Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
39 /*
40  * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
41  */
42 DEFINE_STATIC_KEY_FALSE(device_private_key);
43 EXPORT_SYMBOL(device_private_key);
44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
45
46
47 #if IS_ENABLED(CONFIG_HMM_MIRROR)
48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
49
50 /*
51  * struct hmm - HMM per mm struct
52  *
53  * @mm: mm struct this HMM struct is bound to
54  * @lock: lock protecting ranges list
55  * @sequence: we track updates to the CPU page table with a sequence number
56  * @ranges: list of range being snapshotted
57  * @mirrors: list of mirrors for this mm
58  * @mmu_notifier: mmu notifier to track updates to CPU page table
59  * @mirrors_sem: read/write semaphore protecting the mirrors list
60  */
61 struct hmm {
62         struct mm_struct        *mm;
63         spinlock_t              lock;
64         atomic_t                sequence;
65         struct list_head        ranges;
66         struct list_head        mirrors;
67         struct mmu_notifier     mmu_notifier;
68         struct rw_semaphore     mirrors_sem;
69 };
70
71 /*
72  * hmm_register - register HMM against an mm (HMM internal)
73  *
74  * @mm: mm struct to attach to
75  *
76  * This is not intended to be used directly by device drivers. It allocates an
77  * HMM struct if mm does not have one, and initializes it.
78  */
79 static struct hmm *hmm_register(struct mm_struct *mm)
80 {
81         struct hmm *hmm = READ_ONCE(mm->hmm);
82         bool cleanup = false;
83
84         /*
85          * The hmm struct can only be freed once the mm_struct goes away,
86          * hence we should always have pre-allocated an new hmm struct
87          * above.
88          */
89         if (hmm)
90                 return hmm;
91
92         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
93         if (!hmm)
94                 return NULL;
95         INIT_LIST_HEAD(&hmm->mirrors);
96         init_rwsem(&hmm->mirrors_sem);
97         atomic_set(&hmm->sequence, 0);
98         hmm->mmu_notifier.ops = NULL;
99         INIT_LIST_HEAD(&hmm->ranges);
100         spin_lock_init(&hmm->lock);
101         hmm->mm = mm;
102
103         /*
104          * We should only get here if hold the mmap_sem in write mode ie on
105          * registration of first mirror through hmm_mirror_register()
106          */
107         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
108         if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
109                 kfree(hmm);
110                 return NULL;
111         }
112
113         spin_lock(&mm->page_table_lock);
114         if (!mm->hmm)
115                 mm->hmm = hmm;
116         else
117                 cleanup = true;
118         spin_unlock(&mm->page_table_lock);
119
120         if (cleanup) {
121                 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
122                 kfree(hmm);
123         }
124
125         return mm->hmm;
126 }
127
128 void hmm_mm_destroy(struct mm_struct *mm)
129 {
130         kfree(mm->hmm);
131 }
132
133 static void hmm_invalidate_range(struct hmm *hmm,
134                                  enum hmm_update_type action,
135                                  unsigned long start,
136                                  unsigned long end)
137 {
138         struct hmm_mirror *mirror;
139         struct hmm_range *range;
140
141         spin_lock(&hmm->lock);
142         list_for_each_entry(range, &hmm->ranges, list) {
143                 unsigned long addr, idx, npages;
144
145                 if (end < range->start || start >= range->end)
146                         continue;
147
148                 range->valid = false;
149                 addr = max(start, range->start);
150                 idx = (addr - range->start) >> PAGE_SHIFT;
151                 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
152                 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
153         }
154         spin_unlock(&hmm->lock);
155
156         down_read(&hmm->mirrors_sem);
157         list_for_each_entry(mirror, &hmm->mirrors, list)
158                 mirror->ops->sync_cpu_device_pagetables(mirror, action,
159                                                         start, end);
160         up_read(&hmm->mirrors_sem);
161 }
162
163 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
164 {
165         struct hmm_mirror *mirror;
166         struct hmm *hmm = mm->hmm;
167
168         down_write(&hmm->mirrors_sem);
169         mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
170                                           list);
171         while (mirror) {
172                 list_del_init(&mirror->list);
173                 if (mirror->ops->release) {
174                         /*
175                          * Drop mirrors_sem so callback can wait on any pending
176                          * work that might itself trigger mmu_notifier callback
177                          * and thus would deadlock with us.
178                          */
179                         up_write(&hmm->mirrors_sem);
180                         mirror->ops->release(mirror);
181                         down_write(&hmm->mirrors_sem);
182                 }
183                 mirror = list_first_entry_or_null(&hmm->mirrors,
184                                                   struct hmm_mirror, list);
185         }
186         up_write(&hmm->mirrors_sem);
187 }
188
189 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
190                                        struct mm_struct *mm,
191                                        unsigned long start,
192                                        unsigned long end)
193 {
194         struct hmm *hmm = mm->hmm;
195
196         VM_BUG_ON(!hmm);
197
198         atomic_inc(&hmm->sequence);
199 }
200
201 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
202                                      struct mm_struct *mm,
203                                      unsigned long start,
204                                      unsigned long end)
205 {
206         struct hmm *hmm = mm->hmm;
207
208         VM_BUG_ON(!hmm);
209
210         hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
211 }
212
213 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
214         .release                = hmm_release,
215         .invalidate_range_start = hmm_invalidate_range_start,
216         .invalidate_range_end   = hmm_invalidate_range_end,
217 };
218
219 /*
220  * hmm_mirror_register() - register a mirror against an mm
221  *
222  * @mirror: new mirror struct to register
223  * @mm: mm to register against
224  *
225  * To start mirroring a process address space, the device driver must register
226  * an HMM mirror struct.
227  *
228  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
229  */
230 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
231 {
232         /* Sanity check */
233         if (!mm || !mirror || !mirror->ops)
234                 return -EINVAL;
235
236 again:
237         mirror->hmm = hmm_register(mm);
238         if (!mirror->hmm)
239                 return -ENOMEM;
240
241         down_write(&mirror->hmm->mirrors_sem);
242         if (mirror->hmm->mm == NULL) {
243                 /*
244                  * A racing hmm_mirror_unregister() is about to destroy the hmm
245                  * struct. Try again to allocate a new one.
246                  */
247                 up_write(&mirror->hmm->mirrors_sem);
248                 mirror->hmm = NULL;
249                 goto again;
250         } else {
251                 list_add(&mirror->list, &mirror->hmm->mirrors);
252                 up_write(&mirror->hmm->mirrors_sem);
253         }
254
255         return 0;
256 }
257 EXPORT_SYMBOL(hmm_mirror_register);
258
259 /*
260  * hmm_mirror_unregister() - unregister a mirror
261  *
262  * @mirror: new mirror struct to register
263  *
264  * Stop mirroring a process address space, and cleanup.
265  */
266 void hmm_mirror_unregister(struct hmm_mirror *mirror)
267 {
268         bool should_unregister = false;
269         struct mm_struct *mm;
270         struct hmm *hmm;
271
272         if (mirror->hmm == NULL)
273                 return;
274
275         hmm = mirror->hmm;
276         down_write(&hmm->mirrors_sem);
277         list_del_init(&mirror->list);
278         should_unregister = list_empty(&hmm->mirrors);
279         mirror->hmm = NULL;
280         mm = hmm->mm;
281         hmm->mm = NULL;
282         up_write(&hmm->mirrors_sem);
283
284         if (!should_unregister || mm == NULL)
285                 return;
286
287         spin_lock(&mm->page_table_lock);
288         if (mm->hmm == hmm)
289                 mm->hmm = NULL;
290         spin_unlock(&mm->page_table_lock);
291
292         mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
293         kfree(hmm);
294 }
295 EXPORT_SYMBOL(hmm_mirror_unregister);
296
297 struct hmm_vma_walk {
298         struct hmm_range        *range;
299         unsigned long           last;
300         bool                    fault;
301         bool                    block;
302 };
303
304 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
305                             bool write_fault, uint64_t *pfn)
306 {
307         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
308         struct hmm_vma_walk *hmm_vma_walk = walk->private;
309         struct hmm_range *range = hmm_vma_walk->range;
310         struct vm_area_struct *vma = walk->vma;
311         int r;
312
313         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
314         flags |= write_fault ? FAULT_FLAG_WRITE : 0;
315         r = handle_mm_fault(vma, addr, flags);
316         if (r & VM_FAULT_RETRY)
317                 return -EBUSY;
318         if (r & VM_FAULT_ERROR) {
319                 *pfn = range->values[HMM_PFN_ERROR];
320                 return -EFAULT;
321         }
322
323         return -EAGAIN;
324 }
325
326 static int hmm_pfns_bad(unsigned long addr,
327                         unsigned long end,
328                         struct mm_walk *walk)
329 {
330         struct hmm_vma_walk *hmm_vma_walk = walk->private;
331         struct hmm_range *range = hmm_vma_walk->range;
332         uint64_t *pfns = range->pfns;
333         unsigned long i;
334
335         i = (addr - range->start) >> PAGE_SHIFT;
336         for (; addr < end; addr += PAGE_SIZE, i++)
337                 pfns[i] = range->values[HMM_PFN_ERROR];
338
339         return 0;
340 }
341
342 /*
343  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
344  * @start: range virtual start address (inclusive)
345  * @end: range virtual end address (exclusive)
346  * @fault: should we fault or not ?
347  * @write_fault: write fault ?
348  * @walk: mm_walk structure
349  * Returns: 0 on success, -EAGAIN after page fault, or page fault error
350  *
351  * This function will be called whenever pmd_none() or pte_none() returns true,
352  * or whenever there is no page directory covering the virtual address range.
353  */
354 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
355                               bool fault, bool write_fault,
356                               struct mm_walk *walk)
357 {
358         struct hmm_vma_walk *hmm_vma_walk = walk->private;
359         struct hmm_range *range = hmm_vma_walk->range;
360         uint64_t *pfns = range->pfns;
361         unsigned long i;
362
363         hmm_vma_walk->last = addr;
364         i = (addr - range->start) >> PAGE_SHIFT;
365         for (; addr < end; addr += PAGE_SIZE, i++) {
366                 pfns[i] = range->values[HMM_PFN_NONE];
367                 if (fault || write_fault) {
368                         int ret;
369
370                         ret = hmm_vma_do_fault(walk, addr, write_fault,
371                                                &pfns[i]);
372                         if (ret != -EAGAIN)
373                                 return ret;
374                 }
375         }
376
377         return (fault || write_fault) ? -EAGAIN : 0;
378 }
379
380 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
381                                       uint64_t pfns, uint64_t cpu_flags,
382                                       bool *fault, bool *write_fault)
383 {
384         struct hmm_range *range = hmm_vma_walk->range;
385
386         *fault = *write_fault = false;
387         if (!hmm_vma_walk->fault)
388                 return;
389
390         /* We aren't ask to do anything ... */
391         if (!(pfns & range->flags[HMM_PFN_VALID]))
392                 return;
393         /* If this is device memory than only fault if explicitly requested */
394         if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
395                 /* Do we fault on device memory ? */
396                 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
397                         *write_fault = pfns & range->flags[HMM_PFN_WRITE];
398                         *fault = true;
399                 }
400                 return;
401         }
402
403         /* If CPU page table is not valid then we need to fault */
404         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
405         /* Need to write fault ? */
406         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
407             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
408                 *write_fault = true;
409                 *fault = true;
410         }
411 }
412
413 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
414                                  const uint64_t *pfns, unsigned long npages,
415                                  uint64_t cpu_flags, bool *fault,
416                                  bool *write_fault)
417 {
418         unsigned long i;
419
420         if (!hmm_vma_walk->fault) {
421                 *fault = *write_fault = false;
422                 return;
423         }
424
425         for (i = 0; i < npages; ++i) {
426                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
427                                    fault, write_fault);
428                 if ((*fault) || (*write_fault))
429                         return;
430         }
431 }
432
433 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
434                              struct mm_walk *walk)
435 {
436         struct hmm_vma_walk *hmm_vma_walk = walk->private;
437         struct hmm_range *range = hmm_vma_walk->range;
438         bool fault, write_fault;
439         unsigned long i, npages;
440         uint64_t *pfns;
441
442         i = (addr - range->start) >> PAGE_SHIFT;
443         npages = (end - addr) >> PAGE_SHIFT;
444         pfns = &range->pfns[i];
445         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
446                              0, &fault, &write_fault);
447         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
448 }
449
450 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
451 {
452         if (pmd_protnone(pmd))
453                 return 0;
454         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
455                                 range->flags[HMM_PFN_WRITE] :
456                                 range->flags[HMM_PFN_VALID];
457 }
458
459 static int hmm_vma_handle_pmd(struct mm_walk *walk,
460                               unsigned long addr,
461                               unsigned long end,
462                               uint64_t *pfns,
463                               pmd_t pmd)
464 {
465         struct hmm_vma_walk *hmm_vma_walk = walk->private;
466         struct hmm_range *range = hmm_vma_walk->range;
467         unsigned long pfn, npages, i;
468         bool fault, write_fault;
469         uint64_t cpu_flags;
470
471         npages = (end - addr) >> PAGE_SHIFT;
472         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
473         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
474                              &fault, &write_fault);
475
476         if (pmd_protnone(pmd) || fault || write_fault)
477                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
478
479         pfn = pmd_pfn(pmd) + pte_index(addr);
480         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
481                 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
482         hmm_vma_walk->last = end;
483         return 0;
484 }
485
486 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
487 {
488         if (pte_none(pte) || !pte_present(pte))
489                 return 0;
490         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
491                                 range->flags[HMM_PFN_WRITE] :
492                                 range->flags[HMM_PFN_VALID];
493 }
494
495 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
496                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
497                               uint64_t *pfn)
498 {
499         struct hmm_vma_walk *hmm_vma_walk = walk->private;
500         struct hmm_range *range = hmm_vma_walk->range;
501         struct vm_area_struct *vma = walk->vma;
502         bool fault, write_fault;
503         uint64_t cpu_flags;
504         pte_t pte = *ptep;
505         uint64_t orig_pfn = *pfn;
506
507         *pfn = range->values[HMM_PFN_NONE];
508         cpu_flags = pte_to_hmm_pfn_flags(range, pte);
509         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
510                            &fault, &write_fault);
511
512         if (pte_none(pte)) {
513                 if (fault || write_fault)
514                         goto fault;
515                 return 0;
516         }
517
518         if (!pte_present(pte)) {
519                 swp_entry_t entry = pte_to_swp_entry(pte);
520
521                 if (!non_swap_entry(entry)) {
522                         if (fault || write_fault)
523                                 goto fault;
524                         return 0;
525                 }
526
527                 /*
528                  * This is a special swap entry, ignore migration, use
529                  * device and report anything else as error.
530                  */
531                 if (is_device_private_entry(entry)) {
532                         cpu_flags = range->flags[HMM_PFN_VALID] |
533                                 range->flags[HMM_PFN_DEVICE_PRIVATE];
534                         cpu_flags |= is_write_device_private_entry(entry) ?
535                                 range->flags[HMM_PFN_WRITE] : 0;
536                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
537                                            &fault, &write_fault);
538                         if (fault || write_fault)
539                                 goto fault;
540                         *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
541                         *pfn |= cpu_flags;
542                         return 0;
543                 }
544
545                 if (is_migration_entry(entry)) {
546                         if (fault || write_fault) {
547                                 pte_unmap(ptep);
548                                 hmm_vma_walk->last = addr;
549                                 migration_entry_wait(vma->vm_mm,
550                                                      pmdp, addr);
551                                 return -EAGAIN;
552                         }
553                         return 0;
554                 }
555
556                 /* Report error for everything else */
557                 *pfn = range->values[HMM_PFN_ERROR];
558                 return -EFAULT;
559         }
560
561         if (fault || write_fault)
562                 goto fault;
563
564         *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
565         return 0;
566
567 fault:
568         pte_unmap(ptep);
569         /* Fault any virtual address we were asked to fault */
570         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
571 }
572
573 static int hmm_vma_walk_pmd(pmd_t *pmdp,
574                             unsigned long start,
575                             unsigned long end,
576                             struct mm_walk *walk)
577 {
578         struct hmm_vma_walk *hmm_vma_walk = walk->private;
579         struct hmm_range *range = hmm_vma_walk->range;
580         uint64_t *pfns = range->pfns;
581         unsigned long addr = start, i;
582         pte_t *ptep;
583
584         i = (addr - range->start) >> PAGE_SHIFT;
585
586 again:
587         if (pmd_none(*pmdp))
588                 return hmm_vma_walk_hole(start, end, walk);
589
590         if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
591                 return hmm_pfns_bad(start, end, walk);
592
593         if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
594                 pmd_t pmd;
595
596                 /*
597                  * No need to take pmd_lock here, even if some other threads
598                  * is splitting the huge pmd we will get that event through
599                  * mmu_notifier callback.
600                  *
601                  * So just read pmd value and check again its a transparent
602                  * huge or device mapping one and compute corresponding pfn
603                  * values.
604                  */
605                 pmd = pmd_read_atomic(pmdp);
606                 barrier();
607                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
608                         goto again;
609
610                 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
611         }
612
613         if (pmd_bad(*pmdp))
614                 return hmm_pfns_bad(start, end, walk);
615
616         ptep = pte_offset_map(pmdp, addr);
617         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
618                 int r;
619
620                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
621                 if (r) {
622                         /* hmm_vma_handle_pte() did unmap pte directory */
623                         hmm_vma_walk->last = addr;
624                         return r;
625                 }
626         }
627         pte_unmap(ptep - 1);
628
629         hmm_vma_walk->last = addr;
630         return 0;
631 }
632
633 static void hmm_pfns_clear(struct hmm_range *range,
634                            uint64_t *pfns,
635                            unsigned long addr,
636                            unsigned long end)
637 {
638         for (; addr < end; addr += PAGE_SIZE, pfns++)
639                 *pfns = range->values[HMM_PFN_NONE];
640 }
641
642 static void hmm_pfns_special(struct hmm_range *range)
643 {
644         unsigned long addr = range->start, i = 0;
645
646         for (; addr < range->end; addr += PAGE_SIZE, i++)
647                 range->pfns[i] = range->values[HMM_PFN_SPECIAL];
648 }
649
650 /*
651  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
652  * @range: range being snapshotted
653  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
654  *          vma permission, 0 success
655  *
656  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
657  * validity is tracked by range struct. See hmm_vma_range_done() for further
658  * information.
659  *
660  * The range struct is initialized here. It tracks the CPU page table, but only
661  * if the function returns success (0), in which case the caller must then call
662  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
663  *
664  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
665  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
666  */
667 int hmm_vma_get_pfns(struct hmm_range *range)
668 {
669         struct vm_area_struct *vma = range->vma;
670         struct hmm_vma_walk hmm_vma_walk;
671         struct mm_walk mm_walk;
672         struct hmm *hmm;
673
674         /* Sanity check, this really should not happen ! */
675         if (range->start < vma->vm_start || range->start >= vma->vm_end)
676                 return -EINVAL;
677         if (range->end < vma->vm_start || range->end > vma->vm_end)
678                 return -EINVAL;
679
680         hmm = hmm_register(vma->vm_mm);
681         if (!hmm)
682                 return -ENOMEM;
683         /* Caller must have registered a mirror, via hmm_mirror_register() ! */
684         if (!hmm->mmu_notifier.ops)
685                 return -EINVAL;
686
687         /* FIXME support hugetlb fs */
688         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
689                 hmm_pfns_special(range);
690                 return -EINVAL;
691         }
692
693         if (!(vma->vm_flags & VM_READ)) {
694                 /*
695                  * If vma do not allow read access, then assume that it does
696                  * not allow write access, either. Architecture that allow
697                  * write without read access are not supported by HMM, because
698                  * operations such has atomic access would not work.
699                  */
700                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
701                 return -EPERM;
702         }
703
704         /* Initialize range to track CPU page table update */
705         spin_lock(&hmm->lock);
706         range->valid = true;
707         list_add_rcu(&range->list, &hmm->ranges);
708         spin_unlock(&hmm->lock);
709
710         hmm_vma_walk.fault = false;
711         hmm_vma_walk.range = range;
712         mm_walk.private = &hmm_vma_walk;
713
714         mm_walk.vma = vma;
715         mm_walk.mm = vma->vm_mm;
716         mm_walk.pte_entry = NULL;
717         mm_walk.test_walk = NULL;
718         mm_walk.hugetlb_entry = NULL;
719         mm_walk.pmd_entry = hmm_vma_walk_pmd;
720         mm_walk.pte_hole = hmm_vma_walk_hole;
721
722         walk_page_range(range->start, range->end, &mm_walk);
723         return 0;
724 }
725 EXPORT_SYMBOL(hmm_vma_get_pfns);
726
727 /*
728  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
729  * @range: range being tracked
730  * Returns: false if range data has been invalidated, true otherwise
731  *
732  * Range struct is used to track updates to the CPU page table after a call to
733  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
734  * using the data,  or wants to lock updates to the data it got from those
735  * functions, it must call the hmm_vma_range_done() function, which will then
736  * stop tracking CPU page table updates.
737  *
738  * Note that device driver must still implement general CPU page table update
739  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
740  * the mmu_notifier API directly.
741  *
742  * CPU page table update tracking done through hmm_range is only temporary and
743  * to be used while trying to duplicate CPU page table contents for a range of
744  * virtual addresses.
745  *
746  * There are two ways to use this :
747  * again:
748  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
749  *   trans = device_build_page_table_update_transaction(pfns);
750  *   device_page_table_lock();
751  *   if (!hmm_vma_range_done(range)) {
752  *     device_page_table_unlock();
753  *     goto again;
754  *   }
755  *   device_commit_transaction(trans);
756  *   device_page_table_unlock();
757  *
758  * Or:
759  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
760  *   device_page_table_lock();
761  *   hmm_vma_range_done(range);
762  *   device_update_page_table(range->pfns);
763  *   device_page_table_unlock();
764  */
765 bool hmm_vma_range_done(struct hmm_range *range)
766 {
767         unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
768         struct hmm *hmm;
769
770         if (range->end <= range->start) {
771                 BUG();
772                 return false;
773         }
774
775         hmm = hmm_register(range->vma->vm_mm);
776         if (!hmm) {
777                 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
778                 return false;
779         }
780
781         spin_lock(&hmm->lock);
782         list_del_rcu(&range->list);
783         spin_unlock(&hmm->lock);
784
785         return range->valid;
786 }
787 EXPORT_SYMBOL(hmm_vma_range_done);
788
789 /*
790  * hmm_vma_fault() - try to fault some address in a virtual address range
791  * @range: range being faulted
792  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
793  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
794  *
795  * This is similar to a regular CPU page fault except that it will not trigger
796  * any memory migration if the memory being faulted is not accessible by CPUs.
797  *
798  * On error, for one virtual address in the range, the function will mark the
799  * corresponding HMM pfn entry with an error flag.
800  *
801  * Expected use pattern:
802  * retry:
803  *   down_read(&mm->mmap_sem);
804  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
805  *   // array accordingly
806  *   ret = hmm_vma_fault(range, write, block);
807  *   switch (ret) {
808  *   case -EAGAIN:
809  *     hmm_vma_range_done(range);
810  *     // You might want to rate limit or yield to play nicely, you may
811  *     // also commit any valid pfn in the array assuming that you are
812  *     // getting true from hmm_vma_range_monitor_end()
813  *     goto retry;
814  *   case 0:
815  *     break;
816  *   case -ENOMEM:
817  *   case -EINVAL:
818  *   case -EPERM:
819  *   default:
820  *     // Handle error !
821  *     up_read(&mm->mmap_sem)
822  *     return;
823  *   }
824  *   // Take device driver lock that serialize device page table update
825  *   driver_lock_device_page_table_update();
826  *   hmm_vma_range_done(range);
827  *   // Commit pfns we got from hmm_vma_fault()
828  *   driver_unlock_device_page_table_update();
829  *   up_read(&mm->mmap_sem)
830  *
831  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
832  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
833  *
834  * YOU HAVE BEEN WARNED !
835  */
836 int hmm_vma_fault(struct hmm_range *range, bool block)
837 {
838         struct vm_area_struct *vma = range->vma;
839         unsigned long start = range->start;
840         struct hmm_vma_walk hmm_vma_walk;
841         struct mm_walk mm_walk;
842         struct hmm *hmm;
843         int ret;
844
845         /* Sanity check, this really should not happen ! */
846         if (range->start < vma->vm_start || range->start >= vma->vm_end)
847                 return -EINVAL;
848         if (range->end < vma->vm_start || range->end > vma->vm_end)
849                 return -EINVAL;
850
851         hmm = hmm_register(vma->vm_mm);
852         if (!hmm) {
853                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
854                 return -ENOMEM;
855         }
856         /* Caller must have registered a mirror using hmm_mirror_register() */
857         if (!hmm->mmu_notifier.ops)
858                 return -EINVAL;
859
860         /* FIXME support hugetlb fs */
861         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
862                 hmm_pfns_special(range);
863                 return -EINVAL;
864         }
865
866         if (!(vma->vm_flags & VM_READ)) {
867                 /*
868                  * If vma do not allow read access, then assume that it does
869                  * not allow write access, either. Architecture that allow
870                  * write without read access are not supported by HMM, because
871                  * operations such has atomic access would not work.
872                  */
873                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
874                 return -EPERM;
875         }
876
877         /* Initialize range to track CPU page table update */
878         spin_lock(&hmm->lock);
879         range->valid = true;
880         list_add_rcu(&range->list, &hmm->ranges);
881         spin_unlock(&hmm->lock);
882
883         hmm_vma_walk.fault = true;
884         hmm_vma_walk.block = block;
885         hmm_vma_walk.range = range;
886         mm_walk.private = &hmm_vma_walk;
887         hmm_vma_walk.last = range->start;
888
889         mm_walk.vma = vma;
890         mm_walk.mm = vma->vm_mm;
891         mm_walk.pte_entry = NULL;
892         mm_walk.test_walk = NULL;
893         mm_walk.hugetlb_entry = NULL;
894         mm_walk.pmd_entry = hmm_vma_walk_pmd;
895         mm_walk.pte_hole = hmm_vma_walk_hole;
896
897         do {
898                 ret = walk_page_range(start, range->end, &mm_walk);
899                 start = hmm_vma_walk.last;
900         } while (ret == -EAGAIN);
901
902         if (ret) {
903                 unsigned long i;
904
905                 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
906                 hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
907                                range->end);
908                 hmm_vma_range_done(range);
909         }
910         return ret;
911 }
912 EXPORT_SYMBOL(hmm_vma_fault);
913 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
914
915
916 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
917 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
918                                        unsigned long addr)
919 {
920         struct page *page;
921
922         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
923         if (!page)
924                 return NULL;
925         lock_page(page);
926         return page;
927 }
928 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
929
930
931 static void hmm_devmem_ref_release(struct percpu_ref *ref)
932 {
933         struct hmm_devmem *devmem;
934
935         devmem = container_of(ref, struct hmm_devmem, ref);
936         complete(&devmem->completion);
937 }
938
939 static void hmm_devmem_ref_exit(void *data)
940 {
941         struct percpu_ref *ref = data;
942         struct hmm_devmem *devmem;
943
944         devmem = container_of(ref, struct hmm_devmem, ref);
945         percpu_ref_exit(ref);
946         devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
947 }
948
949 static void hmm_devmem_ref_kill(void *data)
950 {
951         struct percpu_ref *ref = data;
952         struct hmm_devmem *devmem;
953
954         devmem = container_of(ref, struct hmm_devmem, ref);
955         percpu_ref_kill(ref);
956         wait_for_completion(&devmem->completion);
957         devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
958 }
959
960 static int hmm_devmem_fault(struct vm_area_struct *vma,
961                             unsigned long addr,
962                             const struct page *page,
963                             unsigned int flags,
964                             pmd_t *pmdp)
965 {
966         struct hmm_devmem *devmem = page->pgmap->data;
967
968         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
969 }
970
971 static void hmm_devmem_free(struct page *page, void *data)
972 {
973         struct hmm_devmem *devmem = data;
974
975         devmem->ops->free(devmem, page);
976 }
977
978 static DEFINE_MUTEX(hmm_devmem_lock);
979 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
980
981 static void hmm_devmem_radix_release(struct resource *resource)
982 {
983         resource_size_t key, align_start, align_size;
984
985         align_start = resource->start & ~(PA_SECTION_SIZE - 1);
986         align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
987
988         mutex_lock(&hmm_devmem_lock);
989         for (key = resource->start;
990              key <= resource->end;
991              key += PA_SECTION_SIZE)
992                 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
993         mutex_unlock(&hmm_devmem_lock);
994 }
995
996 static void hmm_devmem_release(struct device *dev, void *data)
997 {
998         struct hmm_devmem *devmem = data;
999         struct resource *resource = devmem->resource;
1000         unsigned long start_pfn, npages;
1001         struct zone *zone;
1002         struct page *page;
1003
1004         if (percpu_ref_tryget_live(&devmem->ref)) {
1005                 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
1006                 percpu_ref_put(&devmem->ref);
1007         }
1008
1009         /* pages are dead and unused, undo the arch mapping */
1010         start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1011         npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1012
1013         page = pfn_to_page(start_pfn);
1014         zone = page_zone(page);
1015
1016         mem_hotplug_begin();
1017         if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1018                 __remove_pages(zone, start_pfn, npages, NULL);
1019         else
1020                 arch_remove_memory(start_pfn << PAGE_SHIFT,
1021                                    npages << PAGE_SHIFT, NULL);
1022         mem_hotplug_done();
1023
1024         hmm_devmem_radix_release(resource);
1025 }
1026
1027 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1028 {
1029         resource_size_t key, align_start, align_size, align_end;
1030         struct device *device = devmem->device;
1031         int ret, nid, is_ram;
1032         unsigned long pfn;
1033
1034         align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1035         align_size = ALIGN(devmem->resource->start +
1036                            resource_size(devmem->resource),
1037                            PA_SECTION_SIZE) - align_start;
1038
1039         is_ram = region_intersects(align_start, align_size,
1040                                    IORESOURCE_SYSTEM_RAM,
1041                                    IORES_DESC_NONE);
1042         if (is_ram == REGION_MIXED) {
1043                 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1044                                 __func__, devmem->resource);
1045                 return -ENXIO;
1046         }
1047         if (is_ram == REGION_INTERSECTS)
1048                 return -ENXIO;
1049
1050         if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1051                 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1052         else
1053                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1054
1055         devmem->pagemap.res = *devmem->resource;
1056         devmem->pagemap.page_fault = hmm_devmem_fault;
1057         devmem->pagemap.page_free = hmm_devmem_free;
1058         devmem->pagemap.dev = devmem->device;
1059         devmem->pagemap.ref = &devmem->ref;
1060         devmem->pagemap.data = devmem;
1061
1062         mutex_lock(&hmm_devmem_lock);
1063         align_end = align_start + align_size - 1;
1064         for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1065                 struct hmm_devmem *dup;
1066
1067                 dup = radix_tree_lookup(&hmm_devmem_radix,
1068                                         key >> PA_SECTION_SHIFT);
1069                 if (dup) {
1070                         dev_err(device, "%s: collides with mapping for %s\n",
1071                                 __func__, dev_name(dup->device));
1072                         mutex_unlock(&hmm_devmem_lock);
1073                         ret = -EBUSY;
1074                         goto error;
1075                 }
1076                 ret = radix_tree_insert(&hmm_devmem_radix,
1077                                         key >> PA_SECTION_SHIFT,
1078                                         devmem);
1079                 if (ret) {
1080                         dev_err(device, "%s: failed: %d\n", __func__, ret);
1081                         mutex_unlock(&hmm_devmem_lock);
1082                         goto error_radix;
1083                 }
1084         }
1085         mutex_unlock(&hmm_devmem_lock);
1086
1087         nid = dev_to_node(device);
1088         if (nid < 0)
1089                 nid = numa_mem_id();
1090
1091         mem_hotplug_begin();
1092         /*
1093          * For device private memory we call add_pages() as we only need to
1094          * allocate and initialize struct page for the device memory. More-
1095          * over the device memory is un-accessible thus we do not want to
1096          * create a linear mapping for the memory like arch_add_memory()
1097          * would do.
1098          *
1099          * For device public memory, which is accesible by the CPU, we do
1100          * want the linear mapping and thus use arch_add_memory().
1101          */
1102         if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1103                 ret = arch_add_memory(nid, align_start, align_size, NULL,
1104                                 false);
1105         else
1106                 ret = add_pages(nid, align_start >> PAGE_SHIFT,
1107                                 align_size >> PAGE_SHIFT, NULL, false);
1108         if (ret) {
1109                 mem_hotplug_done();
1110                 goto error_add_memory;
1111         }
1112         move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1113                                 align_start >> PAGE_SHIFT,
1114                                 align_size >> PAGE_SHIFT, NULL);
1115         mem_hotplug_done();
1116
1117         for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1118                 struct page *page = pfn_to_page(pfn);
1119
1120                 page->pgmap = &devmem->pagemap;
1121         }
1122         return 0;
1123
1124 error_add_memory:
1125         untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1126 error_radix:
1127         hmm_devmem_radix_release(devmem->resource);
1128 error:
1129         return ret;
1130 }
1131
1132 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1133 {
1134         struct hmm_devmem *devmem = data;
1135
1136         return devmem->resource == match_data;
1137 }
1138
1139 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1140 {
1141         devres_release(devmem->device, &hmm_devmem_release,
1142                        &hmm_devmem_match, devmem->resource);
1143 }
1144
1145 /*
1146  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1147  *
1148  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1149  * @device: device struct to bind the resource too
1150  * @size: size in bytes of the device memory to add
1151  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1152  *
1153  * This function first finds an empty range of physical address big enough to
1154  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1155  * in turn allocates struct pages. It does not do anything beyond that; all
1156  * events affecting the memory will go through the various callbacks provided
1157  * by hmm_devmem_ops struct.
1158  *
1159  * Device driver should call this function during device initialization and
1160  * is then responsible of memory management. HMM only provides helpers.
1161  */
1162 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1163                                   struct device *device,
1164                                   unsigned long size)
1165 {
1166         struct hmm_devmem *devmem;
1167         resource_size_t addr;
1168         int ret;
1169
1170         static_branch_enable(&device_private_key);
1171
1172         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1173                                    GFP_KERNEL, dev_to_node(device));
1174         if (!devmem)
1175                 return ERR_PTR(-ENOMEM);
1176
1177         init_completion(&devmem->completion);
1178         devmem->pfn_first = -1UL;
1179         devmem->pfn_last = -1UL;
1180         devmem->resource = NULL;
1181         devmem->device = device;
1182         devmem->ops = ops;
1183
1184         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1185                               0, GFP_KERNEL);
1186         if (ret)
1187                 goto error_percpu_ref;
1188
1189         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1190         if (ret)
1191                 goto error_devm_add_action;
1192
1193         size = ALIGN(size, PA_SECTION_SIZE);
1194         addr = min((unsigned long)iomem_resource.end,
1195                    (1UL << MAX_PHYSMEM_BITS) - 1);
1196         addr = addr - size + 1UL;
1197
1198         /*
1199          * FIXME add a new helper to quickly walk resource tree and find free
1200          * range
1201          *
1202          * FIXME what about ioport_resource resource ?
1203          */
1204         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1205                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1206                 if (ret != REGION_DISJOINT)
1207                         continue;
1208
1209                 devmem->resource = devm_request_mem_region(device, addr, size,
1210                                                            dev_name(device));
1211                 if (!devmem->resource) {
1212                         ret = -ENOMEM;
1213                         goto error_no_resource;
1214                 }
1215                 break;
1216         }
1217         if (!devmem->resource) {
1218                 ret = -ERANGE;
1219                 goto error_no_resource;
1220         }
1221
1222         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1223         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1224         devmem->pfn_last = devmem->pfn_first +
1225                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1226
1227         ret = hmm_devmem_pages_create(devmem);
1228         if (ret)
1229                 goto error_pages;
1230
1231         devres_add(device, devmem);
1232
1233         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1234         if (ret) {
1235                 hmm_devmem_remove(devmem);
1236                 return ERR_PTR(ret);
1237         }
1238
1239         return devmem;
1240
1241 error_pages:
1242         devm_release_mem_region(device, devmem->resource->start,
1243                                 resource_size(devmem->resource));
1244 error_no_resource:
1245 error_devm_add_action:
1246         hmm_devmem_ref_kill(&devmem->ref);
1247         hmm_devmem_ref_exit(&devmem->ref);
1248 error_percpu_ref:
1249         devres_free(devmem);
1250         return ERR_PTR(ret);
1251 }
1252 EXPORT_SYMBOL(hmm_devmem_add);
1253
1254 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1255                                            struct device *device,
1256                                            struct resource *res)
1257 {
1258         struct hmm_devmem *devmem;
1259         int ret;
1260
1261         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1262                 return ERR_PTR(-EINVAL);
1263
1264         static_branch_enable(&device_private_key);
1265
1266         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1267                                    GFP_KERNEL, dev_to_node(device));
1268         if (!devmem)
1269                 return ERR_PTR(-ENOMEM);
1270
1271         init_completion(&devmem->completion);
1272         devmem->pfn_first = -1UL;
1273         devmem->pfn_last = -1UL;
1274         devmem->resource = res;
1275         devmem->device = device;
1276         devmem->ops = ops;
1277
1278         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1279                               0, GFP_KERNEL);
1280         if (ret)
1281                 goto error_percpu_ref;
1282
1283         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1284         if (ret)
1285                 goto error_devm_add_action;
1286
1287
1288         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1289         devmem->pfn_last = devmem->pfn_first +
1290                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1291
1292         ret = hmm_devmem_pages_create(devmem);
1293         if (ret)
1294                 goto error_devm_add_action;
1295
1296         devres_add(device, devmem);
1297
1298         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1299         if (ret) {
1300                 hmm_devmem_remove(devmem);
1301                 return ERR_PTR(ret);
1302         }
1303
1304         return devmem;
1305
1306 error_devm_add_action:
1307         hmm_devmem_ref_kill(&devmem->ref);
1308         hmm_devmem_ref_exit(&devmem->ref);
1309 error_percpu_ref:
1310         devres_free(devmem);
1311         return ERR_PTR(ret);
1312 }
1313 EXPORT_SYMBOL(hmm_devmem_add_resource);
1314
1315 /*
1316  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1317  *
1318  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1319  *
1320  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1321  * of the device driver. It will free struct page and remove the resource that
1322  * reserved the physical address range for this device memory.
1323  */
1324 void hmm_devmem_remove(struct hmm_devmem *devmem)
1325 {
1326         resource_size_t start, size;
1327         struct device *device;
1328         bool cdm = false;
1329
1330         if (!devmem)
1331                 return;
1332
1333         device = devmem->device;
1334         start = devmem->resource->start;
1335         size = resource_size(devmem->resource);
1336
1337         cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1338         hmm_devmem_ref_kill(&devmem->ref);
1339         hmm_devmem_ref_exit(&devmem->ref);
1340         hmm_devmem_pages_remove(devmem);
1341
1342         if (!cdm)
1343                 devm_release_mem_region(device, start, size);
1344 }
1345 EXPORT_SYMBOL(hmm_devmem_remove);
1346
1347 /*
1348  * A device driver that wants to handle multiple devices memory through a
1349  * single fake device can use hmm_device to do so. This is purely a helper
1350  * and it is not needed to make use of any HMM functionality.
1351  */
1352 #define HMM_DEVICE_MAX 256
1353
1354 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1355 static DEFINE_SPINLOCK(hmm_device_lock);
1356 static struct class *hmm_device_class;
1357 static dev_t hmm_device_devt;
1358
1359 static void hmm_device_release(struct device *device)
1360 {
1361         struct hmm_device *hmm_device;
1362
1363         hmm_device = container_of(device, struct hmm_device, device);
1364         spin_lock(&hmm_device_lock);
1365         clear_bit(hmm_device->minor, hmm_device_mask);
1366         spin_unlock(&hmm_device_lock);
1367
1368         kfree(hmm_device);
1369 }
1370
1371 struct hmm_device *hmm_device_new(void *drvdata)
1372 {
1373         struct hmm_device *hmm_device;
1374
1375         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1376         if (!hmm_device)
1377                 return ERR_PTR(-ENOMEM);
1378
1379         spin_lock(&hmm_device_lock);
1380         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1381         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1382                 spin_unlock(&hmm_device_lock);
1383                 kfree(hmm_device);
1384                 return ERR_PTR(-EBUSY);
1385         }
1386         set_bit(hmm_device->minor, hmm_device_mask);
1387         spin_unlock(&hmm_device_lock);
1388
1389         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1390         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1391                                         hmm_device->minor);
1392         hmm_device->device.release = hmm_device_release;
1393         dev_set_drvdata(&hmm_device->device, drvdata);
1394         hmm_device->device.class = hmm_device_class;
1395         device_initialize(&hmm_device->device);
1396
1397         return hmm_device;
1398 }
1399 EXPORT_SYMBOL(hmm_device_new);
1400
1401 void hmm_device_put(struct hmm_device *hmm_device)
1402 {
1403         put_device(&hmm_device->device);
1404 }
1405 EXPORT_SYMBOL(hmm_device_put);
1406
1407 static int __init hmm_init(void)
1408 {
1409         int ret;
1410
1411         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1412                                   HMM_DEVICE_MAX,
1413                                   "hmm_device");
1414         if (ret)
1415                 return ret;
1416
1417         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1418         if (IS_ERR(hmm_device_class)) {
1419                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1420                 return PTR_ERR(hmm_device_class);
1421         }
1422         return 0;
1423 }
1424
1425 device_initcall(hmm_init);
1426 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */