2648         } else
2649                 return false;
2650 }
2651
2652 static void ksm_check_stable_tree(unsigned long start_pfn,
2653                                   unsigned long end_pfn)
2654 {
2655         struct stable_node *stable_node, *next;
2656         struct rb_node *node;
2657         int nid;
2658
2659         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2660                 node = rb_first(root_stable_tree + nid);
2661                 while (node) {
2662                         stable_node = rb_entry(node, struct stable_node, node);
2663                         if (stable_node_chain_remove_range(stable_node,
2664                                                            start_pfn, end_pfn,
2665                                                            root_stable_tree +
2666                                                            nid))
2667                                 node = rb_first(root_stable_tree + nid);
2668                         else
2669                                 node = rb_next(node);
2670                         cond_resched();
2671                 }
2672         }
2673         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2674                 if (stable_node->kpfn >= start_pfn &&
2675                     stable_node->kpfn < end_pfn)
2676                         remove_node_from_stable_tree(stable_node);
2677                 cond_resched();
2678         }
2679 }
2680
2681 static int ksm_memory_callback(struct notifier_block *self,
2682                                unsigned long action, void *arg)
2683 {
2684         struct memory_notify *mn = arg;
2685
2686         switch (action) {
2687         case MEM_GOING_OFFLINE:
2688                 /*
2689                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2690                  * and remove_all_stable_nodes() while memory is going offline:
2691                  * it is unsafe for them to touch the stable tree at this time.
2692                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2693                  * which do not need the ksm_thread_mutex are all safe.
2694                  */
2695                 mutex_lock(&ksm_thread_mutex);
2696                 ksm_run |= KSM_RUN_OFFLINE;
2697                 mutex_unlock(&ksm_thread_mutex);
2698                 break;
2699
2700         case MEM_OFFLINE:
2701                 /*
2702                  * Most of the work is done by page migration; but there might
2703                  * be a few stable_nodes left over, still pointing to struct
2704                  * pages which have been offlined: prune those from the tree,
2705                  * otherwise get_ksm_page() might later try to access a
2706                  * non-existent struct page.
2707                  */
2708                 ksm_check_stable_tree(mn->start_pfn,
2709                                       mn->start_pfn + mn->nr_pages);
2710                 /* fallthrough */
2711
2712         case MEM_CANCEL_OFFLINE:
2713                 mutex_lock(&ksm_thread_mutex);
2714                 ksm_run &= ~KSM_RUN_OFFLINE;
2715                 mutex_unlock(&ksm_thread_mutex);
2716
2717                 smp_mb();       /* wake_up_bit advises this */
2718                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2719                 break;
2720         }
2721         return NOTIFY_OK;
2722 }
2723 #else
2724 static void wait_while_offlining(void)
2725 {
2726 }
2727 #endif /* CONFIG_MEMORY_HOTREMOVE */
2728
2729 #ifdef CONFIG_SYSFS
2730 /*
2731  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2732  */
2733
2734 #define KSM_ATTR_RO(_name) \
2735         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2736 #define KSM_ATTR(_name) \
2737         static struct kobj_attribute _name##_attr = \
2738                 __ATTR(_name, 0644, _name##_show, _name##_store)
2739
2740 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2741                                     struct kobj_attribute *attr, char *buf)
2742 {
2743         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2744 }
2745
2746 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2747                                      struct kobj_attribute *attr,
2748                                      const char *buf, size_t count)
2749 {
2750         unsigned long msecs;
2751         int err;
2752
2753         err = kstrtoul(buf, 10, &msecs);
2754         if (err || msecs > UINT_MAX)
2755                 return -EINVAL;
2756
2757         ksm_thread_sleep_millisecs = msecs;
2758
2759         return count;
2760 }
2761 KSM_ATTR(sleep_millisecs);
2762
2763 static ssize_t pages_to_scan_show(struct kobject *kobj,
2764                                   struct kobj_attribute *attr, char *buf)
2765 {
2766         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2767 }
2768
2769 static ssize_t pages_to_scan_store(struct kobject *kobj,
2770                                    struct kobj_attribute *attr,
2771                                    const char *buf, size_t count)
2772 {
2773         int err;
2774         unsigned long nr_pages;
2775
2776         err = kstrtoul(buf, 10, &nr_pages);
2777         if (err || nr_pages > UINT_MAX)
2778                 return -EINVAL;
2779
2780         ksm_thread_pages_to_scan = nr_pages;
2781
2782         return count;
2783 }
2784 KSM_ATTR(pages_to_scan);
2785
2786 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2787                         char *buf)
2788 {
2789         return sprintf(buf, "%lu\n", ksm_run);
2790 }
2791
2792 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2793                          const char *buf, size_t count)
2794 {
2795         int err;
2796         unsigned long flags;
2797
2798         err = kstrtoul(buf, 10, &flags);
2799         if (err || flags > UINT_MAX)
2800                 return -EINVAL;
2801         if (flags > KSM_RUN_UNMERGE)
2802                 return -EINVAL;
2803
2804         /*
2805          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2806          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2807          * breaking COW to free the pages_shared (but leaves mm_slots
2808          * on the list for when ksmd may be set running again).
2809          */
2810
2811         mutex_lock(&ksm_thread_mutex);
2812         wait_while_offlining();
2813         if (ksm_run != flags) {
2814                 ksm_run = flags;
2815                 if (flags & KSM_RUN_UNMERGE) {
2816                         set_current_oom_origin();
2817                         err = unmerge_and_remove_all_rmap_items();
2818                         clear_current_oom_origin();
2819                         if (err) {
2820                                 ksm_run = KSM_RUN_STOP;
2821                                 count = err;
2822                         }
2823                 }
2824         }
2825         mutex_unlock(&ksm_thread_mutex);
2826
2827         if (flags & KSM_RUN_MERGE)
2828                 wake_up_interruptible(&ksm_thread_wait);
2829
2830         return count;
2831 }
2832 KSM_ATTR(run);
2833
2834 #ifdef CONFIG_NUMA
2835 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2836                                 struct kobj_attribute *attr, char *buf)
2837 {
2838         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2839 }
2840
2841 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2842                                    struct kobj_attribute *attr,
2843                                    const char *buf, size_t count)
2844 {
2845         int err;
2846         unsigned long knob;
2847
2848         err = kstrtoul(buf, 10, &knob);
2849         if (err)
2850                 return err;
2851         if (knob > 1)
2852                 return -EINVAL;
2853
2854         mutex_lock(&ksm_thread_mutex);
2855         wait_while_offlining();
2856         if (ksm_merge_across_nodes != knob) {
2857                 if (ksm_pages_shared || remove_all_stable_nodes())
2858                         err = -EBUSY;
2859                 else if (root_stable_tree == one_stable_tree) {
2860                         struct rb_root *buf;
2861                         /*
2862                          * This is the first time that we switch away from the
2863                          * default of merging across nodes: must now allocate
2864                          * a buffer to hold as many roots as may be needed.
2865                          * Allocate stable and unstable together:
2866                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2867                          */
2868                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2869                                       GFP_KERNEL);
2870                         /* Let us assume that RB_ROOT is NULL is zero */
2871                         if (!buf)
2872                                 err = -ENOMEM;
2873                         else {
2874                                 root_stable_tree = buf;
2875                                 root_unstable_tree = buf + nr_node_ids;
2876                                 /* Stable tree is empty but not the unstable */
2877                                 root_unstable_tree[0] = one_unstable_tree[0];
2878                         }
2879                 }
2880                 if (!err) {
2881                         ksm_merge_across_nodes = knob;
2882                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2883                 }
2884         }
2885         mutex_unlock(&ksm_thread_mutex);
2886
2887         return err ? err : count;
2888 }
2889 KSM_ATTR(merge_across_nodes);
2890 #endif
2891
2892 static ssize_t use_zero_pages_show(struct kobject *kobj,
2893                                 struct kobj_attribute *attr, char *buf)
2894 {
2895         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2896 }
2897 static ssize_t use_zero_pages_store(struct kobject *kobj,
2898                                    struct kobj_attribute *attr,
2899                                    const char *buf, size_t count)
2900 {
2901         int err;
2902         bool value;
2903
2904         err = kstrtobool(buf, &value);
2905         if (err)
2906                 return -EINVAL;
2907
2908         ksm_use_zero_pages = value;
2909
2910         return count;
2911 }
2912 KSM_ATTR(use_zero_pages);
2913
2914 static ssize_t max_page_sharing_show(struct kobject *kobj,
2915                                      struct kobj_attribute *attr, char *buf)
2916 {
2917         return sprintf(buf, "%u\n", ksm_max_page_sharing);
2918 }
2919
2920 static ssize_t max_page_sharing_store(struct kobject *kobj,
2921                                       struct kobj_attribute *attr,
2922                                       const char *buf, size_t count)
2923 {
2924         int err;
2925         int knob;
2926
2927         err = kstrtoint(buf, 10, &knob);
2928         if (err)
2929                 return err;
2930         /*
2931          * When a KSM page is created it is shared by 2 mappings. This
2932          * being a signed comparison, it implicitly verifies it's not
2933          * negative.
2934          */
2935         if (knob < 2)
2936                 return -EINVAL;
2937
2938         if (READ_ONCE(ksm_max_page_sharing) == knob)
2939                 return count;
2940
2941         mutex_lock(&ksm_thread_mutex);
2942         wait_while_offlining();
2943         if (ksm_max_page_sharing != knob) {
2944                 if (ksm_pages_shared || remove_all_stable_nodes())
2945                         err = -EBUSY;
2946                 else
2947                         ksm_max_page_sharing = knob;
2948         }
2949         mutex_unlock(&ksm_thread_mutex);
2950
2951         return err ? err : count;
2952 }
2953 KSM_ATTR(max_page_sharing);
2954
2955 static ssize_t pages_shared_show(struct kobject *kobj,
2956                                  struct kobj_attribute *attr, char *buf)
2957 {
2958         return sprintf(buf, "%lu\n", ksm_pages_shared);
2959 }
2960 KSM_ATTR_RO(pages_shared);
2961
2962 static ssize_t pages_sharing_show(struct kobject *kobj,
2963                                   struct kobj_attribute *attr, char *buf)
2964 {
2965         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2966 }
2967 KSM_ATTR_RO(pages_sharing);
2968
2969 static ssize_t pages_unshared_show(struct kobject *kobj,
2970                                    struct kobj_attribute *attr, char *buf)
2971 {
2972         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2973 }
2974 KSM_ATTR_RO(pages_unshared);
2975
2976 static ssize_t pages_volatile_show(struct kobject *kobj,
2977                                    struct kobj_attribute *attr, char *buf)
2978 {
2979         long ksm_pages_volatile;
2980
2981         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2982                                 - ksm_pages_sharing - ksm_pages_unshared;
2983         /*
2984          * It was not worth any locking to calculate that statistic,
2985          * but it might therefore sometimes be negative: conceal that.
2986          */
2987         if (ksm_pages_volatile < 0)
2988                 ksm_pages_volatile = 0;
2989         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2990 }
2991 KSM_ATTR_RO(pages_volatile);
2992
2993 static ssize_t stable_node_dups_show(struct kobject *kobj,
2994                                      struct kobj_attribute *attr, char *buf)
2995 {
2996         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2997 }
2998 KSM_ATTR_RO(stable_node_dups);
2999
3000 static ssize_t stable_node_chains_show(struct kobject *kobj,
3001                                        struct kobj_attribute *attr, char *buf)
3002 {
3003         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3004 }
3005 KSM_ATTR_RO(stable_node_chains);
3006
3007 static ssize_t
3008 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3009                                         struct kobj_attribute *attr,
3010                                         char *buf)
3011 {
3012         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3013 }
3014
3015 static ssize_t
3016 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3017                                          struct kobj_attribute *attr,
3018                                          const char *buf, size_t count)
3019 {
3020         unsigned long msecs;
3021         int err;
3022
3023         err = kstrtoul(buf, 10, &msecs);
3024         if (err || msecs > UINT_MAX)
3025                 return -EINVAL;
3026
3027         ksm_stable_node_chains_prune_millisecs = msecs;
3028
3029         return count;
3030 }
3031 KSM_ATTR(stable_node_chains_prune_millisecs);
3032
3033 static ssize_t full_scans_show(struct kobject *kobj,
3034                                struct kobj_attribute *attr, char *buf)
3035 {
3036         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3037 }
3038 KSM_ATTR_RO(full_scans);
3039
3040 static struct attribute *ksm_attrs[] = {
3041         &sleep_millisecs_attr.attr,
3042         &pages_to_scan_attr.attr,
3043         &run_attr.attr,
3044         &pages_shared_attr.attr,
3045         &pages_sharing_attr.attr,
3046         &pages_unshared_attr.attr,
3047         &pages_volatile_attr.attr,
3048         &full_scans_attr.attr,
3049 #ifdef CONFIG_NUMA
3050         &merge_across_nodes_attr.attr,
3051 #endif
3052         &max_page_sharing_attr.attr,
3053         &stable_node_chains_attr.attr,
3054         &stable_node_dups_attr.attr,
3055         &stable_node_chains_prune_millisecs_attr.attr,
3056         &use_zero_pages_attr.attr,
3057         NULL,
3058 };
3059
3060 static const struct attribute_group ksm_attr_group = {
3061         .attrs = ksm_attrs,
3062         .name = "ksm",
3063 };
3064 #endif /* CONFIG_SYSFS */
3065
3066 static int __init ksm_init(void)
3067 {
3068         struct task_struct *ksm_thread;
3069         int err;
3070
3071         /* The correct value depends on page size and endianness */
3072         zero_checksum = calc_checksum(ZERO_PAGE(0));
3073         /* Default to false for backwards compatibility */
3074         ksm_use_zero_pages = false;
3075
3076         err = ksm_slab_init();
3077         if (err)
3078                 goto out;
3079
3080         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3081         if (IS_ERR(ksm_thread)) {
3082                 pr_err("ksm: creating kthread failed\n");
3083                 err = PTR_ERR(ksm_thread);
3084                 goto out_free;
3085         }
3086
3087 #ifdef CONFIG_SYSFS
3088         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3089         if (err) {
3090                 pr_err("ksm: register sysfs failed\n");
3091                 kthread_stop(ksm_thread);
3092                 goto out_free;
3093         }
3094 #else
3095         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3096
3097 #endif /* CONFIG_SYSFS */
3098
3099 #ifdef CONFIG_MEMORY_HOTREMOVE
3100         /* There is no significance to this priority 100 */
3101         hotplug_memory_notifier(ksm_memory_callback, 100);
3102 #endif
3103         return 0;
3104
3105 out_free:
3106         ksm_slab_free();
3107 out:
3108         return err;
3109 }
3110 subsys_initcall(ksm_init);