Merge tag 'nds32-for-linus-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/memory_hotplug.h>
36
37 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
38
39 #if IS_ENABLED(CONFIG_HMM_MIRROR)
40 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
41
42 static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
43 {
44         struct hmm *hmm = READ_ONCE(mm->hmm);
45
46         if (hmm && kref_get_unless_zero(&hmm->kref))
47                 return hmm;
48
49         return NULL;
50 }
51
52 /**
53  * hmm_get_or_create - register HMM against an mm (HMM internal)
54  *
55  * @mm: mm struct to attach to
56  * Returns: returns an HMM object, either by referencing the existing
57  *          (per-process) object, or by creating a new one.
58  *
59  * This is not intended to be used directly by device drivers. If mm already
60  * has an HMM struct then it get a reference on it and returns it. Otherwise
61  * it allocates an HMM struct, initializes it, associate it with the mm and
62  * returns it.
63  */
64 static struct hmm *hmm_get_or_create(struct mm_struct *mm)
65 {
66         struct hmm *hmm = mm_get_hmm(mm);
67         bool cleanup = false;
68
69         if (hmm)
70                 return hmm;
71
72         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
73         if (!hmm)
74                 return NULL;
75         init_waitqueue_head(&hmm->wq);
76         INIT_LIST_HEAD(&hmm->mirrors);
77         init_rwsem(&hmm->mirrors_sem);
78         hmm->mmu_notifier.ops = NULL;
79         INIT_LIST_HEAD(&hmm->ranges);
80         mutex_init(&hmm->lock);
81         kref_init(&hmm->kref);
82         hmm->notifiers = 0;
83         hmm->dead = false;
84         hmm->mm = mm;
85
86         spin_lock(&mm->page_table_lock);
87         if (!mm->hmm)
88                 mm->hmm = hmm;
89         else
90                 cleanup = true;
91         spin_unlock(&mm->page_table_lock);
92
93         if (cleanup)
94                 goto error;
95
96         /*
97          * We should only get here if hold the mmap_sem in write mode ie on
98          * registration of first mirror through hmm_mirror_register()
99          */
100         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
101         if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
102                 goto error_mm;
103
104         return hmm;
105
106 error_mm:
107         spin_lock(&mm->page_table_lock);
108         if (mm->hmm == hmm)
109                 mm->hmm = NULL;
110         spin_unlock(&mm->page_table_lock);
111 error:
112         kfree(hmm);
113         return NULL;
114 }
115
116 static void hmm_free(struct kref *kref)
117 {
118         struct hmm *hmm = container_of(kref, struct hmm, kref);
119         struct mm_struct *mm = hmm->mm;
120
121         mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
122
123         spin_lock(&mm->page_table_lock);
124         if (mm->hmm == hmm)
125                 mm->hmm = NULL;
126         spin_unlock(&mm->page_table_lock);
127
128         kfree(hmm);
129 }
130
131 static inline void hmm_put(struct hmm *hmm)
132 {
133         kref_put(&hmm->kref, hmm_free);
134 }
135
136 void hmm_mm_destroy(struct mm_struct *mm)
137 {
138         struct hmm *hmm;
139
140         spin_lock(&mm->page_table_lock);
141         hmm = mm_get_hmm(mm);
142         mm->hmm = NULL;
143         if (hmm) {
144                 hmm->mm = NULL;
145                 hmm->dead = true;
146                 spin_unlock(&mm->page_table_lock);
147                 hmm_put(hmm);
148                 return;
149         }
150
151         spin_unlock(&mm->page_table_lock);
152 }
153
154 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
155 {
156         struct hmm *hmm = mm_get_hmm(mm);
157         struct hmm_mirror *mirror;
158         struct hmm_range *range;
159
160         /* Report this HMM as dying. */
161         hmm->dead = true;
162
163         /* Wake-up everyone waiting on any range. */
164         mutex_lock(&hmm->lock);
165         list_for_each_entry(range, &hmm->ranges, list) {
166                 range->valid = false;
167         }
168         wake_up_all(&hmm->wq);
169         mutex_unlock(&hmm->lock);
170
171         down_write(&hmm->mirrors_sem);
172         mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
173                                           list);
174         while (mirror) {
175                 list_del_init(&mirror->list);
176                 if (mirror->ops->release) {
177                         /*
178                          * Drop mirrors_sem so callback can wait on any pending
179                          * work that might itself trigger mmu_notifier callback
180                          * and thus would deadlock with us.
181                          */
182                         up_write(&hmm->mirrors_sem);
183                         mirror->ops->release(mirror);
184                         down_write(&hmm->mirrors_sem);
185                 }
186                 mirror = list_first_entry_or_null(&hmm->mirrors,
187                                                   struct hmm_mirror, list);
188         }
189         up_write(&hmm->mirrors_sem);
190
191         hmm_put(hmm);
192 }
193
194 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
195                         const struct mmu_notifier_range *nrange)
196 {
197         struct hmm *hmm = mm_get_hmm(nrange->mm);
198         struct hmm_mirror *mirror;
199         struct hmm_update update;
200         struct hmm_range *range;
201         int ret = 0;
202
203         VM_BUG_ON(!hmm);
204
205         update.start = nrange->start;
206         update.end = nrange->end;
207         update.event = HMM_UPDATE_INVALIDATE;
208         update.blockable = mmu_notifier_range_blockable(nrange);
209
210         if (mmu_notifier_range_blockable(nrange))
211                 mutex_lock(&hmm->lock);
212         else if (!mutex_trylock(&hmm->lock)) {
213                 ret = -EAGAIN;
214                 goto out;
215         }
216         hmm->notifiers++;
217         list_for_each_entry(range, &hmm->ranges, list) {
218                 if (update.end < range->start || update.start >= range->end)
219                         continue;
220
221                 range->valid = false;
222         }
223         mutex_unlock(&hmm->lock);
224
225         if (mmu_notifier_range_blockable(nrange))
226                 down_read(&hmm->mirrors_sem);
227         else if (!down_read_trylock(&hmm->mirrors_sem)) {
228                 ret = -EAGAIN;
229                 goto out;
230         }
231         list_for_each_entry(mirror, &hmm->mirrors, list) {
232                 int ret;
233
234                 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
235                 if (!update.blockable && ret == -EAGAIN) {
236                         up_read(&hmm->mirrors_sem);
237                         ret = -EAGAIN;
238                         goto out;
239                 }
240         }
241         up_read(&hmm->mirrors_sem);
242
243 out:
244         hmm_put(hmm);
245         return ret;
246 }
247
248 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
249                         const struct mmu_notifier_range *nrange)
250 {
251         struct hmm *hmm = mm_get_hmm(nrange->mm);
252
253         VM_BUG_ON(!hmm);
254
255         mutex_lock(&hmm->lock);
256         hmm->notifiers--;
257         if (!hmm->notifiers) {
258                 struct hmm_range *range;
259
260                 list_for_each_entry(range, &hmm->ranges, list) {
261                         if (range->valid)
262                                 continue;
263                         range->valid = true;
264                 }
265                 wake_up_all(&hmm->wq);
266         }
267         mutex_unlock(&hmm->lock);
268
269         hmm_put(hmm);
270 }
271
272 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
273         .release                = hmm_release,
274         .invalidate_range_start = hmm_invalidate_range_start,
275         .invalidate_range_end   = hmm_invalidate_range_end,
276 };
277
278 /*
279  * hmm_mirror_register() - register a mirror against an mm
280  *
281  * @mirror: new mirror struct to register
282  * @mm: mm to register against
283  *
284  * To start mirroring a process address space, the device driver must register
285  * an HMM mirror struct.
286  *
287  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
288  */
289 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
290 {
291         /* Sanity check */
292         if (!mm || !mirror || !mirror->ops)
293                 return -EINVAL;
294
295         mirror->hmm = hmm_get_or_create(mm);
296         if (!mirror->hmm)
297                 return -ENOMEM;
298
299         down_write(&mirror->hmm->mirrors_sem);
300         list_add(&mirror->list, &mirror->hmm->mirrors);
301         up_write(&mirror->hmm->mirrors_sem);
302
303         return 0;
304 }
305 EXPORT_SYMBOL(hmm_mirror_register);
306
307 /*
308  * hmm_mirror_unregister() - unregister a mirror
309  *
310  * @mirror: new mirror struct to register
311  *
312  * Stop mirroring a process address space, and cleanup.
313  */
314 void hmm_mirror_unregister(struct hmm_mirror *mirror)
315 {
316         struct hmm *hmm = READ_ONCE(mirror->hmm);
317
318         if (hmm == NULL)
319                 return;
320
321         down_write(&hmm->mirrors_sem);
322         list_del_init(&mirror->list);
323         /* To protect us against double unregister ... */
324         mirror->hmm = NULL;
325         up_write(&hmm->mirrors_sem);
326
327         hmm_put(hmm);
328 }
329 EXPORT_SYMBOL(hmm_mirror_unregister);
330
331 struct hmm_vma_walk {
332         struct hmm_range        *range;
333         struct dev_pagemap      *pgmap;
334         unsigned long           last;
335         bool                    fault;
336         bool                    block;
337 };
338
339 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
340                             bool write_fault, uint64_t *pfn)
341 {
342         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
343         struct hmm_vma_walk *hmm_vma_walk = walk->private;
344         struct hmm_range *range = hmm_vma_walk->range;
345         struct vm_area_struct *vma = walk->vma;
346         vm_fault_t ret;
347
348         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
349         flags |= write_fault ? FAULT_FLAG_WRITE : 0;
350         ret = handle_mm_fault(vma, addr, flags);
351         if (ret & VM_FAULT_RETRY)
352                 return -EAGAIN;
353         if (ret & VM_FAULT_ERROR) {
354                 *pfn = range->values[HMM_PFN_ERROR];
355                 return -EFAULT;
356         }
357
358         return -EBUSY;
359 }
360
361 static int hmm_pfns_bad(unsigned long addr,
362                         unsigned long end,
363                         struct mm_walk *walk)
364 {
365         struct hmm_vma_walk *hmm_vma_walk = walk->private;
366         struct hmm_range *range = hmm_vma_walk->range;
367         uint64_t *pfns = range->pfns;
368         unsigned long i;
369
370         i = (addr - range->start) >> PAGE_SHIFT;
371         for (; addr < end; addr += PAGE_SIZE, i++)
372                 pfns[i] = range->values[HMM_PFN_ERROR];
373
374         return 0;
375 }
376
377 /*
378  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
379  * @start: range virtual start address (inclusive)
380  * @end: range virtual end address (exclusive)
381  * @fault: should we fault or not ?
382  * @write_fault: write fault ?
383  * @walk: mm_walk structure
384  * Returns: 0 on success, -EBUSY after page fault, or page fault error
385  *
386  * This function will be called whenever pmd_none() or pte_none() returns true,
387  * or whenever there is no page directory covering the virtual address range.
388  */
389 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
390                               bool fault, bool write_fault,
391                               struct mm_walk *walk)
392 {
393         struct hmm_vma_walk *hmm_vma_walk = walk->private;
394         struct hmm_range *range = hmm_vma_walk->range;
395         uint64_t *pfns = range->pfns;
396         unsigned long i, page_size;
397
398         hmm_vma_walk->last = addr;
399         page_size = hmm_range_page_size(range);
400         i = (addr - range->start) >> range->page_shift;
401
402         for (; addr < end; addr += page_size, i++) {
403                 pfns[i] = range->values[HMM_PFN_NONE];
404                 if (fault || write_fault) {
405                         int ret;
406
407                         ret = hmm_vma_do_fault(walk, addr, write_fault,
408                                                &pfns[i]);
409                         if (ret != -EBUSY)
410                                 return ret;
411                 }
412         }
413
414         return (fault || write_fault) ? -EBUSY : 0;
415 }
416
417 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
418                                       uint64_t pfns, uint64_t cpu_flags,
419                                       bool *fault, bool *write_fault)
420 {
421         struct hmm_range *range = hmm_vma_walk->range;
422
423         if (!hmm_vma_walk->fault)
424                 return;
425
426         /*
427          * So we not only consider the individual per page request we also
428          * consider the default flags requested for the range. The API can
429          * be use in 2 fashions. The first one where the HMM user coalesce
430          * multiple page fault into one request and set flags per pfns for
431          * of those faults. The second one where the HMM user want to pre-
432          * fault a range with specific flags. For the latter one it is a
433          * waste to have the user pre-fill the pfn arrays with a default
434          * flags value.
435          */
436         pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
437
438         /* We aren't ask to do anything ... */
439         if (!(pfns & range->flags[HMM_PFN_VALID]))
440                 return;
441         /* If this is device memory than only fault if explicitly requested */
442         if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
443                 /* Do we fault on device memory ? */
444                 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
445                         *write_fault = pfns & range->flags[HMM_PFN_WRITE];
446                         *fault = true;
447                 }
448                 return;
449         }
450
451         /* If CPU page table is not valid then we need to fault */
452         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
453         /* Need to write fault ? */
454         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
455             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
456                 *write_fault = true;
457                 *fault = true;
458         }
459 }
460
461 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
462                                  const uint64_t *pfns, unsigned long npages,
463                                  uint64_t cpu_flags, bool *fault,
464                                  bool *write_fault)
465 {
466         unsigned long i;
467
468         if (!hmm_vma_walk->fault) {
469                 *fault = *write_fault = false;
470                 return;
471         }
472
473         *fault = *write_fault = false;
474         for (i = 0; i < npages; ++i) {
475                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
476                                    fault, write_fault);
477                 if ((*write_fault))
478                         return;
479         }
480 }
481
482 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
483                              struct mm_walk *walk)
484 {
485         struct hmm_vma_walk *hmm_vma_walk = walk->private;
486         struct hmm_range *range = hmm_vma_walk->range;
487         bool fault, write_fault;
488         unsigned long i, npages;
489         uint64_t *pfns;
490
491         i = (addr - range->start) >> PAGE_SHIFT;
492         npages = (end - addr) >> PAGE_SHIFT;
493         pfns = &range->pfns[i];
494         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
495                              0, &fault, &write_fault);
496         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
497 }
498
499 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
500 {
501         if (pmd_protnone(pmd))
502                 return 0;
503         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
504                                 range->flags[HMM_PFN_WRITE] :
505                                 range->flags[HMM_PFN_VALID];
506 }
507
508 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
509 {
510         if (!pud_present(pud))
511                 return 0;
512         return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
513                                 range->flags[HMM_PFN_WRITE] :
514                                 range->flags[HMM_PFN_VALID];
515 }
516
517 static int hmm_vma_handle_pmd(struct mm_walk *walk,
518                               unsigned long addr,
519                               unsigned long end,
520                               uint64_t *pfns,
521                               pmd_t pmd)
522 {
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524         struct hmm_vma_walk *hmm_vma_walk = walk->private;
525         struct hmm_range *range = hmm_vma_walk->range;
526         unsigned long pfn, npages, i;
527         bool fault, write_fault;
528         uint64_t cpu_flags;
529
530         npages = (end - addr) >> PAGE_SHIFT;
531         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
532         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
533                              &fault, &write_fault);
534
535         if (pmd_protnone(pmd) || fault || write_fault)
536                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
537
538         pfn = pmd_pfn(pmd) + pte_index(addr);
539         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
540                 if (pmd_devmap(pmd)) {
541                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
542                                               hmm_vma_walk->pgmap);
543                         if (unlikely(!hmm_vma_walk->pgmap))
544                                 return -EBUSY;
545                 }
546                 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
547         }
548         if (hmm_vma_walk->pgmap) {
549                 put_dev_pagemap(hmm_vma_walk->pgmap);
550                 hmm_vma_walk->pgmap = NULL;
551         }
552         hmm_vma_walk->last = end;
553         return 0;
554 #else
555         /* If THP is not enabled then we should never reach that code ! */
556         return -EINVAL;
557 #endif
558 }
559
560 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
561 {
562         if (pte_none(pte) || !pte_present(pte))
563                 return 0;
564         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
565                                 range->flags[HMM_PFN_WRITE] :
566                                 range->flags[HMM_PFN_VALID];
567 }
568
569 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
570                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
571                               uint64_t *pfn)
572 {
573         struct hmm_vma_walk *hmm_vma_walk = walk->private;
574         struct hmm_range *range = hmm_vma_walk->range;
575         struct vm_area_struct *vma = walk->vma;
576         bool fault, write_fault;
577         uint64_t cpu_flags;
578         pte_t pte = *ptep;
579         uint64_t orig_pfn = *pfn;
580
581         *pfn = range->values[HMM_PFN_NONE];
582         fault = write_fault = false;
583
584         if (pte_none(pte)) {
585                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
586                                    &fault, &write_fault);
587                 if (fault || write_fault)
588                         goto fault;
589                 return 0;
590         }
591
592         if (!pte_present(pte)) {
593                 swp_entry_t entry = pte_to_swp_entry(pte);
594
595                 if (!non_swap_entry(entry)) {
596                         if (fault || write_fault)
597                                 goto fault;
598                         return 0;
599                 }
600
601                 /*
602                  * This is a special swap entry, ignore migration, use
603                  * device and report anything else as error.
604                  */
605                 if (is_device_private_entry(entry)) {
606                         cpu_flags = range->flags[HMM_PFN_VALID] |
607                                 range->flags[HMM_PFN_DEVICE_PRIVATE];
608                         cpu_flags |= is_write_device_private_entry(entry) ?
609                                 range->flags[HMM_PFN_WRITE] : 0;
610                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
611                                            &fault, &write_fault);
612                         if (fault || write_fault)
613                                 goto fault;
614                         *pfn = hmm_device_entry_from_pfn(range,
615                                             swp_offset(entry));
616                         *pfn |= cpu_flags;
617                         return 0;
618                 }
619
620                 if (is_migration_entry(entry)) {
621                         if (fault || write_fault) {
622                                 pte_unmap(ptep);
623                                 hmm_vma_walk->last = addr;
624                                 migration_entry_wait(vma->vm_mm,
625                                                      pmdp, addr);
626                                 return -EBUSY;
627                         }
628                         return 0;
629                 }
630
631                 /* Report error for everything else */
632                 *pfn = range->values[HMM_PFN_ERROR];
633                 return -EFAULT;
634         } else {
635                 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
636                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
637                                    &fault, &write_fault);
638         }
639
640         if (fault || write_fault)
641                 goto fault;
642
643         if (pte_devmap(pte)) {
644                 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
645                                               hmm_vma_walk->pgmap);
646                 if (unlikely(!hmm_vma_walk->pgmap))
647                         return -EBUSY;
648         } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
649                 *pfn = range->values[HMM_PFN_SPECIAL];
650                 return -EFAULT;
651         }
652
653         *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
654         return 0;
655
656 fault:
657         if (hmm_vma_walk->pgmap) {
658                 put_dev_pagemap(hmm_vma_walk->pgmap);
659                 hmm_vma_walk->pgmap = NULL;
660         }
661         pte_unmap(ptep);
662         /* Fault any virtual address we were asked to fault */
663         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
664 }
665
666 static int hmm_vma_walk_pmd(pmd_t *pmdp,
667                             unsigned long start,
668                             unsigned long end,
669                             struct mm_walk *walk)
670 {
671         struct hmm_vma_walk *hmm_vma_walk = walk->private;
672         struct hmm_range *range = hmm_vma_walk->range;
673         struct vm_area_struct *vma = walk->vma;
674         uint64_t *pfns = range->pfns;
675         unsigned long addr = start, i;
676         pte_t *ptep;
677         pmd_t pmd;
678
679
680 again:
681         pmd = READ_ONCE(*pmdp);
682         if (pmd_none(pmd))
683                 return hmm_vma_walk_hole(start, end, walk);
684
685         if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
686                 return hmm_pfns_bad(start, end, walk);
687
688         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
689                 bool fault, write_fault;
690                 unsigned long npages;
691                 uint64_t *pfns;
692
693                 i = (addr - range->start) >> PAGE_SHIFT;
694                 npages = (end - addr) >> PAGE_SHIFT;
695                 pfns = &range->pfns[i];
696
697                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
698                                      0, &fault, &write_fault);
699                 if (fault || write_fault) {
700                         hmm_vma_walk->last = addr;
701                         pmd_migration_entry_wait(vma->vm_mm, pmdp);
702                         return -EBUSY;
703                 }
704                 return 0;
705         } else if (!pmd_present(pmd))
706                 return hmm_pfns_bad(start, end, walk);
707
708         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
709                 /*
710                  * No need to take pmd_lock here, even if some other threads
711                  * is splitting the huge pmd we will get that event through
712                  * mmu_notifier callback.
713                  *
714                  * So just read pmd value and check again its a transparent
715                  * huge or device mapping one and compute corresponding pfn
716                  * values.
717                  */
718                 pmd = pmd_read_atomic(pmdp);
719                 barrier();
720                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
721                         goto again;
722
723                 i = (addr - range->start) >> PAGE_SHIFT;
724                 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
725         }
726
727         /*
728          * We have handled all the valid case above ie either none, migration,
729          * huge or transparent huge. At this point either it is a valid pmd
730          * entry pointing to pte directory or it is a bad pmd that will not
731          * recover.
732          */
733         if (pmd_bad(pmd))
734                 return hmm_pfns_bad(start, end, walk);
735
736         ptep = pte_offset_map(pmdp, addr);
737         i = (addr - range->start) >> PAGE_SHIFT;
738         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
739                 int r;
740
741                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
742                 if (r) {
743                         /* hmm_vma_handle_pte() did unmap pte directory */
744                         hmm_vma_walk->last = addr;
745                         return r;
746                 }
747         }
748         if (hmm_vma_walk->pgmap) {
749                 /*
750                  * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
751                  * so that we can leverage get_dev_pagemap() optimization which
752                  * will not re-take a reference on a pgmap if we already have
753                  * one.
754                  */
755                 put_dev_pagemap(hmm_vma_walk->pgmap);
756                 hmm_vma_walk->pgmap = NULL;
757         }
758         pte_unmap(ptep - 1);
759
760         hmm_vma_walk->last = addr;
761         return 0;
762 }
763
764 static int hmm_vma_walk_pud(pud_t *pudp,
765                             unsigned long start,
766                             unsigned long end,
767                             struct mm_walk *walk)
768 {
769         struct hmm_vma_walk *hmm_vma_walk = walk->private;
770         struct hmm_range *range = hmm_vma_walk->range;
771         unsigned long addr = start, next;
772         pmd_t *pmdp;
773         pud_t pud;
774         int ret;
775
776 again:
777         pud = READ_ONCE(*pudp);
778         if (pud_none(pud))
779                 return hmm_vma_walk_hole(start, end, walk);
780
781         if (pud_huge(pud) && pud_devmap(pud)) {
782                 unsigned long i, npages, pfn;
783                 uint64_t *pfns, cpu_flags;
784                 bool fault, write_fault;
785
786                 if (!pud_present(pud))
787                         return hmm_vma_walk_hole(start, end, walk);
788
789                 i = (addr - range->start) >> PAGE_SHIFT;
790                 npages = (end - addr) >> PAGE_SHIFT;
791                 pfns = &range->pfns[i];
792
793                 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
794                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
795                                      cpu_flags, &fault, &write_fault);
796                 if (fault || write_fault)
797                         return hmm_vma_walk_hole_(addr, end, fault,
798                                                 write_fault, walk);
799
800 #ifdef CONFIG_HUGETLB_PAGE
801                 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
802                 for (i = 0; i < npages; ++i, ++pfn) {
803                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
804                                               hmm_vma_walk->pgmap);
805                         if (unlikely(!hmm_vma_walk->pgmap))
806                                 return -EBUSY;
807                         pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
808                                   cpu_flags;
809                 }
810                 if (hmm_vma_walk->pgmap) {
811                         put_dev_pagemap(hmm_vma_walk->pgmap);
812                         hmm_vma_walk->pgmap = NULL;
813                 }
814                 hmm_vma_walk->last = end;
815                 return 0;
816 #else
817                 return -EINVAL;
818 #endif
819         }
820
821         split_huge_pud(walk->vma, pudp, addr);
822         if (pud_none(*pudp))
823                 goto again;
824
825         pmdp = pmd_offset(pudp, addr);
826         do {
827                 next = pmd_addr_end(addr, end);
828                 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
829                 if (ret)
830                         return ret;
831         } while (pmdp++, addr = next, addr != end);
832
833         return 0;
834 }
835
836 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
837                                       unsigned long start, unsigned long end,
838                                       struct mm_walk *walk)
839 {
840 #ifdef CONFIG_HUGETLB_PAGE
841         unsigned long addr = start, i, pfn, mask, size, pfn_inc;
842         struct hmm_vma_walk *hmm_vma_walk = walk->private;
843         struct hmm_range *range = hmm_vma_walk->range;
844         struct vm_area_struct *vma = walk->vma;
845         struct hstate *h = hstate_vma(vma);
846         uint64_t orig_pfn, cpu_flags;
847         bool fault, write_fault;
848         spinlock_t *ptl;
849         pte_t entry;
850         int ret = 0;
851
852         size = 1UL << huge_page_shift(h);
853         mask = size - 1;
854         if (range->page_shift != PAGE_SHIFT) {
855                 /* Make sure we are looking at full page. */
856                 if (start & mask)
857                         return -EINVAL;
858                 if (end < (start + size))
859                         return -EINVAL;
860                 pfn_inc = size >> PAGE_SHIFT;
861         } else {
862                 pfn_inc = 1;
863                 size = PAGE_SIZE;
864         }
865
866
867         ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
868         entry = huge_ptep_get(pte);
869
870         i = (start - range->start) >> range->page_shift;
871         orig_pfn = range->pfns[i];
872         range->pfns[i] = range->values[HMM_PFN_NONE];
873         cpu_flags = pte_to_hmm_pfn_flags(range, entry);
874         fault = write_fault = false;
875         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
876                            &fault, &write_fault);
877         if (fault || write_fault) {
878                 ret = -ENOENT;
879                 goto unlock;
880         }
881
882         pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
883         for (; addr < end; addr += size, i++, pfn += pfn_inc)
884                 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
885                                  cpu_flags;
886         hmm_vma_walk->last = end;
887
888 unlock:
889         spin_unlock(ptl);
890
891         if (ret == -ENOENT)
892                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
893
894         return ret;
895 #else /* CONFIG_HUGETLB_PAGE */
896         return -EINVAL;
897 #endif
898 }
899
900 static void hmm_pfns_clear(struct hmm_range *range,
901                            uint64_t *pfns,
902                            unsigned long addr,
903                            unsigned long end)
904 {
905         for (; addr < end; addr += PAGE_SIZE, pfns++)
906                 *pfns = range->values[HMM_PFN_NONE];
907 }
908
909 /*
910  * hmm_range_register() - start tracking change to CPU page table over a range
911  * @range: range
912  * @mm: the mm struct for the range of virtual address
913  * @start: start virtual address (inclusive)
914  * @end: end virtual address (exclusive)
915  * @page_shift: expect page shift for the range
916  * Returns 0 on success, -EFAULT if the address space is no longer valid
917  *
918  * Track updates to the CPU page table see include/linux/hmm.h
919  */
920 int hmm_range_register(struct hmm_range *range,
921                        struct mm_struct *mm,
922                        unsigned long start,
923                        unsigned long end,
924                        unsigned page_shift)
925 {
926         unsigned long mask = ((1UL << page_shift) - 1UL);
927
928         range->valid = false;
929         range->hmm = NULL;
930
931         if ((start & mask) || (end & mask))
932                 return -EINVAL;
933         if (start >= end)
934                 return -EINVAL;
935
936         range->page_shift = page_shift;
937         range->start = start;
938         range->end = end;
939
940         range->hmm = hmm_get_or_create(mm);
941         if (!range->hmm)
942                 return -EFAULT;
943
944         /* Check if hmm_mm_destroy() was call. */
945         if (range->hmm->mm == NULL || range->hmm->dead) {
946                 hmm_put(range->hmm);
947                 return -EFAULT;
948         }
949
950         /* Initialize range to track CPU page table update */
951         mutex_lock(&range->hmm->lock);
952
953         list_add_rcu(&range->list, &range->hmm->ranges);
954
955         /*
956          * If there are any concurrent notifiers we have to wait for them for
957          * the range to be valid (see hmm_range_wait_until_valid()).
958          */
959         if (!range->hmm->notifiers)
960                 range->valid = true;
961         mutex_unlock(&range->hmm->lock);
962
963         return 0;
964 }
965 EXPORT_SYMBOL(hmm_range_register);
966
967 /*
968  * hmm_range_unregister() - stop tracking change to CPU page table over a range
969  * @range: range
970  *
971  * Range struct is used to track updates to the CPU page table after a call to
972  * hmm_range_register(). See include/linux/hmm.h for how to use it.
973  */
974 void hmm_range_unregister(struct hmm_range *range)
975 {
976         /* Sanity check this really should not happen. */
977         if (range->hmm == NULL || range->end <= range->start)
978                 return;
979
980         mutex_lock(&range->hmm->lock);
981         list_del_rcu(&range->list);
982         mutex_unlock(&range->hmm->lock);
983
984         /* Drop reference taken by hmm_range_register() */
985         range->valid = false;
986         hmm_put(range->hmm);
987         range->hmm = NULL;
988 }
989 EXPORT_SYMBOL(hmm_range_unregister);
990
991 /*
992  * hmm_range_snapshot() - snapshot CPU page table for a range
993  * @range: range
994  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
995  *          permission (for instance asking for write and range is read only),
996  *          -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
997  *          vma or it is illegal to access that range), number of valid pages
998  *          in range->pfns[] (from range start address).
999  *
1000  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
1001  * validity is tracked by range struct. See in include/linux/hmm.h for example
1002  * on how to use.
1003  */
1004 long hmm_range_snapshot(struct hmm_range *range)
1005 {
1006         const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1007         unsigned long start = range->start, end;
1008         struct hmm_vma_walk hmm_vma_walk;
1009         struct hmm *hmm = range->hmm;
1010         struct vm_area_struct *vma;
1011         struct mm_walk mm_walk;
1012
1013         /* Check if hmm_mm_destroy() was call. */
1014         if (hmm->mm == NULL || hmm->dead)
1015                 return -EFAULT;
1016
1017         do {
1018                 /* If range is no longer valid force retry. */
1019                 if (!range->valid)
1020                         return -EAGAIN;
1021
1022                 vma = find_vma(hmm->mm, start);
1023                 if (vma == NULL || (vma->vm_flags & device_vma))
1024                         return -EFAULT;
1025
1026                 if (is_vm_hugetlb_page(vma)) {
1027                         struct hstate *h = hstate_vma(vma);
1028
1029                         if (huge_page_shift(h) != range->page_shift &&
1030                             range->page_shift != PAGE_SHIFT)
1031                                 return -EINVAL;
1032                 } else {
1033                         if (range->page_shift != PAGE_SHIFT)
1034                                 return -EINVAL;
1035                 }
1036
1037                 if (!(vma->vm_flags & VM_READ)) {
1038                         /*
1039                          * If vma do not allow read access, then assume that it
1040                          * does not allow write access, either. HMM does not
1041                          * support architecture that allow write without read.
1042                          */
1043                         hmm_pfns_clear(range, range->pfns,
1044                                 range->start, range->end);
1045                         return -EPERM;
1046                 }
1047
1048                 range->vma = vma;
1049                 hmm_vma_walk.pgmap = NULL;
1050                 hmm_vma_walk.last = start;
1051                 hmm_vma_walk.fault = false;
1052                 hmm_vma_walk.range = range;
1053                 mm_walk.private = &hmm_vma_walk;
1054                 end = min(range->end, vma->vm_end);
1055
1056                 mm_walk.vma = vma;
1057                 mm_walk.mm = vma->vm_mm;
1058                 mm_walk.pte_entry = NULL;
1059                 mm_walk.test_walk = NULL;
1060                 mm_walk.hugetlb_entry = NULL;
1061                 mm_walk.pud_entry = hmm_vma_walk_pud;
1062                 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1063                 mm_walk.pte_hole = hmm_vma_walk_hole;
1064                 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1065
1066                 walk_page_range(start, end, &mm_walk);
1067                 start = end;
1068         } while (start < range->end);
1069
1070         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1071 }
1072 EXPORT_SYMBOL(hmm_range_snapshot);
1073
1074 /*
1075  * hmm_range_fault() - try to fault some address in a virtual address range
1076  * @range: range being faulted
1077  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1078  * Returns: number of valid pages in range->pfns[] (from range start
1079  *          address). This may be zero. If the return value is negative,
1080  *          then one of the following values may be returned:
1081  *
1082  *           -EINVAL  invalid arguments or mm or virtual address are in an
1083  *                    invalid vma (for instance device file vma).
1084  *           -ENOMEM: Out of memory.
1085  *           -EPERM:  Invalid permission (for instance asking for write and
1086  *                    range is read only).
1087  *           -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1088  *                    happens if block argument is false.
1089  *           -EBUSY:  If the the range is being invalidated and you should wait
1090  *                    for invalidation to finish.
1091  *           -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1092  *                    that range), number of valid pages in range->pfns[] (from
1093  *                    range start address).
1094  *
1095  * This is similar to a regular CPU page fault except that it will not trigger
1096  * any memory migration if the memory being faulted is not accessible by CPUs
1097  * and caller does not ask for migration.
1098  *
1099  * On error, for one virtual address in the range, the function will mark the
1100  * corresponding HMM pfn entry with an error flag.
1101  */
1102 long hmm_range_fault(struct hmm_range *range, bool block)
1103 {
1104         const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1105         unsigned long start = range->start, end;
1106         struct hmm_vma_walk hmm_vma_walk;
1107         struct hmm *hmm = range->hmm;
1108         struct vm_area_struct *vma;
1109         struct mm_walk mm_walk;
1110         int ret;
1111
1112         /* Check if hmm_mm_destroy() was call. */
1113         if (hmm->mm == NULL || hmm->dead)
1114                 return -EFAULT;
1115
1116         do {
1117                 /* If range is no longer valid force retry. */
1118                 if (!range->valid) {
1119                         up_read(&hmm->mm->mmap_sem);
1120                         return -EAGAIN;
1121                 }
1122
1123                 vma = find_vma(hmm->mm, start);
1124                 if (vma == NULL || (vma->vm_flags & device_vma))
1125                         return -EFAULT;
1126
1127                 if (is_vm_hugetlb_page(vma)) {
1128                         if (huge_page_shift(hstate_vma(vma)) !=
1129                             range->page_shift &&
1130                             range->page_shift != PAGE_SHIFT)
1131                                 return -EINVAL;
1132                 } else {
1133                         if (range->page_shift != PAGE_SHIFT)
1134                                 return -EINVAL;
1135                 }
1136
1137                 if (!(vma->vm_flags & VM_READ)) {
1138                         /*
1139                          * If vma do not allow read access, then assume that it
1140                          * does not allow write access, either. HMM does not
1141                          * support architecture that allow write without read.
1142                          */
1143                         hmm_pfns_clear(range, range->pfns,
1144                                 range->start, range->end);
1145                         return -EPERM;
1146                 }
1147
1148                 range->vma = vma;
1149                 hmm_vma_walk.pgmap = NULL;
1150                 hmm_vma_walk.last = start;
1151                 hmm_vma_walk.fault = true;
1152                 hmm_vma_walk.block = block;
1153                 hmm_vma_walk.range = range;
1154                 mm_walk.private = &hmm_vma_walk;
1155                 end = min(range->end, vma->vm_end);
1156
1157                 mm_walk.vma = vma;
1158                 mm_walk.mm = vma->vm_mm;
1159                 mm_walk.pte_entry = NULL;
1160                 mm_walk.test_walk = NULL;
1161                 mm_walk.hugetlb_entry = NULL;
1162                 mm_walk.pud_entry = hmm_vma_walk_pud;
1163                 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1164                 mm_walk.pte_hole = hmm_vma_walk_hole;
1165                 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1166
1167                 do {
1168                         ret = walk_page_range(start, end, &mm_walk);
1169                         start = hmm_vma_walk.last;
1170
1171                         /* Keep trying while the range is valid. */
1172                 } while (ret == -EBUSY && range->valid);
1173
1174                 if (ret) {
1175                         unsigned long i;
1176
1177                         i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1178                         hmm_pfns_clear(range, &range->pfns[i],
1179                                 hmm_vma_walk.last, range->end);
1180                         return ret;
1181                 }
1182                 start = end;
1183
1184         } while (start < range->end);
1185
1186         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1187 }
1188 EXPORT_SYMBOL(hmm_range_fault);
1189
1190 /**
1191  * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1192  * @range: range being faulted
1193  * @device: device against to dma map page to
1194  * @daddrs: dma address of mapped pages
1195  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1196  * Returns: number of pages mapped on success, -EAGAIN if mmap_sem have been
1197  *          drop and you need to try again, some other error value otherwise
1198  *
1199  * Note same usage pattern as hmm_range_fault().
1200  */
1201 long hmm_range_dma_map(struct hmm_range *range,
1202                        struct device *device,
1203                        dma_addr_t *daddrs,
1204                        bool block)
1205 {
1206         unsigned long i, npages, mapped;
1207         long ret;
1208
1209         ret = hmm_range_fault(range, block);
1210         if (ret <= 0)
1211                 return ret ? ret : -EBUSY;
1212
1213         npages = (range->end - range->start) >> PAGE_SHIFT;
1214         for (i = 0, mapped = 0; i < npages; ++i) {
1215                 enum dma_data_direction dir = DMA_TO_DEVICE;
1216                 struct page *page;
1217
1218                 /*
1219                  * FIXME need to update DMA API to provide invalid DMA address
1220                  * value instead of a function to test dma address value. This
1221                  * would remove lot of dumb code duplicated accross many arch.
1222                  *
1223                  * For now setting it to 0 here is good enough as the pfns[]
1224                  * value is what is use to check what is valid and what isn't.
1225                  */
1226                 daddrs[i] = 0;
1227
1228                 page = hmm_device_entry_to_page(range, range->pfns[i]);
1229                 if (page == NULL)
1230                         continue;
1231
1232                 /* Check if range is being invalidated */
1233                 if (!range->valid) {
1234                         ret = -EBUSY;
1235                         goto unmap;
1236                 }
1237
1238                 /* If it is read and write than map bi-directional. */
1239                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1240                         dir = DMA_BIDIRECTIONAL;
1241
1242                 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1243                 if (dma_mapping_error(device, daddrs[i])) {
1244                         ret = -EFAULT;
1245                         goto unmap;
1246                 }
1247
1248                 mapped++;
1249         }
1250
1251         return mapped;
1252
1253 unmap:
1254         for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1255                 enum dma_data_direction dir = DMA_TO_DEVICE;
1256                 struct page *page;
1257
1258                 page = hmm_device_entry_to_page(range, range->pfns[i]);
1259                 if (page == NULL)
1260                         continue;
1261
1262                 if (dma_mapping_error(device, daddrs[i]))
1263                         continue;
1264
1265                 /* If it is read and write than map bi-directional. */
1266                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1267                         dir = DMA_BIDIRECTIONAL;
1268
1269                 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1270                 mapped--;
1271         }
1272
1273         return ret;
1274 }
1275 EXPORT_SYMBOL(hmm_range_dma_map);
1276
1277 /**
1278  * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1279  * @range: range being unmapped
1280  * @vma: the vma against which the range (optional)
1281  * @device: device against which dma map was done
1282  * @daddrs: dma address of mapped pages
1283  * @dirty: dirty page if it had the write flag set
1284  * Returns: number of page unmapped on success, -EINVAL otherwise
1285  *
1286  * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1287  * to the sync_cpu_device_pagetables() callback so that it is safe here to
1288  * call set_page_dirty(). Caller must also take appropriate locks to avoid
1289  * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1290  */
1291 long hmm_range_dma_unmap(struct hmm_range *range,
1292                          struct vm_area_struct *vma,
1293                          struct device *device,
1294                          dma_addr_t *daddrs,
1295                          bool dirty)
1296 {
1297         unsigned long i, npages;
1298         long cpages = 0;
1299
1300         /* Sanity check. */
1301         if (range->end <= range->start)
1302                 return -EINVAL;
1303         if (!daddrs)
1304                 return -EINVAL;
1305         if (!range->pfns)
1306                 return -EINVAL;
1307
1308         npages = (range->end - range->start) >> PAGE_SHIFT;
1309         for (i = 0; i < npages; ++i) {
1310                 enum dma_data_direction dir = DMA_TO_DEVICE;
1311                 struct page *page;
1312
1313                 page = hmm_device_entry_to_page(range, range->pfns[i]);
1314                 if (page == NULL)
1315                         continue;
1316
1317                 /* If it is read and write than map bi-directional. */
1318                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1319                         dir = DMA_BIDIRECTIONAL;
1320
1321                         /*
1322                          * See comments in function description on why it is
1323                          * safe here to call set_page_dirty()
1324                          */
1325                         if (dirty)
1326                                 set_page_dirty(page);
1327                 }
1328
1329                 /* Unmap and clear pfns/dma address */
1330                 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1331                 range->pfns[i] = range->values[HMM_PFN_NONE];
1332                 /* FIXME see comments in hmm_vma_dma_map() */
1333                 daddrs[i] = 0;
1334                 cpages++;
1335         }
1336
1337         return cpages;
1338 }
1339 EXPORT_SYMBOL(hmm_range_dma_unmap);
1340 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
1341
1342
1343 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
1344 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1345                                        unsigned long addr)
1346 {
1347         struct page *page;
1348
1349         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1350         if (!page)
1351                 return NULL;
1352         lock_page(page);
1353         return page;
1354 }
1355 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1356
1357
1358 static void hmm_devmem_ref_release(struct percpu_ref *ref)
1359 {
1360         struct hmm_devmem *devmem;
1361
1362         devmem = container_of(ref, struct hmm_devmem, ref);
1363         complete(&devmem->completion);
1364 }
1365
1366 static void hmm_devmem_ref_exit(void *data)
1367 {
1368         struct percpu_ref *ref = data;
1369         struct hmm_devmem *devmem;
1370
1371         devmem = container_of(ref, struct hmm_devmem, ref);
1372         wait_for_completion(&devmem->completion);
1373         percpu_ref_exit(ref);
1374 }
1375
1376 static void hmm_devmem_ref_kill(struct percpu_ref *ref)
1377 {
1378         percpu_ref_kill(ref);
1379 }
1380
1381 static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
1382                             unsigned long addr,
1383                             const struct page *page,
1384                             unsigned int flags,
1385                             pmd_t *pmdp)
1386 {
1387         struct hmm_devmem *devmem = page->pgmap->data;
1388
1389         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1390 }
1391
1392 static void hmm_devmem_free(struct page *page, void *data)
1393 {
1394         struct hmm_devmem *devmem = data;
1395
1396         page->mapping = NULL;
1397
1398         devmem->ops->free(devmem, page);
1399 }
1400
1401 /*
1402  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1403  *
1404  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1405  * @device: device struct to bind the resource too
1406  * @size: size in bytes of the device memory to add
1407  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1408  *
1409  * This function first finds an empty range of physical address big enough to
1410  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1411  * in turn allocates struct pages. It does not do anything beyond that; all
1412  * events affecting the memory will go through the various callbacks provided
1413  * by hmm_devmem_ops struct.
1414  *
1415  * Device driver should call this function during device initialization and
1416  * is then responsible of memory management. HMM only provides helpers.
1417  */
1418 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1419                                   struct device *device,
1420                                   unsigned long size)
1421 {
1422         struct hmm_devmem *devmem;
1423         resource_size_t addr;
1424         void *result;
1425         int ret;
1426
1427         dev_pagemap_get_ops();
1428
1429         devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1430         if (!devmem)
1431                 return ERR_PTR(-ENOMEM);
1432
1433         init_completion(&devmem->completion);
1434         devmem->pfn_first = -1UL;
1435         devmem->pfn_last = -1UL;
1436         devmem->resource = NULL;
1437         devmem->device = device;
1438         devmem->ops = ops;
1439
1440         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1441                               0, GFP_KERNEL);
1442         if (ret)
1443                 return ERR_PTR(ret);
1444
1445         ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
1446         if (ret)
1447                 return ERR_PTR(ret);
1448
1449         size = ALIGN(size, PA_SECTION_SIZE);
1450         addr = min((unsigned long)iomem_resource.end,
1451                    (1UL << MAX_PHYSMEM_BITS) - 1);
1452         addr = addr - size + 1UL;
1453
1454         /*
1455          * FIXME add a new helper to quickly walk resource tree and find free
1456          * range
1457          *
1458          * FIXME what about ioport_resource resource ?
1459          */
1460         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1461                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1462                 if (ret != REGION_DISJOINT)
1463                         continue;
1464
1465                 devmem->resource = devm_request_mem_region(device, addr, size,
1466                                                            dev_name(device));
1467                 if (!devmem->resource)
1468                         return ERR_PTR(-ENOMEM);
1469                 break;
1470         }
1471         if (!devmem->resource)
1472                 return ERR_PTR(-ERANGE);
1473
1474         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1475         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1476         devmem->pfn_last = devmem->pfn_first +
1477                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1478         devmem->page_fault = hmm_devmem_fault;
1479
1480         devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1481         devmem->pagemap.res = *devmem->resource;
1482         devmem->pagemap.page_free = hmm_devmem_free;
1483         devmem->pagemap.altmap_valid = false;
1484         devmem->pagemap.ref = &devmem->ref;
1485         devmem->pagemap.data = devmem;
1486         devmem->pagemap.kill = hmm_devmem_ref_kill;
1487
1488         result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1489         if (IS_ERR(result))
1490                 return result;
1491         return devmem;
1492 }
1493 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1494
1495 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1496                                            struct device *device,
1497                                            struct resource *res)
1498 {
1499         struct hmm_devmem *devmem;
1500         void *result;
1501         int ret;
1502
1503         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1504                 return ERR_PTR(-EINVAL);
1505
1506         dev_pagemap_get_ops();
1507
1508         devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1509         if (!devmem)
1510                 return ERR_PTR(-ENOMEM);
1511
1512         init_completion(&devmem->completion);
1513         devmem->pfn_first = -1UL;
1514         devmem->pfn_last = -1UL;
1515         devmem->resource = res;
1516         devmem->device = device;
1517         devmem->ops = ops;
1518
1519         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1520                               0, GFP_KERNEL);
1521         if (ret)
1522                 return ERR_PTR(ret);
1523
1524         ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1525                         &devmem->ref);
1526         if (ret)
1527                 return ERR_PTR(ret);
1528
1529         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1530         devmem->pfn_last = devmem->pfn_first +
1531                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1532         devmem->page_fault = hmm_devmem_fault;
1533
1534         devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1535         devmem->pagemap.res = *devmem->resource;
1536         devmem->pagemap.page_free = hmm_devmem_free;
1537         devmem->pagemap.altmap_valid = false;
1538         devmem->pagemap.ref = &devmem->ref;
1539         devmem->pagemap.data = devmem;
1540         devmem->pagemap.kill = hmm_devmem_ref_kill;
1541
1542         result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1543         if (IS_ERR(result))
1544                 return result;
1545         return devmem;
1546 }
1547 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1548
1549 /*
1550  * A device driver that wants to handle multiple devices memory through a
1551  * single fake device can use hmm_device to do so. This is purely a helper
1552  * and it is not needed to make use of any HMM functionality.
1553  */
1554 #define HMM_DEVICE_MAX 256
1555
1556 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1557 static DEFINE_SPINLOCK(hmm_device_lock);
1558 static struct class *hmm_device_class;
1559 static dev_t hmm_device_devt;
1560
1561 static void hmm_device_release(struct device *device)
1562 {
1563         struct hmm_device *hmm_device;
1564
1565         hmm_device = container_of(device, struct hmm_device, device);
1566         spin_lock(&hmm_device_lock);
1567         clear_bit(hmm_device->minor, hmm_device_mask);
1568         spin_unlock(&hmm_device_lock);
1569
1570         kfree(hmm_device);
1571 }
1572
1573 struct hmm_device *hmm_device_new(void *drvdata)
1574 {
1575         struct hmm_device *hmm_device;
1576
1577         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1578         if (!hmm_device)
1579                 return ERR_PTR(-ENOMEM);
1580
1581         spin_lock(&hmm_device_lock);
1582         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1583         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1584                 spin_unlock(&hmm_device_lock);
1585                 kfree(hmm_device);
1586                 return ERR_PTR(-EBUSY);
1587         }
1588         set_bit(hmm_device->minor, hmm_device_mask);
1589         spin_unlock(&hmm_device_lock);
1590
1591         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1592         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1593                                         hmm_device->minor);
1594         hmm_device->device.release = hmm_device_release;
1595         dev_set_drvdata(&hmm_device->device, drvdata);
1596         hmm_device->device.class = hmm_device_class;
1597         device_initialize(&hmm_device->device);
1598
1599         return hmm_device;
1600 }
1601 EXPORT_SYMBOL(hmm_device_new);
1602
1603 void hmm_device_put(struct hmm_device *hmm_device)
1604 {
1605         put_device(&hmm_device->device);
1606 }
1607 EXPORT_SYMBOL(hmm_device_put);
1608
1609 static int __init hmm_init(void)
1610 {
1611         int ret;
1612
1613         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1614                                   HMM_DEVICE_MAX,
1615                                   "hmm_device");
1616         if (ret)
1617                 return ret;
1618
1619         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1620         if (IS_ERR(hmm_device_class)) {
1621                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1622                 return PTR_ERR(hmm_device_class);
1623         }
1624         return 0;
1625 }
1626
1627 device_initcall(hmm_init);
1628 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */