dfe55c2cfb34a94660f43f5294cfdf0ce3bf6f5c
[sfrench/cifs-2.6.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114                                    struct page *page, void *shadow)
115 {
116         struct radix_tree_node *node;
117         unsigned long index;
118         unsigned int offset;
119         unsigned int tag;
120         void **slot;
121
122         VM_BUG_ON(!PageLocked(page));
123
124         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126         if (shadow) {
127                 mapping->nrexceptional++;
128                 /*
129                  * Make sure the nrexceptional update is committed before
130                  * the nrpages update so that final truncate racing
131                  * with reclaim does not see both counters 0 at the
132                  * same time and miss a shadow entry.
133                  */
134                 smp_wmb();
135         }
136         mapping->nrpages--;
137
138         if (!node) {
139                 /* Clear direct pointer tags in root node */
140                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141                 radix_tree_replace_slot(slot, shadow);
142                 return;
143         }
144
145         /* Clear tree tags for the removed page */
146         index = page->index;
147         offset = index & RADIX_TREE_MAP_MASK;
148         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149                 if (test_bit(offset, node->tags[tag]))
150                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
151         }
152
153         /* Delete page, swap shadow entry */
154         radix_tree_replace_slot(slot, shadow);
155         workingset_node_pages_dec(node);
156         if (shadow)
157                 workingset_node_shadows_inc(node);
158         else
159                 if (__radix_tree_delete_node(&mapping->page_tree, node))
160                         return;
161
162         /*
163          * Track node that only contains shadow entries.
164          *
165          * Avoid acquiring the list_lru lock if already tracked.  The
166          * list_empty() test is safe as node->private_list is
167          * protected by mapping->tree_lock.
168          */
169         if (!workingset_node_pages(node) &&
170             list_empty(&node->private_list)) {
171                 node->private_data = mapping;
172                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173         }
174 }
175
176 /*
177  * Delete a page from the page cache and free it. Caller has to make
178  * sure the page is locked and that nobody else uses it - or that usage
179  * is safe.  The caller must hold the mapping's tree_lock.
180  */
181 void __delete_from_page_cache(struct page *page, void *shadow)
182 {
183         struct address_space *mapping = page->mapping;
184
185         trace_mm_filemap_delete_from_page_cache(page);
186         /*
187          * if we're uptodate, flush out into the cleancache, otherwise
188          * invalidate any existing cleancache entries.  We can't leave
189          * stale data around in the cleancache once our page is gone
190          */
191         if (PageUptodate(page) && PageMappedToDisk(page))
192                 cleancache_put_page(page);
193         else
194                 cleancache_invalidate_page(mapping, page);
195
196         VM_BUG_ON_PAGE(page_mapped(page), page);
197         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
198                 int mapcount;
199
200                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
201                          current->comm, page_to_pfn(page));
202                 dump_page(page, "still mapped when deleted");
203                 dump_stack();
204                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
205
206                 mapcount = page_mapcount(page);
207                 if (mapping_exiting(mapping) &&
208                     page_count(page) >= mapcount + 2) {
209                         /*
210                          * All vmas have already been torn down, so it's
211                          * a good bet that actually the page is unmapped,
212                          * and we'd prefer not to leak it: if we're wrong,
213                          * some other bad page check should catch it later.
214                          */
215                         page_mapcount_reset(page);
216                         atomic_sub(mapcount, &page->_count);
217                 }
218         }
219
220         page_cache_tree_delete(mapping, page, shadow);
221
222         page->mapping = NULL;
223         /* Leave page->index set: truncation lookup relies upon it */
224
225         /* hugetlb pages do not participate in page cache accounting. */
226         if (!PageHuge(page))
227                 __dec_zone_page_state(page, NR_FILE_PAGES);
228         if (PageSwapBacked(page))
229                 __dec_zone_page_state(page, NR_SHMEM);
230
231         /*
232          * At this point page must be either written or cleaned by truncate.
233          * Dirty page here signals a bug and loss of unwritten data.
234          *
235          * This fixes dirty accounting after removing the page entirely but
236          * leaves PageDirty set: it has no effect for truncated page and
237          * anyway will be cleared before returning page into buddy allocator.
238          */
239         if (WARN_ON_ONCE(PageDirty(page)))
240                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
241 }
242
243 /**
244  * delete_from_page_cache - delete page from page cache
245  * @page: the page which the kernel is trying to remove from page cache
246  *
247  * This must be called only on pages that have been verified to be in the page
248  * cache and locked.  It will never put the page into the free list, the caller
249  * has a reference on the page.
250  */
251 void delete_from_page_cache(struct page *page)
252 {
253         struct address_space *mapping = page->mapping;
254         unsigned long flags;
255
256         void (*freepage)(struct page *);
257
258         BUG_ON(!PageLocked(page));
259
260         freepage = mapping->a_ops->freepage;
261
262         spin_lock_irqsave(&mapping->tree_lock, flags);
263         __delete_from_page_cache(page, NULL);
264         spin_unlock_irqrestore(&mapping->tree_lock, flags);
265
266         if (freepage)
267                 freepage(page);
268         put_page(page);
269 }
270 EXPORT_SYMBOL(delete_from_page_cache);
271
272 static int filemap_check_errors(struct address_space *mapping)
273 {
274         int ret = 0;
275         /* Check for outstanding write errors */
276         if (test_bit(AS_ENOSPC, &mapping->flags) &&
277             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
278                 ret = -ENOSPC;
279         if (test_bit(AS_EIO, &mapping->flags) &&
280             test_and_clear_bit(AS_EIO, &mapping->flags))
281                 ret = -EIO;
282         return ret;
283 }
284
285 /**
286  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
287  * @mapping:    address space structure to write
288  * @start:      offset in bytes where the range starts
289  * @end:        offset in bytes where the range ends (inclusive)
290  * @sync_mode:  enable synchronous operation
291  *
292  * Start writeback against all of a mapping's dirty pages that lie
293  * within the byte offsets <start, end> inclusive.
294  *
295  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
296  * opposed to a regular memory cleansing writeback.  The difference between
297  * these two operations is that if a dirty page/buffer is encountered, it must
298  * be waited upon, and not just skipped over.
299  */
300 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301                                 loff_t end, int sync_mode)
302 {
303         int ret;
304         struct writeback_control wbc = {
305                 .sync_mode = sync_mode,
306                 .nr_to_write = LONG_MAX,
307                 .range_start = start,
308                 .range_end = end,
309         };
310
311         if (!mapping_cap_writeback_dirty(mapping))
312                 return 0;
313
314         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
315         ret = do_writepages(mapping, &wbc);
316         wbc_detach_inode(&wbc);
317         return ret;
318 }
319
320 static inline int __filemap_fdatawrite(struct address_space *mapping,
321         int sync_mode)
322 {
323         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
324 }
325
326 int filemap_fdatawrite(struct address_space *mapping)
327 {
328         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
329 }
330 EXPORT_SYMBOL(filemap_fdatawrite);
331
332 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333                                 loff_t end)
334 {
335         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
336 }
337 EXPORT_SYMBOL(filemap_fdatawrite_range);
338
339 /**
340  * filemap_flush - mostly a non-blocking flush
341  * @mapping:    target address_space
342  *
343  * This is a mostly non-blocking flush.  Not suitable for data-integrity
344  * purposes - I/O may not be started against all dirty pages.
345  */
346 int filemap_flush(struct address_space *mapping)
347 {
348         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
349 }
350 EXPORT_SYMBOL(filemap_flush);
351
352 static int __filemap_fdatawait_range(struct address_space *mapping,
353                                      loff_t start_byte, loff_t end_byte)
354 {
355         pgoff_t index = start_byte >> PAGE_SHIFT;
356         pgoff_t end = end_byte >> PAGE_SHIFT;
357         struct pagevec pvec;
358         int nr_pages;
359         int ret = 0;
360
361         if (end_byte < start_byte)
362                 goto out;
363
364         pagevec_init(&pvec, 0);
365         while ((index <= end) &&
366                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
367                         PAGECACHE_TAG_WRITEBACK,
368                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
369                 unsigned i;
370
371                 for (i = 0; i < nr_pages; i++) {
372                         struct page *page = pvec.pages[i];
373
374                         /* until radix tree lookup accepts end_index */
375                         if (page->index > end)
376                                 continue;
377
378                         wait_on_page_writeback(page);
379                         if (TestClearPageError(page))
380                                 ret = -EIO;
381                 }
382                 pagevec_release(&pvec);
383                 cond_resched();
384         }
385 out:
386         return ret;
387 }
388
389 /**
390  * filemap_fdatawait_range - wait for writeback to complete
391  * @mapping:            address space structure to wait for
392  * @start_byte:         offset in bytes where the range starts
393  * @end_byte:           offset in bytes where the range ends (inclusive)
394  *
395  * Walk the list of under-writeback pages of the given address space
396  * in the given range and wait for all of them.  Check error status of
397  * the address space and return it.
398  *
399  * Since the error status of the address space is cleared by this function,
400  * callers are responsible for checking the return value and handling and/or
401  * reporting the error.
402  */
403 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
404                             loff_t end_byte)
405 {
406         int ret, ret2;
407
408         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
409         ret2 = filemap_check_errors(mapping);
410         if (!ret)
411                 ret = ret2;
412
413         return ret;
414 }
415 EXPORT_SYMBOL(filemap_fdatawait_range);
416
417 /**
418  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
419  * @mapping: address space structure to wait for
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * and wait for all of them.  Unlike filemap_fdatawait(), this function
423  * does not clear error status of the address space.
424  *
425  * Use this function if callers don't handle errors themselves.  Expected
426  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
427  * fsfreeze(8)
428  */
429 void filemap_fdatawait_keep_errors(struct address_space *mapping)
430 {
431         loff_t i_size = i_size_read(mapping->host);
432
433         if (i_size == 0)
434                 return;
435
436         __filemap_fdatawait_range(mapping, 0, i_size - 1);
437 }
438
439 /**
440  * filemap_fdatawait - wait for all under-writeback pages to complete
441  * @mapping: address space structure to wait for
442  *
443  * Walk the list of under-writeback pages of the given address space
444  * and wait for all of them.  Check error status of the address space
445  * and return it.
446  *
447  * Since the error status of the address space is cleared by this function,
448  * callers are responsible for checking the return value and handling and/or
449  * reporting the error.
450  */
451 int filemap_fdatawait(struct address_space *mapping)
452 {
453         loff_t i_size = i_size_read(mapping->host);
454
455         if (i_size == 0)
456                 return 0;
457
458         return filemap_fdatawait_range(mapping, 0, i_size - 1);
459 }
460 EXPORT_SYMBOL(filemap_fdatawait);
461
462 int filemap_write_and_wait(struct address_space *mapping)
463 {
464         int err = 0;
465
466         if ((!dax_mapping(mapping) && mapping->nrpages) ||
467             (dax_mapping(mapping) && mapping->nrexceptional)) {
468                 err = filemap_fdatawrite(mapping);
469                 /*
470                  * Even if the above returned error, the pages may be
471                  * written partially (e.g. -ENOSPC), so we wait for it.
472                  * But the -EIO is special case, it may indicate the worst
473                  * thing (e.g. bug) happened, so we avoid waiting for it.
474                  */
475                 if (err != -EIO) {
476                         int err2 = filemap_fdatawait(mapping);
477                         if (!err)
478                                 err = err2;
479                 }
480         } else {
481                 err = filemap_check_errors(mapping);
482         }
483         return err;
484 }
485 EXPORT_SYMBOL(filemap_write_and_wait);
486
487 /**
488  * filemap_write_and_wait_range - write out & wait on a file range
489  * @mapping:    the address_space for the pages
490  * @lstart:     offset in bytes where the range starts
491  * @lend:       offset in bytes where the range ends (inclusive)
492  *
493  * Write out and wait upon file offsets lstart->lend, inclusive.
494  *
495  * Note that `lend' is inclusive (describes the last byte to be written) so
496  * that this function can be used to write to the very end-of-file (end = -1).
497  */
498 int filemap_write_and_wait_range(struct address_space *mapping,
499                                  loff_t lstart, loff_t lend)
500 {
501         int err = 0;
502
503         if ((!dax_mapping(mapping) && mapping->nrpages) ||
504             (dax_mapping(mapping) && mapping->nrexceptional)) {
505                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
506                                                  WB_SYNC_ALL);
507                 /* See comment of filemap_write_and_wait() */
508                 if (err != -EIO) {
509                         int err2 = filemap_fdatawait_range(mapping,
510                                                 lstart, lend);
511                         if (!err)
512                                 err = err2;
513                 }
514         } else {
515                 err = filemap_check_errors(mapping);
516         }
517         return err;
518 }
519 EXPORT_SYMBOL(filemap_write_and_wait_range);
520
521 /**
522  * replace_page_cache_page - replace a pagecache page with a new one
523  * @old:        page to be replaced
524  * @new:        page to replace with
525  * @gfp_mask:   allocation mode
526  *
527  * This function replaces a page in the pagecache with a new one.  On
528  * success it acquires the pagecache reference for the new page and
529  * drops it for the old page.  Both the old and new pages must be
530  * locked.  This function does not add the new page to the LRU, the
531  * caller must do that.
532  *
533  * The remove + add is atomic.  The only way this function can fail is
534  * memory allocation failure.
535  */
536 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
537 {
538         int error;
539
540         VM_BUG_ON_PAGE(!PageLocked(old), old);
541         VM_BUG_ON_PAGE(!PageLocked(new), new);
542         VM_BUG_ON_PAGE(new->mapping, new);
543
544         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
545         if (!error) {
546                 struct address_space *mapping = old->mapping;
547                 void (*freepage)(struct page *);
548                 unsigned long flags;
549
550                 pgoff_t offset = old->index;
551                 freepage = mapping->a_ops->freepage;
552
553                 get_page(new);
554                 new->mapping = mapping;
555                 new->index = offset;
556
557                 spin_lock_irqsave(&mapping->tree_lock, flags);
558                 __delete_from_page_cache(old, NULL);
559                 error = radix_tree_insert(&mapping->page_tree, offset, new);
560                 BUG_ON(error);
561                 mapping->nrpages++;
562
563                 /*
564                  * hugetlb pages do not participate in page cache accounting.
565                  */
566                 if (!PageHuge(new))
567                         __inc_zone_page_state(new, NR_FILE_PAGES);
568                 if (PageSwapBacked(new))
569                         __inc_zone_page_state(new, NR_SHMEM);
570                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
571                 mem_cgroup_migrate(old, new);
572                 radix_tree_preload_end();
573                 if (freepage)
574                         freepage(old);
575                 put_page(old);
576         }
577
578         return error;
579 }
580 EXPORT_SYMBOL_GPL(replace_page_cache_page);
581
582 static int page_cache_tree_insert(struct address_space *mapping,
583                                   struct page *page, void **shadowp)
584 {
585         struct radix_tree_node *node;
586         void **slot;
587         int error;
588
589         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
590                                     &node, &slot);
591         if (error)
592                 return error;
593         if (*slot) {
594                 void *p;
595
596                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
597                 if (!radix_tree_exceptional_entry(p))
598                         return -EEXIST;
599
600                 mapping->nrexceptional--;
601                 if (!dax_mapping(mapping)) {
602                         if (shadowp)
603                                 *shadowp = p;
604                         if (node)
605                                 workingset_node_shadows_dec(node);
606                 } else {
607                         /* DAX can replace empty locked entry with a hole */
608                         WARN_ON_ONCE(p !=
609                                 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
610                                          RADIX_DAX_ENTRY_LOCK));
611                         /* DAX accounts exceptional entries as normal pages */
612                         if (node)
613                                 workingset_node_pages_dec(node);
614                 }
615         }
616         radix_tree_replace_slot(slot, page);
617         mapping->nrpages++;
618         if (node) {
619                 workingset_node_pages_inc(node);
620                 /*
621                  * Don't track node that contains actual pages.
622                  *
623                  * Avoid acquiring the list_lru lock if already
624                  * untracked.  The list_empty() test is safe as
625                  * node->private_list is protected by
626                  * mapping->tree_lock.
627                  */
628                 if (!list_empty(&node->private_list))
629                         list_lru_del(&workingset_shadow_nodes,
630                                      &node->private_list);
631         }
632         return 0;
633 }
634
635 static int __add_to_page_cache_locked(struct page *page,
636                                       struct address_space *mapping,
637                                       pgoff_t offset, gfp_t gfp_mask,
638                                       void **shadowp)
639 {
640         int huge = PageHuge(page);
641         struct mem_cgroup *memcg;
642         int error;
643
644         VM_BUG_ON_PAGE(!PageLocked(page), page);
645         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
646
647         if (!huge) {
648                 error = mem_cgroup_try_charge(page, current->mm,
649                                               gfp_mask, &memcg, false);
650                 if (error)
651                         return error;
652         }
653
654         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
655         if (error) {
656                 if (!huge)
657                         mem_cgroup_cancel_charge(page, memcg, false);
658                 return error;
659         }
660
661         get_page(page);
662         page->mapping = mapping;
663         page->index = offset;
664
665         spin_lock_irq(&mapping->tree_lock);
666         error = page_cache_tree_insert(mapping, page, shadowp);
667         radix_tree_preload_end();
668         if (unlikely(error))
669                 goto err_insert;
670
671         /* hugetlb pages do not participate in page cache accounting. */
672         if (!huge)
673                 __inc_zone_page_state(page, NR_FILE_PAGES);
674         spin_unlock_irq(&mapping->tree_lock);
675         if (!huge)
676                 mem_cgroup_commit_charge(page, memcg, false, false);
677         trace_mm_filemap_add_to_page_cache(page);
678         return 0;
679 err_insert:
680         page->mapping = NULL;
681         /* Leave page->index set: truncation relies upon it */
682         spin_unlock_irq(&mapping->tree_lock);
683         if (!huge)
684                 mem_cgroup_cancel_charge(page, memcg, false);
685         put_page(page);
686         return error;
687 }
688
689 /**
690  * add_to_page_cache_locked - add a locked page to the pagecache
691  * @page:       page to add
692  * @mapping:    the page's address_space
693  * @offset:     page index
694  * @gfp_mask:   page allocation mode
695  *
696  * This function is used to add a page to the pagecache. It must be locked.
697  * This function does not add the page to the LRU.  The caller must do that.
698  */
699 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
700                 pgoff_t offset, gfp_t gfp_mask)
701 {
702         return __add_to_page_cache_locked(page, mapping, offset,
703                                           gfp_mask, NULL);
704 }
705 EXPORT_SYMBOL(add_to_page_cache_locked);
706
707 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
708                                 pgoff_t offset, gfp_t gfp_mask)
709 {
710         void *shadow = NULL;
711         int ret;
712
713         __SetPageLocked(page);
714         ret = __add_to_page_cache_locked(page, mapping, offset,
715                                          gfp_mask, &shadow);
716         if (unlikely(ret))
717                 __ClearPageLocked(page);
718         else {
719                 /*
720                  * The page might have been evicted from cache only
721                  * recently, in which case it should be activated like
722                  * any other repeatedly accessed page.
723                  */
724                 if (shadow && workingset_refault(shadow)) {
725                         SetPageActive(page);
726                         workingset_activation(page);
727                 } else
728                         ClearPageActive(page);
729                 lru_cache_add(page);
730         }
731         return ret;
732 }
733 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
734
735 #ifdef CONFIG_NUMA
736 struct page *__page_cache_alloc(gfp_t gfp)
737 {
738         int n;
739         struct page *page;
740
741         if (cpuset_do_page_mem_spread()) {
742                 unsigned int cpuset_mems_cookie;
743                 do {
744                         cpuset_mems_cookie = read_mems_allowed_begin();
745                         n = cpuset_mem_spread_node();
746                         page = __alloc_pages_node(n, gfp, 0);
747                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
748
749                 return page;
750         }
751         return alloc_pages(gfp, 0);
752 }
753 EXPORT_SYMBOL(__page_cache_alloc);
754 #endif
755
756 /*
757  * In order to wait for pages to become available there must be
758  * waitqueues associated with pages. By using a hash table of
759  * waitqueues where the bucket discipline is to maintain all
760  * waiters on the same queue and wake all when any of the pages
761  * become available, and for the woken contexts to check to be
762  * sure the appropriate page became available, this saves space
763  * at a cost of "thundering herd" phenomena during rare hash
764  * collisions.
765  */
766 wait_queue_head_t *page_waitqueue(struct page *page)
767 {
768         const struct zone *zone = page_zone(page);
769
770         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
771 }
772 EXPORT_SYMBOL(page_waitqueue);
773
774 void wait_on_page_bit(struct page *page, int bit_nr)
775 {
776         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
777
778         if (test_bit(bit_nr, &page->flags))
779                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
780                                                         TASK_UNINTERRUPTIBLE);
781 }
782 EXPORT_SYMBOL(wait_on_page_bit);
783
784 int wait_on_page_bit_killable(struct page *page, int bit_nr)
785 {
786         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
787
788         if (!test_bit(bit_nr, &page->flags))
789                 return 0;
790
791         return __wait_on_bit(page_waitqueue(page), &wait,
792                              bit_wait_io, TASK_KILLABLE);
793 }
794
795 int wait_on_page_bit_killable_timeout(struct page *page,
796                                        int bit_nr, unsigned long timeout)
797 {
798         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
799
800         wait.key.timeout = jiffies + timeout;
801         if (!test_bit(bit_nr, &page->flags))
802                 return 0;
803         return __wait_on_bit(page_waitqueue(page), &wait,
804                              bit_wait_io_timeout, TASK_KILLABLE);
805 }
806 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
807
808 /**
809  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
810  * @page: Page defining the wait queue of interest
811  * @waiter: Waiter to add to the queue
812  *
813  * Add an arbitrary @waiter to the wait queue for the nominated @page.
814  */
815 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
816 {
817         wait_queue_head_t *q = page_waitqueue(page);
818         unsigned long flags;
819
820         spin_lock_irqsave(&q->lock, flags);
821         __add_wait_queue(q, waiter);
822         spin_unlock_irqrestore(&q->lock, flags);
823 }
824 EXPORT_SYMBOL_GPL(add_page_wait_queue);
825
826 /**
827  * unlock_page - unlock a locked page
828  * @page: the page
829  *
830  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
831  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
832  * mechanism between PageLocked pages and PageWriteback pages is shared.
833  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
834  *
835  * The mb is necessary to enforce ordering between the clear_bit and the read
836  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
837  */
838 void unlock_page(struct page *page)
839 {
840         page = compound_head(page);
841         VM_BUG_ON_PAGE(!PageLocked(page), page);
842         clear_bit_unlock(PG_locked, &page->flags);
843         smp_mb__after_atomic();
844         wake_up_page(page, PG_locked);
845 }
846 EXPORT_SYMBOL(unlock_page);
847
848 /**
849  * end_page_writeback - end writeback against a page
850  * @page: the page
851  */
852 void end_page_writeback(struct page *page)
853 {
854         /*
855          * TestClearPageReclaim could be used here but it is an atomic
856          * operation and overkill in this particular case. Failing to
857          * shuffle a page marked for immediate reclaim is too mild to
858          * justify taking an atomic operation penalty at the end of
859          * ever page writeback.
860          */
861         if (PageReclaim(page)) {
862                 ClearPageReclaim(page);
863                 rotate_reclaimable_page(page);
864         }
865
866         if (!test_clear_page_writeback(page))
867                 BUG();
868
869         smp_mb__after_atomic();
870         wake_up_page(page, PG_writeback);
871 }
872 EXPORT_SYMBOL(end_page_writeback);
873
874 /*
875  * After completing I/O on a page, call this routine to update the page
876  * flags appropriately
877  */
878 void page_endio(struct page *page, int rw, int err)
879 {
880         if (rw == READ) {
881                 if (!err) {
882                         SetPageUptodate(page);
883                 } else {
884                         ClearPageUptodate(page);
885                         SetPageError(page);
886                 }
887                 unlock_page(page);
888         } else { /* rw == WRITE */
889                 if (err) {
890                         SetPageError(page);
891                         if (page->mapping)
892                                 mapping_set_error(page->mapping, err);
893                 }
894                 end_page_writeback(page);
895         }
896 }
897 EXPORT_SYMBOL_GPL(page_endio);
898
899 /**
900  * __lock_page - get a lock on the page, assuming we need to sleep to get it
901  * @page: the page to lock
902  */
903 void __lock_page(struct page *page)
904 {
905         struct page *page_head = compound_head(page);
906         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
907
908         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
909                                                         TASK_UNINTERRUPTIBLE);
910 }
911 EXPORT_SYMBOL(__lock_page);
912
913 int __lock_page_killable(struct page *page)
914 {
915         struct page *page_head = compound_head(page);
916         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
917
918         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
919                                         bit_wait_io, TASK_KILLABLE);
920 }
921 EXPORT_SYMBOL_GPL(__lock_page_killable);
922
923 /*
924  * Return values:
925  * 1 - page is locked; mmap_sem is still held.
926  * 0 - page is not locked.
927  *     mmap_sem has been released (up_read()), unless flags had both
928  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
929  *     which case mmap_sem is still held.
930  *
931  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
932  * with the page locked and the mmap_sem unperturbed.
933  */
934 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
935                          unsigned int flags)
936 {
937         if (flags & FAULT_FLAG_ALLOW_RETRY) {
938                 /*
939                  * CAUTION! In this case, mmap_sem is not released
940                  * even though return 0.
941                  */
942                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
943                         return 0;
944
945                 up_read(&mm->mmap_sem);
946                 if (flags & FAULT_FLAG_KILLABLE)
947                         wait_on_page_locked_killable(page);
948                 else
949                         wait_on_page_locked(page);
950                 return 0;
951         } else {
952                 if (flags & FAULT_FLAG_KILLABLE) {
953                         int ret;
954
955                         ret = __lock_page_killable(page);
956                         if (ret) {
957                                 up_read(&mm->mmap_sem);
958                                 return 0;
959                         }
960                 } else
961                         __lock_page(page);
962                 return 1;
963         }
964 }
965
966 /**
967  * page_cache_next_hole - find the next hole (not-present entry)
968  * @mapping: mapping
969  * @index: index
970  * @max_scan: maximum range to search
971  *
972  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
973  * lowest indexed hole.
974  *
975  * Returns: the index of the hole if found, otherwise returns an index
976  * outside of the set specified (in which case 'return - index >=
977  * max_scan' will be true). In rare cases of index wrap-around, 0 will
978  * be returned.
979  *
980  * page_cache_next_hole may be called under rcu_read_lock. However,
981  * like radix_tree_gang_lookup, this will not atomically search a
982  * snapshot of the tree at a single point in time. For example, if a
983  * hole is created at index 5, then subsequently a hole is created at
984  * index 10, page_cache_next_hole covering both indexes may return 10
985  * if called under rcu_read_lock.
986  */
987 pgoff_t page_cache_next_hole(struct address_space *mapping,
988                              pgoff_t index, unsigned long max_scan)
989 {
990         unsigned long i;
991
992         for (i = 0; i < max_scan; i++) {
993                 struct page *page;
994
995                 page = radix_tree_lookup(&mapping->page_tree, index);
996                 if (!page || radix_tree_exceptional_entry(page))
997                         break;
998                 index++;
999                 if (index == 0)
1000                         break;
1001         }
1002
1003         return index;
1004 }
1005 EXPORT_SYMBOL(page_cache_next_hole);
1006
1007 /**
1008  * page_cache_prev_hole - find the prev hole (not-present entry)
1009  * @mapping: mapping
1010  * @index: index
1011  * @max_scan: maximum range to search
1012  *
1013  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1014  * the first hole.
1015  *
1016  * Returns: the index of the hole if found, otherwise returns an index
1017  * outside of the set specified (in which case 'index - return >=
1018  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1019  * will be returned.
1020  *
1021  * page_cache_prev_hole may be called under rcu_read_lock. However,
1022  * like radix_tree_gang_lookup, this will not atomically search a
1023  * snapshot of the tree at a single point in time. For example, if a
1024  * hole is created at index 10, then subsequently a hole is created at
1025  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1026  * called under rcu_read_lock.
1027  */
1028 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1029                              pgoff_t index, unsigned long max_scan)
1030 {
1031         unsigned long i;
1032
1033         for (i = 0; i < max_scan; i++) {
1034                 struct page *page;
1035
1036                 page = radix_tree_lookup(&mapping->page_tree, index);
1037                 if (!page || radix_tree_exceptional_entry(page))
1038                         break;
1039                 index--;
1040                 if (index == ULONG_MAX)
1041                         break;
1042         }
1043
1044         return index;
1045 }
1046 EXPORT_SYMBOL(page_cache_prev_hole);
1047
1048 /**
1049  * find_get_entry - find and get a page cache entry
1050  * @mapping: the address_space to search
1051  * @offset: the page cache index
1052  *
1053  * Looks up the page cache slot at @mapping & @offset.  If there is a
1054  * page cache page, it is returned with an increased refcount.
1055  *
1056  * If the slot holds a shadow entry of a previously evicted page, or a
1057  * swap entry from shmem/tmpfs, it is returned.
1058  *
1059  * Otherwise, %NULL is returned.
1060  */
1061 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1062 {
1063         void **pagep;
1064         struct page *page;
1065
1066         rcu_read_lock();
1067 repeat:
1068         page = NULL;
1069         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1070         if (pagep) {
1071                 page = radix_tree_deref_slot(pagep);
1072                 if (unlikely(!page))
1073                         goto out;
1074                 if (radix_tree_exception(page)) {
1075                         if (radix_tree_deref_retry(page))
1076                                 goto repeat;
1077                         /*
1078                          * A shadow entry of a recently evicted page,
1079                          * or a swap entry from shmem/tmpfs.  Return
1080                          * it without attempting to raise page count.
1081                          */
1082                         goto out;
1083                 }
1084                 if (!page_cache_get_speculative(page))
1085                         goto repeat;
1086
1087                 /*
1088                  * Has the page moved?
1089                  * This is part of the lockless pagecache protocol. See
1090                  * include/linux/pagemap.h for details.
1091                  */
1092                 if (unlikely(page != *pagep)) {
1093                         put_page(page);
1094                         goto repeat;
1095                 }
1096         }
1097 out:
1098         rcu_read_unlock();
1099
1100         return page;
1101 }
1102 EXPORT_SYMBOL(find_get_entry);
1103
1104 /**
1105  * find_lock_entry - locate, pin and lock a page cache entry
1106  * @mapping: the address_space to search
1107  * @offset: the page cache index
1108  *
1109  * Looks up the page cache slot at @mapping & @offset.  If there is a
1110  * page cache page, it is returned locked and with an increased
1111  * refcount.
1112  *
1113  * If the slot holds a shadow entry of a previously evicted page, or a
1114  * swap entry from shmem/tmpfs, it is returned.
1115  *
1116  * Otherwise, %NULL is returned.
1117  *
1118  * find_lock_entry() may sleep.
1119  */
1120 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1121 {
1122         struct page *page;
1123
1124 repeat:
1125         page = find_get_entry(mapping, offset);
1126         if (page && !radix_tree_exception(page)) {
1127                 lock_page(page);
1128                 /* Has the page been truncated? */
1129                 if (unlikely(page->mapping != mapping)) {
1130                         unlock_page(page);
1131                         put_page(page);
1132                         goto repeat;
1133                 }
1134                 VM_BUG_ON_PAGE(page->index != offset, page);
1135         }
1136         return page;
1137 }
1138 EXPORT_SYMBOL(find_lock_entry);
1139
1140 /**
1141  * pagecache_get_page - find and get a page reference
1142  * @mapping: the address_space to search
1143  * @offset: the page index
1144  * @fgp_flags: PCG flags
1145  * @gfp_mask: gfp mask to use for the page cache data page allocation
1146  *
1147  * Looks up the page cache slot at @mapping & @offset.
1148  *
1149  * PCG flags modify how the page is returned.
1150  *
1151  * FGP_ACCESSED: the page will be marked accessed
1152  * FGP_LOCK: Page is return locked
1153  * FGP_CREAT: If page is not present then a new page is allocated using
1154  *              @gfp_mask and added to the page cache and the VM's LRU
1155  *              list. The page is returned locked and with an increased
1156  *              refcount. Otherwise, %NULL is returned.
1157  *
1158  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1159  * if the GFP flags specified for FGP_CREAT are atomic.
1160  *
1161  * If there is a page cache page, it is returned with an increased refcount.
1162  */
1163 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1164         int fgp_flags, gfp_t gfp_mask)
1165 {
1166         struct page *page;
1167
1168 repeat:
1169         page = find_get_entry(mapping, offset);
1170         if (radix_tree_exceptional_entry(page))
1171                 page = NULL;
1172         if (!page)
1173                 goto no_page;
1174
1175         if (fgp_flags & FGP_LOCK) {
1176                 if (fgp_flags & FGP_NOWAIT) {
1177                         if (!trylock_page(page)) {
1178                                 put_page(page);
1179                                 return NULL;
1180                         }
1181                 } else {
1182                         lock_page(page);
1183                 }
1184
1185                 /* Has the page been truncated? */
1186                 if (unlikely(page->mapping != mapping)) {
1187                         unlock_page(page);
1188                         put_page(page);
1189                         goto repeat;
1190                 }
1191                 VM_BUG_ON_PAGE(page->index != offset, page);
1192         }
1193
1194         if (page && (fgp_flags & FGP_ACCESSED))
1195                 mark_page_accessed(page);
1196
1197 no_page:
1198         if (!page && (fgp_flags & FGP_CREAT)) {
1199                 int err;
1200                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1201                         gfp_mask |= __GFP_WRITE;
1202                 if (fgp_flags & FGP_NOFS)
1203                         gfp_mask &= ~__GFP_FS;
1204
1205                 page = __page_cache_alloc(gfp_mask);
1206                 if (!page)
1207                         return NULL;
1208
1209                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1210                         fgp_flags |= FGP_LOCK;
1211
1212                 /* Init accessed so avoid atomic mark_page_accessed later */
1213                 if (fgp_flags & FGP_ACCESSED)
1214                         __SetPageReferenced(page);
1215
1216                 err = add_to_page_cache_lru(page, mapping, offset,
1217                                 gfp_mask & GFP_RECLAIM_MASK);
1218                 if (unlikely(err)) {
1219                         put_page(page);
1220                         page = NULL;
1221                         if (err == -EEXIST)
1222                                 goto repeat;
1223                 }
1224         }
1225
1226         return page;
1227 }
1228 EXPORT_SYMBOL(pagecache_get_page);
1229
1230 /**
1231  * find_get_entries - gang pagecache lookup
1232  * @mapping:    The address_space to search
1233  * @start:      The starting page cache index
1234  * @nr_entries: The maximum number of entries
1235  * @entries:    Where the resulting entries are placed
1236  * @indices:    The cache indices corresponding to the entries in @entries
1237  *
1238  * find_get_entries() will search for and return a group of up to
1239  * @nr_entries entries in the mapping.  The entries are placed at
1240  * @entries.  find_get_entries() takes a reference against any actual
1241  * pages it returns.
1242  *
1243  * The search returns a group of mapping-contiguous page cache entries
1244  * with ascending indexes.  There may be holes in the indices due to
1245  * not-present pages.
1246  *
1247  * Any shadow entries of evicted pages, or swap entries from
1248  * shmem/tmpfs, are included in the returned array.
1249  *
1250  * find_get_entries() returns the number of pages and shadow entries
1251  * which were found.
1252  */
1253 unsigned find_get_entries(struct address_space *mapping,
1254                           pgoff_t start, unsigned int nr_entries,
1255                           struct page **entries, pgoff_t *indices)
1256 {
1257         void **slot;
1258         unsigned int ret = 0;
1259         struct radix_tree_iter iter;
1260
1261         if (!nr_entries)
1262                 return 0;
1263
1264         rcu_read_lock();
1265         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1266                 struct page *page;
1267 repeat:
1268                 page = radix_tree_deref_slot(slot);
1269                 if (unlikely(!page))
1270                         continue;
1271                 if (radix_tree_exception(page)) {
1272                         if (radix_tree_deref_retry(page)) {
1273                                 slot = radix_tree_iter_retry(&iter);
1274                                 continue;
1275                         }
1276                         /*
1277                          * A shadow entry of a recently evicted page, a swap
1278                          * entry from shmem/tmpfs or a DAX entry.  Return it
1279                          * without attempting to raise page count.
1280                          */
1281                         goto export;
1282                 }
1283                 if (!page_cache_get_speculative(page))
1284                         goto repeat;
1285
1286                 /* Has the page moved? */
1287                 if (unlikely(page != *slot)) {
1288                         put_page(page);
1289                         goto repeat;
1290                 }
1291 export:
1292                 indices[ret] = iter.index;
1293                 entries[ret] = page;
1294                 if (++ret == nr_entries)
1295                         break;
1296         }
1297         rcu_read_unlock();
1298         return ret;
1299 }
1300
1301 /**
1302  * find_get_pages - gang pagecache lookup
1303  * @mapping:    The address_space to search
1304  * @start:      The starting page index
1305  * @nr_pages:   The maximum number of pages
1306  * @pages:      Where the resulting pages are placed
1307  *
1308  * find_get_pages() will search for and return a group of up to
1309  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1310  * find_get_pages() takes a reference against the returned pages.
1311  *
1312  * The search returns a group of mapping-contiguous pages with ascending
1313  * indexes.  There may be holes in the indices due to not-present pages.
1314  *
1315  * find_get_pages() returns the number of pages which were found.
1316  */
1317 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1318                             unsigned int nr_pages, struct page **pages)
1319 {
1320         struct radix_tree_iter iter;
1321         void **slot;
1322         unsigned ret = 0;
1323
1324         if (unlikely(!nr_pages))
1325                 return 0;
1326
1327         rcu_read_lock();
1328         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1329                 struct page *page;
1330 repeat:
1331                 page = radix_tree_deref_slot(slot);
1332                 if (unlikely(!page))
1333                         continue;
1334
1335                 if (radix_tree_exception(page)) {
1336                         if (radix_tree_deref_retry(page)) {
1337                                 slot = radix_tree_iter_retry(&iter);
1338                                 continue;
1339                         }
1340                         /*
1341                          * A shadow entry of a recently evicted page,
1342                          * or a swap entry from shmem/tmpfs.  Skip
1343                          * over it.
1344                          */
1345                         continue;
1346                 }
1347
1348                 if (!page_cache_get_speculative(page))
1349                         goto repeat;
1350
1351                 /* Has the page moved? */
1352                 if (unlikely(page != *slot)) {
1353                         put_page(page);
1354                         goto repeat;
1355                 }
1356
1357                 pages[ret] = page;
1358                 if (++ret == nr_pages)
1359                         break;
1360         }
1361
1362         rcu_read_unlock();
1363         return ret;
1364 }
1365
1366 /**
1367  * find_get_pages_contig - gang contiguous pagecache lookup
1368  * @mapping:    The address_space to search
1369  * @index:      The starting page index
1370  * @nr_pages:   The maximum number of pages
1371  * @pages:      Where the resulting pages are placed
1372  *
1373  * find_get_pages_contig() works exactly like find_get_pages(), except
1374  * that the returned number of pages are guaranteed to be contiguous.
1375  *
1376  * find_get_pages_contig() returns the number of pages which were found.
1377  */
1378 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1379                                unsigned int nr_pages, struct page **pages)
1380 {
1381         struct radix_tree_iter iter;
1382         void **slot;
1383         unsigned int ret = 0;
1384
1385         if (unlikely(!nr_pages))
1386                 return 0;
1387
1388         rcu_read_lock();
1389         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1390                 struct page *page;
1391 repeat:
1392                 page = radix_tree_deref_slot(slot);
1393                 /* The hole, there no reason to continue */
1394                 if (unlikely(!page))
1395                         break;
1396
1397                 if (radix_tree_exception(page)) {
1398                         if (radix_tree_deref_retry(page)) {
1399                                 slot = radix_tree_iter_retry(&iter);
1400                                 continue;
1401                         }
1402                         /*
1403                          * A shadow entry of a recently evicted page,
1404                          * or a swap entry from shmem/tmpfs.  Stop
1405                          * looking for contiguous pages.
1406                          */
1407                         break;
1408                 }
1409
1410                 if (!page_cache_get_speculative(page))
1411                         goto repeat;
1412
1413                 /* Has the page moved? */
1414                 if (unlikely(page != *slot)) {
1415                         put_page(page);
1416                         goto repeat;
1417                 }
1418
1419                 /*
1420                  * must check mapping and index after taking the ref.
1421                  * otherwise we can get both false positives and false
1422                  * negatives, which is just confusing to the caller.
1423                  */
1424                 if (page->mapping == NULL || page->index != iter.index) {
1425                         put_page(page);
1426                         break;
1427                 }
1428
1429                 pages[ret] = page;
1430                 if (++ret == nr_pages)
1431                         break;
1432         }
1433         rcu_read_unlock();
1434         return ret;
1435 }
1436 EXPORT_SYMBOL(find_get_pages_contig);
1437
1438 /**
1439  * find_get_pages_tag - find and return pages that match @tag
1440  * @mapping:    the address_space to search
1441  * @index:      the starting page index
1442  * @tag:        the tag index
1443  * @nr_pages:   the maximum number of pages
1444  * @pages:      where the resulting pages are placed
1445  *
1446  * Like find_get_pages, except we only return pages which are tagged with
1447  * @tag.   We update @index to index the next page for the traversal.
1448  */
1449 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1450                         int tag, unsigned int nr_pages, struct page **pages)
1451 {
1452         struct radix_tree_iter iter;
1453         void **slot;
1454         unsigned ret = 0;
1455
1456         if (unlikely(!nr_pages))
1457                 return 0;
1458
1459         rcu_read_lock();
1460         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1461                                    &iter, *index, tag) {
1462                 struct page *page;
1463 repeat:
1464                 page = radix_tree_deref_slot(slot);
1465                 if (unlikely(!page))
1466                         continue;
1467
1468                 if (radix_tree_exception(page)) {
1469                         if (radix_tree_deref_retry(page)) {
1470                                 slot = radix_tree_iter_retry(&iter);
1471                                 continue;
1472                         }
1473                         /*
1474                          * A shadow entry of a recently evicted page.
1475                          *
1476                          * Those entries should never be tagged, but
1477                          * this tree walk is lockless and the tags are
1478                          * looked up in bulk, one radix tree node at a
1479                          * time, so there is a sizable window for page
1480                          * reclaim to evict a page we saw tagged.
1481                          *
1482                          * Skip over it.
1483                          */
1484                         continue;
1485                 }
1486
1487                 if (!page_cache_get_speculative(page))
1488                         goto repeat;
1489
1490                 /* Has the page moved? */
1491                 if (unlikely(page != *slot)) {
1492                         put_page(page);
1493                         goto repeat;
1494                 }
1495
1496                 pages[ret] = page;
1497                 if (++ret == nr_pages)
1498                         break;
1499         }
1500
1501         rcu_read_unlock();
1502
1503         if (ret)
1504                 *index = pages[ret - 1]->index + 1;
1505
1506         return ret;
1507 }
1508 EXPORT_SYMBOL(find_get_pages_tag);
1509
1510 /**
1511  * find_get_entries_tag - find and return entries that match @tag
1512  * @mapping:    the address_space to search
1513  * @start:      the starting page cache index
1514  * @tag:        the tag index
1515  * @nr_entries: the maximum number of entries
1516  * @entries:    where the resulting entries are placed
1517  * @indices:    the cache indices corresponding to the entries in @entries
1518  *
1519  * Like find_get_entries, except we only return entries which are tagged with
1520  * @tag.
1521  */
1522 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1523                         int tag, unsigned int nr_entries,
1524                         struct page **entries, pgoff_t *indices)
1525 {
1526         void **slot;
1527         unsigned int ret = 0;
1528         struct radix_tree_iter iter;
1529
1530         if (!nr_entries)
1531                 return 0;
1532
1533         rcu_read_lock();
1534         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1535                                    &iter, start, tag) {
1536                 struct page *page;
1537 repeat:
1538                 page = radix_tree_deref_slot(slot);
1539                 if (unlikely(!page))
1540                         continue;
1541                 if (radix_tree_exception(page)) {
1542                         if (radix_tree_deref_retry(page)) {
1543                                 slot = radix_tree_iter_retry(&iter);
1544                                 continue;
1545                         }
1546
1547                         /*
1548                          * A shadow entry of a recently evicted page, a swap
1549                          * entry from shmem/tmpfs or a DAX entry.  Return it
1550                          * without attempting to raise page count.
1551                          */
1552                         goto export;
1553                 }
1554                 if (!page_cache_get_speculative(page))
1555                         goto repeat;
1556
1557                 /* Has the page moved? */
1558                 if (unlikely(page != *slot)) {
1559                         put_page(page);
1560                         goto repeat;
1561                 }
1562 export:
1563                 indices[ret] = iter.index;
1564                 entries[ret] = page;
1565                 if (++ret == nr_entries)
1566                         break;
1567         }
1568         rcu_read_unlock();
1569         return ret;
1570 }
1571 EXPORT_SYMBOL(find_get_entries_tag);
1572
1573 /*
1574  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1575  * a _large_ part of the i/o request. Imagine the worst scenario:
1576  *
1577  *      ---R__________________________________________B__________
1578  *         ^ reading here                             ^ bad block(assume 4k)
1579  *
1580  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1581  * => failing the whole request => read(R) => read(R+1) =>
1582  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1583  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1584  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1585  *
1586  * It is going insane. Fix it by quickly scaling down the readahead size.
1587  */
1588 static void shrink_readahead_size_eio(struct file *filp,
1589                                         struct file_ra_state *ra)
1590 {
1591         ra->ra_pages /= 4;
1592 }
1593
1594 /**
1595  * do_generic_file_read - generic file read routine
1596  * @filp:       the file to read
1597  * @ppos:       current file position
1598  * @iter:       data destination
1599  * @written:    already copied
1600  *
1601  * This is a generic file read routine, and uses the
1602  * mapping->a_ops->readpage() function for the actual low-level stuff.
1603  *
1604  * This is really ugly. But the goto's actually try to clarify some
1605  * of the logic when it comes to error handling etc.
1606  */
1607 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1608                 struct iov_iter *iter, ssize_t written)
1609 {
1610         struct address_space *mapping = filp->f_mapping;
1611         struct inode *inode = mapping->host;
1612         struct file_ra_state *ra = &filp->f_ra;
1613         pgoff_t index;
1614         pgoff_t last_index;
1615         pgoff_t prev_index;
1616         unsigned long offset;      /* offset into pagecache page */
1617         unsigned int prev_offset;
1618         int error = 0;
1619
1620         index = *ppos >> PAGE_SHIFT;
1621         prev_index = ra->prev_pos >> PAGE_SHIFT;
1622         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1623         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1624         offset = *ppos & ~PAGE_MASK;
1625
1626         for (;;) {
1627                 struct page *page;
1628                 pgoff_t end_index;
1629                 loff_t isize;
1630                 unsigned long nr, ret;
1631
1632                 cond_resched();
1633 find_page:
1634                 page = find_get_page(mapping, index);
1635                 if (!page) {
1636                         page_cache_sync_readahead(mapping,
1637                                         ra, filp,
1638                                         index, last_index - index);
1639                         page = find_get_page(mapping, index);
1640                         if (unlikely(page == NULL))
1641                                 goto no_cached_page;
1642                 }
1643                 if (PageReadahead(page)) {
1644                         page_cache_async_readahead(mapping,
1645                                         ra, filp, page,
1646                                         index, last_index - index);
1647                 }
1648                 if (!PageUptodate(page)) {
1649                         /*
1650                          * See comment in do_read_cache_page on why
1651                          * wait_on_page_locked is used to avoid unnecessarily
1652                          * serialisations and why it's safe.
1653                          */
1654                         wait_on_page_locked_killable(page);
1655                         if (PageUptodate(page))
1656                                 goto page_ok;
1657
1658                         if (inode->i_blkbits == PAGE_SHIFT ||
1659                                         !mapping->a_ops->is_partially_uptodate)
1660                                 goto page_not_up_to_date;
1661                         if (!trylock_page(page))
1662                                 goto page_not_up_to_date;
1663                         /* Did it get truncated before we got the lock? */
1664                         if (!page->mapping)
1665                                 goto page_not_up_to_date_locked;
1666                         if (!mapping->a_ops->is_partially_uptodate(page,
1667                                                         offset, iter->count))
1668                                 goto page_not_up_to_date_locked;
1669                         unlock_page(page);
1670                 }
1671 page_ok:
1672                 /*
1673                  * i_size must be checked after we know the page is Uptodate.
1674                  *
1675                  * Checking i_size after the check allows us to calculate
1676                  * the correct value for "nr", which means the zero-filled
1677                  * part of the page is not copied back to userspace (unless
1678                  * another truncate extends the file - this is desired though).
1679                  */
1680
1681                 isize = i_size_read(inode);
1682                 end_index = (isize - 1) >> PAGE_SHIFT;
1683                 if (unlikely(!isize || index > end_index)) {
1684                         put_page(page);
1685                         goto out;
1686                 }
1687
1688                 /* nr is the maximum number of bytes to copy from this page */
1689                 nr = PAGE_SIZE;
1690                 if (index == end_index) {
1691                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1692                         if (nr <= offset) {
1693                                 put_page(page);
1694                                 goto out;
1695                         }
1696                 }
1697                 nr = nr - offset;
1698
1699                 /* If users can be writing to this page using arbitrary
1700                  * virtual addresses, take care about potential aliasing
1701                  * before reading the page on the kernel side.
1702                  */
1703                 if (mapping_writably_mapped(mapping))
1704                         flush_dcache_page(page);
1705
1706                 /*
1707                  * When a sequential read accesses a page several times,
1708                  * only mark it as accessed the first time.
1709                  */
1710                 if (prev_index != index || offset != prev_offset)
1711                         mark_page_accessed(page);
1712                 prev_index = index;
1713
1714                 /*
1715                  * Ok, we have the page, and it's up-to-date, so
1716                  * now we can copy it to user space...
1717                  */
1718
1719                 ret = copy_page_to_iter(page, offset, nr, iter);
1720                 offset += ret;
1721                 index += offset >> PAGE_SHIFT;
1722                 offset &= ~PAGE_MASK;
1723                 prev_offset = offset;
1724
1725                 put_page(page);
1726                 written += ret;
1727                 if (!iov_iter_count(iter))
1728                         goto out;
1729                 if (ret < nr) {
1730                         error = -EFAULT;
1731                         goto out;
1732                 }
1733                 continue;
1734
1735 page_not_up_to_date:
1736                 /* Get exclusive access to the page ... */
1737                 error = lock_page_killable(page);
1738                 if (unlikely(error))
1739                         goto readpage_error;
1740
1741 page_not_up_to_date_locked:
1742                 /* Did it get truncated before we got the lock? */
1743                 if (!page->mapping) {
1744                         unlock_page(page);
1745                         put_page(page);
1746                         continue;
1747                 }
1748
1749                 /* Did somebody else fill it already? */
1750                 if (PageUptodate(page)) {
1751                         unlock_page(page);
1752                         goto page_ok;
1753                 }
1754
1755 readpage:
1756                 /*
1757                  * A previous I/O error may have been due to temporary
1758                  * failures, eg. multipath errors.
1759                  * PG_error will be set again if readpage fails.
1760                  */
1761                 ClearPageError(page);
1762                 /* Start the actual read. The read will unlock the page. */
1763                 error = mapping->a_ops->readpage(filp, page);
1764
1765                 if (unlikely(error)) {
1766                         if (error == AOP_TRUNCATED_PAGE) {
1767                                 put_page(page);
1768                                 error = 0;
1769                                 goto find_page;
1770                         }
1771                         goto readpage_error;
1772                 }
1773
1774                 if (!PageUptodate(page)) {
1775                         error = lock_page_killable(page);
1776                         if (unlikely(error))
1777                                 goto readpage_error;
1778                         if (!PageUptodate(page)) {
1779                                 if (page->mapping == NULL) {
1780                                         /*
1781                                          * invalidate_mapping_pages got it
1782                                          */
1783                                         unlock_page(page);
1784                                         put_page(page);
1785                                         goto find_page;
1786                                 }
1787                                 unlock_page(page);
1788                                 shrink_readahead_size_eio(filp, ra);
1789                                 error = -EIO;
1790                                 goto readpage_error;
1791                         }
1792                         unlock_page(page);
1793                 }
1794
1795                 goto page_ok;
1796
1797 readpage_error:
1798                 /* UHHUH! A synchronous read error occurred. Report it */
1799                 put_page(page);
1800                 goto out;
1801
1802 no_cached_page:
1803                 /*
1804                  * Ok, it wasn't cached, so we need to create a new
1805                  * page..
1806                  */
1807                 page = page_cache_alloc_cold(mapping);
1808                 if (!page) {
1809                         error = -ENOMEM;
1810                         goto out;
1811                 }
1812                 error = add_to_page_cache_lru(page, mapping, index,
1813                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1814                 if (error) {
1815                         put_page(page);
1816                         if (error == -EEXIST) {
1817                                 error = 0;
1818                                 goto find_page;
1819                         }
1820                         goto out;
1821                 }
1822                 goto readpage;
1823         }
1824
1825 out:
1826         ra->prev_pos = prev_index;
1827         ra->prev_pos <<= PAGE_SHIFT;
1828         ra->prev_pos |= prev_offset;
1829
1830         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1831         file_accessed(filp);
1832         return written ? written : error;
1833 }
1834
1835 /**
1836  * generic_file_read_iter - generic filesystem read routine
1837  * @iocb:       kernel I/O control block
1838  * @iter:       destination for the data read
1839  *
1840  * This is the "read_iter()" routine for all filesystems
1841  * that can use the page cache directly.
1842  */
1843 ssize_t
1844 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1845 {
1846         struct file *file = iocb->ki_filp;
1847         ssize_t retval = 0;
1848         loff_t *ppos = &iocb->ki_pos;
1849         loff_t pos = *ppos;
1850         size_t count = iov_iter_count(iter);
1851
1852         if (!count)
1853                 goto out; /* skip atime */
1854
1855         if (iocb->ki_flags & IOCB_DIRECT) {
1856                 struct address_space *mapping = file->f_mapping;
1857                 struct inode *inode = mapping->host;
1858                 loff_t size;
1859
1860                 size = i_size_read(inode);
1861                 retval = filemap_write_and_wait_range(mapping, pos,
1862                                         pos + count - 1);
1863                 if (!retval) {
1864                         struct iov_iter data = *iter;
1865                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1866                 }
1867
1868                 if (retval > 0) {
1869                         *ppos = pos + retval;
1870                         iov_iter_advance(iter, retval);
1871                 }
1872
1873                 /*
1874                  * Btrfs can have a short DIO read if we encounter
1875                  * compressed extents, so if there was an error, or if
1876                  * we've already read everything we wanted to, or if
1877                  * there was a short read because we hit EOF, go ahead
1878                  * and return.  Otherwise fallthrough to buffered io for
1879                  * the rest of the read.  Buffered reads will not work for
1880                  * DAX files, so don't bother trying.
1881                  */
1882                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1883                     IS_DAX(inode)) {
1884                         file_accessed(file);
1885                         goto out;
1886                 }
1887         }
1888
1889         retval = do_generic_file_read(file, ppos, iter, retval);
1890 out:
1891         return retval;
1892 }
1893 EXPORT_SYMBOL(generic_file_read_iter);
1894
1895 #ifdef CONFIG_MMU
1896 /**
1897  * page_cache_read - adds requested page to the page cache if not already there
1898  * @file:       file to read
1899  * @offset:     page index
1900  * @gfp_mask:   memory allocation flags
1901  *
1902  * This adds the requested page to the page cache if it isn't already there,
1903  * and schedules an I/O to read in its contents from disk.
1904  */
1905 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1906 {
1907         struct address_space *mapping = file->f_mapping;
1908         struct page *page;
1909         int ret;
1910
1911         do {
1912                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1913                 if (!page)
1914                         return -ENOMEM;
1915
1916                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1917                 if (ret == 0)
1918                         ret = mapping->a_ops->readpage(file, page);
1919                 else if (ret == -EEXIST)
1920                         ret = 0; /* losing race to add is OK */
1921
1922                 put_page(page);
1923
1924         } while (ret == AOP_TRUNCATED_PAGE);
1925
1926         return ret;
1927 }
1928
1929 #define MMAP_LOTSAMISS  (100)
1930
1931 /*
1932  * Synchronous readahead happens when we don't even find
1933  * a page in the page cache at all.
1934  */
1935 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1936                                    struct file_ra_state *ra,
1937                                    struct file *file,
1938                                    pgoff_t offset)
1939 {
1940         struct address_space *mapping = file->f_mapping;
1941
1942         /* If we don't want any read-ahead, don't bother */
1943         if (vma->vm_flags & VM_RAND_READ)
1944                 return;
1945         if (!ra->ra_pages)
1946                 return;
1947
1948         if (vma->vm_flags & VM_SEQ_READ) {
1949                 page_cache_sync_readahead(mapping, ra, file, offset,
1950                                           ra->ra_pages);
1951                 return;
1952         }
1953
1954         /* Avoid banging the cache line if not needed */
1955         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1956                 ra->mmap_miss++;
1957
1958         /*
1959          * Do we miss much more than hit in this file? If so,
1960          * stop bothering with read-ahead. It will only hurt.
1961          */
1962         if (ra->mmap_miss > MMAP_LOTSAMISS)
1963                 return;
1964
1965         /*
1966          * mmap read-around
1967          */
1968         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1969         ra->size = ra->ra_pages;
1970         ra->async_size = ra->ra_pages / 4;
1971         ra_submit(ra, mapping, file);
1972 }
1973
1974 /*
1975  * Asynchronous readahead happens when we find the page and PG_readahead,
1976  * so we want to possibly extend the readahead further..
1977  */
1978 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1979                                     struct file_ra_state *ra,
1980                                     struct file *file,
1981                                     struct page *page,
1982                                     pgoff_t offset)
1983 {
1984         struct address_space *mapping = file->f_mapping;
1985
1986         /* If we don't want any read-ahead, don't bother */
1987         if (vma->vm_flags & VM_RAND_READ)
1988                 return;
1989         if (ra->mmap_miss > 0)
1990                 ra->mmap_miss--;
1991         if (PageReadahead(page))
1992                 page_cache_async_readahead(mapping, ra, file,
1993                                            page, offset, ra->ra_pages);
1994 }
1995
1996 /**
1997  * filemap_fault - read in file data for page fault handling
1998  * @vma:        vma in which the fault was taken
1999  * @vmf:        struct vm_fault containing details of the fault
2000  *
2001  * filemap_fault() is invoked via the vma operations vector for a
2002  * mapped memory region to read in file data during a page fault.
2003  *
2004  * The goto's are kind of ugly, but this streamlines the normal case of having
2005  * it in the page cache, and handles the special cases reasonably without
2006  * having a lot of duplicated code.
2007  *
2008  * vma->vm_mm->mmap_sem must be held on entry.
2009  *
2010  * If our return value has VM_FAULT_RETRY set, it's because
2011  * lock_page_or_retry() returned 0.
2012  * The mmap_sem has usually been released in this case.
2013  * See __lock_page_or_retry() for the exception.
2014  *
2015  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2016  * has not been released.
2017  *
2018  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2019  */
2020 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2021 {
2022         int error;
2023         struct file *file = vma->vm_file;
2024         struct address_space *mapping = file->f_mapping;
2025         struct file_ra_state *ra = &file->f_ra;
2026         struct inode *inode = mapping->host;
2027         pgoff_t offset = vmf->pgoff;
2028         struct page *page;
2029         loff_t size;
2030         int ret = 0;
2031
2032         size = round_up(i_size_read(inode), PAGE_SIZE);
2033         if (offset >= size >> PAGE_SHIFT)
2034                 return VM_FAULT_SIGBUS;
2035
2036         /*
2037          * Do we have something in the page cache already?
2038          */
2039         page = find_get_page(mapping, offset);
2040         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2041                 /*
2042                  * We found the page, so try async readahead before
2043                  * waiting for the lock.
2044                  */
2045                 do_async_mmap_readahead(vma, ra, file, page, offset);
2046         } else if (!page) {
2047                 /* No page in the page cache at all */
2048                 do_sync_mmap_readahead(vma, ra, file, offset);
2049                 count_vm_event(PGMAJFAULT);
2050                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2051                 ret = VM_FAULT_MAJOR;
2052 retry_find:
2053                 page = find_get_page(mapping, offset);
2054                 if (!page)
2055                         goto no_cached_page;
2056         }
2057
2058         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2059                 put_page(page);
2060                 return ret | VM_FAULT_RETRY;
2061         }
2062
2063         /* Did it get truncated? */
2064         if (unlikely(page->mapping != mapping)) {
2065                 unlock_page(page);
2066                 put_page(page);
2067                 goto retry_find;
2068         }
2069         VM_BUG_ON_PAGE(page->index != offset, page);
2070
2071         /*
2072          * We have a locked page in the page cache, now we need to check
2073          * that it's up-to-date. If not, it is going to be due to an error.
2074          */
2075         if (unlikely(!PageUptodate(page)))
2076                 goto page_not_uptodate;
2077
2078         /*
2079          * Found the page and have a reference on it.
2080          * We must recheck i_size under page lock.
2081          */
2082         size = round_up(i_size_read(inode), PAGE_SIZE);
2083         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2084                 unlock_page(page);
2085                 put_page(page);
2086                 return VM_FAULT_SIGBUS;
2087         }
2088
2089         vmf->page = page;
2090         return ret | VM_FAULT_LOCKED;
2091
2092 no_cached_page:
2093         /*
2094          * We're only likely to ever get here if MADV_RANDOM is in
2095          * effect.
2096          */
2097         error = page_cache_read(file, offset, vmf->gfp_mask);
2098
2099         /*
2100          * The page we want has now been added to the page cache.
2101          * In the unlikely event that someone removed it in the
2102          * meantime, we'll just come back here and read it again.
2103          */
2104         if (error >= 0)
2105                 goto retry_find;
2106
2107         /*
2108          * An error return from page_cache_read can result if the
2109          * system is low on memory, or a problem occurs while trying
2110          * to schedule I/O.
2111          */
2112         if (error == -ENOMEM)
2113                 return VM_FAULT_OOM;
2114         return VM_FAULT_SIGBUS;
2115
2116 page_not_uptodate:
2117         /*
2118          * Umm, take care of errors if the page isn't up-to-date.
2119          * Try to re-read it _once_. We do this synchronously,
2120          * because there really aren't any performance issues here
2121          * and we need to check for errors.
2122          */
2123         ClearPageError(page);
2124         error = mapping->a_ops->readpage(file, page);
2125         if (!error) {
2126                 wait_on_page_locked(page);
2127                 if (!PageUptodate(page))
2128                         error = -EIO;
2129         }
2130         put_page(page);
2131
2132         if (!error || error == AOP_TRUNCATED_PAGE)
2133                 goto retry_find;
2134
2135         /* Things didn't work out. Return zero to tell the mm layer so. */
2136         shrink_readahead_size_eio(file, ra);
2137         return VM_FAULT_SIGBUS;
2138 }
2139 EXPORT_SYMBOL(filemap_fault);
2140
2141 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2142 {
2143         struct radix_tree_iter iter;
2144         void **slot;
2145         struct file *file = vma->vm_file;
2146         struct address_space *mapping = file->f_mapping;
2147         loff_t size;
2148         struct page *page;
2149         unsigned long address = (unsigned long) vmf->virtual_address;
2150         unsigned long addr;
2151         pte_t *pte;
2152
2153         rcu_read_lock();
2154         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2155                 if (iter.index > vmf->max_pgoff)
2156                         break;
2157 repeat:
2158                 page = radix_tree_deref_slot(slot);
2159                 if (unlikely(!page))
2160                         goto next;
2161                 if (radix_tree_exception(page)) {
2162                         if (radix_tree_deref_retry(page)) {
2163                                 slot = radix_tree_iter_retry(&iter);
2164                                 continue;
2165                         }
2166                         goto next;
2167                 }
2168
2169                 if (!page_cache_get_speculative(page))
2170                         goto repeat;
2171
2172                 /* Has the page moved? */
2173                 if (unlikely(page != *slot)) {
2174                         put_page(page);
2175                         goto repeat;
2176                 }
2177
2178                 if (!PageUptodate(page) ||
2179                                 PageReadahead(page) ||
2180                                 PageHWPoison(page))
2181                         goto skip;
2182                 if (!trylock_page(page))
2183                         goto skip;
2184
2185                 if (page->mapping != mapping || !PageUptodate(page))
2186                         goto unlock;
2187
2188                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2189                 if (page->index >= size >> PAGE_SHIFT)
2190                         goto unlock;
2191
2192                 pte = vmf->pte + page->index - vmf->pgoff;
2193                 if (!pte_none(*pte))
2194                         goto unlock;
2195
2196                 if (file->f_ra.mmap_miss > 0)
2197                         file->f_ra.mmap_miss--;
2198                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2199                 do_set_pte(vma, addr, page, pte, false, false);
2200                 unlock_page(page);
2201                 goto next;
2202 unlock:
2203                 unlock_page(page);
2204 skip:
2205                 put_page(page);
2206 next:
2207                 if (iter.index == vmf->max_pgoff)
2208                         break;
2209         }
2210         rcu_read_unlock();
2211 }
2212 EXPORT_SYMBOL(filemap_map_pages);
2213
2214 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2215 {
2216         struct page *page = vmf->page;
2217         struct inode *inode = file_inode(vma->vm_file);
2218         int ret = VM_FAULT_LOCKED;
2219
2220         sb_start_pagefault(inode->i_sb);
2221         file_update_time(vma->vm_file);
2222         lock_page(page);
2223         if (page->mapping != inode->i_mapping) {
2224                 unlock_page(page);
2225                 ret = VM_FAULT_NOPAGE;
2226                 goto out;
2227         }
2228         /*
2229          * We mark the page dirty already here so that when freeze is in
2230          * progress, we are guaranteed that writeback during freezing will
2231          * see the dirty page and writeprotect it again.
2232          */
2233         set_page_dirty(page);
2234         wait_for_stable_page(page);
2235 out:
2236         sb_end_pagefault(inode->i_sb);
2237         return ret;
2238 }
2239 EXPORT_SYMBOL(filemap_page_mkwrite);
2240
2241 const struct vm_operations_struct generic_file_vm_ops = {
2242         .fault          = filemap_fault,
2243         .map_pages      = filemap_map_pages,
2244         .page_mkwrite   = filemap_page_mkwrite,
2245 };
2246
2247 /* This is used for a general mmap of a disk file */
2248
2249 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2250 {
2251         struct address_space *mapping = file->f_mapping;
2252
2253         if (!mapping->a_ops->readpage)
2254                 return -ENOEXEC;
2255         file_accessed(file);
2256         vma->vm_ops = &generic_file_vm_ops;
2257         return 0;
2258 }
2259
2260 /*
2261  * This is for filesystems which do not implement ->writepage.
2262  */
2263 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2264 {
2265         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2266                 return -EINVAL;
2267         return generic_file_mmap(file, vma);
2268 }
2269 #else
2270 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2271 {
2272         return -ENOSYS;
2273 }
2274 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2275 {
2276         return -ENOSYS;
2277 }
2278 #endif /* CONFIG_MMU */
2279
2280 EXPORT_SYMBOL(generic_file_mmap);
2281 EXPORT_SYMBOL(generic_file_readonly_mmap);
2282
2283 static struct page *wait_on_page_read(struct page *page)
2284 {
2285         if (!IS_ERR(page)) {
2286                 wait_on_page_locked(page);
2287                 if (!PageUptodate(page)) {
2288                         put_page(page);
2289                         page = ERR_PTR(-EIO);
2290                 }
2291         }
2292         return page;
2293 }
2294
2295 static struct page *do_read_cache_page(struct address_space *mapping,
2296                                 pgoff_t index,
2297                                 int (*filler)(void *, struct page *),
2298                                 void *data,
2299                                 gfp_t gfp)
2300 {
2301         struct page *page;
2302         int err;
2303 repeat:
2304         page = find_get_page(mapping, index);
2305         if (!page) {
2306                 page = __page_cache_alloc(gfp | __GFP_COLD);
2307                 if (!page)
2308                         return ERR_PTR(-ENOMEM);
2309                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2310                 if (unlikely(err)) {
2311                         put_page(page);
2312                         if (err == -EEXIST)
2313                                 goto repeat;
2314                         /* Presumably ENOMEM for radix tree node */
2315                         return ERR_PTR(err);
2316                 }
2317
2318 filler:
2319                 err = filler(data, page);
2320                 if (err < 0) {
2321                         put_page(page);
2322                         return ERR_PTR(err);
2323                 }
2324
2325                 page = wait_on_page_read(page);
2326                 if (IS_ERR(page))
2327                         return page;
2328                 goto out;
2329         }
2330         if (PageUptodate(page))
2331                 goto out;
2332
2333         /*
2334          * Page is not up to date and may be locked due one of the following
2335          * case a: Page is being filled and the page lock is held
2336          * case b: Read/write error clearing the page uptodate status
2337          * case c: Truncation in progress (page locked)
2338          * case d: Reclaim in progress
2339          *
2340          * Case a, the page will be up to date when the page is unlocked.
2341          *    There is no need to serialise on the page lock here as the page
2342          *    is pinned so the lock gives no additional protection. Even if the
2343          *    the page is truncated, the data is still valid if PageUptodate as
2344          *    it's a race vs truncate race.
2345          * Case b, the page will not be up to date
2346          * Case c, the page may be truncated but in itself, the data may still
2347          *    be valid after IO completes as it's a read vs truncate race. The
2348          *    operation must restart if the page is not uptodate on unlock but
2349          *    otherwise serialising on page lock to stabilise the mapping gives
2350          *    no additional guarantees to the caller as the page lock is
2351          *    released before return.
2352          * Case d, similar to truncation. If reclaim holds the page lock, it
2353          *    will be a race with remove_mapping that determines if the mapping
2354          *    is valid on unlock but otherwise the data is valid and there is
2355          *    no need to serialise with page lock.
2356          *
2357          * As the page lock gives no additional guarantee, we optimistically
2358          * wait on the page to be unlocked and check if it's up to date and
2359          * use the page if it is. Otherwise, the page lock is required to
2360          * distinguish between the different cases. The motivation is that we
2361          * avoid spurious serialisations and wakeups when multiple processes
2362          * wait on the same page for IO to complete.
2363          */
2364         wait_on_page_locked(page);
2365         if (PageUptodate(page))
2366                 goto out;
2367
2368         /* Distinguish between all the cases under the safety of the lock */
2369         lock_page(page);
2370
2371         /* Case c or d, restart the operation */
2372         if (!page->mapping) {
2373                 unlock_page(page);
2374                 put_page(page);
2375                 goto repeat;
2376         }
2377
2378         /* Someone else locked and filled the page in a very small window */
2379         if (PageUptodate(page)) {
2380                 unlock_page(page);
2381                 goto out;
2382         }
2383         goto filler;
2384
2385 out:
2386         mark_page_accessed(page);
2387         return page;
2388 }
2389
2390 /**
2391  * read_cache_page - read into page cache, fill it if needed
2392  * @mapping:    the page's address_space
2393  * @index:      the page index
2394  * @filler:     function to perform the read
2395  * @data:       first arg to filler(data, page) function, often left as NULL
2396  *
2397  * Read into the page cache. If a page already exists, and PageUptodate() is
2398  * not set, try to fill the page and wait for it to become unlocked.
2399  *
2400  * If the page does not get brought uptodate, return -EIO.
2401  */
2402 struct page *read_cache_page(struct address_space *mapping,
2403                                 pgoff_t index,
2404                                 int (*filler)(void *, struct page *),
2405                                 void *data)
2406 {
2407         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2408 }
2409 EXPORT_SYMBOL(read_cache_page);
2410
2411 /**
2412  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2413  * @mapping:    the page's address_space
2414  * @index:      the page index
2415  * @gfp:        the page allocator flags to use if allocating
2416  *
2417  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2418  * any new page allocations done using the specified allocation flags.
2419  *
2420  * If the page does not get brought uptodate, return -EIO.
2421  */
2422 struct page *read_cache_page_gfp(struct address_space *mapping,
2423                                 pgoff_t index,
2424                                 gfp_t gfp)
2425 {
2426         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2427
2428         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2429 }
2430 EXPORT_SYMBOL(read_cache_page_gfp);
2431
2432 /*
2433  * Performs necessary checks before doing a write
2434  *
2435  * Can adjust writing position or amount of bytes to write.
2436  * Returns appropriate error code that caller should return or
2437  * zero in case that write should be allowed.
2438  */
2439 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2440 {
2441         struct file *file = iocb->ki_filp;
2442         struct inode *inode = file->f_mapping->host;
2443         unsigned long limit = rlimit(RLIMIT_FSIZE);
2444         loff_t pos;
2445
2446         if (!iov_iter_count(from))
2447                 return 0;
2448
2449         /* FIXME: this is for backwards compatibility with 2.4 */
2450         if (iocb->ki_flags & IOCB_APPEND)
2451                 iocb->ki_pos = i_size_read(inode);
2452
2453         pos = iocb->ki_pos;
2454
2455         if (limit != RLIM_INFINITY) {
2456                 if (iocb->ki_pos >= limit) {
2457                         send_sig(SIGXFSZ, current, 0);
2458                         return -EFBIG;
2459                 }
2460                 iov_iter_truncate(from, limit - (unsigned long)pos);
2461         }
2462
2463         /*
2464          * LFS rule
2465          */
2466         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2467                                 !(file->f_flags & O_LARGEFILE))) {
2468                 if (pos >= MAX_NON_LFS)
2469                         return -EFBIG;
2470                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2471         }
2472
2473         /*
2474          * Are we about to exceed the fs block limit ?
2475          *
2476          * If we have written data it becomes a short write.  If we have
2477          * exceeded without writing data we send a signal and return EFBIG.
2478          * Linus frestrict idea will clean these up nicely..
2479          */
2480         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2481                 return -EFBIG;
2482
2483         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2484         return iov_iter_count(from);
2485 }
2486 EXPORT_SYMBOL(generic_write_checks);
2487
2488 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2489                                 loff_t pos, unsigned len, unsigned flags,
2490                                 struct page **pagep, void **fsdata)
2491 {
2492         const struct address_space_operations *aops = mapping->a_ops;
2493
2494         return aops->write_begin(file, mapping, pos, len, flags,
2495                                                         pagep, fsdata);
2496 }
2497 EXPORT_SYMBOL(pagecache_write_begin);
2498
2499 int pagecache_write_end(struct file *file, struct address_space *mapping,
2500                                 loff_t pos, unsigned len, unsigned copied,
2501                                 struct page *page, void *fsdata)
2502 {
2503         const struct address_space_operations *aops = mapping->a_ops;
2504
2505         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2506 }
2507 EXPORT_SYMBOL(pagecache_write_end);
2508
2509 ssize_t
2510 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2511 {
2512         struct file     *file = iocb->ki_filp;
2513         struct address_space *mapping = file->f_mapping;
2514         struct inode    *inode = mapping->host;
2515         ssize_t         written;
2516         size_t          write_len;
2517         pgoff_t         end;
2518         struct iov_iter data;
2519
2520         write_len = iov_iter_count(from);
2521         end = (pos + write_len - 1) >> PAGE_SHIFT;
2522
2523         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2524         if (written)
2525                 goto out;
2526
2527         /*
2528          * After a write we want buffered reads to be sure to go to disk to get
2529          * the new data.  We invalidate clean cached page from the region we're
2530          * about to write.  We do this *before* the write so that we can return
2531          * without clobbering -EIOCBQUEUED from ->direct_IO().
2532          */
2533         if (mapping->nrpages) {
2534                 written = invalidate_inode_pages2_range(mapping,
2535                                         pos >> PAGE_SHIFT, end);
2536                 /*
2537                  * If a page can not be invalidated, return 0 to fall back
2538                  * to buffered write.
2539                  */
2540                 if (written) {
2541                         if (written == -EBUSY)
2542                                 return 0;
2543                         goto out;
2544                 }
2545         }
2546
2547         data = *from;
2548         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2549
2550         /*
2551          * Finally, try again to invalidate clean pages which might have been
2552          * cached by non-direct readahead, or faulted in by get_user_pages()
2553          * if the source of the write was an mmap'ed region of the file
2554          * we're writing.  Either one is a pretty crazy thing to do,
2555          * so we don't support it 100%.  If this invalidation
2556          * fails, tough, the write still worked...
2557          */
2558         if (mapping->nrpages) {
2559                 invalidate_inode_pages2_range(mapping,
2560                                               pos >> PAGE_SHIFT, end);
2561         }
2562
2563         if (written > 0) {
2564                 pos += written;
2565                 iov_iter_advance(from, written);
2566                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2567                         i_size_write(inode, pos);
2568                         mark_inode_dirty(inode);
2569                 }
2570                 iocb->ki_pos = pos;
2571         }
2572 out:
2573         return written;
2574 }
2575 EXPORT_SYMBOL(generic_file_direct_write);
2576
2577 /*
2578  * Find or create a page at the given pagecache position. Return the locked
2579  * page. This function is specifically for buffered writes.
2580  */
2581 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2582                                         pgoff_t index, unsigned flags)
2583 {
2584         struct page *page;
2585         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2586
2587         if (flags & AOP_FLAG_NOFS)
2588                 fgp_flags |= FGP_NOFS;
2589
2590         page = pagecache_get_page(mapping, index, fgp_flags,
2591                         mapping_gfp_mask(mapping));
2592         if (page)
2593                 wait_for_stable_page(page);
2594
2595         return page;
2596 }
2597 EXPORT_SYMBOL(grab_cache_page_write_begin);
2598
2599 ssize_t generic_perform_write(struct file *file,
2600                                 struct iov_iter *i, loff_t pos)
2601 {
2602         struct address_space *mapping = file->f_mapping;
2603         const struct address_space_operations *a_ops = mapping->a_ops;
2604         long status = 0;
2605         ssize_t written = 0;
2606         unsigned int flags = 0;
2607
2608         /*
2609          * Copies from kernel address space cannot fail (NFSD is a big user).
2610          */
2611         if (!iter_is_iovec(i))
2612                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2613
2614         do {
2615                 struct page *page;
2616                 unsigned long offset;   /* Offset into pagecache page */
2617                 unsigned long bytes;    /* Bytes to write to page */
2618                 size_t copied;          /* Bytes copied from user */
2619                 void *fsdata;
2620
2621                 offset = (pos & (PAGE_SIZE - 1));
2622                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2623                                                 iov_iter_count(i));
2624
2625 again:
2626                 /*
2627                  * Bring in the user page that we will copy from _first_.
2628                  * Otherwise there's a nasty deadlock on copying from the
2629                  * same page as we're writing to, without it being marked
2630                  * up-to-date.
2631                  *
2632                  * Not only is this an optimisation, but it is also required
2633                  * to check that the address is actually valid, when atomic
2634                  * usercopies are used, below.
2635                  */
2636                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2637                         status = -EFAULT;
2638                         break;
2639                 }
2640
2641                 if (fatal_signal_pending(current)) {
2642                         status = -EINTR;
2643                         break;
2644                 }
2645
2646                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2647                                                 &page, &fsdata);
2648                 if (unlikely(status < 0))
2649                         break;
2650
2651                 if (mapping_writably_mapped(mapping))
2652                         flush_dcache_page(page);
2653
2654                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2655                 flush_dcache_page(page);
2656
2657                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2658                                                 page, fsdata);
2659                 if (unlikely(status < 0))
2660                         break;
2661                 copied = status;
2662
2663                 cond_resched();
2664
2665                 iov_iter_advance(i, copied);
2666                 if (unlikely(copied == 0)) {
2667                         /*
2668                          * If we were unable to copy any data at all, we must
2669                          * fall back to a single segment length write.
2670                          *
2671                          * If we didn't fallback here, we could livelock
2672                          * because not all segments in the iov can be copied at
2673                          * once without a pagefault.
2674                          */
2675                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2676                                                 iov_iter_single_seg_count(i));
2677                         goto again;
2678                 }
2679                 pos += copied;
2680                 written += copied;
2681
2682                 balance_dirty_pages_ratelimited(mapping);
2683         } while (iov_iter_count(i));
2684
2685         return written ? written : status;
2686 }
2687 EXPORT_SYMBOL(generic_perform_write);
2688
2689 /**
2690  * __generic_file_write_iter - write data to a file
2691  * @iocb:       IO state structure (file, offset, etc.)
2692  * @from:       iov_iter with data to write
2693  *
2694  * This function does all the work needed for actually writing data to a
2695  * file. It does all basic checks, removes SUID from the file, updates
2696  * modification times and calls proper subroutines depending on whether we
2697  * do direct IO or a standard buffered write.
2698  *
2699  * It expects i_mutex to be grabbed unless we work on a block device or similar
2700  * object which does not need locking at all.
2701  *
2702  * This function does *not* take care of syncing data in case of O_SYNC write.
2703  * A caller has to handle it. This is mainly due to the fact that we want to
2704  * avoid syncing under i_mutex.
2705  */
2706 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2707 {
2708         struct file *file = iocb->ki_filp;
2709         struct address_space * mapping = file->f_mapping;
2710         struct inode    *inode = mapping->host;
2711         ssize_t         written = 0;
2712         ssize_t         err;
2713         ssize_t         status;
2714
2715         /* We can write back this queue in page reclaim */
2716         current->backing_dev_info = inode_to_bdi(inode);
2717         err = file_remove_privs(file);
2718         if (err)
2719                 goto out;
2720
2721         err = file_update_time(file);
2722         if (err)
2723                 goto out;
2724
2725         if (iocb->ki_flags & IOCB_DIRECT) {
2726                 loff_t pos, endbyte;
2727
2728                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2729                 /*
2730                  * If the write stopped short of completing, fall back to
2731                  * buffered writes.  Some filesystems do this for writes to
2732                  * holes, for example.  For DAX files, a buffered write will
2733                  * not succeed (even if it did, DAX does not handle dirty
2734                  * page-cache pages correctly).
2735                  */
2736                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2737                         goto out;
2738
2739                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2740                 /*
2741                  * If generic_perform_write() returned a synchronous error
2742                  * then we want to return the number of bytes which were
2743                  * direct-written, or the error code if that was zero.  Note
2744                  * that this differs from normal direct-io semantics, which
2745                  * will return -EFOO even if some bytes were written.
2746                  */
2747                 if (unlikely(status < 0)) {
2748                         err = status;
2749                         goto out;
2750                 }
2751                 /*
2752                  * We need to ensure that the page cache pages are written to
2753                  * disk and invalidated to preserve the expected O_DIRECT
2754                  * semantics.
2755                  */
2756                 endbyte = pos + status - 1;
2757                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2758                 if (err == 0) {
2759                         iocb->ki_pos = endbyte + 1;
2760                         written += status;
2761                         invalidate_mapping_pages(mapping,
2762                                                  pos >> PAGE_SHIFT,
2763                                                  endbyte >> PAGE_SHIFT);
2764                 } else {
2765                         /*
2766                          * We don't know how much we wrote, so just return
2767                          * the number of bytes which were direct-written
2768                          */
2769                 }
2770         } else {
2771                 written = generic_perform_write(file, from, iocb->ki_pos);
2772                 if (likely(written > 0))
2773                         iocb->ki_pos += written;
2774         }
2775 out:
2776         current->backing_dev_info = NULL;
2777         return written ? written : err;
2778 }
2779 EXPORT_SYMBOL(__generic_file_write_iter);
2780
2781 /**
2782  * generic_file_write_iter - write data to a file
2783  * @iocb:       IO state structure
2784  * @from:       iov_iter with data to write
2785  *
2786  * This is a wrapper around __generic_file_write_iter() to be used by most
2787  * filesystems. It takes care of syncing the file in case of O_SYNC file
2788  * and acquires i_mutex as needed.
2789  */
2790 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2791 {
2792         struct file *file = iocb->ki_filp;
2793         struct inode *inode = file->f_mapping->host;
2794         ssize_t ret;
2795
2796         inode_lock(inode);
2797         ret = generic_write_checks(iocb, from);
2798         if (ret > 0)
2799                 ret = __generic_file_write_iter(iocb, from);
2800         inode_unlock(inode);
2801
2802         if (ret > 0) {
2803                 ssize_t err;
2804
2805                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2806                 if (err < 0)
2807                         ret = err;
2808         }
2809         return ret;
2810 }
2811 EXPORT_SYMBOL(generic_file_write_iter);
2812
2813 /**
2814  * try_to_release_page() - release old fs-specific metadata on a page
2815  *
2816  * @page: the page which the kernel is trying to free
2817  * @gfp_mask: memory allocation flags (and I/O mode)
2818  *
2819  * The address_space is to try to release any data against the page
2820  * (presumably at page->private).  If the release was successful, return `1'.
2821  * Otherwise return zero.
2822  *
2823  * This may also be called if PG_fscache is set on a page, indicating that the
2824  * page is known to the local caching routines.
2825  *
2826  * The @gfp_mask argument specifies whether I/O may be performed to release
2827  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2828  *
2829  */
2830 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2831 {
2832         struct address_space * const mapping = page->mapping;
2833
2834         BUG_ON(!PageLocked(page));
2835         if (PageWriteback(page))
2836                 return 0;
2837
2838         if (mapping && mapping->a_ops->releasepage)
2839                 return mapping->a_ops->releasepage(page, gfp_mask);
2840         return try_to_free_buffers(page);
2841 }
2842
2843 EXPORT_SYMBOL(try_to_release_page);