mm: batch radix tree operations when truncating pages
[sfrench/cifs-2.6.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem              (truncate_pagecache)
67  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock             (exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
77  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page               (access_process_vm)
81  *
82  *  ->i_mutex                   (generic_perform_write)
83  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock                   (fs/fs-writeback.c)
87  *    ->mapping->tree_lock      (__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->tree_lock               (try_to_unmap_one)
99  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
108  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115                                   struct page *page, void **shadowp)
116 {
117         struct radix_tree_node *node;
118         void **slot;
119         int error;
120
121         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122                                     &node, &slot);
123         if (error)
124                 return error;
125         if (*slot) {
126                 void *p;
127
128                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129                 if (!radix_tree_exceptional_entry(p))
130                         return -EEXIST;
131
132                 mapping->nrexceptional--;
133                 if (shadowp)
134                         *shadowp = p;
135         }
136         __radix_tree_replace(&mapping->page_tree, node, slot, page,
137                              workingset_update_node, mapping);
138         mapping->nrpages++;
139         return 0;
140 }
141
142 static void page_cache_tree_delete(struct address_space *mapping,
143                                    struct page *page, void *shadow)
144 {
145         int i, nr;
146
147         /* hugetlb pages are represented by one entry in the radix tree */
148         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(PageTail(page), page);
152         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
153
154         for (i = 0; i < nr; i++) {
155                 struct radix_tree_node *node;
156                 void **slot;
157
158                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
159                                     &node, &slot);
160
161                 VM_BUG_ON_PAGE(!node && nr != 1, page);
162
163                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
164                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165                                      workingset_update_node, mapping);
166         }
167
168         page->mapping = NULL;
169         /* Leave page->index set: truncation lookup relies upon it */
170
171         if (shadow) {
172                 mapping->nrexceptional += nr;
173                 /*
174                  * Make sure the nrexceptional update is committed before
175                  * the nrpages update so that final truncate racing
176                  * with reclaim does not see both counters 0 at the
177                  * same time and miss a shadow entry.
178                  */
179                 smp_wmb();
180         }
181         mapping->nrpages -= nr;
182 }
183
184 static void unaccount_page_cache_page(struct address_space *mapping,
185                                       struct page *page)
186 {
187         int nr;
188
189         /*
190          * if we're uptodate, flush out into the cleancache, otherwise
191          * invalidate any existing cleancache entries.  We can't leave
192          * stale data around in the cleancache once our page is gone
193          */
194         if (PageUptodate(page) && PageMappedToDisk(page))
195                 cleancache_put_page(page);
196         else
197                 cleancache_invalidate_page(mapping, page);
198
199         VM_BUG_ON_PAGE(PageTail(page), page);
200         VM_BUG_ON_PAGE(page_mapped(page), page);
201         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
202                 int mapcount;
203
204                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
205                          current->comm, page_to_pfn(page));
206                 dump_page(page, "still mapped when deleted");
207                 dump_stack();
208                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
209
210                 mapcount = page_mapcount(page);
211                 if (mapping_exiting(mapping) &&
212                     page_count(page) >= mapcount + 2) {
213                         /*
214                          * All vmas have already been torn down, so it's
215                          * a good bet that actually the page is unmapped,
216                          * and we'd prefer not to leak it: if we're wrong,
217                          * some other bad page check should catch it later.
218                          */
219                         page_mapcount_reset(page);
220                         page_ref_sub(page, mapcount);
221                 }
222         }
223
224         /* hugetlb pages do not participate in page cache accounting. */
225         if (PageHuge(page))
226                 return;
227
228         nr = hpage_nr_pages(page);
229
230         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
231         if (PageSwapBacked(page)) {
232                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
233                 if (PageTransHuge(page))
234                         __dec_node_page_state(page, NR_SHMEM_THPS);
235         } else {
236                 VM_BUG_ON_PAGE(PageTransHuge(page), page);
237         }
238
239         /*
240          * At this point page must be either written or cleaned by
241          * truncate.  Dirty page here signals a bug and loss of
242          * unwritten data.
243          *
244          * This fixes dirty accounting after removing the page entirely
245          * but leaves PageDirty set: it has no effect for truncated
246          * page and anyway will be cleared before returning page into
247          * buddy allocator.
248          */
249         if (WARN_ON_ONCE(PageDirty(page)))
250                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
251 }
252
253 /*
254  * Delete a page from the page cache and free it. Caller has to make
255  * sure the page is locked and that nobody else uses it - or that usage
256  * is safe.  The caller must hold the mapping's tree_lock.
257  */
258 void __delete_from_page_cache(struct page *page, void *shadow)
259 {
260         struct address_space *mapping = page->mapping;
261
262         trace_mm_filemap_delete_from_page_cache(page);
263
264         unaccount_page_cache_page(mapping, page);
265         page_cache_tree_delete(mapping, page, shadow);
266 }
267
268 static void page_cache_free_page(struct address_space *mapping,
269                                 struct page *page)
270 {
271         void (*freepage)(struct page *);
272
273         freepage = mapping->a_ops->freepage;
274         if (freepage)
275                 freepage(page);
276
277         if (PageTransHuge(page) && !PageHuge(page)) {
278                 page_ref_sub(page, HPAGE_PMD_NR);
279                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
280         } else {
281                 put_page(page);
282         }
283 }
284
285 /**
286  * delete_from_page_cache - delete page from page cache
287  * @page: the page which the kernel is trying to remove from page cache
288  *
289  * This must be called only on pages that have been verified to be in the page
290  * cache and locked.  It will never put the page into the free list, the caller
291  * has a reference on the page.
292  */
293 void delete_from_page_cache(struct page *page)
294 {
295         struct address_space *mapping = page_mapping(page);
296         unsigned long flags;
297
298         BUG_ON(!PageLocked(page));
299         spin_lock_irqsave(&mapping->tree_lock, flags);
300         __delete_from_page_cache(page, NULL);
301         spin_unlock_irqrestore(&mapping->tree_lock, flags);
302
303         page_cache_free_page(mapping, page);
304 }
305 EXPORT_SYMBOL(delete_from_page_cache);
306
307 /*
308  * page_cache_tree_delete_batch - delete several pages from page cache
309  * @mapping: the mapping to which pages belong
310  * @pvec: pagevec with pages to delete
311  *
312  * The function walks over mapping->page_tree and removes pages passed in @pvec
313  * from the radix tree. The function expects @pvec to be sorted by page index.
314  * It tolerates holes in @pvec (radix tree entries at those indices are not
315  * modified). The function expects only THP head pages to be present in the
316  * @pvec and takes care to delete all corresponding tail pages from the radix
317  * tree as well.
318  *
319  * The function expects mapping->tree_lock to be held.
320  */
321 static void
322 page_cache_tree_delete_batch(struct address_space *mapping,
323                              struct pagevec *pvec)
324 {
325         struct radix_tree_iter iter;
326         void **slot;
327         int total_pages = 0;
328         int i = 0, tail_pages = 0;
329         struct page *page;
330         pgoff_t start;
331
332         start = pvec->pages[0]->index;
333         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
334                 if (i >= pagevec_count(pvec) && !tail_pages)
335                         break;
336                 page = radix_tree_deref_slot_protected(slot,
337                                                        &mapping->tree_lock);
338                 if (radix_tree_exceptional_entry(page))
339                         continue;
340                 if (!tail_pages) {
341                         /*
342                          * Some page got inserted in our range? Skip it. We
343                          * have our pages locked so they are protected from
344                          * being removed.
345                          */
346                         if (page != pvec->pages[i])
347                                 continue;
348                         WARN_ON_ONCE(!PageLocked(page));
349                         if (PageTransHuge(page) && !PageHuge(page))
350                                 tail_pages = HPAGE_PMD_NR - 1;
351                         page->mapping = NULL;
352                         /*
353                          * Leave page->index set: truncation lookup relies
354                          * upon it
355                          */
356                         i++;
357                 } else {
358                         tail_pages--;
359                 }
360                 radix_tree_clear_tags(&mapping->page_tree, iter.node, slot);
361                 __radix_tree_replace(&mapping->page_tree, iter.node, slot, NULL,
362                                      workingset_update_node, mapping);
363                 total_pages++;
364         }
365         mapping->nrpages -= total_pages;
366 }
367
368 void delete_from_page_cache_batch(struct address_space *mapping,
369                                   struct pagevec *pvec)
370 {
371         int i;
372         unsigned long flags;
373
374         if (!pagevec_count(pvec))
375                 return;
376
377         spin_lock_irqsave(&mapping->tree_lock, flags);
378         for (i = 0; i < pagevec_count(pvec); i++) {
379                 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
380
381                 unaccount_page_cache_page(mapping, pvec->pages[i]);
382         }
383         page_cache_tree_delete_batch(mapping, pvec);
384         spin_unlock_irqrestore(&mapping->tree_lock, flags);
385
386         for (i = 0; i < pagevec_count(pvec); i++)
387                 page_cache_free_page(mapping, pvec->pages[i]);
388 }
389
390 int filemap_check_errors(struct address_space *mapping)
391 {
392         int ret = 0;
393         /* Check for outstanding write errors */
394         if (test_bit(AS_ENOSPC, &mapping->flags) &&
395             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
396                 ret = -ENOSPC;
397         if (test_bit(AS_EIO, &mapping->flags) &&
398             test_and_clear_bit(AS_EIO, &mapping->flags))
399                 ret = -EIO;
400         return ret;
401 }
402 EXPORT_SYMBOL(filemap_check_errors);
403
404 static int filemap_check_and_keep_errors(struct address_space *mapping)
405 {
406         /* Check for outstanding write errors */
407         if (test_bit(AS_EIO, &mapping->flags))
408                 return -EIO;
409         if (test_bit(AS_ENOSPC, &mapping->flags))
410                 return -ENOSPC;
411         return 0;
412 }
413
414 /**
415  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
416  * @mapping:    address space structure to write
417  * @start:      offset in bytes where the range starts
418  * @end:        offset in bytes where the range ends (inclusive)
419  * @sync_mode:  enable synchronous operation
420  *
421  * Start writeback against all of a mapping's dirty pages that lie
422  * within the byte offsets <start, end> inclusive.
423  *
424  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
425  * opposed to a regular memory cleansing writeback.  The difference between
426  * these two operations is that if a dirty page/buffer is encountered, it must
427  * be waited upon, and not just skipped over.
428  */
429 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
430                                 loff_t end, int sync_mode)
431 {
432         int ret;
433         struct writeback_control wbc = {
434                 .sync_mode = sync_mode,
435                 .nr_to_write = LONG_MAX,
436                 .range_start = start,
437                 .range_end = end,
438         };
439
440         if (!mapping_cap_writeback_dirty(mapping))
441                 return 0;
442
443         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
444         ret = do_writepages(mapping, &wbc);
445         wbc_detach_inode(&wbc);
446         return ret;
447 }
448
449 static inline int __filemap_fdatawrite(struct address_space *mapping,
450         int sync_mode)
451 {
452         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
453 }
454
455 int filemap_fdatawrite(struct address_space *mapping)
456 {
457         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
458 }
459 EXPORT_SYMBOL(filemap_fdatawrite);
460
461 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
462                                 loff_t end)
463 {
464         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
465 }
466 EXPORT_SYMBOL(filemap_fdatawrite_range);
467
468 /**
469  * filemap_flush - mostly a non-blocking flush
470  * @mapping:    target address_space
471  *
472  * This is a mostly non-blocking flush.  Not suitable for data-integrity
473  * purposes - I/O may not be started against all dirty pages.
474  */
475 int filemap_flush(struct address_space *mapping)
476 {
477         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
478 }
479 EXPORT_SYMBOL(filemap_flush);
480
481 /**
482  * filemap_range_has_page - check if a page exists in range.
483  * @mapping:           address space within which to check
484  * @start_byte:        offset in bytes where the range starts
485  * @end_byte:          offset in bytes where the range ends (inclusive)
486  *
487  * Find at least one page in the range supplied, usually used to check if
488  * direct writing in this range will trigger a writeback.
489  */
490 bool filemap_range_has_page(struct address_space *mapping,
491                            loff_t start_byte, loff_t end_byte)
492 {
493         pgoff_t index = start_byte >> PAGE_SHIFT;
494         pgoff_t end = end_byte >> PAGE_SHIFT;
495         struct page *page;
496
497         if (end_byte < start_byte)
498                 return false;
499
500         if (mapping->nrpages == 0)
501                 return false;
502
503         if (!find_get_pages_range(mapping, &index, end, 1, &page))
504                 return false;
505         put_page(page);
506         return true;
507 }
508 EXPORT_SYMBOL(filemap_range_has_page);
509
510 static void __filemap_fdatawait_range(struct address_space *mapping,
511                                      loff_t start_byte, loff_t end_byte)
512 {
513         pgoff_t index = start_byte >> PAGE_SHIFT;
514         pgoff_t end = end_byte >> PAGE_SHIFT;
515         struct pagevec pvec;
516         int nr_pages;
517
518         if (end_byte < start_byte)
519                 return;
520
521         pagevec_init(&pvec, 0);
522         while (index <= end) {
523                 unsigned i;
524
525                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
526                                 end, PAGECACHE_TAG_WRITEBACK);
527                 if (!nr_pages)
528                         break;
529
530                 for (i = 0; i < nr_pages; i++) {
531                         struct page *page = pvec.pages[i];
532
533                         wait_on_page_writeback(page);
534                         ClearPageError(page);
535                 }
536                 pagevec_release(&pvec);
537                 cond_resched();
538         }
539 }
540
541 /**
542  * filemap_fdatawait_range - wait for writeback to complete
543  * @mapping:            address space structure to wait for
544  * @start_byte:         offset in bytes where the range starts
545  * @end_byte:           offset in bytes where the range ends (inclusive)
546  *
547  * Walk the list of under-writeback pages of the given address space
548  * in the given range and wait for all of them.  Check error status of
549  * the address space and return it.
550  *
551  * Since the error status of the address space is cleared by this function,
552  * callers are responsible for checking the return value and handling and/or
553  * reporting the error.
554  */
555 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
556                             loff_t end_byte)
557 {
558         __filemap_fdatawait_range(mapping, start_byte, end_byte);
559         return filemap_check_errors(mapping);
560 }
561 EXPORT_SYMBOL(filemap_fdatawait_range);
562
563 /**
564  * file_fdatawait_range - wait for writeback to complete
565  * @file:               file pointing to address space structure to wait for
566  * @start_byte:         offset in bytes where the range starts
567  * @end_byte:           offset in bytes where the range ends (inclusive)
568  *
569  * Walk the list of under-writeback pages of the address space that file
570  * refers to, in the given range and wait for all of them.  Check error
571  * status of the address space vs. the file->f_wb_err cursor and return it.
572  *
573  * Since the error status of the file is advanced by this function,
574  * callers are responsible for checking the return value and handling and/or
575  * reporting the error.
576  */
577 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
578 {
579         struct address_space *mapping = file->f_mapping;
580
581         __filemap_fdatawait_range(mapping, start_byte, end_byte);
582         return file_check_and_advance_wb_err(file);
583 }
584 EXPORT_SYMBOL(file_fdatawait_range);
585
586 /**
587  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
588  * @mapping: address space structure to wait for
589  *
590  * Walk the list of under-writeback pages of the given address space
591  * and wait for all of them.  Unlike filemap_fdatawait(), this function
592  * does not clear error status of the address space.
593  *
594  * Use this function if callers don't handle errors themselves.  Expected
595  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
596  * fsfreeze(8)
597  */
598 int filemap_fdatawait_keep_errors(struct address_space *mapping)
599 {
600         __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
601         return filemap_check_and_keep_errors(mapping);
602 }
603 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
604
605 static bool mapping_needs_writeback(struct address_space *mapping)
606 {
607         return (!dax_mapping(mapping) && mapping->nrpages) ||
608             (dax_mapping(mapping) && mapping->nrexceptional);
609 }
610
611 int filemap_write_and_wait(struct address_space *mapping)
612 {
613         int err = 0;
614
615         if (mapping_needs_writeback(mapping)) {
616                 err = filemap_fdatawrite(mapping);
617                 /*
618                  * Even if the above returned error, the pages may be
619                  * written partially (e.g. -ENOSPC), so we wait for it.
620                  * But the -EIO is special case, it may indicate the worst
621                  * thing (e.g. bug) happened, so we avoid waiting for it.
622                  */
623                 if (err != -EIO) {
624                         int err2 = filemap_fdatawait(mapping);
625                         if (!err)
626                                 err = err2;
627                 } else {
628                         /* Clear any previously stored errors */
629                         filemap_check_errors(mapping);
630                 }
631         } else {
632                 err = filemap_check_errors(mapping);
633         }
634         return err;
635 }
636 EXPORT_SYMBOL(filemap_write_and_wait);
637
638 /**
639  * filemap_write_and_wait_range - write out & wait on a file range
640  * @mapping:    the address_space for the pages
641  * @lstart:     offset in bytes where the range starts
642  * @lend:       offset in bytes where the range ends (inclusive)
643  *
644  * Write out and wait upon file offsets lstart->lend, inclusive.
645  *
646  * Note that @lend is inclusive (describes the last byte to be written) so
647  * that this function can be used to write to the very end-of-file (end = -1).
648  */
649 int filemap_write_and_wait_range(struct address_space *mapping,
650                                  loff_t lstart, loff_t lend)
651 {
652         int err = 0;
653
654         if (mapping_needs_writeback(mapping)) {
655                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
656                                                  WB_SYNC_ALL);
657                 /* See comment of filemap_write_and_wait() */
658                 if (err != -EIO) {
659                         int err2 = filemap_fdatawait_range(mapping,
660                                                 lstart, lend);
661                         if (!err)
662                                 err = err2;
663                 } else {
664                         /* Clear any previously stored errors */
665                         filemap_check_errors(mapping);
666                 }
667         } else {
668                 err = filemap_check_errors(mapping);
669         }
670         return err;
671 }
672 EXPORT_SYMBOL(filemap_write_and_wait_range);
673
674 void __filemap_set_wb_err(struct address_space *mapping, int err)
675 {
676         errseq_t eseq = errseq_set(&mapping->wb_err, err);
677
678         trace_filemap_set_wb_err(mapping, eseq);
679 }
680 EXPORT_SYMBOL(__filemap_set_wb_err);
681
682 /**
683  * file_check_and_advance_wb_err - report wb error (if any) that was previously
684  *                                 and advance wb_err to current one
685  * @file: struct file on which the error is being reported
686  *
687  * When userland calls fsync (or something like nfsd does the equivalent), we
688  * want to report any writeback errors that occurred since the last fsync (or
689  * since the file was opened if there haven't been any).
690  *
691  * Grab the wb_err from the mapping. If it matches what we have in the file,
692  * then just quickly return 0. The file is all caught up.
693  *
694  * If it doesn't match, then take the mapping value, set the "seen" flag in
695  * it and try to swap it into place. If it works, or another task beat us
696  * to it with the new value, then update the f_wb_err and return the error
697  * portion. The error at this point must be reported via proper channels
698  * (a'la fsync, or NFS COMMIT operation, etc.).
699  *
700  * While we handle mapping->wb_err with atomic operations, the f_wb_err
701  * value is protected by the f_lock since we must ensure that it reflects
702  * the latest value swapped in for this file descriptor.
703  */
704 int file_check_and_advance_wb_err(struct file *file)
705 {
706         int err = 0;
707         errseq_t old = READ_ONCE(file->f_wb_err);
708         struct address_space *mapping = file->f_mapping;
709
710         /* Locklessly handle the common case where nothing has changed */
711         if (errseq_check(&mapping->wb_err, old)) {
712                 /* Something changed, must use slow path */
713                 spin_lock(&file->f_lock);
714                 old = file->f_wb_err;
715                 err = errseq_check_and_advance(&mapping->wb_err,
716                                                 &file->f_wb_err);
717                 trace_file_check_and_advance_wb_err(file, old);
718                 spin_unlock(&file->f_lock);
719         }
720
721         /*
722          * We're mostly using this function as a drop in replacement for
723          * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
724          * that the legacy code would have had on these flags.
725          */
726         clear_bit(AS_EIO, &mapping->flags);
727         clear_bit(AS_ENOSPC, &mapping->flags);
728         return err;
729 }
730 EXPORT_SYMBOL(file_check_and_advance_wb_err);
731
732 /**
733  * file_write_and_wait_range - write out & wait on a file range
734  * @file:       file pointing to address_space with pages
735  * @lstart:     offset in bytes where the range starts
736  * @lend:       offset in bytes where the range ends (inclusive)
737  *
738  * Write out and wait upon file offsets lstart->lend, inclusive.
739  *
740  * Note that @lend is inclusive (describes the last byte to be written) so
741  * that this function can be used to write to the very end-of-file (end = -1).
742  *
743  * After writing out and waiting on the data, we check and advance the
744  * f_wb_err cursor to the latest value, and return any errors detected there.
745  */
746 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
747 {
748         int err = 0, err2;
749         struct address_space *mapping = file->f_mapping;
750
751         if (mapping_needs_writeback(mapping)) {
752                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
753                                                  WB_SYNC_ALL);
754                 /* See comment of filemap_write_and_wait() */
755                 if (err != -EIO)
756                         __filemap_fdatawait_range(mapping, lstart, lend);
757         }
758         err2 = file_check_and_advance_wb_err(file);
759         if (!err)
760                 err = err2;
761         return err;
762 }
763 EXPORT_SYMBOL(file_write_and_wait_range);
764
765 /**
766  * replace_page_cache_page - replace a pagecache page with a new one
767  * @old:        page to be replaced
768  * @new:        page to replace with
769  * @gfp_mask:   allocation mode
770  *
771  * This function replaces a page in the pagecache with a new one.  On
772  * success it acquires the pagecache reference for the new page and
773  * drops it for the old page.  Both the old and new pages must be
774  * locked.  This function does not add the new page to the LRU, the
775  * caller must do that.
776  *
777  * The remove + add is atomic.  The only way this function can fail is
778  * memory allocation failure.
779  */
780 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
781 {
782         int error;
783
784         VM_BUG_ON_PAGE(!PageLocked(old), old);
785         VM_BUG_ON_PAGE(!PageLocked(new), new);
786         VM_BUG_ON_PAGE(new->mapping, new);
787
788         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
789         if (!error) {
790                 struct address_space *mapping = old->mapping;
791                 void (*freepage)(struct page *);
792                 unsigned long flags;
793
794                 pgoff_t offset = old->index;
795                 freepage = mapping->a_ops->freepage;
796
797                 get_page(new);
798                 new->mapping = mapping;
799                 new->index = offset;
800
801                 spin_lock_irqsave(&mapping->tree_lock, flags);
802                 __delete_from_page_cache(old, NULL);
803                 error = page_cache_tree_insert(mapping, new, NULL);
804                 BUG_ON(error);
805
806                 /*
807                  * hugetlb pages do not participate in page cache accounting.
808                  */
809                 if (!PageHuge(new))
810                         __inc_node_page_state(new, NR_FILE_PAGES);
811                 if (PageSwapBacked(new))
812                         __inc_node_page_state(new, NR_SHMEM);
813                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
814                 mem_cgroup_migrate(old, new);
815                 radix_tree_preload_end();
816                 if (freepage)
817                         freepage(old);
818                 put_page(old);
819         }
820
821         return error;
822 }
823 EXPORT_SYMBOL_GPL(replace_page_cache_page);
824
825 static int __add_to_page_cache_locked(struct page *page,
826                                       struct address_space *mapping,
827                                       pgoff_t offset, gfp_t gfp_mask,
828                                       void **shadowp)
829 {
830         int huge = PageHuge(page);
831         struct mem_cgroup *memcg;
832         int error;
833
834         VM_BUG_ON_PAGE(!PageLocked(page), page);
835         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
836
837         if (!huge) {
838                 error = mem_cgroup_try_charge(page, current->mm,
839                                               gfp_mask, &memcg, false);
840                 if (error)
841                         return error;
842         }
843
844         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
845         if (error) {
846                 if (!huge)
847                         mem_cgroup_cancel_charge(page, memcg, false);
848                 return error;
849         }
850
851         get_page(page);
852         page->mapping = mapping;
853         page->index = offset;
854
855         spin_lock_irq(&mapping->tree_lock);
856         error = page_cache_tree_insert(mapping, page, shadowp);
857         radix_tree_preload_end();
858         if (unlikely(error))
859                 goto err_insert;
860
861         /* hugetlb pages do not participate in page cache accounting. */
862         if (!huge)
863                 __inc_node_page_state(page, NR_FILE_PAGES);
864         spin_unlock_irq(&mapping->tree_lock);
865         if (!huge)
866                 mem_cgroup_commit_charge(page, memcg, false, false);
867         trace_mm_filemap_add_to_page_cache(page);
868         return 0;
869 err_insert:
870         page->mapping = NULL;
871         /* Leave page->index set: truncation relies upon it */
872         spin_unlock_irq(&mapping->tree_lock);
873         if (!huge)
874                 mem_cgroup_cancel_charge(page, memcg, false);
875         put_page(page);
876         return error;
877 }
878
879 /**
880  * add_to_page_cache_locked - add a locked page to the pagecache
881  * @page:       page to add
882  * @mapping:    the page's address_space
883  * @offset:     page index
884  * @gfp_mask:   page allocation mode
885  *
886  * This function is used to add a page to the pagecache. It must be locked.
887  * This function does not add the page to the LRU.  The caller must do that.
888  */
889 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
890                 pgoff_t offset, gfp_t gfp_mask)
891 {
892         return __add_to_page_cache_locked(page, mapping, offset,
893                                           gfp_mask, NULL);
894 }
895 EXPORT_SYMBOL(add_to_page_cache_locked);
896
897 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
898                                 pgoff_t offset, gfp_t gfp_mask)
899 {
900         void *shadow = NULL;
901         int ret;
902
903         __SetPageLocked(page);
904         ret = __add_to_page_cache_locked(page, mapping, offset,
905                                          gfp_mask, &shadow);
906         if (unlikely(ret))
907                 __ClearPageLocked(page);
908         else {
909                 /*
910                  * The page might have been evicted from cache only
911                  * recently, in which case it should be activated like
912                  * any other repeatedly accessed page.
913                  * The exception is pages getting rewritten; evicting other
914                  * data from the working set, only to cache data that will
915                  * get overwritten with something else, is a waste of memory.
916                  */
917                 if (!(gfp_mask & __GFP_WRITE) &&
918                     shadow && workingset_refault(shadow)) {
919                         SetPageActive(page);
920                         workingset_activation(page);
921                 } else
922                         ClearPageActive(page);
923                 lru_cache_add(page);
924         }
925         return ret;
926 }
927 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
928
929 #ifdef CONFIG_NUMA
930 struct page *__page_cache_alloc(gfp_t gfp)
931 {
932         int n;
933         struct page *page;
934
935         if (cpuset_do_page_mem_spread()) {
936                 unsigned int cpuset_mems_cookie;
937                 do {
938                         cpuset_mems_cookie = read_mems_allowed_begin();
939                         n = cpuset_mem_spread_node();
940                         page = __alloc_pages_node(n, gfp, 0);
941                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
942
943                 return page;
944         }
945         return alloc_pages(gfp, 0);
946 }
947 EXPORT_SYMBOL(__page_cache_alloc);
948 #endif
949
950 /*
951  * In order to wait for pages to become available there must be
952  * waitqueues associated with pages. By using a hash table of
953  * waitqueues where the bucket discipline is to maintain all
954  * waiters on the same queue and wake all when any of the pages
955  * become available, and for the woken contexts to check to be
956  * sure the appropriate page became available, this saves space
957  * at a cost of "thundering herd" phenomena during rare hash
958  * collisions.
959  */
960 #define PAGE_WAIT_TABLE_BITS 8
961 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
962 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
963
964 static wait_queue_head_t *page_waitqueue(struct page *page)
965 {
966         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
967 }
968
969 void __init pagecache_init(void)
970 {
971         int i;
972
973         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
974                 init_waitqueue_head(&page_wait_table[i]);
975
976         page_writeback_init();
977 }
978
979 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
980 struct wait_page_key {
981         struct page *page;
982         int bit_nr;
983         int page_match;
984 };
985
986 struct wait_page_queue {
987         struct page *page;
988         int bit_nr;
989         wait_queue_entry_t wait;
990 };
991
992 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
993 {
994         struct wait_page_key *key = arg;
995         struct wait_page_queue *wait_page
996                 = container_of(wait, struct wait_page_queue, wait);
997
998         if (wait_page->page != key->page)
999                return 0;
1000         key->page_match = 1;
1001
1002         if (wait_page->bit_nr != key->bit_nr)
1003                 return 0;
1004
1005         /* Stop walking if it's locked */
1006         if (test_bit(key->bit_nr, &key->page->flags))
1007                 return -1;
1008
1009         return autoremove_wake_function(wait, mode, sync, key);
1010 }
1011
1012 static void wake_up_page_bit(struct page *page, int bit_nr)
1013 {
1014         wait_queue_head_t *q = page_waitqueue(page);
1015         struct wait_page_key key;
1016         unsigned long flags;
1017         wait_queue_entry_t bookmark;
1018
1019         key.page = page;
1020         key.bit_nr = bit_nr;
1021         key.page_match = 0;
1022
1023         bookmark.flags = 0;
1024         bookmark.private = NULL;
1025         bookmark.func = NULL;
1026         INIT_LIST_HEAD(&bookmark.entry);
1027
1028         spin_lock_irqsave(&q->lock, flags);
1029         __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1030
1031         while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1032                 /*
1033                  * Take a breather from holding the lock,
1034                  * allow pages that finish wake up asynchronously
1035                  * to acquire the lock and remove themselves
1036                  * from wait queue
1037                  */
1038                 spin_unlock_irqrestore(&q->lock, flags);
1039                 cpu_relax();
1040                 spin_lock_irqsave(&q->lock, flags);
1041                 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1042         }
1043
1044         /*
1045          * It is possible for other pages to have collided on the waitqueue
1046          * hash, so in that case check for a page match. That prevents a long-
1047          * term waiter
1048          *
1049          * It is still possible to miss a case here, when we woke page waiters
1050          * and removed them from the waitqueue, but there are still other
1051          * page waiters.
1052          */
1053         if (!waitqueue_active(q) || !key.page_match) {
1054                 ClearPageWaiters(page);
1055                 /*
1056                  * It's possible to miss clearing Waiters here, when we woke
1057                  * our page waiters, but the hashed waitqueue has waiters for
1058                  * other pages on it.
1059                  *
1060                  * That's okay, it's a rare case. The next waker will clear it.
1061                  */
1062         }
1063         spin_unlock_irqrestore(&q->lock, flags);
1064 }
1065
1066 static void wake_up_page(struct page *page, int bit)
1067 {
1068         if (!PageWaiters(page))
1069                 return;
1070         wake_up_page_bit(page, bit);
1071 }
1072
1073 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1074                 struct page *page, int bit_nr, int state, bool lock)
1075 {
1076         struct wait_page_queue wait_page;
1077         wait_queue_entry_t *wait = &wait_page.wait;
1078         int ret = 0;
1079
1080         init_wait(wait);
1081         wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1082         wait->func = wake_page_function;
1083         wait_page.page = page;
1084         wait_page.bit_nr = bit_nr;
1085
1086         for (;;) {
1087                 spin_lock_irq(&q->lock);
1088
1089                 if (likely(list_empty(&wait->entry))) {
1090                         __add_wait_queue_entry_tail(q, wait);
1091                         SetPageWaiters(page);
1092                 }
1093
1094                 set_current_state(state);
1095
1096                 spin_unlock_irq(&q->lock);
1097
1098                 if (likely(test_bit(bit_nr, &page->flags))) {
1099                         io_schedule();
1100                 }
1101
1102                 if (lock) {
1103                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
1104                                 break;
1105                 } else {
1106                         if (!test_bit(bit_nr, &page->flags))
1107                                 break;
1108                 }
1109
1110                 if (unlikely(signal_pending_state(state, current))) {
1111                         ret = -EINTR;
1112                         break;
1113                 }
1114         }
1115
1116         finish_wait(q, wait);
1117
1118         /*
1119          * A signal could leave PageWaiters set. Clearing it here if
1120          * !waitqueue_active would be possible (by open-coding finish_wait),
1121          * but still fail to catch it in the case of wait hash collision. We
1122          * already can fail to clear wait hash collision cases, so don't
1123          * bother with signals either.
1124          */
1125
1126         return ret;
1127 }
1128
1129 void wait_on_page_bit(struct page *page, int bit_nr)
1130 {
1131         wait_queue_head_t *q = page_waitqueue(page);
1132         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1133 }
1134 EXPORT_SYMBOL(wait_on_page_bit);
1135
1136 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1137 {
1138         wait_queue_head_t *q = page_waitqueue(page);
1139         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1140 }
1141
1142 /**
1143  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1144  * @page: Page defining the wait queue of interest
1145  * @waiter: Waiter to add to the queue
1146  *
1147  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1148  */
1149 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1150 {
1151         wait_queue_head_t *q = page_waitqueue(page);
1152         unsigned long flags;
1153
1154         spin_lock_irqsave(&q->lock, flags);
1155         __add_wait_queue_entry_tail(q, waiter);
1156         SetPageWaiters(page);
1157         spin_unlock_irqrestore(&q->lock, flags);
1158 }
1159 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1160
1161 #ifndef clear_bit_unlock_is_negative_byte
1162
1163 /*
1164  * PG_waiters is the high bit in the same byte as PG_lock.
1165  *
1166  * On x86 (and on many other architectures), we can clear PG_lock and
1167  * test the sign bit at the same time. But if the architecture does
1168  * not support that special operation, we just do this all by hand
1169  * instead.
1170  *
1171  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1172  * being cleared, but a memory barrier should be unneccssary since it is
1173  * in the same byte as PG_locked.
1174  */
1175 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1176 {
1177         clear_bit_unlock(nr, mem);
1178         /* smp_mb__after_atomic(); */
1179         return test_bit(PG_waiters, mem);
1180 }
1181
1182 #endif
1183
1184 /**
1185  * unlock_page - unlock a locked page
1186  * @page: the page
1187  *
1188  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1189  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1190  * mechanism between PageLocked pages and PageWriteback pages is shared.
1191  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1192  *
1193  * Note that this depends on PG_waiters being the sign bit in the byte
1194  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1195  * clear the PG_locked bit and test PG_waiters at the same time fairly
1196  * portably (architectures that do LL/SC can test any bit, while x86 can
1197  * test the sign bit).
1198  */
1199 void unlock_page(struct page *page)
1200 {
1201         BUILD_BUG_ON(PG_waiters != 7);
1202         page = compound_head(page);
1203         VM_BUG_ON_PAGE(!PageLocked(page), page);
1204         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1205                 wake_up_page_bit(page, PG_locked);
1206 }
1207 EXPORT_SYMBOL(unlock_page);
1208
1209 /**
1210  * end_page_writeback - end writeback against a page
1211  * @page: the page
1212  */
1213 void end_page_writeback(struct page *page)
1214 {
1215         /*
1216          * TestClearPageReclaim could be used here but it is an atomic
1217          * operation and overkill in this particular case. Failing to
1218          * shuffle a page marked for immediate reclaim is too mild to
1219          * justify taking an atomic operation penalty at the end of
1220          * ever page writeback.
1221          */
1222         if (PageReclaim(page)) {
1223                 ClearPageReclaim(page);
1224                 rotate_reclaimable_page(page);
1225         }
1226
1227         if (!test_clear_page_writeback(page))
1228                 BUG();
1229
1230         smp_mb__after_atomic();
1231         wake_up_page(page, PG_writeback);
1232 }
1233 EXPORT_SYMBOL(end_page_writeback);
1234
1235 /*
1236  * After completing I/O on a page, call this routine to update the page
1237  * flags appropriately
1238  */
1239 void page_endio(struct page *page, bool is_write, int err)
1240 {
1241         if (!is_write) {
1242                 if (!err) {
1243                         SetPageUptodate(page);
1244                 } else {
1245                         ClearPageUptodate(page);
1246                         SetPageError(page);
1247                 }
1248                 unlock_page(page);
1249         } else {
1250                 if (err) {
1251                         struct address_space *mapping;
1252
1253                         SetPageError(page);
1254                         mapping = page_mapping(page);
1255                         if (mapping)
1256                                 mapping_set_error(mapping, err);
1257                 }
1258                 end_page_writeback(page);
1259         }
1260 }
1261 EXPORT_SYMBOL_GPL(page_endio);
1262
1263 /**
1264  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1265  * @__page: the page to lock
1266  */
1267 void __lock_page(struct page *__page)
1268 {
1269         struct page *page = compound_head(__page);
1270         wait_queue_head_t *q = page_waitqueue(page);
1271         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1272 }
1273 EXPORT_SYMBOL(__lock_page);
1274
1275 int __lock_page_killable(struct page *__page)
1276 {
1277         struct page *page = compound_head(__page);
1278         wait_queue_head_t *q = page_waitqueue(page);
1279         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1280 }
1281 EXPORT_SYMBOL_GPL(__lock_page_killable);
1282
1283 /*
1284  * Return values:
1285  * 1 - page is locked; mmap_sem is still held.
1286  * 0 - page is not locked.
1287  *     mmap_sem has been released (up_read()), unless flags had both
1288  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1289  *     which case mmap_sem is still held.
1290  *
1291  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1292  * with the page locked and the mmap_sem unperturbed.
1293  */
1294 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1295                          unsigned int flags)
1296 {
1297         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1298                 /*
1299                  * CAUTION! In this case, mmap_sem is not released
1300                  * even though return 0.
1301                  */
1302                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1303                         return 0;
1304
1305                 up_read(&mm->mmap_sem);
1306                 if (flags & FAULT_FLAG_KILLABLE)
1307                         wait_on_page_locked_killable(page);
1308                 else
1309                         wait_on_page_locked(page);
1310                 return 0;
1311         } else {
1312                 if (flags & FAULT_FLAG_KILLABLE) {
1313                         int ret;
1314
1315                         ret = __lock_page_killable(page);
1316                         if (ret) {
1317                                 up_read(&mm->mmap_sem);
1318                                 return 0;
1319                         }
1320                 } else
1321                         __lock_page(page);
1322                 return 1;
1323         }
1324 }
1325
1326 /**
1327  * page_cache_next_hole - find the next hole (not-present entry)
1328  * @mapping: mapping
1329  * @index: index
1330  * @max_scan: maximum range to search
1331  *
1332  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1333  * lowest indexed hole.
1334  *
1335  * Returns: the index of the hole if found, otherwise returns an index
1336  * outside of the set specified (in which case 'return - index >=
1337  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1338  * be returned.
1339  *
1340  * page_cache_next_hole may be called under rcu_read_lock. However,
1341  * like radix_tree_gang_lookup, this will not atomically search a
1342  * snapshot of the tree at a single point in time. For example, if a
1343  * hole is created at index 5, then subsequently a hole is created at
1344  * index 10, page_cache_next_hole covering both indexes may return 10
1345  * if called under rcu_read_lock.
1346  */
1347 pgoff_t page_cache_next_hole(struct address_space *mapping,
1348                              pgoff_t index, unsigned long max_scan)
1349 {
1350         unsigned long i;
1351
1352         for (i = 0; i < max_scan; i++) {
1353                 struct page *page;
1354
1355                 page = radix_tree_lookup(&mapping->page_tree, index);
1356                 if (!page || radix_tree_exceptional_entry(page))
1357                         break;
1358                 index++;
1359                 if (index == 0)
1360                         break;
1361         }
1362
1363         return index;
1364 }
1365 EXPORT_SYMBOL(page_cache_next_hole);
1366
1367 /**
1368  * page_cache_prev_hole - find the prev hole (not-present entry)
1369  * @mapping: mapping
1370  * @index: index
1371  * @max_scan: maximum range to search
1372  *
1373  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1374  * the first hole.
1375  *
1376  * Returns: the index of the hole if found, otherwise returns an index
1377  * outside of the set specified (in which case 'index - return >=
1378  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1379  * will be returned.
1380  *
1381  * page_cache_prev_hole may be called under rcu_read_lock. However,
1382  * like radix_tree_gang_lookup, this will not atomically search a
1383  * snapshot of the tree at a single point in time. For example, if a
1384  * hole is created at index 10, then subsequently a hole is created at
1385  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1386  * called under rcu_read_lock.
1387  */
1388 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1389                              pgoff_t index, unsigned long max_scan)
1390 {
1391         unsigned long i;
1392
1393         for (i = 0; i < max_scan; i++) {
1394                 struct page *page;
1395
1396                 page = radix_tree_lookup(&mapping->page_tree, index);
1397                 if (!page || radix_tree_exceptional_entry(page))
1398                         break;
1399                 index--;
1400                 if (index == ULONG_MAX)
1401                         break;
1402         }
1403
1404         return index;
1405 }
1406 EXPORT_SYMBOL(page_cache_prev_hole);
1407
1408 /**
1409  * find_get_entry - find and get a page cache entry
1410  * @mapping: the address_space to search
1411  * @offset: the page cache index
1412  *
1413  * Looks up the page cache slot at @mapping & @offset.  If there is a
1414  * page cache page, it is returned with an increased refcount.
1415  *
1416  * If the slot holds a shadow entry of a previously evicted page, or a
1417  * swap entry from shmem/tmpfs, it is returned.
1418  *
1419  * Otherwise, %NULL is returned.
1420  */
1421 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1422 {
1423         void **pagep;
1424         struct page *head, *page;
1425
1426         rcu_read_lock();
1427 repeat:
1428         page = NULL;
1429         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1430         if (pagep) {
1431                 page = radix_tree_deref_slot(pagep);
1432                 if (unlikely(!page))
1433                         goto out;
1434                 if (radix_tree_exception(page)) {
1435                         if (radix_tree_deref_retry(page))
1436                                 goto repeat;
1437                         /*
1438                          * A shadow entry of a recently evicted page,
1439                          * or a swap entry from shmem/tmpfs.  Return
1440                          * it without attempting to raise page count.
1441                          */
1442                         goto out;
1443                 }
1444
1445                 head = compound_head(page);
1446                 if (!page_cache_get_speculative(head))
1447                         goto repeat;
1448
1449                 /* The page was split under us? */
1450                 if (compound_head(page) != head) {
1451                         put_page(head);
1452                         goto repeat;
1453                 }
1454
1455                 /*
1456                  * Has the page moved?
1457                  * This is part of the lockless pagecache protocol. See
1458                  * include/linux/pagemap.h for details.
1459                  */
1460                 if (unlikely(page != *pagep)) {
1461                         put_page(head);
1462                         goto repeat;
1463                 }
1464         }
1465 out:
1466         rcu_read_unlock();
1467
1468         return page;
1469 }
1470 EXPORT_SYMBOL(find_get_entry);
1471
1472 /**
1473  * find_lock_entry - locate, pin and lock a page cache entry
1474  * @mapping: the address_space to search
1475  * @offset: the page cache index
1476  *
1477  * Looks up the page cache slot at @mapping & @offset.  If there is a
1478  * page cache page, it is returned locked and with an increased
1479  * refcount.
1480  *
1481  * If the slot holds a shadow entry of a previously evicted page, or a
1482  * swap entry from shmem/tmpfs, it is returned.
1483  *
1484  * Otherwise, %NULL is returned.
1485  *
1486  * find_lock_entry() may sleep.
1487  */
1488 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1489 {
1490         struct page *page;
1491
1492 repeat:
1493         page = find_get_entry(mapping, offset);
1494         if (page && !radix_tree_exception(page)) {
1495                 lock_page(page);
1496                 /* Has the page been truncated? */
1497                 if (unlikely(page_mapping(page) != mapping)) {
1498                         unlock_page(page);
1499                         put_page(page);
1500                         goto repeat;
1501                 }
1502                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1503         }
1504         return page;
1505 }
1506 EXPORT_SYMBOL(find_lock_entry);
1507
1508 /**
1509  * pagecache_get_page - find and get a page reference
1510  * @mapping: the address_space to search
1511  * @offset: the page index
1512  * @fgp_flags: PCG flags
1513  * @gfp_mask: gfp mask to use for the page cache data page allocation
1514  *
1515  * Looks up the page cache slot at @mapping & @offset.
1516  *
1517  * PCG flags modify how the page is returned.
1518  *
1519  * @fgp_flags can be:
1520  *
1521  * - FGP_ACCESSED: the page will be marked accessed
1522  * - FGP_LOCK: Page is return locked
1523  * - FGP_CREAT: If page is not present then a new page is allocated using
1524  *   @gfp_mask and added to the page cache and the VM's LRU
1525  *   list. The page is returned locked and with an increased
1526  *   refcount. Otherwise, NULL is returned.
1527  *
1528  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1529  * if the GFP flags specified for FGP_CREAT are atomic.
1530  *
1531  * If there is a page cache page, it is returned with an increased refcount.
1532  */
1533 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1534         int fgp_flags, gfp_t gfp_mask)
1535 {
1536         struct page *page;
1537
1538 repeat:
1539         page = find_get_entry(mapping, offset);
1540         if (radix_tree_exceptional_entry(page))
1541                 page = NULL;
1542         if (!page)
1543                 goto no_page;
1544
1545         if (fgp_flags & FGP_LOCK) {
1546                 if (fgp_flags & FGP_NOWAIT) {
1547                         if (!trylock_page(page)) {
1548                                 put_page(page);
1549                                 return NULL;
1550                         }
1551                 } else {
1552                         lock_page(page);
1553                 }
1554
1555                 /* Has the page been truncated? */
1556                 if (unlikely(page->mapping != mapping)) {
1557                         unlock_page(page);
1558                         put_page(page);
1559                         goto repeat;
1560                 }
1561                 VM_BUG_ON_PAGE(page->index != offset, page);
1562         }
1563
1564         if (page && (fgp_flags & FGP_ACCESSED))
1565                 mark_page_accessed(page);
1566
1567 no_page:
1568         if (!page && (fgp_flags & FGP_CREAT)) {
1569                 int err;
1570                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1571                         gfp_mask |= __GFP_WRITE;
1572                 if (fgp_flags & FGP_NOFS)
1573                         gfp_mask &= ~__GFP_FS;
1574
1575                 page = __page_cache_alloc(gfp_mask);
1576                 if (!page)
1577                         return NULL;
1578
1579                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1580                         fgp_flags |= FGP_LOCK;
1581
1582                 /* Init accessed so avoid atomic mark_page_accessed later */
1583                 if (fgp_flags & FGP_ACCESSED)
1584                         __SetPageReferenced(page);
1585
1586                 err = add_to_page_cache_lru(page, mapping, offset,
1587                                 gfp_mask & GFP_RECLAIM_MASK);
1588                 if (unlikely(err)) {
1589                         put_page(page);
1590                         page = NULL;
1591                         if (err == -EEXIST)
1592                                 goto repeat;
1593                 }
1594         }
1595
1596         return page;
1597 }
1598 EXPORT_SYMBOL(pagecache_get_page);
1599
1600 /**
1601  * find_get_entries - gang pagecache lookup
1602  * @mapping:    The address_space to search
1603  * @start:      The starting page cache index
1604  * @nr_entries: The maximum number of entries
1605  * @entries:    Where the resulting entries are placed
1606  * @indices:    The cache indices corresponding to the entries in @entries
1607  *
1608  * find_get_entries() will search for and return a group of up to
1609  * @nr_entries entries in the mapping.  The entries are placed at
1610  * @entries.  find_get_entries() takes a reference against any actual
1611  * pages it returns.
1612  *
1613  * The search returns a group of mapping-contiguous page cache entries
1614  * with ascending indexes.  There may be holes in the indices due to
1615  * not-present pages.
1616  *
1617  * Any shadow entries of evicted pages, or swap entries from
1618  * shmem/tmpfs, are included in the returned array.
1619  *
1620  * find_get_entries() returns the number of pages and shadow entries
1621  * which were found.
1622  */
1623 unsigned find_get_entries(struct address_space *mapping,
1624                           pgoff_t start, unsigned int nr_entries,
1625                           struct page **entries, pgoff_t *indices)
1626 {
1627         void **slot;
1628         unsigned int ret = 0;
1629         struct radix_tree_iter iter;
1630
1631         if (!nr_entries)
1632                 return 0;
1633
1634         rcu_read_lock();
1635         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1636                 struct page *head, *page;
1637 repeat:
1638                 page = radix_tree_deref_slot(slot);
1639                 if (unlikely(!page))
1640                         continue;
1641                 if (radix_tree_exception(page)) {
1642                         if (radix_tree_deref_retry(page)) {
1643                                 slot = radix_tree_iter_retry(&iter);
1644                                 continue;
1645                         }
1646                         /*
1647                          * A shadow entry of a recently evicted page, a swap
1648                          * entry from shmem/tmpfs or a DAX entry.  Return it
1649                          * without attempting to raise page count.
1650                          */
1651                         goto export;
1652                 }
1653
1654                 head = compound_head(page);
1655                 if (!page_cache_get_speculative(head))
1656                         goto repeat;
1657
1658                 /* The page was split under us? */
1659                 if (compound_head(page) != head) {
1660                         put_page(head);
1661                         goto repeat;
1662                 }
1663
1664                 /* Has the page moved? */
1665                 if (unlikely(page != *slot)) {
1666                         put_page(head);
1667                         goto repeat;
1668                 }
1669 export:
1670                 indices[ret] = iter.index;
1671                 entries[ret] = page;
1672                 if (++ret == nr_entries)
1673                         break;
1674         }
1675         rcu_read_unlock();
1676         return ret;
1677 }
1678
1679 /**
1680  * find_get_pages_range - gang pagecache lookup
1681  * @mapping:    The address_space to search
1682  * @start:      The starting page index
1683  * @end:        The final page index (inclusive)
1684  * @nr_pages:   The maximum number of pages
1685  * @pages:      Where the resulting pages are placed
1686  *
1687  * find_get_pages_range() will search for and return a group of up to @nr_pages
1688  * pages in the mapping starting at index @start and up to index @end
1689  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1690  * a reference against the returned pages.
1691  *
1692  * The search returns a group of mapping-contiguous pages with ascending
1693  * indexes.  There may be holes in the indices due to not-present pages.
1694  * We also update @start to index the next page for the traversal.
1695  *
1696  * find_get_pages_range() returns the number of pages which were found. If this
1697  * number is smaller than @nr_pages, the end of specified range has been
1698  * reached.
1699  */
1700 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1701                               pgoff_t end, unsigned int nr_pages,
1702                               struct page **pages)
1703 {
1704         struct radix_tree_iter iter;
1705         void **slot;
1706         unsigned ret = 0;
1707
1708         if (unlikely(!nr_pages))
1709                 return 0;
1710
1711         rcu_read_lock();
1712         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1713                 struct page *head, *page;
1714
1715                 if (iter.index > end)
1716                         break;
1717 repeat:
1718                 page = radix_tree_deref_slot(slot);
1719                 if (unlikely(!page))
1720                         continue;
1721
1722                 if (radix_tree_exception(page)) {
1723                         if (radix_tree_deref_retry(page)) {
1724                                 slot = radix_tree_iter_retry(&iter);
1725                                 continue;
1726                         }
1727                         /*
1728                          * A shadow entry of a recently evicted page,
1729                          * or a swap entry from shmem/tmpfs.  Skip
1730                          * over it.
1731                          */
1732                         continue;
1733                 }
1734
1735                 head = compound_head(page);
1736                 if (!page_cache_get_speculative(head))
1737                         goto repeat;
1738
1739                 /* The page was split under us? */
1740                 if (compound_head(page) != head) {
1741                         put_page(head);
1742                         goto repeat;
1743                 }
1744
1745                 /* Has the page moved? */
1746                 if (unlikely(page != *slot)) {
1747                         put_page(head);
1748                         goto repeat;
1749                 }
1750
1751                 pages[ret] = page;
1752                 if (++ret == nr_pages) {
1753                         *start = pages[ret - 1]->index + 1;
1754                         goto out;
1755                 }
1756         }
1757
1758         /*
1759          * We come here when there is no page beyond @end. We take care to not
1760          * overflow the index @start as it confuses some of the callers. This
1761          * breaks the iteration when there is page at index -1 but that is
1762          * already broken anyway.
1763          */
1764         if (end == (pgoff_t)-1)
1765                 *start = (pgoff_t)-1;
1766         else
1767                 *start = end + 1;
1768 out:
1769         rcu_read_unlock();
1770
1771         return ret;
1772 }
1773
1774 /**
1775  * find_get_pages_contig - gang contiguous pagecache lookup
1776  * @mapping:    The address_space to search
1777  * @index:      The starting page index
1778  * @nr_pages:   The maximum number of pages
1779  * @pages:      Where the resulting pages are placed
1780  *
1781  * find_get_pages_contig() works exactly like find_get_pages(), except
1782  * that the returned number of pages are guaranteed to be contiguous.
1783  *
1784  * find_get_pages_contig() returns the number of pages which were found.
1785  */
1786 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1787                                unsigned int nr_pages, struct page **pages)
1788 {
1789         struct radix_tree_iter iter;
1790         void **slot;
1791         unsigned int ret = 0;
1792
1793         if (unlikely(!nr_pages))
1794                 return 0;
1795
1796         rcu_read_lock();
1797         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1798                 struct page *head, *page;
1799 repeat:
1800                 page = radix_tree_deref_slot(slot);
1801                 /* The hole, there no reason to continue */
1802                 if (unlikely(!page))
1803                         break;
1804
1805                 if (radix_tree_exception(page)) {
1806                         if (radix_tree_deref_retry(page)) {
1807                                 slot = radix_tree_iter_retry(&iter);
1808                                 continue;
1809                         }
1810                         /*
1811                          * A shadow entry of a recently evicted page,
1812                          * or a swap entry from shmem/tmpfs.  Stop
1813                          * looking for contiguous pages.
1814                          */
1815                         break;
1816                 }
1817
1818                 head = compound_head(page);
1819                 if (!page_cache_get_speculative(head))
1820                         goto repeat;
1821
1822                 /* The page was split under us? */
1823                 if (compound_head(page) != head) {
1824                         put_page(head);
1825                         goto repeat;
1826                 }
1827
1828                 /* Has the page moved? */
1829                 if (unlikely(page != *slot)) {
1830                         put_page(head);
1831                         goto repeat;
1832                 }
1833
1834                 /*
1835                  * must check mapping and index after taking the ref.
1836                  * otherwise we can get both false positives and false
1837                  * negatives, which is just confusing to the caller.
1838                  */
1839                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1840                         put_page(page);
1841                         break;
1842                 }
1843
1844                 pages[ret] = page;
1845                 if (++ret == nr_pages)
1846                         break;
1847         }
1848         rcu_read_unlock();
1849         return ret;
1850 }
1851 EXPORT_SYMBOL(find_get_pages_contig);
1852
1853 /**
1854  * find_get_pages_range_tag - find and return pages in given range matching @tag
1855  * @mapping:    the address_space to search
1856  * @index:      the starting page index
1857  * @end:        The final page index (inclusive)
1858  * @tag:        the tag index
1859  * @nr_pages:   the maximum number of pages
1860  * @pages:      where the resulting pages are placed
1861  *
1862  * Like find_get_pages, except we only return pages which are tagged with
1863  * @tag.   We update @index to index the next page for the traversal.
1864  */
1865 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1866                         pgoff_t end, int tag, unsigned int nr_pages,
1867                         struct page **pages)
1868 {
1869         struct radix_tree_iter iter;
1870         void **slot;
1871         unsigned ret = 0;
1872
1873         if (unlikely(!nr_pages))
1874                 return 0;
1875
1876         rcu_read_lock();
1877         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1878                                    &iter, *index, tag) {
1879                 struct page *head, *page;
1880
1881                 if (iter.index > end)
1882                         break;
1883 repeat:
1884                 page = radix_tree_deref_slot(slot);
1885                 if (unlikely(!page))
1886                         continue;
1887
1888                 if (radix_tree_exception(page)) {
1889                         if (radix_tree_deref_retry(page)) {
1890                                 slot = radix_tree_iter_retry(&iter);
1891                                 continue;
1892                         }
1893                         /*
1894                          * A shadow entry of a recently evicted page.
1895                          *
1896                          * Those entries should never be tagged, but
1897                          * this tree walk is lockless and the tags are
1898                          * looked up in bulk, one radix tree node at a
1899                          * time, so there is a sizable window for page
1900                          * reclaim to evict a page we saw tagged.
1901                          *
1902                          * Skip over it.
1903                          */
1904                         continue;
1905                 }
1906
1907                 head = compound_head(page);
1908                 if (!page_cache_get_speculative(head))
1909                         goto repeat;
1910
1911                 /* The page was split under us? */
1912                 if (compound_head(page) != head) {
1913                         put_page(head);
1914                         goto repeat;
1915                 }
1916
1917                 /* Has the page moved? */
1918                 if (unlikely(page != *slot)) {
1919                         put_page(head);
1920                         goto repeat;
1921                 }
1922
1923                 pages[ret] = page;
1924                 if (++ret == nr_pages) {
1925                         *index = pages[ret - 1]->index + 1;
1926                         goto out;
1927                 }
1928         }
1929
1930         /*
1931          * We come here when we got at @end. We take care to not overflow the
1932          * index @index as it confuses some of the callers. This breaks the
1933          * iteration when there is page at index -1 but that is already broken
1934          * anyway.
1935          */
1936         if (end == (pgoff_t)-1)
1937                 *index = (pgoff_t)-1;
1938         else
1939                 *index = end + 1;
1940 out:
1941         rcu_read_unlock();
1942
1943         return ret;
1944 }
1945 EXPORT_SYMBOL(find_get_pages_range_tag);
1946
1947 /**
1948  * find_get_entries_tag - find and return entries that match @tag
1949  * @mapping:    the address_space to search
1950  * @start:      the starting page cache index
1951  * @tag:        the tag index
1952  * @nr_entries: the maximum number of entries
1953  * @entries:    where the resulting entries are placed
1954  * @indices:    the cache indices corresponding to the entries in @entries
1955  *
1956  * Like find_get_entries, except we only return entries which are tagged with
1957  * @tag.
1958  */
1959 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1960                         int tag, unsigned int nr_entries,
1961                         struct page **entries, pgoff_t *indices)
1962 {
1963         void **slot;
1964         unsigned int ret = 0;
1965         struct radix_tree_iter iter;
1966
1967         if (!nr_entries)
1968                 return 0;
1969
1970         rcu_read_lock();
1971         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1972                                    &iter, start, tag) {
1973                 struct page *head, *page;
1974 repeat:
1975                 page = radix_tree_deref_slot(slot);
1976                 if (unlikely(!page))
1977                         continue;
1978                 if (radix_tree_exception(page)) {
1979                         if (radix_tree_deref_retry(page)) {
1980                                 slot = radix_tree_iter_retry(&iter);
1981                                 continue;
1982                         }
1983
1984                         /*
1985                          * A shadow entry of a recently evicted page, a swap
1986                          * entry from shmem/tmpfs or a DAX entry.  Return it
1987                          * without attempting to raise page count.
1988                          */
1989                         goto export;
1990                 }
1991
1992                 head = compound_head(page);
1993                 if (!page_cache_get_speculative(head))
1994                         goto repeat;
1995
1996                 /* The page was split under us? */
1997                 if (compound_head(page) != head) {
1998                         put_page(head);
1999                         goto repeat;
2000                 }
2001
2002                 /* Has the page moved? */
2003                 if (unlikely(page != *slot)) {
2004                         put_page(head);
2005                         goto repeat;
2006                 }
2007 export:
2008                 indices[ret] = iter.index;
2009                 entries[ret] = page;
2010                 if (++ret == nr_entries)
2011                         break;
2012         }
2013         rcu_read_unlock();
2014         return ret;
2015 }
2016 EXPORT_SYMBOL(find_get_entries_tag);
2017
2018 /*
2019  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2020  * a _large_ part of the i/o request. Imagine the worst scenario:
2021  *
2022  *      ---R__________________________________________B__________
2023  *         ^ reading here                             ^ bad block(assume 4k)
2024  *
2025  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2026  * => failing the whole request => read(R) => read(R+1) =>
2027  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2028  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2029  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2030  *
2031  * It is going insane. Fix it by quickly scaling down the readahead size.
2032  */
2033 static void shrink_readahead_size_eio(struct file *filp,
2034                                         struct file_ra_state *ra)
2035 {
2036         ra->ra_pages /= 4;
2037 }
2038
2039 /**
2040  * generic_file_buffered_read - generic file read routine
2041  * @iocb:       the iocb to read
2042  * @iter:       data destination
2043  * @written:    already copied
2044  *
2045  * This is a generic file read routine, and uses the
2046  * mapping->a_ops->readpage() function for the actual low-level stuff.
2047  *
2048  * This is really ugly. But the goto's actually try to clarify some
2049  * of the logic when it comes to error handling etc.
2050  */
2051 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2052                 struct iov_iter *iter, ssize_t written)
2053 {
2054         struct file *filp = iocb->ki_filp;
2055         struct address_space *mapping = filp->f_mapping;
2056         struct inode *inode = mapping->host;
2057         struct file_ra_state *ra = &filp->f_ra;
2058         loff_t *ppos = &iocb->ki_pos;
2059         pgoff_t index;
2060         pgoff_t last_index;
2061         pgoff_t prev_index;
2062         unsigned long offset;      /* offset into pagecache page */
2063         unsigned int prev_offset;
2064         int error = 0;
2065
2066         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2067                 return 0;
2068         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2069
2070         index = *ppos >> PAGE_SHIFT;
2071         prev_index = ra->prev_pos >> PAGE_SHIFT;
2072         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2073         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2074         offset = *ppos & ~PAGE_MASK;
2075
2076         for (;;) {
2077                 struct page *page;
2078                 pgoff_t end_index;
2079                 loff_t isize;
2080                 unsigned long nr, ret;
2081
2082                 cond_resched();
2083 find_page:
2084                 if (fatal_signal_pending(current)) {
2085                         error = -EINTR;
2086                         goto out;
2087                 }
2088
2089                 page = find_get_page(mapping, index);
2090                 if (!page) {
2091                         if (iocb->ki_flags & IOCB_NOWAIT)
2092                                 goto would_block;
2093                         page_cache_sync_readahead(mapping,
2094                                         ra, filp,
2095                                         index, last_index - index);
2096                         page = find_get_page(mapping, index);
2097                         if (unlikely(page == NULL))
2098                                 goto no_cached_page;
2099                 }
2100                 if (PageReadahead(page)) {
2101                         page_cache_async_readahead(mapping,
2102                                         ra, filp, page,
2103                                         index, last_index - index);
2104                 }
2105                 if (!PageUptodate(page)) {
2106                         if (iocb->ki_flags & IOCB_NOWAIT) {
2107                                 put_page(page);
2108                                 goto would_block;
2109                         }
2110
2111                         /*
2112                          * See comment in do_read_cache_page on why
2113                          * wait_on_page_locked is used to avoid unnecessarily
2114                          * serialisations and why it's safe.
2115                          */
2116                         error = wait_on_page_locked_killable(page);
2117                         if (unlikely(error))
2118                                 goto readpage_error;
2119                         if (PageUptodate(page))
2120                                 goto page_ok;
2121
2122                         if (inode->i_blkbits == PAGE_SHIFT ||
2123                                         !mapping->a_ops->is_partially_uptodate)
2124                                 goto page_not_up_to_date;
2125                         /* pipes can't handle partially uptodate pages */
2126                         if (unlikely(iter->type & ITER_PIPE))
2127                                 goto page_not_up_to_date;
2128                         if (!trylock_page(page))
2129                                 goto page_not_up_to_date;
2130                         /* Did it get truncated before we got the lock? */
2131                         if (!page->mapping)
2132                                 goto page_not_up_to_date_locked;
2133                         if (!mapping->a_ops->is_partially_uptodate(page,
2134                                                         offset, iter->count))
2135                                 goto page_not_up_to_date_locked;
2136                         unlock_page(page);
2137                 }
2138 page_ok:
2139                 /*
2140                  * i_size must be checked after we know the page is Uptodate.
2141                  *
2142                  * Checking i_size after the check allows us to calculate
2143                  * the correct value for "nr", which means the zero-filled
2144                  * part of the page is not copied back to userspace (unless
2145                  * another truncate extends the file - this is desired though).
2146                  */
2147
2148                 isize = i_size_read(inode);
2149                 end_index = (isize - 1) >> PAGE_SHIFT;
2150                 if (unlikely(!isize || index > end_index)) {
2151                         put_page(page);
2152                         goto out;
2153                 }
2154
2155                 /* nr is the maximum number of bytes to copy from this page */
2156                 nr = PAGE_SIZE;
2157                 if (index == end_index) {
2158                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
2159                         if (nr <= offset) {
2160                                 put_page(page);
2161                                 goto out;
2162                         }
2163                 }
2164                 nr = nr - offset;
2165
2166                 /* If users can be writing to this page using arbitrary
2167                  * virtual addresses, take care about potential aliasing
2168                  * before reading the page on the kernel side.
2169                  */
2170                 if (mapping_writably_mapped(mapping))
2171                         flush_dcache_page(page);
2172
2173                 /*
2174                  * When a sequential read accesses a page several times,
2175                  * only mark it as accessed the first time.
2176                  */
2177                 if (prev_index != index || offset != prev_offset)
2178                         mark_page_accessed(page);
2179                 prev_index = index;
2180
2181                 /*
2182                  * Ok, we have the page, and it's up-to-date, so
2183                  * now we can copy it to user space...
2184                  */
2185
2186                 ret = copy_page_to_iter(page, offset, nr, iter);
2187                 offset += ret;
2188                 index += offset >> PAGE_SHIFT;
2189                 offset &= ~PAGE_MASK;
2190                 prev_offset = offset;
2191
2192                 put_page(page);
2193                 written += ret;
2194                 if (!iov_iter_count(iter))
2195                         goto out;
2196                 if (ret < nr) {
2197                         error = -EFAULT;
2198                         goto out;
2199                 }
2200                 continue;
2201
2202 page_not_up_to_date:
2203                 /* Get exclusive access to the page ... */
2204                 error = lock_page_killable(page);
2205                 if (unlikely(error))
2206                         goto readpage_error;
2207
2208 page_not_up_to_date_locked:
2209                 /* Did it get truncated before we got the lock? */
2210                 if (!page->mapping) {
2211                         unlock_page(page);
2212                         put_page(page);
2213                         continue;
2214                 }
2215
2216                 /* Did somebody else fill it already? */
2217                 if (PageUptodate(page)) {
2218                         unlock_page(page);
2219                         goto page_ok;
2220                 }
2221
2222 readpage:
2223                 /*
2224                  * A previous I/O error may have been due to temporary
2225                  * failures, eg. multipath errors.
2226                  * PG_error will be set again if readpage fails.
2227                  */
2228                 ClearPageError(page);
2229                 /* Start the actual read. The read will unlock the page. */
2230                 error = mapping->a_ops->readpage(filp, page);
2231
2232                 if (unlikely(error)) {
2233                         if (error == AOP_TRUNCATED_PAGE) {
2234                                 put_page(page);
2235                                 error = 0;
2236                                 goto find_page;
2237                         }
2238                         goto readpage_error;
2239                 }
2240
2241                 if (!PageUptodate(page)) {
2242                         error = lock_page_killable(page);
2243                         if (unlikely(error))
2244                                 goto readpage_error;
2245                         if (!PageUptodate(page)) {
2246                                 if (page->mapping == NULL) {
2247                                         /*
2248                                          * invalidate_mapping_pages got it
2249                                          */
2250                                         unlock_page(page);
2251                                         put_page(page);
2252                                         goto find_page;
2253                                 }
2254                                 unlock_page(page);
2255                                 shrink_readahead_size_eio(filp, ra);
2256                                 error = -EIO;
2257                                 goto readpage_error;
2258                         }
2259                         unlock_page(page);
2260                 }
2261
2262                 goto page_ok;
2263
2264 readpage_error:
2265                 /* UHHUH! A synchronous read error occurred. Report it */
2266                 put_page(page);
2267                 goto out;
2268
2269 no_cached_page:
2270                 /*
2271                  * Ok, it wasn't cached, so we need to create a new
2272                  * page..
2273                  */
2274                 page = page_cache_alloc_cold(mapping);
2275                 if (!page) {
2276                         error = -ENOMEM;
2277                         goto out;
2278                 }
2279                 error = add_to_page_cache_lru(page, mapping, index,
2280                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2281                 if (error) {
2282                         put_page(page);
2283                         if (error == -EEXIST) {
2284                                 error = 0;
2285                                 goto find_page;
2286                         }
2287                         goto out;
2288                 }
2289                 goto readpage;
2290         }
2291
2292 would_block:
2293         error = -EAGAIN;
2294 out:
2295         ra->prev_pos = prev_index;
2296         ra->prev_pos <<= PAGE_SHIFT;
2297         ra->prev_pos |= prev_offset;
2298
2299         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2300         file_accessed(filp);
2301         return written ? written : error;
2302 }
2303
2304 /**
2305  * generic_file_read_iter - generic filesystem read routine
2306  * @iocb:       kernel I/O control block
2307  * @iter:       destination for the data read
2308  *
2309  * This is the "read_iter()" routine for all filesystems
2310  * that can use the page cache directly.
2311  */
2312 ssize_t
2313 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2314 {
2315         size_t count = iov_iter_count(iter);
2316         ssize_t retval = 0;
2317
2318         if (!count)
2319                 goto out; /* skip atime */
2320
2321         if (iocb->ki_flags & IOCB_DIRECT) {
2322                 struct file *file = iocb->ki_filp;
2323                 struct address_space *mapping = file->f_mapping;
2324                 struct inode *inode = mapping->host;
2325                 loff_t size;
2326
2327                 size = i_size_read(inode);
2328                 if (iocb->ki_flags & IOCB_NOWAIT) {
2329                         if (filemap_range_has_page(mapping, iocb->ki_pos,
2330                                                    iocb->ki_pos + count - 1))
2331                                 return -EAGAIN;
2332                 } else {
2333                         retval = filemap_write_and_wait_range(mapping,
2334                                                 iocb->ki_pos,
2335                                                 iocb->ki_pos + count - 1);
2336                         if (retval < 0)
2337                                 goto out;
2338                 }
2339
2340                 file_accessed(file);
2341
2342                 retval = mapping->a_ops->direct_IO(iocb, iter);
2343                 if (retval >= 0) {
2344                         iocb->ki_pos += retval;
2345                         count -= retval;
2346                 }
2347                 iov_iter_revert(iter, count - iov_iter_count(iter));
2348
2349                 /*
2350                  * Btrfs can have a short DIO read if we encounter
2351                  * compressed extents, so if there was an error, or if
2352                  * we've already read everything we wanted to, or if
2353                  * there was a short read because we hit EOF, go ahead
2354                  * and return.  Otherwise fallthrough to buffered io for
2355                  * the rest of the read.  Buffered reads will not work for
2356                  * DAX files, so don't bother trying.
2357                  */
2358                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2359                     IS_DAX(inode))
2360                         goto out;
2361         }
2362
2363         retval = generic_file_buffered_read(iocb, iter, retval);
2364 out:
2365         return retval;
2366 }
2367 EXPORT_SYMBOL(generic_file_read_iter);
2368
2369 #ifdef CONFIG_MMU
2370 /**
2371  * page_cache_read - adds requested page to the page cache if not already there
2372  * @file:       file to read
2373  * @offset:     page index
2374  * @gfp_mask:   memory allocation flags
2375  *
2376  * This adds the requested page to the page cache if it isn't already there,
2377  * and schedules an I/O to read in its contents from disk.
2378  */
2379 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2380 {
2381         struct address_space *mapping = file->f_mapping;
2382         struct page *page;
2383         int ret;
2384
2385         do {
2386                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2387                 if (!page)
2388                         return -ENOMEM;
2389
2390                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2391                 if (ret == 0)
2392                         ret = mapping->a_ops->readpage(file, page);
2393                 else if (ret == -EEXIST)
2394                         ret = 0; /* losing race to add is OK */
2395
2396                 put_page(page);
2397
2398         } while (ret == AOP_TRUNCATED_PAGE);
2399
2400         return ret;
2401 }
2402
2403 #define MMAP_LOTSAMISS  (100)
2404
2405 /*
2406  * Synchronous readahead happens when we don't even find
2407  * a page in the page cache at all.
2408  */
2409 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2410                                    struct file_ra_state *ra,
2411                                    struct file *file,
2412                                    pgoff_t offset)
2413 {
2414         struct address_space *mapping = file->f_mapping;
2415
2416         /* If we don't want any read-ahead, don't bother */
2417         if (vma->vm_flags & VM_RAND_READ)
2418                 return;
2419         if (!ra->ra_pages)
2420                 return;
2421
2422         if (vma->vm_flags & VM_SEQ_READ) {
2423                 page_cache_sync_readahead(mapping, ra, file, offset,
2424                                           ra->ra_pages);
2425                 return;
2426         }
2427
2428         /* Avoid banging the cache line if not needed */
2429         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2430                 ra->mmap_miss++;
2431
2432         /*
2433          * Do we miss much more than hit in this file? If so,
2434          * stop bothering with read-ahead. It will only hurt.
2435          */
2436         if (ra->mmap_miss > MMAP_LOTSAMISS)
2437                 return;
2438
2439         /*
2440          * mmap read-around
2441          */
2442         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2443         ra->size = ra->ra_pages;
2444         ra->async_size = ra->ra_pages / 4;
2445         ra_submit(ra, mapping, file);
2446 }
2447
2448 /*
2449  * Asynchronous readahead happens when we find the page and PG_readahead,
2450  * so we want to possibly extend the readahead further..
2451  */
2452 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2453                                     struct file_ra_state *ra,
2454                                     struct file *file,
2455                                     struct page *page,
2456                                     pgoff_t offset)
2457 {
2458         struct address_space *mapping = file->f_mapping;
2459
2460         /* If we don't want any read-ahead, don't bother */
2461         if (vma->vm_flags & VM_RAND_READ)
2462                 return;
2463         if (ra->mmap_miss > 0)
2464                 ra->mmap_miss--;
2465         if (PageReadahead(page))
2466                 page_cache_async_readahead(mapping, ra, file,
2467                                            page, offset, ra->ra_pages);
2468 }
2469
2470 /**
2471  * filemap_fault - read in file data for page fault handling
2472  * @vmf:        struct vm_fault containing details of the fault
2473  *
2474  * filemap_fault() is invoked via the vma operations vector for a
2475  * mapped memory region to read in file data during a page fault.
2476  *
2477  * The goto's are kind of ugly, but this streamlines the normal case of having
2478  * it in the page cache, and handles the special cases reasonably without
2479  * having a lot of duplicated code.
2480  *
2481  * vma->vm_mm->mmap_sem must be held on entry.
2482  *
2483  * If our return value has VM_FAULT_RETRY set, it's because
2484  * lock_page_or_retry() returned 0.
2485  * The mmap_sem has usually been released in this case.
2486  * See __lock_page_or_retry() for the exception.
2487  *
2488  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2489  * has not been released.
2490  *
2491  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2492  */
2493 int filemap_fault(struct vm_fault *vmf)
2494 {
2495         int error;
2496         struct file *file = vmf->vma->vm_file;
2497         struct address_space *mapping = file->f_mapping;
2498         struct file_ra_state *ra = &file->f_ra;
2499         struct inode *inode = mapping->host;
2500         pgoff_t offset = vmf->pgoff;
2501         pgoff_t max_off;
2502         struct page *page;
2503         int ret = 0;
2504
2505         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2506         if (unlikely(offset >= max_off))
2507                 return VM_FAULT_SIGBUS;
2508
2509         /*
2510          * Do we have something in the page cache already?
2511          */
2512         page = find_get_page(mapping, offset);
2513         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2514                 /*
2515                  * We found the page, so try async readahead before
2516                  * waiting for the lock.
2517                  */
2518                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2519         } else if (!page) {
2520                 /* No page in the page cache at all */
2521                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2522                 count_vm_event(PGMAJFAULT);
2523                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2524                 ret = VM_FAULT_MAJOR;
2525 retry_find:
2526                 page = find_get_page(mapping, offset);
2527                 if (!page)
2528                         goto no_cached_page;
2529         }
2530
2531         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2532                 put_page(page);
2533                 return ret | VM_FAULT_RETRY;
2534         }
2535
2536         /* Did it get truncated? */
2537         if (unlikely(page->mapping != mapping)) {
2538                 unlock_page(page);
2539                 put_page(page);
2540                 goto retry_find;
2541         }
2542         VM_BUG_ON_PAGE(page->index != offset, page);
2543
2544         /*
2545          * We have a locked page in the page cache, now we need to check
2546          * that it's up-to-date. If not, it is going to be due to an error.
2547          */
2548         if (unlikely(!PageUptodate(page)))
2549                 goto page_not_uptodate;
2550
2551         /*
2552          * Found the page and have a reference on it.
2553          * We must recheck i_size under page lock.
2554          */
2555         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2556         if (unlikely(offset >= max_off)) {
2557                 unlock_page(page);
2558                 put_page(page);
2559                 return VM_FAULT_SIGBUS;
2560         }
2561
2562         vmf->page = page;
2563         return ret | VM_FAULT_LOCKED;
2564
2565 no_cached_page:
2566         /*
2567          * We're only likely to ever get here if MADV_RANDOM is in
2568          * effect.
2569          */
2570         error = page_cache_read(file, offset, vmf->gfp_mask);
2571
2572         /*
2573          * The page we want has now been added to the page cache.
2574          * In the unlikely event that someone removed it in the
2575          * meantime, we'll just come back here and read it again.
2576          */
2577         if (error >= 0)
2578                 goto retry_find;
2579
2580         /*
2581          * An error return from page_cache_read can result if the
2582          * system is low on memory, or a problem occurs while trying
2583          * to schedule I/O.
2584          */
2585         if (error == -ENOMEM)
2586                 return VM_FAULT_OOM;
2587         return VM_FAULT_SIGBUS;
2588
2589 page_not_uptodate:
2590         /*
2591          * Umm, take care of errors if the page isn't up-to-date.
2592          * Try to re-read it _once_. We do this synchronously,
2593          * because there really aren't any performance issues here
2594          * and we need to check for errors.
2595          */
2596         ClearPageError(page);
2597         error = mapping->a_ops->readpage(file, page);
2598         if (!error) {
2599                 wait_on_page_locked(page);
2600                 if (!PageUptodate(page))
2601                         error = -EIO;
2602         }
2603         put_page(page);
2604
2605         if (!error || error == AOP_TRUNCATED_PAGE)
2606                 goto retry_find;
2607
2608         /* Things didn't work out. Return zero to tell the mm layer so. */
2609         shrink_readahead_size_eio(file, ra);
2610         return VM_FAULT_SIGBUS;
2611 }
2612 EXPORT_SYMBOL(filemap_fault);
2613
2614 void filemap_map_pages(struct vm_fault *vmf,
2615                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2616 {
2617         struct radix_tree_iter iter;
2618         void **slot;
2619         struct file *file = vmf->vma->vm_file;
2620         struct address_space *mapping = file->f_mapping;
2621         pgoff_t last_pgoff = start_pgoff;
2622         unsigned long max_idx;
2623         struct page *head, *page;
2624
2625         rcu_read_lock();
2626         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2627                         start_pgoff) {
2628                 if (iter.index > end_pgoff)
2629                         break;
2630 repeat:
2631                 page = radix_tree_deref_slot(slot);
2632                 if (unlikely(!page))
2633                         goto next;
2634                 if (radix_tree_exception(page)) {
2635                         if (radix_tree_deref_retry(page)) {
2636                                 slot = radix_tree_iter_retry(&iter);
2637                                 continue;
2638                         }
2639                         goto next;
2640                 }
2641
2642                 head = compound_head(page);
2643                 if (!page_cache_get_speculative(head))
2644                         goto repeat;
2645
2646                 /* The page was split under us? */
2647                 if (compound_head(page) != head) {
2648                         put_page(head);
2649                         goto repeat;
2650                 }
2651
2652                 /* Has the page moved? */
2653                 if (unlikely(page != *slot)) {
2654                         put_page(head);
2655                         goto repeat;
2656                 }
2657
2658                 if (!PageUptodate(page) ||
2659                                 PageReadahead(page) ||
2660                                 PageHWPoison(page))
2661                         goto skip;
2662                 if (!trylock_page(page))
2663                         goto skip;
2664
2665                 if (page->mapping != mapping || !PageUptodate(page))
2666                         goto unlock;
2667
2668                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2669                 if (page->index >= max_idx)
2670                         goto unlock;
2671
2672                 if (file->f_ra.mmap_miss > 0)
2673                         file->f_ra.mmap_miss--;
2674
2675                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2676                 if (vmf->pte)
2677                         vmf->pte += iter.index - last_pgoff;
2678                 last_pgoff = iter.index;
2679                 if (alloc_set_pte(vmf, NULL, page))
2680                         goto unlock;
2681                 unlock_page(page);
2682                 goto next;
2683 unlock:
2684                 unlock_page(page);
2685 skip:
2686                 put_page(page);
2687 next:
2688                 /* Huge page is mapped? No need to proceed. */
2689                 if (pmd_trans_huge(*vmf->pmd))
2690                         break;
2691                 if (iter.index == end_pgoff)
2692                         break;
2693         }
2694         rcu_read_unlock();
2695 }
2696 EXPORT_SYMBOL(filemap_map_pages);
2697
2698 int filemap_page_mkwrite(struct vm_fault *vmf)
2699 {
2700         struct page *page = vmf->page;
2701         struct inode *inode = file_inode(vmf->vma->vm_file);
2702         int ret = VM_FAULT_LOCKED;
2703
2704         sb_start_pagefault(inode->i_sb);
2705         file_update_time(vmf->vma->vm_file);
2706         lock_page(page);
2707         if (page->mapping != inode->i_mapping) {
2708                 unlock_page(page);
2709                 ret = VM_FAULT_NOPAGE;
2710                 goto out;
2711         }
2712         /*
2713          * We mark the page dirty already here so that when freeze is in
2714          * progress, we are guaranteed that writeback during freezing will
2715          * see the dirty page and writeprotect it again.
2716          */
2717         set_page_dirty(page);
2718         wait_for_stable_page(page);
2719 out:
2720         sb_end_pagefault(inode->i_sb);
2721         return ret;
2722 }
2723 EXPORT_SYMBOL(filemap_page_mkwrite);
2724
2725 const struct vm_operations_struct generic_file_vm_ops = {
2726         .fault          = filemap_fault,
2727         .map_pages      = filemap_map_pages,
2728         .page_mkwrite   = filemap_page_mkwrite,
2729 };
2730
2731 /* This is used for a general mmap of a disk file */
2732
2733 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2734 {
2735         struct address_space *mapping = file->f_mapping;
2736
2737         if (!mapping->a_ops->readpage)
2738                 return -ENOEXEC;
2739         file_accessed(file);
2740         vma->vm_ops = &generic_file_vm_ops;
2741         return 0;
2742 }
2743
2744 /*
2745  * This is for filesystems which do not implement ->writepage.
2746  */
2747 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2748 {
2749         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2750                 return -EINVAL;
2751         return generic_file_mmap(file, vma);
2752 }
2753 #else
2754 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2755 {
2756         return -ENOSYS;
2757 }
2758 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2759 {
2760         return -ENOSYS;
2761 }
2762 #endif /* CONFIG_MMU */
2763
2764 EXPORT_SYMBOL(generic_file_mmap);
2765 EXPORT_SYMBOL(generic_file_readonly_mmap);
2766
2767 static struct page *wait_on_page_read(struct page *page)
2768 {
2769         if (!IS_ERR(page)) {
2770                 wait_on_page_locked(page);
2771                 if (!PageUptodate(page)) {
2772                         put_page(page);
2773                         page = ERR_PTR(-EIO);
2774                 }
2775         }
2776         return page;
2777 }
2778
2779 static struct page *do_read_cache_page(struct address_space *mapping,
2780                                 pgoff_t index,
2781                                 int (*filler)(void *, struct page *),
2782                                 void *data,
2783                                 gfp_t gfp)
2784 {
2785         struct page *page;
2786         int err;
2787 repeat:
2788         page = find_get_page(mapping, index);
2789         if (!page) {
2790                 page = __page_cache_alloc(gfp | __GFP_COLD);
2791                 if (!page)
2792                         return ERR_PTR(-ENOMEM);
2793                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2794                 if (unlikely(err)) {
2795                         put_page(page);
2796                         if (err == -EEXIST)
2797                                 goto repeat;
2798                         /* Presumably ENOMEM for radix tree node */
2799                         return ERR_PTR(err);
2800                 }
2801
2802 filler:
2803                 err = filler(data, page);
2804                 if (err < 0) {
2805                         put_page(page);
2806                         return ERR_PTR(err);
2807                 }
2808
2809                 page = wait_on_page_read(page);
2810                 if (IS_ERR(page))
2811                         return page;
2812                 goto out;
2813         }
2814         if (PageUptodate(page))
2815                 goto out;
2816
2817         /*
2818          * Page is not up to date and may be locked due one of the following
2819          * case a: Page is being filled and the page lock is held
2820          * case b: Read/write error clearing the page uptodate status
2821          * case c: Truncation in progress (page locked)
2822          * case d: Reclaim in progress
2823          *
2824          * Case a, the page will be up to date when the page is unlocked.
2825          *    There is no need to serialise on the page lock here as the page
2826          *    is pinned so the lock gives no additional protection. Even if the
2827          *    the page is truncated, the data is still valid if PageUptodate as
2828          *    it's a race vs truncate race.
2829          * Case b, the page will not be up to date
2830          * Case c, the page may be truncated but in itself, the data may still
2831          *    be valid after IO completes as it's a read vs truncate race. The
2832          *    operation must restart if the page is not uptodate on unlock but
2833          *    otherwise serialising on page lock to stabilise the mapping gives
2834          *    no additional guarantees to the caller as the page lock is
2835          *    released before return.
2836          * Case d, similar to truncation. If reclaim holds the page lock, it
2837          *    will be a race with remove_mapping that determines if the mapping
2838          *    is valid on unlock but otherwise the data is valid and there is
2839          *    no need to serialise with page lock.
2840          *
2841          * As the page lock gives no additional guarantee, we optimistically
2842          * wait on the page to be unlocked and check if it's up to date and
2843          * use the page if it is. Otherwise, the page lock is required to
2844          * distinguish between the different cases. The motivation is that we
2845          * avoid spurious serialisations and wakeups when multiple processes
2846          * wait on the same page for IO to complete.
2847          */
2848         wait_on_page_locked(page);
2849         if (PageUptodate(page))
2850                 goto out;
2851
2852         /* Distinguish between all the cases under the safety of the lock */
2853         lock_page(page);
2854
2855         /* Case c or d, restart the operation */
2856         if (!page->mapping) {
2857                 unlock_page(page);
2858                 put_page(page);
2859                 goto repeat;
2860         }
2861
2862         /* Someone else locked and filled the page in a very small window */
2863         if (PageUptodate(page)) {
2864                 unlock_page(page);
2865                 goto out;
2866         }
2867         goto filler;
2868
2869 out:
2870         mark_page_accessed(page);
2871         return page;
2872 }
2873
2874 /**
2875  * read_cache_page - read into page cache, fill it if needed
2876  * @mapping:    the page's address_space
2877  * @index:      the page index
2878  * @filler:     function to perform the read
2879  * @data:       first arg to filler(data, page) function, often left as NULL
2880  *
2881  * Read into the page cache. If a page already exists, and PageUptodate() is
2882  * not set, try to fill the page and wait for it to become unlocked.
2883  *
2884  * If the page does not get brought uptodate, return -EIO.
2885  */
2886 struct page *read_cache_page(struct address_space *mapping,
2887                                 pgoff_t index,
2888                                 int (*filler)(void *, struct page *),
2889                                 void *data)
2890 {
2891         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2892 }
2893 EXPORT_SYMBOL(read_cache_page);
2894
2895 /**
2896  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2897  * @mapping:    the page's address_space
2898  * @index:      the page index
2899  * @gfp:        the page allocator flags to use if allocating
2900  *
2901  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2902  * any new page allocations done using the specified allocation flags.
2903  *
2904  * If the page does not get brought uptodate, return -EIO.
2905  */
2906 struct page *read_cache_page_gfp(struct address_space *mapping,
2907                                 pgoff_t index,
2908                                 gfp_t gfp)
2909 {
2910         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2911
2912         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2913 }
2914 EXPORT_SYMBOL(read_cache_page_gfp);
2915
2916 /*
2917  * Performs necessary checks before doing a write
2918  *
2919  * Can adjust writing position or amount of bytes to write.
2920  * Returns appropriate error code that caller should return or
2921  * zero in case that write should be allowed.
2922  */
2923 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2924 {
2925         struct file *file = iocb->ki_filp;
2926         struct inode *inode = file->f_mapping->host;
2927         unsigned long limit = rlimit(RLIMIT_FSIZE);
2928         loff_t pos;
2929
2930         if (!iov_iter_count(from))
2931                 return 0;
2932
2933         /* FIXME: this is for backwards compatibility with 2.4 */
2934         if (iocb->ki_flags & IOCB_APPEND)
2935                 iocb->ki_pos = i_size_read(inode);
2936
2937         pos = iocb->ki_pos;
2938
2939         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2940                 return -EINVAL;
2941
2942         if (limit != RLIM_INFINITY) {
2943                 if (iocb->ki_pos >= limit) {
2944                         send_sig(SIGXFSZ, current, 0);
2945                         return -EFBIG;
2946                 }
2947                 iov_iter_truncate(from, limit - (unsigned long)pos);
2948         }
2949
2950         /*
2951          * LFS rule
2952          */
2953         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2954                                 !(file->f_flags & O_LARGEFILE))) {
2955                 if (pos >= MAX_NON_LFS)
2956                         return -EFBIG;
2957                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2958         }
2959
2960         /*
2961          * Are we about to exceed the fs block limit ?
2962          *
2963          * If we have written data it becomes a short write.  If we have
2964          * exceeded without writing data we send a signal and return EFBIG.
2965          * Linus frestrict idea will clean these up nicely..
2966          */
2967         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2968                 return -EFBIG;
2969
2970         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2971         return iov_iter_count(from);
2972 }
2973 EXPORT_SYMBOL(generic_write_checks);
2974
2975 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2976                                 loff_t pos, unsigned len, unsigned flags,
2977                                 struct page **pagep, void **fsdata)
2978 {
2979         const struct address_space_operations *aops = mapping->a_ops;
2980
2981         return aops->write_begin(file, mapping, pos, len, flags,
2982                                                         pagep, fsdata);
2983 }
2984 EXPORT_SYMBOL(pagecache_write_begin);
2985
2986 int pagecache_write_end(struct file *file, struct address_space *mapping,
2987                                 loff_t pos, unsigned len, unsigned copied,
2988                                 struct page *page, void *fsdata)
2989 {
2990         const struct address_space_operations *aops = mapping->a_ops;
2991
2992         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2993 }
2994 EXPORT_SYMBOL(pagecache_write_end);
2995
2996 ssize_t
2997 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2998 {
2999         struct file     *file = iocb->ki_filp;
3000         struct address_space *mapping = file->f_mapping;
3001         struct inode    *inode = mapping->host;
3002         loff_t          pos = iocb->ki_pos;
3003         ssize_t         written;
3004         size_t          write_len;
3005         pgoff_t         end;
3006
3007         write_len = iov_iter_count(from);
3008         end = (pos + write_len - 1) >> PAGE_SHIFT;
3009
3010         if (iocb->ki_flags & IOCB_NOWAIT) {
3011                 /* If there are pages to writeback, return */
3012                 if (filemap_range_has_page(inode->i_mapping, pos,
3013                                            pos + iov_iter_count(from)))
3014                         return -EAGAIN;
3015         } else {
3016                 written = filemap_write_and_wait_range(mapping, pos,
3017                                                         pos + write_len - 1);
3018                 if (written)
3019                         goto out;
3020         }
3021
3022         /*
3023          * After a write we want buffered reads to be sure to go to disk to get
3024          * the new data.  We invalidate clean cached page from the region we're
3025          * about to write.  We do this *before* the write so that we can return
3026          * without clobbering -EIOCBQUEUED from ->direct_IO().
3027          */
3028         written = invalidate_inode_pages2_range(mapping,
3029                                         pos >> PAGE_SHIFT, end);
3030         /*
3031          * If a page can not be invalidated, return 0 to fall back
3032          * to buffered write.
3033          */
3034         if (written) {
3035                 if (written == -EBUSY)
3036                         return 0;
3037                 goto out;
3038         }
3039
3040         written = mapping->a_ops->direct_IO(iocb, from);
3041
3042         /*
3043          * Finally, try again to invalidate clean pages which might have been
3044          * cached by non-direct readahead, or faulted in by get_user_pages()
3045          * if the source of the write was an mmap'ed region of the file
3046          * we're writing.  Either one is a pretty crazy thing to do,
3047          * so we don't support it 100%.  If this invalidation
3048          * fails, tough, the write still worked...
3049          *
3050          * Most of the time we do not need this since dio_complete() will do
3051          * the invalidation for us. However there are some file systems that
3052          * do not end up with dio_complete() being called, so let's not break
3053          * them by removing it completely
3054          */
3055         if (mapping->nrpages)
3056                 invalidate_inode_pages2_range(mapping,
3057                                         pos >> PAGE_SHIFT, end);
3058
3059         if (written > 0) {
3060                 pos += written;
3061                 write_len -= written;
3062                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3063                         i_size_write(inode, pos);
3064                         mark_inode_dirty(inode);
3065                 }
3066                 iocb->ki_pos = pos;
3067         }
3068         iov_iter_revert(from, write_len - iov_iter_count(from));
3069 out:
3070         return written;
3071 }
3072 EXPORT_SYMBOL(generic_file_direct_write);
3073
3074 /*
3075  * Find or create a page at the given pagecache position. Return the locked
3076  * page. This function is specifically for buffered writes.
3077  */
3078 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3079                                         pgoff_t index, unsigned flags)
3080 {
3081         struct page *page;
3082         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3083
3084         if (flags & AOP_FLAG_NOFS)
3085                 fgp_flags |= FGP_NOFS;
3086
3087         page = pagecache_get_page(mapping, index, fgp_flags,
3088                         mapping_gfp_mask(mapping));
3089         if (page)
3090                 wait_for_stable_page(page);
3091
3092         return page;
3093 }
3094 EXPORT_SYMBOL(grab_cache_page_write_begin);
3095
3096 ssize_t generic_perform_write(struct file *file,
3097                                 struct iov_iter *i, loff_t pos)
3098 {
3099         struct address_space *mapping = file->f_mapping;
3100         const struct address_space_operations *a_ops = mapping->a_ops;
3101         long status = 0;
3102         ssize_t written = 0;
3103         unsigned int flags = 0;
3104
3105         do {
3106                 struct page *page;
3107                 unsigned long offset;   /* Offset into pagecache page */
3108                 unsigned long bytes;    /* Bytes to write to page */
3109                 size_t copied;          /* Bytes copied from user */
3110                 void *fsdata;
3111
3112                 offset = (pos & (PAGE_SIZE - 1));
3113                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3114                                                 iov_iter_count(i));
3115
3116 again:
3117                 /*
3118                  * Bring in the user page that we will copy from _first_.
3119                  * Otherwise there's a nasty deadlock on copying from the
3120                  * same page as we're writing to, without it being marked
3121                  * up-to-date.
3122                  *
3123                  * Not only is this an optimisation, but it is also required
3124                  * to check that the address is actually valid, when atomic
3125                  * usercopies are used, below.
3126                  */
3127                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3128                         status = -EFAULT;
3129                         break;
3130                 }
3131
3132                 if (fatal_signal_pending(current)) {
3133                         status = -EINTR;
3134                         break;
3135                 }
3136
3137                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3138                                                 &page, &fsdata);
3139                 if (unlikely(status < 0))
3140                         break;
3141
3142                 if (mapping_writably_mapped(mapping))
3143                         flush_dcache_page(page);
3144
3145                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3146                 flush_dcache_page(page);
3147
3148                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3149                                                 page, fsdata);
3150                 if (unlikely(status < 0))
3151                         break;
3152                 copied = status;
3153
3154                 cond_resched();
3155
3156                 iov_iter_advance(i, copied);
3157                 if (unlikely(copied == 0)) {
3158                         /*
3159                          * If we were unable to copy any data at all, we must
3160                          * fall back to a single segment length write.
3161                          *
3162                          * If we didn't fallback here, we could livelock
3163                          * because not all segments in the iov can be copied at
3164                          * once without a pagefault.
3165                          */
3166                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
3167                                                 iov_iter_single_seg_count(i));
3168                         goto again;
3169                 }
3170                 pos += copied;
3171                 written += copied;
3172
3173                 balance_dirty_pages_ratelimited(mapping);
3174         } while (iov_iter_count(i));
3175
3176         return written ? written : status;
3177 }
3178 EXPORT_SYMBOL(generic_perform_write);
3179
3180 /**
3181  * __generic_file_write_iter - write data to a file
3182  * @iocb:       IO state structure (file, offset, etc.)
3183  * @from:       iov_iter with data to write
3184  *
3185  * This function does all the work needed for actually writing data to a
3186  * file. It does all basic checks, removes SUID from the file, updates
3187  * modification times and calls proper subroutines depending on whether we
3188  * do direct IO or a standard buffered write.
3189  *
3190  * It expects i_mutex to be grabbed unless we work on a block device or similar
3191  * object which does not need locking at all.
3192  *
3193  * This function does *not* take care of syncing data in case of O_SYNC write.
3194  * A caller has to handle it. This is mainly due to the fact that we want to
3195  * avoid syncing under i_mutex.
3196  */
3197 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3198 {
3199         struct file *file = iocb->ki_filp;
3200         struct address_space * mapping = file->f_mapping;
3201         struct inode    *inode = mapping->host;
3202         ssize_t         written = 0;
3203         ssize_t         err;
3204         ssize_t         status;
3205
3206         /* We can write back this queue in page reclaim */
3207         current->backing_dev_info = inode_to_bdi(inode);
3208         err = file_remove_privs(file);
3209         if (err)
3210                 goto out;
3211
3212         err = file_update_time(file);
3213         if (err)
3214                 goto out;
3215
3216         if (iocb->ki_flags & IOCB_DIRECT) {
3217                 loff_t pos, endbyte;
3218
3219                 written = generic_file_direct_write(iocb, from);
3220                 /*
3221                  * If the write stopped short of completing, fall back to
3222                  * buffered writes.  Some filesystems do this for writes to
3223                  * holes, for example.  For DAX files, a buffered write will
3224                  * not succeed (even if it did, DAX does not handle dirty
3225                  * page-cache pages correctly).
3226                  */
3227                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3228                         goto out;
3229
3230                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3231                 /*
3232                  * If generic_perform_write() returned a synchronous error
3233                  * then we want to return the number of bytes which were
3234                  * direct-written, or the error code if that was zero.  Note
3235                  * that this differs from normal direct-io semantics, which
3236                  * will return -EFOO even if some bytes were written.
3237                  */
3238                 if (unlikely(status < 0)) {
3239                         err = status;
3240                         goto out;
3241                 }
3242                 /*
3243                  * We need to ensure that the page cache pages are written to
3244                  * disk and invalidated to preserve the expected O_DIRECT
3245                  * semantics.
3246                  */
3247                 endbyte = pos + status - 1;
3248                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3249                 if (err == 0) {
3250                         iocb->ki_pos = endbyte + 1;
3251                         written += status;
3252                         invalidate_mapping_pages(mapping,
3253                                                  pos >> PAGE_SHIFT,
3254                                                  endbyte >> PAGE_SHIFT);
3255                 } else {
3256                         /*
3257                          * We don't know how much we wrote, so just return
3258                          * the number of bytes which were direct-written
3259                          */
3260                 }
3261         } else {
3262                 written = generic_perform_write(file, from, iocb->ki_pos);
3263                 if (likely(written > 0))
3264                         iocb->ki_pos += written;
3265         }
3266 out:
3267         current->backing_dev_info = NULL;
3268         return written ? written : err;
3269 }
3270 EXPORT_SYMBOL(__generic_file_write_iter);
3271
3272 /**
3273  * generic_file_write_iter - write data to a file
3274  * @iocb:       IO state structure
3275  * @from:       iov_iter with data to write
3276  *
3277  * This is a wrapper around __generic_file_write_iter() to be used by most
3278  * filesystems. It takes care of syncing the file in case of O_SYNC file
3279  * and acquires i_mutex as needed.
3280  */
3281 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3282 {
3283         struct file *file = iocb->ki_filp;
3284         struct inode *inode = file->f_mapping->host;
3285         ssize_t ret;
3286
3287         inode_lock(inode);
3288         ret = generic_write_checks(iocb, from);
3289         if (ret > 0)
3290                 ret = __generic_file_write_iter(iocb, from);
3291         inode_unlock(inode);
3292
3293         if (ret > 0)
3294                 ret = generic_write_sync(iocb, ret);
3295         return ret;
3296 }
3297 EXPORT_SYMBOL(generic_file_write_iter);
3298
3299 /**
3300  * try_to_release_page() - release old fs-specific metadata on a page
3301  *
3302  * @page: the page which the kernel is trying to free
3303  * @gfp_mask: memory allocation flags (and I/O mode)