KVM: x86: Cleanup of rflags.rf cleaning
[sfrench/cifs-2.6.git] / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 #include <linux/memory_hotplug.h>
104
105 /*
106  * Kmemleak configuration and common defines.
107  */
108 #define MAX_TRACE               16      /* stack trace length */
109 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
110 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
111 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
112 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
113
114 #define BYTES_PER_POINTER       sizeof(void *)
115
116 /* GFP bitmask for kmemleak internal allocations */
117 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
119                                  __GFP_NOWARN)
120
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123         struct hlist_node node;
124         unsigned long start;
125         size_t size;
126 };
127
128 #define KMEMLEAK_GREY   0
129 #define KMEMLEAK_BLACK  -1
130
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * rb_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
139 struct kmemleak_object {
140         spinlock_t lock;
141         unsigned long flags;            /* object status flags */
142         struct list_head object_list;
143         struct list_head gray_list;
144         struct rb_node rb_node;
145         struct rcu_head rcu;            /* object_list lockless traversal */
146         /* object usage count; object freed when use_count == 0 */
147         atomic_t use_count;
148         unsigned long pointer;
149         size_t size;
150         /* minimum number of a pointers found before it is considered leak */
151         int min_count;
152         /* the total number of pointers found pointing to this object */
153         int count;
154         /* checksum for detecting modified objects */
155         u32 checksum;
156         /* memory ranges to be scanned inside an object (empty for all) */
157         struct hlist_head area_list;
158         unsigned long trace[MAX_TRACE];
159         unsigned int trace_len;
160         unsigned long jiffies;          /* creation timestamp */
161         pid_t pid;                      /* pid of the current task */
162         char comm[TASK_COMM_LEN];       /* executable name */
163 };
164
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED        (1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED         (1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN          (1 << 2)
171
172 /* number of bytes to print per line; must be 16 or 32 */
173 #define HEX_ROW_SIZE            16
174 /* number of bytes to print at a time (1, 2, 4, 8) */
175 #define HEX_GROUP_SIZE          1
176 /* include ASCII after the hex output */
177 #define HEX_ASCII               1
178 /* max number of lines to be printed */
179 #define HEX_MAX_LINES           2
180
181 /* the list of all allocated objects */
182 static LIST_HEAD(object_list);
183 /* the list of gray-colored objects (see color_gray comment below) */
184 static LIST_HEAD(gray_list);
185 /* search tree for object boundaries */
186 static struct rb_root object_tree_root = RB_ROOT;
187 /* rw_lock protecting the access to object_list and object_tree_root */
188 static DEFINE_RWLOCK(kmemleak_lock);
189
190 /* allocation caches for kmemleak internal data */
191 static struct kmem_cache *object_cache;
192 static struct kmem_cache *scan_area_cache;
193
194 /* set if tracing memory operations is enabled */
195 static int kmemleak_enabled;
196 /* set in the late_initcall if there were no errors */
197 static int kmemleak_initialized;
198 /* enables or disables early logging of the memory operations */
199 static int kmemleak_early_log = 1;
200 /* set if a kmemleak warning was issued */
201 static int kmemleak_warning;
202 /* set if a fatal kmemleak error has occurred */
203 static int kmemleak_error;
204
205 /* minimum and maximum address that may be valid pointers */
206 static unsigned long min_addr = ULONG_MAX;
207 static unsigned long max_addr;
208
209 static struct task_struct *scan_thread;
210 /* used to avoid reporting of recently allocated objects */
211 static unsigned long jiffies_min_age;
212 static unsigned long jiffies_last_scan;
213 /* delay between automatic memory scannings */
214 static signed long jiffies_scan_wait;
215 /* enables or disables the task stacks scanning */
216 static int kmemleak_stack_scan = 1;
217 /* protects the memory scanning, parameters and debug/kmemleak file access */
218 static DEFINE_MUTEX(scan_mutex);
219 /* setting kmemleak=on, will set this var, skipping the disable */
220 static int kmemleak_skip_disable;
221 /* If there are leaks that can be reported */
222 static bool kmemleak_found_leaks;
223
224 /*
225  * Early object allocation/freeing logging. Kmemleak is initialized after the
226  * kernel allocator. However, both the kernel allocator and kmemleak may
227  * allocate memory blocks which need to be tracked. Kmemleak defines an
228  * arbitrary buffer to hold the allocation/freeing information before it is
229  * fully initialized.
230  */
231
232 /* kmemleak operation type for early logging */
233 enum {
234         KMEMLEAK_ALLOC,
235         KMEMLEAK_ALLOC_PERCPU,
236         KMEMLEAK_FREE,
237         KMEMLEAK_FREE_PART,
238         KMEMLEAK_FREE_PERCPU,
239         KMEMLEAK_NOT_LEAK,
240         KMEMLEAK_IGNORE,
241         KMEMLEAK_SCAN_AREA,
242         KMEMLEAK_NO_SCAN
243 };
244
245 /*
246  * Structure holding the information passed to kmemleak callbacks during the
247  * early logging.
248  */
249 struct early_log {
250         int op_type;                    /* kmemleak operation type */
251         const void *ptr;                /* allocated/freed memory block */
252         size_t size;                    /* memory block size */
253         int min_count;                  /* minimum reference count */
254         unsigned long trace[MAX_TRACE]; /* stack trace */
255         unsigned int trace_len;         /* stack trace length */
256 };
257
258 /* early logging buffer and current position */
259 static struct early_log
260         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
261 static int crt_early_log __initdata;
262
263 static void kmemleak_disable(void);
264
265 /*
266  * Print a warning and dump the stack trace.
267  */
268 #define kmemleak_warn(x...)     do {            \
269         pr_warning(x);                          \
270         dump_stack();                           \
271         kmemleak_warning = 1;                   \
272 } while (0)
273
274 /*
275  * Macro invoked when a serious kmemleak condition occurred and cannot be
276  * recovered from. Kmemleak will be disabled and further allocation/freeing
277  * tracing no longer available.
278  */
279 #define kmemleak_stop(x...)     do {    \
280         kmemleak_warn(x);               \
281         kmemleak_disable();             \
282 } while (0)
283
284 /*
285  * Printing of the objects hex dump to the seq file. The number of lines to be
286  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
287  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
288  * with the object->lock held.
289  */
290 static void hex_dump_object(struct seq_file *seq,
291                             struct kmemleak_object *object)
292 {
293         const u8 *ptr = (const u8 *)object->pointer;
294         int i, len, remaining;
295         unsigned char linebuf[HEX_ROW_SIZE * 5];
296
297         /* limit the number of lines to HEX_MAX_LINES */
298         remaining = len =
299                 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
300
301         seq_printf(seq, "  hex dump (first %d bytes):\n", len);
302         for (i = 0; i < len; i += HEX_ROW_SIZE) {
303                 int linelen = min(remaining, HEX_ROW_SIZE);
304
305                 remaining -= HEX_ROW_SIZE;
306                 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
307                                    HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
308                                    HEX_ASCII);
309                 seq_printf(seq, "    %s\n", linebuf);
310         }
311 }
312
313 /*
314  * Object colors, encoded with count and min_count:
315  * - white - orphan object, not enough references to it (count < min_count)
316  * - gray  - not orphan, not marked as false positive (min_count == 0) or
317  *              sufficient references to it (count >= min_count)
318  * - black - ignore, it doesn't contain references (e.g. text section)
319  *              (min_count == -1). No function defined for this color.
320  * Newly created objects don't have any color assigned (object->count == -1)
321  * before the next memory scan when they become white.
322  */
323 static bool color_white(const struct kmemleak_object *object)
324 {
325         return object->count != KMEMLEAK_BLACK &&
326                 object->count < object->min_count;
327 }
328
329 static bool color_gray(const struct kmemleak_object *object)
330 {
331         return object->min_count != KMEMLEAK_BLACK &&
332                 object->count >= object->min_count;
333 }
334
335 /*
336  * Objects are considered unreferenced only if their color is white, they have
337  * not be deleted and have a minimum age to avoid false positives caused by
338  * pointers temporarily stored in CPU registers.
339  */
340 static bool unreferenced_object(struct kmemleak_object *object)
341 {
342         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
343                 time_before_eq(object->jiffies + jiffies_min_age,
344                                jiffies_last_scan);
345 }
346
347 /*
348  * Printing of the unreferenced objects information to the seq file. The
349  * print_unreferenced function must be called with the object->lock held.
350  */
351 static void print_unreferenced(struct seq_file *seq,
352                                struct kmemleak_object *object)
353 {
354         int i;
355         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
356
357         seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
358                    object->pointer, object->size);
359         seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
360                    object->comm, object->pid, object->jiffies,
361                    msecs_age / 1000, msecs_age % 1000);
362         hex_dump_object(seq, object);
363         seq_printf(seq, "  backtrace:\n");
364
365         for (i = 0; i < object->trace_len; i++) {
366                 void *ptr = (void *)object->trace[i];
367                 seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
368         }
369 }
370
371 /*
372  * Print the kmemleak_object information. This function is used mainly for
373  * debugging special cases when kmemleak operations. It must be called with
374  * the object->lock held.
375  */
376 static void dump_object_info(struct kmemleak_object *object)
377 {
378         struct stack_trace trace;
379
380         trace.nr_entries = object->trace_len;
381         trace.entries = object->trace;
382
383         pr_notice("Object 0x%08lx (size %zu):\n",
384                   object->pointer, object->size);
385         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
386                   object->comm, object->pid, object->jiffies);
387         pr_notice("  min_count = %d\n", object->min_count);
388         pr_notice("  count = %d\n", object->count);
389         pr_notice("  flags = 0x%lx\n", object->flags);
390         pr_notice("  checksum = %u\n", object->checksum);
391         pr_notice("  backtrace:\n");
392         print_stack_trace(&trace, 4);
393 }
394
395 /*
396  * Look-up a memory block metadata (kmemleak_object) in the object search
397  * tree based on a pointer value. If alias is 0, only values pointing to the
398  * beginning of the memory block are allowed. The kmemleak_lock must be held
399  * when calling this function.
400  */
401 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
402 {
403         struct rb_node *rb = object_tree_root.rb_node;
404
405         while (rb) {
406                 struct kmemleak_object *object =
407                         rb_entry(rb, struct kmemleak_object, rb_node);
408                 if (ptr < object->pointer)
409                         rb = object->rb_node.rb_left;
410                 else if (object->pointer + object->size <= ptr)
411                         rb = object->rb_node.rb_right;
412                 else if (object->pointer == ptr || alias)
413                         return object;
414                 else {
415                         kmemleak_warn("Found object by alias at 0x%08lx\n",
416                                       ptr);
417                         dump_object_info(object);
418                         break;
419                 }
420         }
421         return NULL;
422 }
423
424 /*
425  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
426  * that once an object's use_count reached 0, the RCU freeing was already
427  * registered and the object should no longer be used. This function must be
428  * called under the protection of rcu_read_lock().
429  */
430 static int get_object(struct kmemleak_object *object)
431 {
432         return atomic_inc_not_zero(&object->use_count);
433 }
434
435 /*
436  * RCU callback to free a kmemleak_object.
437  */
438 static void free_object_rcu(struct rcu_head *rcu)
439 {
440         struct hlist_node *tmp;
441         struct kmemleak_scan_area *area;
442         struct kmemleak_object *object =
443                 container_of(rcu, struct kmemleak_object, rcu);
444
445         /*
446          * Once use_count is 0 (guaranteed by put_object), there is no other
447          * code accessing this object, hence no need for locking.
448          */
449         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
450                 hlist_del(&area->node);
451                 kmem_cache_free(scan_area_cache, area);
452         }
453         kmem_cache_free(object_cache, object);
454 }
455
456 /*
457  * Decrement the object use_count. Once the count is 0, free the object using
458  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
459  * delete_object() path, the delayed RCU freeing ensures that there is no
460  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
461  * is also possible.
462  */
463 static void put_object(struct kmemleak_object *object)
464 {
465         if (!atomic_dec_and_test(&object->use_count))
466                 return;
467
468         /* should only get here after delete_object was called */
469         WARN_ON(object->flags & OBJECT_ALLOCATED);
470
471         call_rcu(&object->rcu, free_object_rcu);
472 }
473
474 /*
475  * Look up an object in the object search tree and increase its use_count.
476  */
477 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
478 {
479         unsigned long flags;
480         struct kmemleak_object *object = NULL;
481
482         rcu_read_lock();
483         read_lock_irqsave(&kmemleak_lock, flags);
484         if (ptr >= min_addr && ptr < max_addr)
485                 object = lookup_object(ptr, alias);
486         read_unlock_irqrestore(&kmemleak_lock, flags);
487
488         /* check whether the object is still available */
489         if (object && !get_object(object))
490                 object = NULL;
491         rcu_read_unlock();
492
493         return object;
494 }
495
496 /*
497  * Save stack trace to the given array of MAX_TRACE size.
498  */
499 static int __save_stack_trace(unsigned long *trace)
500 {
501         struct stack_trace stack_trace;
502
503         stack_trace.max_entries = MAX_TRACE;
504         stack_trace.nr_entries = 0;
505         stack_trace.entries = trace;
506         stack_trace.skip = 2;
507         save_stack_trace(&stack_trace);
508
509         return stack_trace.nr_entries;
510 }
511
512 /*
513  * Create the metadata (struct kmemleak_object) corresponding to an allocated
514  * memory block and add it to the object_list and object_tree_root.
515  */
516 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
517                                              int min_count, gfp_t gfp)
518 {
519         unsigned long flags;
520         struct kmemleak_object *object, *parent;
521         struct rb_node **link, *rb_parent;
522
523         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
524         if (!object) {
525                 pr_warning("Cannot allocate a kmemleak_object structure\n");
526                 kmemleak_disable();
527                 return NULL;
528         }
529
530         INIT_LIST_HEAD(&object->object_list);
531         INIT_LIST_HEAD(&object->gray_list);
532         INIT_HLIST_HEAD(&object->area_list);
533         spin_lock_init(&object->lock);
534         atomic_set(&object->use_count, 1);
535         object->flags = OBJECT_ALLOCATED;
536         object->pointer = ptr;
537         object->size = size;
538         object->min_count = min_count;
539         object->count = 0;                      /* white color initially */
540         object->jiffies = jiffies;
541         object->checksum = 0;
542
543         /* task information */
544         if (in_irq()) {
545                 object->pid = 0;
546                 strncpy(object->comm, "hardirq", sizeof(object->comm));
547         } else if (in_softirq()) {
548                 object->pid = 0;
549                 strncpy(object->comm, "softirq", sizeof(object->comm));
550         } else {
551                 object->pid = current->pid;
552                 /*
553                  * There is a small chance of a race with set_task_comm(),
554                  * however using get_task_comm() here may cause locking
555                  * dependency issues with current->alloc_lock. In the worst
556                  * case, the command line is not correct.
557                  */
558                 strncpy(object->comm, current->comm, sizeof(object->comm));
559         }
560
561         /* kernel backtrace */
562         object->trace_len = __save_stack_trace(object->trace);
563
564         write_lock_irqsave(&kmemleak_lock, flags);
565
566         min_addr = min(min_addr, ptr);
567         max_addr = max(max_addr, ptr + size);
568         link = &object_tree_root.rb_node;
569         rb_parent = NULL;
570         while (*link) {
571                 rb_parent = *link;
572                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
573                 if (ptr + size <= parent->pointer)
574                         link = &parent->rb_node.rb_left;
575                 else if (parent->pointer + parent->size <= ptr)
576                         link = &parent->rb_node.rb_right;
577                 else {
578                         kmemleak_stop("Cannot insert 0x%lx into the object "
579                                       "search tree (overlaps existing)\n",
580                                       ptr);
581                         kmem_cache_free(object_cache, object);
582                         object = parent;
583                         spin_lock(&object->lock);
584                         dump_object_info(object);
585                         spin_unlock(&object->lock);
586                         goto out;
587                 }
588         }
589         rb_link_node(&object->rb_node, rb_parent, link);
590         rb_insert_color(&object->rb_node, &object_tree_root);
591
592         list_add_tail_rcu(&object->object_list, &object_list);
593 out:
594         write_unlock_irqrestore(&kmemleak_lock, flags);
595         return object;
596 }
597
598 /*
599  * Remove the metadata (struct kmemleak_object) for a memory block from the
600  * object_list and object_tree_root and decrement its use_count.
601  */
602 static void __delete_object(struct kmemleak_object *object)
603 {
604         unsigned long flags;
605
606         write_lock_irqsave(&kmemleak_lock, flags);
607         rb_erase(&object->rb_node, &object_tree_root);
608         list_del_rcu(&object->object_list);
609         write_unlock_irqrestore(&kmemleak_lock, flags);
610
611         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
612         WARN_ON(atomic_read(&object->use_count) < 2);
613
614         /*
615          * Locking here also ensures that the corresponding memory block
616          * cannot be freed when it is being scanned.
617          */
618         spin_lock_irqsave(&object->lock, flags);
619         object->flags &= ~OBJECT_ALLOCATED;
620         spin_unlock_irqrestore(&object->lock, flags);
621         put_object(object);
622 }
623
624 /*
625  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
626  * delete it.
627  */
628 static void delete_object_full(unsigned long ptr)
629 {
630         struct kmemleak_object *object;
631
632         object = find_and_get_object(ptr, 0);
633         if (!object) {
634 #ifdef DEBUG
635                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
636                               ptr);
637 #endif
638                 return;
639         }
640         __delete_object(object);
641         put_object(object);
642 }
643
644 /*
645  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
646  * delete it. If the memory block is partially freed, the function may create
647  * additional metadata for the remaining parts of the block.
648  */
649 static void delete_object_part(unsigned long ptr, size_t size)
650 {
651         struct kmemleak_object *object;
652         unsigned long start, end;
653
654         object = find_and_get_object(ptr, 1);
655         if (!object) {
656 #ifdef DEBUG
657                 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
658                               "(size %zu)\n", ptr, size);
659 #endif
660                 return;
661         }
662         __delete_object(object);
663
664         /*
665          * Create one or two objects that may result from the memory block
666          * split. Note that partial freeing is only done by free_bootmem() and
667          * this happens before kmemleak_init() is called. The path below is
668          * only executed during early log recording in kmemleak_init(), so
669          * GFP_KERNEL is enough.
670          */
671         start = object->pointer;
672         end = object->pointer + object->size;
673         if (ptr > start)
674                 create_object(start, ptr - start, object->min_count,
675                               GFP_KERNEL);
676         if (ptr + size < end)
677                 create_object(ptr + size, end - ptr - size, object->min_count,
678                               GFP_KERNEL);
679
680         put_object(object);
681 }
682
683 static void __paint_it(struct kmemleak_object *object, int color)
684 {
685         object->min_count = color;
686         if (color == KMEMLEAK_BLACK)
687                 object->flags |= OBJECT_NO_SCAN;
688 }
689
690 static void paint_it(struct kmemleak_object *object, int color)
691 {
692         unsigned long flags;
693
694         spin_lock_irqsave(&object->lock, flags);
695         __paint_it(object, color);
696         spin_unlock_irqrestore(&object->lock, flags);
697 }
698
699 static void paint_ptr(unsigned long ptr, int color)
700 {
701         struct kmemleak_object *object;
702
703         object = find_and_get_object(ptr, 0);
704         if (!object) {
705                 kmemleak_warn("Trying to color unknown object "
706                               "at 0x%08lx as %s\n", ptr,
707                               (color == KMEMLEAK_GREY) ? "Grey" :
708                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
709                 return;
710         }
711         paint_it(object, color);
712         put_object(object);
713 }
714
715 /*
716  * Mark an object permanently as gray-colored so that it can no longer be
717  * reported as a leak. This is used in general to mark a false positive.
718  */
719 static void make_gray_object(unsigned long ptr)
720 {
721         paint_ptr(ptr, KMEMLEAK_GREY);
722 }
723
724 /*
725  * Mark the object as black-colored so that it is ignored from scans and
726  * reporting.
727  */
728 static void make_black_object(unsigned long ptr)
729 {
730         paint_ptr(ptr, KMEMLEAK_BLACK);
731 }
732
733 /*
734  * Add a scanning area to the object. If at least one such area is added,
735  * kmemleak will only scan these ranges rather than the whole memory block.
736  */
737 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
738 {
739         unsigned long flags;
740         struct kmemleak_object *object;
741         struct kmemleak_scan_area *area;
742
743         object = find_and_get_object(ptr, 1);
744         if (!object) {
745                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
746                               ptr);
747                 return;
748         }
749
750         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
751         if (!area) {
752                 pr_warning("Cannot allocate a scan area\n");
753                 goto out;
754         }
755
756         spin_lock_irqsave(&object->lock, flags);
757         if (size == SIZE_MAX) {
758                 size = object->pointer + object->size - ptr;
759         } else if (ptr + size > object->pointer + object->size) {
760                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
761                 dump_object_info(object);
762                 kmem_cache_free(scan_area_cache, area);
763                 goto out_unlock;
764         }
765
766         INIT_HLIST_NODE(&area->node);
767         area->start = ptr;
768         area->size = size;
769
770         hlist_add_head(&area->node, &object->area_list);
771 out_unlock:
772         spin_unlock_irqrestore(&object->lock, flags);
773 out:
774         put_object(object);
775 }
776
777 /*
778  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
779  * pointer. Such object will not be scanned by kmemleak but references to it
780  * are searched.
781  */
782 static void object_no_scan(unsigned long ptr)
783 {
784         unsigned long flags;
785         struct kmemleak_object *object;
786
787         object = find_and_get_object(ptr, 0);
788         if (!object) {
789                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
790                 return;
791         }
792
793         spin_lock_irqsave(&object->lock, flags);
794         object->flags |= OBJECT_NO_SCAN;
795         spin_unlock_irqrestore(&object->lock, flags);
796         put_object(object);
797 }
798
799 /*
800  * Log an early kmemleak_* call to the early_log buffer. These calls will be
801  * processed later once kmemleak is fully initialized.
802  */
803 static void __init log_early(int op_type, const void *ptr, size_t size,
804                              int min_count)
805 {
806         unsigned long flags;
807         struct early_log *log;
808
809         if (kmemleak_error) {
810                 /* kmemleak stopped recording, just count the requests */
811                 crt_early_log++;
812                 return;
813         }
814
815         if (crt_early_log >= ARRAY_SIZE(early_log)) {
816                 kmemleak_disable();
817                 return;
818         }
819
820         /*
821          * There is no need for locking since the kernel is still in UP mode
822          * at this stage. Disabling the IRQs is enough.
823          */
824         local_irq_save(flags);
825         log = &early_log[crt_early_log];
826         log->op_type = op_type;
827         log->ptr = ptr;
828         log->size = size;
829         log->min_count = min_count;
830         log->trace_len = __save_stack_trace(log->trace);
831         crt_early_log++;
832         local_irq_restore(flags);
833 }
834
835 /*
836  * Log an early allocated block and populate the stack trace.
837  */
838 static void early_alloc(struct early_log *log)
839 {
840         struct kmemleak_object *object;
841         unsigned long flags;
842         int i;
843
844         if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
845                 return;
846
847         /*
848          * RCU locking needed to ensure object is not freed via put_object().
849          */
850         rcu_read_lock();
851         object = create_object((unsigned long)log->ptr, log->size,
852                                log->min_count, GFP_ATOMIC);
853         if (!object)
854                 goto out;
855         spin_lock_irqsave(&object->lock, flags);
856         for (i = 0; i < log->trace_len; i++)
857                 object->trace[i] = log->trace[i];
858         object->trace_len = log->trace_len;
859         spin_unlock_irqrestore(&object->lock, flags);
860 out:
861         rcu_read_unlock();
862 }
863
864 /*
865  * Log an early allocated block and populate the stack trace.
866  */
867 static void early_alloc_percpu(struct early_log *log)
868 {
869         unsigned int cpu;
870         const void __percpu *ptr = log->ptr;
871
872         for_each_possible_cpu(cpu) {
873                 log->ptr = per_cpu_ptr(ptr, cpu);
874                 early_alloc(log);
875         }
876 }
877
878 /**
879  * kmemleak_alloc - register a newly allocated object
880  * @ptr:        pointer to beginning of the object
881  * @size:       size of the object
882  * @min_count:  minimum number of references to this object. If during memory
883  *              scanning a number of references less than @min_count is found,
884  *              the object is reported as a memory leak. If @min_count is 0,
885  *              the object is never reported as a leak. If @min_count is -1,
886  *              the object is ignored (not scanned and not reported as a leak)
887  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
888  *
889  * This function is called from the kernel allocators when a new object
890  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
891  */
892 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
893                           gfp_t gfp)
894 {
895         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
896
897         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
898                 create_object((unsigned long)ptr, size, min_count, gfp);
899         else if (kmemleak_early_log)
900                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
901 }
902 EXPORT_SYMBOL_GPL(kmemleak_alloc);
903
904 /**
905  * kmemleak_alloc_percpu - register a newly allocated __percpu object
906  * @ptr:        __percpu pointer to beginning of the object
907  * @size:       size of the object
908  *
909  * This function is called from the kernel percpu allocator when a new object
910  * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
911  * allocation.
912  */
913 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
914 {
915         unsigned int cpu;
916
917         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
918
919         /*
920          * Percpu allocations are only scanned and not reported as leaks
921          * (min_count is set to 0).
922          */
923         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
924                 for_each_possible_cpu(cpu)
925                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
926                                       size, 0, GFP_KERNEL);
927         else if (kmemleak_early_log)
928                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
929 }
930 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
931
932 /**
933  * kmemleak_free - unregister a previously registered object
934  * @ptr:        pointer to beginning of the object
935  *
936  * This function is called from the kernel allocators when an object (memory
937  * block) is freed (kmem_cache_free, kfree, vfree etc.).
938  */
939 void __ref kmemleak_free(const void *ptr)
940 {
941         pr_debug("%s(0x%p)\n", __func__, ptr);
942
943         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
944                 delete_object_full((unsigned long)ptr);
945         else if (kmemleak_early_log)
946                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
947 }
948 EXPORT_SYMBOL_GPL(kmemleak_free);
949
950 /**
951  * kmemleak_free_part - partially unregister a previously registered object
952  * @ptr:        pointer to the beginning or inside the object. This also
953  *              represents the start of the range to be freed
954  * @size:       size to be unregistered
955  *
956  * This function is called when only a part of a memory block is freed
957  * (usually from the bootmem allocator).
958  */
959 void __ref kmemleak_free_part(const void *ptr, size_t size)
960 {
961         pr_debug("%s(0x%p)\n", __func__, ptr);
962
963         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
964                 delete_object_part((unsigned long)ptr, size);
965         else if (kmemleak_early_log)
966                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
967 }
968 EXPORT_SYMBOL_GPL(kmemleak_free_part);
969
970 /**
971  * kmemleak_free_percpu - unregister a previously registered __percpu object
972  * @ptr:        __percpu pointer to beginning of the object
973  *
974  * This function is called from the kernel percpu allocator when an object
975  * (memory block) is freed (free_percpu).
976  */
977 void __ref kmemleak_free_percpu(const void __percpu *ptr)
978 {
979         unsigned int cpu;
980
981         pr_debug("%s(0x%p)\n", __func__, ptr);
982
983         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
984                 for_each_possible_cpu(cpu)
985                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
986                                                                       cpu));
987         else if (kmemleak_early_log)
988                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
989 }
990 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
991
992 /**
993  * kmemleak_update_trace - update object allocation stack trace
994  * @ptr:        pointer to beginning of the object
995  *
996  * Override the object allocation stack trace for cases where the actual
997  * allocation place is not always useful.
998  */
999 void __ref kmemleak_update_trace(const void *ptr)
1000 {
1001         struct kmemleak_object *object;
1002         unsigned long flags;
1003
1004         pr_debug("%s(0x%p)\n", __func__, ptr);
1005
1006         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1007                 return;
1008
1009         object = find_and_get_object((unsigned long)ptr, 1);
1010         if (!object) {
1011 #ifdef DEBUG
1012                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1013                               ptr);
1014 #endif
1015                 return;
1016         }
1017
1018         spin_lock_irqsave(&object->lock, flags);
1019         object->trace_len = __save_stack_trace(object->trace);
1020         spin_unlock_irqrestore(&object->lock, flags);
1021
1022         put_object(object);
1023 }
1024 EXPORT_SYMBOL(kmemleak_update_trace);
1025
1026 /**
1027  * kmemleak_not_leak - mark an allocated object as false positive
1028  * @ptr:        pointer to beginning of the object
1029  *
1030  * Calling this function on an object will cause the memory block to no longer
1031  * be reported as leak and always be scanned.
1032  */
1033 void __ref kmemleak_not_leak(const void *ptr)
1034 {
1035         pr_debug("%s(0x%p)\n", __func__, ptr);
1036
1037         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1038                 make_gray_object((unsigned long)ptr);
1039         else if (kmemleak_early_log)
1040                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1041 }
1042 EXPORT_SYMBOL(kmemleak_not_leak);
1043
1044 /**
1045  * kmemleak_ignore - ignore an allocated object
1046  * @ptr:        pointer to beginning of the object
1047  *
1048  * Calling this function on an object will cause the memory block to be
1049  * ignored (not scanned and not reported as a leak). This is usually done when
1050  * it is known that the corresponding block is not a leak and does not contain
1051  * any references to other allocated memory blocks.
1052  */
1053 void __ref kmemleak_ignore(const void *ptr)
1054 {
1055         pr_debug("%s(0x%p)\n", __func__, ptr);
1056
1057         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058                 make_black_object((unsigned long)ptr);
1059         else if (kmemleak_early_log)
1060                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1061 }
1062 EXPORT_SYMBOL(kmemleak_ignore);
1063
1064 /**
1065  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1066  * @ptr:        pointer to beginning or inside the object. This also
1067  *              represents the start of the scan area
1068  * @size:       size of the scan area
1069  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1070  *
1071  * This function is used when it is known that only certain parts of an object
1072  * contain references to other objects. Kmemleak will only scan these areas
1073  * reducing the number false negatives.
1074  */
1075 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1076 {
1077         pr_debug("%s(0x%p)\n", __func__, ptr);
1078
1079         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1080                 add_scan_area((unsigned long)ptr, size, gfp);
1081         else if (kmemleak_early_log)
1082                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1083 }
1084 EXPORT_SYMBOL(kmemleak_scan_area);
1085
1086 /**
1087  * kmemleak_no_scan - do not scan an allocated object
1088  * @ptr:        pointer to beginning of the object
1089  *
1090  * This function notifies kmemleak not to scan the given memory block. Useful
1091  * in situations where it is known that the given object does not contain any
1092  * references to other objects. Kmemleak will not scan such objects reducing
1093  * the number of false negatives.
1094  */
1095 void __ref kmemleak_no_scan(const void *ptr)
1096 {
1097         pr_debug("%s(0x%p)\n", __func__, ptr);
1098
1099         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1100                 object_no_scan((unsigned long)ptr);
1101         else if (kmemleak_early_log)
1102                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1103 }
1104 EXPORT_SYMBOL(kmemleak_no_scan);
1105
1106 /*
1107  * Update an object's checksum and return true if it was modified.
1108  */
1109 static bool update_checksum(struct kmemleak_object *object)
1110 {
1111         u32 old_csum = object->checksum;
1112
1113         if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1114                 return false;
1115
1116         object->checksum = crc32(0, (void *)object->pointer, object->size);
1117         return object->checksum != old_csum;
1118 }
1119
1120 /*
1121  * Memory scanning is a long process and it needs to be interruptable. This
1122  * function checks whether such interrupt condition occurred.
1123  */
1124 static int scan_should_stop(void)
1125 {
1126         if (!kmemleak_enabled)
1127                 return 1;
1128
1129         /*
1130          * This function may be called from either process or kthread context,
1131          * hence the need to check for both stop conditions.
1132          */
1133         if (current->mm)
1134                 return signal_pending(current);
1135         else
1136                 return kthread_should_stop();
1137
1138         return 0;
1139 }
1140
1141 /*
1142  * Scan a memory block (exclusive range) for valid pointers and add those
1143  * found to the gray list.
1144  */
1145 static void scan_block(void *_start, void *_end,
1146                        struct kmemleak_object *scanned, int allow_resched)
1147 {
1148         unsigned long *ptr;
1149         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1150         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1151
1152         for (ptr = start; ptr < end; ptr++) {
1153                 struct kmemleak_object *object;
1154                 unsigned long flags;
1155                 unsigned long pointer;
1156
1157                 if (allow_resched)
1158                         cond_resched();
1159                 if (scan_should_stop())
1160                         break;
1161
1162                 /* don't scan uninitialized memory */
1163                 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1164                                                   BYTES_PER_POINTER))
1165                         continue;
1166
1167                 pointer = *ptr;
1168
1169                 object = find_and_get_object(pointer, 1);
1170                 if (!object)
1171                         continue;
1172                 if (object == scanned) {
1173                         /* self referenced, ignore */
1174                         put_object(object);
1175                         continue;
1176                 }
1177
1178                 /*
1179                  * Avoid the lockdep recursive warning on object->lock being
1180                  * previously acquired in scan_object(). These locks are
1181                  * enclosed by scan_mutex.
1182                  */
1183                 spin_lock_irqsave_nested(&object->lock, flags,
1184                                          SINGLE_DEPTH_NESTING);
1185                 if (!color_white(object)) {
1186                         /* non-orphan, ignored or new */
1187                         spin_unlock_irqrestore(&object->lock, flags);
1188                         put_object(object);
1189                         continue;
1190                 }
1191
1192                 /*
1193                  * Increase the object's reference count (number of pointers
1194                  * to the memory block). If this count reaches the required
1195                  * minimum, the object's color will become gray and it will be
1196                  * added to the gray_list.
1197                  */
1198                 object->count++;
1199                 if (color_gray(object)) {
1200                         list_add_tail(&object->gray_list, &gray_list);
1201                         spin_unlock_irqrestore(&object->lock, flags);
1202                         continue;
1203                 }
1204
1205                 spin_unlock_irqrestore(&object->lock, flags);
1206                 put_object(object);
1207         }
1208 }
1209
1210 /*
1211  * Scan a memory block corresponding to a kmemleak_object. A condition is
1212  * that object->use_count >= 1.
1213  */
1214 static void scan_object(struct kmemleak_object *object)
1215 {
1216         struct kmemleak_scan_area *area;
1217         unsigned long flags;
1218
1219         /*
1220          * Once the object->lock is acquired, the corresponding memory block
1221          * cannot be freed (the same lock is acquired in delete_object).
1222          */
1223         spin_lock_irqsave(&object->lock, flags);
1224         if (object->flags & OBJECT_NO_SCAN)
1225                 goto out;
1226         if (!(object->flags & OBJECT_ALLOCATED))
1227                 /* already freed object */
1228                 goto out;
1229         if (hlist_empty(&object->area_list)) {
1230                 void *start = (void *)object->pointer;
1231                 void *end = (void *)(object->pointer + object->size);
1232
1233                 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1234                        !(object->flags & OBJECT_NO_SCAN)) {
1235                         scan_block(start, min(start + MAX_SCAN_SIZE, end),
1236                                    object, 0);
1237                         start += MAX_SCAN_SIZE;
1238
1239                         spin_unlock_irqrestore(&object->lock, flags);
1240                         cond_resched();
1241                         spin_lock_irqsave(&object->lock, flags);
1242                 }
1243         } else
1244                 hlist_for_each_entry(area, &object->area_list, node)
1245                         scan_block((void *)area->start,
1246                                    (void *)(area->start + area->size),
1247                                    object, 0);
1248 out:
1249         spin_unlock_irqrestore(&object->lock, flags);
1250 }
1251
1252 /*
1253  * Scan the objects already referenced (gray objects). More objects will be
1254  * referenced and, if there are no memory leaks, all the objects are scanned.
1255  */
1256 static void scan_gray_list(void)
1257 {
1258         struct kmemleak_object *object, *tmp;
1259
1260         /*
1261          * The list traversal is safe for both tail additions and removals
1262          * from inside the loop. The kmemleak objects cannot be freed from
1263          * outside the loop because their use_count was incremented.
1264          */
1265         object = list_entry(gray_list.next, typeof(*object), gray_list);
1266         while (&object->gray_list != &gray_list) {
1267                 cond_resched();
1268
1269                 /* may add new objects to the list */
1270                 if (!scan_should_stop())
1271                         scan_object(object);
1272
1273                 tmp = list_entry(object->gray_list.next, typeof(*object),
1274                                  gray_list);
1275
1276                 /* remove the object from the list and release it */
1277                 list_del(&object->gray_list);
1278                 put_object(object);
1279
1280                 object = tmp;
1281         }
1282         WARN_ON(!list_empty(&gray_list));
1283 }
1284
1285 /*
1286  * Scan data sections and all the referenced memory blocks allocated via the
1287  * kernel's standard allocators. This function must be called with the
1288  * scan_mutex held.
1289  */
1290 static void kmemleak_scan(void)
1291 {
1292         unsigned long flags;
1293         struct kmemleak_object *object;
1294         int i;
1295         int new_leaks = 0;
1296
1297         jiffies_last_scan = jiffies;
1298
1299         /* prepare the kmemleak_object's */
1300         rcu_read_lock();
1301         list_for_each_entry_rcu(object, &object_list, object_list) {
1302                 spin_lock_irqsave(&object->lock, flags);
1303 #ifdef DEBUG
1304                 /*
1305                  * With a few exceptions there should be a maximum of
1306                  * 1 reference to any object at this point.
1307                  */
1308                 if (atomic_read(&object->use_count) > 1) {
1309                         pr_debug("object->use_count = %d\n",
1310                                  atomic_read(&object->use_count));
1311                         dump_object_info(object);
1312                 }
1313 #endif
1314                 /* reset the reference count (whiten the object) */
1315                 object->count = 0;
1316                 if (color_gray(object) && get_object(object))
1317                         list_add_tail(&object->gray_list, &gray_list);
1318
1319                 spin_unlock_irqrestore(&object->lock, flags);
1320         }
1321         rcu_read_unlock();
1322
1323         /* data/bss scanning */
1324         scan_block(_sdata, _edata, NULL, 1);
1325         scan_block(__bss_start, __bss_stop, NULL, 1);
1326
1327 #ifdef CONFIG_SMP
1328         /* per-cpu sections scanning */
1329         for_each_possible_cpu(i)
1330                 scan_block(__per_cpu_start + per_cpu_offset(i),
1331                            __per_cpu_end + per_cpu_offset(i), NULL, 1);
1332 #endif
1333
1334         /*
1335          * Struct page scanning for each node.
1336          */
1337         get_online_mems();
1338         for_each_online_node(i) {
1339                 unsigned long start_pfn = node_start_pfn(i);
1340                 unsigned long end_pfn = node_end_pfn(i);
1341                 unsigned long pfn;
1342
1343                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1344                         struct page *page;
1345
1346                         if (!pfn_valid(pfn))
1347                                 continue;
1348                         page = pfn_to_page(pfn);
1349                         /* only scan if page is in use */
1350                         if (page_count(page) == 0)
1351                                 continue;
1352                         scan_block(page, page + 1, NULL, 1);
1353                 }
1354         }
1355         put_online_mems();
1356
1357         /*
1358          * Scanning the task stacks (may introduce false negatives).
1359          */
1360         if (kmemleak_stack_scan) {
1361                 struct task_struct *p, *g;
1362
1363                 read_lock(&tasklist_lock);
1364                 do_each_thread(g, p) {
1365                         scan_block(task_stack_page(p), task_stack_page(p) +
1366                                    THREAD_SIZE, NULL, 0);
1367                 } while_each_thread(g, p);
1368                 read_unlock(&tasklist_lock);
1369         }
1370
1371         /*
1372          * Scan the objects already referenced from the sections scanned
1373          * above.
1374          */
1375         scan_gray_list();
1376
1377         /*
1378          * Check for new or unreferenced objects modified since the previous
1379          * scan and color them gray until the next scan.
1380          */
1381         rcu_read_lock();
1382         list_for_each_entry_rcu(object, &object_list, object_list) {
1383                 spin_lock_irqsave(&object->lock, flags);
1384                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1385                     && update_checksum(object) && get_object(object)) {
1386                         /* color it gray temporarily */
1387                         object->count = object->min_count;
1388                         list_add_tail(&object->gray_list, &gray_list);
1389                 }
1390                 spin_unlock_irqrestore(&object->lock, flags);
1391         }
1392         rcu_read_unlock();
1393
1394         /*
1395          * Re-scan the gray list for modified unreferenced objects.
1396          */
1397         scan_gray_list();
1398
1399         /*
1400          * If scanning was stopped do not report any new unreferenced objects.
1401          */
1402         if (scan_should_stop())
1403                 return;
1404
1405         /*
1406          * Scanning result reporting.
1407          */
1408         rcu_read_lock();
1409         list_for_each_entry_rcu(object, &object_list, object_list) {
1410                 spin_lock_irqsave(&object->lock, flags);
1411                 if (unreferenced_object(object) &&
1412                     !(object->flags & OBJECT_REPORTED)) {
1413                         object->flags |= OBJECT_REPORTED;
1414                         new_leaks++;
1415                 }
1416                 spin_unlock_irqrestore(&object->lock, flags);
1417         }
1418         rcu_read_unlock();
1419
1420         if (new_leaks) {
1421                 kmemleak_found_leaks = true;
1422
1423                 pr_info("%d new suspected memory leaks (see "
1424                         "/sys/kernel/debug/kmemleak)\n", new_leaks);
1425         }
1426
1427 }
1428
1429 /*
1430  * Thread function performing automatic memory scanning. Unreferenced objects
1431  * at the end of a memory scan are reported but only the first time.
1432  */
1433 static int kmemleak_scan_thread(void *arg)
1434 {
1435         static int first_run = 1;
1436
1437         pr_info("Automatic memory scanning thread started\n");
1438         set_user_nice(current, 10);
1439
1440         /*
1441          * Wait before the first scan to allow the system to fully initialize.
1442          */
1443         if (first_run) {
1444                 first_run = 0;
1445                 ssleep(SECS_FIRST_SCAN);
1446         }
1447
1448         while (!kthread_should_stop()) {
1449                 signed long timeout = jiffies_scan_wait;
1450
1451                 mutex_lock(&scan_mutex);
1452                 kmemleak_scan();
1453                 mutex_unlock(&scan_mutex);
1454
1455                 /* wait before the next scan */
1456                 while (timeout && !kthread_should_stop())
1457                         timeout = schedule_timeout_interruptible(timeout);
1458         }
1459
1460         pr_info("Automatic memory scanning thread ended\n");
1461
1462         return 0;
1463 }
1464
1465 /*
1466  * Start the automatic memory scanning thread. This function must be called
1467  * with the scan_mutex held.
1468  */
1469 static void start_scan_thread(void)
1470 {
1471         if (scan_thread)
1472                 return;
1473         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1474         if (IS_ERR(scan_thread)) {
1475                 pr_warning("Failed to create the scan thread\n");
1476                 scan_thread = NULL;
1477         }
1478 }
1479
1480 /*
1481  * Stop the automatic memory scanning thread. This function must be called
1482  * with the scan_mutex held.
1483  */
1484 static void stop_scan_thread(void)
1485 {
1486         if (scan_thread) {
1487                 kthread_stop(scan_thread);
1488                 scan_thread = NULL;
1489         }
1490 }
1491
1492 /*
1493  * Iterate over the object_list and return the first valid object at or after
1494  * the required position with its use_count incremented. The function triggers
1495  * a memory scanning when the pos argument points to the first position.
1496  */
1497 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1498 {
1499         struct kmemleak_object *object;
1500         loff_t n = *pos;
1501         int err;
1502
1503         err = mutex_lock_interruptible(&scan_mutex);
1504         if (err < 0)
1505                 return ERR_PTR(err);
1506
1507         rcu_read_lock();
1508         list_for_each_entry_rcu(object, &object_list, object_list) {
1509                 if (n-- > 0)
1510                         continue;
1511                 if (get_object(object))
1512                         goto out;
1513         }
1514         object = NULL;
1515 out:
1516         return object;
1517 }
1518
1519 /*
1520  * Return the next object in the object_list. The function decrements the
1521  * use_count of the previous object and increases that of the next one.
1522  */
1523 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1524 {
1525         struct kmemleak_object *prev_obj = v;
1526         struct kmemleak_object *next_obj = NULL;
1527         struct kmemleak_object *obj = prev_obj;
1528
1529         ++(*pos);
1530
1531         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1532                 if (get_object(obj)) {
1533                         next_obj = obj;
1534                         break;
1535                 }
1536         }
1537
1538         put_object(prev_obj);
1539         return next_obj;
1540 }
1541
1542 /*
1543  * Decrement the use_count of the last object required, if any.
1544  */
1545 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1546 {
1547         if (!IS_ERR(v)) {
1548                 /*
1549                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1550                  * waiting was interrupted, so only release it if !IS_ERR.
1551                  */
1552                 rcu_read_unlock();
1553                 mutex_unlock(&scan_mutex);
1554                 if (v)
1555                         put_object(v);
1556         }
1557 }
1558
1559 /*
1560  * Print the information for an unreferenced object to the seq file.
1561  */
1562 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1563 {
1564         struct kmemleak_object *object = v;
1565         unsigned long flags;
1566
1567         spin_lock_irqsave(&object->lock, flags);
1568         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1569                 print_unreferenced(seq, object);
1570         spin_unlock_irqrestore(&object->lock, flags);
1571         return 0;
1572 }
1573
1574 static const struct seq_operations kmemleak_seq_ops = {
1575         .start = kmemleak_seq_start,
1576         .next  = kmemleak_seq_next,
1577         .stop  = kmemleak_seq_stop,
1578         .show  = kmemleak_seq_show,
1579 };
1580
1581 static int kmemleak_open(struct inode *inode, struct file *file)
1582 {
1583         return seq_open(file, &kmemleak_seq_ops);
1584 }
1585
1586 static int dump_str_object_info(const char *str)
1587 {
1588         unsigned long flags;
1589         struct kmemleak_object *object;
1590         unsigned long addr;
1591
1592         if (kstrtoul(str, 0, &addr))
1593                 return -EINVAL;
1594         object = find_and_get_object(addr, 0);
1595         if (!object) {
1596                 pr_info("Unknown object at 0x%08lx\n", addr);
1597                 return -EINVAL;
1598         }
1599
1600         spin_lock_irqsave(&object->lock, flags);
1601         dump_object_info(object);
1602         spin_unlock_irqrestore(&object->lock, flags);
1603
1604         put_object(object);
1605         return 0;
1606 }
1607
1608 /*
1609  * We use grey instead of black to ensure we can do future scans on the same
1610  * objects. If we did not do future scans these black objects could
1611  * potentially contain references to newly allocated objects in the future and
1612  * we'd end up with false positives.
1613  */
1614 static void kmemleak_clear(void)
1615 {
1616         struct kmemleak_object *object;
1617         unsigned long flags;
1618
1619         rcu_read_lock();
1620         list_for_each_entry_rcu(object, &object_list, object_list) {
1621                 spin_lock_irqsave(&object->lock, flags);
1622                 if ((object->flags & OBJECT_REPORTED) &&
1623                     unreferenced_object(object))
1624                         __paint_it(object, KMEMLEAK_GREY);
1625                 spin_unlock_irqrestore(&object->lock, flags);
1626         }
1627         rcu_read_unlock();
1628
1629         kmemleak_found_leaks = false;
1630 }
1631
1632 static void __kmemleak_do_cleanup(void);
1633
1634 /*
1635  * File write operation to configure kmemleak at run-time. The following
1636  * commands can be written to the /sys/kernel/debug/kmemleak file:
1637  *   off        - disable kmemleak (irreversible)
1638  *   stack=on   - enable the task stacks scanning
1639  *   stack=off  - disable the tasks stacks scanning
1640  *   scan=on    - start the automatic memory scanning thread
1641  *   scan=off   - stop the automatic memory scanning thread
1642  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1643  *                disable it)
1644  *   scan       - trigger a memory scan
1645  *   clear      - mark all current reported unreferenced kmemleak objects as
1646  *                grey to ignore printing them, or free all kmemleak objects
1647  *                if kmemleak has been disabled.
1648  *   dump=...   - dump information about the object found at the given address
1649  */
1650 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1651                               size_t size, loff_t *ppos)
1652 {
1653         char buf[64];
1654         int buf_size;
1655         int ret;
1656
1657         buf_size = min(size, (sizeof(buf) - 1));
1658         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1659                 return -EFAULT;
1660         buf[buf_size] = 0;
1661
1662         ret = mutex_lock_interruptible(&scan_mutex);
1663         if (ret < 0)
1664                 return ret;
1665
1666         if (strncmp(buf, "clear", 5) == 0) {
1667                 if (kmemleak_enabled)
1668                         kmemleak_clear();
1669                 else
1670                         __kmemleak_do_cleanup();
1671                 goto out;
1672         }
1673
1674         if (!kmemleak_enabled) {
1675                 ret = -EBUSY;
1676                 goto out;
1677         }
1678
1679         if (strncmp(buf, "off", 3) == 0)
1680                 kmemleak_disable();
1681         else if (strncmp(buf, "stack=on", 8) == 0)
1682                 kmemleak_stack_scan = 1;
1683         else if (strncmp(buf, "stack=off", 9) == 0)
1684                 kmemleak_stack_scan = 0;
1685         else if (strncmp(buf, "scan=on", 7) == 0)
1686                 start_scan_thread();
1687         else if (strncmp(buf, "scan=off", 8) == 0)
1688                 stop_scan_thread();
1689         else if (strncmp(buf, "scan=", 5) == 0) {
1690                 unsigned long secs;
1691
1692                 ret = kstrtoul(buf + 5, 0, &secs);
1693                 if (ret < 0)
1694                         goto out;
1695                 stop_scan_thread();
1696                 if (secs) {
1697                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1698                         start_scan_thread();
1699                 }
1700         } else if (strncmp(buf, "scan", 4) == 0)
1701                 kmemleak_scan();
1702         else if (strncmp(buf, "dump=", 5) == 0)
1703                 ret = dump_str_object_info(buf + 5);
1704         else
1705                 ret = -EINVAL;
1706
1707 out:
1708         mutex_unlock(&scan_mutex);
1709         if (ret < 0)
1710                 return ret;
1711
1712         /* ignore the rest of the buffer, only one command at a time */
1713         *ppos += size;
1714         return size;
1715 }
1716
1717 static const struct file_operations kmemleak_fops = {
1718         .owner          = THIS_MODULE,
1719         .open           = kmemleak_open,
1720         .read           = seq_read,
1721         .write          = kmemleak_write,
1722         .llseek         = seq_lseek,
1723         .release        = seq_release,
1724 };
1725
1726 static void __kmemleak_do_cleanup(void)
1727 {
1728         struct kmemleak_object *object;
1729
1730         rcu_read_lock();
1731         list_for_each_entry_rcu(object, &object_list, object_list)
1732                 delete_object_full(object->pointer);
1733         rcu_read_unlock();
1734 }
1735
1736 /*
1737  * Stop the memory scanning thread and free the kmemleak internal objects if
1738  * no previous scan thread (otherwise, kmemleak may still have some useful
1739  * information on memory leaks).
1740  */
1741 static void kmemleak_do_cleanup(struct work_struct *work)
1742 {
1743         mutex_lock(&scan_mutex);
1744         stop_scan_thread();
1745
1746         if (!kmemleak_found_leaks)
1747                 __kmemleak_do_cleanup();
1748         else
1749                 pr_info("Kmemleak disabled without freeing internal data. "
1750                         "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1751         mutex_unlock(&scan_mutex);
1752 }
1753
1754 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1755
1756 /*
1757  * Disable kmemleak. No memory allocation/freeing will be traced once this
1758  * function is called. Disabling kmemleak is an irreversible operation.
1759  */
1760 static void kmemleak_disable(void)
1761 {
1762         /* atomically check whether it was already invoked */
1763         if (cmpxchg(&kmemleak_error, 0, 1))
1764                 return;
1765
1766         /* stop any memory operation tracing */
1767         kmemleak_enabled = 0;
1768
1769         /* check whether it is too early for a kernel thread */
1770         if (kmemleak_initialized)
1771                 schedule_work(&cleanup_work);
1772
1773         pr_info("Kernel memory leak detector disabled\n");
1774 }
1775
1776 /*
1777  * Allow boot-time kmemleak disabling (enabled by default).
1778  */
1779 static int kmemleak_boot_config(char *str)
1780 {
1781         if (!str)
1782                 return -EINVAL;
1783         if (strcmp(str, "off") == 0)
1784                 kmemleak_disable();
1785         else if (strcmp(str, "on") == 0)
1786                 kmemleak_skip_disable = 1;
1787         else
1788                 return -EINVAL;
1789         return 0;
1790 }
1791 early_param("kmemleak", kmemleak_boot_config);
1792
1793 static void __init print_log_trace(struct early_log *log)
1794 {
1795         struct stack_trace trace;
1796
1797         trace.nr_entries = log->trace_len;
1798         trace.entries = log->trace;
1799
1800         pr_notice("Early log backtrace:\n");
1801         print_stack_trace(&trace, 2);
1802 }
1803
1804 /*
1805  * Kmemleak initialization.
1806  */
1807 void __init kmemleak_init(void)
1808 {
1809         int i;
1810         unsigned long flags;
1811
1812 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1813         if (!kmemleak_skip_disable) {
1814                 kmemleak_early_log = 0;
1815                 kmemleak_disable();
1816                 return;
1817         }
1818 #endif
1819
1820         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1821         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1822
1823         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1824         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1825
1826         if (crt_early_log >= ARRAY_SIZE(early_log))
1827                 pr_warning("Early log buffer exceeded (%d), please increase "
1828                            "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1829
1830         /* the kernel is still in UP mode, so disabling the IRQs is enough */
1831         local_irq_save(flags);
1832         kmemleak_early_log = 0;
1833         if (kmemleak_error) {
1834                 local_irq_restore(flags);
1835                 return;
1836         } else
1837                 kmemleak_enabled = 1;
1838         local_irq_restore(flags);
1839
1840         /*
1841          * This is the point where tracking allocations is safe. Automatic
1842          * scanning is started during the late initcall. Add the early logged
1843          * callbacks to the kmemleak infrastructure.
1844          */
1845         for (i = 0; i < crt_early_log; i++) {
1846                 struct early_log *log = &early_log[i];
1847
1848                 switch (log->op_type) {
1849                 case KMEMLEAK_ALLOC:
1850                         early_alloc(log);
1851                         break;
1852                 case KMEMLEAK_ALLOC_PERCPU:
1853                         early_alloc_percpu(log);
1854                         break;
1855                 case KMEMLEAK_FREE:
1856                         kmemleak_free(log->ptr);
1857                         break;
1858                 case KMEMLEAK_FREE_PART:
1859                         kmemleak_free_part(log->ptr, log->size);
1860                         break;
1861                 case KMEMLEAK_FREE_PERCPU:
1862                         kmemleak_free_percpu(log->ptr);
1863                         break;
1864                 case KMEMLEAK_NOT_LEAK:
1865                         kmemleak_not_leak(log->ptr);
1866                         break;
1867                 case KMEMLEAK_IGNORE:
1868                         kmemleak_ignore(log->ptr);
1869                         break;
1870                 case KMEMLEAK_SCAN_AREA:
1871                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1872                         break;
1873                 case KMEMLEAK_NO_SCAN:
1874                         kmemleak_no_scan(log->ptr);
1875                         break;
1876                 default:
1877                         kmemleak_warn("Unknown early log operation: %d\n",
1878                                       log->op_type);
1879                 }
1880
1881                 if (kmemleak_warning) {
1882                         print_log_trace(log);
1883                         kmemleak_warning = 0;
1884                 }
1885         }
1886 }
1887
1888 /*
1889  * Late initialization function.
1890  */
1891 static int __init kmemleak_late_init(void)
1892 {
1893         struct dentry *dentry;
1894
1895         kmemleak_initialized = 1;
1896
1897         if (kmemleak_error) {
1898                 /*
1899                  * Some error occurred and kmemleak was disabled. There is a
1900                  * small chance that kmemleak_disable() was called immediately
1901                  * after setting kmemleak_initialized and we may end up with
1902                  * two clean-up threads but serialized by scan_mutex.
1903                  */
1904                 schedule_work(&cleanup_work);
1905                 return -ENOMEM;
1906         }
1907
1908         dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1909                                      &kmemleak_fops);
1910         if (!dentry)
1911                 pr_warning("Failed to create the debugfs kmemleak file\n");
1912         mutex_lock(&scan_mutex);
1913         start_scan_thread();
1914         mutex_unlock(&scan_mutex);
1915
1916         pr_info("Kernel memory leak detector initialized\n");
1917
1918         return 0;
1919 }
1920 late_initcall(kmemleak_late_init);