4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
45 * FIXME: remove all knowledge of the buffer layer from the core VM
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * Shared mappings now work. 15.8.1995 Bruno.
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
80 * ->lock_page (access_process_vm)
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
90 * ->anon_vma.lock (vma_adjust)
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
117 struct radix_tree_node *node;
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
132 mapping->nrexceptional--;
136 __radix_tree_replace(&mapping->page_tree, node, slot, page,
137 workingset_update_node, mapping);
142 static void page_cache_tree_delete(struct address_space *mapping,
143 struct page *page, void *shadow)
147 /* hugetlb pages are represented by one entry in the radix tree */
148 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(PageTail(page), page);
152 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
154 for (i = 0; i < nr; i++) {
155 struct radix_tree_node *node;
158 __radix_tree_lookup(&mapping->page_tree, page->index + i,
161 VM_BUG_ON_PAGE(!node && nr != 1, page);
163 radix_tree_clear_tags(&mapping->page_tree, node, slot);
164 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165 workingset_update_node, mapping);
168 page->mapping = NULL;
169 /* Leave page->index set: truncation lookup relies upon it */
172 mapping->nrexceptional += nr;
174 * Make sure the nrexceptional update is committed before
175 * the nrpages update so that final truncate racing
176 * with reclaim does not see both counters 0 at the
177 * same time and miss a shadow entry.
181 mapping->nrpages -= nr;
184 static void unaccount_page_cache_page(struct address_space *mapping,
190 * if we're uptodate, flush out into the cleancache, otherwise
191 * invalidate any existing cleancache entries. We can't leave
192 * stale data around in the cleancache once our page is gone
194 if (PageUptodate(page) && PageMappedToDisk(page))
195 cleancache_put_page(page);
197 cleancache_invalidate_page(mapping, page);
199 VM_BUG_ON_PAGE(PageTail(page), page);
200 VM_BUG_ON_PAGE(page_mapped(page), page);
201 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
204 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
205 current->comm, page_to_pfn(page));
206 dump_page(page, "still mapped when deleted");
208 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
210 mapcount = page_mapcount(page);
211 if (mapping_exiting(mapping) &&
212 page_count(page) >= mapcount + 2) {
214 * All vmas have already been torn down, so it's
215 * a good bet that actually the page is unmapped,
216 * and we'd prefer not to leak it: if we're wrong,
217 * some other bad page check should catch it later.
219 page_mapcount_reset(page);
220 page_ref_sub(page, mapcount);
224 /* hugetlb pages do not participate in page cache accounting. */
228 nr = hpage_nr_pages(page);
230 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
231 if (PageSwapBacked(page)) {
232 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
233 if (PageTransHuge(page))
234 __dec_node_page_state(page, NR_SHMEM_THPS);
236 VM_BUG_ON_PAGE(PageTransHuge(page), page);
240 * At this point page must be either written or cleaned by
241 * truncate. Dirty page here signals a bug and loss of
244 * This fixes dirty accounting after removing the page entirely
245 * but leaves PageDirty set: it has no effect for truncated
246 * page and anyway will be cleared before returning page into
249 if (WARN_ON_ONCE(PageDirty(page)))
250 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
254 * Delete a page from the page cache and free it. Caller has to make
255 * sure the page is locked and that nobody else uses it - or that usage
256 * is safe. The caller must hold the mapping's tree_lock.
258 void __delete_from_page_cache(struct page *page, void *shadow)
260 struct address_space *mapping = page->mapping;
262 trace_mm_filemap_delete_from_page_cache(page);
264 unaccount_page_cache_page(mapping, page);
265 page_cache_tree_delete(mapping, page, shadow);
268 static void page_cache_free_page(struct address_space *mapping,
271 void (*freepage)(struct page *);
273 freepage = mapping->a_ops->freepage;
277 if (PageTransHuge(page) && !PageHuge(page)) {
278 page_ref_sub(page, HPAGE_PMD_NR);
279 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
286 * delete_from_page_cache - delete page from page cache
287 * @page: the page which the kernel is trying to remove from page cache
289 * This must be called only on pages that have been verified to be in the page
290 * cache and locked. It will never put the page into the free list, the caller
291 * has a reference on the page.
293 void delete_from_page_cache(struct page *page)
295 struct address_space *mapping = page_mapping(page);
298 BUG_ON(!PageLocked(page));
299 spin_lock_irqsave(&mapping->tree_lock, flags);
300 __delete_from_page_cache(page, NULL);
301 spin_unlock_irqrestore(&mapping->tree_lock, flags);
303 page_cache_free_page(mapping, page);
305 EXPORT_SYMBOL(delete_from_page_cache);
307 int filemap_check_errors(struct address_space *mapping)
310 /* Check for outstanding write errors */
311 if (test_bit(AS_ENOSPC, &mapping->flags) &&
312 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
314 if (test_bit(AS_EIO, &mapping->flags) &&
315 test_and_clear_bit(AS_EIO, &mapping->flags))
319 EXPORT_SYMBOL(filemap_check_errors);
321 static int filemap_check_and_keep_errors(struct address_space *mapping)
323 /* Check for outstanding write errors */
324 if (test_bit(AS_EIO, &mapping->flags))
326 if (test_bit(AS_ENOSPC, &mapping->flags))
332 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
333 * @mapping: address space structure to write
334 * @start: offset in bytes where the range starts
335 * @end: offset in bytes where the range ends (inclusive)
336 * @sync_mode: enable synchronous operation
338 * Start writeback against all of a mapping's dirty pages that lie
339 * within the byte offsets <start, end> inclusive.
341 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
342 * opposed to a regular memory cleansing writeback. The difference between
343 * these two operations is that if a dirty page/buffer is encountered, it must
344 * be waited upon, and not just skipped over.
346 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
347 loff_t end, int sync_mode)
350 struct writeback_control wbc = {
351 .sync_mode = sync_mode,
352 .nr_to_write = LONG_MAX,
353 .range_start = start,
357 if (!mapping_cap_writeback_dirty(mapping))
360 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
361 ret = do_writepages(mapping, &wbc);
362 wbc_detach_inode(&wbc);
366 static inline int __filemap_fdatawrite(struct address_space *mapping,
369 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
372 int filemap_fdatawrite(struct address_space *mapping)
374 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
376 EXPORT_SYMBOL(filemap_fdatawrite);
378 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
381 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
383 EXPORT_SYMBOL(filemap_fdatawrite_range);
386 * filemap_flush - mostly a non-blocking flush
387 * @mapping: target address_space
389 * This is a mostly non-blocking flush. Not suitable for data-integrity
390 * purposes - I/O may not be started against all dirty pages.
392 int filemap_flush(struct address_space *mapping)
394 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
396 EXPORT_SYMBOL(filemap_flush);
399 * filemap_range_has_page - check if a page exists in range.
400 * @mapping: address space within which to check
401 * @start_byte: offset in bytes where the range starts
402 * @end_byte: offset in bytes where the range ends (inclusive)
404 * Find at least one page in the range supplied, usually used to check if
405 * direct writing in this range will trigger a writeback.
407 bool filemap_range_has_page(struct address_space *mapping,
408 loff_t start_byte, loff_t end_byte)
410 pgoff_t index = start_byte >> PAGE_SHIFT;
411 pgoff_t end = end_byte >> PAGE_SHIFT;
414 if (end_byte < start_byte)
417 if (mapping->nrpages == 0)
420 if (!find_get_pages_range(mapping, &index, end, 1, &page))
425 EXPORT_SYMBOL(filemap_range_has_page);
427 static void __filemap_fdatawait_range(struct address_space *mapping,
428 loff_t start_byte, loff_t end_byte)
430 pgoff_t index = start_byte >> PAGE_SHIFT;
431 pgoff_t end = end_byte >> PAGE_SHIFT;
435 if (end_byte < start_byte)
438 pagevec_init(&pvec, 0);
439 while (index <= end) {
442 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
443 end, PAGECACHE_TAG_WRITEBACK);
447 for (i = 0; i < nr_pages; i++) {
448 struct page *page = pvec.pages[i];
450 wait_on_page_writeback(page);
451 ClearPageError(page);
453 pagevec_release(&pvec);
459 * filemap_fdatawait_range - wait for writeback to complete
460 * @mapping: address space structure to wait for
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
464 * Walk the list of under-writeback pages of the given address space
465 * in the given range and wait for all of them. Check error status of
466 * the address space and return it.
468 * Since the error status of the address space is cleared by this function,
469 * callers are responsible for checking the return value and handling and/or
470 * reporting the error.
472 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
475 __filemap_fdatawait_range(mapping, start_byte, end_byte);
476 return filemap_check_errors(mapping);
478 EXPORT_SYMBOL(filemap_fdatawait_range);
481 * file_fdatawait_range - wait for writeback to complete
482 * @file: file pointing to address space structure to wait for
483 * @start_byte: offset in bytes where the range starts
484 * @end_byte: offset in bytes where the range ends (inclusive)
486 * Walk the list of under-writeback pages of the address space that file
487 * refers to, in the given range and wait for all of them. Check error
488 * status of the address space vs. the file->f_wb_err cursor and return it.
490 * Since the error status of the file is advanced by this function,
491 * callers are responsible for checking the return value and handling and/or
492 * reporting the error.
494 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
496 struct address_space *mapping = file->f_mapping;
498 __filemap_fdatawait_range(mapping, start_byte, end_byte);
499 return file_check_and_advance_wb_err(file);
501 EXPORT_SYMBOL(file_fdatawait_range);
504 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
505 * @mapping: address space structure to wait for
507 * Walk the list of under-writeback pages of the given address space
508 * and wait for all of them. Unlike filemap_fdatawait(), this function
509 * does not clear error status of the address space.
511 * Use this function if callers don't handle errors themselves. Expected
512 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
515 int filemap_fdatawait_keep_errors(struct address_space *mapping)
517 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
518 return filemap_check_and_keep_errors(mapping);
520 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
522 static bool mapping_needs_writeback(struct address_space *mapping)
524 return (!dax_mapping(mapping) && mapping->nrpages) ||
525 (dax_mapping(mapping) && mapping->nrexceptional);
528 int filemap_write_and_wait(struct address_space *mapping)
532 if (mapping_needs_writeback(mapping)) {
533 err = filemap_fdatawrite(mapping);
535 * Even if the above returned error, the pages may be
536 * written partially (e.g. -ENOSPC), so we wait for it.
537 * But the -EIO is special case, it may indicate the worst
538 * thing (e.g. bug) happened, so we avoid waiting for it.
541 int err2 = filemap_fdatawait(mapping);
545 /* Clear any previously stored errors */
546 filemap_check_errors(mapping);
549 err = filemap_check_errors(mapping);
553 EXPORT_SYMBOL(filemap_write_and_wait);
556 * filemap_write_and_wait_range - write out & wait on a file range
557 * @mapping: the address_space for the pages
558 * @lstart: offset in bytes where the range starts
559 * @lend: offset in bytes where the range ends (inclusive)
561 * Write out and wait upon file offsets lstart->lend, inclusive.
563 * Note that @lend is inclusive (describes the last byte to be written) so
564 * that this function can be used to write to the very end-of-file (end = -1).
566 int filemap_write_and_wait_range(struct address_space *mapping,
567 loff_t lstart, loff_t lend)
571 if (mapping_needs_writeback(mapping)) {
572 err = __filemap_fdatawrite_range(mapping, lstart, lend,
574 /* See comment of filemap_write_and_wait() */
576 int err2 = filemap_fdatawait_range(mapping,
581 /* Clear any previously stored errors */
582 filemap_check_errors(mapping);
585 err = filemap_check_errors(mapping);
589 EXPORT_SYMBOL(filemap_write_and_wait_range);
591 void __filemap_set_wb_err(struct address_space *mapping, int err)
593 errseq_t eseq = errseq_set(&mapping->wb_err, err);
595 trace_filemap_set_wb_err(mapping, eseq);
597 EXPORT_SYMBOL(__filemap_set_wb_err);
600 * file_check_and_advance_wb_err - report wb error (if any) that was previously
601 * and advance wb_err to current one
602 * @file: struct file on which the error is being reported
604 * When userland calls fsync (or something like nfsd does the equivalent), we
605 * want to report any writeback errors that occurred since the last fsync (or
606 * since the file was opened if there haven't been any).
608 * Grab the wb_err from the mapping. If it matches what we have in the file,
609 * then just quickly return 0. The file is all caught up.
611 * If it doesn't match, then take the mapping value, set the "seen" flag in
612 * it and try to swap it into place. If it works, or another task beat us
613 * to it with the new value, then update the f_wb_err and return the error
614 * portion. The error at this point must be reported via proper channels
615 * (a'la fsync, or NFS COMMIT operation, etc.).
617 * While we handle mapping->wb_err with atomic operations, the f_wb_err
618 * value is protected by the f_lock since we must ensure that it reflects
619 * the latest value swapped in for this file descriptor.
621 int file_check_and_advance_wb_err(struct file *file)
624 errseq_t old = READ_ONCE(file->f_wb_err);
625 struct address_space *mapping = file->f_mapping;
627 /* Locklessly handle the common case where nothing has changed */
628 if (errseq_check(&mapping->wb_err, old)) {
629 /* Something changed, must use slow path */
630 spin_lock(&file->f_lock);
631 old = file->f_wb_err;
632 err = errseq_check_and_advance(&mapping->wb_err,
634 trace_file_check_and_advance_wb_err(file, old);
635 spin_unlock(&file->f_lock);
639 * We're mostly using this function as a drop in replacement for
640 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
641 * that the legacy code would have had on these flags.
643 clear_bit(AS_EIO, &mapping->flags);
644 clear_bit(AS_ENOSPC, &mapping->flags);
647 EXPORT_SYMBOL(file_check_and_advance_wb_err);
650 * file_write_and_wait_range - write out & wait on a file range
651 * @file: file pointing to address_space with pages
652 * @lstart: offset in bytes where the range starts
653 * @lend: offset in bytes where the range ends (inclusive)
655 * Write out and wait upon file offsets lstart->lend, inclusive.
657 * Note that @lend is inclusive (describes the last byte to be written) so
658 * that this function can be used to write to the very end-of-file (end = -1).
660 * After writing out and waiting on the data, we check and advance the
661 * f_wb_err cursor to the latest value, and return any errors detected there.
663 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
666 struct address_space *mapping = file->f_mapping;
668 if (mapping_needs_writeback(mapping)) {
669 err = __filemap_fdatawrite_range(mapping, lstart, lend,
671 /* See comment of filemap_write_and_wait() */
673 __filemap_fdatawait_range(mapping, lstart, lend);
675 err2 = file_check_and_advance_wb_err(file);
680 EXPORT_SYMBOL(file_write_and_wait_range);
683 * replace_page_cache_page - replace a pagecache page with a new one
684 * @old: page to be replaced
685 * @new: page to replace with
686 * @gfp_mask: allocation mode
688 * This function replaces a page in the pagecache with a new one. On
689 * success it acquires the pagecache reference for the new page and
690 * drops it for the old page. Both the old and new pages must be
691 * locked. This function does not add the new page to the LRU, the
692 * caller must do that.
694 * The remove + add is atomic. The only way this function can fail is
695 * memory allocation failure.
697 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
701 VM_BUG_ON_PAGE(!PageLocked(old), old);
702 VM_BUG_ON_PAGE(!PageLocked(new), new);
703 VM_BUG_ON_PAGE(new->mapping, new);
705 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
707 struct address_space *mapping = old->mapping;
708 void (*freepage)(struct page *);
711 pgoff_t offset = old->index;
712 freepage = mapping->a_ops->freepage;
715 new->mapping = mapping;
718 spin_lock_irqsave(&mapping->tree_lock, flags);
719 __delete_from_page_cache(old, NULL);
720 error = page_cache_tree_insert(mapping, new, NULL);
724 * hugetlb pages do not participate in page cache accounting.
727 __inc_node_page_state(new, NR_FILE_PAGES);
728 if (PageSwapBacked(new))
729 __inc_node_page_state(new, NR_SHMEM);
730 spin_unlock_irqrestore(&mapping->tree_lock, flags);
731 mem_cgroup_migrate(old, new);
732 radix_tree_preload_end();
740 EXPORT_SYMBOL_GPL(replace_page_cache_page);
742 static int __add_to_page_cache_locked(struct page *page,
743 struct address_space *mapping,
744 pgoff_t offset, gfp_t gfp_mask,
747 int huge = PageHuge(page);
748 struct mem_cgroup *memcg;
751 VM_BUG_ON_PAGE(!PageLocked(page), page);
752 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
755 error = mem_cgroup_try_charge(page, current->mm,
756 gfp_mask, &memcg, false);
761 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
764 mem_cgroup_cancel_charge(page, memcg, false);
769 page->mapping = mapping;
770 page->index = offset;
772 spin_lock_irq(&mapping->tree_lock);
773 error = page_cache_tree_insert(mapping, page, shadowp);
774 radix_tree_preload_end();
778 /* hugetlb pages do not participate in page cache accounting. */
780 __inc_node_page_state(page, NR_FILE_PAGES);
781 spin_unlock_irq(&mapping->tree_lock);
783 mem_cgroup_commit_charge(page, memcg, false, false);
784 trace_mm_filemap_add_to_page_cache(page);
787 page->mapping = NULL;
788 /* Leave page->index set: truncation relies upon it */
789 spin_unlock_irq(&mapping->tree_lock);
791 mem_cgroup_cancel_charge(page, memcg, false);
797 * add_to_page_cache_locked - add a locked page to the pagecache
799 * @mapping: the page's address_space
800 * @offset: page index
801 * @gfp_mask: page allocation mode
803 * This function is used to add a page to the pagecache. It must be locked.
804 * This function does not add the page to the LRU. The caller must do that.
806 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
807 pgoff_t offset, gfp_t gfp_mask)
809 return __add_to_page_cache_locked(page, mapping, offset,
812 EXPORT_SYMBOL(add_to_page_cache_locked);
814 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
815 pgoff_t offset, gfp_t gfp_mask)
820 __SetPageLocked(page);
821 ret = __add_to_page_cache_locked(page, mapping, offset,
824 __ClearPageLocked(page);
827 * The page might have been evicted from cache only
828 * recently, in which case it should be activated like
829 * any other repeatedly accessed page.
830 * The exception is pages getting rewritten; evicting other
831 * data from the working set, only to cache data that will
832 * get overwritten with something else, is a waste of memory.
834 if (!(gfp_mask & __GFP_WRITE) &&
835 shadow && workingset_refault(shadow)) {
837 workingset_activation(page);
839 ClearPageActive(page);
844 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
847 struct page *__page_cache_alloc(gfp_t gfp)
852 if (cpuset_do_page_mem_spread()) {
853 unsigned int cpuset_mems_cookie;
855 cpuset_mems_cookie = read_mems_allowed_begin();
856 n = cpuset_mem_spread_node();
857 page = __alloc_pages_node(n, gfp, 0);
858 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
862 return alloc_pages(gfp, 0);
864 EXPORT_SYMBOL(__page_cache_alloc);
868 * In order to wait for pages to become available there must be
869 * waitqueues associated with pages. By using a hash table of
870 * waitqueues where the bucket discipline is to maintain all
871 * waiters on the same queue and wake all when any of the pages
872 * become available, and for the woken contexts to check to be
873 * sure the appropriate page became available, this saves space
874 * at a cost of "thundering herd" phenomena during rare hash
877 #define PAGE_WAIT_TABLE_BITS 8
878 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
879 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
881 static wait_queue_head_t *page_waitqueue(struct page *page)
883 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
886 void __init pagecache_init(void)
890 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
891 init_waitqueue_head(&page_wait_table[i]);
893 page_writeback_init();
896 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
897 struct wait_page_key {
903 struct wait_page_queue {
906 wait_queue_entry_t wait;
909 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
911 struct wait_page_key *key = arg;
912 struct wait_page_queue *wait_page
913 = container_of(wait, struct wait_page_queue, wait);
915 if (wait_page->page != key->page)
919 if (wait_page->bit_nr != key->bit_nr)
922 /* Stop walking if it's locked */
923 if (test_bit(key->bit_nr, &key->page->flags))
926 return autoremove_wake_function(wait, mode, sync, key);
929 static void wake_up_page_bit(struct page *page, int bit_nr)
931 wait_queue_head_t *q = page_waitqueue(page);
932 struct wait_page_key key;
934 wait_queue_entry_t bookmark;
941 bookmark.private = NULL;
942 bookmark.func = NULL;
943 INIT_LIST_HEAD(&bookmark.entry);
945 spin_lock_irqsave(&q->lock, flags);
946 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
948 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
950 * Take a breather from holding the lock,
951 * allow pages that finish wake up asynchronously
952 * to acquire the lock and remove themselves
955 spin_unlock_irqrestore(&q->lock, flags);
957 spin_lock_irqsave(&q->lock, flags);
958 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
962 * It is possible for other pages to have collided on the waitqueue
963 * hash, so in that case check for a page match. That prevents a long-
966 * It is still possible to miss a case here, when we woke page waiters
967 * and removed them from the waitqueue, but there are still other
970 if (!waitqueue_active(q) || !key.page_match) {
971 ClearPageWaiters(page);
973 * It's possible to miss clearing Waiters here, when we woke
974 * our page waiters, but the hashed waitqueue has waiters for
977 * That's okay, it's a rare case. The next waker will clear it.
980 spin_unlock_irqrestore(&q->lock, flags);
983 static void wake_up_page(struct page *page, int bit)
985 if (!PageWaiters(page))
987 wake_up_page_bit(page, bit);
990 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
991 struct page *page, int bit_nr, int state, bool lock)
993 struct wait_page_queue wait_page;
994 wait_queue_entry_t *wait = &wait_page.wait;
998 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
999 wait->func = wake_page_function;
1000 wait_page.page = page;
1001 wait_page.bit_nr = bit_nr;
1004 spin_lock_irq(&q->lock);
1006 if (likely(list_empty(&wait->entry))) {
1007 __add_wait_queue_entry_tail(q, wait);
1008 SetPageWaiters(page);
1011 set_current_state(state);
1013 spin_unlock_irq(&q->lock);
1015 if (likely(test_bit(bit_nr, &page->flags))) {
1020 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1023 if (!test_bit(bit_nr, &page->flags))
1027 if (unlikely(signal_pending_state(state, current))) {
1033 finish_wait(q, wait);
1036 * A signal could leave PageWaiters set. Clearing it here if
1037 * !waitqueue_active would be possible (by open-coding finish_wait),
1038 * but still fail to catch it in the case of wait hash collision. We
1039 * already can fail to clear wait hash collision cases, so don't
1040 * bother with signals either.
1046 void wait_on_page_bit(struct page *page, int bit_nr)
1048 wait_queue_head_t *q = page_waitqueue(page);
1049 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1051 EXPORT_SYMBOL(wait_on_page_bit);
1053 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1055 wait_queue_head_t *q = page_waitqueue(page);
1056 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1060 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1061 * @page: Page defining the wait queue of interest
1062 * @waiter: Waiter to add to the queue
1064 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1066 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1068 wait_queue_head_t *q = page_waitqueue(page);
1069 unsigned long flags;
1071 spin_lock_irqsave(&q->lock, flags);
1072 __add_wait_queue_entry_tail(q, waiter);
1073 SetPageWaiters(page);
1074 spin_unlock_irqrestore(&q->lock, flags);
1076 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1078 #ifndef clear_bit_unlock_is_negative_byte
1081 * PG_waiters is the high bit in the same byte as PG_lock.
1083 * On x86 (and on many other architectures), we can clear PG_lock and
1084 * test the sign bit at the same time. But if the architecture does
1085 * not support that special operation, we just do this all by hand
1088 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1089 * being cleared, but a memory barrier should be unneccssary since it is
1090 * in the same byte as PG_locked.
1092 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1094 clear_bit_unlock(nr, mem);
1095 /* smp_mb__after_atomic(); */
1096 return test_bit(PG_waiters, mem);
1102 * unlock_page - unlock a locked page
1105 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1106 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1107 * mechanism between PageLocked pages and PageWriteback pages is shared.
1108 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1110 * Note that this depends on PG_waiters being the sign bit in the byte
1111 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1112 * clear the PG_locked bit and test PG_waiters at the same time fairly
1113 * portably (architectures that do LL/SC can test any bit, while x86 can
1114 * test the sign bit).
1116 void unlock_page(struct page *page)
1118 BUILD_BUG_ON(PG_waiters != 7);
1119 page = compound_head(page);
1120 VM_BUG_ON_PAGE(!PageLocked(page), page);
1121 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1122 wake_up_page_bit(page, PG_locked);
1124 EXPORT_SYMBOL(unlock_page);
1127 * end_page_writeback - end writeback against a page
1130 void end_page_writeback(struct page *page)
1133 * TestClearPageReclaim could be used here but it is an atomic
1134 * operation and overkill in this particular case. Failing to
1135 * shuffle a page marked for immediate reclaim is too mild to
1136 * justify taking an atomic operation penalty at the end of
1137 * ever page writeback.
1139 if (PageReclaim(page)) {
1140 ClearPageReclaim(page);
1141 rotate_reclaimable_page(page);
1144 if (!test_clear_page_writeback(page))
1147 smp_mb__after_atomic();
1148 wake_up_page(page, PG_writeback);
1150 EXPORT_SYMBOL(end_page_writeback);
1153 * After completing I/O on a page, call this routine to update the page
1154 * flags appropriately
1156 void page_endio(struct page *page, bool is_write, int err)
1160 SetPageUptodate(page);
1162 ClearPageUptodate(page);
1168 struct address_space *mapping;
1171 mapping = page_mapping(page);
1173 mapping_set_error(mapping, err);
1175 end_page_writeback(page);
1178 EXPORT_SYMBOL_GPL(page_endio);
1181 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1182 * @__page: the page to lock
1184 void __lock_page(struct page *__page)
1186 struct page *page = compound_head(__page);
1187 wait_queue_head_t *q = page_waitqueue(page);
1188 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1190 EXPORT_SYMBOL(__lock_page);
1192 int __lock_page_killable(struct page *__page)
1194 struct page *page = compound_head(__page);
1195 wait_queue_head_t *q = page_waitqueue(page);
1196 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1198 EXPORT_SYMBOL_GPL(__lock_page_killable);
1202 * 1 - page is locked; mmap_sem is still held.
1203 * 0 - page is not locked.
1204 * mmap_sem has been released (up_read()), unless flags had both
1205 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1206 * which case mmap_sem is still held.
1208 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1209 * with the page locked and the mmap_sem unperturbed.
1211 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1214 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1216 * CAUTION! In this case, mmap_sem is not released
1217 * even though return 0.
1219 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1222 up_read(&mm->mmap_sem);
1223 if (flags & FAULT_FLAG_KILLABLE)
1224 wait_on_page_locked_killable(page);
1226 wait_on_page_locked(page);
1229 if (flags & FAULT_FLAG_KILLABLE) {
1232 ret = __lock_page_killable(page);
1234 up_read(&mm->mmap_sem);
1244 * page_cache_next_hole - find the next hole (not-present entry)
1247 * @max_scan: maximum range to search
1249 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1250 * lowest indexed hole.
1252 * Returns: the index of the hole if found, otherwise returns an index
1253 * outside of the set specified (in which case 'return - index >=
1254 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1257 * page_cache_next_hole may be called under rcu_read_lock. However,
1258 * like radix_tree_gang_lookup, this will not atomically search a
1259 * snapshot of the tree at a single point in time. For example, if a
1260 * hole is created at index 5, then subsequently a hole is created at
1261 * index 10, page_cache_next_hole covering both indexes may return 10
1262 * if called under rcu_read_lock.
1264 pgoff_t page_cache_next_hole(struct address_space *mapping,
1265 pgoff_t index, unsigned long max_scan)
1269 for (i = 0; i < max_scan; i++) {
1272 page = radix_tree_lookup(&mapping->page_tree, index);
1273 if (!page || radix_tree_exceptional_entry(page))
1282 EXPORT_SYMBOL(page_cache_next_hole);
1285 * page_cache_prev_hole - find the prev hole (not-present entry)
1288 * @max_scan: maximum range to search
1290 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1293 * Returns: the index of the hole if found, otherwise returns an index
1294 * outside of the set specified (in which case 'index - return >=
1295 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1298 * page_cache_prev_hole may be called under rcu_read_lock. However,
1299 * like radix_tree_gang_lookup, this will not atomically search a
1300 * snapshot of the tree at a single point in time. For example, if a
1301 * hole is created at index 10, then subsequently a hole is created at
1302 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1303 * called under rcu_read_lock.
1305 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1306 pgoff_t index, unsigned long max_scan)
1310 for (i = 0; i < max_scan; i++) {
1313 page = radix_tree_lookup(&mapping->page_tree, index);
1314 if (!page || radix_tree_exceptional_entry(page))
1317 if (index == ULONG_MAX)
1323 EXPORT_SYMBOL(page_cache_prev_hole);
1326 * find_get_entry - find and get a page cache entry
1327 * @mapping: the address_space to search
1328 * @offset: the page cache index
1330 * Looks up the page cache slot at @mapping & @offset. If there is a
1331 * page cache page, it is returned with an increased refcount.
1333 * If the slot holds a shadow entry of a previously evicted page, or a
1334 * swap entry from shmem/tmpfs, it is returned.
1336 * Otherwise, %NULL is returned.
1338 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1341 struct page *head, *page;
1346 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1348 page = radix_tree_deref_slot(pagep);
1349 if (unlikely(!page))
1351 if (radix_tree_exception(page)) {
1352 if (radix_tree_deref_retry(page))
1355 * A shadow entry of a recently evicted page,
1356 * or a swap entry from shmem/tmpfs. Return
1357 * it without attempting to raise page count.
1362 head = compound_head(page);
1363 if (!page_cache_get_speculative(head))
1366 /* The page was split under us? */
1367 if (compound_head(page) != head) {
1373 * Has the page moved?
1374 * This is part of the lockless pagecache protocol. See
1375 * include/linux/pagemap.h for details.
1377 if (unlikely(page != *pagep)) {
1387 EXPORT_SYMBOL(find_get_entry);
1390 * find_lock_entry - locate, pin and lock a page cache entry
1391 * @mapping: the address_space to search
1392 * @offset: the page cache index
1394 * Looks up the page cache slot at @mapping & @offset. If there is a
1395 * page cache page, it is returned locked and with an increased
1398 * If the slot holds a shadow entry of a previously evicted page, or a
1399 * swap entry from shmem/tmpfs, it is returned.
1401 * Otherwise, %NULL is returned.
1403 * find_lock_entry() may sleep.
1405 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1410 page = find_get_entry(mapping, offset);
1411 if (page && !radix_tree_exception(page)) {
1413 /* Has the page been truncated? */
1414 if (unlikely(page_mapping(page) != mapping)) {
1419 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1423 EXPORT_SYMBOL(find_lock_entry);
1426 * pagecache_get_page - find and get a page reference
1427 * @mapping: the address_space to search
1428 * @offset: the page index
1429 * @fgp_flags: PCG flags
1430 * @gfp_mask: gfp mask to use for the page cache data page allocation
1432 * Looks up the page cache slot at @mapping & @offset.
1434 * PCG flags modify how the page is returned.
1436 * @fgp_flags can be:
1438 * - FGP_ACCESSED: the page will be marked accessed
1439 * - FGP_LOCK: Page is return locked
1440 * - FGP_CREAT: If page is not present then a new page is allocated using
1441 * @gfp_mask and added to the page cache and the VM's LRU
1442 * list. The page is returned locked and with an increased
1443 * refcount. Otherwise, NULL is returned.
1445 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1446 * if the GFP flags specified for FGP_CREAT are atomic.
1448 * If there is a page cache page, it is returned with an increased refcount.
1450 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1451 int fgp_flags, gfp_t gfp_mask)
1456 page = find_get_entry(mapping, offset);
1457 if (radix_tree_exceptional_entry(page))
1462 if (fgp_flags & FGP_LOCK) {
1463 if (fgp_flags & FGP_NOWAIT) {
1464 if (!trylock_page(page)) {
1472 /* Has the page been truncated? */
1473 if (unlikely(page->mapping != mapping)) {
1478 VM_BUG_ON_PAGE(page->index != offset, page);
1481 if (page && (fgp_flags & FGP_ACCESSED))
1482 mark_page_accessed(page);
1485 if (!page && (fgp_flags & FGP_CREAT)) {
1487 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1488 gfp_mask |= __GFP_WRITE;
1489 if (fgp_flags & FGP_NOFS)
1490 gfp_mask &= ~__GFP_FS;
1492 page = __page_cache_alloc(gfp_mask);
1496 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1497 fgp_flags |= FGP_LOCK;
1499 /* Init accessed so avoid atomic mark_page_accessed later */
1500 if (fgp_flags & FGP_ACCESSED)
1501 __SetPageReferenced(page);
1503 err = add_to_page_cache_lru(page, mapping, offset,
1504 gfp_mask & GFP_RECLAIM_MASK);
1505 if (unlikely(err)) {
1515 EXPORT_SYMBOL(pagecache_get_page);
1518 * find_get_entries - gang pagecache lookup
1519 * @mapping: The address_space to search
1520 * @start: The starting page cache index
1521 * @nr_entries: The maximum number of entries
1522 * @entries: Where the resulting entries are placed
1523 * @indices: The cache indices corresponding to the entries in @entries
1525 * find_get_entries() will search for and return a group of up to
1526 * @nr_entries entries in the mapping. The entries are placed at
1527 * @entries. find_get_entries() takes a reference against any actual
1530 * The search returns a group of mapping-contiguous page cache entries
1531 * with ascending indexes. There may be holes in the indices due to
1532 * not-present pages.
1534 * Any shadow entries of evicted pages, or swap entries from
1535 * shmem/tmpfs, are included in the returned array.
1537 * find_get_entries() returns the number of pages and shadow entries
1540 unsigned find_get_entries(struct address_space *mapping,
1541 pgoff_t start, unsigned int nr_entries,
1542 struct page **entries, pgoff_t *indices)
1545 unsigned int ret = 0;
1546 struct radix_tree_iter iter;
1552 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1553 struct page *head, *page;
1555 page = radix_tree_deref_slot(slot);
1556 if (unlikely(!page))
1558 if (radix_tree_exception(page)) {
1559 if (radix_tree_deref_retry(page)) {
1560 slot = radix_tree_iter_retry(&iter);
1564 * A shadow entry of a recently evicted page, a swap
1565 * entry from shmem/tmpfs or a DAX entry. Return it
1566 * without attempting to raise page count.
1571 head = compound_head(page);
1572 if (!page_cache_get_speculative(head))
1575 /* The page was split under us? */
1576 if (compound_head(page) != head) {
1581 /* Has the page moved? */
1582 if (unlikely(page != *slot)) {
1587 indices[ret] = iter.index;
1588 entries[ret] = page;
1589 if (++ret == nr_entries)
1597 * find_get_pages_range - gang pagecache lookup
1598 * @mapping: The address_space to search
1599 * @start: The starting page index
1600 * @end: The final page index (inclusive)
1601 * @nr_pages: The maximum number of pages
1602 * @pages: Where the resulting pages are placed
1604 * find_get_pages_range() will search for and return a group of up to @nr_pages
1605 * pages in the mapping starting at index @start and up to index @end
1606 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1607 * a reference against the returned pages.
1609 * The search returns a group of mapping-contiguous pages with ascending
1610 * indexes. There may be holes in the indices due to not-present pages.
1611 * We also update @start to index the next page for the traversal.
1613 * find_get_pages_range() returns the number of pages which were found. If this
1614 * number is smaller than @nr_pages, the end of specified range has been
1617 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1618 pgoff_t end, unsigned int nr_pages,
1619 struct page **pages)
1621 struct radix_tree_iter iter;
1625 if (unlikely(!nr_pages))
1629 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1630 struct page *head, *page;
1632 if (iter.index > end)
1635 page = radix_tree_deref_slot(slot);
1636 if (unlikely(!page))
1639 if (radix_tree_exception(page)) {
1640 if (radix_tree_deref_retry(page)) {
1641 slot = radix_tree_iter_retry(&iter);
1645 * A shadow entry of a recently evicted page,
1646 * or a swap entry from shmem/tmpfs. Skip
1652 head = compound_head(page);
1653 if (!page_cache_get_speculative(head))
1656 /* The page was split under us? */
1657 if (compound_head(page) != head) {
1662 /* Has the page moved? */
1663 if (unlikely(page != *slot)) {
1669 if (++ret == nr_pages) {
1670 *start = pages[ret - 1]->index + 1;
1676 * We come here when there is no page beyond @end. We take care to not
1677 * overflow the index @start as it confuses some of the callers. This
1678 * breaks the iteration when there is page at index -1 but that is
1679 * already broken anyway.
1681 if (end == (pgoff_t)-1)
1682 *start = (pgoff_t)-1;
1692 * find_get_pages_contig - gang contiguous pagecache lookup
1693 * @mapping: The address_space to search
1694 * @index: The starting page index
1695 * @nr_pages: The maximum number of pages
1696 * @pages: Where the resulting pages are placed
1698 * find_get_pages_contig() works exactly like find_get_pages(), except
1699 * that the returned number of pages are guaranteed to be contiguous.
1701 * find_get_pages_contig() returns the number of pages which were found.
1703 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1704 unsigned int nr_pages, struct page **pages)
1706 struct radix_tree_iter iter;
1708 unsigned int ret = 0;
1710 if (unlikely(!nr_pages))
1714 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1715 struct page *head, *page;
1717 page = radix_tree_deref_slot(slot);
1718 /* The hole, there no reason to continue */
1719 if (unlikely(!page))
1722 if (radix_tree_exception(page)) {
1723 if (radix_tree_deref_retry(page)) {
1724 slot = radix_tree_iter_retry(&iter);
1728 * A shadow entry of a recently evicted page,
1729 * or a swap entry from shmem/tmpfs. Stop
1730 * looking for contiguous pages.
1735 head = compound_head(page);
1736 if (!page_cache_get_speculative(head))
1739 /* The page was split under us? */
1740 if (compound_head(page) != head) {
1745 /* Has the page moved? */
1746 if (unlikely(page != *slot)) {
1752 * must check mapping and index after taking the ref.
1753 * otherwise we can get both false positives and false
1754 * negatives, which is just confusing to the caller.
1756 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1762 if (++ret == nr_pages)
1768 EXPORT_SYMBOL(find_get_pages_contig);
1771 * find_get_pages_range_tag - find and return pages in given range matching @tag
1772 * @mapping: the address_space to search
1773 * @index: the starting page index
1774 * @end: The final page index (inclusive)
1775 * @tag: the tag index
1776 * @nr_pages: the maximum number of pages
1777 * @pages: where the resulting pages are placed
1779 * Like find_get_pages, except we only return pages which are tagged with
1780 * @tag. We update @index to index the next page for the traversal.
1782 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1783 pgoff_t end, int tag, unsigned int nr_pages,
1784 struct page **pages)
1786 struct radix_tree_iter iter;
1790 if (unlikely(!nr_pages))
1794 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1795 &iter, *index, tag) {
1796 struct page *head, *page;
1798 if (iter.index > end)
1801 page = radix_tree_deref_slot(slot);
1802 if (unlikely(!page))
1805 if (radix_tree_exception(page)) {
1806 if (radix_tree_deref_retry(page)) {
1807 slot = radix_tree_iter_retry(&iter);
1811 * A shadow entry of a recently evicted page.
1813 * Those entries should never be tagged, but
1814 * this tree walk is lockless and the tags are
1815 * looked up in bulk, one radix tree node at a
1816 * time, so there is a sizable window for page
1817 * reclaim to evict a page we saw tagged.
1824 head = compound_head(page);
1825 if (!page_cache_get_speculative(head))
1828 /* The page was split under us? */
1829 if (compound_head(page) != head) {
1834 /* Has the page moved? */
1835 if (unlikely(page != *slot)) {
1841 if (++ret == nr_pages) {
1842 *index = pages[ret - 1]->index + 1;
1848 * We come here when we got at @end. We take care to not overflow the
1849 * index @index as it confuses some of the callers. This breaks the
1850 * iteration when there is page at index -1 but that is already broken
1853 if (end == (pgoff_t)-1)
1854 *index = (pgoff_t)-1;
1862 EXPORT_SYMBOL(find_get_pages_range_tag);
1865 * find_get_entries_tag - find and return entries that match @tag
1866 * @mapping: the address_space to search
1867 * @start: the starting page cache index
1868 * @tag: the tag index
1869 * @nr_entries: the maximum number of entries
1870 * @entries: where the resulting entries are placed
1871 * @indices: the cache indices corresponding to the entries in @entries
1873 * Like find_get_entries, except we only return entries which are tagged with
1876 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1877 int tag, unsigned int nr_entries,
1878 struct page **entries, pgoff_t *indices)
1881 unsigned int ret = 0;
1882 struct radix_tree_iter iter;
1888 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1889 &iter, start, tag) {
1890 struct page *head, *page;
1892 page = radix_tree_deref_slot(slot);
1893 if (unlikely(!page))
1895 if (radix_tree_exception(page)) {
1896 if (radix_tree_deref_retry(page)) {
1897 slot = radix_tree_iter_retry(&iter);
1902 * A shadow entry of a recently evicted page, a swap
1903 * entry from shmem/tmpfs or a DAX entry. Return it
1904 * without attempting to raise page count.
1909 head = compound_head(page);
1910 if (!page_cache_get_speculative(head))
1913 /* The page was split under us? */
1914 if (compound_head(page) != head) {
1919 /* Has the page moved? */
1920 if (unlikely(page != *slot)) {
1925 indices[ret] = iter.index;
1926 entries[ret] = page;
1927 if (++ret == nr_entries)
1933 EXPORT_SYMBOL(find_get_entries_tag);
1936 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1937 * a _large_ part of the i/o request. Imagine the worst scenario:
1939 * ---R__________________________________________B__________
1940 * ^ reading here ^ bad block(assume 4k)
1942 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1943 * => failing the whole request => read(R) => read(R+1) =>
1944 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1945 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1946 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1948 * It is going insane. Fix it by quickly scaling down the readahead size.
1950 static void shrink_readahead_size_eio(struct file *filp,
1951 struct file_ra_state *ra)
1957 * generic_file_buffered_read - generic file read routine
1958 * @iocb: the iocb to read
1959 * @iter: data destination
1960 * @written: already copied
1962 * This is a generic file read routine, and uses the
1963 * mapping->a_ops->readpage() function for the actual low-level stuff.
1965 * This is really ugly. But the goto's actually try to clarify some
1966 * of the logic when it comes to error handling etc.
1968 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1969 struct iov_iter *iter, ssize_t written)
1971 struct file *filp = iocb->ki_filp;
1972 struct address_space *mapping = filp->f_mapping;
1973 struct inode *inode = mapping->host;
1974 struct file_ra_state *ra = &filp->f_ra;
1975 loff_t *ppos = &iocb->ki_pos;
1979 unsigned long offset; /* offset into pagecache page */
1980 unsigned int prev_offset;
1983 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1985 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1987 index = *ppos >> PAGE_SHIFT;
1988 prev_index = ra->prev_pos >> PAGE_SHIFT;
1989 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1990 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1991 offset = *ppos & ~PAGE_MASK;
1997 unsigned long nr, ret;
2001 if (fatal_signal_pending(current)) {
2006 page = find_get_page(mapping, index);
2008 if (iocb->ki_flags & IOCB_NOWAIT)
2010 page_cache_sync_readahead(mapping,
2012 index, last_index - index);
2013 page = find_get_page(mapping, index);
2014 if (unlikely(page == NULL))
2015 goto no_cached_page;
2017 if (PageReadahead(page)) {
2018 page_cache_async_readahead(mapping,
2020 index, last_index - index);
2022 if (!PageUptodate(page)) {
2023 if (iocb->ki_flags & IOCB_NOWAIT) {
2029 * See comment in do_read_cache_page on why
2030 * wait_on_page_locked is used to avoid unnecessarily
2031 * serialisations and why it's safe.
2033 error = wait_on_page_locked_killable(page);
2034 if (unlikely(error))
2035 goto readpage_error;
2036 if (PageUptodate(page))
2039 if (inode->i_blkbits == PAGE_SHIFT ||
2040 !mapping->a_ops->is_partially_uptodate)
2041 goto page_not_up_to_date;
2042 /* pipes can't handle partially uptodate pages */
2043 if (unlikely(iter->type & ITER_PIPE))
2044 goto page_not_up_to_date;
2045 if (!trylock_page(page))
2046 goto page_not_up_to_date;
2047 /* Did it get truncated before we got the lock? */
2049 goto page_not_up_to_date_locked;
2050 if (!mapping->a_ops->is_partially_uptodate(page,
2051 offset, iter->count))
2052 goto page_not_up_to_date_locked;
2057 * i_size must be checked after we know the page is Uptodate.
2059 * Checking i_size after the check allows us to calculate
2060 * the correct value for "nr", which means the zero-filled
2061 * part of the page is not copied back to userspace (unless
2062 * another truncate extends the file - this is desired though).
2065 isize = i_size_read(inode);
2066 end_index = (isize - 1) >> PAGE_SHIFT;
2067 if (unlikely(!isize || index > end_index)) {
2072 /* nr is the maximum number of bytes to copy from this page */
2074 if (index == end_index) {
2075 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2083 /* If users can be writing to this page using arbitrary
2084 * virtual addresses, take care about potential aliasing
2085 * before reading the page on the kernel side.
2087 if (mapping_writably_mapped(mapping))
2088 flush_dcache_page(page);
2091 * When a sequential read accesses a page several times,
2092 * only mark it as accessed the first time.
2094 if (prev_index != index || offset != prev_offset)
2095 mark_page_accessed(page);
2099 * Ok, we have the page, and it's up-to-date, so
2100 * now we can copy it to user space...
2103 ret = copy_page_to_iter(page, offset, nr, iter);
2105 index += offset >> PAGE_SHIFT;
2106 offset &= ~PAGE_MASK;
2107 prev_offset = offset;
2111 if (!iov_iter_count(iter))
2119 page_not_up_to_date:
2120 /* Get exclusive access to the page ... */
2121 error = lock_page_killable(page);
2122 if (unlikely(error))
2123 goto readpage_error;
2125 page_not_up_to_date_locked:
2126 /* Did it get truncated before we got the lock? */
2127 if (!page->mapping) {
2133 /* Did somebody else fill it already? */
2134 if (PageUptodate(page)) {
2141 * A previous I/O error may have been due to temporary
2142 * failures, eg. multipath errors.
2143 * PG_error will be set again if readpage fails.
2145 ClearPageError(page);
2146 /* Start the actual read. The read will unlock the page. */
2147 error = mapping->a_ops->readpage(filp, page);
2149 if (unlikely(error)) {
2150 if (error == AOP_TRUNCATED_PAGE) {
2155 goto readpage_error;
2158 if (!PageUptodate(page)) {
2159 error = lock_page_killable(page);
2160 if (unlikely(error))
2161 goto readpage_error;
2162 if (!PageUptodate(page)) {
2163 if (page->mapping == NULL) {
2165 * invalidate_mapping_pages got it
2172 shrink_readahead_size_eio(filp, ra);
2174 goto readpage_error;
2182 /* UHHUH! A synchronous read error occurred. Report it */
2188 * Ok, it wasn't cached, so we need to create a new
2191 page = page_cache_alloc_cold(mapping);
2196 error = add_to_page_cache_lru(page, mapping, index,
2197 mapping_gfp_constraint(mapping, GFP_KERNEL));
2200 if (error == -EEXIST) {
2212 ra->prev_pos = prev_index;
2213 ra->prev_pos <<= PAGE_SHIFT;
2214 ra->prev_pos |= prev_offset;
2216 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2217 file_accessed(filp);
2218 return written ? written : error;
2222 * generic_file_read_iter - generic filesystem read routine
2223 * @iocb: kernel I/O control block
2224 * @iter: destination for the data read
2226 * This is the "read_iter()" routine for all filesystems
2227 * that can use the page cache directly.
2230 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2232 size_t count = iov_iter_count(iter);
2236 goto out; /* skip atime */
2238 if (iocb->ki_flags & IOCB_DIRECT) {
2239 struct file *file = iocb->ki_filp;
2240 struct address_space *mapping = file->f_mapping;
2241 struct inode *inode = mapping->host;
2244 size = i_size_read(inode);
2245 if (iocb->ki_flags & IOCB_NOWAIT) {
2246 if (filemap_range_has_page(mapping, iocb->ki_pos,
2247 iocb->ki_pos + count - 1))
2250 retval = filemap_write_and_wait_range(mapping,
2252 iocb->ki_pos + count - 1);
2257 file_accessed(file);
2259 retval = mapping->a_ops->direct_IO(iocb, iter);
2261 iocb->ki_pos += retval;
2264 iov_iter_revert(iter, count - iov_iter_count(iter));
2267 * Btrfs can have a short DIO read if we encounter
2268 * compressed extents, so if there was an error, or if
2269 * we've already read everything we wanted to, or if
2270 * there was a short read because we hit EOF, go ahead
2271 * and return. Otherwise fallthrough to buffered io for
2272 * the rest of the read. Buffered reads will not work for
2273 * DAX files, so don't bother trying.
2275 if (retval < 0 || !count || iocb->ki_pos >= size ||
2280 retval = generic_file_buffered_read(iocb, iter, retval);
2284 EXPORT_SYMBOL(generic_file_read_iter);
2288 * page_cache_read - adds requested page to the page cache if not already there
2289 * @file: file to read
2290 * @offset: page index
2291 * @gfp_mask: memory allocation flags
2293 * This adds the requested page to the page cache if it isn't already there,
2294 * and schedules an I/O to read in its contents from disk.
2296 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2298 struct address_space *mapping = file->f_mapping;
2303 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2307 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2309 ret = mapping->a_ops->readpage(file, page);
2310 else if (ret == -EEXIST)
2311 ret = 0; /* losing race to add is OK */
2315 } while (ret == AOP_TRUNCATED_PAGE);
2320 #define MMAP_LOTSAMISS (100)
2323 * Synchronous readahead happens when we don't even find
2324 * a page in the page cache at all.
2326 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2327 struct file_ra_state *ra,
2331 struct address_space *mapping = file->f_mapping;
2333 /* If we don't want any read-ahead, don't bother */
2334 if (vma->vm_flags & VM_RAND_READ)
2339 if (vma->vm_flags & VM_SEQ_READ) {
2340 page_cache_sync_readahead(mapping, ra, file, offset,
2345 /* Avoid banging the cache line if not needed */
2346 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2350 * Do we miss much more than hit in this file? If so,
2351 * stop bothering with read-ahead. It will only hurt.
2353 if (ra->mmap_miss > MMAP_LOTSAMISS)
2359 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2360 ra->size = ra->ra_pages;
2361 ra->async_size = ra->ra_pages / 4;
2362 ra_submit(ra, mapping, file);
2366 * Asynchronous readahead happens when we find the page and PG_readahead,
2367 * so we want to possibly extend the readahead further..
2369 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2370 struct file_ra_state *ra,
2375 struct address_space *mapping = file->f_mapping;
2377 /* If we don't want any read-ahead, don't bother */
2378 if (vma->vm_flags & VM_RAND_READ)
2380 if (ra->mmap_miss > 0)
2382 if (PageReadahead(page))
2383 page_cache_async_readahead(mapping, ra, file,
2384 page, offset, ra->ra_pages);
2388 * filemap_fault - read in file data for page fault handling
2389 * @vmf: struct vm_fault containing details of the fault
2391 * filemap_fault() is invoked via the vma operations vector for a
2392 * mapped memory region to read in file data during a page fault.
2394 * The goto's are kind of ugly, but this streamlines the normal case of having
2395 * it in the page cache, and handles the special cases reasonably without
2396 * having a lot of duplicated code.
2398 * vma->vm_mm->mmap_sem must be held on entry.
2400 * If our return value has VM_FAULT_RETRY set, it's because
2401 * lock_page_or_retry() returned 0.
2402 * The mmap_sem has usually been released in this case.
2403 * See __lock_page_or_retry() for the exception.
2405 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2406 * has not been released.
2408 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2410 int filemap_fault(struct vm_fault *vmf)
2413 struct file *file = vmf->vma->vm_file;
2414 struct address_space *mapping = file->f_mapping;
2415 struct file_ra_state *ra = &file->f_ra;
2416 struct inode *inode = mapping->host;
2417 pgoff_t offset = vmf->pgoff;
2422 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2423 if (unlikely(offset >= max_off))
2424 return VM_FAULT_SIGBUS;
2427 * Do we have something in the page cache already?
2429 page = find_get_page(mapping, offset);
2430 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2432 * We found the page, so try async readahead before
2433 * waiting for the lock.
2435 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2437 /* No page in the page cache at all */
2438 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2439 count_vm_event(PGMAJFAULT);
2440 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2441 ret = VM_FAULT_MAJOR;
2443 page = find_get_page(mapping, offset);
2445 goto no_cached_page;
2448 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2450 return ret | VM_FAULT_RETRY;
2453 /* Did it get truncated? */
2454 if (unlikely(page->mapping != mapping)) {
2459 VM_BUG_ON_PAGE(page->index != offset, page);
2462 * We have a locked page in the page cache, now we need to check
2463 * that it's up-to-date. If not, it is going to be due to an error.
2465 if (unlikely(!PageUptodate(page)))
2466 goto page_not_uptodate;
2469 * Found the page and have a reference on it.
2470 * We must recheck i_size under page lock.
2472 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2473 if (unlikely(offset >= max_off)) {
2476 return VM_FAULT_SIGBUS;
2480 return ret | VM_FAULT_LOCKED;
2484 * We're only likely to ever get here if MADV_RANDOM is in
2487 error = page_cache_read(file, offset, vmf->gfp_mask);
2490 * The page we want has now been added to the page cache.
2491 * In the unlikely event that someone removed it in the
2492 * meantime, we'll just come back here and read it again.
2498 * An error return from page_cache_read can result if the
2499 * system is low on memory, or a problem occurs while trying
2502 if (error == -ENOMEM)
2503 return VM_FAULT_OOM;
2504 return VM_FAULT_SIGBUS;
2508 * Umm, take care of errors if the page isn't up-to-date.
2509 * Try to re-read it _once_. We do this synchronously,
2510 * because there really aren't any performance issues here
2511 * and we need to check for errors.
2513 ClearPageError(page);
2514 error = mapping->a_ops->readpage(file, page);
2516 wait_on_page_locked(page);
2517 if (!PageUptodate(page))
2522 if (!error || error == AOP_TRUNCATED_PAGE)
2525 /* Things didn't work out. Return zero to tell the mm layer so. */
2526 shrink_readahead_size_eio(file, ra);
2527 return VM_FAULT_SIGBUS;
2529 EXPORT_SYMBOL(filemap_fault);
2531 void filemap_map_pages(struct vm_fault *vmf,
2532 pgoff_t start_pgoff, pgoff_t end_pgoff)
2534 struct radix_tree_iter iter;
2536 struct file *file = vmf->vma->vm_file;
2537 struct address_space *mapping = file->f_mapping;
2538 pgoff_t last_pgoff = start_pgoff;
2539 unsigned long max_idx;
2540 struct page *head, *page;
2543 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2545 if (iter.index > end_pgoff)
2548 page = radix_tree_deref_slot(slot);
2549 if (unlikely(!page))
2551 if (radix_tree_exception(page)) {
2552 if (radix_tree_deref_retry(page)) {
2553 slot = radix_tree_iter_retry(&iter);
2559 head = compound_head(page);
2560 if (!page_cache_get_speculative(head))
2563 /* The page was split under us? */
2564 if (compound_head(page) != head) {
2569 /* Has the page moved? */
2570 if (unlikely(page != *slot)) {
2575 if (!PageUptodate(page) ||
2576 PageReadahead(page) ||
2579 if (!trylock_page(page))
2582 if (page->mapping != mapping || !PageUptodate(page))
2585 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2586 if (page->index >= max_idx)
2589 if (file->f_ra.mmap_miss > 0)
2590 file->f_ra.mmap_miss--;
2592 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2594 vmf->pte += iter.index - last_pgoff;
2595 last_pgoff = iter.index;
2596 if (alloc_set_pte(vmf, NULL, page))
2605 /* Huge page is mapped? No need to proceed. */
2606 if (pmd_trans_huge(*vmf->pmd))
2608 if (iter.index == end_pgoff)
2613 EXPORT_SYMBOL(filemap_map_pages);
2615 int filemap_page_mkwrite(struct vm_fault *vmf)
2617 struct page *page = vmf->page;
2618 struct inode *inode = file_inode(vmf->vma->vm_file);
2619 int ret = VM_FAULT_LOCKED;
2621 sb_start_pagefault(inode->i_sb);
2622 file_update_time(vmf->vma->vm_file);
2624 if (page->mapping != inode->i_mapping) {
2626 ret = VM_FAULT_NOPAGE;
2630 * We mark the page dirty already here so that when freeze is in
2631 * progress, we are guaranteed that writeback during freezing will
2632 * see the dirty page and writeprotect it again.
2634 set_page_dirty(page);
2635 wait_for_stable_page(page);
2637 sb_end_pagefault(inode->i_sb);
2640 EXPORT_SYMBOL(filemap_page_mkwrite);
2642 const struct vm_operations_struct generic_file_vm_ops = {
2643 .fault = filemap_fault,
2644 .map_pages = filemap_map_pages,
2645 .page_mkwrite = filemap_page_mkwrite,
2648 /* This is used for a general mmap of a disk file */
2650 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2652 struct address_space *mapping = file->f_mapping;
2654 if (!mapping->a_ops->readpage)
2656 file_accessed(file);
2657 vma->vm_ops = &generic_file_vm_ops;
2662 * This is for filesystems which do not implement ->writepage.
2664 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2666 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2668 return generic_file_mmap(file, vma);
2671 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2675 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2679 #endif /* CONFIG_MMU */
2681 EXPORT_SYMBOL(generic_file_mmap);
2682 EXPORT_SYMBOL(generic_file_readonly_mmap);
2684 static struct page *wait_on_page_read(struct page *page)
2686 if (!IS_ERR(page)) {
2687 wait_on_page_locked(page);
2688 if (!PageUptodate(page)) {
2690 page = ERR_PTR(-EIO);
2696 static struct page *do_read_cache_page(struct address_space *mapping,
2698 int (*filler)(void *, struct page *),
2705 page = find_get_page(mapping, index);
2707 page = __page_cache_alloc(gfp | __GFP_COLD);
2709 return ERR_PTR(-ENOMEM);
2710 err = add_to_page_cache_lru(page, mapping, index, gfp);
2711 if (unlikely(err)) {
2715 /* Presumably ENOMEM for radix tree node */
2716 return ERR_PTR(err);
2720 err = filler(data, page);
2723 return ERR_PTR(err);
2726 page = wait_on_page_read(page);
2731 if (PageUptodate(page))
2735 * Page is not up to date and may be locked due one of the following
2736 * case a: Page is being filled and the page lock is held
2737 * case b: Read/write error clearing the page uptodate status
2738 * case c: Truncation in progress (page locked)
2739 * case d: Reclaim in progress
2741 * Case a, the page will be up to date when the page is unlocked.
2742 * There is no need to serialise on the page lock here as the page
2743 * is pinned so the lock gives no additional protection. Even if the
2744 * the page is truncated, the data is still valid if PageUptodate as
2745 * it's a race vs truncate race.
2746 * Case b, the page will not be up to date
2747 * Case c, the page may be truncated but in itself, the data may still
2748 * be valid after IO completes as it's a read vs truncate race. The
2749 * operation must restart if the page is not uptodate on unlock but
2750 * otherwise serialising on page lock to stabilise the mapping gives
2751 * no additional guarantees to the caller as the page lock is
2752 * released before return.
2753 * Case d, similar to truncation. If reclaim holds the page lock, it
2754 * will be a race with remove_mapping that determines if the mapping
2755 * is valid on unlock but otherwise the data is valid and there is
2756 * no need to serialise with page lock.
2758 * As the page lock gives no additional guarantee, we optimistically
2759 * wait on the page to be unlocked and check if it's up to date and
2760 * use the page if it is. Otherwise, the page lock is required to
2761 * distinguish between the different cases. The motivation is that we
2762 * avoid spurious serialisations and wakeups when multiple processes
2763 * wait on the same page for IO to complete.
2765 wait_on_page_locked(page);
2766 if (PageUptodate(page))
2769 /* Distinguish between all the cases under the safety of the lock */
2772 /* Case c or d, restart the operation */
2773 if (!page->mapping) {
2779 /* Someone else locked and filled the page in a very small window */
2780 if (PageUptodate(page)) {
2787 mark_page_accessed(page);
2792 * read_cache_page - read into page cache, fill it if needed
2793 * @mapping: the page's address_space
2794 * @index: the page index
2795 * @filler: function to perform the read
2796 * @data: first arg to filler(data, page) function, often left as NULL
2798 * Read into the page cache. If a page already exists, and PageUptodate() is
2799 * not set, try to fill the page and wait for it to become unlocked.
2801 * If the page does not get brought uptodate, return -EIO.
2803 struct page *read_cache_page(struct address_space *mapping,
2805 int (*filler)(void *, struct page *),
2808 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2810 EXPORT_SYMBOL(read_cache_page);
2813 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2814 * @mapping: the page's address_space
2815 * @index: the page index
2816 * @gfp: the page allocator flags to use if allocating
2818 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2819 * any new page allocations done using the specified allocation flags.
2821 * If the page does not get brought uptodate, return -EIO.
2823 struct page *read_cache_page_gfp(struct address_space *mapping,
2827 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2829 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2831 EXPORT_SYMBOL(read_cache_page_gfp);
2834 * Performs necessary checks before doing a write
2836 * Can adjust writing position or amount of bytes to write.
2837 * Returns appropriate error code that caller should return or
2838 * zero in case that write should be allowed.
2840 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2842 struct file *file = iocb->ki_filp;
2843 struct inode *inode = file->f_mapping->host;
2844 unsigned long limit = rlimit(RLIMIT_FSIZE);
2847 if (!iov_iter_count(from))
2850 /* FIXME: this is for backwards compatibility with 2.4 */
2851 if (iocb->ki_flags & IOCB_APPEND)
2852 iocb->ki_pos = i_size_read(inode);
2856 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2859 if (limit != RLIM_INFINITY) {
2860 if (iocb->ki_pos >= limit) {
2861 send_sig(SIGXFSZ, current, 0);
2864 iov_iter_truncate(from, limit - (unsigned long)pos);
2870 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2871 !(file->f_flags & O_LARGEFILE))) {
2872 if (pos >= MAX_NON_LFS)
2874 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2878 * Are we about to exceed the fs block limit ?
2880 * If we have written data it becomes a short write. If we have
2881 * exceeded without writing data we send a signal and return EFBIG.
2882 * Linus frestrict idea will clean these up nicely..
2884 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2887 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2888 return iov_iter_count(from);
2890 EXPORT_SYMBOL(generic_write_checks);
2892 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2893 loff_t pos, unsigned len, unsigned flags,
2894 struct page **pagep, void **fsdata)
2896 const struct address_space_operations *aops = mapping->a_ops;
2898 return aops->write_begin(file, mapping, pos, len, flags,
2901 EXPORT_SYMBOL(pagecache_write_begin);
2903 int pagecache_write_end(struct file *file, struct address_space *mapping,
2904 loff_t pos, unsigned len, unsigned copied,
2905 struct page *page, void *fsdata)
2907 const struct address_space_operations *aops = mapping->a_ops;
2909 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2911 EXPORT_SYMBOL(pagecache_write_end);
2914 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2916 struct file *file = iocb->ki_filp;
2917 struct address_space *mapping = file->f_mapping;
2918 struct inode *inode = mapping->host;
2919 loff_t pos = iocb->ki_pos;
2924 write_len = iov_iter_count(from);
2925 end = (pos + write_len - 1) >> PAGE_SHIFT;
2927 if (iocb->ki_flags & IOCB_NOWAIT) {
2928 /* If there are pages to writeback, return */
2929 if (filemap_range_has_page(inode->i_mapping, pos,
2930 pos + iov_iter_count(from)))
2933 written = filemap_write_and_wait_range(mapping, pos,
2934 pos + write_len - 1);
2940 * After a write we want buffered reads to be sure to go to disk to get
2941 * the new data. We invalidate clean cached page from the region we're
2942 * about to write. We do this *before* the write so that we can return
2943 * without clobbering -EIOCBQUEUED from ->direct_IO().
2945 written = invalidate_inode_pages2_range(mapping,
2946 pos >> PAGE_SHIFT, end);
2948 * If a page can not be invalidated, return 0 to fall back
2949 * to buffered write.
2952 if (written == -EBUSY)
2957 written = mapping->a_ops->direct_IO(iocb, from);
2960 * Finally, try again to invalidate clean pages which might have been
2961 * cached by non-direct readahead, or faulted in by get_user_pages()
2962 * if the source of the write was an mmap'ed region of the file
2963 * we're writing. Either one is a pretty crazy thing to do,
2964 * so we don't support it 100%. If this invalidation
2965 * fails, tough, the write still worked...
2967 * Most of the time we do not need this since dio_complete() will do
2968 * the invalidation for us. However there are some file systems that
2969 * do not end up with dio_complete() being called, so let's not break
2970 * them by removing it completely
2972 if (mapping->nrpages)
2973 invalidate_inode_pages2_range(mapping,
2974 pos >> PAGE_SHIFT, end);
2978 write_len -= written;
2979 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2980 i_size_write(inode, pos);
2981 mark_inode_dirty(inode);
2985 iov_iter_revert(from, write_len - iov_iter_count(from));
2989 EXPORT_SYMBOL(generic_file_direct_write);
2992 * Find or create a page at the given pagecache position. Return the locked
2993 * page. This function is specifically for buffered writes.
2995 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2996 pgoff_t index, unsigned flags)
2999 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3001 if (flags & AOP_FLAG_NOFS)
3002 fgp_flags |= FGP_NOFS;
3004 page = pagecache_get_page(mapping, index, fgp_flags,
3005 mapping_gfp_mask(mapping));
3007 wait_for_stable_page(page);
3011 EXPORT_SYMBOL(grab_cache_page_write_begin);
3013 ssize_t generic_perform_write(struct file *file,
3014 struct iov_iter *i, loff_t pos)
3016 struct address_space *mapping = file->f_mapping;
3017 const struct address_space_operations *a_ops = mapping->a_ops;
3019 ssize_t written = 0;
3020 unsigned int flags = 0;
3024 unsigned long offset; /* Offset into pagecache page */
3025 unsigned long bytes; /* Bytes to write to page */
3026 size_t copied; /* Bytes copied from user */
3029 offset = (pos & (PAGE_SIZE - 1));
3030 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3035 * Bring in the user page that we will copy from _first_.
3036 * Otherwise there's a nasty deadlock on copying from the
3037 * same page as we're writing to, without it being marked
3040 * Not only is this an optimisation, but it is also required
3041 * to check that the address is actually valid, when atomic
3042 * usercopies are used, below.
3044 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3049 if (fatal_signal_pending(current)) {
3054 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3056 if (unlikely(status < 0))
3059 if (mapping_writably_mapped(mapping))
3060 flush_dcache_page(page);
3062 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3063 flush_dcache_page(page);
3065 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3067 if (unlikely(status < 0))
3073 iov_iter_advance(i, copied);
3074 if (unlikely(copied == 0)) {
3076 * If we were unable to copy any data at all, we must
3077 * fall back to a single segment length write.
3079 * If we didn't fallback here, we could livelock
3080 * because not all segments in the iov can be copied at
3081 * once without a pagefault.
3083 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3084 iov_iter_single_seg_count(i));
3090 balance_dirty_pages_ratelimited(mapping);
3091 } while (iov_iter_count(i));
3093 return written ? written : status;
3095 EXPORT_SYMBOL(generic_perform_write);
3098 * __generic_file_write_iter - write data to a file
3099 * @iocb: IO state structure (file, offset, etc.)
3100 * @from: iov_iter with data to write
3102 * This function does all the work needed for actually writing data to a
3103 * file. It does all basic checks, removes SUID from the file, updates
3104 * modification times and calls proper subroutines depending on whether we
3105 * do direct IO or a standard buffered write.
3107 * It expects i_mutex to be grabbed unless we work on a block device or similar
3108 * object which does not need locking at all.
3110 * This function does *not* take care of syncing data in case of O_SYNC write.
3111 * A caller has to handle it. This is mainly due to the fact that we want to
3112 * avoid syncing under i_mutex.
3114 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3116 struct file *file = iocb->ki_filp;
3117 struct address_space * mapping = file->f_mapping;
3118 struct inode *inode = mapping->host;
3119 ssize_t written = 0;
3123 /* We can write back this queue in page reclaim */
3124 current->backing_dev_info = inode_to_bdi(inode);
3125 err = file_remove_privs(file);
3129 err = file_update_time(file);
3133 if (iocb->ki_flags & IOCB_DIRECT) {
3134 loff_t pos, endbyte;
3136 written = generic_file_direct_write(iocb, from);
3138 * If the write stopped short of completing, fall back to
3139 * buffered writes. Some filesystems do this for writes to
3140 * holes, for example. For DAX files, a buffered write will
3141 * not succeed (even if it did, DAX does not handle dirty
3142 * page-cache pages correctly).
3144 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3147 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3149 * If generic_perform_write() returned a synchronous error
3150 * then we want to return the number of bytes which were
3151 * direct-written, or the error code if that was zero. Note
3152 * that this differs from normal direct-io semantics, which
3153 * will return -EFOO even if some bytes were written.
3155 if (unlikely(status < 0)) {
3160 * We need to ensure that the page cache pages are written to
3161 * disk and invalidated to preserve the expected O_DIRECT
3164 endbyte = pos + status - 1;
3165 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3167 iocb->ki_pos = endbyte + 1;
3169 invalidate_mapping_pages(mapping,
3171 endbyte >> PAGE_SHIFT);
3174 * We don't know how much we wrote, so just return
3175 * the number of bytes which were direct-written
3179 written = generic_perform_write(file, from, iocb->ki_pos);
3180 if (likely(written > 0))
3181 iocb->ki_pos += written;
3184 current->backing_dev_info = NULL;
3185 return written ? written : err;
3187 EXPORT_SYMBOL(__generic_file_write_iter);
3190 * generic_file_write_iter - write data to a file
3191 * @iocb: IO state structure
3192 * @from: iov_iter with data to write
3194 * This is a wrapper around __generic_file_write_iter() to be used by most
3195 * filesystems. It takes care of syncing the file in case of O_SYNC file
3196 * and acquires i_mutex as needed.
3198 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3200 struct file *file = iocb->ki_filp;
3201 struct inode *inode = file->f_mapping->host;
3205 ret = generic_write_checks(iocb, from);
3207 ret = __generic_file_write_iter(iocb, from);
3208 inode_unlock(inode);
3211 ret = generic_write_sync(iocb, ret);
3214 EXPORT_SYMBOL(generic_file_write_iter);
3217 * try_to_release_page() - release old fs-specific metadata on a page
3219 * @page: the page which the kernel is trying to free
3220 * @gfp_mask: memory allocation flags (and I/O mode)
3222 * The address_space is to try to release any data against the page
3223 * (presumably at page->private). If the release was successful, return '1'.
3224 * Otherwise return zero.
3226 * This may also be called if PG_fscache is set on a page, indicating that the
3227 * page is known to the local caching routines.
3229 * The @gfp_mask argument specifies whether I/O may be performed to release
3230 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3233 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3235 struct address_space * const mapping = page->mapping;
3237 BUG_ON(!PageLocked(page));
3238 if (PageWriteback(page))
3241 if (mapping && mapping->a_ops->releasepage)
3242 return mapping->a_ops->releasepage(page, gfp_mask);
3243 return try_to_free_buffers(page);
3246 EXPORT_SYMBOL(try_to_release_page);