Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6
[sfrench/cifs-2.6.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include "filemap.h"
32 /*
33  * FIXME: remove all knowledge of the buffer layer from the core VM
34  */
35 #include <linux/buffer_head.h> /* for generic_osync_inode */
36
37 #include <asm/uaccess.h>
38 #include <asm/mman.h>
39
40 static ssize_t
41 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
42         loff_t offset, unsigned long nr_segs);
43
44 /*
45  * Shared mappings implemented 30.11.1994. It's not fully working yet,
46  * though.
47  *
48  * Shared mappings now work. 15.8.1995  Bruno.
49  *
50  * finished 'unifying' the page and buffer cache and SMP-threaded the
51  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
52  *
53  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
54  */
55
56 /*
57  * Lock ordering:
58  *
59  *  ->i_mmap_lock               (vmtruncate)
60  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
61  *      ->swap_lock             (exclusive_swap_page, others)
62  *        ->mapping->tree_lock
63  *
64  *  ->i_mutex
65  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
66  *
67  *  ->mmap_sem
68  *    ->i_mmap_lock
69  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
70  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
71  *
72  *  ->mmap_sem
73  *    ->lock_page               (access_process_vm)
74  *
75  *  ->mmap_sem
76  *    ->i_mutex                 (msync)
77  *
78  *  ->i_mutex
79  *    ->i_alloc_sem             (various)
80  *
81  *  ->inode_lock
82  *    ->sb_lock                 (fs/fs-writeback.c)
83  *    ->mapping->tree_lock      (__sync_single_inode)
84  *
85  *  ->i_mmap_lock
86  *    ->anon_vma.lock           (vma_adjust)
87  *
88  *  ->anon_vma.lock
89  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
90  *
91  *  ->page_table_lock or pte_lock
92  *    ->swap_lock               (try_to_unmap_one)
93  *    ->private_lock            (try_to_unmap_one)
94  *    ->tree_lock               (try_to_unmap_one)
95  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
96  *    ->private_lock            (page_remove_rmap->set_page_dirty)
97  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
98  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
99  *    ->inode_lock              (zap_pte_range->set_page_dirty)
100  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
101  *
102  *  ->task->proc_lock
103  *    ->dcache_lock             (proc_pid_lookup)
104  */
105
106 /*
107  * Remove a page from the page cache and free it. Caller has to make
108  * sure the page is locked and that nobody else uses it - or that usage
109  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
110  */
111 void __remove_from_page_cache(struct page *page)
112 {
113         struct address_space *mapping = page->mapping;
114
115         radix_tree_delete(&mapping->page_tree, page->index);
116         page->mapping = NULL;
117         mapping->nrpages--;
118         pagecache_acct(-1);
119 }
120
121 void remove_from_page_cache(struct page *page)
122 {
123         struct address_space *mapping = page->mapping;
124
125         BUG_ON(!PageLocked(page));
126
127         write_lock_irq(&mapping->tree_lock);
128         __remove_from_page_cache(page);
129         write_unlock_irq(&mapping->tree_lock);
130 }
131
132 static int sync_page(void *word)
133 {
134         struct address_space *mapping;
135         struct page *page;
136
137         page = container_of((unsigned long *)word, struct page, flags);
138
139         /*
140          * page_mapping() is being called without PG_locked held.
141          * Some knowledge of the state and use of the page is used to
142          * reduce the requirements down to a memory barrier.
143          * The danger here is of a stale page_mapping() return value
144          * indicating a struct address_space different from the one it's
145          * associated with when it is associated with one.
146          * After smp_mb(), it's either the correct page_mapping() for
147          * the page, or an old page_mapping() and the page's own
148          * page_mapping() has gone NULL.
149          * The ->sync_page() address_space operation must tolerate
150          * page_mapping() going NULL. By an amazing coincidence,
151          * this comes about because none of the users of the page
152          * in the ->sync_page() methods make essential use of the
153          * page_mapping(), merely passing the page down to the backing
154          * device's unplug functions when it's non-NULL, which in turn
155          * ignore it for all cases but swap, where only page_private(page) is
156          * of interest. When page_mapping() does go NULL, the entire
157          * call stack gracefully ignores the page and returns.
158          * -- wli
159          */
160         smp_mb();
161         mapping = page_mapping(page);
162         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
163                 mapping->a_ops->sync_page(page);
164         io_schedule();
165         return 0;
166 }
167
168 /**
169  * filemap_fdatawrite_range - start writeback against all of a mapping's
170  * dirty pages that lie within the byte offsets <start, end>
171  * @mapping:    address space structure to write
172  * @start:      offset in bytes where the range starts
173  * @end:        offset in bytes where the range ends
174  * @sync_mode:  enable synchronous operation
175  *
176  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
177  * opposed to a regular memory * cleansing writeback.  The difference between
178  * these two operations is that if a dirty page/buffer is encountered, it must
179  * be waited upon, and not just skipped over.
180  */
181 static int __filemap_fdatawrite_range(struct address_space *mapping,
182         loff_t start, loff_t end, int sync_mode)
183 {
184         int ret;
185         struct writeback_control wbc = {
186                 .sync_mode = sync_mode,
187                 .nr_to_write = mapping->nrpages * 2,
188                 .start = start,
189                 .end = end,
190         };
191
192         if (!mapping_cap_writeback_dirty(mapping))
193                 return 0;
194
195         ret = do_writepages(mapping, &wbc);
196         return ret;
197 }
198
199 static inline int __filemap_fdatawrite(struct address_space *mapping,
200         int sync_mode)
201 {
202         return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
203 }
204
205 int filemap_fdatawrite(struct address_space *mapping)
206 {
207         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
208 }
209 EXPORT_SYMBOL(filemap_fdatawrite);
210
211 static int filemap_fdatawrite_range(struct address_space *mapping,
212         loff_t start, loff_t end)
213 {
214         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
215 }
216
217 /*
218  * This is a mostly non-blocking flush.  Not suitable for data-integrity
219  * purposes - I/O may not be started against all dirty pages.
220  */
221 int filemap_flush(struct address_space *mapping)
222 {
223         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
224 }
225 EXPORT_SYMBOL(filemap_flush);
226
227 /*
228  * Wait for writeback to complete against pages indexed by start->end
229  * inclusive
230  */
231 static int wait_on_page_writeback_range(struct address_space *mapping,
232                                 pgoff_t start, pgoff_t end)
233 {
234         struct pagevec pvec;
235         int nr_pages;
236         int ret = 0;
237         pgoff_t index;
238
239         if (end < start)
240                 return 0;
241
242         pagevec_init(&pvec, 0);
243         index = start;
244         while ((index <= end) &&
245                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
246                         PAGECACHE_TAG_WRITEBACK,
247                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
248                 unsigned i;
249
250                 for (i = 0; i < nr_pages; i++) {
251                         struct page *page = pvec.pages[i];
252
253                         /* until radix tree lookup accepts end_index */
254                         if (page->index > end)
255                                 continue;
256
257                         wait_on_page_writeback(page);
258                         if (PageError(page))
259                                 ret = -EIO;
260                 }
261                 pagevec_release(&pvec);
262                 cond_resched();
263         }
264
265         /* Check for outstanding write errors */
266         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
267                 ret = -ENOSPC;
268         if (test_and_clear_bit(AS_EIO, &mapping->flags))
269                 ret = -EIO;
270
271         return ret;
272 }
273
274 /*
275  * Write and wait upon all the pages in the passed range.  This is a "data
276  * integrity" operation.  It waits upon in-flight writeout before starting and
277  * waiting upon new writeout.  If there was an IO error, return it.
278  *
279  * We need to re-take i_mutex during the generic_osync_inode list walk because
280  * it is otherwise livelockable.
281  */
282 int sync_page_range(struct inode *inode, struct address_space *mapping,
283                         loff_t pos, loff_t count)
284 {
285         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
286         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
287         int ret;
288
289         if (!mapping_cap_writeback_dirty(mapping) || !count)
290                 return 0;
291         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
292         if (ret == 0) {
293                 mutex_lock(&inode->i_mutex);
294                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
295                 mutex_unlock(&inode->i_mutex);
296         }
297         if (ret == 0)
298                 ret = wait_on_page_writeback_range(mapping, start, end);
299         return ret;
300 }
301 EXPORT_SYMBOL(sync_page_range);
302
303 /*
304  * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
305  * as it forces O_SYNC writers to different parts of the same file
306  * to be serialised right until io completion.
307  */
308 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
309                            loff_t pos, loff_t count)
310 {
311         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
312         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
313         int ret;
314
315         if (!mapping_cap_writeback_dirty(mapping) || !count)
316                 return 0;
317         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
318         if (ret == 0)
319                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
320         if (ret == 0)
321                 ret = wait_on_page_writeback_range(mapping, start, end);
322         return ret;
323 }
324 EXPORT_SYMBOL(sync_page_range_nolock);
325
326 /**
327  * filemap_fdatawait - walk the list of under-writeback pages of the given
328  *     address space and wait for all of them.
329  *
330  * @mapping: address space structure to wait for
331  */
332 int filemap_fdatawait(struct address_space *mapping)
333 {
334         loff_t i_size = i_size_read(mapping->host);
335
336         if (i_size == 0)
337                 return 0;
338
339         return wait_on_page_writeback_range(mapping, 0,
340                                 (i_size - 1) >> PAGE_CACHE_SHIFT);
341 }
342 EXPORT_SYMBOL(filemap_fdatawait);
343
344 int filemap_write_and_wait(struct address_space *mapping)
345 {
346         int err = 0;
347
348         if (mapping->nrpages) {
349                 err = filemap_fdatawrite(mapping);
350                 /*
351                  * Even if the above returned error, the pages may be
352                  * written partially (e.g. -ENOSPC), so we wait for it.
353                  * But the -EIO is special case, it may indicate the worst
354                  * thing (e.g. bug) happened, so we avoid waiting for it.
355                  */
356                 if (err != -EIO) {
357                         int err2 = filemap_fdatawait(mapping);
358                         if (!err)
359                                 err = err2;
360                 }
361         }
362         return err;
363 }
364 EXPORT_SYMBOL(filemap_write_and_wait);
365
366 int filemap_write_and_wait_range(struct address_space *mapping,
367                                  loff_t lstart, loff_t lend)
368 {
369         int err = 0;
370
371         if (mapping->nrpages) {
372                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
373                                                  WB_SYNC_ALL);
374                 /* See comment of filemap_write_and_wait() */
375                 if (err != -EIO) {
376                         int err2 = wait_on_page_writeback_range(mapping,
377                                                 lstart >> PAGE_CACHE_SHIFT,
378                                                 lend >> PAGE_CACHE_SHIFT);
379                         if (!err)
380                                 err = err2;
381                 }
382         }
383         return err;
384 }
385
386 /*
387  * This function is used to add newly allocated pagecache pages:
388  * the page is new, so we can just run SetPageLocked() against it.
389  * The other page state flags were set by rmqueue().
390  *
391  * This function does not add the page to the LRU.  The caller must do that.
392  */
393 int add_to_page_cache(struct page *page, struct address_space *mapping,
394                 pgoff_t offset, gfp_t gfp_mask)
395 {
396         int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
397
398         if (error == 0) {
399                 write_lock_irq(&mapping->tree_lock);
400                 error = radix_tree_insert(&mapping->page_tree, offset, page);
401                 if (!error) {
402                         page_cache_get(page);
403                         SetPageLocked(page);
404                         page->mapping = mapping;
405                         page->index = offset;
406                         mapping->nrpages++;
407                         pagecache_acct(1);
408                 }
409                 write_unlock_irq(&mapping->tree_lock);
410                 radix_tree_preload_end();
411         }
412         return error;
413 }
414
415 EXPORT_SYMBOL(add_to_page_cache);
416
417 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
418                                 pgoff_t offset, gfp_t gfp_mask)
419 {
420         int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
421         if (ret == 0)
422                 lru_cache_add(page);
423         return ret;
424 }
425
426 /*
427  * In order to wait for pages to become available there must be
428  * waitqueues associated with pages. By using a hash table of
429  * waitqueues where the bucket discipline is to maintain all
430  * waiters on the same queue and wake all when any of the pages
431  * become available, and for the woken contexts to check to be
432  * sure the appropriate page became available, this saves space
433  * at a cost of "thundering herd" phenomena during rare hash
434  * collisions.
435  */
436 static wait_queue_head_t *page_waitqueue(struct page *page)
437 {
438         const struct zone *zone = page_zone(page);
439
440         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
441 }
442
443 static inline void wake_up_page(struct page *page, int bit)
444 {
445         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
446 }
447
448 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
449 {
450         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
451
452         if (test_bit(bit_nr, &page->flags))
453                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
454                                                         TASK_UNINTERRUPTIBLE);
455 }
456 EXPORT_SYMBOL(wait_on_page_bit);
457
458 /**
459  * unlock_page() - unlock a locked page
460  *
461  * @page: the page
462  *
463  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
464  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
465  * mechananism between PageLocked pages and PageWriteback pages is shared.
466  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
467  *
468  * The first mb is necessary to safely close the critical section opened by the
469  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
470  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
471  * parallel wait_on_page_locked()).
472  */
473 void fastcall unlock_page(struct page *page)
474 {
475         smp_mb__before_clear_bit();
476         if (!TestClearPageLocked(page))
477                 BUG();
478         smp_mb__after_clear_bit(); 
479         wake_up_page(page, PG_locked);
480 }
481 EXPORT_SYMBOL(unlock_page);
482
483 /*
484  * End writeback against a page.
485  */
486 void end_page_writeback(struct page *page)
487 {
488         if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
489                 if (!test_clear_page_writeback(page))
490                         BUG();
491         }
492         smp_mb__after_clear_bit();
493         wake_up_page(page, PG_writeback);
494 }
495 EXPORT_SYMBOL(end_page_writeback);
496
497 /*
498  * Get a lock on the page, assuming we need to sleep to get it.
499  *
500  * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
501  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
502  * chances are that on the second loop, the block layer's plug list is empty,
503  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
504  */
505 void fastcall __lock_page(struct page *page)
506 {
507         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
508
509         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
510                                                         TASK_UNINTERRUPTIBLE);
511 }
512 EXPORT_SYMBOL(__lock_page);
513
514 /*
515  * a rather lightweight function, finding and getting a reference to a
516  * hashed page atomically.
517  */
518 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
519 {
520         struct page *page;
521
522         read_lock_irq(&mapping->tree_lock);
523         page = radix_tree_lookup(&mapping->page_tree, offset);
524         if (page)
525                 page_cache_get(page);
526         read_unlock_irq(&mapping->tree_lock);
527         return page;
528 }
529
530 EXPORT_SYMBOL(find_get_page);
531
532 /*
533  * Same as above, but trylock it instead of incrementing the count.
534  */
535 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
536 {
537         struct page *page;
538
539         read_lock_irq(&mapping->tree_lock);
540         page = radix_tree_lookup(&mapping->page_tree, offset);
541         if (page && TestSetPageLocked(page))
542                 page = NULL;
543         read_unlock_irq(&mapping->tree_lock);
544         return page;
545 }
546
547 EXPORT_SYMBOL(find_trylock_page);
548
549 /**
550  * find_lock_page - locate, pin and lock a pagecache page
551  *
552  * @mapping: the address_space to search
553  * @offset: the page index
554  *
555  * Locates the desired pagecache page, locks it, increments its reference
556  * count and returns its address.
557  *
558  * Returns zero if the page was not present. find_lock_page() may sleep.
559  */
560 struct page *find_lock_page(struct address_space *mapping,
561                                 unsigned long offset)
562 {
563         struct page *page;
564
565         read_lock_irq(&mapping->tree_lock);
566 repeat:
567         page = radix_tree_lookup(&mapping->page_tree, offset);
568         if (page) {
569                 page_cache_get(page);
570                 if (TestSetPageLocked(page)) {
571                         read_unlock_irq(&mapping->tree_lock);
572                         __lock_page(page);
573                         read_lock_irq(&mapping->tree_lock);
574
575                         /* Has the page been truncated while we slept? */
576                         if (unlikely(page->mapping != mapping ||
577                                      page->index != offset)) {
578                                 unlock_page(page);
579                                 page_cache_release(page);
580                                 goto repeat;
581                         }
582                 }
583         }
584         read_unlock_irq(&mapping->tree_lock);
585         return page;
586 }
587
588 EXPORT_SYMBOL(find_lock_page);
589
590 /**
591  * find_or_create_page - locate or add a pagecache page
592  *
593  * @mapping: the page's address_space
594  * @index: the page's index into the mapping
595  * @gfp_mask: page allocation mode
596  *
597  * Locates a page in the pagecache.  If the page is not present, a new page
598  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
599  * LRU list.  The returned page is locked and has its reference count
600  * incremented.
601  *
602  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
603  * allocation!
604  *
605  * find_or_create_page() returns the desired page's address, or zero on
606  * memory exhaustion.
607  */
608 struct page *find_or_create_page(struct address_space *mapping,
609                 unsigned long index, gfp_t gfp_mask)
610 {
611         struct page *page, *cached_page = NULL;
612         int err;
613 repeat:
614         page = find_lock_page(mapping, index);
615         if (!page) {
616                 if (!cached_page) {
617                         cached_page = alloc_page(gfp_mask);
618                         if (!cached_page)
619                                 return NULL;
620                 }
621                 err = add_to_page_cache_lru(cached_page, mapping,
622                                         index, gfp_mask);
623                 if (!err) {
624                         page = cached_page;
625                         cached_page = NULL;
626                 } else if (err == -EEXIST)
627                         goto repeat;
628         }
629         if (cached_page)
630                 page_cache_release(cached_page);
631         return page;
632 }
633
634 EXPORT_SYMBOL(find_or_create_page);
635
636 /**
637  * find_get_pages - gang pagecache lookup
638  * @mapping:    The address_space to search
639  * @start:      The starting page index
640  * @nr_pages:   The maximum number of pages
641  * @pages:      Where the resulting pages are placed
642  *
643  * find_get_pages() will search for and return a group of up to
644  * @nr_pages pages in the mapping.  The pages are placed at @pages.
645  * find_get_pages() takes a reference against the returned pages.
646  *
647  * The search returns a group of mapping-contiguous pages with ascending
648  * indexes.  There may be holes in the indices due to not-present pages.
649  *
650  * find_get_pages() returns the number of pages which were found.
651  */
652 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
653                             unsigned int nr_pages, struct page **pages)
654 {
655         unsigned int i;
656         unsigned int ret;
657
658         read_lock_irq(&mapping->tree_lock);
659         ret = radix_tree_gang_lookup(&mapping->page_tree,
660                                 (void **)pages, start, nr_pages);
661         for (i = 0; i < ret; i++)
662                 page_cache_get(pages[i]);
663         read_unlock_irq(&mapping->tree_lock);
664         return ret;
665 }
666
667 /*
668  * Like find_get_pages, except we only return pages which are tagged with
669  * `tag'.   We update *index to index the next page for the traversal.
670  */
671 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
672                         int tag, unsigned int nr_pages, struct page **pages)
673 {
674         unsigned int i;
675         unsigned int ret;
676
677         read_lock_irq(&mapping->tree_lock);
678         ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
679                                 (void **)pages, *index, nr_pages, tag);
680         for (i = 0; i < ret; i++)
681                 page_cache_get(pages[i]);
682         if (ret)
683                 *index = pages[ret - 1]->index + 1;
684         read_unlock_irq(&mapping->tree_lock);
685         return ret;
686 }
687
688 /*
689  * Same as grab_cache_page, but do not wait if the page is unavailable.
690  * This is intended for speculative data generators, where the data can
691  * be regenerated if the page couldn't be grabbed.  This routine should
692  * be safe to call while holding the lock for another page.
693  *
694  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
695  * and deadlock against the caller's locked page.
696  */
697 struct page *
698 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
699 {
700         struct page *page = find_get_page(mapping, index);
701         gfp_t gfp_mask;
702
703         if (page) {
704                 if (!TestSetPageLocked(page))
705                         return page;
706                 page_cache_release(page);
707                 return NULL;
708         }
709         gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
710         page = alloc_pages(gfp_mask, 0);
711         if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
712                 page_cache_release(page);
713                 page = NULL;
714         }
715         return page;
716 }
717
718 EXPORT_SYMBOL(grab_cache_page_nowait);
719
720 /*
721  * This is a generic file read routine, and uses the
722  * mapping->a_ops->readpage() function for the actual low-level
723  * stuff.
724  *
725  * This is really ugly. But the goto's actually try to clarify some
726  * of the logic when it comes to error handling etc.
727  *
728  * Note the struct file* is only passed for the use of readpage.  It may be
729  * NULL.
730  */
731 void do_generic_mapping_read(struct address_space *mapping,
732                              struct file_ra_state *_ra,
733                              struct file *filp,
734                              loff_t *ppos,
735                              read_descriptor_t *desc,
736                              read_actor_t actor)
737 {
738         struct inode *inode = mapping->host;
739         unsigned long index;
740         unsigned long end_index;
741         unsigned long offset;
742         unsigned long last_index;
743         unsigned long next_index;
744         unsigned long prev_index;
745         loff_t isize;
746         struct page *cached_page;
747         int error;
748         struct file_ra_state ra = *_ra;
749
750         cached_page = NULL;
751         index = *ppos >> PAGE_CACHE_SHIFT;
752         next_index = index;
753         prev_index = ra.prev_page;
754         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
755         offset = *ppos & ~PAGE_CACHE_MASK;
756
757         isize = i_size_read(inode);
758         if (!isize)
759                 goto out;
760
761         end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
762         for (;;) {
763                 struct page *page;
764                 unsigned long nr, ret;
765
766                 /* nr is the maximum number of bytes to copy from this page */
767                 nr = PAGE_CACHE_SIZE;
768                 if (index >= end_index) {
769                         if (index > end_index)
770                                 goto out;
771                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
772                         if (nr <= offset) {
773                                 goto out;
774                         }
775                 }
776                 nr = nr - offset;
777
778                 cond_resched();
779                 if (index == next_index)
780                         next_index = page_cache_readahead(mapping, &ra, filp,
781                                         index, last_index - index);
782
783 find_page:
784                 page = find_get_page(mapping, index);
785                 if (unlikely(page == NULL)) {
786                         handle_ra_miss(mapping, &ra, index);
787                         goto no_cached_page;
788                 }
789                 if (!PageUptodate(page))
790                         goto page_not_up_to_date;
791 page_ok:
792
793                 /* If users can be writing to this page using arbitrary
794                  * virtual addresses, take care about potential aliasing
795                  * before reading the page on the kernel side.
796                  */
797                 if (mapping_writably_mapped(mapping))
798                         flush_dcache_page(page);
799
800                 /*
801                  * When (part of) the same page is read multiple times
802                  * in succession, only mark it as accessed the first time.
803                  */
804                 if (prev_index != index)
805                         mark_page_accessed(page);
806                 prev_index = index;
807
808                 /*
809                  * Ok, we have the page, and it's up-to-date, so
810                  * now we can copy it to user space...
811                  *
812                  * The actor routine returns how many bytes were actually used..
813                  * NOTE! This may not be the same as how much of a user buffer
814                  * we filled up (we may be padding etc), so we can only update
815                  * "pos" here (the actor routine has to update the user buffer
816                  * pointers and the remaining count).
817                  */
818                 ret = actor(desc, page, offset, nr);
819                 offset += ret;
820                 index += offset >> PAGE_CACHE_SHIFT;
821                 offset &= ~PAGE_CACHE_MASK;
822
823                 page_cache_release(page);
824                 if (ret == nr && desc->count)
825                         continue;
826                 goto out;
827
828 page_not_up_to_date:
829                 /* Get exclusive access to the page ... */
830                 lock_page(page);
831
832                 /* Did it get unhashed before we got the lock? */
833                 if (!page->mapping) {
834                         unlock_page(page);
835                         page_cache_release(page);
836                         continue;
837                 }
838
839                 /* Did somebody else fill it already? */
840                 if (PageUptodate(page)) {
841                         unlock_page(page);
842                         goto page_ok;
843                 }
844
845 readpage:
846                 /* Start the actual read. The read will unlock the page. */
847                 error = mapping->a_ops->readpage(filp, page);
848
849                 if (unlikely(error)) {
850                         if (error == AOP_TRUNCATED_PAGE) {
851                                 page_cache_release(page);
852                                 goto find_page;
853                         }
854                         goto readpage_error;
855                 }
856
857                 if (!PageUptodate(page)) {
858                         lock_page(page);
859                         if (!PageUptodate(page)) {
860                                 if (page->mapping == NULL) {
861                                         /*
862                                          * invalidate_inode_pages got it
863                                          */
864                                         unlock_page(page);
865                                         page_cache_release(page);
866                                         goto find_page;
867                                 }
868                                 unlock_page(page);
869                                 error = -EIO;
870                                 goto readpage_error;
871                         }
872                         unlock_page(page);
873                 }
874
875                 /*
876                  * i_size must be checked after we have done ->readpage.
877                  *
878                  * Checking i_size after the readpage allows us to calculate
879                  * the correct value for "nr", which means the zero-filled
880                  * part of the page is not copied back to userspace (unless
881                  * another truncate extends the file - this is desired though).
882                  */
883                 isize = i_size_read(inode);
884                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
885                 if (unlikely(!isize || index > end_index)) {
886                         page_cache_release(page);
887                         goto out;
888                 }
889
890                 /* nr is the maximum number of bytes to copy from this page */
891                 nr = PAGE_CACHE_SIZE;
892                 if (index == end_index) {
893                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
894                         if (nr <= offset) {
895                                 page_cache_release(page);
896                                 goto out;
897                         }
898                 }
899                 nr = nr - offset;
900                 goto page_ok;
901
902 readpage_error:
903                 /* UHHUH! A synchronous read error occurred. Report it */
904                 desc->error = error;
905                 page_cache_release(page);
906                 goto out;
907
908 no_cached_page:
909                 /*
910                  * Ok, it wasn't cached, so we need to create a new
911                  * page..
912                  */
913                 if (!cached_page) {
914                         cached_page = page_cache_alloc_cold(mapping);
915                         if (!cached_page) {
916                                 desc->error = -ENOMEM;
917                                 goto out;
918                         }
919                 }
920                 error = add_to_page_cache_lru(cached_page, mapping,
921                                                 index, GFP_KERNEL);
922                 if (error) {
923                         if (error == -EEXIST)
924                                 goto find_page;
925                         desc->error = error;
926                         goto out;
927                 }
928                 page = cached_page;
929                 cached_page = NULL;
930                 goto readpage;
931         }
932
933 out:
934         *_ra = ra;
935
936         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
937         if (cached_page)
938                 page_cache_release(cached_page);
939         if (filp)
940                 file_accessed(filp);
941 }
942
943 EXPORT_SYMBOL(do_generic_mapping_read);
944
945 int file_read_actor(read_descriptor_t *desc, struct page *page,
946                         unsigned long offset, unsigned long size)
947 {
948         char *kaddr;
949         unsigned long left, count = desc->count;
950
951         if (size > count)
952                 size = count;
953
954         /*
955          * Faults on the destination of a read are common, so do it before
956          * taking the kmap.
957          */
958         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
959                 kaddr = kmap_atomic(page, KM_USER0);
960                 left = __copy_to_user_inatomic(desc->arg.buf,
961                                                 kaddr + offset, size);
962                 kunmap_atomic(kaddr, KM_USER0);
963                 if (left == 0)
964                         goto success;
965         }
966
967         /* Do it the slow way */
968         kaddr = kmap(page);
969         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
970         kunmap(page);
971
972         if (left) {
973                 size -= left;
974                 desc->error = -EFAULT;
975         }
976 success:
977         desc->count = count - size;
978         desc->written += size;
979         desc->arg.buf += size;
980         return size;
981 }
982
983 /*
984  * This is the "read()" routine for all filesystems
985  * that can use the page cache directly.
986  */
987 ssize_t
988 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
989                 unsigned long nr_segs, loff_t *ppos)
990 {
991         struct file *filp = iocb->ki_filp;
992         ssize_t retval;
993         unsigned long seg;
994         size_t count;
995
996         count = 0;
997         for (seg = 0; seg < nr_segs; seg++) {
998                 const struct iovec *iv = &iov[seg];
999
1000                 /*
1001                  * If any segment has a negative length, or the cumulative
1002                  * length ever wraps negative then return -EINVAL.
1003                  */
1004                 count += iv->iov_len;
1005                 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1006                         return -EINVAL;
1007                 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1008                         continue;
1009                 if (seg == 0)
1010                         return -EFAULT;
1011                 nr_segs = seg;
1012                 count -= iv->iov_len;   /* This segment is no good */
1013                 break;
1014         }
1015
1016         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1017         if (filp->f_flags & O_DIRECT) {
1018                 loff_t pos = *ppos, size;
1019                 struct address_space *mapping;
1020                 struct inode *inode;
1021
1022                 mapping = filp->f_mapping;
1023                 inode = mapping->host;
1024                 retval = 0;
1025                 if (!count)
1026                         goto out; /* skip atime */
1027                 size = i_size_read(inode);
1028                 if (pos < size) {
1029                         retval = generic_file_direct_IO(READ, iocb,
1030                                                 iov, pos, nr_segs);
1031                         if (retval > 0 && !is_sync_kiocb(iocb))
1032                                 retval = -EIOCBQUEUED;
1033                         if (retval > 0)
1034                                 *ppos = pos + retval;
1035                 }
1036                 file_accessed(filp);
1037                 goto out;
1038         }
1039
1040         retval = 0;
1041         if (count) {
1042                 for (seg = 0; seg < nr_segs; seg++) {
1043                         read_descriptor_t desc;
1044
1045                         desc.written = 0;
1046                         desc.arg.buf = iov[seg].iov_base;
1047                         desc.count = iov[seg].iov_len;
1048                         if (desc.count == 0)
1049                                 continue;
1050                         desc.error = 0;
1051                         do_generic_file_read(filp,ppos,&desc,file_read_actor);
1052                         retval += desc.written;
1053                         if (desc.error) {
1054                                 retval = retval ?: desc.error;
1055                                 break;
1056                         }
1057                 }
1058         }
1059 out:
1060         return retval;
1061 }
1062
1063 EXPORT_SYMBOL(__generic_file_aio_read);
1064
1065 ssize_t
1066 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1067 {
1068         struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1069
1070         BUG_ON(iocb->ki_pos != pos);
1071         return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1072 }
1073
1074 EXPORT_SYMBOL(generic_file_aio_read);
1075
1076 ssize_t
1077 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1078 {
1079         struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1080         struct kiocb kiocb;
1081         ssize_t ret;
1082
1083         init_sync_kiocb(&kiocb, filp);
1084         ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1085         if (-EIOCBQUEUED == ret)
1086                 ret = wait_on_sync_kiocb(&kiocb);
1087         return ret;
1088 }
1089
1090 EXPORT_SYMBOL(generic_file_read);
1091
1092 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1093 {
1094         ssize_t written;
1095         unsigned long count = desc->count;
1096         struct file *file = desc->arg.data;
1097
1098         if (size > count)
1099                 size = count;
1100
1101         written = file->f_op->sendpage(file, page, offset,
1102                                        size, &file->f_pos, size<count);
1103         if (written < 0) {
1104                 desc->error = written;
1105                 written = 0;
1106         }
1107         desc->count = count - written;
1108         desc->written += written;
1109         return written;
1110 }
1111
1112 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1113                          size_t count, read_actor_t actor, void *target)
1114 {
1115         read_descriptor_t desc;
1116
1117         if (!count)
1118                 return 0;
1119
1120         desc.written = 0;
1121         desc.count = count;
1122         desc.arg.data = target;
1123         desc.error = 0;
1124
1125         do_generic_file_read(in_file, ppos, &desc, actor);
1126         if (desc.written)
1127                 return desc.written;
1128         return desc.error;
1129 }
1130
1131 EXPORT_SYMBOL(generic_file_sendfile);
1132
1133 static ssize_t
1134 do_readahead(struct address_space *mapping, struct file *filp,
1135              unsigned long index, unsigned long nr)
1136 {
1137         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1138                 return -EINVAL;
1139
1140         force_page_cache_readahead(mapping, filp, index,
1141                                         max_sane_readahead(nr));
1142         return 0;
1143 }
1144
1145 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1146 {
1147         ssize_t ret;
1148         struct file *file;
1149
1150         ret = -EBADF;
1151         file = fget(fd);
1152         if (file) {
1153                 if (file->f_mode & FMODE_READ) {
1154                         struct address_space *mapping = file->f_mapping;
1155                         unsigned long start = offset >> PAGE_CACHE_SHIFT;
1156                         unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1157                         unsigned long len = end - start + 1;
1158                         ret = do_readahead(mapping, file, start, len);
1159                 }
1160                 fput(file);
1161         }
1162         return ret;
1163 }
1164
1165 #ifdef CONFIG_MMU
1166 /*
1167  * This adds the requested page to the page cache if it isn't already there,
1168  * and schedules an I/O to read in its contents from disk.
1169  */
1170 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1171 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1172 {
1173         struct address_space *mapping = file->f_mapping;
1174         struct page *page; 
1175         int ret;
1176
1177         do {
1178                 page = page_cache_alloc_cold(mapping);
1179                 if (!page)
1180                         return -ENOMEM;
1181
1182                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1183                 if (ret == 0)
1184                         ret = mapping->a_ops->readpage(file, page);
1185                 else if (ret == -EEXIST)
1186                         ret = 0; /* losing race to add is OK */
1187
1188                 page_cache_release(page);
1189
1190         } while (ret == AOP_TRUNCATED_PAGE);
1191                 
1192         return ret;
1193 }
1194
1195 #define MMAP_LOTSAMISS  (100)
1196
1197 /*
1198  * filemap_nopage() is invoked via the vma operations vector for a
1199  * mapped memory region to read in file data during a page fault.
1200  *
1201  * The goto's are kind of ugly, but this streamlines the normal case of having
1202  * it in the page cache, and handles the special cases reasonably without
1203  * having a lot of duplicated code.
1204  */
1205 struct page *filemap_nopage(struct vm_area_struct *area,
1206                                 unsigned long address, int *type)
1207 {
1208         int error;
1209         struct file *file = area->vm_file;
1210         struct address_space *mapping = file->f_mapping;
1211         struct file_ra_state *ra = &file->f_ra;
1212         struct inode *inode = mapping->host;
1213         struct page *page;
1214         unsigned long size, pgoff;
1215         int did_readaround = 0, majmin = VM_FAULT_MINOR;
1216
1217         pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1218
1219 retry_all:
1220         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1221         if (pgoff >= size)
1222                 goto outside_data_content;
1223
1224         /* If we don't want any read-ahead, don't bother */
1225         if (VM_RandomReadHint(area))
1226                 goto no_cached_page;
1227
1228         /*
1229          * The readahead code wants to be told about each and every page
1230          * so it can build and shrink its windows appropriately
1231          *
1232          * For sequential accesses, we use the generic readahead logic.
1233          */
1234         if (VM_SequentialReadHint(area))
1235                 page_cache_readahead(mapping, ra, file, pgoff, 1);
1236
1237         /*
1238          * Do we have something in the page cache already?
1239          */
1240 retry_find:
1241         page = find_get_page(mapping, pgoff);
1242         if (!page) {
1243                 unsigned long ra_pages;
1244
1245                 if (VM_SequentialReadHint(area)) {
1246                         handle_ra_miss(mapping, ra, pgoff);
1247                         goto no_cached_page;
1248                 }
1249                 ra->mmap_miss++;
1250
1251                 /*
1252                  * Do we miss much more than hit in this file? If so,
1253                  * stop bothering with read-ahead. It will only hurt.
1254                  */
1255                 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1256                         goto no_cached_page;
1257
1258                 /*
1259                  * To keep the pgmajfault counter straight, we need to
1260                  * check did_readaround, as this is an inner loop.
1261                  */
1262                 if (!did_readaround) {
1263                         majmin = VM_FAULT_MAJOR;
1264                         inc_page_state(pgmajfault);
1265                 }
1266                 did_readaround = 1;
1267                 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1268                 if (ra_pages) {
1269                         pgoff_t start = 0;
1270
1271                         if (pgoff > ra_pages / 2)
1272                                 start = pgoff - ra_pages / 2;
1273                         do_page_cache_readahead(mapping, file, start, ra_pages);
1274                 }
1275                 page = find_get_page(mapping, pgoff);
1276                 if (!page)
1277                         goto no_cached_page;
1278         }
1279
1280         if (!did_readaround)
1281                 ra->mmap_hit++;
1282
1283         /*
1284          * Ok, found a page in the page cache, now we need to check
1285          * that it's up-to-date.
1286          */
1287         if (!PageUptodate(page))
1288                 goto page_not_uptodate;
1289
1290 success:
1291         /*
1292          * Found the page and have a reference on it.
1293          */
1294         mark_page_accessed(page);
1295         if (type)
1296                 *type = majmin;
1297         return page;
1298
1299 outside_data_content:
1300         /*
1301          * An external ptracer can access pages that normally aren't
1302          * accessible..
1303          */
1304         if (area->vm_mm == current->mm)
1305                 return NULL;
1306         /* Fall through to the non-read-ahead case */
1307 no_cached_page:
1308         /*
1309          * We're only likely to ever get here if MADV_RANDOM is in
1310          * effect.
1311          */
1312         error = page_cache_read(file, pgoff);
1313         grab_swap_token();
1314
1315         /*
1316          * The page we want has now been added to the page cache.
1317          * In the unlikely event that someone removed it in the
1318          * meantime, we'll just come back here and read it again.
1319          */
1320         if (error >= 0)
1321                 goto retry_find;
1322
1323         /*
1324          * An error return from page_cache_read can result if the
1325          * system is low on memory, or a problem occurs while trying
1326          * to schedule I/O.
1327          */
1328         if (error == -ENOMEM)
1329                 return NOPAGE_OOM;
1330         return NULL;
1331
1332 page_not_uptodate:
1333         if (!did_readaround) {
1334                 majmin = VM_FAULT_MAJOR;
1335                 inc_page_state(pgmajfault);
1336         }
1337         lock_page(page);
1338
1339         /* Did it get unhashed while we waited for it? */
1340         if (!page->mapping) {
1341                 unlock_page(page);
1342                 page_cache_release(page);
1343                 goto retry_all;
1344         }
1345
1346         /* Did somebody else get it up-to-date? */
1347         if (PageUptodate(page)) {
1348                 unlock_page(page);
1349                 goto success;
1350         }
1351
1352         error = mapping->a_ops->readpage(file, page);
1353         if (!error) {
1354                 wait_on_page_locked(page);
1355                 if (PageUptodate(page))
1356                         goto success;
1357         } else if (error == AOP_TRUNCATED_PAGE) {
1358                 page_cache_release(page);
1359                 goto retry_find;
1360         }
1361
1362         /*
1363          * Umm, take care of errors if the page isn't up-to-date.
1364          * Try to re-read it _once_. We do this synchronously,
1365          * because there really aren't any performance issues here
1366          * and we need to check for errors.
1367          */
1368         lock_page(page);
1369
1370         /* Somebody truncated the page on us? */
1371         if (!page->mapping) {
1372                 unlock_page(page);
1373                 page_cache_release(page);
1374                 goto retry_all;
1375         }
1376
1377         /* Somebody else successfully read it in? */
1378         if (PageUptodate(page)) {
1379                 unlock_page(page);
1380                 goto success;
1381         }
1382         ClearPageError(page);
1383         error = mapping->a_ops->readpage(file, page);
1384         if (!error) {
1385                 wait_on_page_locked(page);
1386                 if (PageUptodate(page))
1387                         goto success;
1388         } else if (error == AOP_TRUNCATED_PAGE) {
1389                 page_cache_release(page);
1390                 goto retry_find;
1391         }
1392
1393         /*
1394          * Things didn't work out. Return zero to tell the
1395          * mm layer so, possibly freeing the page cache page first.
1396          */
1397         page_cache_release(page);
1398         return NULL;
1399 }
1400
1401 EXPORT_SYMBOL(filemap_nopage);
1402
1403 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1404                                         int nonblock)
1405 {
1406         struct address_space *mapping = file->f_mapping;
1407         struct page *page;
1408         int error;
1409
1410         /*
1411          * Do we have something in the page cache already?
1412          */
1413 retry_find:
1414         page = find_get_page(mapping, pgoff);
1415         if (!page) {
1416                 if (nonblock)
1417                         return NULL;
1418                 goto no_cached_page;
1419         }
1420
1421         /*
1422          * Ok, found a page in the page cache, now we need to check
1423          * that it's up-to-date.
1424          */
1425         if (!PageUptodate(page)) {
1426                 if (nonblock) {
1427                         page_cache_release(page);
1428                         return NULL;
1429                 }
1430                 goto page_not_uptodate;
1431         }
1432
1433 success:
1434         /*
1435          * Found the page and have a reference on it.
1436          */
1437         mark_page_accessed(page);
1438         return page;
1439
1440 no_cached_page:
1441         error = page_cache_read(file, pgoff);
1442
1443         /*
1444          * The page we want has now been added to the page cache.
1445          * In the unlikely event that someone removed it in the
1446          * meantime, we'll just come back here and read it again.
1447          */
1448         if (error >= 0)
1449                 goto retry_find;
1450
1451         /*
1452          * An error return from page_cache_read can result if the
1453          * system is low on memory, or a problem occurs while trying
1454          * to schedule I/O.
1455          */
1456         return NULL;
1457
1458 page_not_uptodate:
1459         lock_page(page);
1460
1461         /* Did it get unhashed while we waited for it? */
1462         if (!page->mapping) {
1463                 unlock_page(page);
1464                 goto err;
1465         }
1466
1467         /* Did somebody else get it up-to-date? */
1468         if (PageUptodate(page)) {
1469                 unlock_page(page);
1470                 goto success;
1471         }
1472
1473         error = mapping->a_ops->readpage(file, page);
1474         if (!error) {
1475                 wait_on_page_locked(page);
1476                 if (PageUptodate(page))
1477                         goto success;
1478         } else if (error == AOP_TRUNCATED_PAGE) {
1479                 page_cache_release(page);
1480                 goto retry_find;
1481         }
1482
1483         /*
1484          * Umm, take care of errors if the page isn't up-to-date.
1485          * Try to re-read it _once_. We do this synchronously,
1486          * because there really aren't any performance issues here
1487          * and we need to check for errors.
1488          */
1489         lock_page(page);
1490
1491         /* Somebody truncated the page on us? */
1492         if (!page->mapping) {
1493                 unlock_page(page);
1494                 goto err;
1495         }
1496         /* Somebody else successfully read it in? */
1497         if (PageUptodate(page)) {
1498                 unlock_page(page);
1499                 goto success;
1500         }
1501
1502         ClearPageError(page);
1503         error = mapping->a_ops->readpage(file, page);
1504         if (!error) {
1505                 wait_on_page_locked(page);
1506                 if (PageUptodate(page))
1507                         goto success;
1508         } else if (error == AOP_TRUNCATED_PAGE) {
1509                 page_cache_release(page);
1510                 goto retry_find;
1511         }
1512
1513         /*
1514          * Things didn't work out. Return zero to tell the
1515          * mm layer so, possibly freeing the page cache page first.
1516          */
1517 err:
1518         page_cache_release(page);
1519
1520         return NULL;
1521 }
1522
1523 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1524                 unsigned long len, pgprot_t prot, unsigned long pgoff,
1525                 int nonblock)
1526 {
1527         struct file *file = vma->vm_file;
1528         struct address_space *mapping = file->f_mapping;
1529         struct inode *inode = mapping->host;
1530         unsigned long size;
1531         struct mm_struct *mm = vma->vm_mm;
1532         struct page *page;
1533         int err;
1534
1535         if (!nonblock)
1536                 force_page_cache_readahead(mapping, vma->vm_file,
1537                                         pgoff, len >> PAGE_CACHE_SHIFT);
1538
1539 repeat:
1540         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1541         if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1542                 return -EINVAL;
1543
1544         page = filemap_getpage(file, pgoff, nonblock);
1545
1546         /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1547          * done in shmem_populate calling shmem_getpage */
1548         if (!page && !nonblock)
1549                 return -ENOMEM;
1550
1551         if (page) {
1552                 err = install_page(mm, vma, addr, page, prot);
1553                 if (err) {
1554                         page_cache_release(page);
1555                         return err;
1556                 }
1557         } else if (vma->vm_flags & VM_NONLINEAR) {
1558                 /* No page was found just because we can't read it in now (being
1559                  * here implies nonblock != 0), but the page may exist, so set
1560                  * the PTE to fault it in later. */
1561                 err = install_file_pte(mm, vma, addr, pgoff, prot);
1562                 if (err)
1563                         return err;
1564         }
1565
1566         len -= PAGE_SIZE;
1567         addr += PAGE_SIZE;
1568         pgoff++;
1569         if (len)
1570                 goto repeat;
1571
1572         return 0;
1573 }
1574 EXPORT_SYMBOL(filemap_populate);
1575
1576 struct vm_operations_struct generic_file_vm_ops = {
1577         .nopage         = filemap_nopage,
1578         .populate       = filemap_populate,
1579 };
1580
1581 /* This is used for a general mmap of a disk file */
1582
1583 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1584 {
1585         struct address_space *mapping = file->f_mapping;
1586
1587         if (!mapping->a_ops->readpage)
1588                 return -ENOEXEC;
1589         file_accessed(file);
1590         vma->vm_ops = &generic_file_vm_ops;
1591         return 0;
1592 }
1593
1594 /*
1595  * This is for filesystems which do not implement ->writepage.
1596  */
1597 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1598 {
1599         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1600                 return -EINVAL;
1601         return generic_file_mmap(file, vma);
1602 }
1603 #else
1604 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1605 {
1606         return -ENOSYS;
1607 }
1608 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1609 {
1610         return -ENOSYS;
1611 }
1612 #endif /* CONFIG_MMU */
1613
1614 EXPORT_SYMBOL(generic_file_mmap);
1615 EXPORT_SYMBOL(generic_file_readonly_mmap);
1616
1617 static inline struct page *__read_cache_page(struct address_space *mapping,
1618                                 unsigned long index,
1619                                 int (*filler)(void *,struct page*),
1620                                 void *data)
1621 {
1622         struct page *page, *cached_page = NULL;
1623         int err;
1624 repeat:
1625         page = find_get_page(mapping, index);
1626         if (!page) {
1627                 if (!cached_page) {
1628                         cached_page = page_cache_alloc_cold(mapping);
1629                         if (!cached_page)
1630                                 return ERR_PTR(-ENOMEM);
1631                 }
1632                 err = add_to_page_cache_lru(cached_page, mapping,
1633                                         index, GFP_KERNEL);
1634                 if (err == -EEXIST)
1635                         goto repeat;
1636                 if (err < 0) {
1637                         /* Presumably ENOMEM for radix tree node */
1638                         page_cache_release(cached_page);
1639                         return ERR_PTR(err);
1640                 }
1641                 page = cached_page;
1642                 cached_page = NULL;
1643                 err = filler(data, page);
1644                 if (err < 0) {
1645                         page_cache_release(page);
1646                         page = ERR_PTR(err);
1647                 }
1648         }
1649         if (cached_page)
1650                 page_cache_release(cached_page);
1651         return page;
1652 }
1653
1654 /*
1655  * Read into the page cache. If a page already exists,
1656  * and PageUptodate() is not set, try to fill the page.
1657  */
1658 struct page *read_cache_page(struct address_space *mapping,
1659                                 unsigned long index,
1660                                 int (*filler)(void *,struct page*),
1661                                 void *data)
1662 {
1663         struct page *page;
1664         int err;
1665
1666 retry:
1667         page = __read_cache_page(mapping, index, filler, data);
1668         if (IS_ERR(page))
1669                 goto out;
1670         mark_page_accessed(page);
1671         if (PageUptodate(page))
1672                 goto out;
1673
1674         lock_page(page);
1675         if (!page->mapping) {
1676                 unlock_page(page);
1677                 page_cache_release(page);
1678                 goto retry;
1679         }
1680         if (PageUptodate(page)) {
1681                 unlock_page(page);
1682                 goto out;
1683         }
1684         err = filler(data, page);
1685         if (err < 0) {
1686                 page_cache_release(page);
1687                 page = ERR_PTR(err);
1688         }
1689  out:
1690         return page;
1691 }
1692
1693 EXPORT_SYMBOL(read_cache_page);
1694
1695 /*
1696  * If the page was newly created, increment its refcount and add it to the
1697  * caller's lru-buffering pagevec.  This function is specifically for
1698  * generic_file_write().
1699  */
1700 static inline struct page *
1701 __grab_cache_page(struct address_space *mapping, unsigned long index,
1702                         struct page **cached_page, struct pagevec *lru_pvec)
1703 {
1704         int err;
1705         struct page *page;
1706 repeat:
1707         page = find_lock_page(mapping, index);
1708         if (!page) {
1709                 if (!*cached_page) {
1710                         *cached_page = page_cache_alloc(mapping);
1711                         if (!*cached_page)
1712                                 return NULL;
1713                 }
1714                 err = add_to_page_cache(*cached_page, mapping,
1715                                         index, GFP_KERNEL);
1716                 if (err == -EEXIST)
1717                         goto repeat;
1718                 if (err == 0) {
1719                         page = *cached_page;
1720                         page_cache_get(page);
1721                         if (!pagevec_add(lru_pvec, page))
1722                                 __pagevec_lru_add(lru_pvec);
1723                         *cached_page = NULL;
1724                 }
1725         }
1726         return page;
1727 }
1728
1729 /*
1730  * The logic we want is
1731  *
1732  *      if suid or (sgid and xgrp)
1733  *              remove privs
1734  */
1735 int remove_suid(struct dentry *dentry)
1736 {
1737         mode_t mode = dentry->d_inode->i_mode;
1738         int kill = 0;
1739         int result = 0;
1740
1741         /* suid always must be killed */
1742         if (unlikely(mode & S_ISUID))
1743                 kill = ATTR_KILL_SUID;
1744
1745         /*
1746          * sgid without any exec bits is just a mandatory locking mark; leave
1747          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1748          */
1749         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1750                 kill |= ATTR_KILL_SGID;
1751
1752         if (unlikely(kill && !capable(CAP_FSETID))) {
1753                 struct iattr newattrs;
1754
1755                 newattrs.ia_valid = ATTR_FORCE | kill;
1756                 result = notify_change(dentry, &newattrs);
1757         }
1758         return result;
1759 }
1760 EXPORT_SYMBOL(remove_suid);
1761
1762 size_t
1763 __filemap_copy_from_user_iovec(char *vaddr, 
1764                         const struct iovec *iov, size_t base, size_t bytes)
1765 {
1766         size_t copied = 0, left = 0;
1767
1768         while (bytes) {
1769                 char __user *buf = iov->iov_base + base;
1770                 int copy = min(bytes, iov->iov_len - base);
1771
1772                 base = 0;
1773                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1774                 copied += copy;
1775                 bytes -= copy;
1776                 vaddr += copy;
1777                 iov++;
1778
1779                 if (unlikely(left)) {
1780                         /* zero the rest of the target like __copy_from_user */
1781                         if (bytes)
1782                                 memset(vaddr, 0, bytes);
1783                         break;
1784                 }
1785         }
1786         return copied - left;
1787 }
1788
1789 /*
1790  * Performs necessary checks before doing a write
1791  *
1792  * Can adjust writing position aor amount of bytes to write.
1793  * Returns appropriate error code that caller should return or
1794  * zero in case that write should be allowed.
1795  */
1796 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1797 {
1798         struct inode *inode = file->f_mapping->host;
1799         unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1800
1801         if (unlikely(*pos < 0))
1802                 return -EINVAL;
1803
1804         if (!isblk) {
1805                 /* FIXME: this is for backwards compatibility with 2.4 */
1806                 if (file->f_flags & O_APPEND)
1807                         *pos = i_size_read(inode);
1808
1809                 if (limit != RLIM_INFINITY) {
1810                         if (*pos >= limit) {
1811                                 send_sig(SIGXFSZ, current, 0);
1812                                 return -EFBIG;
1813                         }
1814                         if (*count > limit - (typeof(limit))*pos) {
1815                                 *count = limit - (typeof(limit))*pos;
1816                         }
1817                 }
1818         }
1819
1820         /*
1821          * LFS rule
1822          */
1823         if (unlikely(*pos + *count > MAX_NON_LFS &&
1824                                 !(file->f_flags & O_LARGEFILE))) {
1825                 if (*pos >= MAX_NON_LFS) {
1826                         send_sig(SIGXFSZ, current, 0);
1827                         return -EFBIG;
1828                 }
1829                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1830                         *count = MAX_NON_LFS - (unsigned long)*pos;
1831                 }
1832         }
1833
1834         /*
1835          * Are we about to exceed the fs block limit ?
1836          *
1837          * If we have written data it becomes a short write.  If we have
1838          * exceeded without writing data we send a signal and return EFBIG.
1839          * Linus frestrict idea will clean these up nicely..
1840          */
1841         if (likely(!isblk)) {
1842                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1843                         if (*count || *pos > inode->i_sb->s_maxbytes) {
1844                                 send_sig(SIGXFSZ, current, 0);
1845                                 return -EFBIG;
1846                         }
1847                         /* zero-length writes at ->s_maxbytes are OK */
1848                 }
1849
1850                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1851                         *count = inode->i_sb->s_maxbytes - *pos;
1852         } else {
1853                 loff_t isize;
1854                 if (bdev_read_only(I_BDEV(inode)))
1855                         return -EPERM;
1856                 isize = i_size_read(inode);
1857                 if (*pos >= isize) {
1858                         if (*count || *pos > isize)
1859                                 return -ENOSPC;
1860                 }
1861
1862                 if (*pos + *count > isize)
1863                         *count = isize - *pos;
1864         }
1865         return 0;
1866 }
1867 EXPORT_SYMBOL(generic_write_checks);
1868
1869 ssize_t
1870 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1871                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1872                 size_t count, size_t ocount)
1873 {
1874         struct file     *file = iocb->ki_filp;
1875         struct address_space *mapping = file->f_mapping;
1876         struct inode    *inode = mapping->host;
1877         ssize_t         written;
1878
1879         if (count != ocount)
1880                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1881
1882         written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1883         if (written > 0) {
1884                 loff_t end = pos + written;
1885                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1886                         i_size_write(inode,  end);
1887                         mark_inode_dirty(inode);
1888                 }
1889                 *ppos = end;
1890         }
1891
1892         /*
1893          * Sync the fs metadata but not the minor inode changes and
1894          * of course not the data as we did direct DMA for the IO.
1895          * i_mutex is held, which protects generic_osync_inode() from
1896          * livelocking.
1897          */
1898         if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1899                 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1900                 if (err < 0)
1901                         written = err;
1902         }
1903         if (written == count && !is_sync_kiocb(iocb))
1904                 written = -EIOCBQUEUED;
1905         return written;
1906 }
1907 EXPORT_SYMBOL(generic_file_direct_write);
1908
1909 ssize_t
1910 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1911                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1912                 size_t count, ssize_t written)
1913 {
1914         struct file *file = iocb->ki_filp;
1915         struct address_space * mapping = file->f_mapping;
1916         struct address_space_operations *a_ops = mapping->a_ops;
1917         struct inode    *inode = mapping->host;
1918         long            status = 0;
1919         struct page     *page;
1920         struct page     *cached_page = NULL;
1921         size_t          bytes;
1922         struct pagevec  lru_pvec;
1923         const struct iovec *cur_iov = iov; /* current iovec */
1924         size_t          iov_base = 0;      /* offset in the current iovec */
1925         char __user     *buf;
1926
1927         pagevec_init(&lru_pvec, 0);
1928
1929         /*
1930          * handle partial DIO write.  Adjust cur_iov if needed.
1931          */
1932         if (likely(nr_segs == 1))
1933                 buf = iov->iov_base + written;
1934         else {
1935                 filemap_set_next_iovec(&cur_iov, &iov_base, written);
1936                 buf = cur_iov->iov_base + iov_base;
1937         }
1938
1939         do {
1940                 unsigned long index;
1941                 unsigned long offset;
1942                 unsigned long maxlen;
1943                 size_t copied;
1944
1945                 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1946                 index = pos >> PAGE_CACHE_SHIFT;
1947                 bytes = PAGE_CACHE_SIZE - offset;
1948                 if (bytes > count)
1949                         bytes = count;
1950
1951                 /*
1952                  * Bring in the user page that we will copy from _first_.
1953                  * Otherwise there's a nasty deadlock on copying from the
1954                  * same page as we're writing to, without it being marked
1955                  * up-to-date.
1956                  */
1957                 maxlen = cur_iov->iov_len - iov_base;
1958                 if (maxlen > bytes)
1959                         maxlen = bytes;
1960                 fault_in_pages_readable(buf, maxlen);
1961
1962                 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1963                 if (!page) {
1964                         status = -ENOMEM;
1965                         break;
1966                 }
1967
1968                 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1969                 if (unlikely(status)) {
1970                         loff_t isize = i_size_read(inode);
1971
1972                         if (status != AOP_TRUNCATED_PAGE)
1973                                 unlock_page(page);
1974                         page_cache_release(page);
1975                         if (status == AOP_TRUNCATED_PAGE)
1976                                 continue;
1977                         /*
1978                          * prepare_write() may have instantiated a few blocks
1979                          * outside i_size.  Trim these off again.
1980                          */
1981                         if (pos + bytes > isize)
1982                                 vmtruncate(inode, isize);
1983                         break;
1984                 }
1985                 if (likely(nr_segs == 1))
1986                         copied = filemap_copy_from_user(page, offset,
1987                                                         buf, bytes);
1988                 else
1989                         copied = filemap_copy_from_user_iovec(page, offset,
1990                                                 cur_iov, iov_base, bytes);
1991                 flush_dcache_page(page);
1992                 status = a_ops->commit_write(file, page, offset, offset+bytes);
1993                 if (status == AOP_TRUNCATED_PAGE) {
1994                         page_cache_release(page);
1995                         continue;
1996                 }
1997                 if (likely(copied > 0)) {
1998                         if (!status)
1999                                 status = copied;
2000
2001                         if (status >= 0) {
2002                                 written += status;
2003                                 count -= status;
2004                                 pos += status;
2005                                 buf += status;
2006                                 if (unlikely(nr_segs > 1)) {
2007                                         filemap_set_next_iovec(&cur_iov,
2008                                                         &iov_base, status);
2009                                         if (count)
2010                                                 buf = cur_iov->iov_base +
2011                                                         iov_base;
2012                                 } else {
2013                                         iov_base += status;
2014                                 }
2015                         }
2016                 }
2017                 if (unlikely(copied != bytes))
2018                         if (status >= 0)
2019                                 status = -EFAULT;
2020                 unlock_page(page);
2021                 mark_page_accessed(page);
2022                 page_cache_release(page);
2023                 if (status < 0)
2024                         break;
2025                 balance_dirty_pages_ratelimited(mapping);
2026                 cond_resched();
2027         } while (count);
2028         *ppos = pos;
2029
2030         if (cached_page)
2031                 page_cache_release(cached_page);
2032
2033         /*
2034          * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2035          */
2036         if (likely(status >= 0)) {
2037                 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2038                         if (!a_ops->writepage || !is_sync_kiocb(iocb))
2039                                 status = generic_osync_inode(inode, mapping,
2040                                                 OSYNC_METADATA|OSYNC_DATA);
2041                 }
2042         }
2043         
2044         /*
2045          * If we get here for O_DIRECT writes then we must have fallen through
2046          * to buffered writes (block instantiation inside i_size).  So we sync
2047          * the file data here, to try to honour O_DIRECT expectations.
2048          */
2049         if (unlikely(file->f_flags & O_DIRECT) && written)
2050                 status = filemap_write_and_wait(mapping);
2051
2052         pagevec_lru_add(&lru_pvec);
2053         return written ? written : status;
2054 }
2055 EXPORT_SYMBOL(generic_file_buffered_write);
2056
2057 static ssize_t
2058 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2059                                 unsigned long nr_segs, loff_t *ppos)
2060 {
2061         struct file *file = iocb->ki_filp;
2062         struct address_space * mapping = file->f_mapping;
2063         size_t ocount;          /* original count */
2064         size_t count;           /* after file limit checks */
2065         struct inode    *inode = mapping->host;
2066         unsigned long   seg;
2067         loff_t          pos;
2068         ssize_t         written;
2069         ssize_t         err;
2070
2071         ocount = 0;
2072         for (seg = 0; seg < nr_segs; seg++) {
2073                 const struct iovec *iv = &iov[seg];
2074
2075                 /*
2076                  * If any segment has a negative length, or the cumulative
2077                  * length ever wraps negative then return -EINVAL.
2078                  */
2079                 ocount += iv->iov_len;
2080                 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2081                         return -EINVAL;
2082                 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2083                         continue;
2084                 if (seg == 0)
2085                         return -EFAULT;
2086                 nr_segs = seg;
2087                 ocount -= iv->iov_len;  /* This segment is no good */
2088                 break;
2089         }
2090
2091         count = ocount;
2092         pos = *ppos;
2093
2094         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2095
2096         /* We can write back this queue in page reclaim */
2097         current->backing_dev_info = mapping->backing_dev_info;
2098         written = 0;
2099
2100         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2101         if (err)
2102                 goto out;
2103
2104         if (count == 0)
2105                 goto out;
2106
2107         err = remove_suid(file->f_dentry);
2108         if (err)
2109                 goto out;
2110
2111         file_update_time(file);
2112
2113         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2114         if (unlikely(file->f_flags & O_DIRECT)) {
2115                 written = generic_file_direct_write(iocb, iov,
2116                                 &nr_segs, pos, ppos, count, ocount);
2117                 if (written < 0 || written == count)
2118                         goto out;
2119                 /*
2120                  * direct-io write to a hole: fall through to buffered I/O
2121                  * for completing the rest of the request.
2122                  */
2123                 pos += written;
2124                 count -= written;
2125         }
2126
2127         written = generic_file_buffered_write(iocb, iov, nr_segs,
2128                         pos, ppos, count, written);
2129 out:
2130         current->backing_dev_info = NULL;
2131         return written ? written : err;
2132 }
2133 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2134
2135 ssize_t
2136 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2137                                 unsigned long nr_segs, loff_t *ppos)
2138 {
2139         struct file *file = iocb->ki_filp;
2140         struct address_space *mapping = file->f_mapping;
2141         struct inode *inode = mapping->host;
2142         ssize_t ret;
2143         loff_t pos = *ppos;
2144
2145         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2146
2147         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2148                 int err;
2149
2150                 err = sync_page_range_nolock(inode, mapping, pos, ret);
2151                 if (err < 0)
2152                         ret = err;
2153         }
2154         return ret;
2155 }
2156
2157 static ssize_t
2158 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2159                                 unsigned long nr_segs, loff_t *ppos)
2160 {
2161         struct kiocb kiocb;
2162         ssize_t ret;
2163
2164         init_sync_kiocb(&kiocb, file);
2165         ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2166         if (ret == -EIOCBQUEUED)
2167                 ret = wait_on_sync_kiocb(&kiocb);
2168         return ret;
2169 }
2170
2171 ssize_t
2172 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2173                                 unsigned long nr_segs, loff_t *ppos)
2174 {
2175         struct kiocb kiocb;
2176         ssize_t ret;
2177
2178         init_sync_kiocb(&kiocb, file);
2179         ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2180         if (-EIOCBQUEUED == ret)
2181                 ret = wait_on_sync_kiocb(&kiocb);
2182         return ret;
2183 }
2184 EXPORT_SYMBOL(generic_file_write_nolock);
2185
2186 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2187                                size_t count, loff_t pos)
2188 {
2189         struct file *file = iocb->ki_filp;
2190         struct address_space *mapping = file->f_mapping;
2191         struct inode *inode = mapping->host;
2192         ssize_t ret;
2193         struct iovec local_iov = { .iov_base = (void __user *)buf,
2194                                         .iov_len = count };
2195
2196         BUG_ON(iocb->ki_pos != pos);
2197
2198         mutex_lock(&inode->i_mutex);
2199         ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2200                                                 &iocb->ki_pos);
2201         mutex_unlock(&inode->i_mutex);
2202
2203         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2204                 ssize_t err;
2205
2206                 err = sync_page_range(inode, mapping, pos, ret);
2207                 if (err < 0)
2208                         ret = err;
2209         }
2210         return ret;
2211 }
2212 EXPORT_SYMBOL(generic_file_aio_write);
2213
2214 ssize_t generic_file_write(struct file *file, const char __user *buf,
2215                            size_t count, loff_t *ppos)
2216 {
2217         struct address_space *mapping = file->f_mapping;
2218         struct inode *inode = mapping->host;
2219         ssize_t ret;
2220         struct iovec local_iov = { .iov_base = (void __user *)buf,
2221                                         .iov_len = count };
2222
2223         mutex_lock(&inode->i_mutex);
2224         ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2225         mutex_unlock(&inode->i_mutex);
2226
2227         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2228                 ssize_t err;
2229
2230                 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2231                 if (err < 0)
2232                         ret = err;
2233         }
2234         return ret;
2235 }
2236 EXPORT_SYMBOL(generic_file_write);
2237
2238 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2239                         unsigned long nr_segs, loff_t *ppos)
2240 {
2241         struct kiocb kiocb;
2242         ssize_t ret;
2243
2244         init_sync_kiocb(&kiocb, filp);
2245         ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2246         if (-EIOCBQUEUED == ret)
2247                 ret = wait_on_sync_kiocb(&kiocb);
2248         return ret;
2249 }
2250 EXPORT_SYMBOL(generic_file_readv);
2251
2252 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2253                         unsigned long nr_segs, loff_t *ppos)
2254 {
2255         struct address_space *mapping = file->f_mapping;
2256         struct inode *inode = mapping->host;
2257         ssize_t ret;
2258
2259         mutex_lock(&inode->i_mutex);
2260         ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2261         mutex_unlock(&inode->i_mutex);
2262
2263         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2264                 int err;
2265
2266                 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2267                 if (err < 0)
2268                         ret = err;
2269         }
2270         return ret;
2271 }
2272 EXPORT_SYMBOL(generic_file_writev);
2273
2274 /*
2275  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2276  * went wrong during pagecache shootdown.
2277  */
2278 static ssize_t
2279 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2280         loff_t offset, unsigned long nr_segs)
2281 {
2282         struct file *file = iocb->ki_filp;
2283         struct address_space *mapping = file->f_mapping;
2284         ssize_t retval;
2285         size_t write_len = 0;
2286
2287         /*
2288          * If it's a write, unmap all mmappings of the file up-front.  This
2289          * will cause any pte dirty bits to be propagated into the pageframes
2290          * for the subsequent filemap_write_and_wait().
2291          */
2292         if (rw == WRITE) {
2293                 write_len = iov_length(iov, nr_segs);
2294                 if (mapping_mapped(mapping))
2295                         unmap_mapping_range(mapping, offset, write_len, 0);
2296         }
2297
2298         retval = filemap_write_and_wait(mapping);
2299         if (retval == 0) {
2300                 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2301                                                 offset, nr_segs);
2302                 if (rw == WRITE && mapping->nrpages) {
2303                         pgoff_t end = (offset + write_len - 1)
2304                                                 >> PAGE_CACHE_SHIFT;
2305                         int err = invalidate_inode_pages2_range(mapping,
2306                                         offset >> PAGE_CACHE_SHIFT, end);
2307                         if (err)
2308                                 retval = err;
2309                 }
2310         }
2311         return retval;
2312 }