mm: remove unneeded kallsyms include
[sfrench/cifs-2.6.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include <linux/page_owner.h>
38 #include "internal.h"
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56
57 /*
58  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59  * free_huge_pages, and surplus_huge_pages.
60  */
61 DEFINE_SPINLOCK(hugetlb_lock);
62
63 /*
64  * Serializes faults on the same logical page.  This is used to
65  * prevent spurious OOMs when the hugepage pool is fully utilized.
66  */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 {
75         bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77         spin_unlock(&spool->lock);
78
79         /* If no pages are used, and no other handles to the subpool
80          * remain, give up any reservations mased on minimum size and
81          * free the subpool */
82         if (free) {
83                 if (spool->min_hpages != -1)
84                         hugetlb_acct_memory(spool->hstate,
85                                                 -spool->min_hpages);
86                 kfree(spool);
87         }
88 }
89
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91                                                 long min_hpages)
92 {
93         struct hugepage_subpool *spool;
94
95         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96         if (!spool)
97                 return NULL;
98
99         spin_lock_init(&spool->lock);
100         spool->count = 1;
101         spool->max_hpages = max_hpages;
102         spool->hstate = h;
103         spool->min_hpages = min_hpages;
104
105         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106                 kfree(spool);
107                 return NULL;
108         }
109         spool->rsv_hpages = min_hpages;
110
111         return spool;
112 }
113
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 {
116         spin_lock(&spool->lock);
117         BUG_ON(!spool->count);
118         spool->count--;
119         unlock_or_release_subpool(spool);
120 }
121
122 /*
123  * Subpool accounting for allocating and reserving pages.
124  * Return -ENOMEM if there are not enough resources to satisfy the
125  * the request.  Otherwise, return the number of pages by which the
126  * global pools must be adjusted (upward).  The returned value may
127  * only be different than the passed value (delta) in the case where
128  * a subpool minimum size must be manitained.
129  */
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131                                       long delta)
132 {
133         long ret = delta;
134
135         if (!spool)
136                 return ret;
137
138         spin_lock(&spool->lock);
139
140         if (spool->max_hpages != -1) {          /* maximum size accounting */
141                 if ((spool->used_hpages + delta) <= spool->max_hpages)
142                         spool->used_hpages += delta;
143                 else {
144                         ret = -ENOMEM;
145                         goto unlock_ret;
146                 }
147         }
148
149         /* minimum size accounting */
150         if (spool->min_hpages != -1 && spool->rsv_hpages) {
151                 if (delta > spool->rsv_hpages) {
152                         /*
153                          * Asking for more reserves than those already taken on
154                          * behalf of subpool.  Return difference.
155                          */
156                         ret = delta - spool->rsv_hpages;
157                         spool->rsv_hpages = 0;
158                 } else {
159                         ret = 0;        /* reserves already accounted for */
160                         spool->rsv_hpages -= delta;
161                 }
162         }
163
164 unlock_ret:
165         spin_unlock(&spool->lock);
166         return ret;
167 }
168
169 /*
170  * Subpool accounting for freeing and unreserving pages.
171  * Return the number of global page reservations that must be dropped.
172  * The return value may only be different than the passed value (delta)
173  * in the case where a subpool minimum size must be maintained.
174  */
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176                                        long delta)
177 {
178         long ret = delta;
179
180         if (!spool)
181                 return delta;
182
183         spin_lock(&spool->lock);
184
185         if (spool->max_hpages != -1)            /* maximum size accounting */
186                 spool->used_hpages -= delta;
187
188          /* minimum size accounting */
189         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190                 if (spool->rsv_hpages + delta <= spool->min_hpages)
191                         ret = 0;
192                 else
193                         ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195                 spool->rsv_hpages += delta;
196                 if (spool->rsv_hpages > spool->min_hpages)
197                         spool->rsv_hpages = spool->min_hpages;
198         }
199
200         /*
201          * If hugetlbfs_put_super couldn't free spool due to an outstanding
202          * quota reference, free it now.
203          */
204         unlock_or_release_subpool(spool);
205
206         return ret;
207 }
208
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 {
211         return HUGETLBFS_SB(inode->i_sb)->spool;
212 }
213
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 {
216         return subpool_inode(file_inode(vma->vm_file));
217 }
218
219 /*
220  * Region tracking -- allows tracking of reservations and instantiated pages
221  *                    across the pages in a mapping.
222  *
223  * The region data structures are embedded into a resv_map and protected
224  * by a resv_map's lock.  The set of regions within the resv_map represent
225  * reservations for huge pages, or huge pages that have already been
226  * instantiated within the map.  The from and to elements are huge page
227  * indicies into the associated mapping.  from indicates the starting index
228  * of the region.  to represents the first index past the end of  the region.
229  *
230  * For example, a file region structure with from == 0 and to == 4 represents
231  * four huge pages in a mapping.  It is important to note that the to element
232  * represents the first element past the end of the region. This is used in
233  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234  *
235  * Interval notation of the form [from, to) will be used to indicate that
236  * the endpoint from is inclusive and to is exclusive.
237  */
238 struct file_region {
239         struct list_head link;
240         long from;
241         long to;
242 };
243
244 /*
245  * Add the huge page range represented by [f, t) to the reserve
246  * map.  In the normal case, existing regions will be expanded
247  * to accommodate the specified range.  Sufficient regions should
248  * exist for expansion due to the previous call to region_chg
249  * with the same range.  However, it is possible that region_del
250  * could have been called after region_chg and modifed the map
251  * in such a way that no region exists to be expanded.  In this
252  * case, pull a region descriptor from the cache associated with
253  * the map and use that for the new range.
254  *
255  * Return the number of new huge pages added to the map.  This
256  * number is greater than or equal to zero.
257  */
258 static long region_add(struct resv_map *resv, long f, long t)
259 {
260         struct list_head *head = &resv->regions;
261         struct file_region *rg, *nrg, *trg;
262         long add = 0;
263
264         spin_lock(&resv->lock);
265         /* Locate the region we are either in or before. */
266         list_for_each_entry(rg, head, link)
267                 if (f <= rg->to)
268                         break;
269
270         /*
271          * If no region exists which can be expanded to include the
272          * specified range, the list must have been modified by an
273          * interleving call to region_del().  Pull a region descriptor
274          * from the cache and use it for this range.
275          */
276         if (&rg->link == head || t < rg->from) {
277                 VM_BUG_ON(resv->region_cache_count <= 0);
278
279                 resv->region_cache_count--;
280                 nrg = list_first_entry(&resv->region_cache, struct file_region,
281                                         link);
282                 list_del(&nrg->link);
283
284                 nrg->from = f;
285                 nrg->to = t;
286                 list_add(&nrg->link, rg->link.prev);
287
288                 add += t - f;
289                 goto out_locked;
290         }
291
292         /* Round our left edge to the current segment if it encloses us. */
293         if (f > rg->from)
294                 f = rg->from;
295
296         /* Check for and consume any regions we now overlap with. */
297         nrg = rg;
298         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299                 if (&rg->link == head)
300                         break;
301                 if (rg->from > t)
302                         break;
303
304                 /* If this area reaches higher then extend our area to
305                  * include it completely.  If this is not the first area
306                  * which we intend to reuse, free it. */
307                 if (rg->to > t)
308                         t = rg->to;
309                 if (rg != nrg) {
310                         /* Decrement return value by the deleted range.
311                          * Another range will span this area so that by
312                          * end of routine add will be >= zero
313                          */
314                         add -= (rg->to - rg->from);
315                         list_del(&rg->link);
316                         kfree(rg);
317                 }
318         }
319
320         add += (nrg->from - f);         /* Added to beginning of region */
321         nrg->from = f;
322         add += t - nrg->to;             /* Added to end of region */
323         nrg->to = t;
324
325 out_locked:
326         resv->adds_in_progress--;
327         spin_unlock(&resv->lock);
328         VM_BUG_ON(add < 0);
329         return add;
330 }
331
332 /*
333  * Examine the existing reserve map and determine how many
334  * huge pages in the specified range [f, t) are NOT currently
335  * represented.  This routine is called before a subsequent
336  * call to region_add that will actually modify the reserve
337  * map to add the specified range [f, t).  region_chg does
338  * not change the number of huge pages represented by the
339  * map.  However, if the existing regions in the map can not
340  * be expanded to represent the new range, a new file_region
341  * structure is added to the map as a placeholder.  This is
342  * so that the subsequent region_add call will have all the
343  * regions it needs and will not fail.
344  *
345  * Upon entry, region_chg will also examine the cache of region descriptors
346  * associated with the map.  If there are not enough descriptors cached, one
347  * will be allocated for the in progress add operation.
348  *
349  * Returns the number of huge pages that need to be added to the existing
350  * reservation map for the range [f, t).  This number is greater or equal to
351  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
352  * is needed and can not be allocated.
353  */
354 static long region_chg(struct resv_map *resv, long f, long t)
355 {
356         struct list_head *head = &resv->regions;
357         struct file_region *rg, *nrg = NULL;
358         long chg = 0;
359
360 retry:
361         spin_lock(&resv->lock);
362 retry_locked:
363         resv->adds_in_progress++;
364
365         /*
366          * Check for sufficient descriptors in the cache to accommodate
367          * the number of in progress add operations.
368          */
369         if (resv->adds_in_progress > resv->region_cache_count) {
370                 struct file_region *trg;
371
372                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373                 /* Must drop lock to allocate a new descriptor. */
374                 resv->adds_in_progress--;
375                 spin_unlock(&resv->lock);
376
377                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378                 if (!trg) {
379                         kfree(nrg);
380                         return -ENOMEM;
381                 }
382
383                 spin_lock(&resv->lock);
384                 list_add(&trg->link, &resv->region_cache);
385                 resv->region_cache_count++;
386                 goto retry_locked;
387         }
388
389         /* Locate the region we are before or in. */
390         list_for_each_entry(rg, head, link)
391                 if (f <= rg->to)
392                         break;
393
394         /* If we are below the current region then a new region is required.
395          * Subtle, allocate a new region at the position but make it zero
396          * size such that we can guarantee to record the reservation. */
397         if (&rg->link == head || t < rg->from) {
398                 if (!nrg) {
399                         resv->adds_in_progress--;
400                         spin_unlock(&resv->lock);
401                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402                         if (!nrg)
403                                 return -ENOMEM;
404
405                         nrg->from = f;
406                         nrg->to   = f;
407                         INIT_LIST_HEAD(&nrg->link);
408                         goto retry;
409                 }
410
411                 list_add(&nrg->link, rg->link.prev);
412                 chg = t - f;
413                 goto out_nrg;
414         }
415
416         /* Round our left edge to the current segment if it encloses us. */
417         if (f > rg->from)
418                 f = rg->from;
419         chg = t - f;
420
421         /* Check for and consume any regions we now overlap with. */
422         list_for_each_entry(rg, rg->link.prev, link) {
423                 if (&rg->link == head)
424                         break;
425                 if (rg->from > t)
426                         goto out;
427
428                 /* We overlap with this area, if it extends further than
429                  * us then we must extend ourselves.  Account for its
430                  * existing reservation. */
431                 if (rg->to > t) {
432                         chg += rg->to - t;
433                         t = rg->to;
434                 }
435                 chg -= rg->to - rg->from;
436         }
437
438 out:
439         spin_unlock(&resv->lock);
440         /*  We already know we raced and no longer need the new region */
441         kfree(nrg);
442         return chg;
443 out_nrg:
444         spin_unlock(&resv->lock);
445         return chg;
446 }
447
448 /*
449  * Abort the in progress add operation.  The adds_in_progress field
450  * of the resv_map keeps track of the operations in progress between
451  * calls to region_chg and region_add.  Operations are sometimes
452  * aborted after the call to region_chg.  In such cases, region_abort
453  * is called to decrement the adds_in_progress counter.
454  *
455  * NOTE: The range arguments [f, t) are not needed or used in this
456  * routine.  They are kept to make reading the calling code easier as
457  * arguments will match the associated region_chg call.
458  */
459 static void region_abort(struct resv_map *resv, long f, long t)
460 {
461         spin_lock(&resv->lock);
462         VM_BUG_ON(!resv->region_cache_count);
463         resv->adds_in_progress--;
464         spin_unlock(&resv->lock);
465 }
466
467 /*
468  * Delete the specified range [f, t) from the reserve map.  If the
469  * t parameter is LONG_MAX, this indicates that ALL regions after f
470  * should be deleted.  Locate the regions which intersect [f, t)
471  * and either trim, delete or split the existing regions.
472  *
473  * Returns the number of huge pages deleted from the reserve map.
474  * In the normal case, the return value is zero or more.  In the
475  * case where a region must be split, a new region descriptor must
476  * be allocated.  If the allocation fails, -ENOMEM will be returned.
477  * NOTE: If the parameter t == LONG_MAX, then we will never split
478  * a region and possibly return -ENOMEM.  Callers specifying
479  * t == LONG_MAX do not need to check for -ENOMEM error.
480  */
481 static long region_del(struct resv_map *resv, long f, long t)
482 {
483         struct list_head *head = &resv->regions;
484         struct file_region *rg, *trg;
485         struct file_region *nrg = NULL;
486         long del = 0;
487
488 retry:
489         spin_lock(&resv->lock);
490         list_for_each_entry_safe(rg, trg, head, link) {
491                 /*
492                  * Skip regions before the range to be deleted.  file_region
493                  * ranges are normally of the form [from, to).  However, there
494                  * may be a "placeholder" entry in the map which is of the form
495                  * (from, to) with from == to.  Check for placeholder entries
496                  * at the beginning of the range to be deleted.
497                  */
498                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499                         continue;
500
501                 if (rg->from >= t)
502                         break;
503
504                 if (f > rg->from && t < rg->to) { /* Must split region */
505                         /*
506                          * Check for an entry in the cache before dropping
507                          * lock and attempting allocation.
508                          */
509                         if (!nrg &&
510                             resv->region_cache_count > resv->adds_in_progress) {
511                                 nrg = list_first_entry(&resv->region_cache,
512                                                         struct file_region,
513                                                         link);
514                                 list_del(&nrg->link);
515                                 resv->region_cache_count--;
516                         }
517
518                         if (!nrg) {
519                                 spin_unlock(&resv->lock);
520                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521                                 if (!nrg)
522                                         return -ENOMEM;
523                                 goto retry;
524                         }
525
526                         del += t - f;
527
528                         /* New entry for end of split region */
529                         nrg->from = t;
530                         nrg->to = rg->to;
531                         INIT_LIST_HEAD(&nrg->link);
532
533                         /* Original entry is trimmed */
534                         rg->to = f;
535
536                         list_add(&nrg->link, &rg->link);
537                         nrg = NULL;
538                         break;
539                 }
540
541                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542                         del += rg->to - rg->from;
543                         list_del(&rg->link);
544                         kfree(rg);
545                         continue;
546                 }
547
548                 if (f <= rg->from) {    /* Trim beginning of region */
549                         del += t - rg->from;
550                         rg->from = t;
551                 } else {                /* Trim end of region */
552                         del += rg->to - f;
553                         rg->to = f;
554                 }
555         }
556
557         spin_unlock(&resv->lock);
558         kfree(nrg);
559         return del;
560 }
561
562 /*
563  * A rare out of memory error was encountered which prevented removal of
564  * the reserve map region for a page.  The huge page itself was free'ed
565  * and removed from the page cache.  This routine will adjust the subpool
566  * usage count, and the global reserve count if needed.  By incrementing
567  * these counts, the reserve map entry which could not be deleted will
568  * appear as a "reserved" entry instead of simply dangling with incorrect
569  * counts.
570  */
571 void hugetlb_fix_reserve_counts(struct inode *inode)
572 {
573         struct hugepage_subpool *spool = subpool_inode(inode);
574         long rsv_adjust;
575
576         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577         if (rsv_adjust) {
578                 struct hstate *h = hstate_inode(inode);
579
580                 hugetlb_acct_memory(h, 1);
581         }
582 }
583
584 /*
585  * Count and return the number of huge pages in the reserve map
586  * that intersect with the range [f, t).
587  */
588 static long region_count(struct resv_map *resv, long f, long t)
589 {
590         struct list_head *head = &resv->regions;
591         struct file_region *rg;
592         long chg = 0;
593
594         spin_lock(&resv->lock);
595         /* Locate each segment we overlap with, and count that overlap. */
596         list_for_each_entry(rg, head, link) {
597                 long seg_from;
598                 long seg_to;
599
600                 if (rg->to <= f)
601                         continue;
602                 if (rg->from >= t)
603                         break;
604
605                 seg_from = max(rg->from, f);
606                 seg_to = min(rg->to, t);
607
608                 chg += seg_to - seg_from;
609         }
610         spin_unlock(&resv->lock);
611
612         return chg;
613 }
614
615 /*
616  * Convert the address within this vma to the page offset within
617  * the mapping, in pagecache page units; huge pages here.
618  */
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620                         struct vm_area_struct *vma, unsigned long address)
621 {
622         return ((address - vma->vm_start) >> huge_page_shift(h)) +
623                         (vma->vm_pgoff >> huge_page_order(h));
624 }
625
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627                                      unsigned long address)
628 {
629         return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 }
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
632
633 /*
634  * Return the size of the pages allocated when backing a VMA. In the majority
635  * cases this will be same size as used by the page table entries.
636  */
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 {
639         struct hstate *hstate;
640
641         if (!is_vm_hugetlb_page(vma))
642                 return PAGE_SIZE;
643
644         hstate = hstate_vma(vma);
645
646         return 1UL << huge_page_shift(hstate);
647 }
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649
650 /*
651  * Return the page size being used by the MMU to back a VMA. In the majority
652  * of cases, the page size used by the kernel matches the MMU size. On
653  * architectures where it differs, an architecture-specific version of this
654  * function is required.
655  */
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 {
659         return vma_kernel_pagesize(vma);
660 }
661 #endif
662
663 /*
664  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
665  * bits of the reservation map pointer, which are always clear due to
666  * alignment.
667  */
668 #define HPAGE_RESV_OWNER    (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671
672 /*
673  * These helpers are used to track how many pages are reserved for
674  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675  * is guaranteed to have their future faults succeed.
676  *
677  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678  * the reserve counters are updated with the hugetlb_lock held. It is safe
679  * to reset the VMA at fork() time as it is not in use yet and there is no
680  * chance of the global counters getting corrupted as a result of the values.
681  *
682  * The private mapping reservation is represented in a subtly different
683  * manner to a shared mapping.  A shared mapping has a region map associated
684  * with the underlying file, this region map represents the backing file
685  * pages which have ever had a reservation assigned which this persists even
686  * after the page is instantiated.  A private mapping has a region map
687  * associated with the original mmap which is attached to all VMAs which
688  * reference it, this region map represents those offsets which have consumed
689  * reservation ie. where pages have been instantiated.
690  */
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 {
693         return (unsigned long)vma->vm_private_data;
694 }
695
696 static void set_vma_private_data(struct vm_area_struct *vma,
697                                                         unsigned long value)
698 {
699         vma->vm_private_data = (void *)value;
700 }
701
702 struct resv_map *resv_map_alloc(void)
703 {
704         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707         if (!resv_map || !rg) {
708                 kfree(resv_map);
709                 kfree(rg);
710                 return NULL;
711         }
712
713         kref_init(&resv_map->refs);
714         spin_lock_init(&resv_map->lock);
715         INIT_LIST_HEAD(&resv_map->regions);
716
717         resv_map->adds_in_progress = 0;
718
719         INIT_LIST_HEAD(&resv_map->region_cache);
720         list_add(&rg->link, &resv_map->region_cache);
721         resv_map->region_cache_count = 1;
722
723         return resv_map;
724 }
725
726 void resv_map_release(struct kref *ref)
727 {
728         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729         struct list_head *head = &resv_map->region_cache;
730         struct file_region *rg, *trg;
731
732         /* Clear out any active regions before we release the map. */
733         region_del(resv_map, 0, LONG_MAX);
734
735         /* ... and any entries left in the cache */
736         list_for_each_entry_safe(rg, trg, head, link) {
737                 list_del(&rg->link);
738                 kfree(rg);
739         }
740
741         VM_BUG_ON(resv_map->adds_in_progress);
742
743         kfree(resv_map);
744 }
745
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 {
748         return inode->i_mapping->private_data;
749 }
750
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 {
753         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754         if (vma->vm_flags & VM_MAYSHARE) {
755                 struct address_space *mapping = vma->vm_file->f_mapping;
756                 struct inode *inode = mapping->host;
757
758                 return inode_resv_map(inode);
759
760         } else {
761                 return (struct resv_map *)(get_vma_private_data(vma) &
762                                                         ~HPAGE_RESV_MASK);
763         }
764 }
765
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 {
768         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770
771         set_vma_private_data(vma, (get_vma_private_data(vma) &
772                                 HPAGE_RESV_MASK) | (unsigned long)map);
773 }
774
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 {
777         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779
780         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 }
782
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 {
785         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786
787         return (get_vma_private_data(vma) & flag) != 0;
788 }
789
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 {
793         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794         if (!(vma->vm_flags & VM_MAYSHARE))
795                 vma->vm_private_data = (void *)0;
796 }
797
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 {
801         if (vma->vm_flags & VM_NORESERVE) {
802                 /*
803                  * This address is already reserved by other process(chg == 0),
804                  * so, we should decrement reserved count. Without decrementing,
805                  * reserve count remains after releasing inode, because this
806                  * allocated page will go into page cache and is regarded as
807                  * coming from reserved pool in releasing step.  Currently, we
808                  * don't have any other solution to deal with this situation
809                  * properly, so add work-around here.
810                  */
811                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812                         return true;
813                 else
814                         return false;
815         }
816
817         /* Shared mappings always use reserves */
818         if (vma->vm_flags & VM_MAYSHARE) {
819                 /*
820                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
821                  * be a region map for all pages.  The only situation where
822                  * there is no region map is if a hole was punched via
823                  * fallocate.  In this case, there really are no reverves to
824                  * use.  This situation is indicated if chg != 0.
825                  */
826                 if (chg)
827                         return false;
828                 else
829                         return true;
830         }
831
832         /*
833          * Only the process that called mmap() has reserves for
834          * private mappings.
835          */
836         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837                 /*
838                  * Like the shared case above, a hole punch or truncate
839                  * could have been performed on the private mapping.
840                  * Examine the value of chg to determine if reserves
841                  * actually exist or were previously consumed.
842                  * Very Subtle - The value of chg comes from a previous
843                  * call to vma_needs_reserves().  The reserve map for
844                  * private mappings has different (opposite) semantics
845                  * than that of shared mappings.  vma_needs_reserves()
846                  * has already taken this difference in semantics into
847                  * account.  Therefore, the meaning of chg is the same
848                  * as in the shared case above.  Code could easily be
849                  * combined, but keeping it separate draws attention to
850                  * subtle differences.
851                  */
852                 if (chg)
853                         return false;
854                 else
855                         return true;
856         }
857
858         return false;
859 }
860
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 {
863         int nid = page_to_nid(page);
864         list_move(&page->lru, &h->hugepage_freelists[nid]);
865         h->free_huge_pages++;
866         h->free_huge_pages_node[nid]++;
867 }
868
869 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
870 {
871         struct page *page;
872
873         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874                 if (!PageHWPoison(page))
875                         break;
876         /*
877          * if 'non-isolated free hugepage' not found on the list,
878          * the allocation fails.
879          */
880         if (&h->hugepage_freelists[nid] == &page->lru)
881                 return NULL;
882         list_move(&page->lru, &h->hugepage_activelist);
883         set_page_refcounted(page);
884         h->free_huge_pages--;
885         h->free_huge_pages_node[nid]--;
886         return page;
887 }
888
889 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
890                 nodemask_t *nmask)
891 {
892         unsigned int cpuset_mems_cookie;
893         struct zonelist *zonelist;
894         struct zone *zone;
895         struct zoneref *z;
896         int node = -1;
897
898         zonelist = node_zonelist(nid, gfp_mask);
899
900 retry_cpuset:
901         cpuset_mems_cookie = read_mems_allowed_begin();
902         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
903                 struct page *page;
904
905                 if (!cpuset_zone_allowed(zone, gfp_mask))
906                         continue;
907                 /*
908                  * no need to ask again on the same node. Pool is node rather than
909                  * zone aware
910                  */
911                 if (zone_to_nid(zone) == node)
912                         continue;
913                 node = zone_to_nid(zone);
914
915                 page = dequeue_huge_page_node_exact(h, node);
916                 if (page)
917                         return page;
918         }
919         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
920                 goto retry_cpuset;
921
922         return NULL;
923 }
924
925 /* Movability of hugepages depends on migration support. */
926 static inline gfp_t htlb_alloc_mask(struct hstate *h)
927 {
928         if (hugepage_migration_supported(h))
929                 return GFP_HIGHUSER_MOVABLE;
930         else
931                 return GFP_HIGHUSER;
932 }
933
934 static struct page *dequeue_huge_page_vma(struct hstate *h,
935                                 struct vm_area_struct *vma,
936                                 unsigned long address, int avoid_reserve,
937                                 long chg)
938 {
939         struct page *page;
940         struct mempolicy *mpol;
941         gfp_t gfp_mask;
942         nodemask_t *nodemask;
943         int nid;
944
945         /*
946          * A child process with MAP_PRIVATE mappings created by their parent
947          * have no page reserves. This check ensures that reservations are
948          * not "stolen". The child may still get SIGKILLed
949          */
950         if (!vma_has_reserves(vma, chg) &&
951                         h->free_huge_pages - h->resv_huge_pages == 0)
952                 goto err;
953
954         /* If reserves cannot be used, ensure enough pages are in the pool */
955         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
956                 goto err;
957
958         gfp_mask = htlb_alloc_mask(h);
959         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
960         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
961         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
962                 SetPagePrivate(page);
963                 h->resv_huge_pages--;
964         }
965
966         mpol_cond_put(mpol);
967         return page;
968
969 err:
970         return NULL;
971 }
972
973 /*
974  * common helper functions for hstate_next_node_to_{alloc|free}.
975  * We may have allocated or freed a huge page based on a different
976  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
977  * be outside of *nodes_allowed.  Ensure that we use an allowed
978  * node for alloc or free.
979  */
980 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
981 {
982         nid = next_node_in(nid, *nodes_allowed);
983         VM_BUG_ON(nid >= MAX_NUMNODES);
984
985         return nid;
986 }
987
988 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
989 {
990         if (!node_isset(nid, *nodes_allowed))
991                 nid = next_node_allowed(nid, nodes_allowed);
992         return nid;
993 }
994
995 /*
996  * returns the previously saved node ["this node"] from which to
997  * allocate a persistent huge page for the pool and advance the
998  * next node from which to allocate, handling wrap at end of node
999  * mask.
1000  */
1001 static int hstate_next_node_to_alloc(struct hstate *h,
1002                                         nodemask_t *nodes_allowed)
1003 {
1004         int nid;
1005
1006         VM_BUG_ON(!nodes_allowed);
1007
1008         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1009         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1010
1011         return nid;
1012 }
1013
1014 /*
1015  * helper for free_pool_huge_page() - return the previously saved
1016  * node ["this node"] from which to free a huge page.  Advance the
1017  * next node id whether or not we find a free huge page to free so
1018  * that the next attempt to free addresses the next node.
1019  */
1020 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1021 {
1022         int nid;
1023
1024         VM_BUG_ON(!nodes_allowed);
1025
1026         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1027         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1028
1029         return nid;
1030 }
1031
1032 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1033         for (nr_nodes = nodes_weight(*mask);                            \
1034                 nr_nodes > 0 &&                                         \
1035                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1036                 nr_nodes--)
1037
1038 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1039         for (nr_nodes = nodes_weight(*mask);                            \
1040                 nr_nodes > 0 &&                                         \
1041                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1042                 nr_nodes--)
1043
1044 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1045 static void destroy_compound_gigantic_page(struct page *page,
1046                                         unsigned int order)
1047 {
1048         int i;
1049         int nr_pages = 1 << order;
1050         struct page *p = page + 1;
1051
1052         atomic_set(compound_mapcount_ptr(page), 0);
1053         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1054                 clear_compound_head(p);
1055                 set_page_refcounted(p);
1056         }
1057
1058         set_compound_order(page, 0);
1059         __ClearPageHead(page);
1060 }
1061
1062 static void free_gigantic_page(struct page *page, unsigned int order)
1063 {
1064         free_contig_range(page_to_pfn(page), 1 << order);
1065 }
1066
1067 static int __alloc_gigantic_page(unsigned long start_pfn,
1068                                 unsigned long nr_pages, gfp_t gfp_mask)
1069 {
1070         unsigned long end_pfn = start_pfn + nr_pages;
1071         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1072                                   gfp_mask);
1073 }
1074
1075 static bool pfn_range_valid_gigantic(struct zone *z,
1076                         unsigned long start_pfn, unsigned long nr_pages)
1077 {
1078         unsigned long i, end_pfn = start_pfn + nr_pages;
1079         struct page *page;
1080
1081         for (i = start_pfn; i < end_pfn; i++) {
1082                 if (!pfn_valid(i))
1083                         return false;
1084
1085                 page = pfn_to_page(i);
1086
1087                 if (page_zone(page) != z)
1088                         return false;
1089
1090                 if (PageReserved(page))
1091                         return false;
1092
1093                 if (page_count(page) > 0)
1094                         return false;
1095
1096                 if (PageHuge(page))
1097                         return false;
1098         }
1099
1100         return true;
1101 }
1102
1103 static bool zone_spans_last_pfn(const struct zone *zone,
1104                         unsigned long start_pfn, unsigned long nr_pages)
1105 {
1106         unsigned long last_pfn = start_pfn + nr_pages - 1;
1107         return zone_spans_pfn(zone, last_pfn);
1108 }
1109
1110 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1111                 int nid, nodemask_t *nodemask)
1112 {
1113         unsigned int order = huge_page_order(h);
1114         unsigned long nr_pages = 1 << order;
1115         unsigned long ret, pfn, flags;
1116         struct zonelist *zonelist;
1117         struct zone *zone;
1118         struct zoneref *z;
1119
1120         zonelist = node_zonelist(nid, gfp_mask);
1121         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1122                 spin_lock_irqsave(&zone->lock, flags);
1123
1124                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1125                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1126                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1127                                 /*
1128                                  * We release the zone lock here because
1129                                  * alloc_contig_range() will also lock the zone
1130                                  * at some point. If there's an allocation
1131                                  * spinning on this lock, it may win the race
1132                                  * and cause alloc_contig_range() to fail...
1133                                  */
1134                                 spin_unlock_irqrestore(&zone->lock, flags);
1135                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1136                                 if (!ret)
1137                                         return pfn_to_page(pfn);
1138                                 spin_lock_irqsave(&zone->lock, flags);
1139                         }
1140                         pfn += nr_pages;
1141                 }
1142
1143                 spin_unlock_irqrestore(&zone->lock, flags);
1144         }
1145
1146         return NULL;
1147 }
1148
1149 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1150 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1151
1152 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1153 static inline bool gigantic_page_supported(void) { return false; }
1154 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1155                 int nid, nodemask_t *nodemask) { return NULL; }
1156 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1157 static inline void destroy_compound_gigantic_page(struct page *page,
1158                                                 unsigned int order) { }
1159 #endif
1160
1161 static void update_and_free_page(struct hstate *h, struct page *page)
1162 {
1163         int i;
1164
1165         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1166                 return;
1167
1168         h->nr_huge_pages--;
1169         h->nr_huge_pages_node[page_to_nid(page)]--;
1170         for (i = 0; i < pages_per_huge_page(h); i++) {
1171                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1172                                 1 << PG_referenced | 1 << PG_dirty |
1173                                 1 << PG_active | 1 << PG_private |
1174                                 1 << PG_writeback);
1175         }
1176         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1177         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1178         set_page_refcounted(page);
1179         if (hstate_is_gigantic(h)) {
1180                 destroy_compound_gigantic_page(page, huge_page_order(h));
1181                 free_gigantic_page(page, huge_page_order(h));
1182         } else {
1183                 __free_pages(page, huge_page_order(h));
1184         }
1185 }
1186
1187 struct hstate *size_to_hstate(unsigned long size)
1188 {
1189         struct hstate *h;
1190
1191         for_each_hstate(h) {
1192                 if (huge_page_size(h) == size)
1193                         return h;
1194         }
1195         return NULL;
1196 }
1197
1198 /*
1199  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1200  * to hstate->hugepage_activelist.)
1201  *
1202  * This function can be called for tail pages, but never returns true for them.
1203  */
1204 bool page_huge_active(struct page *page)
1205 {
1206         VM_BUG_ON_PAGE(!PageHuge(page), page);
1207         return PageHead(page) && PagePrivate(&page[1]);
1208 }
1209
1210 /* never called for tail page */
1211 static void set_page_huge_active(struct page *page)
1212 {
1213         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214         SetPagePrivate(&page[1]);
1215 }
1216
1217 static void clear_page_huge_active(struct page *page)
1218 {
1219         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1220         ClearPagePrivate(&page[1]);
1221 }
1222
1223 /*
1224  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1225  * code
1226  */
1227 static inline bool PageHugeTemporary(struct page *page)
1228 {
1229         if (!PageHuge(page))
1230                 return false;
1231
1232         return (unsigned long)page[2].mapping == -1U;
1233 }
1234
1235 static inline void SetPageHugeTemporary(struct page *page)
1236 {
1237         page[2].mapping = (void *)-1U;
1238 }
1239
1240 static inline void ClearPageHugeTemporary(struct page *page)
1241 {
1242         page[2].mapping = NULL;
1243 }
1244
1245 void free_huge_page(struct page *page)
1246 {
1247         /*
1248          * Can't pass hstate in here because it is called from the
1249          * compound page destructor.
1250          */
1251         struct hstate *h = page_hstate(page);
1252         int nid = page_to_nid(page);
1253         struct hugepage_subpool *spool =
1254                 (struct hugepage_subpool *)page_private(page);
1255         bool restore_reserve;
1256
1257         set_page_private(page, 0);
1258         page->mapping = NULL;
1259         VM_BUG_ON_PAGE(page_count(page), page);
1260         VM_BUG_ON_PAGE(page_mapcount(page), page);
1261         restore_reserve = PagePrivate(page);
1262         ClearPagePrivate(page);
1263
1264         /*
1265          * A return code of zero implies that the subpool will be under its
1266          * minimum size if the reservation is not restored after page is free.
1267          * Therefore, force restore_reserve operation.
1268          */
1269         if (hugepage_subpool_put_pages(spool, 1) == 0)
1270                 restore_reserve = true;
1271
1272         spin_lock(&hugetlb_lock);
1273         clear_page_huge_active(page);
1274         hugetlb_cgroup_uncharge_page(hstate_index(h),
1275                                      pages_per_huge_page(h), page);
1276         if (restore_reserve)
1277                 h->resv_huge_pages++;
1278
1279         if (PageHugeTemporary(page)) {
1280                 list_del(&page->lru);
1281                 ClearPageHugeTemporary(page);
1282                 update_and_free_page(h, page);
1283         } else if (h->surplus_huge_pages_node[nid]) {
1284                 /* remove the page from active list */
1285                 list_del(&page->lru);
1286                 update_and_free_page(h, page);
1287                 h->surplus_huge_pages--;
1288                 h->surplus_huge_pages_node[nid]--;
1289         } else {
1290                 arch_clear_hugepage_flags(page);
1291                 enqueue_huge_page(h, page);
1292         }
1293         spin_unlock(&hugetlb_lock);
1294 }
1295
1296 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1297 {
1298         INIT_LIST_HEAD(&page->lru);
1299         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1300         spin_lock(&hugetlb_lock);
1301         set_hugetlb_cgroup(page, NULL);
1302         h->nr_huge_pages++;
1303         h->nr_huge_pages_node[nid]++;
1304         spin_unlock(&hugetlb_lock);
1305 }
1306
1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 {
1309         int i;
1310         int nr_pages = 1 << order;
1311         struct page *p = page + 1;
1312
1313         /* we rely on prep_new_huge_page to set the destructor */
1314         set_compound_order(page, order);
1315         __ClearPageReserved(page);
1316         __SetPageHead(page);
1317         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318                 /*
1319                  * For gigantic hugepages allocated through bootmem at
1320                  * boot, it's safer to be consistent with the not-gigantic
1321                  * hugepages and clear the PG_reserved bit from all tail pages
1322                  * too.  Otherwse drivers using get_user_pages() to access tail
1323                  * pages may get the reference counting wrong if they see
1324                  * PG_reserved set on a tail page (despite the head page not
1325                  * having PG_reserved set).  Enforcing this consistency between
1326                  * head and tail pages allows drivers to optimize away a check
1327                  * on the head page when they need know if put_page() is needed
1328                  * after get_user_pages().
1329                  */
1330                 __ClearPageReserved(p);
1331                 set_page_count(p, 0);
1332                 set_compound_head(p, page);
1333         }
1334         atomic_set(compound_mapcount_ptr(page), -1);
1335 }
1336
1337 /*
1338  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339  * transparent huge pages.  See the PageTransHuge() documentation for more
1340  * details.
1341  */
1342 int PageHuge(struct page *page)
1343 {
1344         if (!PageCompound(page))
1345                 return 0;
1346
1347         page = compound_head(page);
1348         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349 }
1350 EXPORT_SYMBOL_GPL(PageHuge);
1351
1352 /*
1353  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354  * normal or transparent huge pages.
1355  */
1356 int PageHeadHuge(struct page *page_head)
1357 {
1358         if (!PageHead(page_head))
1359                 return 0;
1360
1361         return get_compound_page_dtor(page_head) == free_huge_page;
1362 }
1363
1364 pgoff_t __basepage_index(struct page *page)
1365 {
1366         struct page *page_head = compound_head(page);
1367         pgoff_t index = page_index(page_head);
1368         unsigned long compound_idx;
1369
1370         if (!PageHuge(page_head))
1371                 return page_index(page);
1372
1373         if (compound_order(page_head) >= MAX_ORDER)
1374                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375         else
1376                 compound_idx = page - page_head;
1377
1378         return (index << compound_order(page_head)) + compound_idx;
1379 }
1380
1381 static struct page *alloc_buddy_huge_page(struct hstate *h,
1382                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1383 {
1384         int order = huge_page_order(h);
1385         struct page *page;
1386
1387         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1388         if (nid == NUMA_NO_NODE)
1389                 nid = numa_mem_id();
1390         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1391         if (page)
1392                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1393         else
1394                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1395
1396         return page;
1397 }
1398
1399 /*
1400  * Common helper to allocate a fresh hugetlb page. All specific allocators
1401  * should use this function to get new hugetlb pages
1402  */
1403 static struct page *alloc_fresh_huge_page(struct hstate *h,
1404                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1405 {
1406         struct page *page;
1407
1408         if (hstate_is_gigantic(h))
1409                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1410         else
1411                 page = alloc_buddy_huge_page(h, gfp_mask,
1412                                 nid, nmask);
1413         if (!page)
1414                 return NULL;
1415
1416         if (hstate_is_gigantic(h))
1417                 prep_compound_gigantic_page(page, huge_page_order(h));
1418         prep_new_huge_page(h, page, page_to_nid(page));
1419
1420         return page;
1421 }
1422
1423 /*
1424  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1425  * manner.
1426  */
1427 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1428 {
1429         struct page *page;
1430         int nr_nodes, node;
1431         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1432
1433         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1434                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1435                 if (page)
1436                         break;
1437         }
1438
1439         if (!page)
1440                 return 0;
1441
1442         put_page(page); /* free it into the hugepage allocator */
1443
1444         return 1;
1445 }
1446
1447 /*
1448  * Free huge page from pool from next node to free.
1449  * Attempt to keep persistent huge pages more or less
1450  * balanced over allowed nodes.
1451  * Called with hugetlb_lock locked.
1452  */
1453 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1454                                                          bool acct_surplus)
1455 {
1456         int nr_nodes, node;
1457         int ret = 0;
1458
1459         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1460                 /*
1461                  * If we're returning unused surplus pages, only examine
1462                  * nodes with surplus pages.
1463                  */
1464                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1465                     !list_empty(&h->hugepage_freelists[node])) {
1466                         struct page *page =
1467                                 list_entry(h->hugepage_freelists[node].next,
1468                                           struct page, lru);
1469                         list_del(&page->lru);
1470                         h->free_huge_pages--;
1471                         h->free_huge_pages_node[node]--;
1472                         if (acct_surplus) {
1473                                 h->surplus_huge_pages--;
1474                                 h->surplus_huge_pages_node[node]--;
1475                         }
1476                         update_and_free_page(h, page);
1477                         ret = 1;
1478                         break;
1479                 }
1480         }
1481
1482         return ret;
1483 }
1484
1485 /*
1486  * Dissolve a given free hugepage into free buddy pages. This function does
1487  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1488  * number of free hugepages would be reduced below the number of reserved
1489  * hugepages.
1490  */
1491 int dissolve_free_huge_page(struct page *page)
1492 {
1493         int rc = 0;
1494
1495         spin_lock(&hugetlb_lock);
1496         if (PageHuge(page) && !page_count(page)) {
1497                 struct page *head = compound_head(page);
1498                 struct hstate *h = page_hstate(head);
1499                 int nid = page_to_nid(head);
1500                 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1501                         rc = -EBUSY;
1502                         goto out;
1503                 }
1504                 /*
1505                  * Move PageHWPoison flag from head page to the raw error page,
1506                  * which makes any subpages rather than the error page reusable.
1507                  */
1508                 if (PageHWPoison(head) && page != head) {
1509                         SetPageHWPoison(page);
1510                         ClearPageHWPoison(head);
1511                 }
1512                 list_del(&head->lru);
1513                 h->free_huge_pages--;
1514                 h->free_huge_pages_node[nid]--;
1515                 h->max_huge_pages--;
1516                 update_and_free_page(h, head);
1517         }
1518 out:
1519         spin_unlock(&hugetlb_lock);
1520         return rc;
1521 }
1522
1523 /*
1524  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1525  * make specified memory blocks removable from the system.
1526  * Note that this will dissolve a free gigantic hugepage completely, if any
1527  * part of it lies within the given range.
1528  * Also note that if dissolve_free_huge_page() returns with an error, all
1529  * free hugepages that were dissolved before that error are lost.
1530  */
1531 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1532 {
1533         unsigned long pfn;
1534         struct page *page;
1535         int rc = 0;
1536
1537         if (!hugepages_supported())
1538                 return rc;
1539
1540         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1541                 page = pfn_to_page(pfn);
1542                 if (PageHuge(page) && !page_count(page)) {
1543                         rc = dissolve_free_huge_page(page);
1544                         if (rc)
1545                                 break;
1546                 }
1547         }
1548
1549         return rc;
1550 }
1551
1552 /*
1553  * Allocates a fresh surplus page from the page allocator.
1554  */
1555 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1556                 int nid, nodemask_t *nmask)
1557 {
1558         struct page *page = NULL;
1559
1560         if (hstate_is_gigantic(h))
1561                 return NULL;
1562
1563         spin_lock(&hugetlb_lock);
1564         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1565                 goto out_unlock;
1566         spin_unlock(&hugetlb_lock);
1567
1568         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1569         if (!page)
1570                 return NULL;
1571
1572         spin_lock(&hugetlb_lock);
1573         /*
1574          * We could have raced with the pool size change.
1575          * Double check that and simply deallocate the new page
1576          * if we would end up overcommiting the surpluses. Abuse
1577          * temporary page to workaround the nasty free_huge_page
1578          * codeflow
1579          */
1580         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1581                 SetPageHugeTemporary(page);
1582                 put_page(page);
1583                 page = NULL;
1584         } else {
1585                 h->surplus_huge_pages++;
1586                 h->nr_huge_pages_node[page_to_nid(page)]++;
1587         }
1588
1589 out_unlock:
1590         spin_unlock(&hugetlb_lock);
1591
1592         return page;
1593 }
1594
1595 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1596                 int nid, nodemask_t *nmask)
1597 {
1598         struct page *page;
1599
1600         if (hstate_is_gigantic(h))
1601                 return NULL;
1602
1603         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1604         if (!page)
1605                 return NULL;
1606
1607         /*
1608          * We do not account these pages as surplus because they are only
1609          * temporary and will be released properly on the last reference
1610          */
1611         SetPageHugeTemporary(page);
1612
1613         return page;
1614 }
1615
1616 /*
1617  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1618  */
1619 static
1620 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1621                 struct vm_area_struct *vma, unsigned long addr)
1622 {
1623         struct page *page;
1624         struct mempolicy *mpol;
1625         gfp_t gfp_mask = htlb_alloc_mask(h);
1626         int nid;
1627         nodemask_t *nodemask;
1628
1629         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1630         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1631         mpol_cond_put(mpol);
1632
1633         return page;
1634 }
1635
1636 /* page migration callback function */
1637 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1638 {
1639         gfp_t gfp_mask = htlb_alloc_mask(h);
1640         struct page *page = NULL;
1641
1642         if (nid != NUMA_NO_NODE)
1643                 gfp_mask |= __GFP_THISNODE;
1644
1645         spin_lock(&hugetlb_lock);
1646         if (h->free_huge_pages - h->resv_huge_pages > 0)
1647                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1648         spin_unlock(&hugetlb_lock);
1649
1650         if (!page)
1651                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1652
1653         return page;
1654 }
1655
1656 /* page migration callback function */
1657 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1658                 nodemask_t *nmask)
1659 {
1660         gfp_t gfp_mask = htlb_alloc_mask(h);
1661
1662         spin_lock(&hugetlb_lock);
1663         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1664                 struct page *page;
1665
1666                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1667                 if (page) {
1668                         spin_unlock(&hugetlb_lock);
1669                         return page;
1670                 }
1671         }
1672         spin_unlock(&hugetlb_lock);
1673
1674         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1675 }
1676
1677 /* mempolicy aware migration callback */
1678 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1679                 unsigned long address)
1680 {
1681         struct mempolicy *mpol;
1682         nodemask_t *nodemask;
1683         struct page *page;
1684         gfp_t gfp_mask;
1685         int node;
1686
1687         gfp_mask = htlb_alloc_mask(h);
1688         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1689         page = alloc_huge_page_nodemask(h, node, nodemask);
1690         mpol_cond_put(mpol);
1691
1692         return page;
1693 }
1694
1695 /*
1696  * Increase the hugetlb pool such that it can accommodate a reservation
1697  * of size 'delta'.
1698  */
1699 static int gather_surplus_pages(struct hstate *h, int delta)
1700 {
1701         struct list_head surplus_list;
1702         struct page *page, *tmp;
1703         int ret, i;
1704         int needed, allocated;
1705         bool alloc_ok = true;
1706
1707         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1708         if (needed <= 0) {
1709                 h->resv_huge_pages += delta;
1710                 return 0;
1711         }
1712
1713         allocated = 0;
1714         INIT_LIST_HEAD(&surplus_list);
1715
1716         ret = -ENOMEM;
1717 retry:
1718         spin_unlock(&hugetlb_lock);
1719         for (i = 0; i < needed; i++) {
1720                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1721                                 NUMA_NO_NODE, NULL);
1722                 if (!page) {
1723                         alloc_ok = false;
1724                         break;
1725                 }
1726                 list_add(&page->lru, &surplus_list);
1727                 cond_resched();
1728         }
1729         allocated += i;
1730
1731         /*
1732          * After retaking hugetlb_lock, we need to recalculate 'needed'
1733          * because either resv_huge_pages or free_huge_pages may have changed.
1734          */
1735         spin_lock(&hugetlb_lock);
1736         needed = (h->resv_huge_pages + delta) -
1737                         (h->free_huge_pages + allocated);
1738         if (needed > 0) {
1739                 if (alloc_ok)
1740                         goto retry;
1741                 /*
1742                  * We were not able to allocate enough pages to
1743                  * satisfy the entire reservation so we free what
1744                  * we've allocated so far.
1745                  */
1746                 goto free;
1747         }
1748         /*
1749          * The surplus_list now contains _at_least_ the number of extra pages
1750          * needed to accommodate the reservation.  Add the appropriate number
1751          * of pages to the hugetlb pool and free the extras back to the buddy
1752          * allocator.  Commit the entire reservation here to prevent another
1753          * process from stealing the pages as they are added to the pool but
1754          * before they are reserved.
1755          */
1756         needed += allocated;
1757         h->resv_huge_pages += delta;
1758         ret = 0;
1759
1760         /* Free the needed pages to the hugetlb pool */
1761         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1762                 if ((--needed) < 0)
1763                         break;
1764                 /*
1765                  * This page is now managed by the hugetlb allocator and has
1766                  * no users -- drop the buddy allocator's reference.
1767                  */
1768                 put_page_testzero(page);
1769                 VM_BUG_ON_PAGE(page_count(page), page);
1770                 enqueue_huge_page(h, page);
1771         }
1772 free:
1773         spin_unlock(&hugetlb_lock);
1774
1775         /* Free unnecessary surplus pages to the buddy allocator */
1776         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1777                 put_page(page);
1778         spin_lock(&hugetlb_lock);
1779
1780         return ret;
1781 }
1782
1783 /*
1784  * This routine has two main purposes:
1785  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1786  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1787  *    to the associated reservation map.
1788  * 2) Free any unused surplus pages that may have been allocated to satisfy
1789  *    the reservation.  As many as unused_resv_pages may be freed.
1790  *
1791  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1792  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1793  * we must make sure nobody else can claim pages we are in the process of
1794  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1795  * number of huge pages we plan to free when dropping the lock.
1796  */
1797 static void return_unused_surplus_pages(struct hstate *h,
1798                                         unsigned long unused_resv_pages)
1799 {
1800         unsigned long nr_pages;
1801
1802         /* Cannot return gigantic pages currently */
1803         if (hstate_is_gigantic(h))
1804                 goto out;
1805
1806         /*
1807          * Part (or even all) of the reservation could have been backed
1808          * by pre-allocated pages. Only free surplus pages.
1809          */
1810         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1811
1812         /*
1813          * We want to release as many surplus pages as possible, spread
1814          * evenly across all nodes with memory. Iterate across these nodes
1815          * until we can no longer free unreserved surplus pages. This occurs
1816          * when the nodes with surplus pages have no free pages.
1817          * free_pool_huge_page() will balance the the freed pages across the
1818          * on-line nodes with memory and will handle the hstate accounting.
1819          *
1820          * Note that we decrement resv_huge_pages as we free the pages.  If
1821          * we drop the lock, resv_huge_pages will still be sufficiently large
1822          * to cover subsequent pages we may free.
1823          */
1824         while (nr_pages--) {
1825                 h->resv_huge_pages--;
1826                 unused_resv_pages--;
1827                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1828                         goto out;
1829                 cond_resched_lock(&hugetlb_lock);
1830         }
1831
1832 out:
1833         /* Fully uncommit the reservation */
1834         h->resv_huge_pages -= unused_resv_pages;
1835 }
1836
1837
1838 /*
1839  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1840  * are used by the huge page allocation routines to manage reservations.
1841  *
1842  * vma_needs_reservation is called to determine if the huge page at addr
1843  * within the vma has an associated reservation.  If a reservation is
1844  * needed, the value 1 is returned.  The caller is then responsible for
1845  * managing the global reservation and subpool usage counts.  After
1846  * the huge page has been allocated, vma_commit_reservation is called
1847  * to add the page to the reservation map.  If the page allocation fails,
1848  * the reservation must be ended instead of committed.  vma_end_reservation
1849  * is called in such cases.
1850  *
1851  * In the normal case, vma_commit_reservation returns the same value
1852  * as the preceding vma_needs_reservation call.  The only time this
1853  * is not the case is if a reserve map was changed between calls.  It
1854  * is the responsibility of the caller to notice the difference and
1855  * take appropriate action.
1856  *
1857  * vma_add_reservation is used in error paths where a reservation must
1858  * be restored when a newly allocated huge page must be freed.  It is
1859  * to be called after calling vma_needs_reservation to determine if a
1860  * reservation exists.
1861  */
1862 enum vma_resv_mode {
1863         VMA_NEEDS_RESV,
1864         VMA_COMMIT_RESV,
1865         VMA_END_RESV,
1866         VMA_ADD_RESV,
1867 };
1868 static long __vma_reservation_common(struct hstate *h,
1869                                 struct vm_area_struct *vma, unsigned long addr,
1870                                 enum vma_resv_mode mode)
1871 {
1872         struct resv_map *resv;
1873         pgoff_t idx;
1874         long ret;
1875
1876         resv = vma_resv_map(vma);
1877         if (!resv)
1878                 return 1;
1879
1880         idx = vma_hugecache_offset(h, vma, addr);
1881         switch (mode) {
1882         case VMA_NEEDS_RESV:
1883                 ret = region_chg(resv, idx, idx + 1);
1884                 break;
1885         case VMA_COMMIT_RESV:
1886                 ret = region_add(resv, idx, idx + 1);
1887                 break;
1888         case VMA_END_RESV:
1889                 region_abort(resv, idx, idx + 1);
1890                 ret = 0;
1891                 break;
1892         case VMA_ADD_RESV:
1893                 if (vma->vm_flags & VM_MAYSHARE)
1894                         ret = region_add(resv, idx, idx + 1);
1895                 else {
1896                         region_abort(resv, idx, idx + 1);
1897                         ret = region_del(resv, idx, idx + 1);
1898                 }
1899                 break;
1900         default:
1901                 BUG();
1902         }
1903
1904         if (vma->vm_flags & VM_MAYSHARE)
1905                 return ret;
1906         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1907                 /*
1908                  * In most cases, reserves always exist for private mappings.
1909                  * However, a file associated with mapping could have been
1910                  * hole punched or truncated after reserves were consumed.
1911                  * As subsequent fault on such a range will not use reserves.
1912                  * Subtle - The reserve map for private mappings has the
1913                  * opposite meaning than that of shared mappings.  If NO
1914                  * entry is in the reserve map, it means a reservation exists.
1915                  * If an entry exists in the reserve map, it means the
1916                  * reservation has already been consumed.  As a result, the
1917                  * return value of this routine is the opposite of the
1918                  * value returned from reserve map manipulation routines above.
1919                  */
1920                 if (ret)
1921                         return 0;
1922                 else
1923                         return 1;
1924         }
1925         else
1926                 return ret < 0 ? ret : 0;
1927 }
1928
1929 static long vma_needs_reservation(struct hstate *h,
1930                         struct vm_area_struct *vma, unsigned long addr)
1931 {
1932         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1933 }
1934
1935 static long vma_commit_reservation(struct hstate *h,
1936                         struct vm_area_struct *vma, unsigned long addr)
1937 {
1938         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1939 }
1940
1941 static void vma_end_reservation(struct hstate *h,
1942                         struct vm_area_struct *vma, unsigned long addr)
1943 {
1944         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1945 }
1946
1947 static long vma_add_reservation(struct hstate *h,
1948                         struct vm_area_struct *vma, unsigned long addr)
1949 {
1950         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1951 }
1952
1953 /*
1954  * This routine is called to restore a reservation on error paths.  In the
1955  * specific error paths, a huge page was allocated (via alloc_huge_page)
1956  * and is about to be freed.  If a reservation for the page existed,
1957  * alloc_huge_page would have consumed the reservation and set PagePrivate
1958  * in the newly allocated page.  When the page is freed via free_huge_page,
1959  * the global reservation count will be incremented if PagePrivate is set.
1960  * However, free_huge_page can not adjust the reserve map.  Adjust the
1961  * reserve map here to be consistent with global reserve count adjustments
1962  * to be made by free_huge_page.
1963  */
1964 static void restore_reserve_on_error(struct hstate *h,
1965                         struct vm_area_struct *vma, unsigned long address,
1966                         struct page *page)
1967 {
1968         if (unlikely(PagePrivate(page))) {
1969                 long rc = vma_needs_reservation(h, vma, address);
1970
1971                 if (unlikely(rc < 0)) {
1972                         /*
1973                          * Rare out of memory condition in reserve map
1974                          * manipulation.  Clear PagePrivate so that
1975                          * global reserve count will not be incremented
1976                          * by free_huge_page.  This will make it appear
1977                          * as though the reservation for this page was
1978                          * consumed.  This may prevent the task from
1979                          * faulting in the page at a later time.  This
1980                          * is better than inconsistent global huge page
1981                          * accounting of reserve counts.
1982                          */
1983                         ClearPagePrivate(page);
1984                 } else if (rc) {
1985                         rc = vma_add_reservation(h, vma, address);
1986                         if (unlikely(rc < 0))
1987                                 /*
1988                                  * See above comment about rare out of
1989                                  * memory condition.
1990                                  */
1991                                 ClearPagePrivate(page);
1992                 } else
1993                         vma_end_reservation(h, vma, address);
1994         }
1995 }
1996
1997 struct page *alloc_huge_page(struct vm_area_struct *vma,
1998                                     unsigned long addr, int avoid_reserve)
1999 {
2000         struct hugepage_subpool *spool = subpool_vma(vma);
2001         struct hstate *h = hstate_vma(vma);
2002         struct page *page;
2003         long map_chg, map_commit;
2004         long gbl_chg;
2005         int ret, idx;
2006         struct hugetlb_cgroup *h_cg;
2007
2008         idx = hstate_index(h);
2009         /*
2010          * Examine the region/reserve map to determine if the process
2011          * has a reservation for the page to be allocated.  A return
2012          * code of zero indicates a reservation exists (no change).
2013          */
2014         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2015         if (map_chg < 0)
2016                 return ERR_PTR(-ENOMEM);
2017
2018         /*
2019          * Processes that did not create the mapping will have no
2020          * reserves as indicated by the region/reserve map. Check
2021          * that the allocation will not exceed the subpool limit.
2022          * Allocations for MAP_NORESERVE mappings also need to be
2023          * checked against any subpool limit.
2024          */
2025         if (map_chg || avoid_reserve) {
2026                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2027                 if (gbl_chg < 0) {
2028                         vma_end_reservation(h, vma, addr);
2029                         return ERR_PTR(-ENOSPC);
2030                 }
2031
2032                 /*
2033                  * Even though there was no reservation in the region/reserve
2034                  * map, there could be reservations associated with the
2035                  * subpool that can be used.  This would be indicated if the
2036                  * return value of hugepage_subpool_get_pages() is zero.
2037                  * However, if avoid_reserve is specified we still avoid even
2038                  * the subpool reservations.
2039                  */
2040                 if (avoid_reserve)
2041                         gbl_chg = 1;
2042         }
2043
2044         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2045         if (ret)
2046                 goto out_subpool_put;
2047
2048         spin_lock(&hugetlb_lock);
2049         /*
2050          * glb_chg is passed to indicate whether or not a page must be taken
2051          * from the global free pool (global change).  gbl_chg == 0 indicates
2052          * a reservation exists for the allocation.
2053          */
2054         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2055         if (!page) {
2056                 spin_unlock(&hugetlb_lock);
2057                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2058                 if (!page)
2059                         goto out_uncharge_cgroup;
2060                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2061                         SetPagePrivate(page);
2062                         h->resv_huge_pages--;
2063                 }
2064                 spin_lock(&hugetlb_lock);
2065                 list_move(&page->lru, &h->hugepage_activelist);
2066                 /* Fall through */
2067         }
2068         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2069         spin_unlock(&hugetlb_lock);
2070
2071         set_page_private(page, (unsigned long)spool);
2072
2073         map_commit = vma_commit_reservation(h, vma, addr);
2074         if (unlikely(map_chg > map_commit)) {
2075                 /*
2076                  * The page was added to the reservation map between
2077                  * vma_needs_reservation and vma_commit_reservation.
2078                  * This indicates a race with hugetlb_reserve_pages.
2079                  * Adjust for the subpool count incremented above AND
2080                  * in hugetlb_reserve_pages for the same page.  Also,
2081                  * the reservation count added in hugetlb_reserve_pages
2082                  * no longer applies.
2083                  */
2084                 long rsv_adjust;
2085
2086                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2087                 hugetlb_acct_memory(h, -rsv_adjust);
2088         }
2089         return page;
2090
2091 out_uncharge_cgroup:
2092         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2093 out_subpool_put:
2094         if (map_chg || avoid_reserve)
2095                 hugepage_subpool_put_pages(spool, 1);
2096         vma_end_reservation(h, vma, addr);
2097         return ERR_PTR(-ENOSPC);
2098 }
2099
2100 int alloc_bootmem_huge_page(struct hstate *h)
2101         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2102 int __alloc_bootmem_huge_page(struct hstate *h)
2103 {
2104         struct huge_bootmem_page *m;
2105         int nr_nodes, node;
2106
2107         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2108                 void *addr;
2109
2110                 addr = memblock_virt_alloc_try_nid_nopanic(
2111                                 huge_page_size(h), huge_page_size(h),
2112                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2113                 if (addr) {
2114                         /*
2115                          * Use the beginning of the huge page to store the
2116                          * huge_bootmem_page struct (until gather_bootmem
2117                          * puts them into the mem_map).
2118                          */
2119                         m = addr;
2120                         goto found;
2121                 }
2122         }
2123         return 0;
2124
2125 found:
2126         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2127         /* Put them into a private list first because mem_map is not up yet */
2128         list_add(&m->list, &huge_boot_pages);
2129         m->hstate = h;
2130         return 1;
2131 }
2132
2133 static void __init prep_compound_huge_page(struct page *page,
2134                 unsigned int order)
2135 {
2136         if (unlikely(order > (MAX_ORDER - 1)))
2137                 prep_compound_gigantic_page(page, order);
2138         else
2139                 prep_compound_page(page, order);
2140 }
2141
2142 /* Put bootmem huge pages into the standard lists after mem_map is up */
2143 static void __init gather_bootmem_prealloc(void)
2144 {
2145         struct huge_bootmem_page *m;
2146
2147         list_for_each_entry(m, &huge_boot_pages, list) {
2148                 struct hstate *h = m->hstate;
2149                 struct page *page;
2150
2151 #ifdef CONFIG_HIGHMEM
2152                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2153                 memblock_free_late(__pa(m),
2154                                    sizeof(struct huge_bootmem_page));
2155 #else
2156                 page = virt_to_page(m);
2157 #endif
2158                 WARN_ON(page_count(page) != 1);
2159                 prep_compound_huge_page(page, h->order);
2160                 WARN_ON(PageReserved(page));
2161                 prep_new_huge_page(h, page, page_to_nid(page));
2162                 put_page(page); /* free it into the hugepage allocator */
2163
2164                 /*
2165                  * If we had gigantic hugepages allocated at boot time, we need
2166                  * to restore the 'stolen' pages to totalram_pages in order to
2167                  * fix confusing memory reports from free(1) and another
2168                  * side-effects, like CommitLimit going negative.
2169                  */
2170                 if (hstate_is_gigantic(h))
2171                         adjust_managed_page_count(page, 1 << h->order);
2172         }
2173 }
2174
2175 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2176 {
2177         unsigned long i;
2178
2179         for (i = 0; i < h->max_huge_pages; ++i) {
2180                 if (hstate_is_gigantic(h)) {
2181                         if (!alloc_bootmem_huge_page(h))
2182                                 break;
2183                 } else if (!alloc_pool_huge_page(h,
2184                                          &node_states[N_MEMORY]))
2185                         break;
2186                 cond_resched();
2187         }
2188         if (i < h->max_huge_pages) {
2189                 char buf[32];
2190
2191                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2192                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2193                         h->max_huge_pages, buf, i);
2194                 h->max_huge_pages = i;
2195         }
2196 }
2197
2198 static void __init hugetlb_init_hstates(void)
2199 {
2200         struct hstate *h;
2201
2202         for_each_hstate(h) {
2203                 if (minimum_order > huge_page_order(h))
2204                         minimum_order = huge_page_order(h);
2205
2206                 /* oversize hugepages were init'ed in early boot */
2207                 if (!hstate_is_gigantic(h))
2208                         hugetlb_hstate_alloc_pages(h);
2209         }
2210         VM_BUG_ON(minimum_order == UINT_MAX);
2211 }
2212
2213 static void __init report_hugepages(void)
2214 {
2215         struct hstate *h;
2216
2217         for_each_hstate(h) {
2218                 char buf[32];
2219
2220                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2221                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2222                         buf, h->free_huge_pages);
2223         }
2224 }
2225
2226 #ifdef CONFIG_HIGHMEM
2227 static void try_to_free_low(struct hstate *h, unsigned long count,
2228                                                 nodemask_t *nodes_allowed)
2229 {
2230         int i;
2231
2232         if (hstate_is_gigantic(h))
2233                 return;
2234
2235         for_each_node_mask(i, *nodes_allowed) {
2236                 struct page *page, *next;
2237                 struct list_head *freel = &h->hugepage_freelists[i];
2238                 list_for_each_entry_safe(page, next, freel, lru) {
2239                         if (count >= h->nr_huge_pages)
2240                                 return;
2241                         if (PageHighMem(page))
2242                                 continue;
2243                         list_del(&page->lru);
2244                         update_and_free_page(h, page);
2245                         h->free_huge_pages--;
2246                         h->free_huge_pages_node[page_to_nid(page)]--;
2247                 }
2248         }
2249 }
2250 #else
2251 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2252                                                 nodemask_t *nodes_allowed)
2253 {
2254 }
2255 #endif
2256
2257 /*
2258  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2259  * balanced by operating on them in a round-robin fashion.
2260  * Returns 1 if an adjustment was made.
2261  */
2262 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2263                                 int delta)
2264 {
2265         int nr_nodes, node;
2266
2267         VM_BUG_ON(delta != -1 && delta != 1);
2268
2269         if (delta < 0) {
2270                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2271                         if (h->surplus_huge_pages_node[node])
2272                                 goto found;
2273                 }
2274         } else {
2275                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2276                         if (h->surplus_huge_pages_node[node] <
2277                                         h->nr_huge_pages_node[node])
2278                                 goto found;
2279                 }
2280         }
2281         return 0;
2282
2283 found:
2284         h->surplus_huge_pages += delta;
2285         h->surplus_huge_pages_node[node] += delta;
2286         return 1;
2287 }
2288
2289 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2290 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2291                                                 nodemask_t *nodes_allowed)
2292 {
2293         unsigned long min_count, ret;
2294
2295         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2296                 return h->max_huge_pages;
2297
2298         /*
2299          * Increase the pool size
2300          * First take pages out of surplus state.  Then make up the
2301          * remaining difference by allocating fresh huge pages.
2302          *
2303          * We might race with alloc_surplus_huge_page() here and be unable
2304          * to convert a surplus huge page to a normal huge page. That is
2305          * not critical, though, it just means the overall size of the
2306          * pool might be one hugepage larger than it needs to be, but
2307          * within all the constraints specified by the sysctls.
2308          */
2309         spin_lock(&hugetlb_lock);
2310         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2311                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2312                         break;
2313         }
2314
2315         while (count > persistent_huge_pages(h)) {
2316                 /*
2317                  * If this allocation races such that we no longer need the
2318                  * page, free_huge_page will handle it by freeing the page
2319                  * and reducing the surplus.
2320                  */
2321                 spin_unlock(&hugetlb_lock);
2322
2323                 /* yield cpu to avoid soft lockup */
2324                 cond_resched();
2325
2326                 ret = alloc_pool_huge_page(h, nodes_allowed);
2327                 spin_lock(&hugetlb_lock);
2328                 if (!ret)
2329                         goto out;
2330
2331                 /* Bail for signals. Probably ctrl-c from user */
2332                 if (signal_pending(current))
2333                         goto out;
2334         }
2335
2336         /*
2337          * Decrease the pool size
2338          * First return free pages to the buddy allocator (being careful
2339          * to keep enough around to satisfy reservations).  Then place
2340          * pages into surplus state as needed so the pool will shrink
2341          * to the desired size as pages become free.
2342          *
2343          * By placing pages into the surplus state independent of the
2344          * overcommit value, we are allowing the surplus pool size to
2345          * exceed overcommit. There are few sane options here. Since
2346          * alloc_surplus_huge_page() is checking the global counter,
2347          * though, we'll note that we're not allowed to exceed surplus
2348          * and won't grow the pool anywhere else. Not until one of the
2349          * sysctls are changed, or the surplus pages go out of use.
2350          */
2351         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2352         min_count = max(count, min_count);
2353         try_to_free_low(h, min_count, nodes_allowed);
2354         while (min_count < persistent_huge_pages(h)) {
2355                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2356                         break;
2357                 cond_resched_lock(&hugetlb_lock);
2358         }
2359         while (count < persistent_huge_pages(h)) {
2360                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2361                         break;
2362         }
2363 out:
2364         ret = persistent_huge_pages(h);
2365         spin_unlock(&hugetlb_lock);
2366         return ret;
2367 }
2368
2369 #define HSTATE_ATTR_RO(_name) \
2370         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2371
2372 #define HSTATE_ATTR(_name) \
2373         static struct kobj_attribute _name##_attr = \
2374                 __ATTR(_name, 0644, _name##_show, _name##_store)
2375
2376 static struct kobject *hugepages_kobj;
2377 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2378
2379 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2380
2381 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2382 {
2383         int i;
2384
2385         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2386                 if (hstate_kobjs[i] == kobj) {
2387                         if (nidp)
2388                                 *nidp = NUMA_NO_NODE;
2389                         return &hstates[i];
2390                 }
2391
2392         return kobj_to_node_hstate(kobj, nidp);
2393 }
2394
2395 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2396                                         struct kobj_attribute *attr, char *buf)
2397 {
2398         struct hstate *h;
2399         unsigned long nr_huge_pages;
2400         int nid;
2401
2402         h = kobj_to_hstate(kobj, &nid);
2403         if (nid == NUMA_NO_NODE)
2404                 nr_huge_pages = h->nr_huge_pages;
2405         else
2406                 nr_huge_pages = h->nr_huge_pages_node[nid];
2407
2408         return sprintf(buf, "%lu\n", nr_huge_pages);
2409 }
2410
2411 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2412                                            struct hstate *h, int nid,
2413                                            unsigned long count, size_t len)
2414 {
2415         int err;
2416         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2417
2418         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2419                 err = -EINVAL;
2420                 goto out;
2421         }
2422
2423         if (nid == NUMA_NO_NODE) {
2424                 /*
2425                  * global hstate attribute
2426                  */
2427                 if (!(obey_mempolicy &&
2428                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2429                         NODEMASK_FREE(nodes_allowed);
2430                         nodes_allowed = &node_states[N_MEMORY];
2431                 }
2432         } else if (nodes_allowed) {
2433                 /*
2434                  * per node hstate attribute: adjust count to global,
2435                  * but restrict alloc/free to the specified node.
2436                  */
2437                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2438                 init_nodemask_of_node(nodes_allowed, nid);
2439         } else
2440                 nodes_allowed = &node_states[N_MEMORY];
2441
2442         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2443
2444         if (nodes_allowed != &node_states[N_MEMORY])
2445                 NODEMASK_FREE(nodes_allowed);
2446
2447         return len;
2448 out:
2449         NODEMASK_FREE(nodes_allowed);
2450         return err;
2451 }
2452
2453 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2454                                          struct kobject *kobj, const char *buf,
2455                                          size_t len)
2456 {
2457         struct hstate *h;
2458         unsigned long count;
2459         int nid;
2460         int err;
2461
2462         err = kstrtoul(buf, 10, &count);
2463         if (err)
2464                 return err;
2465
2466         h = kobj_to_hstate(kobj, &nid);
2467         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2468 }
2469
2470 static ssize_t nr_hugepages_show(struct kobject *kobj,
2471                                        struct kobj_attribute *attr, char *buf)
2472 {
2473         return nr_hugepages_show_common(kobj, attr, buf);
2474 }
2475
2476 static ssize_t nr_hugepages_store(struct kobject *kobj,
2477                struct kobj_attribute *attr, const char *buf, size_t len)
2478 {
2479         return nr_hugepages_store_common(false, kobj, buf, len);
2480 }
2481 HSTATE_ATTR(nr_hugepages);
2482
2483 #ifdef CONFIG_NUMA
2484
2485 /*
2486  * hstate attribute for optionally mempolicy-based constraint on persistent
2487  * huge page alloc/free.
2488  */
2489 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2490                                        struct kobj_attribute *attr, char *buf)
2491 {
2492         return nr_hugepages_show_common(kobj, attr, buf);
2493 }
2494
2495 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2496                struct kobj_attribute *attr, const char *buf, size_t len)
2497 {
2498         return nr_hugepages_store_common(true, kobj, buf, len);
2499 }
2500 HSTATE_ATTR(nr_hugepages_mempolicy);
2501 #endif
2502
2503
2504 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2505                                         struct kobj_attribute *attr, char *buf)
2506 {
2507         struct hstate *h = kobj_to_hstate(kobj, NULL);
2508         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2509 }
2510
2511 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2512                 struct kobj_attribute *attr, const char *buf, size_t count)
2513 {
2514         int err;
2515         unsigned long input;
2516         struct hstate *h = kobj_to_hstate(kobj, NULL);
2517
2518         if (hstate_is_gigantic(h))
2519                 return -EINVAL;
2520
2521         err = kstrtoul(buf, 10, &input);
2522         if (err)
2523                 return err;
2524
2525         spin_lock(&hugetlb_lock);
2526         h->nr_overcommit_huge_pages = input;
2527         spin_unlock(&hugetlb_lock);
2528
2529         return count;
2530 }
2531 HSTATE_ATTR(nr_overcommit_hugepages);
2532
2533 static ssize_t free_hugepages_show(struct kobject *kobj,
2534                                         struct kobj_attribute *attr, char *buf)
2535 {
2536         struct hstate *h;
2537         unsigned long free_huge_pages;
2538         int nid;
2539
2540         h = kobj_to_hstate(kobj, &nid);
2541         if (nid == NUMA_NO_NODE)
2542                 free_huge_pages = h->free_huge_pages;
2543         else
2544                 free_huge_pages = h->free_huge_pages_node[nid];
2545
2546         return sprintf(buf, "%lu\n", free_huge_pages);
2547 }
2548 HSTATE_ATTR_RO(free_hugepages);
2549
2550 static ssize_t resv_hugepages_show(struct kobject *kobj,
2551                                         struct kobj_attribute *attr, char *buf)
2552 {
2553         struct hstate *h = kobj_to_hstate(kobj, NULL);
2554         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2555 }
2556 HSTATE_ATTR_RO(resv_hugepages);
2557
2558 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2559                                         struct kobj_attribute *attr, char *buf)
2560 {
2561         struct hstate *h;
2562         unsigned long surplus_huge_pages;
2563         int nid;
2564
2565         h = kobj_to_hstate(kobj, &nid);
2566         if (nid == NUMA_NO_NODE)
2567                 surplus_huge_pages = h->surplus_huge_pages;
2568         else
2569                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2570
2571         return sprintf(buf, "%lu\n", surplus_huge_pages);
2572 }
2573 HSTATE_ATTR_RO(surplus_hugepages);
2574
2575 static struct attribute *hstate_attrs[] = {
2576         &nr_hugepages_attr.attr,
2577         &nr_overcommit_hugepages_attr.attr,
2578         &free_hugepages_attr.attr,
2579         &resv_hugepages_attr.attr,
2580         &surplus_hugepages_attr.attr,
2581 #ifdef CONFIG_NUMA
2582         &nr_hugepages_mempolicy_attr.attr,
2583 #endif
2584         NULL,
2585 };
2586
2587 static const struct attribute_group hstate_attr_group = {
2588         .attrs = hstate_attrs,
2589 };
2590
2591 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2592                                     struct kobject **hstate_kobjs,
2593                                     const struct attribute_group *hstate_attr_group)
2594 {
2595         int retval;
2596         int hi = hstate_index(h);
2597
2598         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2599         if (!hstate_kobjs[hi])
2600                 return -ENOMEM;
2601
2602         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2603         if (retval)
2604                 kobject_put(hstate_kobjs[hi]);
2605
2606         return retval;
2607 }
2608
2609 static void __init hugetlb_sysfs_init(void)
2610 {
2611         struct hstate *h;
2612         int err;
2613
2614         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2615         if (!hugepages_kobj)
2616                 return;
2617
2618         for_each_hstate(h) {
2619                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2620                                          hstate_kobjs, &hstate_attr_group);
2621                 if (err)
2622                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2623         }
2624 }
2625
2626 #ifdef CONFIG_NUMA
2627
2628 /*
2629  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2630  * with node devices in node_devices[] using a parallel array.  The array
2631  * index of a node device or _hstate == node id.
2632  * This is here to avoid any static dependency of the node device driver, in
2633  * the base kernel, on the hugetlb module.
2634  */
2635 struct node_hstate {
2636         struct kobject          *hugepages_kobj;
2637         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2638 };
2639 static struct node_hstate node_hstates[MAX_NUMNODES];
2640
2641 /*
2642  * A subset of global hstate attributes for node devices
2643  */
2644 static struct attribute *per_node_hstate_attrs[] = {
2645         &nr_hugepages_attr.attr,
2646         &free_hugepages_attr.attr,
2647         &surplus_hugepages_attr.attr,
2648         NULL,
2649 };
2650
2651 static const struct attribute_group per_node_hstate_attr_group = {
2652         .attrs = per_node_hstate_attrs,
2653 };
2654
2655 /*
2656  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2657  * Returns node id via non-NULL nidp.
2658  */
2659 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2660 {
2661         int nid;
2662
2663         for (nid = 0; nid < nr_node_ids; nid++) {
2664                 struct node_hstate *nhs = &node_hstates[nid];
2665                 int i;
2666                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2667                         if (nhs->hstate_kobjs[i] == kobj) {
2668                                 if (nidp)
2669                                         *nidp = nid;
2670                                 return &hstates[i];
2671                         }
2672         }
2673
2674         BUG();
2675         return NULL;
2676 }
2677
2678 /*
2679  * Unregister hstate attributes from a single node device.
2680  * No-op if no hstate attributes attached.
2681  */
2682 static void hugetlb_unregister_node(struct node *node)
2683 {
2684         struct hstate *h;
2685         struct node_hstate *nhs = &node_hstates[node->dev.id];
2686
2687         if (!nhs->hugepages_kobj)
2688                 return;         /* no hstate attributes */
2689
2690         for_each_hstate(h) {
2691                 int idx = hstate_index(h);
2692                 if (nhs->hstate_kobjs[idx]) {
2693                         kobject_put(nhs->hstate_kobjs[idx]);
2694                         nhs->hstate_kobjs[idx] = NULL;
2695                 }
2696         }
2697
2698         kobject_put(nhs->hugepages_kobj);
2699         nhs->hugepages_kobj = NULL;
2700 }
2701
2702
2703 /*
2704  * Register hstate attributes for a single node device.
2705  * No-op if attributes already registered.
2706  */
2707 static void hugetlb_register_node(struct node *node)
2708 {
2709         struct hstate *h;
2710         struct node_hstate *nhs = &node_hstates[node->dev.id];
2711         int err;
2712
2713         if (nhs->hugepages_kobj)
2714                 return;         /* already allocated */
2715
2716         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2717                                                         &node->dev.kobj);
2718         if (!nhs->hugepages_kobj)
2719                 return;
2720
2721         for_each_hstate(h) {
2722                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2723                                                 nhs->hstate_kobjs,
2724                                                 &per_node_hstate_attr_group);
2725                 if (err) {
2726                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2727                                 h->name, node->dev.id);
2728                         hugetlb_unregister_node(node);
2729                         break;
2730                 }
2731         }
2732 }
2733
2734 /*
2735  * hugetlb init time:  register hstate attributes for all registered node
2736  * devices of nodes that have memory.  All on-line nodes should have
2737  * registered their associated device by this time.
2738  */
2739 static void __init hugetlb_register_all_nodes(void)
2740 {
2741         int nid;
2742
2743         for_each_node_state(nid, N_MEMORY) {
2744                 struct node *node = node_devices[nid];
2745                 if (node->dev.id == nid)
2746                         hugetlb_register_node(node);
2747         }
2748
2749         /*
2750          * Let the node device driver know we're here so it can
2751          * [un]register hstate attributes on node hotplug.
2752          */
2753         register_hugetlbfs_with_node(hugetlb_register_node,
2754                                      hugetlb_unregister_node);
2755 }
2756 #else   /* !CONFIG_NUMA */
2757
2758 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2759 {
2760         BUG();
2761         if (nidp)
2762                 *nidp = -1;
2763         return NULL;
2764 }
2765
2766 static void hugetlb_register_all_nodes(void) { }
2767
2768 #endif
2769
2770 static int __init hugetlb_init(void)
2771 {
2772         int i;
2773
2774         if (!hugepages_supported())
2775                 return 0;
2776
2777         if (!size_to_hstate(default_hstate_size)) {
2778                 if (default_hstate_size != 0) {
2779                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2780                                default_hstate_size, HPAGE_SIZE);
2781                 }
2782
2783                 default_hstate_size = HPAGE_SIZE;
2784                 if (!size_to_hstate(default_hstate_size))
2785                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2786         }
2787         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2788         if (default_hstate_max_huge_pages) {
2789                 if (!default_hstate.max_huge_pages)
2790                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2791         }
2792
2793         hugetlb_init_hstates();
2794         gather_bootmem_prealloc();
2795         report_hugepages();
2796
2797         hugetlb_sysfs_init();
2798         hugetlb_register_all_nodes();
2799         hugetlb_cgroup_file_init();
2800
2801 #ifdef CONFIG_SMP
2802         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2803 #else
2804         num_fault_mutexes = 1;
2805 #endif
2806         hugetlb_fault_mutex_table =
2807                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2808         BUG_ON(!hugetlb_fault_mutex_table);
2809
2810         for (i = 0; i < num_fault_mutexes; i++)
2811                 mutex_init(&hugetlb_fault_mutex_table[i]);
2812         return 0;
2813 }
2814 subsys_initcall(hugetlb_init);
2815
2816 /* Should be called on processing a hugepagesz=... option */
2817 void __init hugetlb_bad_size(void)
2818 {
2819         parsed_valid_hugepagesz = false;
2820 }
2821
2822 void __init hugetlb_add_hstate(unsigned int order)
2823 {
2824         struct hstate *h;
2825         unsigned long i;
2826
2827         if (size_to_hstate(PAGE_SIZE << order)) {
2828                 pr_warn("hugepagesz= specified twice, ignoring\n");
2829                 return;
2830         }
2831         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2832         BUG_ON(order == 0);
2833         h = &hstates[hugetlb_max_hstate++];
2834         h->order = order;
2835         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2836         h->nr_huge_pages = 0;
2837         h->free_huge_pages = 0;
2838         for (i = 0; i < MAX_NUMNODES; ++i)
2839                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2840         INIT_LIST_HEAD(&h->hugepage_activelist);
2841         h->next_nid_to_alloc = first_memory_node;
2842         h->next_nid_to_free = first_memory_node;
2843         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2844                                         huge_page_size(h)/1024);
2845
2846         parsed_hstate = h;
2847 }
2848
2849 static int __init hugetlb_nrpages_setup(char *s)
2850 {
2851         unsigned long *mhp;
2852         static unsigned long *last_mhp;
2853
2854         if (!parsed_valid_hugepagesz) {
2855                 pr_warn("hugepages = %s preceded by "
2856                         "an unsupported hugepagesz, ignoring\n", s);
2857                 parsed_valid_hugepagesz = true;
2858                 return 1;
2859         }
2860         /*
2861          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2862          * so this hugepages= parameter goes to the "default hstate".
2863          */
2864         else if (!hugetlb_max_hstate)
2865                 mhp = &default_hstate_max_huge_pages;
2866         else
2867                 mhp = &parsed_hstate->max_huge_pages;
2868
2869         if (mhp == last_mhp) {
2870                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2871                 return 1;
2872         }
2873
2874         if (sscanf(s, "%lu", mhp) <= 0)
2875                 *mhp = 0;
2876
2877         /*
2878          * Global state is always initialized later in hugetlb_init.
2879          * But we need to allocate >= MAX_ORDER hstates here early to still
2880          * use the bootmem allocator.
2881          */
2882         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2883                 hugetlb_hstate_alloc_pages(parsed_hstate);
2884
2885         last_mhp = mhp;
2886
2887         return 1;
2888 }
2889 __setup("hugepages=", hugetlb_nrpages_setup);
2890
2891 static int __init hugetlb_default_setup(char *s)
2892 {
2893         default_hstate_size = memparse(s, &s);
2894         return 1;
2895 }
2896 __setup("default_hugepagesz=", hugetlb_default_setup);
2897
2898 static unsigned int cpuset_mems_nr(unsigned int *array)
2899 {
2900         int node;
2901         unsigned int nr = 0;
2902
2903         for_each_node_mask(node, cpuset_current_mems_allowed)
2904                 nr += array[node];
2905
2906         return nr;
2907 }
2908
2909 #ifdef CONFIG_SYSCTL
2910 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2911                          struct ctl_table *table, int write,
2912                          void __user *buffer, size_t *length, loff_t *ppos)
2913 {
2914         struct hstate *h = &default_hstate;
2915         unsigned long tmp = h->max_huge_pages;
2916         int ret;
2917
2918         if (!hugepages_supported())
2919                 return -EOPNOTSUPP;
2920
2921         table->data = &tmp;
2922         table->maxlen = sizeof(unsigned long);
2923         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2924         if (ret)
2925                 goto out;
2926
2927         if (write)
2928                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2929                                                   NUMA_NO_NODE, tmp, *length);
2930 out:
2931         return ret;
2932 }
2933
2934 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2935                           void __user *buffer, size_t *length, loff_t *ppos)
2936 {
2937
2938         return hugetlb_sysctl_handler_common(false, table, write,
2939                                                         buffer, length, ppos);
2940 }
2941
2942 #ifdef CONFIG_NUMA
2943 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2944                           void __user *buffer, size_t *length, loff_t *ppos)
2945 {
2946         return hugetlb_sysctl_handler_common(true, table, write,
2947                                                         buffer, length, ppos);
2948 }
2949 #endif /* CONFIG_NUMA */
2950
2951 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2952                         void __user *buffer,
2953                         size_t *length, loff_t *ppos)
2954 {
2955         struct hstate *h = &default_hstate;
2956         unsigned long tmp;
2957         int ret;
2958
2959         if (!hugepages_supported())
2960                 return -EOPNOTSUPP;
2961
2962         tmp = h->nr_overcommit_huge_pages;
2963
2964         if (write && hstate_is_gigantic(h))
2965                 return -EINVAL;
2966
2967         table->data = &tmp;
2968         table->maxlen = sizeof(unsigned long);
2969         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2970         if (ret)
2971                 goto out;
2972
2973         if (write) {
2974                 spin_lock(&hugetlb_lock);
2975                 h->nr_overcommit_huge_pages = tmp;
2976                 spin_unlock(&hugetlb_lock);
2977         }
2978 out:
2979         return ret;
2980 }
2981
2982 #endif /* CONFIG_SYSCTL */
2983
2984 void hugetlb_report_meminfo(struct seq_file *m)
2985 {
2986         struct hstate *h;
2987         unsigned long total = 0;
2988
2989         if (!hugepages_supported())
2990                 return;
2991
2992         for_each_hstate(h) {
2993                 unsigned long count = h->nr_huge_pages;
2994
2995                 total += (PAGE_SIZE << huge_page_order(h)) * count;
2996
2997                 if (h == &default_hstate)
2998                         seq_printf(m,
2999                                    "HugePages_Total:   %5lu\n"
3000                                    "HugePages_Free:    %5lu\n"
3001                                    "HugePages_Rsvd:    %5lu\n"
3002                                    "HugePages_Surp:    %5lu\n"
3003                                    "Hugepagesize:   %8lu kB\n",
3004                                    count,
3005                                    h->free_huge_pages,
3006                                    h->resv_huge_pages,
3007                                    h->surplus_huge_pages,
3008                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3009         }
3010
3011         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3012 }
3013
3014 int hugetlb_report_node_meminfo(int nid, char *buf)
3015 {
3016         struct hstate *h = &default_hstate;
3017         if (!hugepages_supported())
3018                 return 0;
3019         return sprintf(buf,
3020                 "Node %d HugePages_Total: %5u\n"
3021                 "Node %d HugePages_Free:  %5u\n"
3022                 "Node %d HugePages_Surp:  %5u\n",
3023                 nid, h->nr_huge_pages_node[nid],
3024                 nid, h->free_huge_pages_node[nid],
3025                 nid, h->surplus_huge_pages_node[nid]);
3026 }
3027
3028 void hugetlb_show_meminfo(void)
3029 {
3030         struct hstate *h;
3031         int nid;
3032
3033         if (!hugepages_supported())
3034                 return;
3035
3036         for_each_node_state(nid, N_MEMORY)
3037                 for_each_hstate(h)
3038                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3039                                 nid,
3040                                 h->nr_huge_pages_node[nid],
3041                                 h->free_huge_pages_node[nid],
3042                                 h->surplus_huge_pages_node[nid],
3043                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3044 }
3045
3046 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3047 {
3048         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3049                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3050 }
3051
3052 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3053 unsigned long hugetlb_total_pages(void)
3054 {
3055         struct hstate *h;
3056         unsigned long nr_total_pages = 0;
3057
3058         for_each_hstate(h)
3059                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3060         return nr_total_pages;
3061 }
3062
3063 static int hugetlb_acct_memory(struct hstate *h, long delta)
3064 {
3065         int ret = -ENOMEM;
3066
3067         spin_lock(&hugetlb_lock);
3068         /*
3069          * When cpuset is configured, it breaks the strict hugetlb page
3070          * reservation as the accounting is done on a global variable. Such
3071          * reservation is completely rubbish in the presence of cpuset because
3072          * the reservation is not checked against page availability for the
3073          * current cpuset. Application can still potentially OOM'ed by kernel
3074          * with lack of free htlb page in cpuset that the task is in.
3075          * Attempt to enforce strict accounting with cpuset is almost
3076          * impossible (or too ugly) because cpuset is too fluid that
3077          * task or memory node can be dynamically moved between cpusets.
3078          *
3079          * The change of semantics for shared hugetlb mapping with cpuset is
3080          * undesirable. However, in order to preserve some of the semantics,
3081          * we fall back to check against current free page availability as
3082          * a best attempt and hopefully to minimize the impact of changing
3083          * semantics that cpuset has.
3084          */
3085         if (delta > 0) {
3086                 if (gather_surplus_pages(h, delta) < 0)
3087                         goto out;
3088
3089                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3090                         return_unused_surplus_pages(h, delta);
3091                         goto out;
3092                 }
3093         }
3094
3095         ret = 0;
3096         if (delta < 0)
3097                 return_unused_surplus_pages(h, (unsigned long) -delta);
3098
3099 out:
3100         spin_unlock(&hugetlb_lock);
3101         return ret;
3102 }
3103
3104 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3105 {
3106         struct resv_map *resv = vma_resv_map(vma);
3107
3108         /*
3109          * This new VMA should share its siblings reservation map if present.
3110          * The VMA will only ever have a valid reservation map pointer where
3111          * it is being copied for another still existing VMA.  As that VMA
3112          * has a reference to the reservation map it cannot disappear until
3113          * after this open call completes.  It is therefore safe to take a
3114          * new reference here without additional locking.
3115          */
3116         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3117                 kref_get(&resv->refs);
3118 }
3119
3120 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3121 {
3122         struct hstate *h = hstate_vma(vma);
3123         struct resv_map *resv = vma_resv_map(vma);
3124         struct hugepage_subpool *spool = subpool_vma(vma);
3125         unsigned long reserve, start, end;
3126         long gbl_reserve;
3127
3128         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3129                 return;
3130
3131         start = vma_hugecache_offset(h, vma, vma->vm_start);
3132         end = vma_hugecache_offset(h, vma, vma->vm_end);
3133
3134         reserve = (end - start) - region_count(resv, start, end);
3135
3136         kref_put(&resv->refs, resv_map_release);
3137
3138         if (reserve) {
3139                 /*
3140                  * Decrement reserve counts.  The global reserve count may be
3141                  * adjusted if the subpool has a minimum size.
3142                  */
3143                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3144                 hugetlb_acct_memory(h, -gbl_reserve);
3145         }
3146 }
3147
3148 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3149 {
3150         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3151                 return -EINVAL;
3152         return 0;
3153 }
3154
3155 /*
3156  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3157  * handle_mm_fault() to try to instantiate regular-sized pages in the
3158  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3159  * this far.
3160  */
3161 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3162 {
3163         BUG();
3164         return 0;
3165 }
3166
3167 const struct vm_operations_struct hugetlb_vm_ops = {
3168         .fault = hugetlb_vm_op_fault,
3169         .open = hugetlb_vm_op_open,
3170         .close = hugetlb_vm_op_close,
3171         .split = hugetlb_vm_op_split,
3172 };
3173
3174 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3175                                 int writable)
3176 {
3177         pte_t entry;
3178
3179         if (writable) {
3180                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3181                                          vma->vm_page_prot)));
3182         } else {
3183                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3184                                            vma->vm_page_prot));
3185         }
3186         entry = pte_mkyoung(entry);
3187         entry = pte_mkhuge(entry);
3188         entry = arch_make_huge_pte(entry, vma, page, writable);
3189
3190         return entry;
3191 }
3192
3193 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3194                                    unsigned long address, pte_t *ptep)
3195 {
3196         pte_t entry;
3197
3198         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3199         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3200                 update_mmu_cache(vma, address, ptep);
3201 }
3202
3203 bool is_hugetlb_entry_migration(pte_t pte)
3204 {
3205         swp_entry_t swp;
3206
3207         if (huge_pte_none(pte) || pte_present(pte))
3208                 return false;
3209         swp = pte_to_swp_entry(pte);
3210         if (non_swap_entry(swp) && is_migration_entry(swp))
3211                 return true;
3212         else
3213                 return false;
3214 }
3215
3216 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3217 {
3218         swp_entry_t swp;
3219
3220         if (huge_pte_none(pte) || pte_present(pte))
3221                 return 0;
3222         swp = pte_to_swp_entry(pte);
3223         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3224                 return 1;
3225         else
3226                 return 0;
3227 }
3228
3229 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3230                             struct vm_area_struct *vma)
3231 {
3232         pte_t *src_pte, *dst_pte, entry;
3233         struct page *ptepage;
3234         unsigned long addr;
3235         int cow;
3236         struct hstate *h = hstate_vma(vma);
3237         unsigned long sz = huge_page_size(h);
3238         unsigned long mmun_start;       /* For mmu_notifiers */
3239         unsigned long mmun_end;         /* For mmu_notifiers */
3240         int ret = 0;
3241
3242         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3243
3244         mmun_start = vma->vm_start;
3245         mmun_end = vma->vm_end;
3246         if (cow)
3247                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3248
3249         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3250                 spinlock_t *src_ptl, *dst_ptl;
3251                 src_pte = huge_pte_offset(src, addr, sz);
3252                 if (!src_pte)
3253                         continue;
3254                 dst_pte = huge_pte_alloc(dst, addr, sz);
3255                 if (!dst_pte) {
3256                         ret = -ENOMEM;
3257                         break;
3258                 }
3259
3260                 /* If the pagetables are shared don't copy or take references */
3261                 if (dst_pte == src_pte)
3262                         continue;
3263
3264                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3265                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3266                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3267                 entry = huge_ptep_get(src_pte);
3268                 if (huge_pte_none(entry)) { /* skip none entry */
3269                         ;
3270                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3271                                     is_hugetlb_entry_hwpoisoned(entry))) {
3272                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3273
3274                         if (is_write_migration_entry(swp_entry) && cow) {
3275                                 /*
3276                                  * COW mappings require pages in both
3277                                  * parent and child to be set to read.
3278                                  */
3279                                 make_migration_entry_read(&swp_entry);
3280                                 entry = swp_entry_to_pte(swp_entry);
3281                                 set_huge_swap_pte_at(src, addr, src_pte,
3282                                                      entry, sz);
3283                         }
3284                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3285                 } else {
3286                         if (cow) {
3287                                 /*
3288                                  * No need to notify as we are downgrading page
3289                                  * table protection not changing it to point
3290                                  * to a new page.
3291                                  *
3292                                  * See Documentation/vm/mmu_notifier.txt
3293                                  */
3294                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3295                         }
3296                         entry = huge_ptep_get(src_pte);
3297                         ptepage = pte_page(entry);
3298                         get_page(ptepage);
3299                         page_dup_rmap(ptepage, true);
3300                         set_huge_pte_at(dst, addr, dst_pte, entry);
3301                         hugetlb_count_add(pages_per_huge_page(h), dst);
3302                 }
3303                 spin_unlock(src_ptl);
3304                 spin_unlock(dst_ptl);
3305         }
3306
3307         if (cow)
3308                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3309
3310         return ret;
3311 }
3312
3313 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3314                             unsigned long start, unsigned long end,
3315                             struct page *ref_page)
3316 {
3317         struct mm_struct *mm = vma->vm_mm;
3318         unsigned long address;
3319         pte_t *ptep;
3320         pte_t pte;
3321         spinlock_t *ptl;
3322         struct page *page;
3323         struct hstate *h = hstate_vma(vma);
3324         unsigned long sz = huge_page_size(h);
3325         const unsigned long mmun_start = start; /* For mmu_notifiers */
3326         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3327
3328         WARN_ON(!is_vm_hugetlb_page(vma));
3329         BUG_ON(start & ~huge_page_mask(h));
3330         BUG_ON(end & ~huge_page_mask(h));
3331
3332         /*
3333          * This is a hugetlb vma, all the pte entries should point
3334          * to huge page.
3335          */
3336         tlb_remove_check_page_size_change(tlb, sz);
3337         tlb_start_vma(tlb, vma);
3338         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3339         address = start;
3340         for (; address < end; address += sz) {
3341                 ptep = huge_pte_offset(mm, address, sz);
3342                 if (!ptep)
3343                         continue;
3344
3345                 ptl = huge_pte_lock(h, mm, ptep);
3346                 if (huge_pmd_unshare(mm, &address, ptep)) {
3347                         spin_unlock(ptl);
3348                         continue;
3349                 }
3350
3351                 pte = huge_ptep_get(ptep);
3352                 if (huge_pte_none(pte)) {
3353                         spin_unlock(ptl);
3354                         continue;
3355                 }
3356
3357                 /*
3358                  * Migrating hugepage or HWPoisoned hugepage is already
3359                  * unmapped and its refcount is dropped, so just clear pte here.
3360                  */
3361                 if (unlikely(!pte_present(pte))) {
3362                         huge_pte_clear(mm, address, ptep, sz);
3363                         spin_unlock(ptl);
3364                         continue;
3365                 }
3366
3367                 page = pte_page(pte);
3368                 /*
3369                  * If a reference page is supplied, it is because a specific
3370                  * page is being unmapped, not a range. Ensure the page we
3371                  * are about to unmap is the actual page of interest.
3372                  */
3373                 if (ref_page) {
3374                         if (page != ref_page) {
3375                                 spin_unlock(ptl);
3376                                 continue;
3377                         }
3378                         /*
3379                          * Mark the VMA as having unmapped its page so that
3380                          * future faults in this VMA will fail rather than
3381                          * looking like data was lost
3382                          */
3383                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3384                 }
3385
3386                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3387                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3388                 if (huge_pte_dirty(pte))
3389                         set_page_dirty(page);
3390
3391                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3392                 page_remove_rmap(page, true);
3393
3394                 spin_unlock(ptl);
3395                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3396                 /*
3397                  * Bail out after unmapping reference page if supplied
3398                  */
3399                 if (ref_page)
3400                         break;
3401         }
3402         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3403         tlb_end_vma(tlb, vma);
3404 }
3405
3406 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3407                           struct vm_area_struct *vma, unsigned long start,
3408                           unsigned long end, struct page *ref_page)
3409 {
3410         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3411
3412         /*
3413          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3414          * test will fail on a vma being torn down, and not grab a page table
3415          * on its way out.  We're lucky that the flag has such an appropriate
3416          * name, and can in fact be safely cleared here. We could clear it
3417          * before the __unmap_hugepage_range above, but all that's necessary
3418          * is to clear it before releasing the i_mmap_rwsem. This works
3419          * because in the context this is called, the VMA is about to be
3420          * destroyed and the i_mmap_rwsem is held.
3421          */
3422         vma->vm_flags &= ~VM_MAYSHARE;
3423 }
3424
3425 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3426                           unsigned long end, struct page *ref_page)
3427 {
3428         struct mm_struct *mm;
3429         struct mmu_gather tlb;
3430
3431         mm = vma->vm_mm;
3432
3433         tlb_gather_mmu(&tlb, mm, start, end);
3434         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3435         tlb_finish_mmu(&tlb, start, end);
3436 }
3437
3438 /*
3439  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3440  * mappping it owns the reserve page for. The intention is to unmap the page
3441  * from other VMAs and let the children be SIGKILLed if they are faulting the
3442  * same region.
3443  */
3444 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3445                               struct page *page, unsigned long address)
3446 {
3447         struct hstate *h = hstate_vma(vma);
3448         struct vm_area_struct *iter_vma;
3449         struct address_space *mapping;
3450         pgoff_t pgoff;
3451
3452         /*
3453          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3454          * from page cache lookup which is in HPAGE_SIZE units.
3455          */
3456         address = address & huge_page_mask(h);
3457         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3458                         vma->vm_pgoff;
3459         mapping = vma->vm_file->f_mapping;
3460
3461         /*
3462          * Take the mapping lock for the duration of the table walk. As
3463          * this mapping should be shared between all the VMAs,
3464          * __unmap_hugepage_range() is called as the lock is already held
3465          */
3466         i_mmap_lock_write(mapping);
3467         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3468                 /* Do not unmap the current VMA */
3469                 if (iter_vma == vma)
3470                         continue;
3471
3472                 /*
3473                  * Shared VMAs have their own reserves and do not affect
3474                  * MAP_PRIVATE accounting but it is possible that a shared
3475                  * VMA is using the same page so check and skip such VMAs.
3476                  */
3477                 if (iter_vma->vm_flags & VM_MAYSHARE)
3478                         continue;
3479
3480                 /*
3481                  * Unmap the page from other VMAs without their own reserves.
3482                  * They get marked to be SIGKILLed if they fault in these
3483                  * areas. This is because a future no-page fault on this VMA
3484                  * could insert a zeroed page instead of the data existing
3485                  * from the time of fork. This would look like data corruption
3486                  */
3487                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3488                         unmap_hugepage_range(iter_vma, address,
3489                                              address + huge_page_size(h), page);
3490         }
3491         i_mmap_unlock_write(mapping);
3492 }
3493
3494 /*
3495  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3496  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3497  * cannot race with other handlers or page migration.
3498  * Keep the pte_same checks anyway to make transition from the mutex easier.
3499  */
3500 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3501                        unsigned long address, pte_t *ptep,
3502                        struct page *pagecache_page, spinlock_t *ptl)
3503 {
3504         pte_t pte;
3505         struct hstate *h = hstate_vma(vma);
3506         struct page *old_page, *new_page;
3507         int ret = 0, outside_reserve = 0;
3508         unsigned long mmun_start;       /* For mmu_notifiers */
3509         unsigned long mmun_end;         /* For mmu_notifiers */
3510
3511         pte = huge_ptep_get(ptep);
3512         old_page = pte_page(pte);
3513
3514 retry_avoidcopy:
3515         /* If no-one else is actually using this page, avoid the copy
3516          * and just make the page writable */
3517         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3518                 page_move_anon_rmap(old_page, vma);
3519                 set_huge_ptep_writable(vma, address, ptep);
3520                 return 0;
3521         }
3522
3523         /*
3524          * If the process that created a MAP_PRIVATE mapping is about to
3525          * perform a COW due to a shared page count, attempt to satisfy
3526          * the allocation without using the existing reserves. The pagecache
3527          * page is used to determine if the reserve at this address was
3528          * consumed or not. If reserves were used, a partial faulted mapping
3529          * at the time of fork() could consume its reserves on COW instead
3530          * of the full address range.
3531          */
3532         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3533                         old_page != pagecache_page)
3534                 outside_reserve = 1;
3535
3536         get_page(old_page);
3537
3538         /*
3539          * Drop page table lock as buddy allocator may be called. It will
3540          * be acquired again before returning to the caller, as expected.
3541          */
3542         spin_unlock(ptl);
3543         new_page = alloc_huge_page(vma, address, outside_reserve);
3544
3545         if (IS_ERR(new_page)) {
3546                 /*
3547                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3548                  * it is due to references held by a child and an insufficient
3549                  * huge page pool. To guarantee the original mappers
3550                  * reliability, unmap the page from child processes. The child
3551                  * may get SIGKILLed if it later faults.
3552                  */
3553                 if (outside_reserve) {
3554                         put_page(old_page);
3555                         BUG_ON(huge_pte_none(pte));
3556                         unmap_ref_private(mm, vma, old_page, address);
3557                         BUG_ON(huge_pte_none(pte));
3558                         spin_lock(ptl);
3559                         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3560                                                huge_page_size(h));
3561                         if (likely(ptep &&
3562                                    pte_same(huge_ptep_get(ptep), pte)))
3563                                 goto retry_avoidcopy;
3564                         /*
3565                          * race occurs while re-acquiring page table
3566                          * lock, and our job is done.
3567                          */
3568                         return 0;
3569                 }
3570
3571                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3572                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3573                 goto out_release_old;
3574         }
3575
3576         /*
3577          * When the original hugepage is shared one, it does not have
3578          * anon_vma prepared.
3579          */
3580         if (unlikely(anon_vma_prepare(vma))) {
3581                 ret = VM_FAULT_OOM;
3582                 goto out_release_all;
3583         }
3584
3585         copy_user_huge_page(new_page, old_page, address, vma,
3586                             pages_per_huge_page(h));
3587         __SetPageUptodate(new_page);
3588         set_page_huge_active(new_page);
3589
3590         mmun_start = address & huge_page_mask(h);
3591         mmun_end = mmun_start + huge_page_size(h);
3592         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3593
3594         /*
3595          * Retake the page table lock to check for racing updates
3596          * before the page tables are altered
3597          */
3598         spin_lock(ptl);
3599         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3600                                huge_page_size(h));
3601         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3602                 ClearPagePrivate(new_page);
3603
3604                 /* Break COW */
3605                 huge_ptep_clear_flush(vma, address, ptep);
3606                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3607                 set_huge_pte_at(mm, address, ptep,
3608                                 make_huge_pte(vma, new_page, 1));
3609                 page_remove_rmap(old_page, true);
3610                 hugepage_add_new_anon_rmap(new_page, vma, address);
3611                 /* Make the old page be freed below */
3612                 new_page = old_page;
3613         }
3614         spin_unlock(ptl);
3615         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3616 out_release_all:
3617         restore_reserve_on_error(h, vma, address, new_page);
3618         put_page(new_page);
3619 out_release_old:
3620         put_page(old_page);
3621
3622         spin_lock(ptl); /* Caller expects lock to be held */
3623         return ret;
3624 }
3625
3626 /* Return the pagecache page at a given address within a VMA */
3627 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3628                         struct vm_area_struct *vma, unsigned long address)
3629 {
3630         struct address_space *mapping;
3631         pgoff_t idx;
3632
3633         mapping = vma->vm_file->f_mapping;
3634         idx = vma_hugecache_offset(h, vma, address);
3635
3636         return find_lock_page(mapping, idx);
3637 }
3638
3639 /*
3640  * Return whether there is a pagecache page to back given address within VMA.
3641  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3642  */
3643 static bool hugetlbfs_pagecache_present(struct hstate *h,
3644                         struct vm_area_struct *vma, unsigned long address)
3645 {
3646         struct address_space *mapping;
3647         pgoff_t idx;
3648         struct page *page;
3649
3650         mapping = vma->vm_file->f_mapping;
3651         idx = vma_hugecache_offset(h, vma, address);
3652
3653         page = find_get_page(mapping, idx);
3654         if (page)
3655                 put_page(page);
3656         return page != NULL;
3657 }
3658
3659 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3660                            pgoff_t idx)
3661 {
3662         struct inode *inode = mapping->host;
3663         struct hstate *h = hstate_inode(inode);
3664         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3665
3666         if (err)
3667                 return err;
3668         ClearPagePrivate(page);
3669
3670         spin_lock(&inode->i_lock);
3671         inode->i_blocks += blocks_per_huge_page(h);
3672         spin_unlock(&inode->i_lock);
3673         return 0;
3674 }
3675
3676 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3677                            struct address_space *mapping, pgoff_t idx,
3678                            unsigned long address, pte_t *ptep, unsigned int flags)
3679 {
3680         struct hstate *h = hstate_vma(vma);
3681         int ret = VM_FAULT_SIGBUS;
3682         int anon_rmap = 0;
3683         unsigned long size;
3684         struct page *page;
3685         pte_t new_pte;
3686         spinlock_t *ptl;
3687
3688         /*
3689          * Currently, we are forced to kill the process in the event the
3690          * original mapper has unmapped pages from the child due to a failed
3691          * COW. Warn that such a situation has occurred as it may not be obvious
3692          */
3693         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3694                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3695                            current->pid);
3696                 return ret;
3697         }
3698
3699         /*
3700          * Use page lock to guard against racing truncation
3701          * before we get page_table_lock.
3702          */
3703 retry:
3704         page = find_lock_page(mapping, idx);
3705         if (!page) {
3706                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3707                 if (idx >= size)
3708                         goto out;
3709
3710                 /*
3711                  * Check for page in userfault range
3712                  */
3713                 if (userfaultfd_missing(vma)) {
3714                         u32 hash;
3715                         struct vm_fault vmf = {
3716                                 .vma = vma,
3717                                 .address = address,
3718                                 .flags = flags,
3719                                 /*
3720                                  * Hard to debug if it ends up being
3721                                  * used by a callee that assumes
3722                                  * something about the other
3723                                  * uninitialized fields... same as in
3724                                  * memory.c
3725                                  */
3726                         };
3727
3728                         /*
3729                          * hugetlb_fault_mutex must be dropped before
3730                          * handling userfault.  Reacquire after handling
3731                          * fault to make calling code simpler.
3732                          */
3733                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3734                                                         idx, address);
3735                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3736                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3737                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3738                         goto out;
3739                 }
3740
3741                 page = alloc_huge_page(vma, address, 0);
3742                 if (IS_ERR(page)) {
3743                         ret = PTR_ERR(page);
3744                         if (ret == -ENOMEM)
3745                                 ret = VM_FAULT_OOM;
3746                         else
3747                                 ret = VM_FAULT_SIGBUS;
3748                         goto out;
3749                 }
3750                 clear_huge_page(page, address, pages_per_huge_page(h));
3751                 __SetPageUptodate(page);
3752                 set_page_huge_active(page);
3753
3754                 if (vma->vm_flags & VM_MAYSHARE) {
3755                         int err = huge_add_to_page_cache(page, mapping, idx);
3756                         if (err) {
3757                                 put_page(page);
3758                                 if (err == -EEXIST)
3759                                         goto retry;
3760                                 goto out;
3761                         }
3762                 } else {
3763                         lock_page(page);
3764                         if (unlikely(anon_vma_prepare(vma))) {
3765                                 ret = VM_FAULT_OOM;
3766                                 goto backout_unlocked;
3767                         }
3768                         anon_rmap = 1;
3769                 }
3770         } else {
3771                 /*
3772                  * If memory error occurs between mmap() and fault, some process
3773                  * don't have hwpoisoned swap entry for errored virtual address.
3774                  * So we need to block hugepage fault by PG_hwpoison bit check.
3775                  */
3776                 if (unlikely(PageHWPoison(page))) {
3777                         ret = VM_FAULT_HWPOISON |
3778                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3779                         goto backout_unlocked;
3780                 }
3781         }
3782
3783         /*
3784          * If we are going to COW a private mapping later, we examine the
3785          * pending reservations for this page now. This will ensure that
3786          * any allocations necessary to record that reservation occur outside
3787          * the spinlock.
3788          */
3789         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3790                 if (vma_needs_reservation(h, vma, address) < 0) {
3791                         ret = VM_FAULT_OOM;
3792                         goto backout_unlocked;
3793                 }
3794                 /* Just decrements count, does not deallocate */
3795                 vma_end_reservation(h, vma, address);
3796         }
3797
3798         ptl = huge_pte_lock(h, mm, ptep);
3799         size = i_size_read(mapping->host) >> huge_page_shift(h);
3800         if (idx >= size)
3801                 goto backout;
3802
3803         ret = 0;
3804         if (!huge_pte_none(huge_ptep_get(ptep)))
3805                 goto backout;
3806
3807         if (anon_rmap) {
3808                 ClearPagePrivate(page);
3809                 hugepage_add_new_anon_rmap(page, vma, address);
3810         } else
3811                 page_dup_rmap(page, true);
3812         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3813                                 && (vma->vm_flags & VM_SHARED)));
3814         set_huge_pte_at(mm, address, ptep, new_pte);
3815
3816         hugetlb_count_add(pages_per_huge_page(h), mm);
3817         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3818                 /* Optimization, do the COW without a second fault */
3819                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3820         }
3821
3822         spin_unlock(ptl);
3823         unlock_page(page);
3824 out:
3825         return ret;
3826
3827 backout:
3828         spin_unlock(ptl);
3829 backout_unlocked:
3830         unlock_page(page);
3831         restore_reserve_on_error(h, vma, address, page);
3832         put_page(page);
3833         goto out;
3834 }
3835
3836 #ifdef CONFIG_SMP
3837 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3838                             struct vm_area_struct *vma,
3839                             struct address_space *mapping,
3840                             pgoff_t idx, unsigned long address)
3841 {
3842         unsigned long key[2];
3843         u32 hash;
3844
3845         if (vma->vm_flags & VM_SHARED) {
3846                 key[0] = (unsigned long) mapping;
3847                 key[1] = idx;
3848         } else {
3849                 key[0] = (unsigned long) mm;
3850                 key[1] = address >> huge_page_shift(h);
3851         }
3852
3853         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3854
3855         return hash & (num_fault_mutexes - 1);
3856 }
3857 #else
3858 /*
3859  * For uniprocesor systems we always use a single mutex, so just
3860  * return 0 and avoid the hashing overhead.
3861  */
3862 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3863                             struct vm_area_struct *vma,
3864                             struct address_space *mapping,
3865                             pgoff_t idx, unsigned long address)
3866 {
3867         return 0;
3868 }
3869 #endif
3870
3871 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3872                         unsigned long address, unsigned int flags)
3873 {
3874         pte_t *ptep, entry;
3875         spinlock_t *ptl;
3876         int ret;
3877         u32 hash;
3878         pgoff_t idx;
3879         struct page *page = NULL;
3880         struct page *pagecache_page = NULL;
3881         struct hstate *h = hstate_vma(vma);
3882         struct address_space *mapping;
3883         int need_wait_lock = 0;
3884
3885         address &= huge_page_mask(h);
3886
3887         ptep = huge_pte_offset(mm, address, huge_page_size(h));
3888         if (ptep) {
3889                 entry = huge_ptep_get(ptep);
3890                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3891                         migration_entry_wait_huge(vma, mm, ptep);
3892                         return 0;
3893                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3894                         return VM_FAULT_HWPOISON_LARGE |
3895                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3896         } else {
3897                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3898                 if (!ptep)
3899                         return VM_FAULT_OOM;
3900         }
3901
3902         mapping = vma->vm_file->f_mapping;
3903         idx = vma_hugecache_offset(h, vma, address);
3904
3905         /*
3906          * Serialize hugepage allocation and instantiation, so that we don't
3907          * get spurious allocation failures if two CPUs race to instantiate
3908          * the same page in the page cache.
3909          */
3910         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3911         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3912
3913         entry = huge_ptep_get(ptep);
3914         if (huge_pte_none(entry)) {
3915                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3916                 goto out_mutex;
3917         }
3918
3919         ret = 0;
3920
3921         /*
3922          * entry could be a migration/hwpoison entry at this point, so this
3923          * check prevents the kernel from going below assuming that we have
3924          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3925          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3926          * handle it.
3927          */
3928         if (!pte_present(entry))
3929                 goto out_mutex;
3930
3931         /*
3932          * If we are going to COW the mapping later, we examine the pending
3933          * reservations for this page now. This will ensure that any
3934          * allocations necessary to record that reservation occur outside the
3935          * spinlock. For private mappings, we also lookup the pagecache
3936          * page now as it is used to determine if a reservation has been
3937          * consumed.
3938          */
3939         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3940                 if (vma_needs_reservation(h, vma, address) < 0) {
3941                         ret = VM_FAULT_OOM;
3942                         goto out_mutex;
3943                 }
3944                 /* Just decrements count, does not deallocate */
3945                 vma_end_reservation(h, vma, address);
3946
3947                 if (!(vma->vm_flags & VM_MAYSHARE))
3948                         pagecache_page = hugetlbfs_pagecache_page(h,
3949                                                                 vma, address);
3950         }
3951
3952         ptl = huge_pte_lock(h, mm, ptep);
3953
3954         /* Check for a racing update before calling hugetlb_cow */
3955         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3956                 goto out_ptl;
3957
3958         /*
3959          * hugetlb_cow() requires page locks of pte_page(entry) and
3960          * pagecache_page, so here we need take the former one
3961          * when page != pagecache_page or !pagecache_page.
3962          */
3963         page = pte_page(entry);
3964         if (page != pagecache_page)
3965                 if (!trylock_page(page)) {
3966                         need_wait_lock = 1;
3967                         goto out_ptl;
3968                 }
3969
3970         get_page(page);
3971
3972         if (flags & FAULT_FLAG_WRITE) {
3973                 if (!huge_pte_write(entry)) {
3974                         ret = hugetlb_cow(mm, vma, address, ptep,
3975                                           pagecache_page, ptl);
3976                         goto out_put_page;
3977                 }
3978                 entry = huge_pte_mkdirty(entry);
3979         }
3980         entry = pte_mkyoung(entry);
3981         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3982                                                 flags & FAULT_FLAG_WRITE))
3983                 update_mmu_cache(vma, address, ptep);
3984 out_put_page:
3985         if (page != pagecache_page)
3986                 unlock_page(page);
3987         put_page(page);
3988 out_ptl:
3989         spin_unlock(ptl);
3990
3991         if (pagecache_page) {
3992                 unlock_page(pagecache_page);
3993                 put_page(pagecache_page);
3994         }
3995 out_mutex:
3996         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3997         /*
3998          * Generally it's safe to hold refcount during waiting page lock. But
3999          * here we just wait to defer the next page fault to avoid busy loop and
4000          * the page is not used after unlocked before returning from the current
4001          * page fault. So we are safe from accessing freed page, even if we wait
4002          * here without taking refcount.
4003          */
4004         if (need_wait_lock)
4005                 wait_on_page_locked(page);
4006         return ret;
4007 }
4008
4009 /*
4010  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4011  * modifications for huge pages.
4012  */
4013 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4014                             pte_t *dst_pte,
4015                             struct vm_area_struct *dst_vma,
4016                             unsigned long dst_addr,
4017                             unsigned long src_addr,
4018                             struct page **pagep)
4019 {
4020         struct address_space *mapping;
4021         pgoff_t idx;
4022         unsigned long size;
4023         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4024         struct hstate *h = hstate_vma(dst_vma);
4025         pte_t _dst_pte;
4026         spinlock_t *ptl;
4027         int ret;
4028         struct page *page;
4029
4030         if (!*pagep) {
4031                 ret = -ENOMEM;
4032                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4033                 if (IS_ERR(page))
4034                         goto out;
4035
4036                 ret = copy_huge_page_from_user(page,
4037                                                 (const void __user *) src_addr,
4038                                                 pages_per_huge_page(h), false);
4039
4040                 /* fallback to copy_from_user outside mmap_sem */
4041                 if (unlikely(ret)) {
4042                         ret = -EFAULT;
4043                         *pagep = page;
4044                         /* don't free the page */
4045                         goto out;
4046                 }
4047         } else {
4048                 page = *pagep;
4049                 *pagep = NULL;
4050         }
4051
4052         /*
4053          * The memory barrier inside __SetPageUptodate makes sure that
4054          * preceding stores to the page contents become visible before
4055          * the set_pte_at() write.
4056          */
4057         __SetPageUptodate(page);
4058         set_page_huge_active(page);
4059
4060         mapping = dst_vma->vm_file->f_mapping;
4061         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4062
4063         /*
4064          * If shared, add to page cache
4065          */
4066         if (vm_shared) {
4067                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4068                 ret = -EFAULT;
4069                 if (idx >= size)
4070                         goto out_release_nounlock;
4071
4072                 /*
4073                  * Serialization between remove_inode_hugepages() and
4074                  * huge_add_to_page_cache() below happens through the
4075                  * hugetlb_fault_mutex_table that here must be hold by
4076                  * the caller.
4077                  */
4078                 ret = huge_add_to_page_cache(page, mapping, idx);
4079                 if (ret)
4080                         goto out_release_nounlock;
4081         }
4082
4083         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4084         spin_lock(ptl);
4085
4086         /*
4087          * Recheck the i_size after holding PT lock to make sure not
4088          * to leave any page mapped (as page_mapped()) beyond the end
4089          * of the i_size (remove_inode_hugepages() is strict about
4090          * enforcing that). If we bail out here, we'll also leave a
4091          * page in the radix tree in the vm_shared case beyond the end
4092          * of the i_size, but remove_inode_hugepages() will take care
4093          * of it as soon as we drop the hugetlb_fault_mutex_table.
4094          */
4095         size = i_size_read(mapping->host) >> huge_page_shift(h);
4096         ret = -EFAULT;
4097         if (idx >= size)
4098                 goto out_release_unlock;
4099
4100         ret = -EEXIST;
4101         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4102                 goto out_release_unlock;
4103
4104         if (vm_shared) {
4105                 page_dup_rmap(page, true);
4106         } else {
4107                 ClearPagePrivate(page);
4108                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4109         }
4110
4111         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4112         if (dst_vma->vm_flags & VM_WRITE)
4113                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4114         _dst_pte = pte_mkyoung(_dst_pte);
4115
4116         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4117
4118         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4119                                         dst_vma->vm_flags & VM_WRITE);
4120         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4121
4122         /* No need to invalidate - it was non-present before */
4123         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4124
4125         spin_unlock(ptl);
4126         if (vm_shared)
4127                 unlock_page(page);
4128         ret = 0;
4129 out:
4130         return ret;
4131 out_release_unlock:
4132         spin_unlock(ptl);
4133         if (vm_shared)
4134                 unlock_page(page);
4135 out_release_nounlock:
4136         put_page(page);
4137         goto out;
4138 }
4139
4140 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4141                          struct page **pages, struct vm_area_struct **vmas,
4142                          unsigned long *position, unsigned long *nr_pages,
4143                          long i, unsigned int flags, int *nonblocking)
4144 {
4145         unsigned long pfn_offset;
4146         unsigned long vaddr = *position;
4147         unsigned long remainder = *nr_pages;
4148         struct hstate *h = hstate_vma(vma);
4149         int err = -EFAULT;
4150
4151         while (vaddr < vma->vm_end && remainder) {
4152                 pte_t *pte;
4153                 spinlock_t *ptl = NULL;
4154                 int absent;
4155                 struct page *page;
4156
4157                 /*
4158                  * If we have a pending SIGKILL, don't keep faulting pages and
4159                  * potentially allocating memory.
4160                  */
4161                 if (unlikely(fatal_signal_pending(current))) {
4162                         remainder = 0;
4163                         break;
4164                 }
4165
4166                 /*
4167                  * Some archs (sparc64, sh*) have multiple pte_ts to
4168                  * each hugepage.  We have to make sure we get the
4169                  * first, for the page indexing below to work.
4170                  *
4171                  * Note that page table lock is not held when pte is null.
4172                  */
4173                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4174                                       huge_page_size(h));
4175                 if (pte)
4176                         ptl = huge_pte_lock(h, mm, pte);
4177                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4178
4179                 /*
4180                  * When coredumping, it suits get_dump_page if we just return
4181                  * an error where there's an empty slot with no huge pagecache
4182                  * to back it.  This way, we avoid allocating a hugepage, and
4183                  * the sparse dumpfile avoids allocating disk blocks, but its
4184                  * huge holes still show up with zeroes where they need to be.
4185                  */
4186                 if (absent && (flags & FOLL_DUMP) &&
4187                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4188                         if (pte)
4189                                 spin_unlock(ptl);
4190                         remainder = 0;
4191                         break;
4192                 }
4193
4194                 /*
4195                  * We need call hugetlb_fault for both hugepages under migration
4196                  * (in which case hugetlb_fault waits for the migration,) and
4197                  * hwpoisoned hugepages (in which case we need to prevent the
4198                  * caller from accessing to them.) In order to do this, we use
4199                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4200                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4201                  * both cases, and because we can't follow correct pages
4202                  * directly from any kind of swap entries.
4203                  */
4204                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4205                     ((flags & FOLL_WRITE) &&
4206                       !huge_pte_write(huge_ptep_get(pte)))) {
4207                         int ret;
4208                         unsigned int fault_flags = 0;
4209
4210                         if (pte)
4211                                 spin_unlock(ptl);
4212                         if (flags & FOLL_WRITE)
4213                                 fault_flags |= FAULT_FLAG_WRITE;
4214                         if (nonblocking)
4215                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4216                         if (flags & FOLL_NOWAIT)
4217                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4218                                         FAULT_FLAG_RETRY_NOWAIT;
4219                         if (flags & FOLL_TRIED) {
4220                                 VM_WARN_ON_ONCE(fault_flags &
4221                                                 FAULT_FLAG_ALLOW_RETRY);
4222                                 fault_flags |= FAULT_FLAG_TRIED;
4223                         }
4224                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4225                         if (ret & VM_FAULT_ERROR) {
4226                                 err = vm_fault_to_errno(ret, flags);
4227                                 remainder = 0;
4228                                 break;
4229                         }
4230                         if (ret & VM_FAULT_RETRY) {
4231                                 if (nonblocking)
4232                                         *nonblocking = 0;
4233                                 *nr_pages = 0;
4234                                 /*
4235                                  * VM_FAULT_RETRY must not return an
4236                                  * error, it will return zero
4237                                  * instead.
4238                                  *
4239                                  * No need to update "position" as the
4240                                  * caller will not check it after
4241                                  * *nr_pages is set to 0.
4242                                  */
4243                                 return i;
4244                         }
4245                         continue;
4246                 }
4247
4248                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4249                 page = pte_page(huge_ptep_get(pte));
4250 same_page:
4251                 if (pages) {
4252                         pages[i] = mem_map_offset(page, pfn_offset);
4253                         get_page(pages[i]);
4254                 }
4255
4256                 if (vmas)
4257                         vmas[i] = vma;
4258
4259                 vaddr += PAGE_SIZE;
4260                 ++pfn_offset;
4261                 --remainder;
4262                 ++i;
4263                 if (vaddr < vma->vm_end && remainder &&
4264                                 pfn_offset < pages_per_huge_page(h)) {
4265                         /*
4266                          * We use pfn_offset to avoid touching the pageframes
4267                          * of this compound page.
4268                          */
4269                         goto same_page;
4270                 }
4271                 spin_unlock(ptl);
4272         }
4273         *nr_pages = remainder;
4274         /*
4275          * setting position is actually required only if remainder is
4276          * not zero but it's faster not to add a "if (remainder)"
4277          * branch.
4278          */
4279         *position = vaddr;
4280
4281         return i ? i : err;
4282 }
4283
4284 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4285 /*
4286  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4287  * implement this.
4288  */
4289 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4290 #endif
4291
4292 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4293                 unsigned long address, unsigned long end, pgprot_t newprot)
4294 {
4295         struct mm_struct *mm = vma->vm_mm;
4296         unsigned long start = address;
4297         pte_t *ptep;
4298         pte_t pte;
4299         struct hstate *h = hstate_vma(vma);
4300         unsigned long pages = 0;
4301
4302         BUG_ON(address >= end);
4303         flush_cache_range(vma, address, end);
4304
4305         mmu_notifier_invalidate_range_start(mm, start, end);
4306         i_mmap_lock_write(vma->vm_file->f_mapping);
4307         for (; address < end; address += huge_page_size(h)) {
4308                 spinlock_t *ptl;
4309                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4310                 if (!ptep)
4311                         continue;
4312                 ptl = huge_pte_lock(h, mm, ptep);
4313                 if (huge_pmd_unshare(mm, &address, ptep)) {
4314                         pages++;
4315                         spin_unlock(ptl);
4316                         continue;
4317                 }
4318                 pte = huge_ptep_get(ptep);
4319                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4320                         spin_unlock(ptl);
4321                         continue;
4322                 }
4323                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4324                         swp_entry_t entry = pte_to_swp_entry(pte);
4325
4326                         if (is_write_migration_entry(entry)) {
4327                                 pte_t newpte;
4328
4329                                 make_migration_entry_read(&entry);
4330                                 newpte = swp_entry_to_pte(entry);
4331                                 set_huge_swap_pte_at(mm, address, ptep,
4332                                                      newpte, huge_page_size(h));
4333                                 pages++;
4334                         }
4335                         spin_unlock(ptl);
4336                         continue;
4337                 }
4338                 if (!huge_pte_none(pte)) {
4339                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4340                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4341                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4342                         set_huge_pte_at(mm, address, ptep, pte);
4343                         pages++;
4344                 }
4345                 spin_unlock(ptl);
4346         }
4347         /*
4348          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4349          * may have cleared our pud entry and done put_page on the page table:
4350          * once we release i_mmap_rwsem, another task can do the final put_page
4351          * and that page table be reused and filled with junk.
4352          */
4353         flush_hugetlb_tlb_range(vma, start, end);
4354         /*
4355          * No need to call mmu_notifier_invalidate_range() we are downgrading
4356          * page table protection not changing it to point to a new page.
4357          *
4358          * See Documentation/vm/mmu_notifier.txt
4359          */
4360         i_mmap_unlock_write(vma->vm_file->f_mapping);
4361         mmu_notifier_invalidate_range_end(mm, start, end);
4362
4363         return pages << h->order;
4364 }
4365
4366 int hugetlb_reserve_pages(struct inode *inode,
4367                                         long from, long to,
4368                                         struct vm_area_struct *vma,
4369                                         vm_flags_t vm_flags)
4370 {
4371         long ret, chg;
4372         struct hstate *h = hstate_inode(inode);
4373         struct hugepage_subpool *spool = subpool_inode(inode);
4374         struct resv_map *resv_map;
4375         long gbl_reserve;
4376
4377         /*
4378          * Only apply hugepage reservation if asked. At fault time, an
4379          * attempt will be made for VM_NORESERVE to allocate a page
4380          * without using reserves
4381          */
4382         if (vm_flags & VM_NORESERVE)
4383                 return 0;
4384
4385         /*
4386          * Shared mappings base their reservation on the number of pages that
4387          * are already allocated on behalf of the file. Private mappings need
4388          * to reserve the full area even if read-only as mprotect() may be
4389          * called to make the mapping read-write. Assume !vma is a shm mapping
4390          */
4391         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4392                 resv_map = inode_resv_map(inode);
4393
4394                 chg = region_chg(resv_map, from, to);
4395
4396         } else {
4397                 resv_map = resv_map_alloc();
4398                 if (!resv_map)
4399                         return -ENOMEM;
4400
4401                 chg = to - from;
4402
4403                 set_vma_resv_map(vma, resv_map);
4404                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4405         }
4406
4407         if (chg < 0) {
4408                 ret = chg;
4409                 goto out_err;
4410         }
4411
4412         /*
4413          * There must be enough pages in the subpool for the mapping. If
4414          * the subpool has a minimum size, there may be some global
4415          * reservations already in place (gbl_reserve).
4416          */
4417         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4418         if (gbl_reserve < 0) {
4419                 ret = -ENOSPC;
4420                 goto out_err;
4421         }
4422
4423         /*
4424          * Check enough hugepages are available for the reservation.
4425          * Hand the pages back to the subpool if there are not
4426          */
4427         ret = hugetlb_acct_memory(h, gbl_reserve);
4428         if (ret < 0) {
4429                 /* put back original number of pages, chg */
4430                 (void)hugepage_subpool_put_pages(spool, chg);
4431                 goto out_err;
4432         }
4433
4434         /*
4435          * Account for the reservations made. Shared mappings record regions
4436          * that have reservations as they are shared by multiple VMAs.
4437          * When the last VMA disappears, the region map says how much
4438          * the reservation was and the page cache tells how much of
4439          * the reservation was consumed. Private mappings are per-VMA and
4440          * only the consumed reservations are tracked. When the VMA
4441          * disappears, the original reservation is the VMA size and the
4442          * consumed reservations are stored in the map. Hence, nothing
4443          * else has to be done for private mappings here
4444          */
4445         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4446                 long add = region_add(resv_map, from, to);
4447
4448                 if (unlikely(chg > add)) {
4449                         /*
4450                          * pages in this range were added to the reserve
4451                          * map between region_chg and region_add.  This
4452                          * indicates a race with alloc_huge_page.  Adjust
4453                          * the subpool and reserve counts modified above
4454                          * based on the difference.
4455                          */
4456                         long rsv_adjust;
4457
4458                         rsv_adjust = hugepage_subpool_put_pages(spool,
4459                                                                 chg - add);
4460                         hugetlb_acct_memory(h, -rsv_adjust);
4461                 }
4462         }
4463         return 0;
4464 out_err:
4465         if (!vma || vma->vm_flags & VM_MAYSHARE)
4466                 /* Don't call region_abort if region_chg failed */
4467                 if (chg >= 0)
4468                         region_abort(resv_map, from, to);
4469         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4470                 kref_put(&resv_map->refs, resv_map_release);
4471         return ret;
4472 }
4473
4474 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4475                                                                 long freed)
4476 {
4477         struct hstate *h = hstate_inode(inode);
4478         struct resv_map *resv_map = inode_resv_map(inode);
4479         long chg = 0;
4480         struct hugepage_subpool *spool = subpool_inode(inode);
4481         long gbl_reserve;
4482
4483         if (resv_map) {
4484                 chg = region_del(resv_map, start, end);
4485                 /*
4486                  * region_del() can fail in the rare case where a region
4487                  * must be split and another region descriptor can not be
4488                  * allocated.  If end == LONG_MAX, it will not fail.
4489                  */
4490                 if (chg < 0)
4491                         return chg;
4492         }
4493
4494         spin_lock(&inode->i_lock);
4495         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4496         spin_unlock(&inode->i_lock);
4497
4498         /*
4499          * If the subpool has a minimum size, the number of global
4500          * reservations to be released may be adjusted.
4501          */
4502         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4503         hugetlb_acct_memory(h, -gbl_reserve);
4504
4505         return 0;
4506 }
4507
4508 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4509 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4510                                 struct vm_area_struct *vma,
4511                                 unsigned long addr, pgoff_t idx)
4512 {
4513         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4514                                 svma->vm_start;
4515         unsigned long sbase = saddr & PUD_MASK;
4516         unsigned long s_end = sbase + PUD_SIZE;
4517
4518         /* Allow segments to share if only one is marked locked */
4519         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4520         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4521
4522         /*
4523          * match the virtual addresses, permission and the alignment of the
4524          * page table page.
4525          */
4526         if (pmd_index(addr) != pmd_index(saddr) ||
4527             vm_flags != svm_flags ||
4528             sbase < svma->vm_start || svma->vm_end < s_end)
4529                 return 0;
4530
4531         return saddr;
4532 }
4533
4534 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4535 {
4536         unsigned long base = addr & PUD_MASK;
4537         unsigned long end = base + PUD_SIZE;
4538
4539         /*
4540          * check on proper vm_flags and page table alignment
4541          */
4542         if (vma->vm_flags & VM_MAYSHARE &&
4543             vma->vm_start <= base && end <= vma->vm_end)
4544                 return true;
4545         return false;
4546 }
4547
4548 /*
4549  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4550  * and returns the corresponding pte. While this is not necessary for the
4551  * !shared pmd case because we can allocate the pmd later as well, it makes the
4552  * code much cleaner. pmd allocation is essential for the shared case because
4553  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4554  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4555  * bad pmd for sharing.
4556  */
4557 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4558 {
4559         struct vm_area_struct *vma = find_vma(mm, addr);
4560         struct address_space *mapping = vma->vm_file->f_mapping;
4561         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4562                         vma->vm_pgoff;
4563         struct vm_area_struct *svma;
4564         unsigned long saddr;
4565         pte_t *spte = NULL;
4566         pte_t *pte;
4567         spinlock_t *ptl;
4568
4569         if (!vma_shareable(vma, addr))
4570                 return (pte_t *)pmd_alloc(mm, pud, addr);
4571
4572         i_mmap_lock_write(mapping);
4573         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4574                 if (svma == vma)
4575                         continue;
4576
4577                 saddr = page_table_shareable(svma, vma, addr, idx);
4578                 if (saddr) {
4579                         spte = huge_pte_offset(svma->vm_mm, saddr,
4580                                                vma_mmu_pagesize(svma));
4581                         if (spte) {
4582                                 get_page(virt_to_page(spte));
4583                                 break;
4584                         }
4585                 }
4586         }
4587
4588         if (!spte)
4589                 goto out;
4590
4591         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4592         if (pud_none(*pud)) {
4593                 pud_populate(mm, pud,
4594                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4595                 mm_inc_nr_pmds(mm);
4596         } else {
4597                 put_page(virt_to_page(spte));
4598         }
4599         spin_unlock(ptl);
4600 out:
4601         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4602         i_mmap_unlock_write(mapping);
4603         return pte;
4604 }
4605
4606 /*
4607  * unmap huge page backed by shared pte.
4608  *
4609  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4610  * indicated by page_count > 1, unmap is achieved by clearing pud and
4611  * decrementing the ref count. If count == 1, the pte page is not shared.
4612  *
4613  * called with page table lock held.
4614  *
4615  * returns: 1 successfully unmapped a shared pte page
4616  *          0 the underlying pte page is not shared, or it is the last user
4617  */
4618 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4619 {
4620         pgd_t *pgd = pgd_offset(mm, *addr);
4621         p4d_t *p4d = p4d_offset(pgd, *addr);
4622         pud_t *pud = pud_offset(p4d, *addr);
4623
4624         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4625         if (page_count(virt_to_page(ptep)) == 1)
4626                 return 0;
4627
4628         pud_clear(pud);
4629         put_page(virt_to_page(ptep));
4630         mm_dec_nr_pmds(mm);
4631         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4632         return 1;
4633 }
4634 #define want_pmd_share()        (1)
4635 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4636 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4637 {
4638         return NULL;
4639 }
4640
4641 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4642 {
4643         return 0;
4644 }
4645 #define want_pmd_share()        (0)
4646 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4647
4648 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4649 pte_t *huge_pte_alloc(struct mm_struct *mm,
4650                         unsigned long addr, unsigned long sz)
4651 {
4652         pgd_t *pgd;
4653         p4d_t *p4d;
4654         pud_t *pud;
4655         pte_t *pte = NULL;
4656
4657         pgd = pgd_offset(mm, addr);
4658         p4d = p4d_alloc(mm, pgd, addr);
4659         if (!p4d)
4660                 return NULL;
4661         pud = pud_alloc(mm, p4d, addr);
4662         if (pud) {
4663                 if (sz == PUD_SIZE) {
4664                         pte = (pte_t *)pud;
4665                 } else {
4666                         BUG_ON(sz != PMD_SIZE);
4667                         if (want_pmd_share() && pud_none(*pud))
4668                                 pte = huge_pmd_share(mm, addr, pud);
4669                         else
4670                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4671                 }
4672         }
4673         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4674
4675         return pte;
4676 }
4677
4678 /*
4679  * huge_pte_offset() - Walk the page table to resolve the hugepage
4680  * entry at address @addr
4681  *
4682  * Return: Pointer to page table or swap entry (PUD or PMD) for
4683  * address @addr, or NULL if a p*d_none() entry is encountered and the
4684  * size @sz doesn't match the hugepage size at this level of the page
4685  * table.
4686  */
4687 pte_t *huge_pte_offset(struct mm_struct *mm,
4688                        unsigned long addr, unsigned long sz)
4689 {
4690         pgd_t *pgd;
4691         p4d_t *p4d;
4692         pud_t *pud;
4693         pmd_t *pmd;
4694
4695         pgd = pgd_offset(mm, addr);
4696         if (!pgd_present(*pgd))
4697                 return NULL;
4698         p4d = p4d_offset(pgd, addr);
4699         if (!p4d_present(*p4d))
4700                 return NULL;
4701
4702         pud = pud_offset(p4d, addr);
4703         if (sz != PUD_SIZE && pud_none(*pud))
4704                 return NULL;
4705         /* hugepage or swap? */
4706         if (pud_huge(*pud) || !pud_present(*pud))
4707                 return (pte_t *)pud;
4708
4709         pmd = pmd_offset(pud, addr);
4710         if (sz != PMD_SIZE && pmd_none(*pmd))
4711                 return NULL;
4712         /* hugepage or swap? */
4713         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4714                 return (pte_t *)pmd;
4715
4716         return NULL;
4717 }
4718
4719 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4720
4721 /*
4722  * These functions are overwritable if your architecture needs its own
4723  * behavior.
4724  */
4725 struct page * __weak
4726 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4727                               int write)
4728 {
4729         return ERR_PTR(-EINVAL);
4730 }
4731
4732 struct page * __weak
4733 follow_huge_pd(struct vm_area_struct *vma,
4734                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4735 {
4736         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4737         return NULL;
4738 }
4739
4740 struct page * __weak
4741 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4742                 pmd_t *pmd, int flags)
4743 {
4744         struct page *page = NULL;
4745         spinlock_t *ptl;
4746         pte_t pte;
4747 retry:
4748         ptl = pmd_lockptr(mm, pmd);
4749         spin_lock(ptl);
4750         /*
4751          * make sure that the address range covered by this pmd is not
4752          * unmapped from other threads.
4753          */
4754         if (!pmd_huge(*pmd))
4755                 goto out;
4756         pte = huge_ptep_get((pte_t *)pmd);
4757         if (pte_present(pte)) {
4758                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4759                 if (flags & FOLL_GET)
4760                         get_page(page);
4761         } else {
4762                 if (is_hugetlb_entry_migration(pte)) {
4763                         spin_unlock(ptl);
4764                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4765                         goto retry;
4766                 }
4767                 /*
4768                  * hwpoisoned entry is treated as no_page_table in
4769                  * follow_page_mask().
4770                  */
4771         }
4772 out:
4773         spin_unlock(ptl);
4774         return page;
4775 }
4776
4777 struct page * __weak
4778 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4779                 pud_t *pud, int flags)
4780 {
4781         if (flags & FOLL_GET)
4782                 return NULL;
4783
4784         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4785 }
4786
4787 struct page * __weak
4788 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4789 {
4790         if (flags & FOLL_GET)
4791                 return NULL;
4792
4793         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4794 }
4795
4796 bool isolate_huge_page(struct page *page, struct list_head *list)
4797 {
4798         bool ret = true;
4799
4800         VM_BUG_ON_PAGE(!PageHead(page), page);
4801         spin_lock(&hugetlb_lock);
4802         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4803                 ret = false;
4804                 goto unlock;
4805         }
4806         clear_page_huge_active(page);
4807         list_move_tail(&page->lru, list);
4808 unlock:
4809         spin_unlock(&hugetlb_lock);
4810         return ret;
4811 }
4812
4813 void putback_active_hugepage(struct page *page)
4814 {
4815         VM_BUG_ON_PAGE(!PageHead(page), page);
4816         spin_lock(&hugetlb_lock);
4817         set_page_huge_active(page);
4818         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4819         spin_unlock(&hugetlb_lock);
4820         put_page(page);
4821 }
4822
4823 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4824 {
4825         struct hstate *h = page_hstate(oldpage);
4826
4827         hugetlb_cgroup_migrate(oldpage, newpage);
4828         set_page_owner_migrate_reason(newpage, reason);
4829
4830         /*
4831          * transfer temporary state of the new huge page. This is
4832          * reverse to other transitions because the newpage is going to
4833          * be final while the old one will be freed so it takes over
4834          * the temporary status.
4835          *
4836          * Also note that we have to transfer the per-node surplus state
4837          * here as well otherwise the global surplus count will not match
4838          * the per-node's.
4839          */
4840         if (PageHugeTemporary(newpage)) {
4841                 int old_nid = page_to_nid(oldpage);
4842                 int new_nid = page_to_nid(newpage);
4843
4844                 SetPageHugeTemporary(oldpage);
4845                 ClearPageHugeTemporary(newpage);
4846
4847                 spin_lock(&hugetlb_lock);
4848                 if (h->surplus_huge_pages_node[old_nid]) {
4849                         h->surplus_huge_pages_node[old_nid]--;
4850                         h->surplus_huge_pages_node[new_nid]++;
4851                 }
4852                 spin_unlock(&hugetlb_lock);
4853         }
4854 }