y2038: signal: Add compat_sys_rt_sigtimedwait_time64
[sfrench/cifs-2.6.git] / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/module.h>
90 #include <linux/mutex.h>
91 #include <linux/rcupdate.h>
92 #include <linux/stacktrace.h>
93 #include <linux/cache.h>
94 #include <linux/percpu.h>
95 #include <linux/memblock.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
107
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
111
112 #include <linux/kasan.h>
113 #include <linux/kmemleak.h>
114 #include <linux/memory_hotplug.h>
115
116 /*
117  * Kmemleak configuration and common defines.
118  */
119 #define MAX_TRACE               16      /* stack trace length */
120 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
121 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
122 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
123 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
124
125 #define BYTES_PER_POINTER       sizeof(void *)
126
127 /* GFP bitmask for kmemleak internal allocations */
128 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
129                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
130                                  __GFP_NOWARN | __GFP_NOFAIL)
131
132 /* scanning area inside a memory block */
133 struct kmemleak_scan_area {
134         struct hlist_node node;
135         unsigned long start;
136         size_t size;
137 };
138
139 #define KMEMLEAK_GREY   0
140 #define KMEMLEAK_BLACK  -1
141
142 /*
143  * Structure holding the metadata for each allocated memory block.
144  * Modifications to such objects should be made while holding the
145  * object->lock. Insertions or deletions from object_list, gray_list or
146  * rb_node are already protected by the corresponding locks or mutex (see
147  * the notes on locking above). These objects are reference-counted
148  * (use_count) and freed using the RCU mechanism.
149  */
150 struct kmemleak_object {
151         spinlock_t lock;
152         unsigned int flags;             /* object status flags */
153         struct list_head object_list;
154         struct list_head gray_list;
155         struct rb_node rb_node;
156         struct rcu_head rcu;            /* object_list lockless traversal */
157         /* object usage count; object freed when use_count == 0 */
158         atomic_t use_count;
159         unsigned long pointer;
160         size_t size;
161         /* pass surplus references to this pointer */
162         unsigned long excess_ref;
163         /* minimum number of a pointers found before it is considered leak */
164         int min_count;
165         /* the total number of pointers found pointing to this object */
166         int count;
167         /* checksum for detecting modified objects */
168         u32 checksum;
169         /* memory ranges to be scanned inside an object (empty for all) */
170         struct hlist_head area_list;
171         unsigned long trace[MAX_TRACE];
172         unsigned int trace_len;
173         unsigned long jiffies;          /* creation timestamp */
174         pid_t pid;                      /* pid of the current task */
175         char comm[TASK_COMM_LEN];       /* executable name */
176 };
177
178 /* flag representing the memory block allocation status */
179 #define OBJECT_ALLOCATED        (1 << 0)
180 /* flag set after the first reporting of an unreference object */
181 #define OBJECT_REPORTED         (1 << 1)
182 /* flag set to not scan the object */
183 #define OBJECT_NO_SCAN          (1 << 2)
184
185 #define HEX_PREFIX              "    "
186 /* number of bytes to print per line; must be 16 or 32 */
187 #define HEX_ROW_SIZE            16
188 /* number of bytes to print at a time (1, 2, 4, 8) */
189 #define HEX_GROUP_SIZE          1
190 /* include ASCII after the hex output */
191 #define HEX_ASCII               1
192 /* max number of lines to be printed */
193 #define HEX_MAX_LINES           2
194
195 /* the list of all allocated objects */
196 static LIST_HEAD(object_list);
197 /* the list of gray-colored objects (see color_gray comment below) */
198 static LIST_HEAD(gray_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* rw_lock protecting the access to object_list and object_tree_root */
202 static DEFINE_RWLOCK(kmemleak_lock);
203
204 /* allocation caches for kmemleak internal data */
205 static struct kmem_cache *object_cache;
206 static struct kmem_cache *scan_area_cache;
207
208 /* set if tracing memory operations is enabled */
209 static int kmemleak_enabled;
210 /* same as above but only for the kmemleak_free() callback */
211 static int kmemleak_free_enabled;
212 /* set in the late_initcall if there were no errors */
213 static int kmemleak_initialized;
214 /* enables or disables early logging of the memory operations */
215 static int kmemleak_early_log = 1;
216 /* set if a kmemleak warning was issued */
217 static int kmemleak_warning;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224
225 static struct task_struct *scan_thread;
226 /* used to avoid reporting of recently allocated objects */
227 static unsigned long jiffies_min_age;
228 static unsigned long jiffies_last_scan;
229 /* delay between automatic memory scannings */
230 static signed long jiffies_scan_wait;
231 /* enables or disables the task stacks scanning */
232 static int kmemleak_stack_scan = 1;
233 /* protects the memory scanning, parameters and debug/kmemleak file access */
234 static DEFINE_MUTEX(scan_mutex);
235 /* setting kmemleak=on, will set this var, skipping the disable */
236 static int kmemleak_skip_disable;
237 /* If there are leaks that can be reported */
238 static bool kmemleak_found_leaks;
239
240 static bool kmemleak_verbose;
241 module_param_named(verbose, kmemleak_verbose, bool, 0600);
242
243 /*
244  * Early object allocation/freeing logging. Kmemleak is initialized after the
245  * kernel allocator. However, both the kernel allocator and kmemleak may
246  * allocate memory blocks which need to be tracked. Kmemleak defines an
247  * arbitrary buffer to hold the allocation/freeing information before it is
248  * fully initialized.
249  */
250
251 /* kmemleak operation type for early logging */
252 enum {
253         KMEMLEAK_ALLOC,
254         KMEMLEAK_ALLOC_PERCPU,
255         KMEMLEAK_FREE,
256         KMEMLEAK_FREE_PART,
257         KMEMLEAK_FREE_PERCPU,
258         KMEMLEAK_NOT_LEAK,
259         KMEMLEAK_IGNORE,
260         KMEMLEAK_SCAN_AREA,
261         KMEMLEAK_NO_SCAN,
262         KMEMLEAK_SET_EXCESS_REF
263 };
264
265 /*
266  * Structure holding the information passed to kmemleak callbacks during the
267  * early logging.
268  */
269 struct early_log {
270         int op_type;                    /* kmemleak operation type */
271         int min_count;                  /* minimum reference count */
272         const void *ptr;                /* allocated/freed memory block */
273         union {
274                 size_t size;            /* memory block size */
275                 unsigned long excess_ref; /* surplus reference passing */
276         };
277         unsigned long trace[MAX_TRACE]; /* stack trace */
278         unsigned int trace_len;         /* stack trace length */
279 };
280
281 /* early logging buffer and current position */
282 static struct early_log
283         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
284 static int crt_early_log __initdata;
285
286 static void kmemleak_disable(void);
287
288 /*
289  * Print a warning and dump the stack trace.
290  */
291 #define kmemleak_warn(x...)     do {            \
292         pr_warn(x);                             \
293         dump_stack();                           \
294         kmemleak_warning = 1;                   \
295 } while (0)
296
297 /*
298  * Macro invoked when a serious kmemleak condition occurred and cannot be
299  * recovered from. Kmemleak will be disabled and further allocation/freeing
300  * tracing no longer available.
301  */
302 #define kmemleak_stop(x...)     do {    \
303         kmemleak_warn(x);               \
304         kmemleak_disable();             \
305 } while (0)
306
307 #define warn_or_seq_printf(seq, fmt, ...)       do {    \
308         if (seq)                                        \
309                 seq_printf(seq, fmt, ##__VA_ARGS__);    \
310         else                                            \
311                 pr_warn(fmt, ##__VA_ARGS__);            \
312 } while (0)
313
314 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
315                                  int rowsize, int groupsize, const void *buf,
316                                  size_t len, bool ascii)
317 {
318         if (seq)
319                 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
320                              buf, len, ascii);
321         else
322                 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
323                                rowsize, groupsize, buf, len, ascii);
324 }
325
326 /*
327  * Printing of the objects hex dump to the seq file. The number of lines to be
328  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
329  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
330  * with the object->lock held.
331  */
332 static void hex_dump_object(struct seq_file *seq,
333                             struct kmemleak_object *object)
334 {
335         const u8 *ptr = (const u8 *)object->pointer;
336         size_t len;
337
338         /* limit the number of lines to HEX_MAX_LINES */
339         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
340
341         warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
342         kasan_disable_current();
343         warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
344                              HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
345         kasan_enable_current();
346 }
347
348 /*
349  * Object colors, encoded with count and min_count:
350  * - white - orphan object, not enough references to it (count < min_count)
351  * - gray  - not orphan, not marked as false positive (min_count == 0) or
352  *              sufficient references to it (count >= min_count)
353  * - black - ignore, it doesn't contain references (e.g. text section)
354  *              (min_count == -1). No function defined for this color.
355  * Newly created objects don't have any color assigned (object->count == -1)
356  * before the next memory scan when they become white.
357  */
358 static bool color_white(const struct kmemleak_object *object)
359 {
360         return object->count != KMEMLEAK_BLACK &&
361                 object->count < object->min_count;
362 }
363
364 static bool color_gray(const struct kmemleak_object *object)
365 {
366         return object->min_count != KMEMLEAK_BLACK &&
367                 object->count >= object->min_count;
368 }
369
370 /*
371  * Objects are considered unreferenced only if their color is white, they have
372  * not be deleted and have a minimum age to avoid false positives caused by
373  * pointers temporarily stored in CPU registers.
374  */
375 static bool unreferenced_object(struct kmemleak_object *object)
376 {
377         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
378                 time_before_eq(object->jiffies + jiffies_min_age,
379                                jiffies_last_scan);
380 }
381
382 /*
383  * Printing of the unreferenced objects information to the seq file. The
384  * print_unreferenced function must be called with the object->lock held.
385  */
386 static void print_unreferenced(struct seq_file *seq,
387                                struct kmemleak_object *object)
388 {
389         int i;
390         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
391
392         warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
393                    object->pointer, object->size);
394         warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
395                    object->comm, object->pid, object->jiffies,
396                    msecs_age / 1000, msecs_age % 1000);
397         hex_dump_object(seq, object);
398         warn_or_seq_printf(seq, "  backtrace:\n");
399
400         for (i = 0; i < object->trace_len; i++) {
401                 void *ptr = (void *)object->trace[i];
402                 warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
403         }
404 }
405
406 /*
407  * Print the kmemleak_object information. This function is used mainly for
408  * debugging special cases when kmemleak operations. It must be called with
409  * the object->lock held.
410  */
411 static void dump_object_info(struct kmemleak_object *object)
412 {
413         struct stack_trace trace;
414
415         trace.nr_entries = object->trace_len;
416         trace.entries = object->trace;
417
418         pr_notice("Object 0x%08lx (size %zu):\n",
419                   object->pointer, object->size);
420         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
421                   object->comm, object->pid, object->jiffies);
422         pr_notice("  min_count = %d\n", object->min_count);
423         pr_notice("  count = %d\n", object->count);
424         pr_notice("  flags = 0x%x\n", object->flags);
425         pr_notice("  checksum = %u\n", object->checksum);
426         pr_notice("  backtrace:\n");
427         print_stack_trace(&trace, 4);
428 }
429
430 /*
431  * Look-up a memory block metadata (kmemleak_object) in the object search
432  * tree based on a pointer value. If alias is 0, only values pointing to the
433  * beginning of the memory block are allowed. The kmemleak_lock must be held
434  * when calling this function.
435  */
436 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
437 {
438         struct rb_node *rb = object_tree_root.rb_node;
439
440         while (rb) {
441                 struct kmemleak_object *object =
442                         rb_entry(rb, struct kmemleak_object, rb_node);
443                 if (ptr < object->pointer)
444                         rb = object->rb_node.rb_left;
445                 else if (object->pointer + object->size <= ptr)
446                         rb = object->rb_node.rb_right;
447                 else if (object->pointer == ptr || alias)
448                         return object;
449                 else {
450                         kmemleak_warn("Found object by alias at 0x%08lx\n",
451                                       ptr);
452                         dump_object_info(object);
453                         break;
454                 }
455         }
456         return NULL;
457 }
458
459 /*
460  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
461  * that once an object's use_count reached 0, the RCU freeing was already
462  * registered and the object should no longer be used. This function must be
463  * called under the protection of rcu_read_lock().
464  */
465 static int get_object(struct kmemleak_object *object)
466 {
467         return atomic_inc_not_zero(&object->use_count);
468 }
469
470 /*
471  * RCU callback to free a kmemleak_object.
472  */
473 static void free_object_rcu(struct rcu_head *rcu)
474 {
475         struct hlist_node *tmp;
476         struct kmemleak_scan_area *area;
477         struct kmemleak_object *object =
478                 container_of(rcu, struct kmemleak_object, rcu);
479
480         /*
481          * Once use_count is 0 (guaranteed by put_object), there is no other
482          * code accessing this object, hence no need for locking.
483          */
484         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
485                 hlist_del(&area->node);
486                 kmem_cache_free(scan_area_cache, area);
487         }
488         kmem_cache_free(object_cache, object);
489 }
490
491 /*
492  * Decrement the object use_count. Once the count is 0, free the object using
493  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
494  * delete_object() path, the delayed RCU freeing ensures that there is no
495  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
496  * is also possible.
497  */
498 static void put_object(struct kmemleak_object *object)
499 {
500         if (!atomic_dec_and_test(&object->use_count))
501                 return;
502
503         /* should only get here after delete_object was called */
504         WARN_ON(object->flags & OBJECT_ALLOCATED);
505
506         call_rcu(&object->rcu, free_object_rcu);
507 }
508
509 /*
510  * Look up an object in the object search tree and increase its use_count.
511  */
512 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
513 {
514         unsigned long flags;
515         struct kmemleak_object *object;
516
517         rcu_read_lock();
518         read_lock_irqsave(&kmemleak_lock, flags);
519         object = lookup_object(ptr, alias);
520         read_unlock_irqrestore(&kmemleak_lock, flags);
521
522         /* check whether the object is still available */
523         if (object && !get_object(object))
524                 object = NULL;
525         rcu_read_unlock();
526
527         return object;
528 }
529
530 /*
531  * Look up an object in the object search tree and remove it from both
532  * object_tree_root and object_list. The returned object's use_count should be
533  * at least 1, as initially set by create_object().
534  */
535 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
536 {
537         unsigned long flags;
538         struct kmemleak_object *object;
539
540         write_lock_irqsave(&kmemleak_lock, flags);
541         object = lookup_object(ptr, alias);
542         if (object) {
543                 rb_erase(&object->rb_node, &object_tree_root);
544                 list_del_rcu(&object->object_list);
545         }
546         write_unlock_irqrestore(&kmemleak_lock, flags);
547
548         return object;
549 }
550
551 /*
552  * Save stack trace to the given array of MAX_TRACE size.
553  */
554 static int __save_stack_trace(unsigned long *trace)
555 {
556         struct stack_trace stack_trace;
557
558         stack_trace.max_entries = MAX_TRACE;
559         stack_trace.nr_entries = 0;
560         stack_trace.entries = trace;
561         stack_trace.skip = 2;
562         save_stack_trace(&stack_trace);
563
564         return stack_trace.nr_entries;
565 }
566
567 /*
568  * Create the metadata (struct kmemleak_object) corresponding to an allocated
569  * memory block and add it to the object_list and object_tree_root.
570  */
571 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
572                                              int min_count, gfp_t gfp)
573 {
574         unsigned long flags;
575         struct kmemleak_object *object, *parent;
576         struct rb_node **link, *rb_parent;
577
578         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
579         if (!object) {
580                 pr_warn("Cannot allocate a kmemleak_object structure\n");
581                 kmemleak_disable();
582                 return NULL;
583         }
584
585         INIT_LIST_HEAD(&object->object_list);
586         INIT_LIST_HEAD(&object->gray_list);
587         INIT_HLIST_HEAD(&object->area_list);
588         spin_lock_init(&object->lock);
589         atomic_set(&object->use_count, 1);
590         object->flags = OBJECT_ALLOCATED;
591         object->pointer = ptr;
592         object->size = size;
593         object->excess_ref = 0;
594         object->min_count = min_count;
595         object->count = 0;                      /* white color initially */
596         object->jiffies = jiffies;
597         object->checksum = 0;
598
599         /* task information */
600         if (in_irq()) {
601                 object->pid = 0;
602                 strncpy(object->comm, "hardirq", sizeof(object->comm));
603         } else if (in_softirq()) {
604                 object->pid = 0;
605                 strncpy(object->comm, "softirq", sizeof(object->comm));
606         } else {
607                 object->pid = current->pid;
608                 /*
609                  * There is a small chance of a race with set_task_comm(),
610                  * however using get_task_comm() here may cause locking
611                  * dependency issues with current->alloc_lock. In the worst
612                  * case, the command line is not correct.
613                  */
614                 strncpy(object->comm, current->comm, sizeof(object->comm));
615         }
616
617         /* kernel backtrace */
618         object->trace_len = __save_stack_trace(object->trace);
619
620         write_lock_irqsave(&kmemleak_lock, flags);
621
622         min_addr = min(min_addr, ptr);
623         max_addr = max(max_addr, ptr + size);
624         link = &object_tree_root.rb_node;
625         rb_parent = NULL;
626         while (*link) {
627                 rb_parent = *link;
628                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
629                 if (ptr + size <= parent->pointer)
630                         link = &parent->rb_node.rb_left;
631                 else if (parent->pointer + parent->size <= ptr)
632                         link = &parent->rb_node.rb_right;
633                 else {
634                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
635                                       ptr);
636                         /*
637                          * No need for parent->lock here since "parent" cannot
638                          * be freed while the kmemleak_lock is held.
639                          */
640                         dump_object_info(parent);
641                         kmem_cache_free(object_cache, object);
642                         object = NULL;
643                         goto out;
644                 }
645         }
646         rb_link_node(&object->rb_node, rb_parent, link);
647         rb_insert_color(&object->rb_node, &object_tree_root);
648
649         list_add_tail_rcu(&object->object_list, &object_list);
650 out:
651         write_unlock_irqrestore(&kmemleak_lock, flags);
652         return object;
653 }
654
655 /*
656  * Mark the object as not allocated and schedule RCU freeing via put_object().
657  */
658 static void __delete_object(struct kmemleak_object *object)
659 {
660         unsigned long flags;
661
662         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
663         WARN_ON(atomic_read(&object->use_count) < 1);
664
665         /*
666          * Locking here also ensures that the corresponding memory block
667          * cannot be freed when it is being scanned.
668          */
669         spin_lock_irqsave(&object->lock, flags);
670         object->flags &= ~OBJECT_ALLOCATED;
671         spin_unlock_irqrestore(&object->lock, flags);
672         put_object(object);
673 }
674
675 /*
676  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
677  * delete it.
678  */
679 static void delete_object_full(unsigned long ptr)
680 {
681         struct kmemleak_object *object;
682
683         object = find_and_remove_object(ptr, 0);
684         if (!object) {
685 #ifdef DEBUG
686                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
687                               ptr);
688 #endif
689                 return;
690         }
691         __delete_object(object);
692 }
693
694 /*
695  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
696  * delete it. If the memory block is partially freed, the function may create
697  * additional metadata for the remaining parts of the block.
698  */
699 static void delete_object_part(unsigned long ptr, size_t size)
700 {
701         struct kmemleak_object *object;
702         unsigned long start, end;
703
704         object = find_and_remove_object(ptr, 1);
705         if (!object) {
706 #ifdef DEBUG
707                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
708                               ptr, size);
709 #endif
710                 return;
711         }
712
713         /*
714          * Create one or two objects that may result from the memory block
715          * split. Note that partial freeing is only done by free_bootmem() and
716          * this happens before kmemleak_init() is called. The path below is
717          * only executed during early log recording in kmemleak_init(), so
718          * GFP_KERNEL is enough.
719          */
720         start = object->pointer;
721         end = object->pointer + object->size;
722         if (ptr > start)
723                 create_object(start, ptr - start, object->min_count,
724                               GFP_KERNEL);
725         if (ptr + size < end)
726                 create_object(ptr + size, end - ptr - size, object->min_count,
727                               GFP_KERNEL);
728
729         __delete_object(object);
730 }
731
732 static void __paint_it(struct kmemleak_object *object, int color)
733 {
734         object->min_count = color;
735         if (color == KMEMLEAK_BLACK)
736                 object->flags |= OBJECT_NO_SCAN;
737 }
738
739 static void paint_it(struct kmemleak_object *object, int color)
740 {
741         unsigned long flags;
742
743         spin_lock_irqsave(&object->lock, flags);
744         __paint_it(object, color);
745         spin_unlock_irqrestore(&object->lock, flags);
746 }
747
748 static void paint_ptr(unsigned long ptr, int color)
749 {
750         struct kmemleak_object *object;
751
752         object = find_and_get_object(ptr, 0);
753         if (!object) {
754                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
755                               ptr,
756                               (color == KMEMLEAK_GREY) ? "Grey" :
757                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
758                 return;
759         }
760         paint_it(object, color);
761         put_object(object);
762 }
763
764 /*
765  * Mark an object permanently as gray-colored so that it can no longer be
766  * reported as a leak. This is used in general to mark a false positive.
767  */
768 static void make_gray_object(unsigned long ptr)
769 {
770         paint_ptr(ptr, KMEMLEAK_GREY);
771 }
772
773 /*
774  * Mark the object as black-colored so that it is ignored from scans and
775  * reporting.
776  */
777 static void make_black_object(unsigned long ptr)
778 {
779         paint_ptr(ptr, KMEMLEAK_BLACK);
780 }
781
782 /*
783  * Add a scanning area to the object. If at least one such area is added,
784  * kmemleak will only scan these ranges rather than the whole memory block.
785  */
786 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
787 {
788         unsigned long flags;
789         struct kmemleak_object *object;
790         struct kmemleak_scan_area *area;
791
792         object = find_and_get_object(ptr, 1);
793         if (!object) {
794                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
795                               ptr);
796                 return;
797         }
798
799         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
800         if (!area) {
801                 pr_warn("Cannot allocate a scan area\n");
802                 goto out;
803         }
804
805         spin_lock_irqsave(&object->lock, flags);
806         if (size == SIZE_MAX) {
807                 size = object->pointer + object->size - ptr;
808         } else if (ptr + size > object->pointer + object->size) {
809                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
810                 dump_object_info(object);
811                 kmem_cache_free(scan_area_cache, area);
812                 goto out_unlock;
813         }
814
815         INIT_HLIST_NODE(&area->node);
816         area->start = ptr;
817         area->size = size;
818
819         hlist_add_head(&area->node, &object->area_list);
820 out_unlock:
821         spin_unlock_irqrestore(&object->lock, flags);
822 out:
823         put_object(object);
824 }
825
826 /*
827  * Any surplus references (object already gray) to 'ptr' are passed to
828  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
829  * vm_struct may be used as an alternative reference to the vmalloc'ed object
830  * (see free_thread_stack()).
831  */
832 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
833 {
834         unsigned long flags;
835         struct kmemleak_object *object;
836
837         object = find_and_get_object(ptr, 0);
838         if (!object) {
839                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
840                               ptr);
841                 return;
842         }
843
844         spin_lock_irqsave(&object->lock, flags);
845         object->excess_ref = excess_ref;
846         spin_unlock_irqrestore(&object->lock, flags);
847         put_object(object);
848 }
849
850 /*
851  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
852  * pointer. Such object will not be scanned by kmemleak but references to it
853  * are searched.
854  */
855 static void object_no_scan(unsigned long ptr)
856 {
857         unsigned long flags;
858         struct kmemleak_object *object;
859
860         object = find_and_get_object(ptr, 0);
861         if (!object) {
862                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
863                 return;
864         }
865
866         spin_lock_irqsave(&object->lock, flags);
867         object->flags |= OBJECT_NO_SCAN;
868         spin_unlock_irqrestore(&object->lock, flags);
869         put_object(object);
870 }
871
872 /*
873  * Log an early kmemleak_* call to the early_log buffer. These calls will be
874  * processed later once kmemleak is fully initialized.
875  */
876 static void __init log_early(int op_type, const void *ptr, size_t size,
877                              int min_count)
878 {
879         unsigned long flags;
880         struct early_log *log;
881
882         if (kmemleak_error) {
883                 /* kmemleak stopped recording, just count the requests */
884                 crt_early_log++;
885                 return;
886         }
887
888         if (crt_early_log >= ARRAY_SIZE(early_log)) {
889                 crt_early_log++;
890                 kmemleak_disable();
891                 return;
892         }
893
894         /*
895          * There is no need for locking since the kernel is still in UP mode
896          * at this stage. Disabling the IRQs is enough.
897          */
898         local_irq_save(flags);
899         log = &early_log[crt_early_log];
900         log->op_type = op_type;
901         log->ptr = ptr;
902         log->size = size;
903         log->min_count = min_count;
904         log->trace_len = __save_stack_trace(log->trace);
905         crt_early_log++;
906         local_irq_restore(flags);
907 }
908
909 /*
910  * Log an early allocated block and populate the stack trace.
911  */
912 static void early_alloc(struct early_log *log)
913 {
914         struct kmemleak_object *object;
915         unsigned long flags;
916         int i;
917
918         if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
919                 return;
920
921         /*
922          * RCU locking needed to ensure object is not freed via put_object().
923          */
924         rcu_read_lock();
925         object = create_object((unsigned long)log->ptr, log->size,
926                                log->min_count, GFP_ATOMIC);
927         if (!object)
928                 goto out;
929         spin_lock_irqsave(&object->lock, flags);
930         for (i = 0; i < log->trace_len; i++)
931                 object->trace[i] = log->trace[i];
932         object->trace_len = log->trace_len;
933         spin_unlock_irqrestore(&object->lock, flags);
934 out:
935         rcu_read_unlock();
936 }
937
938 /*
939  * Log an early allocated block and populate the stack trace.
940  */
941 static void early_alloc_percpu(struct early_log *log)
942 {
943         unsigned int cpu;
944         const void __percpu *ptr = log->ptr;
945
946         for_each_possible_cpu(cpu) {
947                 log->ptr = per_cpu_ptr(ptr, cpu);
948                 early_alloc(log);
949         }
950 }
951
952 /**
953  * kmemleak_alloc - register a newly allocated object
954  * @ptr:        pointer to beginning of the object
955  * @size:       size of the object
956  * @min_count:  minimum number of references to this object. If during memory
957  *              scanning a number of references less than @min_count is found,
958  *              the object is reported as a memory leak. If @min_count is 0,
959  *              the object is never reported as a leak. If @min_count is -1,
960  *              the object is ignored (not scanned and not reported as a leak)
961  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
962  *
963  * This function is called from the kernel allocators when a new object
964  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
965  */
966 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
967                           gfp_t gfp)
968 {
969         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
970
971         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
972                 create_object((unsigned long)ptr, size, min_count, gfp);
973         else if (kmemleak_early_log)
974                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
975 }
976 EXPORT_SYMBOL_GPL(kmemleak_alloc);
977
978 /**
979  * kmemleak_alloc_percpu - register a newly allocated __percpu object
980  * @ptr:        __percpu pointer to beginning of the object
981  * @size:       size of the object
982  * @gfp:        flags used for kmemleak internal memory allocations
983  *
984  * This function is called from the kernel percpu allocator when a new object
985  * (memory block) is allocated (alloc_percpu).
986  */
987 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
988                                  gfp_t gfp)
989 {
990         unsigned int cpu;
991
992         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
993
994         /*
995          * Percpu allocations are only scanned and not reported as leaks
996          * (min_count is set to 0).
997          */
998         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
999                 for_each_possible_cpu(cpu)
1000                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1001                                       size, 0, gfp);
1002         else if (kmemleak_early_log)
1003                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
1004 }
1005 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1006
1007 /**
1008  * kmemleak_vmalloc - register a newly vmalloc'ed object
1009  * @area:       pointer to vm_struct
1010  * @size:       size of the object
1011  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
1012  *
1013  * This function is called from the vmalloc() kernel allocator when a new
1014  * object (memory block) is allocated.
1015  */
1016 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1017 {
1018         pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1019
1020         /*
1021          * A min_count = 2 is needed because vm_struct contains a reference to
1022          * the virtual address of the vmalloc'ed block.
1023          */
1024         if (kmemleak_enabled) {
1025                 create_object((unsigned long)area->addr, size, 2, gfp);
1026                 object_set_excess_ref((unsigned long)area,
1027                                       (unsigned long)area->addr);
1028         } else if (kmemleak_early_log) {
1029                 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1030                 /* reusing early_log.size for storing area->addr */
1031                 log_early(KMEMLEAK_SET_EXCESS_REF,
1032                           area, (unsigned long)area->addr, 0);
1033         }
1034 }
1035 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1036
1037 /**
1038  * kmemleak_free - unregister a previously registered object
1039  * @ptr:        pointer to beginning of the object
1040  *
1041  * This function is called from the kernel allocators when an object (memory
1042  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1043  */
1044 void __ref kmemleak_free(const void *ptr)
1045 {
1046         pr_debug("%s(0x%p)\n", __func__, ptr);
1047
1048         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1049                 delete_object_full((unsigned long)ptr);
1050         else if (kmemleak_early_log)
1051                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
1052 }
1053 EXPORT_SYMBOL_GPL(kmemleak_free);
1054
1055 /**
1056  * kmemleak_free_part - partially unregister a previously registered object
1057  * @ptr:        pointer to the beginning or inside the object. This also
1058  *              represents the start of the range to be freed
1059  * @size:       size to be unregistered
1060  *
1061  * This function is called when only a part of a memory block is freed
1062  * (usually from the bootmem allocator).
1063  */
1064 void __ref kmemleak_free_part(const void *ptr, size_t size)
1065 {
1066         pr_debug("%s(0x%p)\n", __func__, ptr);
1067
1068         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1069                 delete_object_part((unsigned long)ptr, size);
1070         else if (kmemleak_early_log)
1071                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1072 }
1073 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1074
1075 /**
1076  * kmemleak_free_percpu - unregister a previously registered __percpu object
1077  * @ptr:        __percpu pointer to beginning of the object
1078  *
1079  * This function is called from the kernel percpu allocator when an object
1080  * (memory block) is freed (free_percpu).
1081  */
1082 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1083 {
1084         unsigned int cpu;
1085
1086         pr_debug("%s(0x%p)\n", __func__, ptr);
1087
1088         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1089                 for_each_possible_cpu(cpu)
1090                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1091                                                                       cpu));
1092         else if (kmemleak_early_log)
1093                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1094 }
1095 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1096
1097 /**
1098  * kmemleak_update_trace - update object allocation stack trace
1099  * @ptr:        pointer to beginning of the object
1100  *
1101  * Override the object allocation stack trace for cases where the actual
1102  * allocation place is not always useful.
1103  */
1104 void __ref kmemleak_update_trace(const void *ptr)
1105 {
1106         struct kmemleak_object *object;
1107         unsigned long flags;
1108
1109         pr_debug("%s(0x%p)\n", __func__, ptr);
1110
1111         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1112                 return;
1113
1114         object = find_and_get_object((unsigned long)ptr, 1);
1115         if (!object) {
1116 #ifdef DEBUG
1117                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1118                               ptr);
1119 #endif
1120                 return;
1121         }
1122
1123         spin_lock_irqsave(&object->lock, flags);
1124         object->trace_len = __save_stack_trace(object->trace);
1125         spin_unlock_irqrestore(&object->lock, flags);
1126
1127         put_object(object);
1128 }
1129 EXPORT_SYMBOL(kmemleak_update_trace);
1130
1131 /**
1132  * kmemleak_not_leak - mark an allocated object as false positive
1133  * @ptr:        pointer to beginning of the object
1134  *
1135  * Calling this function on an object will cause the memory block to no longer
1136  * be reported as leak and always be scanned.
1137  */
1138 void __ref kmemleak_not_leak(const void *ptr)
1139 {
1140         pr_debug("%s(0x%p)\n", __func__, ptr);
1141
1142         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1143                 make_gray_object((unsigned long)ptr);
1144         else if (kmemleak_early_log)
1145                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1146 }
1147 EXPORT_SYMBOL(kmemleak_not_leak);
1148
1149 /**
1150  * kmemleak_ignore - ignore an allocated object
1151  * @ptr:        pointer to beginning of the object
1152  *
1153  * Calling this function on an object will cause the memory block to be
1154  * ignored (not scanned and not reported as a leak). This is usually done when
1155  * it is known that the corresponding block is not a leak and does not contain
1156  * any references to other allocated memory blocks.
1157  */
1158 void __ref kmemleak_ignore(const void *ptr)
1159 {
1160         pr_debug("%s(0x%p)\n", __func__, ptr);
1161
1162         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1163                 make_black_object((unsigned long)ptr);
1164         else if (kmemleak_early_log)
1165                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1166 }
1167 EXPORT_SYMBOL(kmemleak_ignore);
1168
1169 /**
1170  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1171  * @ptr:        pointer to beginning or inside the object. This also
1172  *              represents the start of the scan area
1173  * @size:       size of the scan area
1174  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1175  *
1176  * This function is used when it is known that only certain parts of an object
1177  * contain references to other objects. Kmemleak will only scan these areas
1178  * reducing the number false negatives.
1179  */
1180 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1181 {
1182         pr_debug("%s(0x%p)\n", __func__, ptr);
1183
1184         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1185                 add_scan_area((unsigned long)ptr, size, gfp);
1186         else if (kmemleak_early_log)
1187                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1188 }
1189 EXPORT_SYMBOL(kmemleak_scan_area);
1190
1191 /**
1192  * kmemleak_no_scan - do not scan an allocated object
1193  * @ptr:        pointer to beginning of the object
1194  *
1195  * This function notifies kmemleak not to scan the given memory block. Useful
1196  * in situations where it is known that the given object does not contain any
1197  * references to other objects. Kmemleak will not scan such objects reducing
1198  * the number of false negatives.
1199  */
1200 void __ref kmemleak_no_scan(const void *ptr)
1201 {
1202         pr_debug("%s(0x%p)\n", __func__, ptr);
1203
1204         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1205                 object_no_scan((unsigned long)ptr);
1206         else if (kmemleak_early_log)
1207                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1208 }
1209 EXPORT_SYMBOL(kmemleak_no_scan);
1210
1211 /**
1212  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1213  *                       address argument
1214  * @phys:       physical address of the object
1215  * @size:       size of the object
1216  * @min_count:  minimum number of references to this object.
1217  *              See kmemleak_alloc()
1218  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1219  */
1220 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1221                                gfp_t gfp)
1222 {
1223         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1224                 kmemleak_alloc(__va(phys), size, min_count, gfp);
1225 }
1226 EXPORT_SYMBOL(kmemleak_alloc_phys);
1227
1228 /**
1229  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1230  *                           physical address argument
1231  * @phys:       physical address if the beginning or inside an object. This
1232  *              also represents the start of the range to be freed
1233  * @size:       size to be unregistered
1234  */
1235 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1236 {
1237         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1238                 kmemleak_free_part(__va(phys), size);
1239 }
1240 EXPORT_SYMBOL(kmemleak_free_part_phys);
1241
1242 /**
1243  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1244  *                          address argument
1245  * @phys:       physical address of the object
1246  */
1247 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1248 {
1249         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1250                 kmemleak_not_leak(__va(phys));
1251 }
1252 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1253
1254 /**
1255  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1256  *                        address argument
1257  * @phys:       physical address of the object
1258  */
1259 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1260 {
1261         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1262                 kmemleak_ignore(__va(phys));
1263 }
1264 EXPORT_SYMBOL(kmemleak_ignore_phys);
1265
1266 /*
1267  * Update an object's checksum and return true if it was modified.
1268  */
1269 static bool update_checksum(struct kmemleak_object *object)
1270 {
1271         u32 old_csum = object->checksum;
1272
1273         kasan_disable_current();
1274         object->checksum = crc32(0, (void *)object->pointer, object->size);
1275         kasan_enable_current();
1276
1277         return object->checksum != old_csum;
1278 }
1279
1280 /*
1281  * Update an object's references. object->lock must be held by the caller.
1282  */
1283 static void update_refs(struct kmemleak_object *object)
1284 {
1285         if (!color_white(object)) {
1286                 /* non-orphan, ignored or new */
1287                 return;
1288         }
1289
1290         /*
1291          * Increase the object's reference count (number of pointers to the
1292          * memory block). If this count reaches the required minimum, the
1293          * object's color will become gray and it will be added to the
1294          * gray_list.
1295          */
1296         object->count++;
1297         if (color_gray(object)) {
1298                 /* put_object() called when removing from gray_list */
1299                 WARN_ON(!get_object(object));
1300                 list_add_tail(&object->gray_list, &gray_list);
1301         }
1302 }
1303
1304 /*
1305  * Memory scanning is a long process and it needs to be interruptable. This
1306  * function checks whether such interrupt condition occurred.
1307  */
1308 static int scan_should_stop(void)
1309 {
1310         if (!kmemleak_enabled)
1311                 return 1;
1312
1313         /*
1314          * This function may be called from either process or kthread context,
1315          * hence the need to check for both stop conditions.
1316          */
1317         if (current->mm)
1318                 return signal_pending(current);
1319         else
1320                 return kthread_should_stop();
1321
1322         return 0;
1323 }
1324
1325 /*
1326  * Scan a memory block (exclusive range) for valid pointers and add those
1327  * found to the gray list.
1328  */
1329 static void scan_block(void *_start, void *_end,
1330                        struct kmemleak_object *scanned)
1331 {
1332         unsigned long *ptr;
1333         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1334         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1335         unsigned long flags;
1336
1337         read_lock_irqsave(&kmemleak_lock, flags);
1338         for (ptr = start; ptr < end; ptr++) {
1339                 struct kmemleak_object *object;
1340                 unsigned long pointer;
1341                 unsigned long excess_ref;
1342
1343                 if (scan_should_stop())
1344                         break;
1345
1346                 kasan_disable_current();
1347                 pointer = *ptr;
1348                 kasan_enable_current();
1349
1350                 if (pointer < min_addr || pointer >= max_addr)
1351                         continue;
1352
1353                 /*
1354                  * No need for get_object() here since we hold kmemleak_lock.
1355                  * object->use_count cannot be dropped to 0 while the object
1356                  * is still present in object_tree_root and object_list
1357                  * (with updates protected by kmemleak_lock).
1358                  */
1359                 object = lookup_object(pointer, 1);
1360                 if (!object)
1361                         continue;
1362                 if (object == scanned)
1363                         /* self referenced, ignore */
1364                         continue;
1365
1366                 /*
1367                  * Avoid the lockdep recursive warning on object->lock being
1368                  * previously acquired in scan_object(). These locks are
1369                  * enclosed by scan_mutex.
1370                  */
1371                 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1372                 /* only pass surplus references (object already gray) */
1373                 if (color_gray(object)) {
1374                         excess_ref = object->excess_ref;
1375                         /* no need for update_refs() if object already gray */
1376                 } else {
1377                         excess_ref = 0;
1378                         update_refs(object);
1379                 }
1380                 spin_unlock(&object->lock);
1381
1382                 if (excess_ref) {
1383                         object = lookup_object(excess_ref, 0);
1384                         if (!object)
1385                                 continue;
1386                         if (object == scanned)
1387                                 /* circular reference, ignore */
1388                                 continue;
1389                         spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1390                         update_refs(object);
1391                         spin_unlock(&object->lock);
1392                 }
1393         }
1394         read_unlock_irqrestore(&kmemleak_lock, flags);
1395 }
1396
1397 /*
1398  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1399  */
1400 static void scan_large_block(void *start, void *end)
1401 {
1402         void *next;
1403
1404         while (start < end) {
1405                 next = min(start + MAX_SCAN_SIZE, end);
1406                 scan_block(start, next, NULL);
1407                 start = next;
1408                 cond_resched();
1409         }
1410 }
1411
1412 /*
1413  * Scan a memory block corresponding to a kmemleak_object. A condition is
1414  * that object->use_count >= 1.
1415  */
1416 static void scan_object(struct kmemleak_object *object)
1417 {
1418         struct kmemleak_scan_area *area;
1419         unsigned long flags;
1420
1421         /*
1422          * Once the object->lock is acquired, the corresponding memory block
1423          * cannot be freed (the same lock is acquired in delete_object).
1424          */
1425         spin_lock_irqsave(&object->lock, flags);
1426         if (object->flags & OBJECT_NO_SCAN)
1427                 goto out;
1428         if (!(object->flags & OBJECT_ALLOCATED))
1429                 /* already freed object */
1430                 goto out;
1431         if (hlist_empty(&object->area_list)) {
1432                 void *start = (void *)object->pointer;
1433                 void *end = (void *)(object->pointer + object->size);
1434                 void *next;
1435
1436                 do {
1437                         next = min(start + MAX_SCAN_SIZE, end);
1438                         scan_block(start, next, object);
1439
1440                         start = next;
1441                         if (start >= end)
1442                                 break;
1443
1444                         spin_unlock_irqrestore(&object->lock, flags);
1445                         cond_resched();
1446                         spin_lock_irqsave(&object->lock, flags);
1447                 } while (object->flags & OBJECT_ALLOCATED);
1448         } else
1449                 hlist_for_each_entry(area, &object->area_list, node)
1450                         scan_block((void *)area->start,
1451                                    (void *)(area->start + area->size),
1452                                    object);
1453 out:
1454         spin_unlock_irqrestore(&object->lock, flags);
1455 }
1456
1457 /*
1458  * Scan the objects already referenced (gray objects). More objects will be
1459  * referenced and, if there are no memory leaks, all the objects are scanned.
1460  */
1461 static void scan_gray_list(void)
1462 {
1463         struct kmemleak_object *object, *tmp;
1464
1465         /*
1466          * The list traversal is safe for both tail additions and removals
1467          * from inside the loop. The kmemleak objects cannot be freed from
1468          * outside the loop because their use_count was incremented.
1469          */
1470         object = list_entry(gray_list.next, typeof(*object), gray_list);
1471         while (&object->gray_list != &gray_list) {
1472                 cond_resched();
1473
1474                 /* may add new objects to the list */
1475                 if (!scan_should_stop())
1476                         scan_object(object);
1477
1478                 tmp = list_entry(object->gray_list.next, typeof(*object),
1479                                  gray_list);
1480
1481                 /* remove the object from the list and release it */
1482                 list_del(&object->gray_list);
1483                 put_object(object);
1484
1485                 object = tmp;
1486         }
1487         WARN_ON(!list_empty(&gray_list));
1488 }
1489
1490 /*
1491  * Scan data sections and all the referenced memory blocks allocated via the
1492  * kernel's standard allocators. This function must be called with the
1493  * scan_mutex held.
1494  */
1495 static void kmemleak_scan(void)
1496 {
1497         unsigned long flags;
1498         struct kmemleak_object *object;
1499         int i;
1500         int new_leaks = 0;
1501
1502         jiffies_last_scan = jiffies;
1503
1504         /* prepare the kmemleak_object's */
1505         rcu_read_lock();
1506         list_for_each_entry_rcu(object, &object_list, object_list) {
1507                 spin_lock_irqsave(&object->lock, flags);
1508 #ifdef DEBUG
1509                 /*
1510                  * With a few exceptions there should be a maximum of
1511                  * 1 reference to any object at this point.
1512                  */
1513                 if (atomic_read(&object->use_count) > 1) {
1514                         pr_debug("object->use_count = %d\n",
1515                                  atomic_read(&object->use_count));
1516                         dump_object_info(object);
1517                 }
1518 #endif
1519                 /* reset the reference count (whiten the object) */
1520                 object->count = 0;
1521                 if (color_gray(object) && get_object(object))
1522                         list_add_tail(&object->gray_list, &gray_list);
1523
1524                 spin_unlock_irqrestore(&object->lock, flags);
1525         }
1526         rcu_read_unlock();
1527
1528         /* data/bss scanning */
1529         scan_large_block(_sdata, _edata);
1530         scan_large_block(__bss_start, __bss_stop);
1531         scan_large_block(__start_ro_after_init, __end_ro_after_init);
1532
1533 #ifdef CONFIG_SMP
1534         /* per-cpu sections scanning */
1535         for_each_possible_cpu(i)
1536                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1537                                  __per_cpu_end + per_cpu_offset(i));
1538 #endif
1539
1540         /*
1541          * Struct page scanning for each node.
1542          */
1543         get_online_mems();
1544         for_each_online_node(i) {
1545                 unsigned long start_pfn = node_start_pfn(i);
1546                 unsigned long end_pfn = node_end_pfn(i);
1547                 unsigned long pfn;
1548
1549                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1550                         struct page *page;
1551
1552                         if (!pfn_valid(pfn))
1553                                 continue;
1554                         page = pfn_to_page(pfn);
1555                         /* only scan if page is in use */
1556                         if (page_count(page) == 0)
1557                                 continue;
1558                         scan_block(page, page + 1, NULL);
1559                         if (!(pfn & 63))
1560                                 cond_resched();
1561                 }
1562         }
1563         put_online_mems();
1564
1565         /*
1566          * Scanning the task stacks (may introduce false negatives).
1567          */
1568         if (kmemleak_stack_scan) {
1569                 struct task_struct *p, *g;
1570
1571                 read_lock(&tasklist_lock);
1572                 do_each_thread(g, p) {
1573                         void *stack = try_get_task_stack(p);
1574                         if (stack) {
1575                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1576                                 put_task_stack(p);
1577                         }
1578                 } while_each_thread(g, p);
1579                 read_unlock(&tasklist_lock);
1580         }
1581
1582         /*
1583          * Scan the objects already referenced from the sections scanned
1584          * above.
1585          */
1586         scan_gray_list();
1587
1588         /*
1589          * Check for new or unreferenced objects modified since the previous
1590          * scan and color them gray until the next scan.
1591          */
1592         rcu_read_lock();
1593         list_for_each_entry_rcu(object, &object_list, object_list) {
1594                 spin_lock_irqsave(&object->lock, flags);
1595                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1596                     && update_checksum(object) && get_object(object)) {
1597                         /* color it gray temporarily */
1598                         object->count = object->min_count;
1599                         list_add_tail(&object->gray_list, &gray_list);
1600                 }
1601                 spin_unlock_irqrestore(&object->lock, flags);
1602         }
1603         rcu_read_unlock();
1604
1605         /*
1606          * Re-scan the gray list for modified unreferenced objects.
1607          */
1608         scan_gray_list();
1609
1610         /*
1611          * If scanning was stopped do not report any new unreferenced objects.
1612          */
1613         if (scan_should_stop())
1614                 return;
1615
1616         /*
1617          * Scanning result reporting.
1618          */
1619         rcu_read_lock();
1620         list_for_each_entry_rcu(object, &object_list, object_list) {
1621                 spin_lock_irqsave(&object->lock, flags);
1622                 if (unreferenced_object(object) &&
1623                     !(object->flags & OBJECT_REPORTED)) {
1624                         object->flags |= OBJECT_REPORTED;
1625
1626                         if (kmemleak_verbose)
1627                                 print_unreferenced(NULL, object);
1628
1629                         new_leaks++;
1630                 }
1631                 spin_unlock_irqrestore(&object->lock, flags);
1632         }
1633         rcu_read_unlock();
1634
1635         if (new_leaks) {
1636                 kmemleak_found_leaks = true;
1637
1638                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1639                         new_leaks);
1640         }
1641
1642 }
1643
1644 /*
1645  * Thread function performing automatic memory scanning. Unreferenced objects
1646  * at the end of a memory scan are reported but only the first time.
1647  */
1648 static int kmemleak_scan_thread(void *arg)
1649 {
1650         static int first_run = 1;
1651
1652         pr_info("Automatic memory scanning thread started\n");
1653         set_user_nice(current, 10);
1654
1655         /*
1656          * Wait before the first scan to allow the system to fully initialize.
1657          */
1658         if (first_run) {
1659                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1660                 first_run = 0;
1661                 while (timeout && !kthread_should_stop())
1662                         timeout = schedule_timeout_interruptible(timeout);
1663         }
1664
1665         while (!kthread_should_stop()) {
1666                 signed long timeout = jiffies_scan_wait;
1667
1668                 mutex_lock(&scan_mutex);
1669                 kmemleak_scan();
1670                 mutex_unlock(&scan_mutex);
1671
1672                 /* wait before the next scan */
1673                 while (timeout && !kthread_should_stop())
1674                         timeout = schedule_timeout_interruptible(timeout);
1675         }
1676
1677         pr_info("Automatic memory scanning thread ended\n");
1678
1679         return 0;
1680 }
1681
1682 /*
1683  * Start the automatic memory scanning thread. This function must be called
1684  * with the scan_mutex held.
1685  */
1686 static void start_scan_thread(void)
1687 {
1688         if (scan_thread)
1689                 return;
1690         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1691         if (IS_ERR(scan_thread)) {
1692                 pr_warn("Failed to create the scan thread\n");
1693                 scan_thread = NULL;
1694         }
1695 }
1696
1697 /*
1698  * Stop the automatic memory scanning thread.
1699  */
1700 static void stop_scan_thread(void)
1701 {
1702         if (scan_thread) {
1703                 kthread_stop(scan_thread);
1704                 scan_thread = NULL;
1705         }
1706 }
1707
1708 /*
1709  * Iterate over the object_list and return the first valid object at or after
1710  * the required position with its use_count incremented. The function triggers
1711  * a memory scanning when the pos argument points to the first position.
1712  */
1713 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1714 {
1715         struct kmemleak_object *object;
1716         loff_t n = *pos;
1717         int err;
1718
1719         err = mutex_lock_interruptible(&scan_mutex);
1720         if (err < 0)
1721                 return ERR_PTR(err);
1722
1723         rcu_read_lock();
1724         list_for_each_entry_rcu(object, &object_list, object_list) {
1725                 if (n-- > 0)
1726                         continue;
1727                 if (get_object(object))
1728                         goto out;
1729         }
1730         object = NULL;
1731 out:
1732         return object;
1733 }
1734
1735 /*
1736  * Return the next object in the object_list. The function decrements the
1737  * use_count of the previous object and increases that of the next one.
1738  */
1739 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1740 {
1741         struct kmemleak_object *prev_obj = v;
1742         struct kmemleak_object *next_obj = NULL;
1743         struct kmemleak_object *obj = prev_obj;
1744
1745         ++(*pos);
1746
1747         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1748                 if (get_object(obj)) {
1749                         next_obj = obj;
1750                         break;
1751                 }
1752         }
1753
1754         put_object(prev_obj);
1755         return next_obj;
1756 }
1757
1758 /*
1759  * Decrement the use_count of the last object required, if any.
1760  */
1761 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1762 {
1763         if (!IS_ERR(v)) {
1764                 /*
1765                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1766                  * waiting was interrupted, so only release it if !IS_ERR.
1767                  */
1768                 rcu_read_unlock();
1769                 mutex_unlock(&scan_mutex);
1770                 if (v)
1771                         put_object(v);
1772         }
1773 }
1774
1775 /*
1776  * Print the information for an unreferenced object to the seq file.
1777  */
1778 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1779 {
1780         struct kmemleak_object *object = v;
1781         unsigned long flags;
1782
1783         spin_lock_irqsave(&object->lock, flags);
1784         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1785                 print_unreferenced(seq, object);
1786         spin_unlock_irqrestore(&object->lock, flags);
1787         return 0;
1788 }
1789
1790 static const struct seq_operations kmemleak_seq_ops = {
1791         .start = kmemleak_seq_start,
1792         .next  = kmemleak_seq_next,
1793         .stop  = kmemleak_seq_stop,
1794         .show  = kmemleak_seq_show,
1795 };
1796
1797 static int kmemleak_open(struct inode *inode, struct file *file)
1798 {
1799         return seq_open(file, &kmemleak_seq_ops);
1800 }
1801
1802 static int dump_str_object_info(const char *str)
1803 {
1804         unsigned long flags;
1805         struct kmemleak_object *object;
1806         unsigned long addr;
1807
1808         if (kstrtoul(str, 0, &addr))
1809                 return -EINVAL;
1810         object = find_and_get_object(addr, 0);
1811         if (!object) {
1812                 pr_info("Unknown object at 0x%08lx\n", addr);
1813                 return -EINVAL;
1814         }
1815
1816         spin_lock_irqsave(&object->lock, flags);
1817         dump_object_info(object);
1818         spin_unlock_irqrestore(&object->lock, flags);
1819
1820         put_object(object);
1821         return 0;
1822 }
1823
1824 /*
1825  * We use grey instead of black to ensure we can do future scans on the same
1826  * objects. If we did not do future scans these black objects could
1827  * potentially contain references to newly allocated objects in the future and
1828  * we'd end up with false positives.
1829  */
1830 static void kmemleak_clear(void)
1831 {
1832         struct kmemleak_object *object;
1833         unsigned long flags;
1834
1835         rcu_read_lock();
1836         list_for_each_entry_rcu(object, &object_list, object_list) {
1837                 spin_lock_irqsave(&object->lock, flags);
1838                 if ((object->flags & OBJECT_REPORTED) &&
1839                     unreferenced_object(object))
1840                         __paint_it(object, KMEMLEAK_GREY);
1841                 spin_unlock_irqrestore(&object->lock, flags);
1842         }
1843         rcu_read_unlock();
1844
1845         kmemleak_found_leaks = false;
1846 }
1847
1848 static void __kmemleak_do_cleanup(void);
1849
1850 /*
1851  * File write operation to configure kmemleak at run-time. The following
1852  * commands can be written to the /sys/kernel/debug/kmemleak file:
1853  *   off        - disable kmemleak (irreversible)
1854  *   stack=on   - enable the task stacks scanning
1855  *   stack=off  - disable the tasks stacks scanning
1856  *   scan=on    - start the automatic memory scanning thread
1857  *   scan=off   - stop the automatic memory scanning thread
1858  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1859  *                disable it)
1860  *   scan       - trigger a memory scan
1861  *   clear      - mark all current reported unreferenced kmemleak objects as
1862  *                grey to ignore printing them, or free all kmemleak objects
1863  *                if kmemleak has been disabled.
1864  *   dump=...   - dump information about the object found at the given address
1865  */
1866 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1867                               size_t size, loff_t *ppos)
1868 {
1869         char buf[64];
1870         int buf_size;
1871         int ret;
1872
1873         buf_size = min(size, (sizeof(buf) - 1));
1874         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1875                 return -EFAULT;
1876         buf[buf_size] = 0;
1877
1878         ret = mutex_lock_interruptible(&scan_mutex);
1879         if (ret < 0)
1880                 return ret;
1881
1882         if (strncmp(buf, "clear", 5) == 0) {
1883                 if (kmemleak_enabled)
1884                         kmemleak_clear();
1885                 else
1886                         __kmemleak_do_cleanup();
1887                 goto out;
1888         }
1889
1890         if (!kmemleak_enabled) {
1891                 ret = -EBUSY;
1892                 goto out;
1893         }
1894
1895         if (strncmp(buf, "off", 3) == 0)
1896                 kmemleak_disable();
1897         else if (strncmp(buf, "stack=on", 8) == 0)
1898                 kmemleak_stack_scan = 1;
1899         else if (strncmp(buf, "stack=off", 9) == 0)
1900                 kmemleak_stack_scan = 0;
1901         else if (strncmp(buf, "scan=on", 7) == 0)
1902                 start_scan_thread();
1903         else if (strncmp(buf, "scan=off", 8) == 0)
1904                 stop_scan_thread();
1905         else if (strncmp(buf, "scan=", 5) == 0) {
1906                 unsigned long secs;
1907
1908                 ret = kstrtoul(buf + 5, 0, &secs);
1909                 if (ret < 0)
1910                         goto out;
1911                 stop_scan_thread();
1912                 if (secs) {
1913                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1914                         start_scan_thread();
1915                 }
1916         } else if (strncmp(buf, "scan", 4) == 0)
1917                 kmemleak_scan();
1918         else if (strncmp(buf, "dump=", 5) == 0)
1919                 ret = dump_str_object_info(buf + 5);
1920         else
1921                 ret = -EINVAL;
1922
1923 out:
1924         mutex_unlock(&scan_mutex);
1925         if (ret < 0)
1926                 return ret;
1927
1928         /* ignore the rest of the buffer, only one command at a time */
1929         *ppos += size;
1930         return size;
1931 }
1932
1933 static const struct file_operations kmemleak_fops = {
1934         .owner          = THIS_MODULE,
1935         .open           = kmemleak_open,
1936         .read           = seq_read,
1937         .write          = kmemleak_write,
1938         .llseek         = seq_lseek,
1939         .release        = seq_release,
1940 };
1941
1942 static void __kmemleak_do_cleanup(void)
1943 {
1944         struct kmemleak_object *object;
1945
1946         rcu_read_lock();
1947         list_for_each_entry_rcu(object, &object_list, object_list)
1948                 delete_object_full(object->pointer);
1949         rcu_read_unlock();
1950 }
1951
1952 /*
1953  * Stop the memory scanning thread and free the kmemleak internal objects if
1954  * no previous scan thread (otherwise, kmemleak may still have some useful
1955  * information on memory leaks).
1956  */
1957 static void kmemleak_do_cleanup(struct work_struct *work)
1958 {
1959         stop_scan_thread();
1960
1961         mutex_lock(&scan_mutex);
1962         /*
1963          * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1964          * longer track object freeing. Ordering of the scan thread stopping and
1965          * the memory accesses below is guaranteed by the kthread_stop()
1966          * function.
1967          */
1968         kmemleak_free_enabled = 0;
1969         mutex_unlock(&scan_mutex);
1970
1971         if (!kmemleak_found_leaks)
1972                 __kmemleak_do_cleanup();
1973         else
1974                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1975 }
1976
1977 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1978
1979 /*
1980  * Disable kmemleak. No memory allocation/freeing will be traced once this
1981  * function is called. Disabling kmemleak is an irreversible operation.
1982  */
1983 static void kmemleak_disable(void)
1984 {
1985         /* atomically check whether it was already invoked */
1986         if (cmpxchg(&kmemleak_error, 0, 1))
1987                 return;
1988
1989         /* stop any memory operation tracing */
1990         kmemleak_enabled = 0;
1991
1992         /* check whether it is too early for a kernel thread */
1993         if (kmemleak_initialized)
1994                 schedule_work(&cleanup_work);
1995         else
1996                 kmemleak_free_enabled = 0;
1997
1998         pr_info("Kernel memory leak detector disabled\n");
1999 }
2000
2001 /*
2002  * Allow boot-time kmemleak disabling (enabled by default).
2003  */
2004 static int __init kmemleak_boot_config(char *str)
2005 {
2006         if (!str)
2007                 return -EINVAL;
2008         if (strcmp(str, "off") == 0)
2009                 kmemleak_disable();
2010         else if (strcmp(str, "on") == 0)
2011                 kmemleak_skip_disable = 1;
2012         else
2013                 return -EINVAL;
2014         return 0;
2015 }
2016 early_param("kmemleak", kmemleak_boot_config);
2017
2018 static void __init print_log_trace(struct early_log *log)
2019 {
2020         struct stack_trace trace;
2021
2022         trace.nr_entries = log->trace_len;
2023         trace.entries = log->trace;
2024
2025         pr_notice("Early log backtrace:\n");
2026         print_stack_trace(&trace, 2);
2027 }
2028
2029 /*
2030  * Kmemleak initialization.
2031  */
2032 void __init kmemleak_init(void)
2033 {
2034         int i;
2035         unsigned long flags;
2036
2037 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2038         if (!kmemleak_skip_disable) {
2039                 kmemleak_early_log = 0;
2040                 kmemleak_disable();
2041                 return;
2042         }
2043 #endif
2044
2045         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2046         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2047
2048         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2049         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2050
2051         if (crt_early_log > ARRAY_SIZE(early_log))
2052                 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2053                         crt_early_log);
2054
2055         /* the kernel is still in UP mode, so disabling the IRQs is enough */
2056         local_irq_save(flags);
2057         kmemleak_early_log = 0;
2058         if (kmemleak_error) {
2059                 local_irq_restore(flags);
2060                 return;
2061         } else {
2062                 kmemleak_enabled = 1;
2063                 kmemleak_free_enabled = 1;
2064         }
2065         local_irq_restore(flags);
2066
2067         /*
2068          * This is the point where tracking allocations is safe. Automatic
2069          * scanning is started during the late initcall. Add the early logged
2070          * callbacks to the kmemleak infrastructure.
2071          */
2072         for (i = 0; i < crt_early_log; i++) {
2073                 struct early_log *log = &early_log[i];
2074
2075                 switch (log->op_type) {
2076                 case KMEMLEAK_ALLOC:
2077                         early_alloc(log);
2078                         break;
2079                 case KMEMLEAK_ALLOC_PERCPU:
2080                         early_alloc_percpu(log);
2081                         break;
2082                 case KMEMLEAK_FREE:
2083                         kmemleak_free(log->ptr);
2084                         break;
2085                 case KMEMLEAK_FREE_PART:
2086                         kmemleak_free_part(log->ptr, log->size);
2087                         break;
2088                 case KMEMLEAK_FREE_PERCPU:
2089                         kmemleak_free_percpu(log->ptr);
2090                         break;
2091                 case KMEMLEAK_NOT_LEAK:
2092                         kmemleak_not_leak(log->ptr);
2093                         break;
2094                 case KMEMLEAK_IGNORE:
2095                         kmemleak_ignore(log->ptr);
2096                         break;
2097                 case KMEMLEAK_SCAN_AREA:
2098                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2099                         break;
2100                 case KMEMLEAK_NO_SCAN:
2101                         kmemleak_no_scan(log->ptr);
2102                         break;
2103                 case KMEMLEAK_SET_EXCESS_REF:
2104                         object_set_excess_ref((unsigned long)log->ptr,
2105                                               log->excess_ref);
2106                         break;
2107                 default:
2108                         kmemleak_warn("Unknown early log operation: %d\n",
2109                                       log->op_type);
2110                 }
2111
2112                 if (kmemleak_warning) {
2113                         print_log_trace(log);
2114                         kmemleak_warning = 0;
2115                 }
2116         }
2117 }
2118
2119 /*
2120  * Late initialization function.
2121  */
2122 static int __init kmemleak_late_init(void)
2123 {
2124         struct dentry *dentry;
2125
2126         kmemleak_initialized = 1;
2127
2128         dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2129                                      &kmemleak_fops);
2130         if (!dentry)
2131                 pr_warn("Failed to create the debugfs kmemleak file\n");
2132
2133         if (kmemleak_error) {
2134                 /*
2135                  * Some error occurred and kmemleak was disabled. There is a
2136                  * small chance that kmemleak_disable() was called immediately
2137                  * after setting kmemleak_initialized and we may end up with
2138                  * two clean-up threads but serialized by scan_mutex.
2139                  */
2140                 schedule_work(&cleanup_work);
2141                 return -ENOMEM;
2142         }
2143
2144         mutex_lock(&scan_mutex);
2145         start_scan_thread();
2146         mutex_unlock(&scan_mutex);
2147
2148         pr_info("Kernel memory leak detector initialized\n");
2149
2150         return 0;
2151 }
2152 late_initcall(kmemleak_late_init);