Merge tag 'pm+acpi-4.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[sfrench/cifs-2.6.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114                                    struct page *page, void *shadow)
115 {
116         struct radix_tree_node *node;
117         unsigned long index;
118         unsigned int offset;
119         unsigned int tag;
120         void **slot;
121
122         VM_BUG_ON(!PageLocked(page));
123
124         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126         if (shadow) {
127                 mapping->nrexceptional++;
128                 /*
129                  * Make sure the nrexceptional update is committed before
130                  * the nrpages update so that final truncate racing
131                  * with reclaim does not see both counters 0 at the
132                  * same time and miss a shadow entry.
133                  */
134                 smp_wmb();
135         }
136         mapping->nrpages--;
137
138         if (!node) {
139                 /* Clear direct pointer tags in root node */
140                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141                 radix_tree_replace_slot(slot, shadow);
142                 return;
143         }
144
145         /* Clear tree tags for the removed page */
146         index = page->index;
147         offset = index & RADIX_TREE_MAP_MASK;
148         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149                 if (test_bit(offset, node->tags[tag]))
150                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
151         }
152
153         /* Delete page, swap shadow entry */
154         radix_tree_replace_slot(slot, shadow);
155         workingset_node_pages_dec(node);
156         if (shadow)
157                 workingset_node_shadows_inc(node);
158         else
159                 if (__radix_tree_delete_node(&mapping->page_tree, node))
160                         return;
161
162         /*
163          * Track node that only contains shadow entries.
164          *
165          * Avoid acquiring the list_lru lock if already tracked.  The
166          * list_empty() test is safe as node->private_list is
167          * protected by mapping->tree_lock.
168          */
169         if (!workingset_node_pages(node) &&
170             list_empty(&node->private_list)) {
171                 node->private_data = mapping;
172                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173         }
174 }
175
176 /*
177  * Delete a page from the page cache and free it. Caller has to make
178  * sure the page is locked and that nobody else uses it - or that usage
179  * is safe.  The caller must hold the mapping's tree_lock.
180  */
181 void __delete_from_page_cache(struct page *page, void *shadow)
182 {
183         struct address_space *mapping = page->mapping;
184
185         trace_mm_filemap_delete_from_page_cache(page);
186         /*
187          * if we're uptodate, flush out into the cleancache, otherwise
188          * invalidate any existing cleancache entries.  We can't leave
189          * stale data around in the cleancache once our page is gone
190          */
191         if (PageUptodate(page) && PageMappedToDisk(page))
192                 cleancache_put_page(page);
193         else
194                 cleancache_invalidate_page(mapping, page);
195
196         VM_BUG_ON_PAGE(page_mapped(page), page);
197         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
198                 int mapcount;
199
200                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
201                          current->comm, page_to_pfn(page));
202                 dump_page(page, "still mapped when deleted");
203                 dump_stack();
204                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
205
206                 mapcount = page_mapcount(page);
207                 if (mapping_exiting(mapping) &&
208                     page_count(page) >= mapcount + 2) {
209                         /*
210                          * All vmas have already been torn down, so it's
211                          * a good bet that actually the page is unmapped,
212                          * and we'd prefer not to leak it: if we're wrong,
213                          * some other bad page check should catch it later.
214                          */
215                         page_mapcount_reset(page);
216                         atomic_sub(mapcount, &page->_count);
217                 }
218         }
219
220         page_cache_tree_delete(mapping, page, shadow);
221
222         page->mapping = NULL;
223         /* Leave page->index set: truncation lookup relies upon it */
224
225         /* hugetlb pages do not participate in page cache accounting. */
226         if (!PageHuge(page))
227                 __dec_zone_page_state(page, NR_FILE_PAGES);
228         if (PageSwapBacked(page))
229                 __dec_zone_page_state(page, NR_SHMEM);
230
231         /*
232          * At this point page must be either written or cleaned by truncate.
233          * Dirty page here signals a bug and loss of unwritten data.
234          *
235          * This fixes dirty accounting after removing the page entirely but
236          * leaves PageDirty set: it has no effect for truncated page and
237          * anyway will be cleared before returning page into buddy allocator.
238          */
239         if (WARN_ON_ONCE(PageDirty(page)))
240                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
241 }
242
243 /**
244  * delete_from_page_cache - delete page from page cache
245  * @page: the page which the kernel is trying to remove from page cache
246  *
247  * This must be called only on pages that have been verified to be in the page
248  * cache and locked.  It will never put the page into the free list, the caller
249  * has a reference on the page.
250  */
251 void delete_from_page_cache(struct page *page)
252 {
253         struct address_space *mapping = page->mapping;
254         unsigned long flags;
255
256         void (*freepage)(struct page *);
257
258         BUG_ON(!PageLocked(page));
259
260         freepage = mapping->a_ops->freepage;
261
262         spin_lock_irqsave(&mapping->tree_lock, flags);
263         __delete_from_page_cache(page, NULL);
264         spin_unlock_irqrestore(&mapping->tree_lock, flags);
265
266         if (freepage)
267                 freepage(page);
268         put_page(page);
269 }
270 EXPORT_SYMBOL(delete_from_page_cache);
271
272 static int filemap_check_errors(struct address_space *mapping)
273 {
274         int ret = 0;
275         /* Check for outstanding write errors */
276         if (test_bit(AS_ENOSPC, &mapping->flags) &&
277             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
278                 ret = -ENOSPC;
279         if (test_bit(AS_EIO, &mapping->flags) &&
280             test_and_clear_bit(AS_EIO, &mapping->flags))
281                 ret = -EIO;
282         return ret;
283 }
284
285 /**
286  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
287  * @mapping:    address space structure to write
288  * @start:      offset in bytes where the range starts
289  * @end:        offset in bytes where the range ends (inclusive)
290  * @sync_mode:  enable synchronous operation
291  *
292  * Start writeback against all of a mapping's dirty pages that lie
293  * within the byte offsets <start, end> inclusive.
294  *
295  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
296  * opposed to a regular memory cleansing writeback.  The difference between
297  * these two operations is that if a dirty page/buffer is encountered, it must
298  * be waited upon, and not just skipped over.
299  */
300 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301                                 loff_t end, int sync_mode)
302 {
303         int ret;
304         struct writeback_control wbc = {
305                 .sync_mode = sync_mode,
306                 .nr_to_write = LONG_MAX,
307                 .range_start = start,
308                 .range_end = end,
309         };
310
311         if (!mapping_cap_writeback_dirty(mapping))
312                 return 0;
313
314         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
315         ret = do_writepages(mapping, &wbc);
316         wbc_detach_inode(&wbc);
317         return ret;
318 }
319
320 static inline int __filemap_fdatawrite(struct address_space *mapping,
321         int sync_mode)
322 {
323         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
324 }
325
326 int filemap_fdatawrite(struct address_space *mapping)
327 {
328         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
329 }
330 EXPORT_SYMBOL(filemap_fdatawrite);
331
332 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333                                 loff_t end)
334 {
335         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
336 }
337 EXPORT_SYMBOL(filemap_fdatawrite_range);
338
339 /**
340  * filemap_flush - mostly a non-blocking flush
341  * @mapping:    target address_space
342  *
343  * This is a mostly non-blocking flush.  Not suitable for data-integrity
344  * purposes - I/O may not be started against all dirty pages.
345  */
346 int filemap_flush(struct address_space *mapping)
347 {
348         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
349 }
350 EXPORT_SYMBOL(filemap_flush);
351
352 static int __filemap_fdatawait_range(struct address_space *mapping,
353                                      loff_t start_byte, loff_t end_byte)
354 {
355         pgoff_t index = start_byte >> PAGE_SHIFT;
356         pgoff_t end = end_byte >> PAGE_SHIFT;
357         struct pagevec pvec;
358         int nr_pages;
359         int ret = 0;
360
361         if (end_byte < start_byte)
362                 goto out;
363
364         pagevec_init(&pvec, 0);
365         while ((index <= end) &&
366                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
367                         PAGECACHE_TAG_WRITEBACK,
368                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
369                 unsigned i;
370
371                 for (i = 0; i < nr_pages; i++) {
372                         struct page *page = pvec.pages[i];
373
374                         /* until radix tree lookup accepts end_index */
375                         if (page->index > end)
376                                 continue;
377
378                         wait_on_page_writeback(page);
379                         if (TestClearPageError(page))
380                                 ret = -EIO;
381                 }
382                 pagevec_release(&pvec);
383                 cond_resched();
384         }
385 out:
386         return ret;
387 }
388
389 /**
390  * filemap_fdatawait_range - wait for writeback to complete
391  * @mapping:            address space structure to wait for
392  * @start_byte:         offset in bytes where the range starts
393  * @end_byte:           offset in bytes where the range ends (inclusive)
394  *
395  * Walk the list of under-writeback pages of the given address space
396  * in the given range and wait for all of them.  Check error status of
397  * the address space and return it.
398  *
399  * Since the error status of the address space is cleared by this function,
400  * callers are responsible for checking the return value and handling and/or
401  * reporting the error.
402  */
403 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
404                             loff_t end_byte)
405 {
406         int ret, ret2;
407
408         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
409         ret2 = filemap_check_errors(mapping);
410         if (!ret)
411                 ret = ret2;
412
413         return ret;
414 }
415 EXPORT_SYMBOL(filemap_fdatawait_range);
416
417 /**
418  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
419  * @mapping: address space structure to wait for
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * and wait for all of them.  Unlike filemap_fdatawait(), this function
423  * does not clear error status of the address space.
424  *
425  * Use this function if callers don't handle errors themselves.  Expected
426  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
427  * fsfreeze(8)
428  */
429 void filemap_fdatawait_keep_errors(struct address_space *mapping)
430 {
431         loff_t i_size = i_size_read(mapping->host);
432
433         if (i_size == 0)
434                 return;
435
436         __filemap_fdatawait_range(mapping, 0, i_size - 1);
437 }
438
439 /**
440  * filemap_fdatawait - wait for all under-writeback pages to complete
441  * @mapping: address space structure to wait for
442  *
443  * Walk the list of under-writeback pages of the given address space
444  * and wait for all of them.  Check error status of the address space
445  * and return it.
446  *
447  * Since the error status of the address space is cleared by this function,
448  * callers are responsible for checking the return value and handling and/or
449  * reporting the error.
450  */
451 int filemap_fdatawait(struct address_space *mapping)
452 {
453         loff_t i_size = i_size_read(mapping->host);
454
455         if (i_size == 0)
456                 return 0;
457
458         return filemap_fdatawait_range(mapping, 0, i_size - 1);
459 }
460 EXPORT_SYMBOL(filemap_fdatawait);
461
462 int filemap_write_and_wait(struct address_space *mapping)
463 {
464         int err = 0;
465
466         if ((!dax_mapping(mapping) && mapping->nrpages) ||
467             (dax_mapping(mapping) && mapping->nrexceptional)) {
468                 err = filemap_fdatawrite(mapping);
469                 /*
470                  * Even if the above returned error, the pages may be
471                  * written partially (e.g. -ENOSPC), so we wait for it.
472                  * But the -EIO is special case, it may indicate the worst
473                  * thing (e.g. bug) happened, so we avoid waiting for it.
474                  */
475                 if (err != -EIO) {
476                         int err2 = filemap_fdatawait(mapping);
477                         if (!err)
478                                 err = err2;
479                 }
480         } else {
481                 err = filemap_check_errors(mapping);
482         }
483         return err;
484 }
485 EXPORT_SYMBOL(filemap_write_and_wait);
486
487 /**
488  * filemap_write_and_wait_range - write out & wait on a file range
489  * @mapping:    the address_space for the pages
490  * @lstart:     offset in bytes where the range starts
491  * @lend:       offset in bytes where the range ends (inclusive)
492  *
493  * Write out and wait upon file offsets lstart->lend, inclusive.
494  *
495  * Note that `lend' is inclusive (describes the last byte to be written) so
496  * that this function can be used to write to the very end-of-file (end = -1).
497  */
498 int filemap_write_and_wait_range(struct address_space *mapping,
499                                  loff_t lstart, loff_t lend)
500 {
501         int err = 0;
502
503         if ((!dax_mapping(mapping) && mapping->nrpages) ||
504             (dax_mapping(mapping) && mapping->nrexceptional)) {
505                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
506                                                  WB_SYNC_ALL);
507                 /* See comment of filemap_write_and_wait() */
508                 if (err != -EIO) {
509                         int err2 = filemap_fdatawait_range(mapping,
510                                                 lstart, lend);
511                         if (!err)
512                                 err = err2;
513                 }
514         } else {
515                 err = filemap_check_errors(mapping);
516         }
517         return err;
518 }
519 EXPORT_SYMBOL(filemap_write_and_wait_range);
520
521 /**
522  * replace_page_cache_page - replace a pagecache page with a new one
523  * @old:        page to be replaced
524  * @new:        page to replace with
525  * @gfp_mask:   allocation mode
526  *
527  * This function replaces a page in the pagecache with a new one.  On
528  * success it acquires the pagecache reference for the new page and
529  * drops it for the old page.  Both the old and new pages must be
530  * locked.  This function does not add the new page to the LRU, the
531  * caller must do that.
532  *
533  * The remove + add is atomic.  The only way this function can fail is
534  * memory allocation failure.
535  */
536 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
537 {
538         int error;
539
540         VM_BUG_ON_PAGE(!PageLocked(old), old);
541         VM_BUG_ON_PAGE(!PageLocked(new), new);
542         VM_BUG_ON_PAGE(new->mapping, new);
543
544         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
545         if (!error) {
546                 struct address_space *mapping = old->mapping;
547                 void (*freepage)(struct page *);
548                 unsigned long flags;
549
550                 pgoff_t offset = old->index;
551                 freepage = mapping->a_ops->freepage;
552
553                 get_page(new);
554                 new->mapping = mapping;
555                 new->index = offset;
556
557                 spin_lock_irqsave(&mapping->tree_lock, flags);
558                 __delete_from_page_cache(old, NULL);
559                 error = radix_tree_insert(&mapping->page_tree, offset, new);
560                 BUG_ON(error);
561                 mapping->nrpages++;
562
563                 /*
564                  * hugetlb pages do not participate in page cache accounting.
565                  */
566                 if (!PageHuge(new))
567                         __inc_zone_page_state(new, NR_FILE_PAGES);
568                 if (PageSwapBacked(new))
569                         __inc_zone_page_state(new, NR_SHMEM);
570                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
571                 mem_cgroup_migrate(old, new);
572                 radix_tree_preload_end();
573                 if (freepage)
574                         freepage(old);
575                 put_page(old);
576         }
577
578         return error;
579 }
580 EXPORT_SYMBOL_GPL(replace_page_cache_page);
581
582 static int page_cache_tree_insert(struct address_space *mapping,
583                                   struct page *page, void **shadowp)
584 {
585         struct radix_tree_node *node;
586         void **slot;
587         int error;
588
589         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
590                                     &node, &slot);
591         if (error)
592                 return error;
593         if (*slot) {
594                 void *p;
595
596                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
597                 if (!radix_tree_exceptional_entry(p))
598                         return -EEXIST;
599
600                 if (WARN_ON(dax_mapping(mapping)))
601                         return -EINVAL;
602
603                 if (shadowp)
604                         *shadowp = p;
605                 mapping->nrexceptional--;
606                 if (node)
607                         workingset_node_shadows_dec(node);
608         }
609         radix_tree_replace_slot(slot, page);
610         mapping->nrpages++;
611         if (node) {
612                 workingset_node_pages_inc(node);
613                 /*
614                  * Don't track node that contains actual pages.
615                  *
616                  * Avoid acquiring the list_lru lock if already
617                  * untracked.  The list_empty() test is safe as
618                  * node->private_list is protected by
619                  * mapping->tree_lock.
620                  */
621                 if (!list_empty(&node->private_list))
622                         list_lru_del(&workingset_shadow_nodes,
623                                      &node->private_list);
624         }
625         return 0;
626 }
627
628 static int __add_to_page_cache_locked(struct page *page,
629                                       struct address_space *mapping,
630                                       pgoff_t offset, gfp_t gfp_mask,
631                                       void **shadowp)
632 {
633         int huge = PageHuge(page);
634         struct mem_cgroup *memcg;
635         int error;
636
637         VM_BUG_ON_PAGE(!PageLocked(page), page);
638         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
639
640         if (!huge) {
641                 error = mem_cgroup_try_charge(page, current->mm,
642                                               gfp_mask, &memcg, false);
643                 if (error)
644                         return error;
645         }
646
647         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
648         if (error) {
649                 if (!huge)
650                         mem_cgroup_cancel_charge(page, memcg, false);
651                 return error;
652         }
653
654         get_page(page);
655         page->mapping = mapping;
656         page->index = offset;
657
658         spin_lock_irq(&mapping->tree_lock);
659         error = page_cache_tree_insert(mapping, page, shadowp);
660         radix_tree_preload_end();
661         if (unlikely(error))
662                 goto err_insert;
663
664         /* hugetlb pages do not participate in page cache accounting. */
665         if (!huge)
666                 __inc_zone_page_state(page, NR_FILE_PAGES);
667         spin_unlock_irq(&mapping->tree_lock);
668         if (!huge)
669                 mem_cgroup_commit_charge(page, memcg, false, false);
670         trace_mm_filemap_add_to_page_cache(page);
671         return 0;
672 err_insert:
673         page->mapping = NULL;
674         /* Leave page->index set: truncation relies upon it */
675         spin_unlock_irq(&mapping->tree_lock);
676         if (!huge)
677                 mem_cgroup_cancel_charge(page, memcg, false);
678         put_page(page);
679         return error;
680 }
681
682 /**
683  * add_to_page_cache_locked - add a locked page to the pagecache
684  * @page:       page to add
685  * @mapping:    the page's address_space
686  * @offset:     page index
687  * @gfp_mask:   page allocation mode
688  *
689  * This function is used to add a page to the pagecache. It must be locked.
690  * This function does not add the page to the LRU.  The caller must do that.
691  */
692 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
693                 pgoff_t offset, gfp_t gfp_mask)
694 {
695         return __add_to_page_cache_locked(page, mapping, offset,
696                                           gfp_mask, NULL);
697 }
698 EXPORT_SYMBOL(add_to_page_cache_locked);
699
700 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
701                                 pgoff_t offset, gfp_t gfp_mask)
702 {
703         void *shadow = NULL;
704         int ret;
705
706         __SetPageLocked(page);
707         ret = __add_to_page_cache_locked(page, mapping, offset,
708                                          gfp_mask, &shadow);
709         if (unlikely(ret))
710                 __ClearPageLocked(page);
711         else {
712                 /*
713                  * The page might have been evicted from cache only
714                  * recently, in which case it should be activated like
715                  * any other repeatedly accessed page.
716                  */
717                 if (shadow && workingset_refault(shadow)) {
718                         SetPageActive(page);
719                         workingset_activation(page);
720                 } else
721                         ClearPageActive(page);
722                 lru_cache_add(page);
723         }
724         return ret;
725 }
726 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
727
728 #ifdef CONFIG_NUMA
729 struct page *__page_cache_alloc(gfp_t gfp)
730 {
731         int n;
732         struct page *page;
733
734         if (cpuset_do_page_mem_spread()) {
735                 unsigned int cpuset_mems_cookie;
736                 do {
737                         cpuset_mems_cookie = read_mems_allowed_begin();
738                         n = cpuset_mem_spread_node();
739                         page = __alloc_pages_node(n, gfp, 0);
740                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
741
742                 return page;
743         }
744         return alloc_pages(gfp, 0);
745 }
746 EXPORT_SYMBOL(__page_cache_alloc);
747 #endif
748
749 /*
750  * In order to wait for pages to become available there must be
751  * waitqueues associated with pages. By using a hash table of
752  * waitqueues where the bucket discipline is to maintain all
753  * waiters on the same queue and wake all when any of the pages
754  * become available, and for the woken contexts to check to be
755  * sure the appropriate page became available, this saves space
756  * at a cost of "thundering herd" phenomena during rare hash
757  * collisions.
758  */
759 wait_queue_head_t *page_waitqueue(struct page *page)
760 {
761         const struct zone *zone = page_zone(page);
762
763         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
764 }
765 EXPORT_SYMBOL(page_waitqueue);
766
767 void wait_on_page_bit(struct page *page, int bit_nr)
768 {
769         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
770
771         if (test_bit(bit_nr, &page->flags))
772                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
773                                                         TASK_UNINTERRUPTIBLE);
774 }
775 EXPORT_SYMBOL(wait_on_page_bit);
776
777 int wait_on_page_bit_killable(struct page *page, int bit_nr)
778 {
779         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
780
781         if (!test_bit(bit_nr, &page->flags))
782                 return 0;
783
784         return __wait_on_bit(page_waitqueue(page), &wait,
785                              bit_wait_io, TASK_KILLABLE);
786 }
787
788 int wait_on_page_bit_killable_timeout(struct page *page,
789                                        int bit_nr, unsigned long timeout)
790 {
791         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
792
793         wait.key.timeout = jiffies + timeout;
794         if (!test_bit(bit_nr, &page->flags))
795                 return 0;
796         return __wait_on_bit(page_waitqueue(page), &wait,
797                              bit_wait_io_timeout, TASK_KILLABLE);
798 }
799 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
800
801 /**
802  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
803  * @page: Page defining the wait queue of interest
804  * @waiter: Waiter to add to the queue
805  *
806  * Add an arbitrary @waiter to the wait queue for the nominated @page.
807  */
808 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
809 {
810         wait_queue_head_t *q = page_waitqueue(page);
811         unsigned long flags;
812
813         spin_lock_irqsave(&q->lock, flags);
814         __add_wait_queue(q, waiter);
815         spin_unlock_irqrestore(&q->lock, flags);
816 }
817 EXPORT_SYMBOL_GPL(add_page_wait_queue);
818
819 /**
820  * unlock_page - unlock a locked page
821  * @page: the page
822  *
823  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
824  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
825  * mechanism between PageLocked pages and PageWriteback pages is shared.
826  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
827  *
828  * The mb is necessary to enforce ordering between the clear_bit and the read
829  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
830  */
831 void unlock_page(struct page *page)
832 {
833         page = compound_head(page);
834         VM_BUG_ON_PAGE(!PageLocked(page), page);
835         clear_bit_unlock(PG_locked, &page->flags);
836         smp_mb__after_atomic();
837         wake_up_page(page, PG_locked);
838 }
839 EXPORT_SYMBOL(unlock_page);
840
841 /**
842  * end_page_writeback - end writeback against a page
843  * @page: the page
844  */
845 void end_page_writeback(struct page *page)
846 {
847         /*
848          * TestClearPageReclaim could be used here but it is an atomic
849          * operation and overkill in this particular case. Failing to
850          * shuffle a page marked for immediate reclaim is too mild to
851          * justify taking an atomic operation penalty at the end of
852          * ever page writeback.
853          */
854         if (PageReclaim(page)) {
855                 ClearPageReclaim(page);
856                 rotate_reclaimable_page(page);
857         }
858
859         if (!test_clear_page_writeback(page))
860                 BUG();
861
862         smp_mb__after_atomic();
863         wake_up_page(page, PG_writeback);
864 }
865 EXPORT_SYMBOL(end_page_writeback);
866
867 /*
868  * After completing I/O on a page, call this routine to update the page
869  * flags appropriately
870  */
871 void page_endio(struct page *page, int rw, int err)
872 {
873         if (rw == READ) {
874                 if (!err) {
875                         SetPageUptodate(page);
876                 } else {
877                         ClearPageUptodate(page);
878                         SetPageError(page);
879                 }
880                 unlock_page(page);
881         } else { /* rw == WRITE */
882                 if (err) {
883                         SetPageError(page);
884                         if (page->mapping)
885                                 mapping_set_error(page->mapping, err);
886                 }
887                 end_page_writeback(page);
888         }
889 }
890 EXPORT_SYMBOL_GPL(page_endio);
891
892 /**
893  * __lock_page - get a lock on the page, assuming we need to sleep to get it
894  * @page: the page to lock
895  */
896 void __lock_page(struct page *page)
897 {
898         struct page *page_head = compound_head(page);
899         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
900
901         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
902                                                         TASK_UNINTERRUPTIBLE);
903 }
904 EXPORT_SYMBOL(__lock_page);
905
906 int __lock_page_killable(struct page *page)
907 {
908         struct page *page_head = compound_head(page);
909         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
910
911         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
912                                         bit_wait_io, TASK_KILLABLE);
913 }
914 EXPORT_SYMBOL_GPL(__lock_page_killable);
915
916 /*
917  * Return values:
918  * 1 - page is locked; mmap_sem is still held.
919  * 0 - page is not locked.
920  *     mmap_sem has been released (up_read()), unless flags had both
921  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
922  *     which case mmap_sem is still held.
923  *
924  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
925  * with the page locked and the mmap_sem unperturbed.
926  */
927 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
928                          unsigned int flags)
929 {
930         if (flags & FAULT_FLAG_ALLOW_RETRY) {
931                 /*
932                  * CAUTION! In this case, mmap_sem is not released
933                  * even though return 0.
934                  */
935                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
936                         return 0;
937
938                 up_read(&mm->mmap_sem);
939                 if (flags & FAULT_FLAG_KILLABLE)
940                         wait_on_page_locked_killable(page);
941                 else
942                         wait_on_page_locked(page);
943                 return 0;
944         } else {
945                 if (flags & FAULT_FLAG_KILLABLE) {
946                         int ret;
947
948                         ret = __lock_page_killable(page);
949                         if (ret) {
950                                 up_read(&mm->mmap_sem);
951                                 return 0;
952                         }
953                 } else
954                         __lock_page(page);
955                 return 1;
956         }
957 }
958
959 /**
960  * page_cache_next_hole - find the next hole (not-present entry)
961  * @mapping: mapping
962  * @index: index
963  * @max_scan: maximum range to search
964  *
965  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
966  * lowest indexed hole.
967  *
968  * Returns: the index of the hole if found, otherwise returns an index
969  * outside of the set specified (in which case 'return - index >=
970  * max_scan' will be true). In rare cases of index wrap-around, 0 will
971  * be returned.
972  *
973  * page_cache_next_hole may be called under rcu_read_lock. However,
974  * like radix_tree_gang_lookup, this will not atomically search a
975  * snapshot of the tree at a single point in time. For example, if a
976  * hole is created at index 5, then subsequently a hole is created at
977  * index 10, page_cache_next_hole covering both indexes may return 10
978  * if called under rcu_read_lock.
979  */
980 pgoff_t page_cache_next_hole(struct address_space *mapping,
981                              pgoff_t index, unsigned long max_scan)
982 {
983         unsigned long i;
984
985         for (i = 0; i < max_scan; i++) {
986                 struct page *page;
987
988                 page = radix_tree_lookup(&mapping->page_tree, index);
989                 if (!page || radix_tree_exceptional_entry(page))
990                         break;
991                 index++;
992                 if (index == 0)
993                         break;
994         }
995
996         return index;
997 }
998 EXPORT_SYMBOL(page_cache_next_hole);
999
1000 /**
1001  * page_cache_prev_hole - find the prev hole (not-present entry)
1002  * @mapping: mapping
1003  * @index: index
1004  * @max_scan: maximum range to search
1005  *
1006  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1007  * the first hole.
1008  *
1009  * Returns: the index of the hole if found, otherwise returns an index
1010  * outside of the set specified (in which case 'index - return >=
1011  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1012  * will be returned.
1013  *
1014  * page_cache_prev_hole may be called under rcu_read_lock. However,
1015  * like radix_tree_gang_lookup, this will not atomically search a
1016  * snapshot of the tree at a single point in time. For example, if a
1017  * hole is created at index 10, then subsequently a hole is created at
1018  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1019  * called under rcu_read_lock.
1020  */
1021 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1022                              pgoff_t index, unsigned long max_scan)
1023 {
1024         unsigned long i;
1025
1026         for (i = 0; i < max_scan; i++) {
1027                 struct page *page;
1028
1029                 page = radix_tree_lookup(&mapping->page_tree, index);
1030                 if (!page || radix_tree_exceptional_entry(page))
1031                         break;
1032                 index--;
1033                 if (index == ULONG_MAX)
1034                         break;
1035         }
1036
1037         return index;
1038 }
1039 EXPORT_SYMBOL(page_cache_prev_hole);
1040
1041 /**
1042  * find_get_entry - find and get a page cache entry
1043  * @mapping: the address_space to search
1044  * @offset: the page cache index
1045  *
1046  * Looks up the page cache slot at @mapping & @offset.  If there is a
1047  * page cache page, it is returned with an increased refcount.
1048  *
1049  * If the slot holds a shadow entry of a previously evicted page, or a
1050  * swap entry from shmem/tmpfs, it is returned.
1051  *
1052  * Otherwise, %NULL is returned.
1053  */
1054 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1055 {
1056         void **pagep;
1057         struct page *page;
1058
1059         rcu_read_lock();
1060 repeat:
1061         page = NULL;
1062         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1063         if (pagep) {
1064                 page = radix_tree_deref_slot(pagep);
1065                 if (unlikely(!page))
1066                         goto out;
1067                 if (radix_tree_exception(page)) {
1068                         if (radix_tree_deref_retry(page))
1069                                 goto repeat;
1070                         /*
1071                          * A shadow entry of a recently evicted page,
1072                          * or a swap entry from shmem/tmpfs.  Return
1073                          * it without attempting to raise page count.
1074                          */
1075                         goto out;
1076                 }
1077                 if (!page_cache_get_speculative(page))
1078                         goto repeat;
1079
1080                 /*
1081                  * Has the page moved?
1082                  * This is part of the lockless pagecache protocol. See
1083                  * include/linux/pagemap.h for details.
1084                  */
1085                 if (unlikely(page != *pagep)) {
1086                         put_page(page);
1087                         goto repeat;
1088                 }
1089         }
1090 out:
1091         rcu_read_unlock();
1092
1093         return page;
1094 }
1095 EXPORT_SYMBOL(find_get_entry);
1096
1097 /**
1098  * find_lock_entry - locate, pin and lock a page cache entry
1099  * @mapping: the address_space to search
1100  * @offset: the page cache index
1101  *
1102  * Looks up the page cache slot at @mapping & @offset.  If there is a
1103  * page cache page, it is returned locked and with an increased
1104  * refcount.
1105  *
1106  * If the slot holds a shadow entry of a previously evicted page, or a
1107  * swap entry from shmem/tmpfs, it is returned.
1108  *
1109  * Otherwise, %NULL is returned.
1110  *
1111  * find_lock_entry() may sleep.
1112  */
1113 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1114 {
1115         struct page *page;
1116
1117 repeat:
1118         page = find_get_entry(mapping, offset);
1119         if (page && !radix_tree_exception(page)) {
1120                 lock_page(page);
1121                 /* Has the page been truncated? */
1122                 if (unlikely(page->mapping != mapping)) {
1123                         unlock_page(page);
1124                         put_page(page);
1125                         goto repeat;
1126                 }
1127                 VM_BUG_ON_PAGE(page->index != offset, page);
1128         }
1129         return page;
1130 }
1131 EXPORT_SYMBOL(find_lock_entry);
1132
1133 /**
1134  * pagecache_get_page - find and get a page reference
1135  * @mapping: the address_space to search
1136  * @offset: the page index
1137  * @fgp_flags: PCG flags
1138  * @gfp_mask: gfp mask to use for the page cache data page allocation
1139  *
1140  * Looks up the page cache slot at @mapping & @offset.
1141  *
1142  * PCG flags modify how the page is returned.
1143  *
1144  * FGP_ACCESSED: the page will be marked accessed
1145  * FGP_LOCK: Page is return locked
1146  * FGP_CREAT: If page is not present then a new page is allocated using
1147  *              @gfp_mask and added to the page cache and the VM's LRU
1148  *              list. The page is returned locked and with an increased
1149  *              refcount. Otherwise, %NULL is returned.
1150  *
1151  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1152  * if the GFP flags specified for FGP_CREAT are atomic.
1153  *
1154  * If there is a page cache page, it is returned with an increased refcount.
1155  */
1156 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1157         int fgp_flags, gfp_t gfp_mask)
1158 {
1159         struct page *page;
1160
1161 repeat:
1162         page = find_get_entry(mapping, offset);
1163         if (radix_tree_exceptional_entry(page))
1164                 page = NULL;
1165         if (!page)
1166                 goto no_page;
1167
1168         if (fgp_flags & FGP_LOCK) {
1169                 if (fgp_flags & FGP_NOWAIT) {
1170                         if (!trylock_page(page)) {
1171                                 put_page(page);
1172                                 return NULL;
1173                         }
1174                 } else {
1175                         lock_page(page);
1176                 }
1177
1178                 /* Has the page been truncated? */
1179                 if (unlikely(page->mapping != mapping)) {
1180                         unlock_page(page);
1181                         put_page(page);
1182                         goto repeat;
1183                 }
1184                 VM_BUG_ON_PAGE(page->index != offset, page);
1185         }
1186
1187         if (page && (fgp_flags & FGP_ACCESSED))
1188                 mark_page_accessed(page);
1189
1190 no_page:
1191         if (!page && (fgp_flags & FGP_CREAT)) {
1192                 int err;
1193                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1194                         gfp_mask |= __GFP_WRITE;
1195                 if (fgp_flags & FGP_NOFS)
1196                         gfp_mask &= ~__GFP_FS;
1197
1198                 page = __page_cache_alloc(gfp_mask);
1199                 if (!page)
1200                         return NULL;
1201
1202                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1203                         fgp_flags |= FGP_LOCK;
1204
1205                 /* Init accessed so avoid atomic mark_page_accessed later */
1206                 if (fgp_flags & FGP_ACCESSED)
1207                         __SetPageReferenced(page);
1208
1209                 err = add_to_page_cache_lru(page, mapping, offset,
1210                                 gfp_mask & GFP_RECLAIM_MASK);
1211                 if (unlikely(err)) {
1212                         put_page(page);
1213                         page = NULL;
1214                         if (err == -EEXIST)
1215                                 goto repeat;
1216                 }
1217         }
1218
1219         return page;
1220 }
1221 EXPORT_SYMBOL(pagecache_get_page);
1222
1223 /**
1224  * find_get_entries - gang pagecache lookup
1225  * @mapping:    The address_space to search
1226  * @start:      The starting page cache index
1227  * @nr_entries: The maximum number of entries
1228  * @entries:    Where the resulting entries are placed
1229  * @indices:    The cache indices corresponding to the entries in @entries
1230  *
1231  * find_get_entries() will search for and return a group of up to
1232  * @nr_entries entries in the mapping.  The entries are placed at
1233  * @entries.  find_get_entries() takes a reference against any actual
1234  * pages it returns.
1235  *
1236  * The search returns a group of mapping-contiguous page cache entries
1237  * with ascending indexes.  There may be holes in the indices due to
1238  * not-present pages.
1239  *
1240  * Any shadow entries of evicted pages, or swap entries from
1241  * shmem/tmpfs, are included in the returned array.
1242  *
1243  * find_get_entries() returns the number of pages and shadow entries
1244  * which were found.
1245  */
1246 unsigned find_get_entries(struct address_space *mapping,
1247                           pgoff_t start, unsigned int nr_entries,
1248                           struct page **entries, pgoff_t *indices)
1249 {
1250         void **slot;
1251         unsigned int ret = 0;
1252         struct radix_tree_iter iter;
1253
1254         if (!nr_entries)
1255                 return 0;
1256
1257         rcu_read_lock();
1258         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1259                 struct page *page;
1260 repeat:
1261                 page = radix_tree_deref_slot(slot);
1262                 if (unlikely(!page))
1263                         continue;
1264                 if (radix_tree_exception(page)) {
1265                         if (radix_tree_deref_retry(page)) {
1266                                 slot = radix_tree_iter_retry(&iter);
1267                                 continue;
1268                         }
1269                         /*
1270                          * A shadow entry of a recently evicted page, a swap
1271                          * entry from shmem/tmpfs or a DAX entry.  Return it
1272                          * without attempting to raise page count.
1273                          */
1274                         goto export;
1275                 }
1276                 if (!page_cache_get_speculative(page))
1277                         goto repeat;
1278
1279                 /* Has the page moved? */
1280                 if (unlikely(page != *slot)) {
1281                         put_page(page);
1282                         goto repeat;
1283                 }
1284 export:
1285                 indices[ret] = iter.index;
1286                 entries[ret] = page;
1287                 if (++ret == nr_entries)
1288                         break;
1289         }
1290         rcu_read_unlock();
1291         return ret;
1292 }
1293
1294 /**
1295  * find_get_pages - gang pagecache lookup
1296  * @mapping:    The address_space to search
1297  * @start:      The starting page index
1298  * @nr_pages:   The maximum number of pages
1299  * @pages:      Where the resulting pages are placed
1300  *
1301  * find_get_pages() will search for and return a group of up to
1302  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1303  * find_get_pages() takes a reference against the returned pages.
1304  *
1305  * The search returns a group of mapping-contiguous pages with ascending
1306  * indexes.  There may be holes in the indices due to not-present pages.
1307  *
1308  * find_get_pages() returns the number of pages which were found.
1309  */
1310 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1311                             unsigned int nr_pages, struct page **pages)
1312 {
1313         struct radix_tree_iter iter;
1314         void **slot;
1315         unsigned ret = 0;
1316
1317         if (unlikely(!nr_pages))
1318                 return 0;
1319
1320         rcu_read_lock();
1321         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1322                 struct page *page;
1323 repeat:
1324                 page = radix_tree_deref_slot(slot);
1325                 if (unlikely(!page))
1326                         continue;
1327
1328                 if (radix_tree_exception(page)) {
1329                         if (radix_tree_deref_retry(page)) {
1330                                 slot = radix_tree_iter_retry(&iter);
1331                                 continue;
1332                         }
1333                         /*
1334                          * A shadow entry of a recently evicted page,
1335                          * or a swap entry from shmem/tmpfs.  Skip
1336                          * over it.
1337                          */
1338                         continue;
1339                 }
1340
1341                 if (!page_cache_get_speculative(page))
1342                         goto repeat;
1343
1344                 /* Has the page moved? */
1345                 if (unlikely(page != *slot)) {
1346                         put_page(page);
1347                         goto repeat;
1348                 }
1349
1350                 pages[ret] = page;
1351                 if (++ret == nr_pages)
1352                         break;
1353         }
1354
1355         rcu_read_unlock();
1356         return ret;
1357 }
1358
1359 /**
1360  * find_get_pages_contig - gang contiguous pagecache lookup
1361  * @mapping:    The address_space to search
1362  * @index:      The starting page index
1363  * @nr_pages:   The maximum number of pages
1364  * @pages:      Where the resulting pages are placed
1365  *
1366  * find_get_pages_contig() works exactly like find_get_pages(), except
1367  * that the returned number of pages are guaranteed to be contiguous.
1368  *
1369  * find_get_pages_contig() returns the number of pages which were found.
1370  */
1371 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1372                                unsigned int nr_pages, struct page **pages)
1373 {
1374         struct radix_tree_iter iter;
1375         void **slot;
1376         unsigned int ret = 0;
1377
1378         if (unlikely(!nr_pages))
1379                 return 0;
1380
1381         rcu_read_lock();
1382         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1383                 struct page *page;
1384 repeat:
1385                 page = radix_tree_deref_slot(slot);
1386                 /* The hole, there no reason to continue */
1387                 if (unlikely(!page))
1388                         break;
1389
1390                 if (radix_tree_exception(page)) {
1391                         if (radix_tree_deref_retry(page)) {
1392                                 slot = radix_tree_iter_retry(&iter);
1393                                 continue;
1394                         }
1395                         /*
1396                          * A shadow entry of a recently evicted page,
1397                          * or a swap entry from shmem/tmpfs.  Stop
1398                          * looking for contiguous pages.
1399                          */
1400                         break;
1401                 }
1402
1403                 if (!page_cache_get_speculative(page))
1404                         goto repeat;
1405
1406                 /* Has the page moved? */
1407                 if (unlikely(page != *slot)) {
1408                         put_page(page);
1409                         goto repeat;
1410                 }
1411
1412                 /*
1413                  * must check mapping and index after taking the ref.
1414                  * otherwise we can get both false positives and false
1415                  * negatives, which is just confusing to the caller.
1416                  */
1417                 if (page->mapping == NULL || page->index != iter.index) {
1418                         put_page(page);
1419                         break;
1420                 }
1421
1422                 pages[ret] = page;
1423                 if (++ret == nr_pages)
1424                         break;
1425         }
1426         rcu_read_unlock();
1427         return ret;
1428 }
1429 EXPORT_SYMBOL(find_get_pages_contig);
1430
1431 /**
1432  * find_get_pages_tag - find and return pages that match @tag
1433  * @mapping:    the address_space to search
1434  * @index:      the starting page index
1435  * @tag:        the tag index
1436  * @nr_pages:   the maximum number of pages
1437  * @pages:      where the resulting pages are placed
1438  *
1439  * Like find_get_pages, except we only return pages which are tagged with
1440  * @tag.   We update @index to index the next page for the traversal.
1441  */
1442 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1443                         int tag, unsigned int nr_pages, struct page **pages)
1444 {
1445         struct radix_tree_iter iter;
1446         void **slot;
1447         unsigned ret = 0;
1448
1449         if (unlikely(!nr_pages))
1450                 return 0;
1451
1452         rcu_read_lock();
1453         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1454                                    &iter, *index, tag) {
1455                 struct page *page;
1456 repeat:
1457                 page = radix_tree_deref_slot(slot);
1458                 if (unlikely(!page))
1459                         continue;
1460
1461                 if (radix_tree_exception(page)) {
1462                         if (radix_tree_deref_retry(page)) {
1463                                 slot = radix_tree_iter_retry(&iter);
1464                                 continue;
1465                         }
1466                         /*
1467                          * A shadow entry of a recently evicted page.
1468                          *
1469                          * Those entries should never be tagged, but
1470                          * this tree walk is lockless and the tags are
1471                          * looked up in bulk, one radix tree node at a
1472                          * time, so there is a sizable window for page
1473                          * reclaim to evict a page we saw tagged.
1474                          *
1475                          * Skip over it.
1476                          */
1477                         continue;
1478                 }
1479
1480                 if (!page_cache_get_speculative(page))
1481                         goto repeat;
1482
1483                 /* Has the page moved? */
1484                 if (unlikely(page != *slot)) {
1485                         put_page(page);
1486                         goto repeat;
1487                 }
1488
1489                 pages[ret] = page;
1490                 if (++ret == nr_pages)
1491                         break;
1492         }
1493
1494         rcu_read_unlock();
1495
1496         if (ret)
1497                 *index = pages[ret - 1]->index + 1;
1498
1499         return ret;
1500 }
1501 EXPORT_SYMBOL(find_get_pages_tag);
1502
1503 /**
1504  * find_get_entries_tag - find and return entries that match @tag
1505  * @mapping:    the address_space to search
1506  * @start:      the starting page cache index
1507  * @tag:        the tag index
1508  * @nr_entries: the maximum number of entries
1509  * @entries:    where the resulting entries are placed
1510  * @indices:    the cache indices corresponding to the entries in @entries
1511  *
1512  * Like find_get_entries, except we only return entries which are tagged with
1513  * @tag.
1514  */
1515 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1516                         int tag, unsigned int nr_entries,
1517                         struct page **entries, pgoff_t *indices)
1518 {
1519         void **slot;
1520         unsigned int ret = 0;
1521         struct radix_tree_iter iter;
1522
1523         if (!nr_entries)
1524                 return 0;
1525
1526         rcu_read_lock();
1527         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1528                                    &iter, start, tag) {
1529                 struct page *page;
1530 repeat:
1531                 page = radix_tree_deref_slot(slot);
1532                 if (unlikely(!page))
1533                         continue;
1534                 if (radix_tree_exception(page)) {
1535                         if (radix_tree_deref_retry(page)) {
1536                                 slot = radix_tree_iter_retry(&iter);
1537                                 continue;
1538                         }
1539
1540                         /*
1541                          * A shadow entry of a recently evicted page, a swap
1542                          * entry from shmem/tmpfs or a DAX entry.  Return it
1543                          * without attempting to raise page count.
1544                          */
1545                         goto export;
1546                 }
1547                 if (!page_cache_get_speculative(page))
1548                         goto repeat;
1549
1550                 /* Has the page moved? */
1551                 if (unlikely(page != *slot)) {
1552                         put_page(page);
1553                         goto repeat;
1554                 }
1555 export:
1556                 indices[ret] = iter.index;
1557                 entries[ret] = page;
1558                 if (++ret == nr_entries)
1559                         break;
1560         }
1561         rcu_read_unlock();
1562         return ret;
1563 }
1564 EXPORT_SYMBOL(find_get_entries_tag);
1565
1566 /*
1567  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1568  * a _large_ part of the i/o request. Imagine the worst scenario:
1569  *
1570  *      ---R__________________________________________B__________
1571  *         ^ reading here                             ^ bad block(assume 4k)
1572  *
1573  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1574  * => failing the whole request => read(R) => read(R+1) =>
1575  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1576  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1577  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1578  *
1579  * It is going insane. Fix it by quickly scaling down the readahead size.
1580  */
1581 static void shrink_readahead_size_eio(struct file *filp,
1582                                         struct file_ra_state *ra)
1583 {
1584         ra->ra_pages /= 4;
1585 }
1586
1587 /**
1588  * do_generic_file_read - generic file read routine
1589  * @filp:       the file to read
1590  * @ppos:       current file position
1591  * @iter:       data destination
1592  * @written:    already copied
1593  *
1594  * This is a generic file read routine, and uses the
1595  * mapping->a_ops->readpage() function for the actual low-level stuff.
1596  *
1597  * This is really ugly. But the goto's actually try to clarify some
1598  * of the logic when it comes to error handling etc.
1599  */
1600 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1601                 struct iov_iter *iter, ssize_t written)
1602 {
1603         struct address_space *mapping = filp->f_mapping;
1604         struct inode *inode = mapping->host;
1605         struct file_ra_state *ra = &filp->f_ra;
1606         pgoff_t index;
1607         pgoff_t last_index;
1608         pgoff_t prev_index;
1609         unsigned long offset;      /* offset into pagecache page */
1610         unsigned int prev_offset;
1611         int error = 0;
1612
1613         index = *ppos >> PAGE_SHIFT;
1614         prev_index = ra->prev_pos >> PAGE_SHIFT;
1615         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1616         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1617         offset = *ppos & ~PAGE_MASK;
1618
1619         for (;;) {
1620                 struct page *page;
1621                 pgoff_t end_index;
1622                 loff_t isize;
1623                 unsigned long nr, ret;
1624
1625                 cond_resched();
1626 find_page:
1627                 page = find_get_page(mapping, index);
1628                 if (!page) {
1629                         page_cache_sync_readahead(mapping,
1630                                         ra, filp,
1631                                         index, last_index - index);
1632                         page = find_get_page(mapping, index);
1633                         if (unlikely(page == NULL))
1634                                 goto no_cached_page;
1635                 }
1636                 if (PageReadahead(page)) {
1637                         page_cache_async_readahead(mapping,
1638                                         ra, filp, page,
1639                                         index, last_index - index);
1640                 }
1641                 if (!PageUptodate(page)) {
1642                         /*
1643                          * See comment in do_read_cache_page on why
1644                          * wait_on_page_locked is used to avoid unnecessarily
1645                          * serialisations and why it's safe.
1646                          */
1647                         wait_on_page_locked_killable(page);
1648                         if (PageUptodate(page))
1649                                 goto page_ok;
1650
1651                         if (inode->i_blkbits == PAGE_SHIFT ||
1652                                         !mapping->a_ops->is_partially_uptodate)
1653                                 goto page_not_up_to_date;
1654                         if (!trylock_page(page))
1655                                 goto page_not_up_to_date;
1656                         /* Did it get truncated before we got the lock? */
1657                         if (!page->mapping)
1658                                 goto page_not_up_to_date_locked;
1659                         if (!mapping->a_ops->is_partially_uptodate(page,
1660                                                         offset, iter->count))
1661                                 goto page_not_up_to_date_locked;
1662                         unlock_page(page);
1663                 }
1664 page_ok:
1665                 /*
1666                  * i_size must be checked after we know the page is Uptodate.
1667                  *
1668                  * Checking i_size after the check allows us to calculate
1669                  * the correct value for "nr", which means the zero-filled
1670                  * part of the page is not copied back to userspace (unless
1671                  * another truncate extends the file - this is desired though).
1672                  */
1673
1674                 isize = i_size_read(inode);
1675                 end_index = (isize - 1) >> PAGE_SHIFT;
1676                 if (unlikely(!isize || index > end_index)) {
1677                         put_page(page);
1678                         goto out;
1679                 }
1680
1681                 /* nr is the maximum number of bytes to copy from this page */
1682                 nr = PAGE_SIZE;
1683                 if (index == end_index) {
1684                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1685                         if (nr <= offset) {
1686                                 put_page(page);
1687                                 goto out;
1688                         }
1689                 }
1690                 nr = nr - offset;
1691
1692                 /* If users can be writing to this page using arbitrary
1693                  * virtual addresses, take care about potential aliasing
1694                  * before reading the page on the kernel side.
1695                  */
1696                 if (mapping_writably_mapped(mapping))
1697                         flush_dcache_page(page);
1698
1699                 /*
1700                  * When a sequential read accesses a page several times,
1701                  * only mark it as accessed the first time.
1702                  */
1703                 if (prev_index != index || offset != prev_offset)
1704                         mark_page_accessed(page);
1705                 prev_index = index;
1706
1707                 /*
1708                  * Ok, we have the page, and it's up-to-date, so
1709                  * now we can copy it to user space...
1710                  */
1711
1712                 ret = copy_page_to_iter(page, offset, nr, iter);
1713                 offset += ret;
1714                 index += offset >> PAGE_SHIFT;
1715                 offset &= ~PAGE_MASK;
1716                 prev_offset = offset;
1717
1718                 put_page(page);
1719                 written += ret;
1720                 if (!iov_iter_count(iter))
1721                         goto out;
1722                 if (ret < nr) {
1723                         error = -EFAULT;
1724                         goto out;
1725                 }
1726                 continue;
1727
1728 page_not_up_to_date:
1729                 /* Get exclusive access to the page ... */
1730                 error = lock_page_killable(page);
1731                 if (unlikely(error))
1732                         goto readpage_error;
1733
1734 page_not_up_to_date_locked:
1735                 /* Did it get truncated before we got the lock? */
1736                 if (!page->mapping) {
1737                         unlock_page(page);
1738                         put_page(page);
1739                         continue;
1740                 }
1741
1742                 /* Did somebody else fill it already? */
1743                 if (PageUptodate(page)) {
1744                         unlock_page(page);
1745                         goto page_ok;
1746                 }
1747
1748 readpage:
1749                 /*
1750                  * A previous I/O error may have been due to temporary
1751                  * failures, eg. multipath errors.
1752                  * PG_error will be set again if readpage fails.
1753                  */
1754                 ClearPageError(page);
1755                 /* Start the actual read. The read will unlock the page. */
1756                 error = mapping->a_ops->readpage(filp, page);
1757
1758                 if (unlikely(error)) {
1759                         if (error == AOP_TRUNCATED_PAGE) {
1760                                 put_page(page);
1761                                 error = 0;
1762                                 goto find_page;
1763                         }
1764                         goto readpage_error;
1765                 }
1766
1767                 if (!PageUptodate(page)) {
1768                         error = lock_page_killable(page);
1769                         if (unlikely(error))
1770                                 goto readpage_error;
1771                         if (!PageUptodate(page)) {
1772                                 if (page->mapping == NULL) {
1773                                         /*
1774                                          * invalidate_mapping_pages got it
1775                                          */
1776                                         unlock_page(page);
1777                                         put_page(page);
1778                                         goto find_page;
1779                                 }
1780                                 unlock_page(page);
1781                                 shrink_readahead_size_eio(filp, ra);
1782                                 error = -EIO;
1783                                 goto readpage_error;
1784                         }
1785                         unlock_page(page);
1786                 }
1787
1788                 goto page_ok;
1789
1790 readpage_error:
1791                 /* UHHUH! A synchronous read error occurred. Report it */
1792                 put_page(page);
1793                 goto out;
1794
1795 no_cached_page:
1796                 /*
1797                  * Ok, it wasn't cached, so we need to create a new
1798                  * page..
1799                  */
1800                 page = page_cache_alloc_cold(mapping);
1801                 if (!page) {
1802                         error = -ENOMEM;
1803                         goto out;
1804                 }
1805                 error = add_to_page_cache_lru(page, mapping, index,
1806                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1807                 if (error) {
1808                         put_page(page);
1809                         if (error == -EEXIST) {
1810                                 error = 0;
1811                                 goto find_page;
1812                         }
1813                         goto out;
1814                 }
1815                 goto readpage;
1816         }
1817
1818 out:
1819         ra->prev_pos = prev_index;
1820         ra->prev_pos <<= PAGE_SHIFT;
1821         ra->prev_pos |= prev_offset;
1822
1823         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1824         file_accessed(filp);
1825         return written ? written : error;
1826 }
1827
1828 /**
1829  * generic_file_read_iter - generic filesystem read routine
1830  * @iocb:       kernel I/O control block
1831  * @iter:       destination for the data read
1832  *
1833  * This is the "read_iter()" routine for all filesystems
1834  * that can use the page cache directly.
1835  */
1836 ssize_t
1837 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1838 {
1839         struct file *file = iocb->ki_filp;
1840         ssize_t retval = 0;
1841         loff_t *ppos = &iocb->ki_pos;
1842         loff_t pos = *ppos;
1843         size_t count = iov_iter_count(iter);
1844
1845         if (!count)
1846                 goto out; /* skip atime */
1847
1848         if (iocb->ki_flags & IOCB_DIRECT) {
1849                 struct address_space *mapping = file->f_mapping;
1850                 struct inode *inode = mapping->host;
1851                 loff_t size;
1852
1853                 size = i_size_read(inode);
1854                 retval = filemap_write_and_wait_range(mapping, pos,
1855                                         pos + count - 1);
1856                 if (!retval) {
1857                         struct iov_iter data = *iter;
1858                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1859                 }
1860
1861                 if (retval > 0) {
1862                         *ppos = pos + retval;
1863                         iov_iter_advance(iter, retval);
1864                 }
1865
1866                 /*
1867                  * Btrfs can have a short DIO read if we encounter
1868                  * compressed extents, so if there was an error, or if
1869                  * we've already read everything we wanted to, or if
1870                  * there was a short read because we hit EOF, go ahead
1871                  * and return.  Otherwise fallthrough to buffered io for
1872                  * the rest of the read.  Buffered reads will not work for
1873                  * DAX files, so don't bother trying.
1874                  */
1875                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1876                     IS_DAX(inode)) {
1877                         file_accessed(file);
1878                         goto out;
1879                 }
1880         }
1881
1882         retval = do_generic_file_read(file, ppos, iter, retval);
1883 out:
1884         return retval;
1885 }
1886 EXPORT_SYMBOL(generic_file_read_iter);
1887
1888 #ifdef CONFIG_MMU
1889 /**
1890  * page_cache_read - adds requested page to the page cache if not already there
1891  * @file:       file to read
1892  * @offset:     page index
1893  * @gfp_mask:   memory allocation flags
1894  *
1895  * This adds the requested page to the page cache if it isn't already there,
1896  * and schedules an I/O to read in its contents from disk.
1897  */
1898 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1899 {
1900         struct address_space *mapping = file->f_mapping;
1901         struct page *page;
1902         int ret;
1903
1904         do {
1905                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1906                 if (!page)
1907                         return -ENOMEM;
1908
1909                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1910                 if (ret == 0)
1911                         ret = mapping->a_ops->readpage(file, page);
1912                 else if (ret == -EEXIST)
1913                         ret = 0; /* losing race to add is OK */
1914
1915                 put_page(page);
1916
1917         } while (ret == AOP_TRUNCATED_PAGE);
1918
1919         return ret;
1920 }
1921
1922 #define MMAP_LOTSAMISS  (100)
1923
1924 /*
1925  * Synchronous readahead happens when we don't even find
1926  * a page in the page cache at all.
1927  */
1928 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1929                                    struct file_ra_state *ra,
1930                                    struct file *file,
1931                                    pgoff_t offset)
1932 {
1933         struct address_space *mapping = file->f_mapping;
1934
1935         /* If we don't want any read-ahead, don't bother */
1936         if (vma->vm_flags & VM_RAND_READ)
1937                 return;
1938         if (!ra->ra_pages)
1939                 return;
1940
1941         if (vma->vm_flags & VM_SEQ_READ) {
1942                 page_cache_sync_readahead(mapping, ra, file, offset,
1943                                           ra->ra_pages);
1944                 return;
1945         }
1946
1947         /* Avoid banging the cache line if not needed */
1948         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1949                 ra->mmap_miss++;
1950
1951         /*
1952          * Do we miss much more than hit in this file? If so,
1953          * stop bothering with read-ahead. It will only hurt.
1954          */
1955         if (ra->mmap_miss > MMAP_LOTSAMISS)
1956                 return;
1957
1958         /*
1959          * mmap read-around
1960          */
1961         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1962         ra->size = ra->ra_pages;
1963         ra->async_size = ra->ra_pages / 4;
1964         ra_submit(ra, mapping, file);
1965 }
1966
1967 /*
1968  * Asynchronous readahead happens when we find the page and PG_readahead,
1969  * so we want to possibly extend the readahead further..
1970  */
1971 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1972                                     struct file_ra_state *ra,
1973                                     struct file *file,
1974                                     struct page *page,
1975                                     pgoff_t offset)
1976 {
1977         struct address_space *mapping = file->f_mapping;
1978
1979         /* If we don't want any read-ahead, don't bother */
1980         if (vma->vm_flags & VM_RAND_READ)
1981                 return;
1982         if (ra->mmap_miss > 0)
1983                 ra->mmap_miss--;
1984         if (PageReadahead(page))
1985                 page_cache_async_readahead(mapping, ra, file,
1986                                            page, offset, ra->ra_pages);
1987 }
1988
1989 /**
1990  * filemap_fault - read in file data for page fault handling
1991  * @vma:        vma in which the fault was taken
1992  * @vmf:        struct vm_fault containing details of the fault
1993  *
1994  * filemap_fault() is invoked via the vma operations vector for a
1995  * mapped memory region to read in file data during a page fault.
1996  *
1997  * The goto's are kind of ugly, but this streamlines the normal case of having
1998  * it in the page cache, and handles the special cases reasonably without
1999  * having a lot of duplicated code.
2000  *
2001  * vma->vm_mm->mmap_sem must be held on entry.
2002  *
2003  * If our return value has VM_FAULT_RETRY set, it's because
2004  * lock_page_or_retry() returned 0.
2005  * The mmap_sem has usually been released in this case.
2006  * See __lock_page_or_retry() for the exception.
2007  *
2008  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2009  * has not been released.
2010  *
2011  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2012  */
2013 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2014 {
2015         int error;
2016         struct file *file = vma->vm_file;
2017         struct address_space *mapping = file->f_mapping;
2018         struct file_ra_state *ra = &file->f_ra;
2019         struct inode *inode = mapping->host;
2020         pgoff_t offset = vmf->pgoff;
2021         struct page *page;
2022         loff_t size;
2023         int ret = 0;
2024
2025         size = round_up(i_size_read(inode), PAGE_SIZE);
2026         if (offset >= size >> PAGE_SHIFT)
2027                 return VM_FAULT_SIGBUS;
2028
2029         /*
2030          * Do we have something in the page cache already?
2031          */
2032         page = find_get_page(mapping, offset);
2033         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2034                 /*
2035                  * We found the page, so try async readahead before
2036                  * waiting for the lock.
2037                  */
2038                 do_async_mmap_readahead(vma, ra, file, page, offset);
2039         } else if (!page) {
2040                 /* No page in the page cache at all */
2041                 do_sync_mmap_readahead(vma, ra, file, offset);
2042                 count_vm_event(PGMAJFAULT);
2043                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2044                 ret = VM_FAULT_MAJOR;
2045 retry_find:
2046                 page = find_get_page(mapping, offset);
2047                 if (!page)
2048                         goto no_cached_page;
2049         }
2050
2051         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2052                 put_page(page);
2053                 return ret | VM_FAULT_RETRY;
2054         }
2055
2056         /* Did it get truncated? */
2057         if (unlikely(page->mapping != mapping)) {
2058                 unlock_page(page);
2059                 put_page(page);
2060                 goto retry_find;
2061         }
2062         VM_BUG_ON_PAGE(page->index != offset, page);
2063
2064         /*
2065          * We have a locked page in the page cache, now we need to check
2066          * that it's up-to-date. If not, it is going to be due to an error.
2067          */
2068         if (unlikely(!PageUptodate(page)))
2069                 goto page_not_uptodate;
2070
2071         /*
2072          * Found the page and have a reference on it.
2073          * We must recheck i_size under page lock.
2074          */
2075         size = round_up(i_size_read(inode), PAGE_SIZE);
2076         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2077                 unlock_page(page);
2078                 put_page(page);
2079                 return VM_FAULT_SIGBUS;
2080         }
2081
2082         vmf->page = page;
2083         return ret | VM_FAULT_LOCKED;
2084
2085 no_cached_page:
2086         /*
2087          * We're only likely to ever get here if MADV_RANDOM is in
2088          * effect.
2089          */
2090         error = page_cache_read(file, offset, vmf->gfp_mask);
2091
2092         /*
2093          * The page we want has now been added to the page cache.
2094          * In the unlikely event that someone removed it in the
2095          * meantime, we'll just come back here and read it again.
2096          */
2097         if (error >= 0)
2098                 goto retry_find;
2099
2100         /*
2101          * An error return from page_cache_read can result if the
2102          * system is low on memory, or a problem occurs while trying
2103          * to schedule I/O.
2104          */
2105         if (error == -ENOMEM)
2106                 return VM_FAULT_OOM;
2107         return VM_FAULT_SIGBUS;
2108
2109 page_not_uptodate:
2110         /*
2111          * Umm, take care of errors if the page isn't up-to-date.
2112          * Try to re-read it _once_. We do this synchronously,
2113          * because there really aren't any performance issues here
2114          * and we need to check for errors.
2115          */
2116         ClearPageError(page);
2117         error = mapping->a_ops->readpage(file, page);
2118         if (!error) {
2119                 wait_on_page_locked(page);
2120                 if (!PageUptodate(page))
2121                         error = -EIO;
2122         }
2123         put_page(page);
2124
2125         if (!error || error == AOP_TRUNCATED_PAGE)
2126                 goto retry_find;
2127
2128         /* Things didn't work out. Return zero to tell the mm layer so. */
2129         shrink_readahead_size_eio(file, ra);
2130         return VM_FAULT_SIGBUS;
2131 }
2132 EXPORT_SYMBOL(filemap_fault);
2133
2134 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2135 {
2136         struct radix_tree_iter iter;
2137         void **slot;
2138         struct file *file = vma->vm_file;
2139         struct address_space *mapping = file->f_mapping;
2140         loff_t size;
2141         struct page *page;
2142         unsigned long address = (unsigned long) vmf->virtual_address;
2143         unsigned long addr;
2144         pte_t *pte;
2145
2146         rcu_read_lock();
2147         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2148                 if (iter.index > vmf->max_pgoff)
2149                         break;
2150 repeat:
2151                 page = radix_tree_deref_slot(slot);
2152                 if (unlikely(!page))
2153                         goto next;
2154                 if (radix_tree_exception(page)) {
2155                         if (radix_tree_deref_retry(page)) {
2156                                 slot = radix_tree_iter_retry(&iter);
2157                                 continue;
2158                         }
2159                         goto next;
2160                 }
2161
2162                 if (!page_cache_get_speculative(page))
2163                         goto repeat;
2164
2165                 /* Has the page moved? */
2166                 if (unlikely(page != *slot)) {
2167                         put_page(page);
2168                         goto repeat;
2169                 }
2170
2171                 if (!PageUptodate(page) ||
2172                                 PageReadahead(page) ||
2173                                 PageHWPoison(page))
2174                         goto skip;
2175                 if (!trylock_page(page))
2176                         goto skip;
2177
2178                 if (page->mapping != mapping || !PageUptodate(page))
2179                         goto unlock;
2180
2181                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2182                 if (page->index >= size >> PAGE_SHIFT)
2183                         goto unlock;
2184
2185                 pte = vmf->pte + page->index - vmf->pgoff;
2186                 if (!pte_none(*pte))
2187                         goto unlock;
2188
2189                 if (file->f_ra.mmap_miss > 0)
2190                         file->f_ra.mmap_miss--;
2191                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2192                 do_set_pte(vma, addr, page, pte, false, false);
2193                 unlock_page(page);
2194                 goto next;
2195 unlock:
2196                 unlock_page(page);
2197 skip:
2198                 put_page(page);
2199 next:
2200                 if (iter.index == vmf->max_pgoff)
2201                         break;
2202         }
2203         rcu_read_unlock();
2204 }
2205 EXPORT_SYMBOL(filemap_map_pages);
2206
2207 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2208 {
2209         struct page *page = vmf->page;
2210         struct inode *inode = file_inode(vma->vm_file);
2211         int ret = VM_FAULT_LOCKED;
2212
2213         sb_start_pagefault(inode->i_sb);
2214         file_update_time(vma->vm_file);
2215         lock_page(page);
2216         if (page->mapping != inode->i_mapping) {
2217                 unlock_page(page);
2218                 ret = VM_FAULT_NOPAGE;
2219                 goto out;
2220         }
2221         /*
2222          * We mark the page dirty already here so that when freeze is in
2223          * progress, we are guaranteed that writeback during freezing will
2224          * see the dirty page and writeprotect it again.
2225          */
2226         set_page_dirty(page);
2227         wait_for_stable_page(page);
2228 out:
2229         sb_end_pagefault(inode->i_sb);
2230         return ret;
2231 }
2232 EXPORT_SYMBOL(filemap_page_mkwrite);
2233
2234 const struct vm_operations_struct generic_file_vm_ops = {
2235         .fault          = filemap_fault,
2236         .map_pages      = filemap_map_pages,
2237         .page_mkwrite   = filemap_page_mkwrite,
2238 };
2239
2240 /* This is used for a general mmap of a disk file */
2241
2242 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2243 {
2244         struct address_space *mapping = file->f_mapping;
2245
2246         if (!mapping->a_ops->readpage)
2247                 return -ENOEXEC;
2248         file_accessed(file);
2249         vma->vm_ops = &generic_file_vm_ops;
2250         return 0;
2251 }
2252
2253 /*
2254  * This is for filesystems which do not implement ->writepage.
2255  */
2256 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2257 {
2258         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2259                 return -EINVAL;
2260         return generic_file_mmap(file, vma);
2261 }
2262 #else
2263 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2264 {
2265         return -ENOSYS;
2266 }
2267 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2268 {
2269         return -ENOSYS;
2270 }
2271 #endif /* CONFIG_MMU */
2272
2273 EXPORT_SYMBOL(generic_file_mmap);
2274 EXPORT_SYMBOL(generic_file_readonly_mmap);
2275
2276 static struct page *wait_on_page_read(struct page *page)
2277 {
2278         if (!IS_ERR(page)) {
2279                 wait_on_page_locked(page);
2280                 if (!PageUptodate(page)) {
2281                         put_page(page);
2282                         page = ERR_PTR(-EIO);
2283                 }
2284         }
2285         return page;
2286 }
2287
2288 static struct page *do_read_cache_page(struct address_space *mapping,
2289                                 pgoff_t index,
2290                                 int (*filler)(void *, struct page *),
2291                                 void *data,
2292                                 gfp_t gfp)
2293 {
2294         struct page *page;
2295         int err;
2296 repeat:
2297         page = find_get_page(mapping, index);
2298         if (!page) {
2299                 page = __page_cache_alloc(gfp | __GFP_COLD);
2300                 if (!page)
2301                         return ERR_PTR(-ENOMEM);
2302                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2303                 if (unlikely(err)) {
2304                         put_page(page);
2305                         if (err == -EEXIST)
2306                                 goto repeat;
2307                         /* Presumably ENOMEM for radix tree node */
2308                         return ERR_PTR(err);
2309                 }
2310
2311 filler:
2312                 err = filler(data, page);
2313                 if (err < 0) {
2314                         put_page(page);
2315                         return ERR_PTR(err);
2316                 }
2317
2318                 page = wait_on_page_read(page);
2319                 if (IS_ERR(page))
2320                         return page;
2321                 goto out;
2322         }
2323         if (PageUptodate(page))
2324                 goto out;
2325
2326         /*
2327          * Page is not up to date and may be locked due one of the following
2328          * case a: Page is being filled and the page lock is held
2329          * case b: Read/write error clearing the page uptodate status
2330          * case c: Truncation in progress (page locked)
2331          * case d: Reclaim in progress
2332          *
2333          * Case a, the page will be up to date when the page is unlocked.
2334          *    There is no need to serialise on the page lock here as the page
2335          *    is pinned so the lock gives no additional protection. Even if the
2336          *    the page is truncated, the data is still valid if PageUptodate as
2337          *    it's a race vs truncate race.
2338          * Case b, the page will not be up to date
2339          * Case c, the page may be truncated but in itself, the data may still
2340          *    be valid after IO completes as it's a read vs truncate race. The
2341          *    operation must restart if the page is not uptodate on unlock but
2342          *    otherwise serialising on page lock to stabilise the mapping gives
2343          *    no additional guarantees to the caller as the page lock is
2344          *    released before return.
2345          * Case d, similar to truncation. If reclaim holds the page lock, it
2346          *    will be a race with remove_mapping that determines if the mapping
2347          *    is valid on unlock but otherwise the data is valid and there is
2348          *    no need to serialise with page lock.
2349          *
2350          * As the page lock gives no additional guarantee, we optimistically
2351          * wait on the page to be unlocked and check if it's up to date and
2352          * use the page if it is. Otherwise, the page lock is required to
2353          * distinguish between the different cases. The motivation is that we
2354          * avoid spurious serialisations and wakeups when multiple processes
2355          * wait on the same page for IO to complete.
2356          */
2357         wait_on_page_locked(page);
2358         if (PageUptodate(page))
2359                 goto out;
2360
2361         /* Distinguish between all the cases under the safety of the lock */
2362         lock_page(page);
2363
2364         /* Case c or d, restart the operation */
2365         if (!page->mapping) {
2366                 unlock_page(page);
2367                 put_page(page);
2368                 goto repeat;
2369         }
2370
2371         /* Someone else locked and filled the page in a very small window */
2372         if (PageUptodate(page)) {
2373                 unlock_page(page);
2374                 goto out;
2375         }
2376         goto filler;
2377
2378 out:
2379         mark_page_accessed(page);
2380         return page;
2381 }
2382
2383 /**
2384  * read_cache_page - read into page cache, fill it if needed
2385  * @mapping:    the page's address_space
2386  * @index:      the page index
2387  * @filler:     function to perform the read
2388  * @data:       first arg to filler(data, page) function, often left as NULL
2389  *
2390  * Read into the page cache. If a page already exists, and PageUptodate() is
2391  * not set, try to fill the page and wait for it to become unlocked.
2392  *
2393  * If the page does not get brought uptodate, return -EIO.
2394  */
2395 struct page *read_cache_page(struct address_space *mapping,
2396                                 pgoff_t index,
2397                                 int (*filler)(void *, struct page *),
2398                                 void *data)
2399 {
2400         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2401 }
2402 EXPORT_SYMBOL(read_cache_page);
2403
2404 /**
2405  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2406  * @mapping:    the page's address_space
2407  * @index:      the page index
2408  * @gfp:        the page allocator flags to use if allocating
2409  *
2410  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2411  * any new page allocations done using the specified allocation flags.
2412  *
2413  * If the page does not get brought uptodate, return -EIO.
2414  */
2415 struct page *read_cache_page_gfp(struct address_space *mapping,
2416                                 pgoff_t index,
2417                                 gfp_t gfp)
2418 {
2419         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2420
2421         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2422 }
2423 EXPORT_SYMBOL(read_cache_page_gfp);
2424
2425 /*
2426  * Performs necessary checks before doing a write
2427  *
2428  * Can adjust writing position or amount of bytes to write.
2429  * Returns appropriate error code that caller should return or
2430  * zero in case that write should be allowed.
2431  */
2432 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2433 {
2434         struct file *file = iocb->ki_filp;
2435         struct inode *inode = file->f_mapping->host;
2436         unsigned long limit = rlimit(RLIMIT_FSIZE);
2437         loff_t pos;
2438
2439         if (!iov_iter_count(from))
2440                 return 0;
2441
2442         /* FIXME: this is for backwards compatibility with 2.4 */
2443         if (iocb->ki_flags & IOCB_APPEND)
2444                 iocb->ki_pos = i_size_read(inode);
2445
2446         pos = iocb->ki_pos;
2447
2448         if (limit != RLIM_INFINITY) {
2449                 if (iocb->ki_pos >= limit) {
2450                         send_sig(SIGXFSZ, current, 0);
2451                         return -EFBIG;
2452                 }
2453                 iov_iter_truncate(from, limit - (unsigned long)pos);
2454         }
2455
2456         /*
2457          * LFS rule
2458          */
2459         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2460                                 !(file->f_flags & O_LARGEFILE))) {
2461                 if (pos >= MAX_NON_LFS)
2462                         return -EFBIG;
2463                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2464         }
2465
2466         /*
2467          * Are we about to exceed the fs block limit ?
2468          *
2469          * If we have written data it becomes a short write.  If we have
2470          * exceeded without writing data we send a signal and return EFBIG.
2471          * Linus frestrict idea will clean these up nicely..
2472          */
2473         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2474                 return -EFBIG;
2475
2476         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2477         return iov_iter_count(from);
2478 }
2479 EXPORT_SYMBOL(generic_write_checks);
2480
2481 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2482                                 loff_t pos, unsigned len, unsigned flags,
2483                                 struct page **pagep, void **fsdata)
2484 {
2485         const struct address_space_operations *aops = mapping->a_ops;
2486
2487         return aops->write_begin(file, mapping, pos, len, flags,
2488                                                         pagep, fsdata);
2489 }
2490 EXPORT_SYMBOL(pagecache_write_begin);
2491
2492 int pagecache_write_end(struct file *file, struct address_space *mapping,
2493                                 loff_t pos, unsigned len, unsigned copied,
2494                                 struct page *page, void *fsdata)
2495 {
2496         const struct address_space_operations *aops = mapping->a_ops;
2497
2498         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2499 }
2500 EXPORT_SYMBOL(pagecache_write_end);
2501
2502 ssize_t
2503 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2504 {
2505         struct file     *file = iocb->ki_filp;
2506         struct address_space *mapping = file->f_mapping;
2507         struct inode    *inode = mapping->host;
2508         ssize_t         written;
2509         size_t          write_len;
2510         pgoff_t         end;
2511         struct iov_iter data;
2512
2513         write_len = iov_iter_count(from);
2514         end = (pos + write_len - 1) >> PAGE_SHIFT;
2515
2516         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2517         if (written)
2518                 goto out;
2519
2520         /*
2521          * After a write we want buffered reads to be sure to go to disk to get
2522          * the new data.  We invalidate clean cached page from the region we're
2523          * about to write.  We do this *before* the write so that we can return
2524          * without clobbering -EIOCBQUEUED from ->direct_IO().
2525          */
2526         if (mapping->nrpages) {
2527                 written = invalidate_inode_pages2_range(mapping,
2528                                         pos >> PAGE_SHIFT, end);
2529                 /*
2530                  * If a page can not be invalidated, return 0 to fall back
2531                  * to buffered write.
2532                  */
2533                 if (written) {
2534                         if (written == -EBUSY)
2535                                 return 0;
2536                         goto out;
2537                 }
2538         }
2539
2540         data = *from;
2541         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2542
2543         /*
2544          * Finally, try again to invalidate clean pages which might have been
2545          * cached by non-direct readahead, or faulted in by get_user_pages()
2546          * if the source of the write was an mmap'ed region of the file
2547          * we're writing.  Either one is a pretty crazy thing to do,
2548          * so we don't support it 100%.  If this invalidation
2549          * fails, tough, the write still worked...
2550          */
2551         if (mapping->nrpages) {
2552                 invalidate_inode_pages2_range(mapping,
2553                                               pos >> PAGE_SHIFT, end);
2554         }
2555
2556         if (written > 0) {
2557                 pos += written;
2558                 iov_iter_advance(from, written);
2559                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2560                         i_size_write(inode, pos);
2561                         mark_inode_dirty(inode);
2562                 }
2563                 iocb->ki_pos = pos;
2564         }
2565 out:
2566         return written;
2567 }
2568 EXPORT_SYMBOL(generic_file_direct_write);
2569
2570 /*
2571  * Find or create a page at the given pagecache position. Return the locked
2572  * page. This function is specifically for buffered writes.
2573  */
2574 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2575                                         pgoff_t index, unsigned flags)
2576 {
2577         struct page *page;
2578         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2579
2580         if (flags & AOP_FLAG_NOFS)
2581                 fgp_flags |= FGP_NOFS;
2582
2583         page = pagecache_get_page(mapping, index, fgp_flags,
2584                         mapping_gfp_mask(mapping));
2585         if (page)
2586                 wait_for_stable_page(page);
2587
2588         return page;
2589 }
2590 EXPORT_SYMBOL(grab_cache_page_write_begin);
2591
2592 ssize_t generic_perform_write(struct file *file,
2593                                 struct iov_iter *i, loff_t pos)
2594 {
2595         struct address_space *mapping = file->f_mapping;
2596         const struct address_space_operations *a_ops = mapping->a_ops;
2597         long status = 0;
2598         ssize_t written = 0;
2599         unsigned int flags = 0;
2600
2601         /*
2602          * Copies from kernel address space cannot fail (NFSD is a big user).
2603          */
2604         if (!iter_is_iovec(i))
2605                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2606
2607         do {
2608                 struct page *page;
2609                 unsigned long offset;   /* Offset into pagecache page */
2610                 unsigned long bytes;    /* Bytes to write to page */
2611                 size_t copied;          /* Bytes copied from user */
2612                 void *fsdata;
2613
2614                 offset = (pos & (PAGE_SIZE - 1));
2615                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2616                                                 iov_iter_count(i));
2617
2618 again:
2619                 /*
2620                  * Bring in the user page that we will copy from _first_.
2621                  * Otherwise there's a nasty deadlock on copying from the
2622                  * same page as we're writing to, without it being marked
2623                  * up-to-date.
2624                  *
2625                  * Not only is this an optimisation, but it is also required
2626                  * to check that the address is actually valid, when atomic
2627                  * usercopies are used, below.
2628                  */
2629                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2630                         status = -EFAULT;
2631                         break;
2632                 }
2633
2634                 if (fatal_signal_pending(current)) {
2635                         status = -EINTR;
2636                         break;
2637                 }
2638
2639                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2640                                                 &page, &fsdata);
2641                 if (unlikely(status < 0))
2642                         break;
2643
2644                 if (mapping_writably_mapped(mapping))
2645                         flush_dcache_page(page);
2646
2647                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2648                 flush_dcache_page(page);
2649
2650                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2651                                                 page, fsdata);
2652                 if (unlikely(status < 0))
2653                         break;
2654                 copied = status;
2655
2656                 cond_resched();
2657
2658                 iov_iter_advance(i, copied);
2659                 if (unlikely(copied == 0)) {
2660                         /*
2661                          * If we were unable to copy any data at all, we must
2662                          * fall back to a single segment length write.
2663                          *
2664                          * If we didn't fallback here, we could livelock
2665                          * because not all segments in the iov can be copied at
2666                          * once without a pagefault.
2667                          */
2668                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2669                                                 iov_iter_single_seg_count(i));
2670                         goto again;
2671                 }
2672                 pos += copied;
2673                 written += copied;
2674
2675                 balance_dirty_pages_ratelimited(mapping);
2676         } while (iov_iter_count(i));
2677
2678         return written ? written : status;
2679 }
2680 EXPORT_SYMBOL(generic_perform_write);
2681
2682 /**
2683  * __generic_file_write_iter - write data to a file
2684  * @iocb:       IO state structure (file, offset, etc.)
2685  * @from:       iov_iter with data to write
2686  *
2687  * This function does all the work needed for actually writing data to a
2688  * file. It does all basic checks, removes SUID from the file, updates
2689  * modification times and calls proper subroutines depending on whether we
2690  * do direct IO or a standard buffered write.
2691  *
2692  * It expects i_mutex to be grabbed unless we work on a block device or similar
2693  * object which does not need locking at all.
2694  *
2695  * This function does *not* take care of syncing data in case of O_SYNC write.
2696  * A caller has to handle it. This is mainly due to the fact that we want to
2697  * avoid syncing under i_mutex.
2698  */
2699 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2700 {
2701         struct file *file = iocb->ki_filp;
2702         struct address_space * mapping = file->f_mapping;
2703         struct inode    *inode = mapping->host;
2704         ssize_t         written = 0;
2705         ssize_t         err;
2706         ssize_t         status;
2707
2708         /* We can write back this queue in page reclaim */
2709         current->backing_dev_info = inode_to_bdi(inode);
2710         err = file_remove_privs(file);
2711         if (err)
2712                 goto out;
2713
2714         err = file_update_time(file);
2715         if (err)
2716                 goto out;
2717
2718         if (iocb->ki_flags & IOCB_DIRECT) {
2719                 loff_t pos, endbyte;
2720
2721                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2722                 /*
2723                  * If the write stopped short of completing, fall back to
2724                  * buffered writes.  Some filesystems do this for writes to
2725                  * holes, for example.  For DAX files, a buffered write will
2726                  * not succeed (even if it did, DAX does not handle dirty
2727                  * page-cache pages correctly).
2728                  */
2729                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2730                         goto out;
2731
2732                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2733                 /*
2734                  * If generic_perform_write() returned a synchronous error
2735                  * then we want to return the number of bytes which were
2736                  * direct-written, or the error code if that was zero.  Note
2737                  * that this differs from normal direct-io semantics, which
2738                  * will return -EFOO even if some bytes were written.
2739                  */
2740                 if (unlikely(status < 0)) {
2741                         err = status;
2742                         goto out;
2743                 }
2744                 /*
2745                  * We need to ensure that the page cache pages are written to
2746                  * disk and invalidated to preserve the expected O_DIRECT
2747                  * semantics.
2748                  */
2749                 endbyte = pos + status - 1;
2750                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2751                 if (err == 0) {
2752                         iocb->ki_pos = endbyte + 1;
2753                         written += status;
2754                         invalidate_mapping_pages(mapping,
2755                                                  pos >> PAGE_SHIFT,
2756                                                  endbyte >> PAGE_SHIFT);
2757                 } else {
2758                         /*
2759                          * We don't know how much we wrote, so just return
2760                          * the number of bytes which were direct-written
2761                          */
2762                 }
2763         } else {
2764                 written = generic_perform_write(file, from, iocb->ki_pos);
2765                 if (likely(written > 0))
2766                         iocb->ki_pos += written;
2767         }
2768 out:
2769         current->backing_dev_info = NULL;
2770         return written ? written : err;
2771 }
2772 EXPORT_SYMBOL(__generic_file_write_iter);
2773
2774 /**
2775  * generic_file_write_iter - write data to a file
2776  * @iocb:       IO state structure
2777  * @from:       iov_iter with data to write
2778  *
2779  * This is a wrapper around __generic_file_write_iter() to be used by most
2780  * filesystems. It takes care of syncing the file in case of O_SYNC file
2781  * and acquires i_mutex as needed.
2782  */
2783 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2784 {
2785         struct file *file = iocb->ki_filp;
2786         struct inode *inode = file->f_mapping->host;
2787         ssize_t ret;
2788
2789         inode_lock(inode);
2790         ret = generic_write_checks(iocb, from);
2791         if (ret > 0)
2792                 ret = __generic_file_write_iter(iocb, from);
2793         inode_unlock(inode);
2794
2795         if (ret > 0) {
2796                 ssize_t err;
2797
2798                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2799                 if (err < 0)
2800                         ret = err;
2801         }
2802         return ret;
2803 }
2804 EXPORT_SYMBOL(generic_file_write_iter);
2805
2806 /**
2807  * try_to_release_page() - release old fs-specific metadata on a page
2808  *
2809  * @page: the page which the kernel is trying to free
2810  * @gfp_mask: memory allocation flags (and I/O mode)
2811  *
2812  * The address_space is to try to release any data against the page
2813  * (presumably at page->private).  If the release was successful, return `1'.
2814  * Otherwise return zero.
2815  *
2816  * This may also be called if PG_fscache is set on a page, indicating that the
2817  * page is known to the local caching routines.
2818  *
2819  * The @gfp_mask argument specifies whether I/O may be performed to release
2820  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2821  *
2822  */
2823 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2824 {
2825         struct address_space * const mapping = page->mapping;
2826
2827         BUG_ON(!PageLocked(page));
2828         if (PageWriteback(page))
2829                 return 0;
2830
2831         if (mapping && mapping->a_ops->releasepage)
2832                 return mapping->a_ops->releasepage(page, gfp_mask);
2833         return try_to_free_buffers(page);
2834 }
2835
2836 EXPORT_SYMBOL(try_to_release_page);