Merge tag 'tty-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[sfrench/cifs-2.6.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem              (truncate_pagecache)
67  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock             (exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
77  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page               (access_process_vm)
81  *
82  *  ->i_mutex                   (generic_perform_write)
83  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock                   (fs/fs-writeback.c)
87  *    ->mapping->tree_lock      (__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->tree_lock               (try_to_unmap_one)
99  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
108  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115                                   struct page *page, void **shadowp)
116 {
117         struct radix_tree_node *node;
118         void **slot;
119         int error;
120
121         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122                                     &node, &slot);
123         if (error)
124                 return error;
125         if (*slot) {
126                 void *p;
127
128                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129                 if (!radix_tree_exceptional_entry(p))
130                         return -EEXIST;
131
132                 mapping->nrexceptional--;
133                 if (!dax_mapping(mapping)) {
134                         if (shadowp)
135                                 *shadowp = p;
136                 } else {
137                         /* DAX can replace empty locked entry with a hole */
138                         WARN_ON_ONCE(p !=
139                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140                         /* Wakeup waiters for exceptional entry lock */
141                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
142                                                       true);
143                 }
144         }
145         __radix_tree_replace(&mapping->page_tree, node, slot, page,
146                              workingset_update_node, mapping);
147         mapping->nrpages++;
148         return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152                                    struct page *page, void *shadow)
153 {
154         int i, nr;
155
156         /* hugetlb pages are represented by one entry in the radix tree */
157         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159         VM_BUG_ON_PAGE(!PageLocked(page), page);
160         VM_BUG_ON_PAGE(PageTail(page), page);
161         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163         for (i = 0; i < nr; i++) {
164                 struct radix_tree_node *node;
165                 void **slot;
166
167                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168                                     &node, &slot);
169
170                 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174                                      workingset_update_node, mapping);
175         }
176
177         if (shadow) {
178                 mapping->nrexceptional += nr;
179                 /*
180                  * Make sure the nrexceptional update is committed before
181                  * the nrpages update so that final truncate racing
182                  * with reclaim does not see both counters 0 at the
183                  * same time and miss a shadow entry.
184                  */
185                 smp_wmb();
186         }
187         mapping->nrpages -= nr;
188 }
189
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197         struct address_space *mapping = page->mapping;
198         int nr = hpage_nr_pages(page);
199
200         trace_mm_filemap_delete_from_page_cache(page);
201         /*
202          * if we're uptodate, flush out into the cleancache, otherwise
203          * invalidate any existing cleancache entries.  We can't leave
204          * stale data around in the cleancache once our page is gone
205          */
206         if (PageUptodate(page) && PageMappedToDisk(page))
207                 cleancache_put_page(page);
208         else
209                 cleancache_invalidate_page(mapping, page);
210
211         VM_BUG_ON_PAGE(PageTail(page), page);
212         VM_BUG_ON_PAGE(page_mapped(page), page);
213         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214                 int mapcount;
215
216                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217                          current->comm, page_to_pfn(page));
218                 dump_page(page, "still mapped when deleted");
219                 dump_stack();
220                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222                 mapcount = page_mapcount(page);
223                 if (mapping_exiting(mapping) &&
224                     page_count(page) >= mapcount + 2) {
225                         /*
226                          * All vmas have already been torn down, so it's
227                          * a good bet that actually the page is unmapped,
228                          * and we'd prefer not to leak it: if we're wrong,
229                          * some other bad page check should catch it later.
230                          */
231                         page_mapcount_reset(page);
232                         page_ref_sub(page, mapcount);
233                 }
234         }
235
236         page_cache_tree_delete(mapping, page, shadow);
237
238         page->mapping = NULL;
239         /* Leave page->index set: truncation lookup relies upon it */
240
241         /* hugetlb pages do not participate in page cache accounting. */
242         if (PageHuge(page))
243                 return;
244
245         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
246         if (PageSwapBacked(page)) {
247                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
248                 if (PageTransHuge(page))
249                         __dec_node_page_state(page, NR_SHMEM_THPS);
250         } else {
251                 VM_BUG_ON_PAGE(PageTransHuge(page), page);
252         }
253
254         /*
255          * At this point page must be either written or cleaned by truncate.
256          * Dirty page here signals a bug and loss of unwritten data.
257          *
258          * This fixes dirty accounting after removing the page entirely but
259          * leaves PageDirty set: it has no effect for truncated page and
260          * anyway will be cleared before returning page into buddy allocator.
261          */
262         if (WARN_ON_ONCE(PageDirty(page)))
263                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
264 }
265
266 /**
267  * delete_from_page_cache - delete page from page cache
268  * @page: the page which the kernel is trying to remove from page cache
269  *
270  * This must be called only on pages that have been verified to be in the page
271  * cache and locked.  It will never put the page into the free list, the caller
272  * has a reference on the page.
273  */
274 void delete_from_page_cache(struct page *page)
275 {
276         struct address_space *mapping = page_mapping(page);
277         unsigned long flags;
278         void (*freepage)(struct page *);
279
280         BUG_ON(!PageLocked(page));
281
282         freepage = mapping->a_ops->freepage;
283
284         spin_lock_irqsave(&mapping->tree_lock, flags);
285         __delete_from_page_cache(page, NULL);
286         spin_unlock_irqrestore(&mapping->tree_lock, flags);
287
288         if (freepage)
289                 freepage(page);
290
291         if (PageTransHuge(page) && !PageHuge(page)) {
292                 page_ref_sub(page, HPAGE_PMD_NR);
293                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
294         } else {
295                 put_page(page);
296         }
297 }
298 EXPORT_SYMBOL(delete_from_page_cache);
299
300 int filemap_check_errors(struct address_space *mapping)
301 {
302         int ret = 0;
303         /* Check for outstanding write errors */
304         if (test_bit(AS_ENOSPC, &mapping->flags) &&
305             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
306                 ret = -ENOSPC;
307         if (test_bit(AS_EIO, &mapping->flags) &&
308             test_and_clear_bit(AS_EIO, &mapping->flags))
309                 ret = -EIO;
310         return ret;
311 }
312 EXPORT_SYMBOL(filemap_check_errors);
313
314 static int filemap_check_and_keep_errors(struct address_space *mapping)
315 {
316         /* Check for outstanding write errors */
317         if (test_bit(AS_EIO, &mapping->flags))
318                 return -EIO;
319         if (test_bit(AS_ENOSPC, &mapping->flags))
320                 return -ENOSPC;
321         return 0;
322 }
323
324 /**
325  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
326  * @mapping:    address space structure to write
327  * @start:      offset in bytes where the range starts
328  * @end:        offset in bytes where the range ends (inclusive)
329  * @sync_mode:  enable synchronous operation
330  *
331  * Start writeback against all of a mapping's dirty pages that lie
332  * within the byte offsets <start, end> inclusive.
333  *
334  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
335  * opposed to a regular memory cleansing writeback.  The difference between
336  * these two operations is that if a dirty page/buffer is encountered, it must
337  * be waited upon, and not just skipped over.
338  */
339 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340                                 loff_t end, int sync_mode)
341 {
342         int ret;
343         struct writeback_control wbc = {
344                 .sync_mode = sync_mode,
345                 .nr_to_write = LONG_MAX,
346                 .range_start = start,
347                 .range_end = end,
348         };
349
350         if (!mapping_cap_writeback_dirty(mapping))
351                 return 0;
352
353         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
354         ret = do_writepages(mapping, &wbc);
355         wbc_detach_inode(&wbc);
356         return ret;
357 }
358
359 static inline int __filemap_fdatawrite(struct address_space *mapping,
360         int sync_mode)
361 {
362         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
363 }
364
365 int filemap_fdatawrite(struct address_space *mapping)
366 {
367         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
368 }
369 EXPORT_SYMBOL(filemap_fdatawrite);
370
371 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
372                                 loff_t end)
373 {
374         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
375 }
376 EXPORT_SYMBOL(filemap_fdatawrite_range);
377
378 /**
379  * filemap_flush - mostly a non-blocking flush
380  * @mapping:    target address_space
381  *
382  * This is a mostly non-blocking flush.  Not suitable for data-integrity
383  * purposes - I/O may not be started against all dirty pages.
384  */
385 int filemap_flush(struct address_space *mapping)
386 {
387         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
388 }
389 EXPORT_SYMBOL(filemap_flush);
390
391 /**
392  * filemap_range_has_page - check if a page exists in range.
393  * @mapping:           address space within which to check
394  * @start_byte:        offset in bytes where the range starts
395  * @end_byte:          offset in bytes where the range ends (inclusive)
396  *
397  * Find at least one page in the range supplied, usually used to check if
398  * direct writing in this range will trigger a writeback.
399  */
400 bool filemap_range_has_page(struct address_space *mapping,
401                            loff_t start_byte, loff_t end_byte)
402 {
403         pgoff_t index = start_byte >> PAGE_SHIFT;
404         pgoff_t end = end_byte >> PAGE_SHIFT;
405         struct pagevec pvec;
406         bool ret;
407
408         if (end_byte < start_byte)
409                 return false;
410
411         if (mapping->nrpages == 0)
412                 return false;
413
414         pagevec_init(&pvec, 0);
415         if (!pagevec_lookup(&pvec, mapping, index, 1))
416                 return false;
417         ret = (pvec.pages[0]->index <= end);
418         pagevec_release(&pvec);
419         return ret;
420 }
421 EXPORT_SYMBOL(filemap_range_has_page);
422
423 static void __filemap_fdatawait_range(struct address_space *mapping,
424                                      loff_t start_byte, loff_t end_byte)
425 {
426         pgoff_t index = start_byte >> PAGE_SHIFT;
427         pgoff_t end = end_byte >> PAGE_SHIFT;
428         struct pagevec pvec;
429         int nr_pages;
430
431         if (end_byte < start_byte)
432                 return;
433
434         pagevec_init(&pvec, 0);
435         while ((index <= end) &&
436                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437                         PAGECACHE_TAG_WRITEBACK,
438                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
439                 unsigned i;
440
441                 for (i = 0; i < nr_pages; i++) {
442                         struct page *page = pvec.pages[i];
443
444                         /* until radix tree lookup accepts end_index */
445                         if (page->index > end)
446                                 continue;
447
448                         wait_on_page_writeback(page);
449                         ClearPageError(page);
450                 }
451                 pagevec_release(&pvec);
452                 cond_resched();
453         }
454 }
455
456 /**
457  * filemap_fdatawait_range - wait for writeback to complete
458  * @mapping:            address space structure to wait for
459  * @start_byte:         offset in bytes where the range starts
460  * @end_byte:           offset in bytes where the range ends (inclusive)
461  *
462  * Walk the list of under-writeback pages of the given address space
463  * in the given range and wait for all of them.  Check error status of
464  * the address space and return it.
465  *
466  * Since the error status of the address space is cleared by this function,
467  * callers are responsible for checking the return value and handling and/or
468  * reporting the error.
469  */
470 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
471                             loff_t end_byte)
472 {
473         __filemap_fdatawait_range(mapping, start_byte, end_byte);
474         return filemap_check_errors(mapping);
475 }
476 EXPORT_SYMBOL(filemap_fdatawait_range);
477
478 /**
479  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480  * @mapping: address space structure to wait for
481  *
482  * Walk the list of under-writeback pages of the given address space
483  * and wait for all of them.  Unlike filemap_fdatawait(), this function
484  * does not clear error status of the address space.
485  *
486  * Use this function if callers don't handle errors themselves.  Expected
487  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
488  * fsfreeze(8)
489  */
490 int filemap_fdatawait_keep_errors(struct address_space *mapping)
491 {
492         loff_t i_size = i_size_read(mapping->host);
493
494         if (i_size == 0)
495                 return 0;
496
497         __filemap_fdatawait_range(mapping, 0, i_size - 1);
498         return filemap_check_and_keep_errors(mapping);
499 }
500 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
501
502 /**
503  * filemap_fdatawait - wait for all under-writeback pages to complete
504  * @mapping: address space structure to wait for
505  *
506  * Walk the list of under-writeback pages of the given address space
507  * and wait for all of them.  Check error status of the address space
508  * and return it.
509  *
510  * Since the error status of the address space is cleared by this function,
511  * callers are responsible for checking the return value and handling and/or
512  * reporting the error.
513  */
514 int filemap_fdatawait(struct address_space *mapping)
515 {
516         loff_t i_size = i_size_read(mapping->host);
517
518         if (i_size == 0)
519                 return 0;
520
521         return filemap_fdatawait_range(mapping, 0, i_size - 1);
522 }
523 EXPORT_SYMBOL(filemap_fdatawait);
524
525 int filemap_write_and_wait(struct address_space *mapping)
526 {
527         int err = 0;
528
529         if ((!dax_mapping(mapping) && mapping->nrpages) ||
530             (dax_mapping(mapping) && mapping->nrexceptional)) {
531                 err = filemap_fdatawrite(mapping);
532                 /*
533                  * Even if the above returned error, the pages may be
534                  * written partially (e.g. -ENOSPC), so we wait for it.
535                  * But the -EIO is special case, it may indicate the worst
536                  * thing (e.g. bug) happened, so we avoid waiting for it.
537                  */
538                 if (err != -EIO) {
539                         int err2 = filemap_fdatawait(mapping);
540                         if (!err)
541                                 err = err2;
542                 } else {
543                         /* Clear any previously stored errors */
544                         filemap_check_errors(mapping);
545                 }
546         } else {
547                 err = filemap_check_errors(mapping);
548         }
549         return err;
550 }
551 EXPORT_SYMBOL(filemap_write_and_wait);
552
553 /**
554  * filemap_write_and_wait_range - write out & wait on a file range
555  * @mapping:    the address_space for the pages
556  * @lstart:     offset in bytes where the range starts
557  * @lend:       offset in bytes where the range ends (inclusive)
558  *
559  * Write out and wait upon file offsets lstart->lend, inclusive.
560  *
561  * Note that @lend is inclusive (describes the last byte to be written) so
562  * that this function can be used to write to the very end-of-file (end = -1).
563  */
564 int filemap_write_and_wait_range(struct address_space *mapping,
565                                  loff_t lstart, loff_t lend)
566 {
567         int err = 0;
568
569         if ((!dax_mapping(mapping) && mapping->nrpages) ||
570             (dax_mapping(mapping) && mapping->nrexceptional)) {
571                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
572                                                  WB_SYNC_ALL);
573                 /* See comment of filemap_write_and_wait() */
574                 if (err != -EIO) {
575                         int err2 = filemap_fdatawait_range(mapping,
576                                                 lstart, lend);
577                         if (!err)
578                                 err = err2;
579                 } else {
580                         /* Clear any previously stored errors */
581                         filemap_check_errors(mapping);
582                 }
583         } else {
584                 err = filemap_check_errors(mapping);
585         }
586         return err;
587 }
588 EXPORT_SYMBOL(filemap_write_and_wait_range);
589
590 void __filemap_set_wb_err(struct address_space *mapping, int err)
591 {
592         errseq_t eseq = __errseq_set(&mapping->wb_err, err);
593
594         trace_filemap_set_wb_err(mapping, eseq);
595 }
596 EXPORT_SYMBOL(__filemap_set_wb_err);
597
598 /**
599  * file_check_and_advance_wb_err - report wb error (if any) that was previously
600  *                                 and advance wb_err to current one
601  * @file: struct file on which the error is being reported
602  *
603  * When userland calls fsync (or something like nfsd does the equivalent), we
604  * want to report any writeback errors that occurred since the last fsync (or
605  * since the file was opened if there haven't been any).
606  *
607  * Grab the wb_err from the mapping. If it matches what we have in the file,
608  * then just quickly return 0. The file is all caught up.
609  *
610  * If it doesn't match, then take the mapping value, set the "seen" flag in
611  * it and try to swap it into place. If it works, or another task beat us
612  * to it with the new value, then update the f_wb_err and return the error
613  * portion. The error at this point must be reported via proper channels
614  * (a'la fsync, or NFS COMMIT operation, etc.).
615  *
616  * While we handle mapping->wb_err with atomic operations, the f_wb_err
617  * value is protected by the f_lock since we must ensure that it reflects
618  * the latest value swapped in for this file descriptor.
619  */
620 int file_check_and_advance_wb_err(struct file *file)
621 {
622         int err = 0;
623         errseq_t old = READ_ONCE(file->f_wb_err);
624         struct address_space *mapping = file->f_mapping;
625
626         /* Locklessly handle the common case where nothing has changed */
627         if (errseq_check(&mapping->wb_err, old)) {
628                 /* Something changed, must use slow path */
629                 spin_lock(&file->f_lock);
630                 old = file->f_wb_err;
631                 err = errseq_check_and_advance(&mapping->wb_err,
632                                                 &file->f_wb_err);
633                 trace_file_check_and_advance_wb_err(file, old);
634                 spin_unlock(&file->f_lock);
635         }
636         return err;
637 }
638 EXPORT_SYMBOL(file_check_and_advance_wb_err);
639
640 /**
641  * file_write_and_wait_range - write out & wait on a file range
642  * @file:       file pointing to address_space with pages
643  * @lstart:     offset in bytes where the range starts
644  * @lend:       offset in bytes where the range ends (inclusive)
645  *
646  * Write out and wait upon file offsets lstart->lend, inclusive.
647  *
648  * Note that @lend is inclusive (describes the last byte to be written) so
649  * that this function can be used to write to the very end-of-file (end = -1).
650  *
651  * After writing out and waiting on the data, we check and advance the
652  * f_wb_err cursor to the latest value, and return any errors detected there.
653  */
654 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
655 {
656         int err = 0, err2;
657         struct address_space *mapping = file->f_mapping;
658
659         if ((!dax_mapping(mapping) && mapping->nrpages) ||
660             (dax_mapping(mapping) && mapping->nrexceptional)) {
661                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
662                                                  WB_SYNC_ALL);
663                 /* See comment of filemap_write_and_wait() */
664                 if (err != -EIO)
665                         __filemap_fdatawait_range(mapping, lstart, lend);
666         }
667         err2 = file_check_and_advance_wb_err(file);
668         if (!err)
669                 err = err2;
670         return err;
671 }
672 EXPORT_SYMBOL(file_write_and_wait_range);
673
674 /**
675  * replace_page_cache_page - replace a pagecache page with a new one
676  * @old:        page to be replaced
677  * @new:        page to replace with
678  * @gfp_mask:   allocation mode
679  *
680  * This function replaces a page in the pagecache with a new one.  On
681  * success it acquires the pagecache reference for the new page and
682  * drops it for the old page.  Both the old and new pages must be
683  * locked.  This function does not add the new page to the LRU, the
684  * caller must do that.
685  *
686  * The remove + add is atomic.  The only way this function can fail is
687  * memory allocation failure.
688  */
689 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
690 {
691         int error;
692
693         VM_BUG_ON_PAGE(!PageLocked(old), old);
694         VM_BUG_ON_PAGE(!PageLocked(new), new);
695         VM_BUG_ON_PAGE(new->mapping, new);
696
697         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
698         if (!error) {
699                 struct address_space *mapping = old->mapping;
700                 void (*freepage)(struct page *);
701                 unsigned long flags;
702
703                 pgoff_t offset = old->index;
704                 freepage = mapping->a_ops->freepage;
705
706                 get_page(new);
707                 new->mapping = mapping;
708                 new->index = offset;
709
710                 spin_lock_irqsave(&mapping->tree_lock, flags);
711                 __delete_from_page_cache(old, NULL);
712                 error = page_cache_tree_insert(mapping, new, NULL);
713                 BUG_ON(error);
714
715                 /*
716                  * hugetlb pages do not participate in page cache accounting.
717                  */
718                 if (!PageHuge(new))
719                         __inc_node_page_state(new, NR_FILE_PAGES);
720                 if (PageSwapBacked(new))
721                         __inc_node_page_state(new, NR_SHMEM);
722                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
723                 mem_cgroup_migrate(old, new);
724                 radix_tree_preload_end();
725                 if (freepage)
726                         freepage(old);
727                 put_page(old);
728         }
729
730         return error;
731 }
732 EXPORT_SYMBOL_GPL(replace_page_cache_page);
733
734 static int __add_to_page_cache_locked(struct page *page,
735                                       struct address_space *mapping,
736                                       pgoff_t offset, gfp_t gfp_mask,
737                                       void **shadowp)
738 {
739         int huge = PageHuge(page);
740         struct mem_cgroup *memcg;
741         int error;
742
743         VM_BUG_ON_PAGE(!PageLocked(page), page);
744         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
745
746         if (!huge) {
747                 error = mem_cgroup_try_charge(page, current->mm,
748                                               gfp_mask, &memcg, false);
749                 if (error)
750                         return error;
751         }
752
753         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
754         if (error) {
755                 if (!huge)
756                         mem_cgroup_cancel_charge(page, memcg, false);
757                 return error;
758         }
759
760         get_page(page);
761         page->mapping = mapping;
762         page->index = offset;
763
764         spin_lock_irq(&mapping->tree_lock);
765         error = page_cache_tree_insert(mapping, page, shadowp);
766         radix_tree_preload_end();
767         if (unlikely(error))
768                 goto err_insert;
769
770         /* hugetlb pages do not participate in page cache accounting. */
771         if (!huge)
772                 __inc_node_page_state(page, NR_FILE_PAGES);
773         spin_unlock_irq(&mapping->tree_lock);
774         if (!huge)
775                 mem_cgroup_commit_charge(page, memcg, false, false);
776         trace_mm_filemap_add_to_page_cache(page);
777         return 0;
778 err_insert:
779         page->mapping = NULL;
780         /* Leave page->index set: truncation relies upon it */
781         spin_unlock_irq(&mapping->tree_lock);
782         if (!huge)
783                 mem_cgroup_cancel_charge(page, memcg, false);
784         put_page(page);
785         return error;
786 }
787
788 /**
789  * add_to_page_cache_locked - add a locked page to the pagecache
790  * @page:       page to add
791  * @mapping:    the page's address_space
792  * @offset:     page index
793  * @gfp_mask:   page allocation mode
794  *
795  * This function is used to add a page to the pagecache. It must be locked.
796  * This function does not add the page to the LRU.  The caller must do that.
797  */
798 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
799                 pgoff_t offset, gfp_t gfp_mask)
800 {
801         return __add_to_page_cache_locked(page, mapping, offset,
802                                           gfp_mask, NULL);
803 }
804 EXPORT_SYMBOL(add_to_page_cache_locked);
805
806 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
807                                 pgoff_t offset, gfp_t gfp_mask)
808 {
809         void *shadow = NULL;
810         int ret;
811
812         __SetPageLocked(page);
813         ret = __add_to_page_cache_locked(page, mapping, offset,
814                                          gfp_mask, &shadow);
815         if (unlikely(ret))
816                 __ClearPageLocked(page);
817         else {
818                 /*
819                  * The page might have been evicted from cache only
820                  * recently, in which case it should be activated like
821                  * any other repeatedly accessed page.
822                  * The exception is pages getting rewritten; evicting other
823                  * data from the working set, only to cache data that will
824                  * get overwritten with something else, is a waste of memory.
825                  */
826                 if (!(gfp_mask & __GFP_WRITE) &&
827                     shadow && workingset_refault(shadow)) {
828                         SetPageActive(page);
829                         workingset_activation(page);
830                 } else
831                         ClearPageActive(page);
832                 lru_cache_add(page);
833         }
834         return ret;
835 }
836 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
837
838 #ifdef CONFIG_NUMA
839 struct page *__page_cache_alloc(gfp_t gfp)
840 {
841         int n;
842         struct page *page;
843
844         if (cpuset_do_page_mem_spread()) {
845                 unsigned int cpuset_mems_cookie;
846                 do {
847                         cpuset_mems_cookie = read_mems_allowed_begin();
848                         n = cpuset_mem_spread_node();
849                         page = __alloc_pages_node(n, gfp, 0);
850                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
851
852                 return page;
853         }
854         return alloc_pages(gfp, 0);
855 }
856 EXPORT_SYMBOL(__page_cache_alloc);
857 #endif
858
859 /*
860  * In order to wait for pages to become available there must be
861  * waitqueues associated with pages. By using a hash table of
862  * waitqueues where the bucket discipline is to maintain all
863  * waiters on the same queue and wake all when any of the pages
864  * become available, and for the woken contexts to check to be
865  * sure the appropriate page became available, this saves space
866  * at a cost of "thundering herd" phenomena during rare hash
867  * collisions.
868  */
869 #define PAGE_WAIT_TABLE_BITS 8
870 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
871 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
872
873 static wait_queue_head_t *page_waitqueue(struct page *page)
874 {
875         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
876 }
877
878 void __init pagecache_init(void)
879 {
880         int i;
881
882         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
883                 init_waitqueue_head(&page_wait_table[i]);
884
885         page_writeback_init();
886 }
887
888 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
889 struct wait_page_key {
890         struct page *page;
891         int bit_nr;
892         int page_match;
893 };
894
895 struct wait_page_queue {
896         struct page *page;
897         int bit_nr;
898         wait_queue_entry_t wait;
899 };
900
901 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
902 {
903         struct wait_page_key *key = arg;
904         struct wait_page_queue *wait_page
905                 = container_of(wait, struct wait_page_queue, wait);
906
907         if (wait_page->page != key->page)
908                return 0;
909         key->page_match = 1;
910
911         if (wait_page->bit_nr != key->bit_nr)
912                 return 0;
913
914         /* Stop walking if it's locked */
915         if (test_bit(key->bit_nr, &key->page->flags))
916                 return -1;
917
918         return autoremove_wake_function(wait, mode, sync, key);
919 }
920
921 static void wake_up_page_bit(struct page *page, int bit_nr)
922 {
923         wait_queue_head_t *q = page_waitqueue(page);
924         struct wait_page_key key;
925         unsigned long flags;
926
927         key.page = page;
928         key.bit_nr = bit_nr;
929         key.page_match = 0;
930
931         spin_lock_irqsave(&q->lock, flags);
932         __wake_up_locked_key(q, TASK_NORMAL, &key);
933         /*
934          * It is possible for other pages to have collided on the waitqueue
935          * hash, so in that case check for a page match. That prevents a long-
936          * term waiter
937          *
938          * It is still possible to miss a case here, when we woke page waiters
939          * and removed them from the waitqueue, but there are still other
940          * page waiters.
941          */
942         if (!waitqueue_active(q) || !key.page_match) {
943                 ClearPageWaiters(page);
944                 /*
945                  * It's possible to miss clearing Waiters here, when we woke
946                  * our page waiters, but the hashed waitqueue has waiters for
947                  * other pages on it.
948                  *
949                  * That's okay, it's a rare case. The next waker will clear it.
950                  */
951         }
952         spin_unlock_irqrestore(&q->lock, flags);
953 }
954
955 static void wake_up_page(struct page *page, int bit)
956 {
957         if (!PageWaiters(page))
958                 return;
959         wake_up_page_bit(page, bit);
960 }
961
962 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
963                 struct page *page, int bit_nr, int state, bool lock)
964 {
965         struct wait_page_queue wait_page;
966         wait_queue_entry_t *wait = &wait_page.wait;
967         int ret = 0;
968
969         init_wait(wait);
970         wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
971         wait->func = wake_page_function;
972         wait_page.page = page;
973         wait_page.bit_nr = bit_nr;
974
975         for (;;) {
976                 spin_lock_irq(&q->lock);
977
978                 if (likely(list_empty(&wait->entry))) {
979                         __add_wait_queue_entry_tail(q, wait);
980                         SetPageWaiters(page);
981                 }
982
983                 set_current_state(state);
984
985                 spin_unlock_irq(&q->lock);
986
987                 if (likely(test_bit(bit_nr, &page->flags))) {
988                         io_schedule();
989                 }
990
991                 if (lock) {
992                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
993                                 break;
994                 } else {
995                         if (!test_bit(bit_nr, &page->flags))
996                                 break;
997                 }
998
999                 if (unlikely(signal_pending_state(state, current))) {
1000                         ret = -EINTR;
1001                         break;
1002                 }
1003         }
1004
1005         finish_wait(q, wait);
1006
1007         /*
1008          * A signal could leave PageWaiters set. Clearing it here if
1009          * !waitqueue_active would be possible (by open-coding finish_wait),
1010          * but still fail to catch it in the case of wait hash collision. We
1011          * already can fail to clear wait hash collision cases, so don't
1012          * bother with signals either.
1013          */
1014
1015         return ret;
1016 }
1017
1018 void wait_on_page_bit(struct page *page, int bit_nr)
1019 {
1020         wait_queue_head_t *q = page_waitqueue(page);
1021         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1022 }
1023 EXPORT_SYMBOL(wait_on_page_bit);
1024
1025 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1026 {
1027         wait_queue_head_t *q = page_waitqueue(page);
1028         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1029 }
1030
1031 /**
1032  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1033  * @page: Page defining the wait queue of interest
1034  * @waiter: Waiter to add to the queue
1035  *
1036  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1037  */
1038 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1039 {
1040         wait_queue_head_t *q = page_waitqueue(page);
1041         unsigned long flags;
1042
1043         spin_lock_irqsave(&q->lock, flags);
1044         __add_wait_queue_entry_tail(q, waiter);
1045         SetPageWaiters(page);
1046         spin_unlock_irqrestore(&q->lock, flags);
1047 }
1048 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1049
1050 #ifndef clear_bit_unlock_is_negative_byte
1051
1052 /*
1053  * PG_waiters is the high bit in the same byte as PG_lock.
1054  *
1055  * On x86 (and on many other architectures), we can clear PG_lock and
1056  * test the sign bit at the same time. But if the architecture does
1057  * not support that special operation, we just do this all by hand
1058  * instead.
1059  *
1060  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1061  * being cleared, but a memory barrier should be unneccssary since it is
1062  * in the same byte as PG_locked.
1063  */
1064 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1065 {
1066         clear_bit_unlock(nr, mem);
1067         /* smp_mb__after_atomic(); */
1068         return test_bit(PG_waiters, mem);
1069 }
1070
1071 #endif
1072
1073 /**
1074  * unlock_page - unlock a locked page
1075  * @page: the page
1076  *
1077  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1078  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1079  * mechanism between PageLocked pages and PageWriteback pages is shared.
1080  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1081  *
1082  * Note that this depends on PG_waiters being the sign bit in the byte
1083  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1084  * clear the PG_locked bit and test PG_waiters at the same time fairly
1085  * portably (architectures that do LL/SC can test any bit, while x86 can
1086  * test the sign bit).
1087  */
1088 void unlock_page(struct page *page)
1089 {
1090         BUILD_BUG_ON(PG_waiters != 7);
1091         page = compound_head(page);
1092         VM_BUG_ON_PAGE(!PageLocked(page), page);
1093         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1094                 wake_up_page_bit(page, PG_locked);
1095 }
1096 EXPORT_SYMBOL(unlock_page);
1097
1098 /**
1099  * end_page_writeback - end writeback against a page
1100  * @page: the page
1101  */
1102 void end_page_writeback(struct page *page)
1103 {
1104         /*
1105          * TestClearPageReclaim could be used here but it is an atomic
1106          * operation and overkill in this particular case. Failing to
1107          * shuffle a page marked for immediate reclaim is too mild to
1108          * justify taking an atomic operation penalty at the end of
1109          * ever page writeback.
1110          */
1111         if (PageReclaim(page)) {
1112                 ClearPageReclaim(page);
1113                 rotate_reclaimable_page(page);
1114         }
1115
1116         if (!test_clear_page_writeback(page))
1117                 BUG();
1118
1119         smp_mb__after_atomic();
1120         wake_up_page(page, PG_writeback);
1121 }
1122 EXPORT_SYMBOL(end_page_writeback);
1123
1124 /*
1125  * After completing I/O on a page, call this routine to update the page
1126  * flags appropriately
1127  */
1128 void page_endio(struct page *page, bool is_write, int err)
1129 {
1130         if (!is_write) {
1131                 if (!err) {
1132                         SetPageUptodate(page);
1133                 } else {
1134                         ClearPageUptodate(page);
1135                         SetPageError(page);
1136                 }
1137                 unlock_page(page);
1138         } else {
1139                 if (err) {
1140                         struct address_space *mapping;
1141
1142                         SetPageError(page);
1143                         mapping = page_mapping(page);
1144                         if (mapping)
1145                                 mapping_set_error(mapping, err);
1146                 }
1147                 end_page_writeback(page);
1148         }
1149 }
1150 EXPORT_SYMBOL_GPL(page_endio);
1151
1152 /**
1153  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1154  * @__page: the page to lock
1155  */
1156 void __lock_page(struct page *__page)
1157 {
1158         struct page *page = compound_head(__page);
1159         wait_queue_head_t *q = page_waitqueue(page);
1160         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1161 }
1162 EXPORT_SYMBOL(__lock_page);
1163
1164 int __lock_page_killable(struct page *__page)
1165 {
1166         struct page *page = compound_head(__page);
1167         wait_queue_head_t *q = page_waitqueue(page);
1168         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1169 }
1170 EXPORT_SYMBOL_GPL(__lock_page_killable);
1171
1172 /*
1173  * Return values:
1174  * 1 - page is locked; mmap_sem is still held.
1175  * 0 - page is not locked.
1176  *     mmap_sem has been released (up_read()), unless flags had both
1177  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1178  *     which case mmap_sem is still held.
1179  *
1180  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1181  * with the page locked and the mmap_sem unperturbed.
1182  */
1183 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1184                          unsigned int flags)
1185 {
1186         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1187                 /*
1188                  * CAUTION! In this case, mmap_sem is not released
1189                  * even though return 0.
1190                  */
1191                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1192                         return 0;
1193
1194                 up_read(&mm->mmap_sem);
1195                 if (flags & FAULT_FLAG_KILLABLE)
1196                         wait_on_page_locked_killable(page);
1197                 else
1198                         wait_on_page_locked(page);
1199                 return 0;
1200         } else {
1201                 if (flags & FAULT_FLAG_KILLABLE) {
1202                         int ret;
1203
1204                         ret = __lock_page_killable(page);
1205                         if (ret) {
1206                                 up_read(&mm->mmap_sem);
1207                                 return 0;
1208                         }
1209                 } else
1210                         __lock_page(page);
1211                 return 1;
1212         }
1213 }
1214
1215 /**
1216  * page_cache_next_hole - find the next hole (not-present entry)
1217  * @mapping: mapping
1218  * @index: index
1219  * @max_scan: maximum range to search
1220  *
1221  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1222  * lowest indexed hole.
1223  *
1224  * Returns: the index of the hole if found, otherwise returns an index
1225  * outside of the set specified (in which case 'return - index >=
1226  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1227  * be returned.
1228  *
1229  * page_cache_next_hole may be called under rcu_read_lock. However,
1230  * like radix_tree_gang_lookup, this will not atomically search a
1231  * snapshot of the tree at a single point in time. For example, if a
1232  * hole is created at index 5, then subsequently a hole is created at
1233  * index 10, page_cache_next_hole covering both indexes may return 10
1234  * if called under rcu_read_lock.
1235  */
1236 pgoff_t page_cache_next_hole(struct address_space *mapping,
1237                              pgoff_t index, unsigned long max_scan)
1238 {
1239         unsigned long i;
1240
1241         for (i = 0; i < max_scan; i++) {
1242                 struct page *page;
1243
1244                 page = radix_tree_lookup(&mapping->page_tree, index);
1245                 if (!page || radix_tree_exceptional_entry(page))
1246                         break;
1247                 index++;
1248                 if (index == 0)
1249                         break;
1250         }
1251
1252         return index;
1253 }
1254 EXPORT_SYMBOL(page_cache_next_hole);
1255
1256 /**
1257  * page_cache_prev_hole - find the prev hole (not-present entry)
1258  * @mapping: mapping
1259  * @index: index
1260  * @max_scan: maximum range to search
1261  *
1262  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1263  * the first hole.
1264  *
1265  * Returns: the index of the hole if found, otherwise returns an index
1266  * outside of the set specified (in which case 'index - return >=
1267  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1268  * will be returned.
1269  *
1270  * page_cache_prev_hole may be called under rcu_read_lock. However,
1271  * like radix_tree_gang_lookup, this will not atomically search a
1272  * snapshot of the tree at a single point in time. For example, if a
1273  * hole is created at index 10, then subsequently a hole is created at
1274  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1275  * called under rcu_read_lock.
1276  */
1277 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1278                              pgoff_t index, unsigned long max_scan)
1279 {
1280         unsigned long i;
1281
1282         for (i = 0; i < max_scan; i++) {
1283                 struct page *page;
1284
1285                 page = radix_tree_lookup(&mapping->page_tree, index);
1286                 if (!page || radix_tree_exceptional_entry(page))
1287                         break;
1288                 index--;
1289                 if (index == ULONG_MAX)
1290                         break;
1291         }
1292
1293         return index;
1294 }
1295 EXPORT_SYMBOL(page_cache_prev_hole);
1296
1297 /**
1298  * find_get_entry - find and get a page cache entry
1299  * @mapping: the address_space to search
1300  * @offset: the page cache index
1301  *
1302  * Looks up the page cache slot at @mapping & @offset.  If there is a
1303  * page cache page, it is returned with an increased refcount.
1304  *
1305  * If the slot holds a shadow entry of a previously evicted page, or a
1306  * swap entry from shmem/tmpfs, it is returned.
1307  *
1308  * Otherwise, %NULL is returned.
1309  */
1310 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1311 {
1312         void **pagep;
1313         struct page *head, *page;
1314
1315         rcu_read_lock();
1316 repeat:
1317         page = NULL;
1318         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1319         if (pagep) {
1320                 page = radix_tree_deref_slot(pagep);
1321                 if (unlikely(!page))
1322                         goto out;
1323                 if (radix_tree_exception(page)) {
1324                         if (radix_tree_deref_retry(page))
1325                                 goto repeat;
1326                         /*
1327                          * A shadow entry of a recently evicted page,
1328                          * or a swap entry from shmem/tmpfs.  Return
1329                          * it without attempting to raise page count.
1330                          */
1331                         goto out;
1332                 }
1333
1334                 head = compound_head(page);
1335                 if (!page_cache_get_speculative(head))
1336                         goto repeat;
1337
1338                 /* The page was split under us? */
1339                 if (compound_head(page) != head) {
1340                         put_page(head);
1341                         goto repeat;
1342                 }
1343
1344                 /*
1345                  * Has the page moved?
1346                  * This is part of the lockless pagecache protocol. See
1347                  * include/linux/pagemap.h for details.
1348                  */
1349                 if (unlikely(page != *pagep)) {
1350                         put_page(head);
1351                         goto repeat;
1352                 }
1353         }
1354 out:
1355         rcu_read_unlock();
1356
1357         return page;
1358 }
1359 EXPORT_SYMBOL(find_get_entry);
1360
1361 /**
1362  * find_lock_entry - locate, pin and lock a page cache entry
1363  * @mapping: the address_space to search
1364  * @offset: the page cache index
1365  *
1366  * Looks up the page cache slot at @mapping & @offset.  If there is a
1367  * page cache page, it is returned locked and with an increased
1368  * refcount.
1369  *
1370  * If the slot holds a shadow entry of a previously evicted page, or a
1371  * swap entry from shmem/tmpfs, it is returned.
1372  *
1373  * Otherwise, %NULL is returned.
1374  *
1375  * find_lock_entry() may sleep.
1376  */
1377 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1378 {
1379         struct page *page;
1380
1381 repeat:
1382         page = find_get_entry(mapping, offset);
1383         if (page && !radix_tree_exception(page)) {
1384                 lock_page(page);
1385                 /* Has the page been truncated? */
1386                 if (unlikely(page_mapping(page) != mapping)) {
1387                         unlock_page(page);
1388                         put_page(page);
1389                         goto repeat;
1390                 }
1391                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1392         }
1393         return page;
1394 }
1395 EXPORT_SYMBOL(find_lock_entry);
1396
1397 /**
1398  * pagecache_get_page - find and get a page reference
1399  * @mapping: the address_space to search
1400  * @offset: the page index
1401  * @fgp_flags: PCG flags
1402  * @gfp_mask: gfp mask to use for the page cache data page allocation
1403  *
1404  * Looks up the page cache slot at @mapping & @offset.
1405  *
1406  * PCG flags modify how the page is returned.
1407  *
1408  * @fgp_flags can be:
1409  *
1410  * - FGP_ACCESSED: the page will be marked accessed
1411  * - FGP_LOCK: Page is return locked
1412  * - FGP_CREAT: If page is not present then a new page is allocated using
1413  *   @gfp_mask and added to the page cache and the VM's LRU
1414  *   list. The page is returned locked and with an increased
1415  *   refcount. Otherwise, NULL is returned.
1416  *
1417  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1418  * if the GFP flags specified for FGP_CREAT are atomic.
1419  *
1420  * If there is a page cache page, it is returned with an increased refcount.
1421  */
1422 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1423         int fgp_flags, gfp_t gfp_mask)
1424 {
1425         struct page *page;
1426
1427 repeat:
1428         page = find_get_entry(mapping, offset);
1429         if (radix_tree_exceptional_entry(page))
1430                 page = NULL;
1431         if (!page)
1432                 goto no_page;
1433
1434         if (fgp_flags & FGP_LOCK) {
1435                 if (fgp_flags & FGP_NOWAIT) {
1436                         if (!trylock_page(page)) {
1437                                 put_page(page);
1438                                 return NULL;
1439                         }
1440                 } else {
1441                         lock_page(page);
1442                 }
1443
1444                 /* Has the page been truncated? */
1445                 if (unlikely(page->mapping != mapping)) {
1446                         unlock_page(page);
1447                         put_page(page);
1448                         goto repeat;
1449                 }
1450                 VM_BUG_ON_PAGE(page->index != offset, page);
1451         }
1452
1453         if (page && (fgp_flags & FGP_ACCESSED))
1454                 mark_page_accessed(page);
1455
1456 no_page:
1457         if (!page && (fgp_flags & FGP_CREAT)) {
1458                 int err;
1459                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1460                         gfp_mask |= __GFP_WRITE;
1461                 if (fgp_flags & FGP_NOFS)
1462                         gfp_mask &= ~__GFP_FS;
1463
1464                 page = __page_cache_alloc(gfp_mask);
1465                 if (!page)
1466                         return NULL;
1467
1468                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1469                         fgp_flags |= FGP_LOCK;
1470
1471                 /* Init accessed so avoid atomic mark_page_accessed later */
1472                 if (fgp_flags & FGP_ACCESSED)
1473                         __SetPageReferenced(page);
1474
1475                 err = add_to_page_cache_lru(page, mapping, offset,
1476                                 gfp_mask & GFP_RECLAIM_MASK);
1477                 if (unlikely(err)) {
1478                         put_page(page);
1479                         page = NULL;
1480                         if (err == -EEXIST)
1481                                 goto repeat;
1482                 }
1483         }
1484
1485         return page;
1486 }
1487 EXPORT_SYMBOL(pagecache_get_page);
1488
1489 /**
1490  * find_get_entries - gang pagecache lookup
1491  * @mapping:    The address_space to search
1492  * @start:      The starting page cache index
1493  * @nr_entries: The maximum number of entries
1494  * @entries:    Where the resulting entries are placed
1495  * @indices:    The cache indices corresponding to the entries in @entries
1496  *
1497  * find_get_entries() will search for and return a group of up to
1498  * @nr_entries entries in the mapping.  The entries are placed at
1499  * @entries.  find_get_entries() takes a reference against any actual
1500  * pages it returns.
1501  *
1502  * The search returns a group of mapping-contiguous page cache entries
1503  * with ascending indexes.  There may be holes in the indices due to
1504  * not-present pages.
1505  *
1506  * Any shadow entries of evicted pages, or swap entries from
1507  * shmem/tmpfs, are included in the returned array.
1508  *
1509  * find_get_entries() returns the number of pages and shadow entries
1510  * which were found.
1511  */
1512 unsigned find_get_entries(struct address_space *mapping,
1513                           pgoff_t start, unsigned int nr_entries,
1514                           struct page **entries, pgoff_t *indices)
1515 {
1516         void **slot;
1517         unsigned int ret = 0;
1518         struct radix_tree_iter iter;
1519
1520         if (!nr_entries)
1521                 return 0;
1522
1523         rcu_read_lock();
1524         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1525                 struct page *head, *page;
1526 repeat:
1527                 page = radix_tree_deref_slot(slot);
1528                 if (unlikely(!page))
1529                         continue;
1530                 if (radix_tree_exception(page)) {
1531                         if (radix_tree_deref_retry(page)) {
1532                                 slot = radix_tree_iter_retry(&iter);
1533                                 continue;
1534                         }
1535                         /*
1536                          * A shadow entry of a recently evicted page, a swap
1537                          * entry from shmem/tmpfs or a DAX entry.  Return it
1538                          * without attempting to raise page count.
1539                          */
1540                         goto export;
1541                 }
1542
1543                 head = compound_head(page);
1544                 if (!page_cache_get_speculative(head))
1545                         goto repeat;
1546
1547                 /* The page was split under us? */
1548                 if (compound_head(page) != head) {
1549                         put_page(head);
1550                         goto repeat;
1551                 }
1552
1553                 /* Has the page moved? */
1554                 if (unlikely(page != *slot)) {
1555                         put_page(head);
1556                         goto repeat;
1557                 }
1558 export:
1559                 indices[ret] = iter.index;
1560                 entries[ret] = page;
1561                 if (++ret == nr_entries)
1562                         break;
1563         }
1564         rcu_read_unlock();
1565         return ret;
1566 }
1567
1568 /**
1569  * find_get_pages - gang pagecache lookup
1570  * @mapping:    The address_space to search
1571  * @start:      The starting page index
1572  * @nr_pages:   The maximum number of pages
1573  * @pages:      Where the resulting pages are placed
1574  *
1575  * find_get_pages() will search for and return a group of up to
1576  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1577  * find_get_pages() takes a reference against the returned pages.
1578  *
1579  * The search returns a group of mapping-contiguous pages with ascending
1580  * indexes.  There may be holes in the indices due to not-present pages.
1581  *
1582  * find_get_pages() returns the number of pages which were found.
1583  */
1584 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1585                             unsigned int nr_pages, struct page **pages)
1586 {
1587         struct radix_tree_iter iter;
1588         void **slot;
1589         unsigned ret = 0;
1590
1591         if (unlikely(!nr_pages))
1592                 return 0;
1593
1594         rcu_read_lock();
1595         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1596                 struct page *head, *page;
1597 repeat:
1598                 page = radix_tree_deref_slot(slot);
1599                 if (unlikely(!page))
1600                         continue;
1601
1602                 if (radix_tree_exception(page)) {
1603                         if (radix_tree_deref_retry(page)) {
1604                                 slot = radix_tree_iter_retry(&iter);
1605                                 continue;
1606                         }
1607                         /*
1608                          * A shadow entry of a recently evicted page,
1609                          * or a swap entry from shmem/tmpfs.  Skip
1610                          * over it.
1611                          */
1612                         continue;
1613                 }
1614
1615                 head = compound_head(page);
1616                 if (!page_cache_get_speculative(head))
1617                         goto repeat;
1618
1619                 /* The page was split under us? */
1620                 if (compound_head(page) != head) {
1621                         put_page(head);
1622                         goto repeat;
1623                 }
1624
1625                 /* Has the page moved? */
1626                 if (unlikely(page != *slot)) {
1627                         put_page(head);
1628                         goto repeat;
1629                 }
1630
1631                 pages[ret] = page;
1632                 if (++ret == nr_pages)
1633                         break;
1634         }
1635
1636         rcu_read_unlock();
1637         return ret;
1638 }
1639
1640 /**
1641  * find_get_pages_contig - gang contiguous pagecache lookup
1642  * @mapping:    The address_space to search
1643  * @index:      The starting page index
1644  * @nr_pages:   The maximum number of pages
1645  * @pages:      Where the resulting pages are placed
1646  *
1647  * find_get_pages_contig() works exactly like find_get_pages(), except
1648  * that the returned number of pages are guaranteed to be contiguous.
1649  *
1650  * find_get_pages_contig() returns the number of pages which were found.
1651  */
1652 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1653                                unsigned int nr_pages, struct page **pages)
1654 {
1655         struct radix_tree_iter iter;
1656         void **slot;
1657         unsigned int ret = 0;
1658
1659         if (unlikely(!nr_pages))
1660                 return 0;
1661
1662         rcu_read_lock();
1663         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1664                 struct page *head, *page;
1665 repeat:
1666                 page = radix_tree_deref_slot(slot);
1667                 /* The hole, there no reason to continue */
1668                 if (unlikely(!page))
1669                         break;
1670
1671                 if (radix_tree_exception(page)) {
1672                         if (radix_tree_deref_retry(page)) {
1673                                 slot = radix_tree_iter_retry(&iter);
1674                                 continue;
1675                         }
1676                         /*
1677                          * A shadow entry of a recently evicted page,
1678                          * or a swap entry from shmem/tmpfs.  Stop
1679                          * looking for contiguous pages.
1680                          */
1681                         break;
1682                 }
1683
1684                 head = compound_head(page);
1685                 if (!page_cache_get_speculative(head))
1686                         goto repeat;
1687
1688                 /* The page was split under us? */
1689                 if (compound_head(page) != head) {
1690                         put_page(head);
1691                         goto repeat;
1692                 }
1693
1694                 /* Has the page moved? */
1695                 if (unlikely(page != *slot)) {
1696                         put_page(head);
1697                         goto repeat;
1698                 }
1699
1700                 /*
1701                  * must check mapping and index after taking the ref.
1702                  * otherwise we can get both false positives and false
1703                  * negatives, which is just confusing to the caller.
1704                  */
1705                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1706                         put_page(page);
1707                         break;
1708                 }
1709
1710                 pages[ret] = page;
1711                 if (++ret == nr_pages)
1712                         break;
1713         }
1714         rcu_read_unlock();
1715         return ret;
1716 }
1717 EXPORT_SYMBOL(find_get_pages_contig);
1718
1719 /**
1720  * find_get_pages_tag - find and return pages that match @tag
1721  * @mapping:    the address_space to search
1722  * @index:      the starting page index
1723  * @tag:        the tag index
1724  * @nr_pages:   the maximum number of pages
1725  * @pages:      where the resulting pages are placed
1726  *
1727  * Like find_get_pages, except we only return pages which are tagged with
1728  * @tag.   We update @index to index the next page for the traversal.
1729  */
1730 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1731                         int tag, unsigned int nr_pages, struct page **pages)
1732 {
1733         struct radix_tree_iter iter;
1734         void **slot;
1735         unsigned ret = 0;
1736
1737         if (unlikely(!nr_pages))
1738                 return 0;
1739
1740         rcu_read_lock();
1741         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1742                                    &iter, *index, tag) {
1743                 struct page *head, *page;
1744 repeat:
1745                 page = radix_tree_deref_slot(slot);
1746                 if (unlikely(!page))
1747                         continue;
1748
1749                 if (radix_tree_exception(page)) {
1750                         if (radix_tree_deref_retry(page)) {
1751                                 slot = radix_tree_iter_retry(&iter);
1752                                 continue;
1753                         }
1754                         /*
1755                          * A shadow entry of a recently evicted page.
1756                          *
1757                          * Those entries should never be tagged, but
1758                          * this tree walk is lockless and the tags are
1759                          * looked up in bulk, one radix tree node at a
1760                          * time, so there is a sizable window for page
1761                          * reclaim to evict a page we saw tagged.
1762                          *
1763                          * Skip over it.
1764                          */
1765                         continue;
1766                 }
1767
1768                 head = compound_head(page);
1769                 if (!page_cache_get_speculative(head))
1770                         goto repeat;
1771
1772                 /* The page was split under us? */
1773                 if (compound_head(page) != head) {
1774                         put_page(head);
1775                         goto repeat;
1776                 }
1777
1778                 /* Has the page moved? */
1779                 if (unlikely(page != *slot)) {
1780                         put_page(head);
1781                         goto repeat;
1782                 }
1783
1784                 pages[ret] = page;
1785                 if (++ret == nr_pages)
1786                         break;
1787         }
1788
1789         rcu_read_unlock();
1790
1791         if (ret)
1792                 *index = pages[ret - 1]->index + 1;
1793
1794         return ret;
1795 }
1796 EXPORT_SYMBOL(find_get_pages_tag);
1797
1798 /**
1799  * find_get_entries_tag - find and return entries that match @tag
1800  * @mapping:    the address_space to search
1801  * @start:      the starting page cache index
1802  * @tag:        the tag index
1803  * @nr_entries: the maximum number of entries
1804  * @entries:    where the resulting entries are placed
1805  * @indices:    the cache indices corresponding to the entries in @entries
1806  *
1807  * Like find_get_entries, except we only return entries which are tagged with
1808  * @tag.
1809  */
1810 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1811                         int tag, unsigned int nr_entries,
1812                         struct page **entries, pgoff_t *indices)
1813 {
1814         void **slot;
1815         unsigned int ret = 0;
1816         struct radix_tree_iter iter;
1817
1818         if (!nr_entries)
1819                 return 0;
1820
1821         rcu_read_lock();
1822         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1823                                    &iter, start, tag) {
1824                 struct page *head, *page;
1825 repeat:
1826                 page = radix_tree_deref_slot(slot);
1827                 if (unlikely(!page))
1828                         continue;
1829                 if (radix_tree_exception(page)) {
1830                         if (radix_tree_deref_retry(page)) {
1831                                 slot = radix_tree_iter_retry(&iter);
1832                                 continue;
1833                         }
1834
1835                         /*
1836                          * A shadow entry of a recently evicted page, a swap
1837                          * entry from shmem/tmpfs or a DAX entry.  Return it
1838                          * without attempting to raise page count.
1839                          */
1840                         goto export;
1841                 }
1842
1843                 head = compound_head(page);
1844                 if (!page_cache_get_speculative(head))
1845                         goto repeat;
1846
1847                 /* The page was split under us? */
1848                 if (compound_head(page) != head) {
1849                         put_page(head);
1850                         goto repeat;
1851                 }
1852
1853                 /* Has the page moved? */
1854                 if (unlikely(page != *slot)) {
1855                         put_page(head);
1856                         goto repeat;
1857                 }
1858 export:
1859                 indices[ret] = iter.index;
1860                 entries[ret] = page;
1861                 if (++ret == nr_entries)
1862                         break;
1863         }
1864         rcu_read_unlock();
1865         return ret;
1866 }
1867 EXPORT_SYMBOL(find_get_entries_tag);
1868
1869 /*
1870  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1871  * a _large_ part of the i/o request. Imagine the worst scenario:
1872  *
1873  *      ---R__________________________________________B__________
1874  *         ^ reading here                             ^ bad block(assume 4k)
1875  *
1876  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1877  * => failing the whole request => read(R) => read(R+1) =>
1878  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1879  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1880  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1881  *
1882  * It is going insane. Fix it by quickly scaling down the readahead size.
1883  */
1884 static void shrink_readahead_size_eio(struct file *filp,
1885                                         struct file_ra_state *ra)
1886 {
1887         ra->ra_pages /= 4;
1888 }
1889
1890 /**
1891  * do_generic_file_read - generic file read routine
1892  * @filp:       the file to read
1893  * @ppos:       current file position
1894  * @iter:       data destination
1895  * @written:    already copied
1896  *
1897  * This is a generic file read routine, and uses the
1898  * mapping->a_ops->readpage() function for the actual low-level stuff.
1899  *
1900  * This is really ugly. But the goto's actually try to clarify some
1901  * of the logic when it comes to error handling etc.
1902  */
1903 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1904                 struct iov_iter *iter, ssize_t written)
1905 {
1906         struct address_space *mapping = filp->f_mapping;
1907         struct inode *inode = mapping->host;
1908         struct file_ra_state *ra = &filp->f_ra;
1909         pgoff_t index;
1910         pgoff_t last_index;
1911         pgoff_t prev_index;
1912         unsigned long offset;      /* offset into pagecache page */
1913         unsigned int prev_offset;
1914         int error = 0;
1915
1916         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1917                 return 0;
1918         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1919
1920         index = *ppos >> PAGE_SHIFT;
1921         prev_index = ra->prev_pos >> PAGE_SHIFT;
1922         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1923         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1924         offset = *ppos & ~PAGE_MASK;
1925
1926         for (;;) {
1927                 struct page *page;
1928                 pgoff_t end_index;
1929                 loff_t isize;
1930                 unsigned long nr, ret;
1931
1932                 cond_resched();
1933 find_page:
1934                 if (fatal_signal_pending(current)) {
1935                         error = -EINTR;
1936                         goto out;
1937                 }
1938
1939                 page = find_get_page(mapping, index);
1940                 if (!page) {
1941                         page_cache_sync_readahead(mapping,
1942                                         ra, filp,
1943                                         index, last_index - index);
1944                         page = find_get_page(mapping, index);
1945                         if (unlikely(page == NULL))
1946                                 goto no_cached_page;
1947                 }
1948                 if (PageReadahead(page)) {
1949                         page_cache_async_readahead(mapping,
1950                                         ra, filp, page,
1951                                         index, last_index - index);
1952                 }
1953                 if (!PageUptodate(page)) {
1954                         /*
1955                          * See comment in do_read_cache_page on why
1956                          * wait_on_page_locked is used to avoid unnecessarily
1957                          * serialisations and why it's safe.
1958                          */
1959                         error = wait_on_page_locked_killable(page);
1960                         if (unlikely(error))
1961                                 goto readpage_error;
1962                         if (PageUptodate(page))
1963                                 goto page_ok;
1964
1965                         if (inode->i_blkbits == PAGE_SHIFT ||
1966                                         !mapping->a_ops->is_partially_uptodate)
1967                                 goto page_not_up_to_date;
1968                         /* pipes can't handle partially uptodate pages */
1969                         if (unlikely(iter->type & ITER_PIPE))
1970                                 goto page_not_up_to_date;
1971                         if (!trylock_page(page))
1972                                 goto page_not_up_to_date;
1973                         /* Did it get truncated before we got the lock? */
1974                         if (!page->mapping)
1975                                 goto page_not_up_to_date_locked;
1976                         if (!mapping->a_ops->is_partially_uptodate(page,
1977                                                         offset, iter->count))
1978                                 goto page_not_up_to_date_locked;
1979                         unlock_page(page);
1980                 }
1981 page_ok:
1982                 /*
1983                  * i_size must be checked after we know the page is Uptodate.
1984                  *
1985                  * Checking i_size after the check allows us to calculate
1986                  * the correct value for "nr", which means the zero-filled
1987                  * part of the page is not copied back to userspace (unless
1988                  * another truncate extends the file - this is desired though).
1989                  */
1990
1991                 isize = i_size_read(inode);
1992                 end_index = (isize - 1) >> PAGE_SHIFT;
1993                 if (unlikely(!isize || index > end_index)) {
1994                         put_page(page);
1995                         goto out;
1996                 }
1997
1998                 /* nr is the maximum number of bytes to copy from this page */
1999                 nr = PAGE_SIZE;
2000                 if (index == end_index) {
2001                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
2002                         if (nr <= offset) {
2003                                 put_page(page);
2004                                 goto out;
2005                         }
2006                 }
2007                 nr = nr - offset;
2008
2009                 /* If users can be writing to this page using arbitrary
2010                  * virtual addresses, take care about potential aliasing
2011                  * before reading the page on the kernel side.
2012                  */
2013                 if (mapping_writably_mapped(mapping))
2014                         flush_dcache_page(page);
2015
2016                 /*
2017                  * When a sequential read accesses a page several times,
2018                  * only mark it as accessed the first time.
2019                  */
2020                 if (prev_index != index || offset != prev_offset)
2021                         mark_page_accessed(page);
2022                 prev_index = index;
2023
2024                 /*
2025                  * Ok, we have the page, and it's up-to-date, so
2026                  * now we can copy it to user space...
2027                  */
2028
2029                 ret = copy_page_to_iter(page, offset, nr, iter);
2030                 offset += ret;
2031                 index += offset >> PAGE_SHIFT;
2032                 offset &= ~PAGE_MASK;
2033                 prev_offset = offset;
2034
2035                 put_page(page);
2036                 written += ret;
2037                 if (!iov_iter_count(iter))
2038                         goto out;
2039                 if (ret < nr) {
2040                         error = -EFAULT;
2041                         goto out;
2042                 }
2043                 continue;
2044
2045 page_not_up_to_date:
2046                 /* Get exclusive access to the page ... */
2047                 error = lock_page_killable(page);
2048                 if (unlikely(error))
2049                         goto readpage_error;
2050
2051 page_not_up_to_date_locked:
2052                 /* Did it get truncated before we got the lock? */
2053                 if (!page->mapping) {
2054                         unlock_page(page);
2055                         put_page(page);
2056                         continue;
2057                 }
2058
2059                 /* Did somebody else fill it already? */
2060                 if (PageUptodate(page)) {
2061                         unlock_page(page);
2062                         goto page_ok;
2063                 }
2064
2065 readpage:
2066                 /*
2067                  * A previous I/O error may have been due to temporary
2068                  * failures, eg. multipath errors.
2069                  * PG_error will be set again if readpage fails.
2070                  */
2071                 ClearPageError(page);
2072                 /* Start the actual read. The read will unlock the page. */
2073                 error = mapping->a_ops->readpage(filp, page);
2074
2075                 if (unlikely(error)) {
2076                         if (error == AOP_TRUNCATED_PAGE) {
2077                                 put_page(page);
2078                                 error = 0;
2079                                 goto find_page;
2080                         }
2081                         goto readpage_error;
2082                 }
2083
2084                 if (!PageUptodate(page)) {
2085                         error = lock_page_killable(page);
2086                         if (unlikely(error))
2087                                 goto readpage_error;
2088                         if (!PageUptodate(page)) {
2089                                 if (page->mapping == NULL) {
2090                                         /*
2091                                          * invalidate_mapping_pages got it
2092                                          */
2093                                         unlock_page(page);
2094                                         put_page(page);
2095                                         goto find_page;
2096                                 }
2097                                 unlock_page(page);
2098                                 shrink_readahead_size_eio(filp, ra);
2099                                 error = -EIO;
2100                                 goto readpage_error;
2101                         }
2102                         unlock_page(page);
2103                 }
2104
2105                 goto page_ok;
2106
2107 readpage_error:
2108                 /* UHHUH! A synchronous read error occurred. Report it */
2109                 put_page(page);
2110                 goto out;
2111
2112 no_cached_page:
2113                 /*
2114                  * Ok, it wasn't cached, so we need to create a new
2115                  * page..
2116                  */
2117                 page = page_cache_alloc_cold(mapping);
2118                 if (!page) {
2119                         error = -ENOMEM;
2120                         goto out;
2121                 }
2122                 error = add_to_page_cache_lru(page, mapping, index,
2123                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2124                 if (error) {
2125                         put_page(page);
2126                         if (error == -EEXIST) {
2127                                 error = 0;
2128                                 goto find_page;
2129                         }
2130                         goto out;
2131                 }
2132                 goto readpage;
2133         }
2134
2135 out:
2136         ra->prev_pos = prev_index;
2137         ra->prev_pos <<= PAGE_SHIFT;
2138         ra->prev_pos |= prev_offset;
2139
2140         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2141         file_accessed(filp);
2142         return written ? written : error;
2143 }
2144
2145 /**
2146  * generic_file_read_iter - generic filesystem read routine
2147  * @iocb:       kernel I/O control block
2148  * @iter:       destination for the data read
2149  *
2150  * This is the "read_iter()" routine for all filesystems
2151  * that can use the page cache directly.
2152  */
2153 ssize_t
2154 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2155 {
2156         struct file *file = iocb->ki_filp;
2157         ssize_t retval = 0;
2158         size_t count = iov_iter_count(iter);
2159
2160         if (!count)
2161                 goto out; /* skip atime */
2162
2163         if (iocb->ki_flags & IOCB_DIRECT) {
2164                 struct address_space *mapping = file->f_mapping;
2165                 struct inode *inode = mapping->host;
2166                 loff_t size;
2167
2168                 size = i_size_read(inode);
2169                 if (iocb->ki_flags & IOCB_NOWAIT) {
2170                         if (filemap_range_has_page(mapping, iocb->ki_pos,
2171                                                    iocb->ki_pos + count - 1))
2172                                 return -EAGAIN;
2173                 } else {
2174                         retval = filemap_write_and_wait_range(mapping,
2175                                                 iocb->ki_pos,
2176                                                 iocb->ki_pos + count - 1);
2177                         if (retval < 0)
2178                                 goto out;
2179                 }
2180
2181                 file_accessed(file);
2182
2183                 retval = mapping->a_ops->direct_IO(iocb, iter);
2184                 if (retval >= 0) {
2185                         iocb->ki_pos += retval;
2186                         count -= retval;
2187                 }
2188                 iov_iter_revert(iter, count - iov_iter_count(iter));
2189
2190                 /*
2191                  * Btrfs can have a short DIO read if we encounter
2192                  * compressed extents, so if there was an error, or if
2193                  * we've already read everything we wanted to, or if
2194                  * there was a short read because we hit EOF, go ahead
2195                  * and return.  Otherwise fallthrough to buffered io for
2196                  * the rest of the read.  Buffered reads will not work for
2197                  * DAX files, so don't bother trying.
2198                  */
2199                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2200                     IS_DAX(inode))
2201                         goto out;
2202         }
2203
2204         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2205 out:
2206         return retval;
2207 }
2208 EXPORT_SYMBOL(generic_file_read_iter);
2209
2210 #ifdef CONFIG_MMU
2211 /**
2212  * page_cache_read - adds requested page to the page cache if not already there
2213  * @file:       file to read
2214  * @offset:     page index
2215  * @gfp_mask:   memory allocation flags
2216  *
2217  * This adds the requested page to the page cache if it isn't already there,
2218  * and schedules an I/O to read in its contents from disk.
2219  */
2220 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2221 {
2222         struct address_space *mapping = file->f_mapping;
2223         struct page *page;
2224         int ret;
2225
2226         do {
2227                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2228                 if (!page)
2229                         return -ENOMEM;
2230
2231                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2232                 if (ret == 0)
2233                         ret = mapping->a_ops->readpage(file, page);
2234                 else if (ret == -EEXIST)
2235                         ret = 0; /* losing race to add is OK */
2236
2237                 put_page(page);
2238
2239         } while (ret == AOP_TRUNCATED_PAGE);
2240
2241         return ret;
2242 }
2243
2244 #define MMAP_LOTSAMISS  (100)
2245
2246 /*
2247  * Synchronous readahead happens when we don't even find
2248  * a page in the page cache at all.
2249  */
2250 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2251                                    struct file_ra_state *ra,
2252                                    struct file *file,
2253                                    pgoff_t offset)
2254 {
2255         struct address_space *mapping = file->f_mapping;
2256
2257         /* If we don't want any read-ahead, don't bother */
2258         if (vma->vm_flags & VM_RAND_READ)
2259                 return;
2260         if (!ra->ra_pages)
2261                 return;
2262
2263         if (vma->vm_flags & VM_SEQ_READ) {
2264                 page_cache_sync_readahead(mapping, ra, file, offset,
2265                                           ra->ra_pages);
2266                 return;
2267         }
2268
2269         /* Avoid banging the cache line if not needed */
2270         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2271                 ra->mmap_miss++;
2272
2273         /*
2274          * Do we miss much more than hit in this file? If so,
2275          * stop bothering with read-ahead. It will only hurt.
2276          */
2277         if (ra->mmap_miss > MMAP_LOTSAMISS)
2278                 return;
2279
2280         /*
2281          * mmap read-around
2282          */
2283         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2284         ra->size = ra->ra_pages;
2285         ra->async_size = ra->ra_pages / 4;
2286         ra_submit(ra, mapping, file);
2287 }
2288
2289 /*
2290  * Asynchronous readahead happens when we find the page and PG_readahead,
2291  * so we want to possibly extend the readahead further..
2292  */
2293 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2294                                     struct file_ra_state *ra,
2295                                     struct file *file,
2296                                     struct page *page,
2297                                     pgoff_t offset)
2298 {
2299         struct address_space *mapping = file->f_mapping;
2300
2301         /* If we don't want any read-ahead, don't bother */
2302         if (vma->vm_flags & VM_RAND_READ)
2303                 return;
2304         if (ra->mmap_miss > 0)
2305                 ra->mmap_miss--;
2306         if (PageReadahead(page))
2307                 page_cache_async_readahead(mapping, ra, file,
2308                                            page, offset, ra->ra_pages);
2309 }
2310
2311 /**
2312  * filemap_fault - read in file data for page fault handling
2313  * @vmf:        struct vm_fault containing details of the fault
2314  *
2315  * filemap_fault() is invoked via the vma operations vector for a
2316  * mapped memory region to read in file data during a page fault.
2317  *
2318  * The goto's are kind of ugly, but this streamlines the normal case of having
2319  * it in the page cache, and handles the special cases reasonably without
2320  * having a lot of duplicated code.
2321  *
2322  * vma->vm_mm->mmap_sem must be held on entry.
2323  *
2324  * If our return value has VM_FAULT_RETRY set, it's because
2325  * lock_page_or_retry() returned 0.
2326  * The mmap_sem has usually been released in this case.
2327  * See __lock_page_or_retry() for the exception.
2328  *
2329  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2330  * has not been released.
2331  *
2332  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2333  */
2334 int filemap_fault(struct vm_fault *vmf)
2335 {
2336         int error;
2337         struct file *file = vmf->vma->vm_file;
2338         struct address_space *mapping = file->f_mapping;
2339         struct file_ra_state *ra = &file->f_ra;
2340         struct inode *inode = mapping->host;
2341         pgoff_t offset = vmf->pgoff;
2342         pgoff_t max_off;
2343         struct page *page;
2344         int ret = 0;
2345
2346         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2347         if (unlikely(offset >= max_off))
2348                 return VM_FAULT_SIGBUS;
2349
2350         /*
2351          * Do we have something in the page cache already?
2352          */
2353         page = find_get_page(mapping, offset);
2354         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2355                 /*
2356                  * We found the page, so try async readahead before
2357                  * waiting for the lock.
2358                  */
2359                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2360         } else if (!page) {
2361                 /* No page in the page cache at all */
2362                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2363                 count_vm_event(PGMAJFAULT);
2364                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2365                 ret = VM_FAULT_MAJOR;
2366 retry_find:
2367                 page = find_get_page(mapping, offset);
2368                 if (!page)
2369                         goto no_cached_page;
2370         }
2371
2372         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2373                 put_page(page);
2374                 return ret | VM_FAULT_RETRY;
2375         }
2376
2377         /* Did it get truncated? */
2378         if (unlikely(page->mapping != mapping)) {
2379                 unlock_page(page);
2380                 put_page(page);
2381                 goto retry_find;
2382         }
2383         VM_BUG_ON_PAGE(page->index != offset, page);
2384
2385         /*
2386          * We have a locked page in the page cache, now we need to check
2387          * that it's up-to-date. If not, it is going to be due to an error.
2388          */
2389         if (unlikely(!PageUptodate(page)))
2390                 goto page_not_uptodate;
2391
2392         /*
2393          * Found the page and have a reference on it.
2394          * We must recheck i_size under page lock.
2395          */
2396         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2397         if (unlikely(offset >= max_off)) {
2398                 unlock_page(page);
2399                 put_page(page);
2400                 return VM_FAULT_SIGBUS;
2401         }
2402
2403         vmf->page = page;
2404         return ret | VM_FAULT_LOCKED;
2405
2406 no_cached_page:
2407         /*
2408          * We're only likely to ever get here if MADV_RANDOM is in
2409          * effect.
2410          */
2411         error = page_cache_read(file, offset, vmf->gfp_mask);
2412
2413         /*
2414          * The page we want has now been added to the page cache.
2415          * In the unlikely event that someone removed it in the
2416          * meantime, we'll just come back here and read it again.
2417          */
2418         if (error >= 0)
2419                 goto retry_find;
2420
2421         /*
2422          * An error return from page_cache_read can result if the
2423          * system is low on memory, or a problem occurs while trying
2424          * to schedule I/O.
2425          */
2426         if (error == -ENOMEM)
2427                 return VM_FAULT_OOM;
2428         return VM_FAULT_SIGBUS;
2429
2430 page_not_uptodate:
2431         /*
2432          * Umm, take care of errors if the page isn't up-to-date.
2433          * Try to re-read it _once_. We do this synchronously,
2434          * because there really aren't any performance issues here
2435          * and we need to check for errors.
2436          */
2437         ClearPageError(page);
2438         error = mapping->a_ops->readpage(file, page);
2439         if (!error) {
2440                 wait_on_page_locked(page);
2441                 if (!PageUptodate(page))
2442                         error = -EIO;
2443         }
2444         put_page(page);
2445
2446         if (!error || error == AOP_TRUNCATED_PAGE)
2447                 goto retry_find;
2448
2449         /* Things didn't work out. Return zero to tell the mm layer so. */
2450         shrink_readahead_size_eio(file, ra);
2451         return VM_FAULT_SIGBUS;
2452 }
2453 EXPORT_SYMBOL(filemap_fault);
2454
2455 void filemap_map_pages(struct vm_fault *vmf,
2456                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2457 {
2458         struct radix_tree_iter iter;
2459         void **slot;
2460         struct file *file = vmf->vma->vm_file;
2461         struct address_space *mapping = file->f_mapping;
2462         pgoff_t last_pgoff = start_pgoff;
2463         unsigned long max_idx;
2464         struct page *head, *page;
2465
2466         rcu_read_lock();
2467         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2468                         start_pgoff) {
2469                 if (iter.index > end_pgoff)
2470                         break;
2471 repeat:
2472                 page = radix_tree_deref_slot(slot);
2473                 if (unlikely(!page))
2474                         goto next;
2475                 if (radix_tree_exception(page)) {
2476                         if (radix_tree_deref_retry(page)) {
2477                                 slot = radix_tree_iter_retry(&iter);
2478                                 continue;
2479                         }
2480                         goto next;
2481                 }
2482
2483                 head = compound_head(page);
2484                 if (!page_cache_get_speculative(head))
2485                         goto repeat;
2486
2487                 /* The page was split under us? */
2488                 if (compound_head(page) != head) {
2489                         put_page(head);
2490                         goto repeat;
2491                 }
2492
2493                 /* Has the page moved? */
2494                 if (unlikely(page != *slot)) {
2495                         put_page(head);
2496                         goto repeat;
2497                 }
2498
2499                 if (!PageUptodate(page) ||
2500                                 PageReadahead(page) ||
2501                                 PageHWPoison(page))
2502                         goto skip;
2503                 if (!trylock_page(page))
2504                         goto skip;
2505
2506                 if (page->mapping != mapping || !PageUptodate(page))
2507                         goto unlock;
2508
2509                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2510                 if (page->index >= max_idx)
2511                         goto unlock;
2512
2513                 if (file->f_ra.mmap_miss > 0)
2514                         file->f_ra.mmap_miss--;
2515
2516                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2517                 if (vmf->pte)
2518                         vmf->pte += iter.index - last_pgoff;
2519                 last_pgoff = iter.index;
2520                 if (alloc_set_pte(vmf, NULL, page))
2521                         goto unlock;
2522                 unlock_page(page);
2523                 goto next;
2524 unlock:
2525                 unlock_page(page);
2526 skip:
2527                 put_page(page);
2528 next:
2529                 /* Huge page is mapped? No need to proceed. */
2530                 if (pmd_trans_huge(*vmf->pmd))
2531                         break;
2532                 if (iter.index == end_pgoff)
2533                         break;
2534         }
2535         rcu_read_unlock();
2536 }
2537 EXPORT_SYMBOL(filemap_map_pages);
2538
2539 int filemap_page_mkwrite(struct vm_fault *vmf)
2540 {
2541         struct page *page = vmf->page;
2542         struct inode *inode = file_inode(vmf->vma->vm_file);
2543         int ret = VM_FAULT_LOCKED;
2544
2545         sb_start_pagefault(inode->i_sb);
2546         file_update_time(vmf->vma->vm_file);
2547         lock_page(page);
2548         if (page->mapping != inode->i_mapping) {
2549                 unlock_page(page);
2550                 ret = VM_FAULT_NOPAGE;
2551                 goto out;
2552         }
2553         /*
2554          * We mark the page dirty already here so that when freeze is in
2555          * progress, we are guaranteed that writeback during freezing will
2556          * see the dirty page and writeprotect it again.
2557          */
2558         set_page_dirty(page);
2559         wait_for_stable_page(page);
2560 out:
2561         sb_end_pagefault(inode->i_sb);
2562         return ret;
2563 }
2564 EXPORT_SYMBOL(filemap_page_mkwrite);
2565
2566 const struct vm_operations_struct generic_file_vm_ops = {
2567         .fault          = filemap_fault,
2568         .map_pages      = filemap_map_pages,
2569         .page_mkwrite   = filemap_page_mkwrite,
2570 };
2571
2572 /* This is used for a general mmap of a disk file */
2573
2574 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2575 {
2576         struct address_space *mapping = file->f_mapping;
2577
2578         if (!mapping->a_ops->readpage)
2579                 return -ENOEXEC;
2580         file_accessed(file);
2581         vma->vm_ops = &generic_file_vm_ops;
2582         return 0;
2583 }
2584
2585 /*
2586  * This is for filesystems which do not implement ->writepage.
2587  */
2588 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2589 {
2590         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2591                 return -EINVAL;
2592         return generic_file_mmap(file, vma);
2593 }
2594 #else
2595 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2596 {
2597         return -ENOSYS;
2598 }
2599 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2600 {
2601         return -ENOSYS;
2602 }
2603 #endif /* CONFIG_MMU */
2604
2605 EXPORT_SYMBOL(generic_file_mmap);
2606 EXPORT_SYMBOL(generic_file_readonly_mmap);
2607
2608 static struct page *wait_on_page_read(struct page *page)
2609 {
2610         if (!IS_ERR(page)) {
2611                 wait_on_page_locked(page);
2612                 if (!PageUptodate(page)) {
2613                         put_page(page);
2614                         page = ERR_PTR(-EIO);
2615                 }
2616         }
2617         return page;
2618 }
2619
2620 static struct page *do_read_cache_page(struct address_space *mapping,
2621                                 pgoff_t index,
2622                                 int (*filler)(void *, struct page *),
2623                                 void *data,
2624                                 gfp_t gfp)
2625 {
2626         struct page *page;
2627         int err;
2628 repeat:
2629         page = find_get_page(mapping, index);
2630         if (!page) {
2631                 page = __page_cache_alloc(gfp | __GFP_COLD);
2632                 if (!page)
2633                         return ERR_PTR(-ENOMEM);
2634                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2635                 if (unlikely(err)) {
2636                         put_page(page);
2637                         if (err == -EEXIST)
2638                                 goto repeat;
2639                         /* Presumably ENOMEM for radix tree node */
2640                         return ERR_PTR(err);
2641                 }
2642
2643 filler:
2644                 err = filler(data, page);
2645                 if (err < 0) {
2646                         put_page(page);
2647                         return ERR_PTR(err);
2648                 }
2649
2650                 page = wait_on_page_read(page);
2651                 if (IS_ERR(page))
2652                         return page;
2653                 goto out;
2654         }
2655         if (PageUptodate(page))
2656                 goto out;
2657
2658         /*
2659          * Page is not up to date and may be locked due one of the following
2660          * case a: Page is being filled and the page lock is held
2661          * case b: Read/write error clearing the page uptodate status
2662          * case c: Truncation in progress (page locked)
2663          * case d: Reclaim in progress
2664          *
2665          * Case a, the page will be up to date when the page is unlocked.
2666          *    There is no need to serialise on the page lock here as the page
2667          *    is pinned so the lock gives no additional protection. Even if the
2668          *    the page is truncated, the data is still valid if PageUptodate as
2669          *    it's a race vs truncate race.
2670          * Case b, the page will not be up to date
2671          * Case c, the page may be truncated but in itself, the data may still
2672          *    be valid after IO completes as it's a read vs truncate race. The
2673          *    operation must restart if the page is not uptodate on unlock but
2674          *    otherwise serialising on page lock to stabilise the mapping gives
2675          *    no additional guarantees to the caller as the page lock is
2676          *    released before return.
2677          * Case d, similar to truncation. If reclaim holds the page lock, it
2678          *    will be a race with remove_mapping that determines if the mapping
2679          *    is valid on unlock but otherwise the data is valid and there is
2680          *    no need to serialise with page lock.
2681          *
2682          * As the page lock gives no additional guarantee, we optimistically
2683          * wait on the page to be unlocked and check if it's up to date and
2684          * use the page if it is. Otherwise, the page lock is required to
2685          * distinguish between the different cases. The motivation is that we
2686          * avoid spurious serialisations and wakeups when multiple processes
2687          * wait on the same page for IO to complete.
2688          */
2689         wait_on_page_locked(page);
2690         if (PageUptodate(page))
2691                 goto out;
2692
2693         /* Distinguish between all the cases under the safety of the lock */
2694         lock_page(page);
2695
2696         /* Case c or d, restart the operation */
2697         if (!page->mapping) {
2698                 unlock_page(page);
2699                 put_page(page);
2700                 goto repeat;
2701         }
2702
2703         /* Someone else locked and filled the page in a very small window */
2704         if (PageUptodate(page)) {
2705                 unlock_page(page);
2706                 goto out;
2707         }
2708         goto filler;
2709
2710 out:
2711         mark_page_accessed(page);
2712         return page;
2713 }
2714
2715 /**
2716  * read_cache_page - read into page cache, fill it if needed
2717  * @mapping:    the page's address_space
2718  * @index:      the page index
2719  * @filler:     function to perform the read
2720  * @data:       first arg to filler(data, page) function, often left as NULL
2721  *
2722  * Read into the page cache. If a page already exists, and PageUptodate() is
2723  * not set, try to fill the page and wait for it to become unlocked.
2724  *
2725  * If the page does not get brought uptodate, return -EIO.
2726  */
2727 struct page *read_cache_page(struct address_space *mapping,
2728                                 pgoff_t index,
2729                                 int (*filler)(void *, struct page *),
2730                                 void *data)
2731 {
2732         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2733 }
2734 EXPORT_SYMBOL(read_cache_page);
2735
2736 /**
2737  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2738  * @mapping:    the page's address_space
2739  * @index:      the page index
2740  * @gfp:        the page allocator flags to use if allocating
2741  *
2742  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2743  * any new page allocations done using the specified allocation flags.
2744  *
2745  * If the page does not get brought uptodate, return -EIO.
2746  */
2747 struct page *read_cache_page_gfp(struct address_space *mapping,
2748                                 pgoff_t index,
2749                                 gfp_t gfp)
2750 {
2751         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2752
2753         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2754 }
2755 EXPORT_SYMBOL(read_cache_page_gfp);
2756
2757 /*
2758  * Performs necessary checks before doing a write
2759  *
2760  * Can adjust writing position or amount of bytes to write.
2761  * Returns appropriate error code that caller should return or
2762  * zero in case that write should be allowed.
2763  */
2764 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2765 {
2766         struct file *file = iocb->ki_filp;
2767         struct inode *inode = file->f_mapping->host;
2768         unsigned long limit = rlimit(RLIMIT_FSIZE);
2769         loff_t pos;
2770
2771         if (!iov_iter_count(from))
2772                 return 0;
2773
2774         /* FIXME: this is for backwards compatibility with 2.4 */
2775         if (iocb->ki_flags & IOCB_APPEND)
2776                 iocb->ki_pos = i_size_read(inode);
2777
2778         pos = iocb->ki_pos;
2779
2780         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2781                 return -EINVAL;
2782
2783         if (limit != RLIM_INFINITY) {
2784                 if (iocb->ki_pos >= limit) {
2785                         send_sig(SIGXFSZ, current, 0);
2786                         return -EFBIG;
2787                 }
2788                 iov_iter_truncate(from, limit - (unsigned long)pos);
2789         }
2790
2791         /*
2792          * LFS rule
2793          */
2794         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2795                                 !(file->f_flags & O_LARGEFILE))) {
2796                 if (pos >= MAX_NON_LFS)
2797                         return -EFBIG;
2798                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2799         }
2800
2801         /*
2802          * Are we about to exceed the fs block limit ?
2803          *
2804          * If we have written data it becomes a short write.  If we have
2805          * exceeded without writing data we send a signal and return EFBIG.
2806          * Linus frestrict idea will clean these up nicely..
2807          */
2808         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2809                 return -EFBIG;
2810
2811         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2812         return iov_iter_count(from);
2813 }
2814 EXPORT_SYMBOL(generic_write_checks);
2815
2816 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2817                                 loff_t pos, unsigned len, unsigned flags,
2818                                 struct page **pagep, void **fsdata)
2819 {
2820         const struct address_space_operations *aops = mapping->a_ops;
2821
2822         return aops->write_begin(file, mapping, pos, len, flags,
2823                                                         pagep, fsdata);
2824 }
2825 EXPORT_SYMBOL(pagecache_write_begin);
2826
2827 int pagecache_write_end(struct file *file, struct address_space *mapping,
2828                                 loff_t pos, unsigned len, unsigned copied,
2829                                 struct page *page, void *fsdata)
2830 {
2831         const struct address_space_operations *aops = mapping->a_ops;
2832
2833         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2834 }
2835 EXPORT_SYMBOL(pagecache_write_end);
2836
2837 ssize_t
2838 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2839 {
2840         struct file     *file = iocb->ki_filp;
2841         struct address_space *mapping = file->f_mapping;
2842         struct inode    *inode = mapping->host;
2843         loff_t          pos = iocb->ki_pos;
2844         ssize_t         written;
2845         size_t          write_len;
2846         pgoff_t         end;
2847
2848         write_len = iov_iter_count(from);
2849         end = (pos + write_len - 1) >> PAGE_SHIFT;
2850
2851         if (iocb->ki_flags & IOCB_NOWAIT) {
2852                 /* If there are pages to writeback, return */
2853                 if (filemap_range_has_page(inode->i_mapping, pos,
2854                                            pos + iov_iter_count(from)))
2855                         return -EAGAIN;
2856         } else {
2857                 written = filemap_write_and_wait_range(mapping, pos,
2858                                                         pos + write_len - 1);
2859                 if (written)
2860                         goto out;
2861         }
2862
2863         /*
2864          * After a write we want buffered reads to be sure to go to disk to get
2865          * the new data.  We invalidate clean cached page from the region we're
2866          * about to write.  We do this *before* the write so that we can return
2867          * without clobbering -EIOCBQUEUED from ->direct_IO().
2868          */
2869         written = invalidate_inode_pages2_range(mapping,
2870                                         pos >> PAGE_SHIFT, end);
2871         /*
2872          * If a page can not be invalidated, return 0 to fall back
2873          * to buffered write.
2874          */
2875         if (written) {
2876                 if (written == -EBUSY)
2877                         return 0;
2878                 goto out;
2879         }
2880
2881         written = mapping->a_ops->direct_IO(iocb, from);
2882
2883         /*
2884          * Finally, try again to invalidate clean pages which might have been
2885          * cached by non-direct readahead, or faulted in by get_user_pages()
2886          * if the source of the write was an mmap'ed region of the file
2887          * we're writing.  Either one is a pretty crazy thing to do,
2888          * so we don't support it 100%.  If this invalidation
2889          * fails, tough, the write still worked...
2890          */
2891         invalidate_inode_pages2_range(mapping,
2892                                 pos >> PAGE_SHIFT, end);
2893
2894         if (written > 0) {
2895                 pos += written;
2896                 write_len -= written;
2897                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2898                         i_size_write(inode, pos);
2899                         mark_inode_dirty(inode);
2900                 }
2901                 iocb->ki_pos = pos;
2902         }
2903         iov_iter_revert(from, write_len - iov_iter_count(from));
2904 out:
2905         return written;
2906 }
2907 EXPORT_SYMBOL(generic_file_direct_write);
2908
2909 /*
2910  * Find or create a page at the given pagecache position. Return the locked
2911  * page. This function is specifically for buffered writes.
2912  */
2913 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2914                                         pgoff_t index, unsigned flags)
2915 {
2916         struct page *page;
2917         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2918
2919         if (flags & AOP_FLAG_NOFS)
2920                 fgp_flags |= FGP_NOFS;
2921
2922         page = pagecache_get_page(mapping, index, fgp_flags,
2923                         mapping_gfp_mask(mapping));
2924         if (page)
2925                 wait_for_stable_page(page);
2926
2927         return page;
2928 }
2929 EXPORT_SYMBOL(grab_cache_page_write_begin);
2930
2931 ssize_t generic_perform_write(struct file *file,
2932                                 struct iov_iter *i, loff_t pos)
2933 {
2934         struct address_space *mapping = file->f_mapping;
2935         const struct address_space_operations *a_ops = mapping->a_ops;
2936         long status = 0;
2937         ssize_t written = 0;
2938         unsigned int flags = 0;
2939
2940         do {
2941                 struct page *page;
2942                 unsigned long offset;   /* Offset into pagecache page */
2943                 unsigned long bytes;    /* Bytes to write to page */
2944                 size_t copied;          /* Bytes copied from user */
2945                 void *fsdata;
2946
2947                 offset = (pos & (PAGE_SIZE - 1));
2948                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2949                                                 iov_iter_count(i));
2950
2951 again:
2952                 /*
2953                  * Bring in the user page that we will copy from _first_.
2954                  * Otherwise there's a nasty deadlock on copying from the
2955                  * same page as we're writing to, without it being marked
2956                  * up-to-date.
2957                  *
2958                  * Not only is this an optimisation, but it is also required
2959                  * to check that the address is actually valid, when atomic
2960                  * usercopies are used, below.
2961                  */
2962                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2963                         status = -EFAULT;
2964                         break;
2965                 }
2966
2967                 if (fatal_signal_pending(current)) {
2968                         status = -EINTR;
2969                         break;
2970                 }
2971
2972                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2973                                                 &page, &fsdata);
2974                 if (unlikely(status < 0))
2975                         break;
2976
2977                 if (mapping_writably_mapped(mapping))
2978                         flush_dcache_page(page);
2979
2980                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2981                 flush_dcache_page(page);
2982
2983                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2984                                                 page, fsdata);
2985                 if (unlikely(status < 0))
2986                         break;
2987                 copied = status;
2988
2989                 cond_resched();
2990
2991                 iov_iter_advance(i, copied);
2992                 if (unlikely(copied == 0)) {
2993                         /*
2994                          * If we were unable to copy any data at all, we must
2995                          * fall back to a single segment length write.
2996                          *
2997                          * If we didn't fallback here, we could livelock
2998                          * because not all segments in the iov can be copied at
2999                          * once without a pagefault.
3000                          */
3001                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
3002                                                 iov_iter_single_seg_count(i));
3003                         goto again;
3004                 }
3005                 pos += copied;
3006                 written += copied;
3007
3008                 balance_dirty_pages_ratelimited(mapping);
3009         } while (iov_iter_count(i));
3010
3011         return written ? written : status;
3012 }
3013 EXPORT_SYMBOL(generic_perform_write);
3014
3015 /**
3016  * __generic_file_write_iter - write data to a file
3017  * @iocb:       IO state structure (file, offset, etc.)
3018  * @from:       iov_iter with data to write
3019  *
3020  * This function does all the work needed for actually writing data to a
3021  * file. It does all basic checks, removes SUID from the file, updates
3022  * modification times and calls proper subroutines depending on whether we
3023  * do direct IO or a standard buffered write.
3024  *
3025  * It expects i_mutex to be grabbed unless we work on a block device or similar
3026  * object which does not need locking at all.
3027  *
3028  * This function does *not* take care of syncing data in case of O_SYNC write.
3029  * A caller has to handle it. This is mainly due to the fact that we want to
3030  * avoid syncing under i_mutex.
3031  */
3032 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3033 {
3034         struct file *file = iocb->ki_filp;
3035         struct address_space * mapping = file->f_mapping;
3036         struct inode    *inode = mapping->host;
3037         ssize_t         written = 0;
3038         ssize_t         err;
3039         ssize_t         status;
3040
3041         /* We can write back this queue in page reclaim */
3042         current->backing_dev_info = inode_to_bdi(inode);
3043         err = file_remove_privs(file);
3044         if (err)
3045                 goto out;
3046
3047         err = file_update_time(file);
3048         if (err)
3049                 goto out;
3050
3051         if (iocb->ki_flags & IOCB_DIRECT) {
3052                 loff_t pos, endbyte;
3053
3054                 written = generic_file_direct_write(iocb, from);
3055                 /*
3056                  * If the write stopped short of completing, fall back to
3057                  * buffered writes.  Some filesystems do this for writes to
3058                  * holes, for example.  For DAX files, a buffered write will
3059                  * not succeed (even if it did, DAX does not handle dirty
3060                  * page-cache pages correctly).
3061                  */
3062                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3063                         goto out;
3064
3065                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3066                 /*
3067                  * If generic_perform_write() returned a synchronous error
3068                  * then we want to return the number of bytes which were
3069                  * direct-written, or the error code if that was zero.  Note
3070                  * that this differs from normal direct-io semantics, which
3071                  * will return -EFOO even if some bytes were written.
3072                  */
3073                 if (unlikely(status < 0)) {
3074                         err = status;
3075                         goto out;
3076                 }
3077                 /*
3078                  * We need to ensure that the page cache pages are written to
3079                  * disk and invalidated to preserve the expected O_DIRECT
3080                  * semantics.
3081                  */
3082                 endbyte = pos + status - 1;
3083                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3084                 if (err == 0) {
3085                         iocb->ki_pos = endbyte + 1;
3086                         written += status;
3087                         invalidate_mapping_pages(mapping,
3088                                                  pos >> PAGE_SHIFT,
3089                                                  endbyte >> PAGE_SHIFT);
3090                 } else {
3091                         /*
3092                          * We don't know how much we wrote, so just return
3093                          * the number of bytes which were direct-written
3094                          */
3095                 }
3096         } else {
3097                 written = generic_perform_write(file, from, iocb->ki_pos);
3098                 if (likely(written > 0))
3099                         iocb->ki_pos += written;
3100         }
3101 out:
3102         current->backing_dev_info = NULL;
3103         return written ? written : err;
3104 }
3105 EXPORT_SYMBOL(__generic_file_write_iter);
3106
3107 /**
3108  * generic_file_write_iter - write data to a file
3109  * @iocb:       IO state structure
3110  * @from:       iov_iter with data to write
3111  *
3112  * This is a wrapper around __generic_file_write_iter() to be used by most
3113  * filesystems. It takes care of syncing the file in case of O_SYNC file
3114  * and acquires i_mutex as needed.
3115  */
3116 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3117 {
3118         struct file *file = iocb->ki_filp;
3119         struct inode *inode = file->f_mapping->host;
3120         ssize_t ret;
3121
3122         inode_lock(inode);
3123         ret = generic_write_checks(iocb, from);
3124         if (ret > 0)
3125                 ret = __generic_file_write_iter(iocb, from);
3126         inode_unlock(inode);
3127
3128         if (ret > 0)
3129                 ret = generic_write_sync(iocb, ret);
3130         return ret;
3131 }
3132 EXPORT_SYMBOL(generic_file_write_iter);
3133
3134 /**
3135  * try_to_release_page() - release old fs-specific metadata on a page
3136  *
3137  * @page: the page which the kernel is trying to free
3138  * @gfp_mask: memory allocation flags (and I/O mode)
3139  *
3140  * The address_space is to try to release any data against the page
3141  * (presumably at page->private).  If the release was successful, return '1'.
3142  * Otherwise return zero.
3143  *
3144  * This may also be called if PG_fscache is set on a page, indicating that the
3145  * page is known to the local caching routines.
3146  *
3147  * The @gfp_mask argument specifies whether I/O may be performed to release
3148  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3149  *
3150  */
3151 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3152 {
3153         struct address_space * const mapping = page->mapping;
3154
3155         BUG_ON(!PageLocked(page));
3156         if (PageWriteback(page))
3157                 return 0;
3158
3159         if (mapping && mapping->a_ops->releasepage)
3160                 return mapping->a_ops->releasepage(page, gfp_mask);
3161         return try_to_free_buffers(page);
3162 }
3163
3164 EXPORT_SYMBOL(try_to_release_page);