vfs: do bulk POLL* -> EPOLL* replacement
[sfrench/cifs-2.6.git] / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/mutex.h>
90 #include <linux/rcupdate.h>
91 #include <linux/stacktrace.h>
92 #include <linux/cache.h>
93 #include <linux/percpu.h>
94 #include <linux/bootmem.h>
95 #include <linux/pfn.h>
96 #include <linux/mmzone.h>
97 #include <linux/slab.h>
98 #include <linux/thread_info.h>
99 #include <linux/err.h>
100 #include <linux/uaccess.h>
101 #include <linux/string.h>
102 #include <linux/nodemask.h>
103 #include <linux/mm.h>
104 #include <linux/workqueue.h>
105 #include <linux/crc32.h>
106
107 #include <asm/sections.h>
108 #include <asm/processor.h>
109 #include <linux/atomic.h>
110
111 #include <linux/kasan.h>
112 #include <linux/kmemleak.h>
113 #include <linux/memory_hotplug.h>
114
115 /*
116  * Kmemleak configuration and common defines.
117  */
118 #define MAX_TRACE               16      /* stack trace length */
119 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
120 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
121 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
122 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
123
124 #define BYTES_PER_POINTER       sizeof(void *)
125
126 /* GFP bitmask for kmemleak internal allocations */
127 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
128                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
129                                  __GFP_NOWARN | __GFP_NOFAIL)
130
131 /* scanning area inside a memory block */
132 struct kmemleak_scan_area {
133         struct hlist_node node;
134         unsigned long start;
135         size_t size;
136 };
137
138 #define KMEMLEAK_GREY   0
139 #define KMEMLEAK_BLACK  -1
140
141 /*
142  * Structure holding the metadata for each allocated memory block.
143  * Modifications to such objects should be made while holding the
144  * object->lock. Insertions or deletions from object_list, gray_list or
145  * rb_node are already protected by the corresponding locks or mutex (see
146  * the notes on locking above). These objects are reference-counted
147  * (use_count) and freed using the RCU mechanism.
148  */
149 struct kmemleak_object {
150         spinlock_t lock;
151         unsigned int flags;             /* object status flags */
152         struct list_head object_list;
153         struct list_head gray_list;
154         struct rb_node rb_node;
155         struct rcu_head rcu;            /* object_list lockless traversal */
156         /* object usage count; object freed when use_count == 0 */
157         atomic_t use_count;
158         unsigned long pointer;
159         size_t size;
160         /* pass surplus references to this pointer */
161         unsigned long excess_ref;
162         /* minimum number of a pointers found before it is considered leak */
163         int min_count;
164         /* the total number of pointers found pointing to this object */
165         int count;
166         /* checksum for detecting modified objects */
167         u32 checksum;
168         /* memory ranges to be scanned inside an object (empty for all) */
169         struct hlist_head area_list;
170         unsigned long trace[MAX_TRACE];
171         unsigned int trace_len;
172         unsigned long jiffies;          /* creation timestamp */
173         pid_t pid;                      /* pid of the current task */
174         char comm[TASK_COMM_LEN];       /* executable name */
175 };
176
177 /* flag representing the memory block allocation status */
178 #define OBJECT_ALLOCATED        (1 << 0)
179 /* flag set after the first reporting of an unreference object */
180 #define OBJECT_REPORTED         (1 << 1)
181 /* flag set to not scan the object */
182 #define OBJECT_NO_SCAN          (1 << 2)
183
184 /* number of bytes to print per line; must be 16 or 32 */
185 #define HEX_ROW_SIZE            16
186 /* number of bytes to print at a time (1, 2, 4, 8) */
187 #define HEX_GROUP_SIZE          1
188 /* include ASCII after the hex output */
189 #define HEX_ASCII               1
190 /* max number of lines to be printed */
191 #define HEX_MAX_LINES           2
192
193 /* the list of all allocated objects */
194 static LIST_HEAD(object_list);
195 /* the list of gray-colored objects (see color_gray comment below) */
196 static LIST_HEAD(gray_list);
197 /* search tree for object boundaries */
198 static struct rb_root object_tree_root = RB_ROOT;
199 /* rw_lock protecting the access to object_list and object_tree_root */
200 static DEFINE_RWLOCK(kmemleak_lock);
201
202 /* allocation caches for kmemleak internal data */
203 static struct kmem_cache *object_cache;
204 static struct kmem_cache *scan_area_cache;
205
206 /* set if tracing memory operations is enabled */
207 static int kmemleak_enabled;
208 /* same as above but only for the kmemleak_free() callback */
209 static int kmemleak_free_enabled;
210 /* set in the late_initcall if there were no errors */
211 static int kmemleak_initialized;
212 /* enables or disables early logging of the memory operations */
213 static int kmemleak_early_log = 1;
214 /* set if a kmemleak warning was issued */
215 static int kmemleak_warning;
216 /* set if a fatal kmemleak error has occurred */
217 static int kmemleak_error;
218
219 /* minimum and maximum address that may be valid pointers */
220 static unsigned long min_addr = ULONG_MAX;
221 static unsigned long max_addr;
222
223 static struct task_struct *scan_thread;
224 /* used to avoid reporting of recently allocated objects */
225 static unsigned long jiffies_min_age;
226 static unsigned long jiffies_last_scan;
227 /* delay between automatic memory scannings */
228 static signed long jiffies_scan_wait;
229 /* enables or disables the task stacks scanning */
230 static int kmemleak_stack_scan = 1;
231 /* protects the memory scanning, parameters and debug/kmemleak file access */
232 static DEFINE_MUTEX(scan_mutex);
233 /* setting kmemleak=on, will set this var, skipping the disable */
234 static int kmemleak_skip_disable;
235 /* If there are leaks that can be reported */
236 static bool kmemleak_found_leaks;
237
238 /*
239  * Early object allocation/freeing logging. Kmemleak is initialized after the
240  * kernel allocator. However, both the kernel allocator and kmemleak may
241  * allocate memory blocks which need to be tracked. Kmemleak defines an
242  * arbitrary buffer to hold the allocation/freeing information before it is
243  * fully initialized.
244  */
245
246 /* kmemleak operation type for early logging */
247 enum {
248         KMEMLEAK_ALLOC,
249         KMEMLEAK_ALLOC_PERCPU,
250         KMEMLEAK_FREE,
251         KMEMLEAK_FREE_PART,
252         KMEMLEAK_FREE_PERCPU,
253         KMEMLEAK_NOT_LEAK,
254         KMEMLEAK_IGNORE,
255         KMEMLEAK_SCAN_AREA,
256         KMEMLEAK_NO_SCAN,
257         KMEMLEAK_SET_EXCESS_REF
258 };
259
260 /*
261  * Structure holding the information passed to kmemleak callbacks during the
262  * early logging.
263  */
264 struct early_log {
265         int op_type;                    /* kmemleak operation type */
266         int min_count;                  /* minimum reference count */
267         const void *ptr;                /* allocated/freed memory block */
268         union {
269                 size_t size;            /* memory block size */
270                 unsigned long excess_ref; /* surplus reference passing */
271         };
272         unsigned long trace[MAX_TRACE]; /* stack trace */
273         unsigned int trace_len;         /* stack trace length */
274 };
275
276 /* early logging buffer and current position */
277 static struct early_log
278         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
279 static int crt_early_log __initdata;
280
281 static void kmemleak_disable(void);
282
283 /*
284  * Print a warning and dump the stack trace.
285  */
286 #define kmemleak_warn(x...)     do {            \
287         pr_warn(x);                             \
288         dump_stack();                           \
289         kmemleak_warning = 1;                   \
290 } while (0)
291
292 /*
293  * Macro invoked when a serious kmemleak condition occurred and cannot be
294  * recovered from. Kmemleak will be disabled and further allocation/freeing
295  * tracing no longer available.
296  */
297 #define kmemleak_stop(x...)     do {    \
298         kmemleak_warn(x);               \
299         kmemleak_disable();             \
300 } while (0)
301
302 /*
303  * Printing of the objects hex dump to the seq file. The number of lines to be
304  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
305  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
306  * with the object->lock held.
307  */
308 static void hex_dump_object(struct seq_file *seq,
309                             struct kmemleak_object *object)
310 {
311         const u8 *ptr = (const u8 *)object->pointer;
312         size_t len;
313
314         /* limit the number of lines to HEX_MAX_LINES */
315         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
316
317         seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
318         kasan_disable_current();
319         seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
320                      HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
321         kasan_enable_current();
322 }
323
324 /*
325  * Object colors, encoded with count and min_count:
326  * - white - orphan object, not enough references to it (count < min_count)
327  * - gray  - not orphan, not marked as false positive (min_count == 0) or
328  *              sufficient references to it (count >= min_count)
329  * - black - ignore, it doesn't contain references (e.g. text section)
330  *              (min_count == -1). No function defined for this color.
331  * Newly created objects don't have any color assigned (object->count == -1)
332  * before the next memory scan when they become white.
333  */
334 static bool color_white(const struct kmemleak_object *object)
335 {
336         return object->count != KMEMLEAK_BLACK &&
337                 object->count < object->min_count;
338 }
339
340 static bool color_gray(const struct kmemleak_object *object)
341 {
342         return object->min_count != KMEMLEAK_BLACK &&
343                 object->count >= object->min_count;
344 }
345
346 /*
347  * Objects are considered unreferenced only if their color is white, they have
348  * not be deleted and have a minimum age to avoid false positives caused by
349  * pointers temporarily stored in CPU registers.
350  */
351 static bool unreferenced_object(struct kmemleak_object *object)
352 {
353         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
354                 time_before_eq(object->jiffies + jiffies_min_age,
355                                jiffies_last_scan);
356 }
357
358 /*
359  * Printing of the unreferenced objects information to the seq file. The
360  * print_unreferenced function must be called with the object->lock held.
361  */
362 static void print_unreferenced(struct seq_file *seq,
363                                struct kmemleak_object *object)
364 {
365         int i;
366         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
367
368         seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
369                    object->pointer, object->size);
370         seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
371                    object->comm, object->pid, object->jiffies,
372                    msecs_age / 1000, msecs_age % 1000);
373         hex_dump_object(seq, object);
374         seq_printf(seq, "  backtrace:\n");
375
376         for (i = 0; i < object->trace_len; i++) {
377                 void *ptr = (void *)object->trace[i];
378                 seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
379         }
380 }
381
382 /*
383  * Print the kmemleak_object information. This function is used mainly for
384  * debugging special cases when kmemleak operations. It must be called with
385  * the object->lock held.
386  */
387 static void dump_object_info(struct kmemleak_object *object)
388 {
389         struct stack_trace trace;
390
391         trace.nr_entries = object->trace_len;
392         trace.entries = object->trace;
393
394         pr_notice("Object 0x%08lx (size %zu):\n",
395                   object->pointer, object->size);
396         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
397                   object->comm, object->pid, object->jiffies);
398         pr_notice("  min_count = %d\n", object->min_count);
399         pr_notice("  count = %d\n", object->count);
400         pr_notice("  flags = 0x%x\n", object->flags);
401         pr_notice("  checksum = %u\n", object->checksum);
402         pr_notice("  backtrace:\n");
403         print_stack_trace(&trace, 4);
404 }
405
406 /*
407  * Look-up a memory block metadata (kmemleak_object) in the object search
408  * tree based on a pointer value. If alias is 0, only values pointing to the
409  * beginning of the memory block are allowed. The kmemleak_lock must be held
410  * when calling this function.
411  */
412 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
413 {
414         struct rb_node *rb = object_tree_root.rb_node;
415
416         while (rb) {
417                 struct kmemleak_object *object =
418                         rb_entry(rb, struct kmemleak_object, rb_node);
419                 if (ptr < object->pointer)
420                         rb = object->rb_node.rb_left;
421                 else if (object->pointer + object->size <= ptr)
422                         rb = object->rb_node.rb_right;
423                 else if (object->pointer == ptr || alias)
424                         return object;
425                 else {
426                         kmemleak_warn("Found object by alias at 0x%08lx\n",
427                                       ptr);
428                         dump_object_info(object);
429                         break;
430                 }
431         }
432         return NULL;
433 }
434
435 /*
436  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
437  * that once an object's use_count reached 0, the RCU freeing was already
438  * registered and the object should no longer be used. This function must be
439  * called under the protection of rcu_read_lock().
440  */
441 static int get_object(struct kmemleak_object *object)
442 {
443         return atomic_inc_not_zero(&object->use_count);
444 }
445
446 /*
447  * RCU callback to free a kmemleak_object.
448  */
449 static void free_object_rcu(struct rcu_head *rcu)
450 {
451         struct hlist_node *tmp;
452         struct kmemleak_scan_area *area;
453         struct kmemleak_object *object =
454                 container_of(rcu, struct kmemleak_object, rcu);
455
456         /*
457          * Once use_count is 0 (guaranteed by put_object), there is no other
458          * code accessing this object, hence no need for locking.
459          */
460         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
461                 hlist_del(&area->node);
462                 kmem_cache_free(scan_area_cache, area);
463         }
464         kmem_cache_free(object_cache, object);
465 }
466
467 /*
468  * Decrement the object use_count. Once the count is 0, free the object using
469  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
470  * delete_object() path, the delayed RCU freeing ensures that there is no
471  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
472  * is also possible.
473  */
474 static void put_object(struct kmemleak_object *object)
475 {
476         if (!atomic_dec_and_test(&object->use_count))
477                 return;
478
479         /* should only get here after delete_object was called */
480         WARN_ON(object->flags & OBJECT_ALLOCATED);
481
482         call_rcu(&object->rcu, free_object_rcu);
483 }
484
485 /*
486  * Look up an object in the object search tree and increase its use_count.
487  */
488 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
489 {
490         unsigned long flags;
491         struct kmemleak_object *object;
492
493         rcu_read_lock();
494         read_lock_irqsave(&kmemleak_lock, flags);
495         object = lookup_object(ptr, alias);
496         read_unlock_irqrestore(&kmemleak_lock, flags);
497
498         /* check whether the object is still available */
499         if (object && !get_object(object))
500                 object = NULL;
501         rcu_read_unlock();
502
503         return object;
504 }
505
506 /*
507  * Look up an object in the object search tree and remove it from both
508  * object_tree_root and object_list. The returned object's use_count should be
509  * at least 1, as initially set by create_object().
510  */
511 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
512 {
513         unsigned long flags;
514         struct kmemleak_object *object;
515
516         write_lock_irqsave(&kmemleak_lock, flags);
517         object = lookup_object(ptr, alias);
518         if (object) {
519                 rb_erase(&object->rb_node, &object_tree_root);
520                 list_del_rcu(&object->object_list);
521         }
522         write_unlock_irqrestore(&kmemleak_lock, flags);
523
524         return object;
525 }
526
527 /*
528  * Save stack trace to the given array of MAX_TRACE size.
529  */
530 static int __save_stack_trace(unsigned long *trace)
531 {
532         struct stack_trace stack_trace;
533
534         stack_trace.max_entries = MAX_TRACE;
535         stack_trace.nr_entries = 0;
536         stack_trace.entries = trace;
537         stack_trace.skip = 2;
538         save_stack_trace(&stack_trace);
539
540         return stack_trace.nr_entries;
541 }
542
543 /*
544  * Create the metadata (struct kmemleak_object) corresponding to an allocated
545  * memory block and add it to the object_list and object_tree_root.
546  */
547 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
548                                              int min_count, gfp_t gfp)
549 {
550         unsigned long flags;
551         struct kmemleak_object *object, *parent;
552         struct rb_node **link, *rb_parent;
553
554         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
555         if (!object) {
556                 pr_warn("Cannot allocate a kmemleak_object structure\n");
557                 kmemleak_disable();
558                 return NULL;
559         }
560
561         INIT_LIST_HEAD(&object->object_list);
562         INIT_LIST_HEAD(&object->gray_list);
563         INIT_HLIST_HEAD(&object->area_list);
564         spin_lock_init(&object->lock);
565         atomic_set(&object->use_count, 1);
566         object->flags = OBJECT_ALLOCATED;
567         object->pointer = ptr;
568         object->size = size;
569         object->excess_ref = 0;
570         object->min_count = min_count;
571         object->count = 0;                      /* white color initially */
572         object->jiffies = jiffies;
573         object->checksum = 0;
574
575         /* task information */
576         if (in_irq()) {
577                 object->pid = 0;
578                 strncpy(object->comm, "hardirq", sizeof(object->comm));
579         } else if (in_softirq()) {
580                 object->pid = 0;
581                 strncpy(object->comm, "softirq", sizeof(object->comm));
582         } else {
583                 object->pid = current->pid;
584                 /*
585                  * There is a small chance of a race with set_task_comm(),
586                  * however using get_task_comm() here may cause locking
587                  * dependency issues with current->alloc_lock. In the worst
588                  * case, the command line is not correct.
589                  */
590                 strncpy(object->comm, current->comm, sizeof(object->comm));
591         }
592
593         /* kernel backtrace */
594         object->trace_len = __save_stack_trace(object->trace);
595
596         write_lock_irqsave(&kmemleak_lock, flags);
597
598         min_addr = min(min_addr, ptr);
599         max_addr = max(max_addr, ptr + size);
600         link = &object_tree_root.rb_node;
601         rb_parent = NULL;
602         while (*link) {
603                 rb_parent = *link;
604                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
605                 if (ptr + size <= parent->pointer)
606                         link = &parent->rb_node.rb_left;
607                 else if (parent->pointer + parent->size <= ptr)
608                         link = &parent->rb_node.rb_right;
609                 else {
610                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
611                                       ptr);
612                         /*
613                          * No need for parent->lock here since "parent" cannot
614                          * be freed while the kmemleak_lock is held.
615                          */
616                         dump_object_info(parent);
617                         kmem_cache_free(object_cache, object);
618                         object = NULL;
619                         goto out;
620                 }
621         }
622         rb_link_node(&object->rb_node, rb_parent, link);
623         rb_insert_color(&object->rb_node, &object_tree_root);
624
625         list_add_tail_rcu(&object->object_list, &object_list);
626 out:
627         write_unlock_irqrestore(&kmemleak_lock, flags);
628         return object;
629 }
630
631 /*
632  * Mark the object as not allocated and schedule RCU freeing via put_object().
633  */
634 static void __delete_object(struct kmemleak_object *object)
635 {
636         unsigned long flags;
637
638         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
639         WARN_ON(atomic_read(&object->use_count) < 1);
640
641         /*
642          * Locking here also ensures that the corresponding memory block
643          * cannot be freed when it is being scanned.
644          */
645         spin_lock_irqsave(&object->lock, flags);
646         object->flags &= ~OBJECT_ALLOCATED;
647         spin_unlock_irqrestore(&object->lock, flags);
648         put_object(object);
649 }
650
651 /*
652  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
653  * delete it.
654  */
655 static void delete_object_full(unsigned long ptr)
656 {
657         struct kmemleak_object *object;
658
659         object = find_and_remove_object(ptr, 0);
660         if (!object) {
661 #ifdef DEBUG
662                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
663                               ptr);
664 #endif
665                 return;
666         }
667         __delete_object(object);
668 }
669
670 /*
671  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
672  * delete it. If the memory block is partially freed, the function may create
673  * additional metadata for the remaining parts of the block.
674  */
675 static void delete_object_part(unsigned long ptr, size_t size)
676 {
677         struct kmemleak_object *object;
678         unsigned long start, end;
679
680         object = find_and_remove_object(ptr, 1);
681         if (!object) {
682 #ifdef DEBUG
683                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
684                               ptr, size);
685 #endif
686                 return;
687         }
688
689         /*
690          * Create one or two objects that may result from the memory block
691          * split. Note that partial freeing is only done by free_bootmem() and
692          * this happens before kmemleak_init() is called. The path below is
693          * only executed during early log recording in kmemleak_init(), so
694          * GFP_KERNEL is enough.
695          */
696         start = object->pointer;
697         end = object->pointer + object->size;
698         if (ptr > start)
699                 create_object(start, ptr - start, object->min_count,
700                               GFP_KERNEL);
701         if (ptr + size < end)
702                 create_object(ptr + size, end - ptr - size, object->min_count,
703                               GFP_KERNEL);
704
705         __delete_object(object);
706 }
707
708 static void __paint_it(struct kmemleak_object *object, int color)
709 {
710         object->min_count = color;
711         if (color == KMEMLEAK_BLACK)
712                 object->flags |= OBJECT_NO_SCAN;
713 }
714
715 static void paint_it(struct kmemleak_object *object, int color)
716 {
717         unsigned long flags;
718
719         spin_lock_irqsave(&object->lock, flags);
720         __paint_it(object, color);
721         spin_unlock_irqrestore(&object->lock, flags);
722 }
723
724 static void paint_ptr(unsigned long ptr, int color)
725 {
726         struct kmemleak_object *object;
727
728         object = find_and_get_object(ptr, 0);
729         if (!object) {
730                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
731                               ptr,
732                               (color == KMEMLEAK_GREY) ? "Grey" :
733                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
734                 return;
735         }
736         paint_it(object, color);
737         put_object(object);
738 }
739
740 /*
741  * Mark an object permanently as gray-colored so that it can no longer be
742  * reported as a leak. This is used in general to mark a false positive.
743  */
744 static void make_gray_object(unsigned long ptr)
745 {
746         paint_ptr(ptr, KMEMLEAK_GREY);
747 }
748
749 /*
750  * Mark the object as black-colored so that it is ignored from scans and
751  * reporting.
752  */
753 static void make_black_object(unsigned long ptr)
754 {
755         paint_ptr(ptr, KMEMLEAK_BLACK);
756 }
757
758 /*
759  * Add a scanning area to the object. If at least one such area is added,
760  * kmemleak will only scan these ranges rather than the whole memory block.
761  */
762 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
763 {
764         unsigned long flags;
765         struct kmemleak_object *object;
766         struct kmemleak_scan_area *area;
767
768         object = find_and_get_object(ptr, 1);
769         if (!object) {
770                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
771                               ptr);
772                 return;
773         }
774
775         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
776         if (!area) {
777                 pr_warn("Cannot allocate a scan area\n");
778                 goto out;
779         }
780
781         spin_lock_irqsave(&object->lock, flags);
782         if (size == SIZE_MAX) {
783                 size = object->pointer + object->size - ptr;
784         } else if (ptr + size > object->pointer + object->size) {
785                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
786                 dump_object_info(object);
787                 kmem_cache_free(scan_area_cache, area);
788                 goto out_unlock;
789         }
790
791         INIT_HLIST_NODE(&area->node);
792         area->start = ptr;
793         area->size = size;
794
795         hlist_add_head(&area->node, &object->area_list);
796 out_unlock:
797         spin_unlock_irqrestore(&object->lock, flags);
798 out:
799         put_object(object);
800 }
801
802 /*
803  * Any surplus references (object already gray) to 'ptr' are passed to
804  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
805  * vm_struct may be used as an alternative reference to the vmalloc'ed object
806  * (see free_thread_stack()).
807  */
808 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
809 {
810         unsigned long flags;
811         struct kmemleak_object *object;
812
813         object = find_and_get_object(ptr, 0);
814         if (!object) {
815                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
816                               ptr);
817                 return;
818         }
819
820         spin_lock_irqsave(&object->lock, flags);
821         object->excess_ref = excess_ref;
822         spin_unlock_irqrestore(&object->lock, flags);
823         put_object(object);
824 }
825
826 /*
827  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
828  * pointer. Such object will not be scanned by kmemleak but references to it
829  * are searched.
830  */
831 static void object_no_scan(unsigned long ptr)
832 {
833         unsigned long flags;
834         struct kmemleak_object *object;
835
836         object = find_and_get_object(ptr, 0);
837         if (!object) {
838                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
839                 return;
840         }
841
842         spin_lock_irqsave(&object->lock, flags);
843         object->flags |= OBJECT_NO_SCAN;
844         spin_unlock_irqrestore(&object->lock, flags);
845         put_object(object);
846 }
847
848 /*
849  * Log an early kmemleak_* call to the early_log buffer. These calls will be
850  * processed later once kmemleak is fully initialized.
851  */
852 static void __init log_early(int op_type, const void *ptr, size_t size,
853                              int min_count)
854 {
855         unsigned long flags;
856         struct early_log *log;
857
858         if (kmemleak_error) {
859                 /* kmemleak stopped recording, just count the requests */
860                 crt_early_log++;
861                 return;
862         }
863
864         if (crt_early_log >= ARRAY_SIZE(early_log)) {
865                 crt_early_log++;
866                 kmemleak_disable();
867                 return;
868         }
869
870         /*
871          * There is no need for locking since the kernel is still in UP mode
872          * at this stage. Disabling the IRQs is enough.
873          */
874         local_irq_save(flags);
875         log = &early_log[crt_early_log];
876         log->op_type = op_type;
877         log->ptr = ptr;
878         log->size = size;
879         log->min_count = min_count;
880         log->trace_len = __save_stack_trace(log->trace);
881         crt_early_log++;
882         local_irq_restore(flags);
883 }
884
885 /*
886  * Log an early allocated block and populate the stack trace.
887  */
888 static void early_alloc(struct early_log *log)
889 {
890         struct kmemleak_object *object;
891         unsigned long flags;
892         int i;
893
894         if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
895                 return;
896
897         /*
898          * RCU locking needed to ensure object is not freed via put_object().
899          */
900         rcu_read_lock();
901         object = create_object((unsigned long)log->ptr, log->size,
902                                log->min_count, GFP_ATOMIC);
903         if (!object)
904                 goto out;
905         spin_lock_irqsave(&object->lock, flags);
906         for (i = 0; i < log->trace_len; i++)
907                 object->trace[i] = log->trace[i];
908         object->trace_len = log->trace_len;
909         spin_unlock_irqrestore(&object->lock, flags);
910 out:
911         rcu_read_unlock();
912 }
913
914 /*
915  * Log an early allocated block and populate the stack trace.
916  */
917 static void early_alloc_percpu(struct early_log *log)
918 {
919         unsigned int cpu;
920         const void __percpu *ptr = log->ptr;
921
922         for_each_possible_cpu(cpu) {
923                 log->ptr = per_cpu_ptr(ptr, cpu);
924                 early_alloc(log);
925         }
926 }
927
928 /**
929  * kmemleak_alloc - register a newly allocated object
930  * @ptr:        pointer to beginning of the object
931  * @size:       size of the object
932  * @min_count:  minimum number of references to this object. If during memory
933  *              scanning a number of references less than @min_count is found,
934  *              the object is reported as a memory leak. If @min_count is 0,
935  *              the object is never reported as a leak. If @min_count is -1,
936  *              the object is ignored (not scanned and not reported as a leak)
937  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
938  *
939  * This function is called from the kernel allocators when a new object
940  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
941  */
942 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
943                           gfp_t gfp)
944 {
945         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
946
947         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
948                 create_object((unsigned long)ptr, size, min_count, gfp);
949         else if (kmemleak_early_log)
950                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
951 }
952 EXPORT_SYMBOL_GPL(kmemleak_alloc);
953
954 /**
955  * kmemleak_alloc_percpu - register a newly allocated __percpu object
956  * @ptr:        __percpu pointer to beginning of the object
957  * @size:       size of the object
958  * @gfp:        flags used for kmemleak internal memory allocations
959  *
960  * This function is called from the kernel percpu allocator when a new object
961  * (memory block) is allocated (alloc_percpu).
962  */
963 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
964                                  gfp_t gfp)
965 {
966         unsigned int cpu;
967
968         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
969
970         /*
971          * Percpu allocations are only scanned and not reported as leaks
972          * (min_count is set to 0).
973          */
974         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
975                 for_each_possible_cpu(cpu)
976                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
977                                       size, 0, gfp);
978         else if (kmemleak_early_log)
979                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
980 }
981 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
982
983 /**
984  * kmemleak_vmalloc - register a newly vmalloc'ed object
985  * @area:       pointer to vm_struct
986  * @size:       size of the object
987  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
988  *
989  * This function is called from the vmalloc() kernel allocator when a new
990  * object (memory block) is allocated.
991  */
992 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
993 {
994         pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
995
996         /*
997          * A min_count = 2 is needed because vm_struct contains a reference to
998          * the virtual address of the vmalloc'ed block.
999          */
1000         if (kmemleak_enabled) {
1001                 create_object((unsigned long)area->addr, size, 2, gfp);
1002                 object_set_excess_ref((unsigned long)area,
1003                                       (unsigned long)area->addr);
1004         } else if (kmemleak_early_log) {
1005                 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1006                 /* reusing early_log.size for storing area->addr */
1007                 log_early(KMEMLEAK_SET_EXCESS_REF,
1008                           area, (unsigned long)area->addr, 0);
1009         }
1010 }
1011 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1012
1013 /**
1014  * kmemleak_free - unregister a previously registered object
1015  * @ptr:        pointer to beginning of the object
1016  *
1017  * This function is called from the kernel allocators when an object (memory
1018  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1019  */
1020 void __ref kmemleak_free(const void *ptr)
1021 {
1022         pr_debug("%s(0x%p)\n", __func__, ptr);
1023
1024         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1025                 delete_object_full((unsigned long)ptr);
1026         else if (kmemleak_early_log)
1027                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
1028 }
1029 EXPORT_SYMBOL_GPL(kmemleak_free);
1030
1031 /**
1032  * kmemleak_free_part - partially unregister a previously registered object
1033  * @ptr:        pointer to the beginning or inside the object. This also
1034  *              represents the start of the range to be freed
1035  * @size:       size to be unregistered
1036  *
1037  * This function is called when only a part of a memory block is freed
1038  * (usually from the bootmem allocator).
1039  */
1040 void __ref kmemleak_free_part(const void *ptr, size_t size)
1041 {
1042         pr_debug("%s(0x%p)\n", __func__, ptr);
1043
1044         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1045                 delete_object_part((unsigned long)ptr, size);
1046         else if (kmemleak_early_log)
1047                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1048 }
1049 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1050
1051 /**
1052  * kmemleak_free_percpu - unregister a previously registered __percpu object
1053  * @ptr:        __percpu pointer to beginning of the object
1054  *
1055  * This function is called from the kernel percpu allocator when an object
1056  * (memory block) is freed (free_percpu).
1057  */
1058 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1059 {
1060         unsigned int cpu;
1061
1062         pr_debug("%s(0x%p)\n", __func__, ptr);
1063
1064         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1065                 for_each_possible_cpu(cpu)
1066                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1067                                                                       cpu));
1068         else if (kmemleak_early_log)
1069                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1070 }
1071 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1072
1073 /**
1074  * kmemleak_update_trace - update object allocation stack trace
1075  * @ptr:        pointer to beginning of the object
1076  *
1077  * Override the object allocation stack trace for cases where the actual
1078  * allocation place is not always useful.
1079  */
1080 void __ref kmemleak_update_trace(const void *ptr)
1081 {
1082         struct kmemleak_object *object;
1083         unsigned long flags;
1084
1085         pr_debug("%s(0x%p)\n", __func__, ptr);
1086
1087         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1088                 return;
1089
1090         object = find_and_get_object((unsigned long)ptr, 1);
1091         if (!object) {
1092 #ifdef DEBUG
1093                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1094                               ptr);
1095 #endif
1096                 return;
1097         }
1098
1099         spin_lock_irqsave(&object->lock, flags);
1100         object->trace_len = __save_stack_trace(object->trace);
1101         spin_unlock_irqrestore(&object->lock, flags);
1102
1103         put_object(object);
1104 }
1105 EXPORT_SYMBOL(kmemleak_update_trace);
1106
1107 /**
1108  * kmemleak_not_leak - mark an allocated object as false positive
1109  * @ptr:        pointer to beginning of the object
1110  *
1111  * Calling this function on an object will cause the memory block to no longer
1112  * be reported as leak and always be scanned.
1113  */
1114 void __ref kmemleak_not_leak(const void *ptr)
1115 {
1116         pr_debug("%s(0x%p)\n", __func__, ptr);
1117
1118         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119                 make_gray_object((unsigned long)ptr);
1120         else if (kmemleak_early_log)
1121                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1122 }
1123 EXPORT_SYMBOL(kmemleak_not_leak);
1124
1125 /**
1126  * kmemleak_ignore - ignore an allocated object
1127  * @ptr:        pointer to beginning of the object
1128  *
1129  * Calling this function on an object will cause the memory block to be
1130  * ignored (not scanned and not reported as a leak). This is usually done when
1131  * it is known that the corresponding block is not a leak and does not contain
1132  * any references to other allocated memory blocks.
1133  */
1134 void __ref kmemleak_ignore(const void *ptr)
1135 {
1136         pr_debug("%s(0x%p)\n", __func__, ptr);
1137
1138         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1139                 make_black_object((unsigned long)ptr);
1140         else if (kmemleak_early_log)
1141                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1142 }
1143 EXPORT_SYMBOL(kmemleak_ignore);
1144
1145 /**
1146  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1147  * @ptr:        pointer to beginning or inside the object. This also
1148  *              represents the start of the scan area
1149  * @size:       size of the scan area
1150  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1151  *
1152  * This function is used when it is known that only certain parts of an object
1153  * contain references to other objects. Kmemleak will only scan these areas
1154  * reducing the number false negatives.
1155  */
1156 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1157 {
1158         pr_debug("%s(0x%p)\n", __func__, ptr);
1159
1160         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1161                 add_scan_area((unsigned long)ptr, size, gfp);
1162         else if (kmemleak_early_log)
1163                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1164 }
1165 EXPORT_SYMBOL(kmemleak_scan_area);
1166
1167 /**
1168  * kmemleak_no_scan - do not scan an allocated object
1169  * @ptr:        pointer to beginning of the object
1170  *
1171  * This function notifies kmemleak not to scan the given memory block. Useful
1172  * in situations where it is known that the given object does not contain any
1173  * references to other objects. Kmemleak will not scan such objects reducing
1174  * the number of false negatives.
1175  */
1176 void __ref kmemleak_no_scan(const void *ptr)
1177 {
1178         pr_debug("%s(0x%p)\n", __func__, ptr);
1179
1180         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1181                 object_no_scan((unsigned long)ptr);
1182         else if (kmemleak_early_log)
1183                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1184 }
1185 EXPORT_SYMBOL(kmemleak_no_scan);
1186
1187 /**
1188  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1189  *                       address argument
1190  */
1191 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1192                                gfp_t gfp)
1193 {
1194         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1195                 kmemleak_alloc(__va(phys), size, min_count, gfp);
1196 }
1197 EXPORT_SYMBOL(kmemleak_alloc_phys);
1198
1199 /**
1200  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1201  *                           physical address argument
1202  */
1203 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1204 {
1205         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1206                 kmemleak_free_part(__va(phys), size);
1207 }
1208 EXPORT_SYMBOL(kmemleak_free_part_phys);
1209
1210 /**
1211  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1212  *                          address argument
1213  */
1214 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1215 {
1216         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1217                 kmemleak_not_leak(__va(phys));
1218 }
1219 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1220
1221 /**
1222  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1223  *                        address argument
1224  */
1225 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1226 {
1227         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1228                 kmemleak_ignore(__va(phys));
1229 }
1230 EXPORT_SYMBOL(kmemleak_ignore_phys);
1231
1232 /*
1233  * Update an object's checksum and return true if it was modified.
1234  */
1235 static bool update_checksum(struct kmemleak_object *object)
1236 {
1237         u32 old_csum = object->checksum;
1238
1239         kasan_disable_current();
1240         object->checksum = crc32(0, (void *)object->pointer, object->size);
1241         kasan_enable_current();
1242
1243         return object->checksum != old_csum;
1244 }
1245
1246 /*
1247  * Update an object's references. object->lock must be held by the caller.
1248  */
1249 static void update_refs(struct kmemleak_object *object)
1250 {
1251         if (!color_white(object)) {
1252                 /* non-orphan, ignored or new */
1253                 return;
1254         }
1255
1256         /*
1257          * Increase the object's reference count (number of pointers to the
1258          * memory block). If this count reaches the required minimum, the
1259          * object's color will become gray and it will be added to the
1260          * gray_list.
1261          */
1262         object->count++;
1263         if (color_gray(object)) {
1264                 /* put_object() called when removing from gray_list */
1265                 WARN_ON(!get_object(object));
1266                 list_add_tail(&object->gray_list, &gray_list);
1267         }
1268 }
1269
1270 /*
1271  * Memory scanning is a long process and it needs to be interruptable. This
1272  * function checks whether such interrupt condition occurred.
1273  */
1274 static int scan_should_stop(void)
1275 {
1276         if (!kmemleak_enabled)
1277                 return 1;
1278
1279         /*
1280          * This function may be called from either process or kthread context,
1281          * hence the need to check for both stop conditions.
1282          */
1283         if (current->mm)
1284                 return signal_pending(current);
1285         else
1286                 return kthread_should_stop();
1287
1288         return 0;
1289 }
1290
1291 /*
1292  * Scan a memory block (exclusive range) for valid pointers and add those
1293  * found to the gray list.
1294  */
1295 static void scan_block(void *_start, void *_end,
1296                        struct kmemleak_object *scanned)
1297 {
1298         unsigned long *ptr;
1299         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1300         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1301         unsigned long flags;
1302
1303         read_lock_irqsave(&kmemleak_lock, flags);
1304         for (ptr = start; ptr < end; ptr++) {
1305                 struct kmemleak_object *object;
1306                 unsigned long pointer;
1307                 unsigned long excess_ref;
1308
1309                 if (scan_should_stop())
1310                         break;
1311
1312                 kasan_disable_current();
1313                 pointer = *ptr;
1314                 kasan_enable_current();
1315
1316                 if (pointer < min_addr || pointer >= max_addr)
1317                         continue;
1318
1319                 /*
1320                  * No need for get_object() here since we hold kmemleak_lock.
1321                  * object->use_count cannot be dropped to 0 while the object
1322                  * is still present in object_tree_root and object_list
1323                  * (with updates protected by kmemleak_lock).
1324                  */
1325                 object = lookup_object(pointer, 1);
1326                 if (!object)
1327                         continue;
1328                 if (object == scanned)
1329                         /* self referenced, ignore */
1330                         continue;
1331
1332                 /*
1333                  * Avoid the lockdep recursive warning on object->lock being
1334                  * previously acquired in scan_object(). These locks are
1335                  * enclosed by scan_mutex.
1336                  */
1337                 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1338                 /* only pass surplus references (object already gray) */
1339                 if (color_gray(object)) {
1340                         excess_ref = object->excess_ref;
1341                         /* no need for update_refs() if object already gray */
1342                 } else {
1343                         excess_ref = 0;
1344                         update_refs(object);
1345                 }
1346                 spin_unlock(&object->lock);
1347
1348                 if (excess_ref) {
1349                         object = lookup_object(excess_ref, 0);
1350                         if (!object)
1351                                 continue;
1352                         if (object == scanned)
1353                                 /* circular reference, ignore */
1354                                 continue;
1355                         spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1356                         update_refs(object);
1357                         spin_unlock(&object->lock);
1358                 }
1359         }
1360         read_unlock_irqrestore(&kmemleak_lock, flags);
1361 }
1362
1363 /*
1364  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1365  */
1366 static void scan_large_block(void *start, void *end)
1367 {
1368         void *next;
1369
1370         while (start < end) {
1371                 next = min(start + MAX_SCAN_SIZE, end);
1372                 scan_block(start, next, NULL);
1373                 start = next;
1374                 cond_resched();
1375         }
1376 }
1377
1378 /*
1379  * Scan a memory block corresponding to a kmemleak_object. A condition is
1380  * that object->use_count >= 1.
1381  */
1382 static void scan_object(struct kmemleak_object *object)
1383 {
1384         struct kmemleak_scan_area *area;
1385         unsigned long flags;
1386
1387         /*
1388          * Once the object->lock is acquired, the corresponding memory block
1389          * cannot be freed (the same lock is acquired in delete_object).
1390          */
1391         spin_lock_irqsave(&object->lock, flags);
1392         if (object->flags & OBJECT_NO_SCAN)
1393                 goto out;
1394         if (!(object->flags & OBJECT_ALLOCATED))
1395                 /* already freed object */
1396                 goto out;
1397         if (hlist_empty(&object->area_list)) {
1398                 void *start = (void *)object->pointer;
1399                 void *end = (void *)(object->pointer + object->size);
1400                 void *next;
1401
1402                 do {
1403                         next = min(start + MAX_SCAN_SIZE, end);
1404                         scan_block(start, next, object);
1405
1406                         start = next;
1407                         if (start >= end)
1408                                 break;
1409
1410                         spin_unlock_irqrestore(&object->lock, flags);
1411                         cond_resched();
1412                         spin_lock_irqsave(&object->lock, flags);
1413                 } while (object->flags & OBJECT_ALLOCATED);
1414         } else
1415                 hlist_for_each_entry(area, &object->area_list, node)
1416                         scan_block((void *)area->start,
1417                                    (void *)(area->start + area->size),
1418                                    object);
1419 out:
1420         spin_unlock_irqrestore(&object->lock, flags);
1421 }
1422
1423 /*
1424  * Scan the objects already referenced (gray objects). More objects will be
1425  * referenced and, if there are no memory leaks, all the objects are scanned.
1426  */
1427 static void scan_gray_list(void)
1428 {
1429         struct kmemleak_object *object, *tmp;
1430
1431         /*
1432          * The list traversal is safe for both tail additions and removals
1433          * from inside the loop. The kmemleak objects cannot be freed from
1434          * outside the loop because their use_count was incremented.
1435          */
1436         object = list_entry(gray_list.next, typeof(*object), gray_list);
1437         while (&object->gray_list != &gray_list) {
1438                 cond_resched();
1439
1440                 /* may add new objects to the list */
1441                 if (!scan_should_stop())
1442                         scan_object(object);
1443
1444                 tmp = list_entry(object->gray_list.next, typeof(*object),
1445                                  gray_list);
1446
1447                 /* remove the object from the list and release it */
1448                 list_del(&object->gray_list);
1449                 put_object(object);
1450
1451                 object = tmp;
1452         }
1453         WARN_ON(!list_empty(&gray_list));
1454 }
1455
1456 /*
1457  * Scan data sections and all the referenced memory blocks allocated via the
1458  * kernel's standard allocators. This function must be called with the
1459  * scan_mutex held.
1460  */
1461 static void kmemleak_scan(void)
1462 {
1463         unsigned long flags;
1464         struct kmemleak_object *object;
1465         int i;
1466         int new_leaks = 0;
1467
1468         jiffies_last_scan = jiffies;
1469
1470         /* prepare the kmemleak_object's */
1471         rcu_read_lock();
1472         list_for_each_entry_rcu(object, &object_list, object_list) {
1473                 spin_lock_irqsave(&object->lock, flags);
1474 #ifdef DEBUG
1475                 /*
1476                  * With a few exceptions there should be a maximum of
1477                  * 1 reference to any object at this point.
1478                  */
1479                 if (atomic_read(&object->use_count) > 1) {
1480                         pr_debug("object->use_count = %d\n",
1481                                  atomic_read(&object->use_count));
1482                         dump_object_info(object);
1483                 }
1484 #endif
1485                 /* reset the reference count (whiten the object) */
1486                 object->count = 0;
1487                 if (color_gray(object) && get_object(object))
1488                         list_add_tail(&object->gray_list, &gray_list);
1489
1490                 spin_unlock_irqrestore(&object->lock, flags);
1491         }
1492         rcu_read_unlock();
1493
1494         /* data/bss scanning */
1495         scan_large_block(_sdata, _edata);
1496         scan_large_block(__bss_start, __bss_stop);
1497         scan_large_block(__start_ro_after_init, __end_ro_after_init);
1498
1499 #ifdef CONFIG_SMP
1500         /* per-cpu sections scanning */
1501         for_each_possible_cpu(i)
1502                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1503                                  __per_cpu_end + per_cpu_offset(i));
1504 #endif
1505
1506         /*
1507          * Struct page scanning for each node.
1508          */
1509         get_online_mems();
1510         for_each_online_node(i) {
1511                 unsigned long start_pfn = node_start_pfn(i);
1512                 unsigned long end_pfn = node_end_pfn(i);
1513                 unsigned long pfn;
1514
1515                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1516                         struct page *page;
1517
1518                         if (!pfn_valid(pfn))
1519                                 continue;
1520                         page = pfn_to_page(pfn);
1521                         /* only scan if page is in use */
1522                         if (page_count(page) == 0)
1523                                 continue;
1524                         scan_block(page, page + 1, NULL);
1525                         if (!(pfn & 63))
1526                                 cond_resched();
1527                 }
1528         }
1529         put_online_mems();
1530
1531         /*
1532          * Scanning the task stacks (may introduce false negatives).
1533          */
1534         if (kmemleak_stack_scan) {
1535                 struct task_struct *p, *g;
1536
1537                 read_lock(&tasklist_lock);
1538                 do_each_thread(g, p) {
1539                         void *stack = try_get_task_stack(p);
1540                         if (stack) {
1541                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1542                                 put_task_stack(p);
1543                         }
1544                 } while_each_thread(g, p);
1545                 read_unlock(&tasklist_lock);
1546         }
1547
1548         /*
1549          * Scan the objects already referenced from the sections scanned
1550          * above.
1551          */
1552         scan_gray_list();
1553
1554         /*
1555          * Check for new or unreferenced objects modified since the previous
1556          * scan and color them gray until the next scan.
1557          */
1558         rcu_read_lock();
1559         list_for_each_entry_rcu(object, &object_list, object_list) {
1560                 spin_lock_irqsave(&object->lock, flags);
1561                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1562                     && update_checksum(object) && get_object(object)) {
1563                         /* color it gray temporarily */
1564                         object->count = object->min_count;
1565                         list_add_tail(&object->gray_list, &gray_list);
1566                 }
1567                 spin_unlock_irqrestore(&object->lock, flags);
1568         }
1569         rcu_read_unlock();
1570
1571         /*
1572          * Re-scan the gray list for modified unreferenced objects.
1573          */
1574         scan_gray_list();
1575
1576         /*
1577          * If scanning was stopped do not report any new unreferenced objects.
1578          */
1579         if (scan_should_stop())
1580                 return;
1581
1582         /*
1583          * Scanning result reporting.
1584          */
1585         rcu_read_lock();
1586         list_for_each_entry_rcu(object, &object_list, object_list) {
1587                 spin_lock_irqsave(&object->lock, flags);
1588                 if (unreferenced_object(object) &&
1589                     !(object->flags & OBJECT_REPORTED)) {
1590                         object->flags |= OBJECT_REPORTED;
1591                         new_leaks++;
1592                 }
1593                 spin_unlock_irqrestore(&object->lock, flags);
1594         }
1595         rcu_read_unlock();
1596
1597         if (new_leaks) {
1598                 kmemleak_found_leaks = true;
1599
1600                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1601                         new_leaks);
1602         }
1603
1604 }
1605
1606 /*
1607  * Thread function performing automatic memory scanning. Unreferenced objects
1608  * at the end of a memory scan are reported but only the first time.
1609  */
1610 static int kmemleak_scan_thread(void *arg)
1611 {
1612         static int first_run = 1;
1613
1614         pr_info("Automatic memory scanning thread started\n");
1615         set_user_nice(current, 10);
1616
1617         /*
1618          * Wait before the first scan to allow the system to fully initialize.
1619          */
1620         if (first_run) {
1621                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1622                 first_run = 0;
1623                 while (timeout && !kthread_should_stop())
1624                         timeout = schedule_timeout_interruptible(timeout);
1625         }
1626
1627         while (!kthread_should_stop()) {
1628                 signed long timeout = jiffies_scan_wait;
1629
1630                 mutex_lock(&scan_mutex);
1631                 kmemleak_scan();
1632                 mutex_unlock(&scan_mutex);
1633
1634                 /* wait before the next scan */
1635                 while (timeout && !kthread_should_stop())
1636                         timeout = schedule_timeout_interruptible(timeout);
1637         }
1638
1639         pr_info("Automatic memory scanning thread ended\n");
1640
1641         return 0;
1642 }
1643
1644 /*
1645  * Start the automatic memory scanning thread. This function must be called
1646  * with the scan_mutex held.
1647  */
1648 static void start_scan_thread(void)
1649 {
1650         if (scan_thread)
1651                 return;
1652         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1653         if (IS_ERR(scan_thread)) {
1654                 pr_warn("Failed to create the scan thread\n");
1655                 scan_thread = NULL;
1656         }
1657 }
1658
1659 /*
1660  * Stop the automatic memory scanning thread. This function must be called
1661  * with the scan_mutex held.
1662  */
1663 static void stop_scan_thread(void)
1664 {
1665         if (scan_thread) {
1666                 kthread_stop(scan_thread);
1667                 scan_thread = NULL;
1668         }
1669 }
1670
1671 /*
1672  * Iterate over the object_list and return the first valid object at or after
1673  * the required position with its use_count incremented. The function triggers
1674  * a memory scanning when the pos argument points to the first position.
1675  */
1676 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1677 {
1678         struct kmemleak_object *object;
1679         loff_t n = *pos;
1680         int err;
1681
1682         err = mutex_lock_interruptible(&scan_mutex);
1683         if (err < 0)
1684                 return ERR_PTR(err);
1685
1686         rcu_read_lock();
1687         list_for_each_entry_rcu(object, &object_list, object_list) {
1688                 if (n-- > 0)
1689                         continue;
1690                 if (get_object(object))
1691                         goto out;
1692         }
1693         object = NULL;
1694 out:
1695         return object;
1696 }
1697
1698 /*
1699  * Return the next object in the object_list. The function decrements the
1700  * use_count of the previous object and increases that of the next one.
1701  */
1702 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1703 {
1704         struct kmemleak_object *prev_obj = v;
1705         struct kmemleak_object *next_obj = NULL;
1706         struct kmemleak_object *obj = prev_obj;
1707
1708         ++(*pos);
1709
1710         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1711                 if (get_object(obj)) {
1712                         next_obj = obj;
1713                         break;
1714                 }
1715         }
1716
1717         put_object(prev_obj);
1718         return next_obj;
1719 }
1720
1721 /*
1722  * Decrement the use_count of the last object required, if any.
1723  */
1724 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1725 {
1726         if (!IS_ERR(v)) {
1727                 /*
1728                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1729                  * waiting was interrupted, so only release it if !IS_ERR.
1730                  */
1731                 rcu_read_unlock();
1732                 mutex_unlock(&scan_mutex);
1733                 if (v)
1734                         put_object(v);
1735         }
1736 }
1737
1738 /*
1739  * Print the information for an unreferenced object to the seq file.
1740  */
1741 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1742 {
1743         struct kmemleak_object *object = v;
1744         unsigned long flags;
1745
1746         spin_lock_irqsave(&object->lock, flags);
1747         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1748                 print_unreferenced(seq, object);
1749         spin_unlock_irqrestore(&object->lock, flags);
1750         return 0;
1751 }
1752
1753 static const struct seq_operations kmemleak_seq_ops = {
1754         .start = kmemleak_seq_start,
1755         .next  = kmemleak_seq_next,
1756         .stop  = kmemleak_seq_stop,
1757         .show  = kmemleak_seq_show,
1758 };
1759
1760 static int kmemleak_open(struct inode *inode, struct file *file)
1761 {
1762         return seq_open(file, &kmemleak_seq_ops);
1763 }
1764
1765 static int dump_str_object_info(const char *str)
1766 {
1767         unsigned long flags;
1768         struct kmemleak_object *object;
1769         unsigned long addr;
1770
1771         if (kstrtoul(str, 0, &addr))
1772                 return -EINVAL;
1773         object = find_and_get_object(addr, 0);
1774         if (!object) {
1775                 pr_info("Unknown object at 0x%08lx\n", addr);
1776                 return -EINVAL;
1777         }
1778
1779         spin_lock_irqsave(&object->lock, flags);
1780         dump_object_info(object);
1781         spin_unlock_irqrestore(&object->lock, flags);
1782
1783         put_object(object);
1784         return 0;
1785 }
1786
1787 /*
1788  * We use grey instead of black to ensure we can do future scans on the same
1789  * objects. If we did not do future scans these black objects could
1790  * potentially contain references to newly allocated objects in the future and
1791  * we'd end up with false positives.
1792  */
1793 static void kmemleak_clear(void)
1794 {
1795         struct kmemleak_object *object;
1796         unsigned long flags;
1797
1798         rcu_read_lock();
1799         list_for_each_entry_rcu(object, &object_list, object_list) {
1800                 spin_lock_irqsave(&object->lock, flags);
1801                 if ((object->flags & OBJECT_REPORTED) &&
1802                     unreferenced_object(object))
1803                         __paint_it(object, KMEMLEAK_GREY);
1804                 spin_unlock_irqrestore(&object->lock, flags);
1805         }
1806         rcu_read_unlock();
1807
1808         kmemleak_found_leaks = false;
1809 }
1810
1811 static void __kmemleak_do_cleanup(void);
1812
1813 /*
1814  * File write operation to configure kmemleak at run-time. The following
1815  * commands can be written to the /sys/kernel/debug/kmemleak file:
1816  *   off        - disable kmemleak (irreversible)
1817  *   stack=on   - enable the task stacks scanning
1818  *   stack=off  - disable the tasks stacks scanning
1819  *   scan=on    - start the automatic memory scanning thread
1820  *   scan=off   - stop the automatic memory scanning thread
1821  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1822  *                disable it)
1823  *   scan       - trigger a memory scan
1824  *   clear      - mark all current reported unreferenced kmemleak objects as
1825  *                grey to ignore printing them, or free all kmemleak objects
1826  *                if kmemleak has been disabled.
1827  *   dump=...   - dump information about the object found at the given address
1828  */
1829 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1830                               size_t size, loff_t *ppos)
1831 {
1832         char buf[64];
1833         int buf_size;
1834         int ret;
1835
1836         buf_size = min(size, (sizeof(buf) - 1));
1837         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1838                 return -EFAULT;
1839         buf[buf_size] = 0;
1840
1841         ret = mutex_lock_interruptible(&scan_mutex);
1842         if (ret < 0)
1843                 return ret;
1844
1845         if (strncmp(buf, "clear", 5) == 0) {
1846                 if (kmemleak_enabled)
1847                         kmemleak_clear();
1848                 else
1849                         __kmemleak_do_cleanup();
1850                 goto out;
1851         }
1852
1853         if (!kmemleak_enabled) {
1854                 ret = -EBUSY;
1855                 goto out;
1856         }
1857
1858         if (strncmp(buf, "off", 3) == 0)
1859                 kmemleak_disable();
1860         else if (strncmp(buf, "stack=on", 8) == 0)
1861                 kmemleak_stack_scan = 1;
1862         else if (strncmp(buf, "stack=off", 9) == 0)
1863                 kmemleak_stack_scan = 0;
1864         else if (strncmp(buf, "scan=on", 7) == 0)
1865                 start_scan_thread();
1866         else if (strncmp(buf, "scan=off", 8) == 0)
1867                 stop_scan_thread();
1868         else if (strncmp(buf, "scan=", 5) == 0) {
1869                 unsigned long secs;
1870
1871                 ret = kstrtoul(buf + 5, 0, &secs);
1872                 if (ret < 0)
1873                         goto out;
1874                 stop_scan_thread();
1875                 if (secs) {
1876                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1877                         start_scan_thread();
1878                 }
1879         } else if (strncmp(buf, "scan", 4) == 0)
1880                 kmemleak_scan();
1881         else if (strncmp(buf, "dump=", 5) == 0)
1882                 ret = dump_str_object_info(buf + 5);
1883         else
1884                 ret = -EINVAL;
1885
1886 out:
1887         mutex_unlock(&scan_mutex);
1888         if (ret < 0)
1889                 return ret;
1890
1891         /* ignore the rest of the buffer, only one command at a time */
1892         *ppos += size;
1893         return size;
1894 }
1895
1896 static const struct file_operations kmemleak_fops = {
1897         .owner          = THIS_MODULE,
1898         .open           = kmemleak_open,
1899         .read           = seq_read,
1900         .write          = kmemleak_write,
1901         .llseek         = seq_lseek,
1902         .release        = seq_release,
1903 };
1904
1905 static void __kmemleak_do_cleanup(void)
1906 {
1907         struct kmemleak_object *object;
1908
1909         rcu_read_lock();
1910         list_for_each_entry_rcu(object, &object_list, object_list)
1911                 delete_object_full(object->pointer);
1912         rcu_read_unlock();
1913 }
1914
1915 /*
1916  * Stop the memory scanning thread and free the kmemleak internal objects if
1917  * no previous scan thread (otherwise, kmemleak may still have some useful
1918  * information on memory leaks).
1919  */
1920 static void kmemleak_do_cleanup(struct work_struct *work)
1921 {
1922         stop_scan_thread();
1923
1924         /*
1925          * Once the scan thread has stopped, it is safe to no longer track
1926          * object freeing. Ordering of the scan thread stopping and the memory
1927          * accesses below is guaranteed by the kthread_stop() function.
1928          */
1929         kmemleak_free_enabled = 0;
1930
1931         if (!kmemleak_found_leaks)
1932                 __kmemleak_do_cleanup();
1933         else
1934                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1935 }
1936
1937 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1938
1939 /*
1940  * Disable kmemleak. No memory allocation/freeing will be traced once this
1941  * function is called. Disabling kmemleak is an irreversible operation.
1942  */
1943 static void kmemleak_disable(void)
1944 {
1945         /* atomically check whether it was already invoked */
1946         if (cmpxchg(&kmemleak_error, 0, 1))
1947                 return;
1948
1949         /* stop any memory operation tracing */
1950         kmemleak_enabled = 0;
1951
1952         /* check whether it is too early for a kernel thread */
1953         if (kmemleak_initialized)
1954                 schedule_work(&cleanup_work);
1955         else
1956                 kmemleak_free_enabled = 0;
1957
1958         pr_info("Kernel memory leak detector disabled\n");
1959 }
1960
1961 /*
1962  * Allow boot-time kmemleak disabling (enabled by default).
1963  */
1964 static int kmemleak_boot_config(char *str)
1965 {
1966         if (!str)
1967                 return -EINVAL;
1968         if (strcmp(str, "off") == 0)
1969                 kmemleak_disable();
1970         else if (strcmp(str, "on") == 0)
1971                 kmemleak_skip_disable = 1;
1972         else
1973                 return -EINVAL;
1974         return 0;
1975 }
1976 early_param("kmemleak", kmemleak_boot_config);
1977
1978 static void __init print_log_trace(struct early_log *log)
1979 {
1980         struct stack_trace trace;
1981
1982         trace.nr_entries = log->trace_len;
1983         trace.entries = log->trace;
1984
1985         pr_notice("Early log backtrace:\n");
1986         print_stack_trace(&trace, 2);
1987 }
1988
1989 /*
1990  * Kmemleak initialization.
1991  */
1992 void __init kmemleak_init(void)
1993 {
1994         int i;
1995         unsigned long flags;
1996
1997 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1998         if (!kmemleak_skip_disable) {
1999                 kmemleak_early_log = 0;
2000                 kmemleak_disable();
2001                 return;
2002         }
2003 #endif
2004
2005         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2006         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2007
2008         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2009         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2010
2011         if (crt_early_log > ARRAY_SIZE(early_log))
2012                 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2013                         crt_early_log);
2014
2015         /* the kernel is still in UP mode, so disabling the IRQs is enough */
2016         local_irq_save(flags);
2017         kmemleak_early_log = 0;
2018         if (kmemleak_error) {
2019                 local_irq_restore(flags);
2020                 return;
2021         } else {
2022                 kmemleak_enabled = 1;
2023                 kmemleak_free_enabled = 1;
2024         }
2025         local_irq_restore(flags);
2026
2027         /*
2028          * This is the point where tracking allocations is safe. Automatic
2029          * scanning is started during the late initcall. Add the early logged
2030          * callbacks to the kmemleak infrastructure.
2031          */
2032         for (i = 0; i < crt_early_log; i++) {
2033                 struct early_log *log = &early_log[i];
2034
2035                 switch (log->op_type) {
2036                 case KMEMLEAK_ALLOC:
2037                         early_alloc(log);
2038                         break;
2039                 case KMEMLEAK_ALLOC_PERCPU:
2040                         early_alloc_percpu(log);
2041                         break;
2042                 case KMEMLEAK_FREE:
2043                         kmemleak_free(log->ptr);
2044                         break;
2045                 case KMEMLEAK_FREE_PART:
2046                         kmemleak_free_part(log->ptr, log->size);
2047                         break;
2048                 case KMEMLEAK_FREE_PERCPU:
2049                         kmemleak_free_percpu(log->ptr);
2050                         break;
2051                 case KMEMLEAK_NOT_LEAK:
2052                         kmemleak_not_leak(log->ptr);
2053                         break;
2054                 case KMEMLEAK_IGNORE:
2055                         kmemleak_ignore(log->ptr);
2056                         break;
2057                 case KMEMLEAK_SCAN_AREA:
2058                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2059                         break;
2060                 case KMEMLEAK_NO_SCAN:
2061                         kmemleak_no_scan(log->ptr);
2062                         break;
2063                 case KMEMLEAK_SET_EXCESS_REF:
2064                         object_set_excess_ref((unsigned long)log->ptr,
2065                                               log->excess_ref);
2066                         break;
2067                 default:
2068                         kmemleak_warn("Unknown early log operation: %d\n",
2069                                       log->op_type);
2070                 }
2071
2072                 if (kmemleak_warning) {
2073                         print_log_trace(log);
2074                         kmemleak_warning = 0;
2075                 }
2076         }
2077 }
2078
2079 /*
2080  * Late initialization function.
2081  */
2082 static int __init kmemleak_late_init(void)
2083 {
2084         struct dentry *dentry;
2085
2086         kmemleak_initialized = 1;
2087
2088         if (kmemleak_error) {
2089                 /*
2090                  * Some error occurred and kmemleak was disabled. There is a
2091                  * small chance that kmemleak_disable() was called immediately
2092                  * after setting kmemleak_initialized and we may end up with
2093                  * two clean-up threads but serialized by scan_mutex.
2094                  */
2095                 schedule_work(&cleanup_work);
2096                 return -ENOMEM;
2097         }
2098
2099         dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2100                                      &kmemleak_fops);
2101         if (!dentry)
2102                 pr_warn("Failed to create the debugfs kmemleak file\n");
2103         mutex_lock(&scan_mutex);
2104         start_scan_thread();
2105         mutex_unlock(&scan_mutex);
2106
2107         pr_info("Kernel memory leak detector initialized\n");
2108
2109         return 0;
2110 }
2111 late_initcall(kmemleak_late_init);