4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
45 * FIXME: remove all knowledge of the buffer layer from the core VM
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * Shared mappings now work. 15.8.1995 Bruno.
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
80 * ->lock_page (access_process_vm)
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
86 * sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
90 * ->anon_vma.lock (vma_adjust)
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
117 struct radix_tree_node *node;
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
132 mapping->nrexceptional--;
136 __radix_tree_replace(&mapping->page_tree, node, slot, page,
137 workingset_update_node, mapping);
142 static void page_cache_tree_delete(struct address_space *mapping,
143 struct page *page, void *shadow)
147 /* hugetlb pages are represented by one entry in the radix tree */
148 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(PageTail(page), page);
152 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
154 for (i = 0; i < nr; i++) {
155 struct radix_tree_node *node;
158 __radix_tree_lookup(&mapping->page_tree, page->index + i,
161 VM_BUG_ON_PAGE(!node && nr != 1, page);
163 radix_tree_clear_tags(&mapping->page_tree, node, slot);
164 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165 workingset_update_node, mapping);
169 mapping->nrexceptional += nr;
171 * Make sure the nrexceptional update is committed before
172 * the nrpages update so that final truncate racing
173 * with reclaim does not see both counters 0 at the
174 * same time and miss a shadow entry.
178 mapping->nrpages -= nr;
182 * Delete a page from the page cache and free it. Caller has to make
183 * sure the page is locked and that nobody else uses it - or that usage
184 * is safe. The caller must hold the mapping's tree_lock.
186 void __delete_from_page_cache(struct page *page, void *shadow)
188 struct address_space *mapping = page->mapping;
189 int nr = hpage_nr_pages(page);
191 trace_mm_filemap_delete_from_page_cache(page);
193 * if we're uptodate, flush out into the cleancache, otherwise
194 * invalidate any existing cleancache entries. We can't leave
195 * stale data around in the cleancache once our page is gone
197 if (PageUptodate(page) && PageMappedToDisk(page))
198 cleancache_put_page(page);
200 cleancache_invalidate_page(mapping, page);
202 VM_BUG_ON_PAGE(PageTail(page), page);
203 VM_BUG_ON_PAGE(page_mapped(page), page);
204 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
207 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
208 current->comm, page_to_pfn(page));
209 dump_page(page, "still mapped when deleted");
211 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
213 mapcount = page_mapcount(page);
214 if (mapping_exiting(mapping) &&
215 page_count(page) >= mapcount + 2) {
217 * All vmas have already been torn down, so it's
218 * a good bet that actually the page is unmapped,
219 * and we'd prefer not to leak it: if we're wrong,
220 * some other bad page check should catch it later.
222 page_mapcount_reset(page);
223 page_ref_sub(page, mapcount);
227 /* hugetlb pages do not participate in page cache accounting. */
228 if (!PageHuge(page)) {
229 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
230 if (PageSwapBacked(page)) {
231 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
232 if (PageTransHuge(page))
233 __dec_node_page_state(page, NR_SHMEM_THPS);
235 VM_BUG_ON_PAGE(PageTransHuge(page), page);
239 * At this point page must be either written or cleaned by
240 * truncate. Dirty page here signals a bug and loss of
243 * This fixes dirty accounting after removing the page entirely
244 * but leaves PageDirty set: it has no effect for truncated
245 * page and anyway will be cleared before returning page into
248 if (WARN_ON_ONCE(PageDirty(page)))
249 account_page_cleaned(page, mapping,
250 inode_to_wb(mapping->host));
252 page_cache_tree_delete(mapping, page, shadow);
254 page->mapping = NULL;
255 /* Leave page->index set: truncation lookup relies upon it */
258 static void page_cache_free_page(struct address_space *mapping,
261 void (*freepage)(struct page *);
263 freepage = mapping->a_ops->freepage;
267 if (PageTransHuge(page) && !PageHuge(page)) {
268 page_ref_sub(page, HPAGE_PMD_NR);
269 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
276 * delete_from_page_cache - delete page from page cache
277 * @page: the page which the kernel is trying to remove from page cache
279 * This must be called only on pages that have been verified to be in the page
280 * cache and locked. It will never put the page into the free list, the caller
281 * has a reference on the page.
283 void delete_from_page_cache(struct page *page)
285 struct address_space *mapping = page_mapping(page);
288 BUG_ON(!PageLocked(page));
289 spin_lock_irqsave(&mapping->tree_lock, flags);
290 __delete_from_page_cache(page, NULL);
291 spin_unlock_irqrestore(&mapping->tree_lock, flags);
293 page_cache_free_page(mapping, page);
295 EXPORT_SYMBOL(delete_from_page_cache);
297 int filemap_check_errors(struct address_space *mapping)
300 /* Check for outstanding write errors */
301 if (test_bit(AS_ENOSPC, &mapping->flags) &&
302 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304 if (test_bit(AS_EIO, &mapping->flags) &&
305 test_and_clear_bit(AS_EIO, &mapping->flags))
309 EXPORT_SYMBOL(filemap_check_errors);
311 static int filemap_check_and_keep_errors(struct address_space *mapping)
313 /* Check for outstanding write errors */
314 if (test_bit(AS_EIO, &mapping->flags))
316 if (test_bit(AS_ENOSPC, &mapping->flags))
322 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
323 * @mapping: address space structure to write
324 * @start: offset in bytes where the range starts
325 * @end: offset in bytes where the range ends (inclusive)
326 * @sync_mode: enable synchronous operation
328 * Start writeback against all of a mapping's dirty pages that lie
329 * within the byte offsets <start, end> inclusive.
331 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
332 * opposed to a regular memory cleansing writeback. The difference between
333 * these two operations is that if a dirty page/buffer is encountered, it must
334 * be waited upon, and not just skipped over.
336 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
337 loff_t end, int sync_mode)
340 struct writeback_control wbc = {
341 .sync_mode = sync_mode,
342 .nr_to_write = LONG_MAX,
343 .range_start = start,
347 if (!mapping_cap_writeback_dirty(mapping))
350 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
351 ret = do_writepages(mapping, &wbc);
352 wbc_detach_inode(&wbc);
356 static inline int __filemap_fdatawrite(struct address_space *mapping,
359 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
362 int filemap_fdatawrite(struct address_space *mapping)
364 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
366 EXPORT_SYMBOL(filemap_fdatawrite);
368 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
371 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
373 EXPORT_SYMBOL(filemap_fdatawrite_range);
376 * filemap_flush - mostly a non-blocking flush
377 * @mapping: target address_space
379 * This is a mostly non-blocking flush. Not suitable for data-integrity
380 * purposes - I/O may not be started against all dirty pages.
382 int filemap_flush(struct address_space *mapping)
384 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
386 EXPORT_SYMBOL(filemap_flush);
389 * filemap_range_has_page - check if a page exists in range.
390 * @mapping: address space within which to check
391 * @start_byte: offset in bytes where the range starts
392 * @end_byte: offset in bytes where the range ends (inclusive)
394 * Find at least one page in the range supplied, usually used to check if
395 * direct writing in this range will trigger a writeback.
397 bool filemap_range_has_page(struct address_space *mapping,
398 loff_t start_byte, loff_t end_byte)
400 pgoff_t index = start_byte >> PAGE_SHIFT;
401 pgoff_t end = end_byte >> PAGE_SHIFT;
404 if (end_byte < start_byte)
407 if (mapping->nrpages == 0)
410 if (!find_get_pages_range(mapping, &index, end, 1, &page))
415 EXPORT_SYMBOL(filemap_range_has_page);
417 static void __filemap_fdatawait_range(struct address_space *mapping,
418 loff_t start_byte, loff_t end_byte)
420 pgoff_t index = start_byte >> PAGE_SHIFT;
421 pgoff_t end = end_byte >> PAGE_SHIFT;
425 if (end_byte < start_byte)
428 pagevec_init(&pvec, 0);
429 while (index <= end) {
432 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
433 end, PAGECACHE_TAG_WRITEBACK);
437 for (i = 0; i < nr_pages; i++) {
438 struct page *page = pvec.pages[i];
440 wait_on_page_writeback(page);
441 ClearPageError(page);
443 pagevec_release(&pvec);
449 * filemap_fdatawait_range - wait for writeback to complete
450 * @mapping: address space structure to wait for
451 * @start_byte: offset in bytes where the range starts
452 * @end_byte: offset in bytes where the range ends (inclusive)
454 * Walk the list of under-writeback pages of the given address space
455 * in the given range and wait for all of them. Check error status of
456 * the address space and return it.
458 * Since the error status of the address space is cleared by this function,
459 * callers are responsible for checking the return value and handling and/or
460 * reporting the error.
462 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
465 __filemap_fdatawait_range(mapping, start_byte, end_byte);
466 return filemap_check_errors(mapping);
468 EXPORT_SYMBOL(filemap_fdatawait_range);
471 * file_fdatawait_range - wait for writeback to complete
472 * @file: file pointing to address space structure to wait for
473 * @start_byte: offset in bytes where the range starts
474 * @end_byte: offset in bytes where the range ends (inclusive)
476 * Walk the list of under-writeback pages of the address space that file
477 * refers to, in the given range and wait for all of them. Check error
478 * status of the address space vs. the file->f_wb_err cursor and return it.
480 * Since the error status of the file is advanced by this function,
481 * callers are responsible for checking the return value and handling and/or
482 * reporting the error.
484 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
486 struct address_space *mapping = file->f_mapping;
488 __filemap_fdatawait_range(mapping, start_byte, end_byte);
489 return file_check_and_advance_wb_err(file);
491 EXPORT_SYMBOL(file_fdatawait_range);
494 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
495 * @mapping: address space structure to wait for
497 * Walk the list of under-writeback pages of the given address space
498 * and wait for all of them. Unlike filemap_fdatawait(), this function
499 * does not clear error status of the address space.
501 * Use this function if callers don't handle errors themselves. Expected
502 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
505 int filemap_fdatawait_keep_errors(struct address_space *mapping)
507 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
508 return filemap_check_and_keep_errors(mapping);
510 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
512 static bool mapping_needs_writeback(struct address_space *mapping)
514 return (!dax_mapping(mapping) && mapping->nrpages) ||
515 (dax_mapping(mapping) && mapping->nrexceptional);
518 int filemap_write_and_wait(struct address_space *mapping)
522 if (mapping_needs_writeback(mapping)) {
523 err = filemap_fdatawrite(mapping);
525 * Even if the above returned error, the pages may be
526 * written partially (e.g. -ENOSPC), so we wait for it.
527 * But the -EIO is special case, it may indicate the worst
528 * thing (e.g. bug) happened, so we avoid waiting for it.
531 int err2 = filemap_fdatawait(mapping);
535 /* Clear any previously stored errors */
536 filemap_check_errors(mapping);
539 err = filemap_check_errors(mapping);
543 EXPORT_SYMBOL(filemap_write_and_wait);
546 * filemap_write_and_wait_range - write out & wait on a file range
547 * @mapping: the address_space for the pages
548 * @lstart: offset in bytes where the range starts
549 * @lend: offset in bytes where the range ends (inclusive)
551 * Write out and wait upon file offsets lstart->lend, inclusive.
553 * Note that @lend is inclusive (describes the last byte to be written) so
554 * that this function can be used to write to the very end-of-file (end = -1).
556 int filemap_write_and_wait_range(struct address_space *mapping,
557 loff_t lstart, loff_t lend)
561 if (mapping_needs_writeback(mapping)) {
562 err = __filemap_fdatawrite_range(mapping, lstart, lend,
564 /* See comment of filemap_write_and_wait() */
566 int err2 = filemap_fdatawait_range(mapping,
571 /* Clear any previously stored errors */
572 filemap_check_errors(mapping);
575 err = filemap_check_errors(mapping);
579 EXPORT_SYMBOL(filemap_write_and_wait_range);
581 void __filemap_set_wb_err(struct address_space *mapping, int err)
583 errseq_t eseq = errseq_set(&mapping->wb_err, err);
585 trace_filemap_set_wb_err(mapping, eseq);
587 EXPORT_SYMBOL(__filemap_set_wb_err);
590 * file_check_and_advance_wb_err - report wb error (if any) that was previously
591 * and advance wb_err to current one
592 * @file: struct file on which the error is being reported
594 * When userland calls fsync (or something like nfsd does the equivalent), we
595 * want to report any writeback errors that occurred since the last fsync (or
596 * since the file was opened if there haven't been any).
598 * Grab the wb_err from the mapping. If it matches what we have in the file,
599 * then just quickly return 0. The file is all caught up.
601 * If it doesn't match, then take the mapping value, set the "seen" flag in
602 * it and try to swap it into place. If it works, or another task beat us
603 * to it with the new value, then update the f_wb_err and return the error
604 * portion. The error at this point must be reported via proper channels
605 * (a'la fsync, or NFS COMMIT operation, etc.).
607 * While we handle mapping->wb_err with atomic operations, the f_wb_err
608 * value is protected by the f_lock since we must ensure that it reflects
609 * the latest value swapped in for this file descriptor.
611 int file_check_and_advance_wb_err(struct file *file)
614 errseq_t old = READ_ONCE(file->f_wb_err);
615 struct address_space *mapping = file->f_mapping;
617 /* Locklessly handle the common case where nothing has changed */
618 if (errseq_check(&mapping->wb_err, old)) {
619 /* Something changed, must use slow path */
620 spin_lock(&file->f_lock);
621 old = file->f_wb_err;
622 err = errseq_check_and_advance(&mapping->wb_err,
624 trace_file_check_and_advance_wb_err(file, old);
625 spin_unlock(&file->f_lock);
629 * We're mostly using this function as a drop in replacement for
630 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
631 * that the legacy code would have had on these flags.
633 clear_bit(AS_EIO, &mapping->flags);
634 clear_bit(AS_ENOSPC, &mapping->flags);
637 EXPORT_SYMBOL(file_check_and_advance_wb_err);
640 * file_write_and_wait_range - write out & wait on a file range
641 * @file: file pointing to address_space with pages
642 * @lstart: offset in bytes where the range starts
643 * @lend: offset in bytes where the range ends (inclusive)
645 * Write out and wait upon file offsets lstart->lend, inclusive.
647 * Note that @lend is inclusive (describes the last byte to be written) so
648 * that this function can be used to write to the very end-of-file (end = -1).
650 * After writing out and waiting on the data, we check and advance the
651 * f_wb_err cursor to the latest value, and return any errors detected there.
653 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
656 struct address_space *mapping = file->f_mapping;
658 if (mapping_needs_writeback(mapping)) {
659 err = __filemap_fdatawrite_range(mapping, lstart, lend,
661 /* See comment of filemap_write_and_wait() */
663 __filemap_fdatawait_range(mapping, lstart, lend);
665 err2 = file_check_and_advance_wb_err(file);
670 EXPORT_SYMBOL(file_write_and_wait_range);
673 * replace_page_cache_page - replace a pagecache page with a new one
674 * @old: page to be replaced
675 * @new: page to replace with
676 * @gfp_mask: allocation mode
678 * This function replaces a page in the pagecache with a new one. On
679 * success it acquires the pagecache reference for the new page and
680 * drops it for the old page. Both the old and new pages must be
681 * locked. This function does not add the new page to the LRU, the
682 * caller must do that.
684 * The remove + add is atomic. The only way this function can fail is
685 * memory allocation failure.
687 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
691 VM_BUG_ON_PAGE(!PageLocked(old), old);
692 VM_BUG_ON_PAGE(!PageLocked(new), new);
693 VM_BUG_ON_PAGE(new->mapping, new);
695 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
697 struct address_space *mapping = old->mapping;
698 void (*freepage)(struct page *);
701 pgoff_t offset = old->index;
702 freepage = mapping->a_ops->freepage;
705 new->mapping = mapping;
708 spin_lock_irqsave(&mapping->tree_lock, flags);
709 __delete_from_page_cache(old, NULL);
710 error = page_cache_tree_insert(mapping, new, NULL);
714 * hugetlb pages do not participate in page cache accounting.
717 __inc_node_page_state(new, NR_FILE_PAGES);
718 if (PageSwapBacked(new))
719 __inc_node_page_state(new, NR_SHMEM);
720 spin_unlock_irqrestore(&mapping->tree_lock, flags);
721 mem_cgroup_migrate(old, new);
722 radix_tree_preload_end();
730 EXPORT_SYMBOL_GPL(replace_page_cache_page);
732 static int __add_to_page_cache_locked(struct page *page,
733 struct address_space *mapping,
734 pgoff_t offset, gfp_t gfp_mask,
737 int huge = PageHuge(page);
738 struct mem_cgroup *memcg;
741 VM_BUG_ON_PAGE(!PageLocked(page), page);
742 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
745 error = mem_cgroup_try_charge(page, current->mm,
746 gfp_mask, &memcg, false);
751 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
754 mem_cgroup_cancel_charge(page, memcg, false);
759 page->mapping = mapping;
760 page->index = offset;
762 spin_lock_irq(&mapping->tree_lock);
763 error = page_cache_tree_insert(mapping, page, shadowp);
764 radix_tree_preload_end();
768 /* hugetlb pages do not participate in page cache accounting. */
770 __inc_node_page_state(page, NR_FILE_PAGES);
771 spin_unlock_irq(&mapping->tree_lock);
773 mem_cgroup_commit_charge(page, memcg, false, false);
774 trace_mm_filemap_add_to_page_cache(page);
777 page->mapping = NULL;
778 /* Leave page->index set: truncation relies upon it */
779 spin_unlock_irq(&mapping->tree_lock);
781 mem_cgroup_cancel_charge(page, memcg, false);
787 * add_to_page_cache_locked - add a locked page to the pagecache
789 * @mapping: the page's address_space
790 * @offset: page index
791 * @gfp_mask: page allocation mode
793 * This function is used to add a page to the pagecache. It must be locked.
794 * This function does not add the page to the LRU. The caller must do that.
796 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
797 pgoff_t offset, gfp_t gfp_mask)
799 return __add_to_page_cache_locked(page, mapping, offset,
802 EXPORT_SYMBOL(add_to_page_cache_locked);
804 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
805 pgoff_t offset, gfp_t gfp_mask)
810 __SetPageLocked(page);
811 ret = __add_to_page_cache_locked(page, mapping, offset,
814 __ClearPageLocked(page);
817 * The page might have been evicted from cache only
818 * recently, in which case it should be activated like
819 * any other repeatedly accessed page.
820 * The exception is pages getting rewritten; evicting other
821 * data from the working set, only to cache data that will
822 * get overwritten with something else, is a waste of memory.
824 if (!(gfp_mask & __GFP_WRITE) &&
825 shadow && workingset_refault(shadow)) {
827 workingset_activation(page);
829 ClearPageActive(page);
834 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
837 struct page *__page_cache_alloc(gfp_t gfp)
842 if (cpuset_do_page_mem_spread()) {
843 unsigned int cpuset_mems_cookie;
845 cpuset_mems_cookie = read_mems_allowed_begin();
846 n = cpuset_mem_spread_node();
847 page = __alloc_pages_node(n, gfp, 0);
848 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
852 return alloc_pages(gfp, 0);
854 EXPORT_SYMBOL(__page_cache_alloc);
858 * In order to wait for pages to become available there must be
859 * waitqueues associated with pages. By using a hash table of
860 * waitqueues where the bucket discipline is to maintain all
861 * waiters on the same queue and wake all when any of the pages
862 * become available, and for the woken contexts to check to be
863 * sure the appropriate page became available, this saves space
864 * at a cost of "thundering herd" phenomena during rare hash
867 #define PAGE_WAIT_TABLE_BITS 8
868 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
869 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
871 static wait_queue_head_t *page_waitqueue(struct page *page)
873 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
876 void __init pagecache_init(void)
880 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
881 init_waitqueue_head(&page_wait_table[i]);
883 page_writeback_init();
886 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
887 struct wait_page_key {
893 struct wait_page_queue {
896 wait_queue_entry_t wait;
899 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
901 struct wait_page_key *key = arg;
902 struct wait_page_queue *wait_page
903 = container_of(wait, struct wait_page_queue, wait);
905 if (wait_page->page != key->page)
909 if (wait_page->bit_nr != key->bit_nr)
912 /* Stop walking if it's locked */
913 if (test_bit(key->bit_nr, &key->page->flags))
916 return autoremove_wake_function(wait, mode, sync, key);
919 static void wake_up_page_bit(struct page *page, int bit_nr)
921 wait_queue_head_t *q = page_waitqueue(page);
922 struct wait_page_key key;
924 wait_queue_entry_t bookmark;
931 bookmark.private = NULL;
932 bookmark.func = NULL;
933 INIT_LIST_HEAD(&bookmark.entry);
935 spin_lock_irqsave(&q->lock, flags);
936 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
938 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
940 * Take a breather from holding the lock,
941 * allow pages that finish wake up asynchronously
942 * to acquire the lock and remove themselves
945 spin_unlock_irqrestore(&q->lock, flags);
947 spin_lock_irqsave(&q->lock, flags);
948 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
952 * It is possible for other pages to have collided on the waitqueue
953 * hash, so in that case check for a page match. That prevents a long-
956 * It is still possible to miss a case here, when we woke page waiters
957 * and removed them from the waitqueue, but there are still other
960 if (!waitqueue_active(q) || !key.page_match) {
961 ClearPageWaiters(page);
963 * It's possible to miss clearing Waiters here, when we woke
964 * our page waiters, but the hashed waitqueue has waiters for
967 * That's okay, it's a rare case. The next waker will clear it.
970 spin_unlock_irqrestore(&q->lock, flags);
973 static void wake_up_page(struct page *page, int bit)
975 if (!PageWaiters(page))
977 wake_up_page_bit(page, bit);
980 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
981 struct page *page, int bit_nr, int state, bool lock)
983 struct wait_page_queue wait_page;
984 wait_queue_entry_t *wait = &wait_page.wait;
988 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
989 wait->func = wake_page_function;
990 wait_page.page = page;
991 wait_page.bit_nr = bit_nr;
994 spin_lock_irq(&q->lock);
996 if (likely(list_empty(&wait->entry))) {
997 __add_wait_queue_entry_tail(q, wait);
998 SetPageWaiters(page);
1001 set_current_state(state);
1003 spin_unlock_irq(&q->lock);
1005 if (likely(test_bit(bit_nr, &page->flags))) {
1010 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1013 if (!test_bit(bit_nr, &page->flags))
1017 if (unlikely(signal_pending_state(state, current))) {
1023 finish_wait(q, wait);
1026 * A signal could leave PageWaiters set. Clearing it here if
1027 * !waitqueue_active would be possible (by open-coding finish_wait),
1028 * but still fail to catch it in the case of wait hash collision. We
1029 * already can fail to clear wait hash collision cases, so don't
1030 * bother with signals either.
1036 void wait_on_page_bit(struct page *page, int bit_nr)
1038 wait_queue_head_t *q = page_waitqueue(page);
1039 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1041 EXPORT_SYMBOL(wait_on_page_bit);
1043 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1045 wait_queue_head_t *q = page_waitqueue(page);
1046 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1050 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1051 * @page: Page defining the wait queue of interest
1052 * @waiter: Waiter to add to the queue
1054 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1056 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1058 wait_queue_head_t *q = page_waitqueue(page);
1059 unsigned long flags;
1061 spin_lock_irqsave(&q->lock, flags);
1062 __add_wait_queue_entry_tail(q, waiter);
1063 SetPageWaiters(page);
1064 spin_unlock_irqrestore(&q->lock, flags);
1066 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1068 #ifndef clear_bit_unlock_is_negative_byte
1071 * PG_waiters is the high bit in the same byte as PG_lock.
1073 * On x86 (and on many other architectures), we can clear PG_lock and
1074 * test the sign bit at the same time. But if the architecture does
1075 * not support that special operation, we just do this all by hand
1078 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1079 * being cleared, but a memory barrier should be unneccssary since it is
1080 * in the same byte as PG_locked.
1082 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1084 clear_bit_unlock(nr, mem);
1085 /* smp_mb__after_atomic(); */
1086 return test_bit(PG_waiters, mem);
1092 * unlock_page - unlock a locked page
1095 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1096 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1097 * mechanism between PageLocked pages and PageWriteback pages is shared.
1098 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1100 * Note that this depends on PG_waiters being the sign bit in the byte
1101 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1102 * clear the PG_locked bit and test PG_waiters at the same time fairly
1103 * portably (architectures that do LL/SC can test any bit, while x86 can
1104 * test the sign bit).
1106 void unlock_page(struct page *page)
1108 BUILD_BUG_ON(PG_waiters != 7);
1109 page = compound_head(page);
1110 VM_BUG_ON_PAGE(!PageLocked(page), page);
1111 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1112 wake_up_page_bit(page, PG_locked);
1114 EXPORT_SYMBOL(unlock_page);
1117 * end_page_writeback - end writeback against a page
1120 void end_page_writeback(struct page *page)
1123 * TestClearPageReclaim could be used here but it is an atomic
1124 * operation and overkill in this particular case. Failing to
1125 * shuffle a page marked for immediate reclaim is too mild to
1126 * justify taking an atomic operation penalty at the end of
1127 * ever page writeback.
1129 if (PageReclaim(page)) {
1130 ClearPageReclaim(page);
1131 rotate_reclaimable_page(page);
1134 if (!test_clear_page_writeback(page))
1137 smp_mb__after_atomic();
1138 wake_up_page(page, PG_writeback);
1140 EXPORT_SYMBOL(end_page_writeback);
1143 * After completing I/O on a page, call this routine to update the page
1144 * flags appropriately
1146 void page_endio(struct page *page, bool is_write, int err)
1150 SetPageUptodate(page);
1152 ClearPageUptodate(page);
1158 struct address_space *mapping;
1161 mapping = page_mapping(page);
1163 mapping_set_error(mapping, err);
1165 end_page_writeback(page);
1168 EXPORT_SYMBOL_GPL(page_endio);
1171 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1172 * @__page: the page to lock
1174 void __lock_page(struct page *__page)
1176 struct page *page = compound_head(__page);
1177 wait_queue_head_t *q = page_waitqueue(page);
1178 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1180 EXPORT_SYMBOL(__lock_page);
1182 int __lock_page_killable(struct page *__page)
1184 struct page *page = compound_head(__page);
1185 wait_queue_head_t *q = page_waitqueue(page);
1186 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1188 EXPORT_SYMBOL_GPL(__lock_page_killable);
1192 * 1 - page is locked; mmap_sem is still held.
1193 * 0 - page is not locked.
1194 * mmap_sem has been released (up_read()), unless flags had both
1195 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1196 * which case mmap_sem is still held.
1198 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1199 * with the page locked and the mmap_sem unperturbed.
1201 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1204 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1206 * CAUTION! In this case, mmap_sem is not released
1207 * even though return 0.
1209 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1212 up_read(&mm->mmap_sem);
1213 if (flags & FAULT_FLAG_KILLABLE)
1214 wait_on_page_locked_killable(page);
1216 wait_on_page_locked(page);
1219 if (flags & FAULT_FLAG_KILLABLE) {
1222 ret = __lock_page_killable(page);
1224 up_read(&mm->mmap_sem);
1234 * page_cache_next_hole - find the next hole (not-present entry)
1237 * @max_scan: maximum range to search
1239 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1240 * lowest indexed hole.
1242 * Returns: the index of the hole if found, otherwise returns an index
1243 * outside of the set specified (in which case 'return - index >=
1244 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1247 * page_cache_next_hole may be called under rcu_read_lock. However,
1248 * like radix_tree_gang_lookup, this will not atomically search a
1249 * snapshot of the tree at a single point in time. For example, if a
1250 * hole is created at index 5, then subsequently a hole is created at
1251 * index 10, page_cache_next_hole covering both indexes may return 10
1252 * if called under rcu_read_lock.
1254 pgoff_t page_cache_next_hole(struct address_space *mapping,
1255 pgoff_t index, unsigned long max_scan)
1259 for (i = 0; i < max_scan; i++) {
1262 page = radix_tree_lookup(&mapping->page_tree, index);
1263 if (!page || radix_tree_exceptional_entry(page))
1272 EXPORT_SYMBOL(page_cache_next_hole);
1275 * page_cache_prev_hole - find the prev hole (not-present entry)
1278 * @max_scan: maximum range to search
1280 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1283 * Returns: the index of the hole if found, otherwise returns an index
1284 * outside of the set specified (in which case 'index - return >=
1285 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1288 * page_cache_prev_hole may be called under rcu_read_lock. However,
1289 * like radix_tree_gang_lookup, this will not atomically search a
1290 * snapshot of the tree at a single point in time. For example, if a
1291 * hole is created at index 10, then subsequently a hole is created at
1292 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1293 * called under rcu_read_lock.
1295 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1296 pgoff_t index, unsigned long max_scan)
1300 for (i = 0; i < max_scan; i++) {
1303 page = radix_tree_lookup(&mapping->page_tree, index);
1304 if (!page || radix_tree_exceptional_entry(page))
1307 if (index == ULONG_MAX)
1313 EXPORT_SYMBOL(page_cache_prev_hole);
1316 * find_get_entry - find and get a page cache entry
1317 * @mapping: the address_space to search
1318 * @offset: the page cache index
1320 * Looks up the page cache slot at @mapping & @offset. If there is a
1321 * page cache page, it is returned with an increased refcount.
1323 * If the slot holds a shadow entry of a previously evicted page, or a
1324 * swap entry from shmem/tmpfs, it is returned.
1326 * Otherwise, %NULL is returned.
1328 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1331 struct page *head, *page;
1336 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1338 page = radix_tree_deref_slot(pagep);
1339 if (unlikely(!page))
1341 if (radix_tree_exception(page)) {
1342 if (radix_tree_deref_retry(page))
1345 * A shadow entry of a recently evicted page,
1346 * or a swap entry from shmem/tmpfs. Return
1347 * it without attempting to raise page count.
1352 head = compound_head(page);
1353 if (!page_cache_get_speculative(head))
1356 /* The page was split under us? */
1357 if (compound_head(page) != head) {
1363 * Has the page moved?
1364 * This is part of the lockless pagecache protocol. See
1365 * include/linux/pagemap.h for details.
1367 if (unlikely(page != *pagep)) {
1377 EXPORT_SYMBOL(find_get_entry);
1380 * find_lock_entry - locate, pin and lock a page cache entry
1381 * @mapping: the address_space to search
1382 * @offset: the page cache index
1384 * Looks up the page cache slot at @mapping & @offset. If there is a
1385 * page cache page, it is returned locked and with an increased
1388 * If the slot holds a shadow entry of a previously evicted page, or a
1389 * swap entry from shmem/tmpfs, it is returned.
1391 * Otherwise, %NULL is returned.
1393 * find_lock_entry() may sleep.
1395 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1400 page = find_get_entry(mapping, offset);
1401 if (page && !radix_tree_exception(page)) {
1403 /* Has the page been truncated? */
1404 if (unlikely(page_mapping(page) != mapping)) {
1409 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1413 EXPORT_SYMBOL(find_lock_entry);
1416 * pagecache_get_page - find and get a page reference
1417 * @mapping: the address_space to search
1418 * @offset: the page index
1419 * @fgp_flags: PCG flags
1420 * @gfp_mask: gfp mask to use for the page cache data page allocation
1422 * Looks up the page cache slot at @mapping & @offset.
1424 * PCG flags modify how the page is returned.
1426 * @fgp_flags can be:
1428 * - FGP_ACCESSED: the page will be marked accessed
1429 * - FGP_LOCK: Page is return locked
1430 * - FGP_CREAT: If page is not present then a new page is allocated using
1431 * @gfp_mask and added to the page cache and the VM's LRU
1432 * list. The page is returned locked and with an increased
1433 * refcount. Otherwise, NULL is returned.
1435 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1436 * if the GFP flags specified for FGP_CREAT are atomic.
1438 * If there is a page cache page, it is returned with an increased refcount.
1440 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1441 int fgp_flags, gfp_t gfp_mask)
1446 page = find_get_entry(mapping, offset);
1447 if (radix_tree_exceptional_entry(page))
1452 if (fgp_flags & FGP_LOCK) {
1453 if (fgp_flags & FGP_NOWAIT) {
1454 if (!trylock_page(page)) {
1462 /* Has the page been truncated? */
1463 if (unlikely(page->mapping != mapping)) {
1468 VM_BUG_ON_PAGE(page->index != offset, page);
1471 if (page && (fgp_flags & FGP_ACCESSED))
1472 mark_page_accessed(page);
1475 if (!page && (fgp_flags & FGP_CREAT)) {
1477 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1478 gfp_mask |= __GFP_WRITE;
1479 if (fgp_flags & FGP_NOFS)
1480 gfp_mask &= ~__GFP_FS;
1482 page = __page_cache_alloc(gfp_mask);
1486 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1487 fgp_flags |= FGP_LOCK;
1489 /* Init accessed so avoid atomic mark_page_accessed later */
1490 if (fgp_flags & FGP_ACCESSED)
1491 __SetPageReferenced(page);
1493 err = add_to_page_cache_lru(page, mapping, offset,
1494 gfp_mask & GFP_RECLAIM_MASK);
1495 if (unlikely(err)) {
1505 EXPORT_SYMBOL(pagecache_get_page);
1508 * find_get_entries - gang pagecache lookup
1509 * @mapping: The address_space to search
1510 * @start: The starting page cache index
1511 * @nr_entries: The maximum number of entries
1512 * @entries: Where the resulting entries are placed
1513 * @indices: The cache indices corresponding to the entries in @entries
1515 * find_get_entries() will search for and return a group of up to
1516 * @nr_entries entries in the mapping. The entries are placed at
1517 * @entries. find_get_entries() takes a reference against any actual
1520 * The search returns a group of mapping-contiguous page cache entries
1521 * with ascending indexes. There may be holes in the indices due to
1522 * not-present pages.
1524 * Any shadow entries of evicted pages, or swap entries from
1525 * shmem/tmpfs, are included in the returned array.
1527 * find_get_entries() returns the number of pages and shadow entries
1530 unsigned find_get_entries(struct address_space *mapping,
1531 pgoff_t start, unsigned int nr_entries,
1532 struct page **entries, pgoff_t *indices)
1535 unsigned int ret = 0;
1536 struct radix_tree_iter iter;
1542 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1543 struct page *head, *page;
1545 page = radix_tree_deref_slot(slot);
1546 if (unlikely(!page))
1548 if (radix_tree_exception(page)) {
1549 if (radix_tree_deref_retry(page)) {
1550 slot = radix_tree_iter_retry(&iter);
1554 * A shadow entry of a recently evicted page, a swap
1555 * entry from shmem/tmpfs or a DAX entry. Return it
1556 * without attempting to raise page count.
1561 head = compound_head(page);
1562 if (!page_cache_get_speculative(head))
1565 /* The page was split under us? */
1566 if (compound_head(page) != head) {
1571 /* Has the page moved? */
1572 if (unlikely(page != *slot)) {
1577 indices[ret] = iter.index;
1578 entries[ret] = page;
1579 if (++ret == nr_entries)
1587 * find_get_pages_range - gang pagecache lookup
1588 * @mapping: The address_space to search
1589 * @start: The starting page index
1590 * @end: The final page index (inclusive)
1591 * @nr_pages: The maximum number of pages
1592 * @pages: Where the resulting pages are placed
1594 * find_get_pages_range() will search for and return a group of up to @nr_pages
1595 * pages in the mapping starting at index @start and up to index @end
1596 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1597 * a reference against the returned pages.
1599 * The search returns a group of mapping-contiguous pages with ascending
1600 * indexes. There may be holes in the indices due to not-present pages.
1601 * We also update @start to index the next page for the traversal.
1603 * find_get_pages_range() returns the number of pages which were found. If this
1604 * number is smaller than @nr_pages, the end of specified range has been
1607 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1608 pgoff_t end, unsigned int nr_pages,
1609 struct page **pages)
1611 struct radix_tree_iter iter;
1615 if (unlikely(!nr_pages))
1619 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1620 struct page *head, *page;
1622 if (iter.index > end)
1625 page = radix_tree_deref_slot(slot);
1626 if (unlikely(!page))
1629 if (radix_tree_exception(page)) {
1630 if (radix_tree_deref_retry(page)) {
1631 slot = radix_tree_iter_retry(&iter);
1635 * A shadow entry of a recently evicted page,
1636 * or a swap entry from shmem/tmpfs. Skip
1642 head = compound_head(page);
1643 if (!page_cache_get_speculative(head))
1646 /* The page was split under us? */
1647 if (compound_head(page) != head) {
1652 /* Has the page moved? */
1653 if (unlikely(page != *slot)) {
1659 if (++ret == nr_pages) {
1660 *start = pages[ret - 1]->index + 1;
1666 * We come here when there is no page beyond @end. We take care to not
1667 * overflow the index @start as it confuses some of the callers. This
1668 * breaks the iteration when there is page at index -1 but that is
1669 * already broken anyway.
1671 if (end == (pgoff_t)-1)
1672 *start = (pgoff_t)-1;
1682 * find_get_pages_contig - gang contiguous pagecache lookup
1683 * @mapping: The address_space to search
1684 * @index: The starting page index
1685 * @nr_pages: The maximum number of pages
1686 * @pages: Where the resulting pages are placed
1688 * find_get_pages_contig() works exactly like find_get_pages(), except
1689 * that the returned number of pages are guaranteed to be contiguous.
1691 * find_get_pages_contig() returns the number of pages which were found.
1693 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1694 unsigned int nr_pages, struct page **pages)
1696 struct radix_tree_iter iter;
1698 unsigned int ret = 0;
1700 if (unlikely(!nr_pages))
1704 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1705 struct page *head, *page;
1707 page = radix_tree_deref_slot(slot);
1708 /* The hole, there no reason to continue */
1709 if (unlikely(!page))
1712 if (radix_tree_exception(page)) {
1713 if (radix_tree_deref_retry(page)) {
1714 slot = radix_tree_iter_retry(&iter);
1718 * A shadow entry of a recently evicted page,
1719 * or a swap entry from shmem/tmpfs. Stop
1720 * looking for contiguous pages.
1725 head = compound_head(page);
1726 if (!page_cache_get_speculative(head))
1729 /* The page was split under us? */
1730 if (compound_head(page) != head) {
1735 /* Has the page moved? */
1736 if (unlikely(page != *slot)) {
1742 * must check mapping and index after taking the ref.
1743 * otherwise we can get both false positives and false
1744 * negatives, which is just confusing to the caller.
1746 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1752 if (++ret == nr_pages)
1758 EXPORT_SYMBOL(find_get_pages_contig);
1761 * find_get_pages_range_tag - find and return pages in given range matching @tag
1762 * @mapping: the address_space to search
1763 * @index: the starting page index
1764 * @end: The final page index (inclusive)
1765 * @tag: the tag index
1766 * @nr_pages: the maximum number of pages
1767 * @pages: where the resulting pages are placed
1769 * Like find_get_pages, except we only return pages which are tagged with
1770 * @tag. We update @index to index the next page for the traversal.
1772 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1773 pgoff_t end, int tag, unsigned int nr_pages,
1774 struct page **pages)
1776 struct radix_tree_iter iter;
1780 if (unlikely(!nr_pages))
1784 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1785 &iter, *index, tag) {
1786 struct page *head, *page;
1788 if (iter.index > end)
1791 page = radix_tree_deref_slot(slot);
1792 if (unlikely(!page))
1795 if (radix_tree_exception(page)) {
1796 if (radix_tree_deref_retry(page)) {
1797 slot = radix_tree_iter_retry(&iter);
1801 * A shadow entry of a recently evicted page.
1803 * Those entries should never be tagged, but
1804 * this tree walk is lockless and the tags are
1805 * looked up in bulk, one radix tree node at a
1806 * time, so there is a sizable window for page
1807 * reclaim to evict a page we saw tagged.
1814 head = compound_head(page);
1815 if (!page_cache_get_speculative(head))
1818 /* The page was split under us? */
1819 if (compound_head(page) != head) {
1824 /* Has the page moved? */
1825 if (unlikely(page != *slot)) {
1831 if (++ret == nr_pages) {
1832 *index = pages[ret - 1]->index + 1;
1838 * We come here when we got at @end. We take care to not overflow the
1839 * index @index as it confuses some of the callers. This breaks the
1840 * iteration when there is page at index -1 but that is already broken
1843 if (end == (pgoff_t)-1)
1844 *index = (pgoff_t)-1;
1852 EXPORT_SYMBOL(find_get_pages_range_tag);
1855 * find_get_entries_tag - find and return entries that match @tag
1856 * @mapping: the address_space to search
1857 * @start: the starting page cache index
1858 * @tag: the tag index
1859 * @nr_entries: the maximum number of entries
1860 * @entries: where the resulting entries are placed
1861 * @indices: the cache indices corresponding to the entries in @entries
1863 * Like find_get_entries, except we only return entries which are tagged with
1866 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1867 int tag, unsigned int nr_entries,
1868 struct page **entries, pgoff_t *indices)
1871 unsigned int ret = 0;
1872 struct radix_tree_iter iter;
1878 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1879 &iter, start, tag) {
1880 struct page *head, *page;
1882 page = radix_tree_deref_slot(slot);
1883 if (unlikely(!page))
1885 if (radix_tree_exception(page)) {
1886 if (radix_tree_deref_retry(page)) {
1887 slot = radix_tree_iter_retry(&iter);
1892 * A shadow entry of a recently evicted page, a swap
1893 * entry from shmem/tmpfs or a DAX entry. Return it
1894 * without attempting to raise page count.
1899 head = compound_head(page);
1900 if (!page_cache_get_speculative(head))
1903 /* The page was split under us? */
1904 if (compound_head(page) != head) {
1909 /* Has the page moved? */
1910 if (unlikely(page != *slot)) {
1915 indices[ret] = iter.index;
1916 entries[ret] = page;
1917 if (++ret == nr_entries)
1923 EXPORT_SYMBOL(find_get_entries_tag);
1926 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1927 * a _large_ part of the i/o request. Imagine the worst scenario:
1929 * ---R__________________________________________B__________
1930 * ^ reading here ^ bad block(assume 4k)
1932 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1933 * => failing the whole request => read(R) => read(R+1) =>
1934 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1935 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1936 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1938 * It is going insane. Fix it by quickly scaling down the readahead size.
1940 static void shrink_readahead_size_eio(struct file *filp,
1941 struct file_ra_state *ra)
1947 * generic_file_buffered_read - generic file read routine
1948 * @iocb: the iocb to read
1949 * @iter: data destination
1950 * @written: already copied
1952 * This is a generic file read routine, and uses the
1953 * mapping->a_ops->readpage() function for the actual low-level stuff.
1955 * This is really ugly. But the goto's actually try to clarify some
1956 * of the logic when it comes to error handling etc.
1958 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1959 struct iov_iter *iter, ssize_t written)
1961 struct file *filp = iocb->ki_filp;
1962 struct address_space *mapping = filp->f_mapping;
1963 struct inode *inode = mapping->host;
1964 struct file_ra_state *ra = &filp->f_ra;
1965 loff_t *ppos = &iocb->ki_pos;
1969 unsigned long offset; /* offset into pagecache page */
1970 unsigned int prev_offset;
1973 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1975 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1977 index = *ppos >> PAGE_SHIFT;
1978 prev_index = ra->prev_pos >> PAGE_SHIFT;
1979 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1980 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1981 offset = *ppos & ~PAGE_MASK;
1987 unsigned long nr, ret;
1991 if (fatal_signal_pending(current)) {
1996 page = find_get_page(mapping, index);
1998 if (iocb->ki_flags & IOCB_NOWAIT)
2000 page_cache_sync_readahead(mapping,
2002 index, last_index - index);
2003 page = find_get_page(mapping, index);
2004 if (unlikely(page == NULL))
2005 goto no_cached_page;
2007 if (PageReadahead(page)) {
2008 page_cache_async_readahead(mapping,
2010 index, last_index - index);
2012 if (!PageUptodate(page)) {
2013 if (iocb->ki_flags & IOCB_NOWAIT) {
2019 * See comment in do_read_cache_page on why
2020 * wait_on_page_locked is used to avoid unnecessarily
2021 * serialisations and why it's safe.
2023 error = wait_on_page_locked_killable(page);
2024 if (unlikely(error))
2025 goto readpage_error;
2026 if (PageUptodate(page))
2029 if (inode->i_blkbits == PAGE_SHIFT ||
2030 !mapping->a_ops->is_partially_uptodate)
2031 goto page_not_up_to_date;
2032 /* pipes can't handle partially uptodate pages */
2033 if (unlikely(iter->type & ITER_PIPE))
2034 goto page_not_up_to_date;
2035 if (!trylock_page(page))
2036 goto page_not_up_to_date;
2037 /* Did it get truncated before we got the lock? */
2039 goto page_not_up_to_date_locked;
2040 if (!mapping->a_ops->is_partially_uptodate(page,
2041 offset, iter->count))
2042 goto page_not_up_to_date_locked;
2047 * i_size must be checked after we know the page is Uptodate.
2049 * Checking i_size after the check allows us to calculate
2050 * the correct value for "nr", which means the zero-filled
2051 * part of the page is not copied back to userspace (unless
2052 * another truncate extends the file - this is desired though).
2055 isize = i_size_read(inode);
2056 end_index = (isize - 1) >> PAGE_SHIFT;
2057 if (unlikely(!isize || index > end_index)) {
2062 /* nr is the maximum number of bytes to copy from this page */
2064 if (index == end_index) {
2065 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2073 /* If users can be writing to this page using arbitrary
2074 * virtual addresses, take care about potential aliasing
2075 * before reading the page on the kernel side.
2077 if (mapping_writably_mapped(mapping))
2078 flush_dcache_page(page);
2081 * When a sequential read accesses a page several times,
2082 * only mark it as accessed the first time.
2084 if (prev_index != index || offset != prev_offset)
2085 mark_page_accessed(page);
2089 * Ok, we have the page, and it's up-to-date, so
2090 * now we can copy it to user space...
2093 ret = copy_page_to_iter(page, offset, nr, iter);
2095 index += offset >> PAGE_SHIFT;
2096 offset &= ~PAGE_MASK;
2097 prev_offset = offset;
2101 if (!iov_iter_count(iter))
2109 page_not_up_to_date:
2110 /* Get exclusive access to the page ... */
2111 error = lock_page_killable(page);
2112 if (unlikely(error))
2113 goto readpage_error;
2115 page_not_up_to_date_locked:
2116 /* Did it get truncated before we got the lock? */
2117 if (!page->mapping) {
2123 /* Did somebody else fill it already? */
2124 if (PageUptodate(page)) {
2131 * A previous I/O error may have been due to temporary
2132 * failures, eg. multipath errors.
2133 * PG_error will be set again if readpage fails.
2135 ClearPageError(page);
2136 /* Start the actual read. The read will unlock the page. */
2137 error = mapping->a_ops->readpage(filp, page);
2139 if (unlikely(error)) {
2140 if (error == AOP_TRUNCATED_PAGE) {
2145 goto readpage_error;
2148 if (!PageUptodate(page)) {
2149 error = lock_page_killable(page);
2150 if (unlikely(error))
2151 goto readpage_error;
2152 if (!PageUptodate(page)) {
2153 if (page->mapping == NULL) {
2155 * invalidate_mapping_pages got it
2162 shrink_readahead_size_eio(filp, ra);
2164 goto readpage_error;
2172 /* UHHUH! A synchronous read error occurred. Report it */
2178 * Ok, it wasn't cached, so we need to create a new
2181 page = page_cache_alloc_cold(mapping);
2186 error = add_to_page_cache_lru(page, mapping, index,
2187 mapping_gfp_constraint(mapping, GFP_KERNEL));
2190 if (error == -EEXIST) {
2202 ra->prev_pos = prev_index;
2203 ra->prev_pos <<= PAGE_SHIFT;
2204 ra->prev_pos |= prev_offset;
2206 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2207 file_accessed(filp);
2208 return written ? written : error;
2212 * generic_file_read_iter - generic filesystem read routine
2213 * @iocb: kernel I/O control block
2214 * @iter: destination for the data read
2216 * This is the "read_iter()" routine for all filesystems
2217 * that can use the page cache directly.
2220 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2222 size_t count = iov_iter_count(iter);
2226 goto out; /* skip atime */
2228 if (iocb->ki_flags & IOCB_DIRECT) {
2229 struct file *file = iocb->ki_filp;
2230 struct address_space *mapping = file->f_mapping;
2231 struct inode *inode = mapping->host;
2234 size = i_size_read(inode);
2235 if (iocb->ki_flags & IOCB_NOWAIT) {
2236 if (filemap_range_has_page(mapping, iocb->ki_pos,
2237 iocb->ki_pos + count - 1))
2240 retval = filemap_write_and_wait_range(mapping,
2242 iocb->ki_pos + count - 1);
2247 file_accessed(file);
2249 retval = mapping->a_ops->direct_IO(iocb, iter);
2251 iocb->ki_pos += retval;
2254 iov_iter_revert(iter, count - iov_iter_count(iter));
2257 * Btrfs can have a short DIO read if we encounter
2258 * compressed extents, so if there was an error, or if
2259 * we've already read everything we wanted to, or if
2260 * there was a short read because we hit EOF, go ahead
2261 * and return. Otherwise fallthrough to buffered io for
2262 * the rest of the read. Buffered reads will not work for
2263 * DAX files, so don't bother trying.
2265 if (retval < 0 || !count || iocb->ki_pos >= size ||
2270 retval = generic_file_buffered_read(iocb, iter, retval);
2274 EXPORT_SYMBOL(generic_file_read_iter);
2278 * page_cache_read - adds requested page to the page cache if not already there
2279 * @file: file to read
2280 * @offset: page index
2281 * @gfp_mask: memory allocation flags
2283 * This adds the requested page to the page cache if it isn't already there,
2284 * and schedules an I/O to read in its contents from disk.
2286 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2288 struct address_space *mapping = file->f_mapping;
2293 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2297 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2299 ret = mapping->a_ops->readpage(file, page);
2300 else if (ret == -EEXIST)
2301 ret = 0; /* losing race to add is OK */
2305 } while (ret == AOP_TRUNCATED_PAGE);
2310 #define MMAP_LOTSAMISS (100)
2313 * Synchronous readahead happens when we don't even find
2314 * a page in the page cache at all.
2316 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2317 struct file_ra_state *ra,
2321 struct address_space *mapping = file->f_mapping;
2323 /* If we don't want any read-ahead, don't bother */
2324 if (vma->vm_flags & VM_RAND_READ)
2329 if (vma->vm_flags & VM_SEQ_READ) {
2330 page_cache_sync_readahead(mapping, ra, file, offset,
2335 /* Avoid banging the cache line if not needed */
2336 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2340 * Do we miss much more than hit in this file? If so,
2341 * stop bothering with read-ahead. It will only hurt.
2343 if (ra->mmap_miss > MMAP_LOTSAMISS)
2349 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2350 ra->size = ra->ra_pages;
2351 ra->async_size = ra->ra_pages / 4;
2352 ra_submit(ra, mapping, file);
2356 * Asynchronous readahead happens when we find the page and PG_readahead,
2357 * so we want to possibly extend the readahead further..
2359 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2360 struct file_ra_state *ra,
2365 struct address_space *mapping = file->f_mapping;
2367 /* If we don't want any read-ahead, don't bother */
2368 if (vma->vm_flags & VM_RAND_READ)
2370 if (ra->mmap_miss > 0)
2372 if (PageReadahead(page))
2373 page_cache_async_readahead(mapping, ra, file,
2374 page, offset, ra->ra_pages);
2378 * filemap_fault - read in file data for page fault handling
2379 * @vmf: struct vm_fault containing details of the fault
2381 * filemap_fault() is invoked via the vma operations vector for a
2382 * mapped memory region to read in file data during a page fault.
2384 * The goto's are kind of ugly, but this streamlines the normal case of having
2385 * it in the page cache, and handles the special cases reasonably without
2386 * having a lot of duplicated code.
2388 * vma->vm_mm->mmap_sem must be held on entry.
2390 * If our return value has VM_FAULT_RETRY set, it's because
2391 * lock_page_or_retry() returned 0.
2392 * The mmap_sem has usually been released in this case.
2393 * See __lock_page_or_retry() for the exception.
2395 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2396 * has not been released.
2398 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2400 int filemap_fault(struct vm_fault *vmf)
2403 struct file *file = vmf->vma->vm_file;
2404 struct address_space *mapping = file->f_mapping;
2405 struct file_ra_state *ra = &file->f_ra;
2406 struct inode *inode = mapping->host;
2407 pgoff_t offset = vmf->pgoff;
2412 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2413 if (unlikely(offset >= max_off))
2414 return VM_FAULT_SIGBUS;
2417 * Do we have something in the page cache already?
2419 page = find_get_page(mapping, offset);
2420 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2422 * We found the page, so try async readahead before
2423 * waiting for the lock.
2425 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2427 /* No page in the page cache at all */
2428 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2429 count_vm_event(PGMAJFAULT);
2430 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2431 ret = VM_FAULT_MAJOR;
2433 page = find_get_page(mapping, offset);
2435 goto no_cached_page;
2438 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2440 return ret | VM_FAULT_RETRY;
2443 /* Did it get truncated? */
2444 if (unlikely(page->mapping != mapping)) {
2449 VM_BUG_ON_PAGE(page->index != offset, page);
2452 * We have a locked page in the page cache, now we need to check
2453 * that it's up-to-date. If not, it is going to be due to an error.
2455 if (unlikely(!PageUptodate(page)))
2456 goto page_not_uptodate;
2459 * Found the page and have a reference on it.
2460 * We must recheck i_size under page lock.
2462 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2463 if (unlikely(offset >= max_off)) {
2466 return VM_FAULT_SIGBUS;
2470 return ret | VM_FAULT_LOCKED;
2474 * We're only likely to ever get here if MADV_RANDOM is in
2477 error = page_cache_read(file, offset, vmf->gfp_mask);
2480 * The page we want has now been added to the page cache.
2481 * In the unlikely event that someone removed it in the
2482 * meantime, we'll just come back here and read it again.
2488 * An error return from page_cache_read can result if the
2489 * system is low on memory, or a problem occurs while trying
2492 if (error == -ENOMEM)
2493 return VM_FAULT_OOM;
2494 return VM_FAULT_SIGBUS;
2498 * Umm, take care of errors if the page isn't up-to-date.
2499 * Try to re-read it _once_. We do this synchronously,
2500 * because there really aren't any performance issues here
2501 * and we need to check for errors.
2503 ClearPageError(page);
2504 error = mapping->a_ops->readpage(file, page);
2506 wait_on_page_locked(page);
2507 if (!PageUptodate(page))
2512 if (!error || error == AOP_TRUNCATED_PAGE)
2515 /* Things didn't work out. Return zero to tell the mm layer so. */
2516 shrink_readahead_size_eio(file, ra);
2517 return VM_FAULT_SIGBUS;
2519 EXPORT_SYMBOL(filemap_fault);
2521 void filemap_map_pages(struct vm_fault *vmf,
2522 pgoff_t start_pgoff, pgoff_t end_pgoff)
2524 struct radix_tree_iter iter;
2526 struct file *file = vmf->vma->vm_file;
2527 struct address_space *mapping = file->f_mapping;
2528 pgoff_t last_pgoff = start_pgoff;
2529 unsigned long max_idx;
2530 struct page *head, *page;
2533 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2535 if (iter.index > end_pgoff)
2538 page = radix_tree_deref_slot(slot);
2539 if (unlikely(!page))
2541 if (radix_tree_exception(page)) {
2542 if (radix_tree_deref_retry(page)) {
2543 slot = radix_tree_iter_retry(&iter);
2549 head = compound_head(page);
2550 if (!page_cache_get_speculative(head))
2553 /* The page was split under us? */
2554 if (compound_head(page) != head) {
2559 /* Has the page moved? */
2560 if (unlikely(page != *slot)) {
2565 if (!PageUptodate(page) ||
2566 PageReadahead(page) ||
2569 if (!trylock_page(page))
2572 if (page->mapping != mapping || !PageUptodate(page))
2575 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2576 if (page->index >= max_idx)
2579 if (file->f_ra.mmap_miss > 0)
2580 file->f_ra.mmap_miss--;
2582 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2584 vmf->pte += iter.index - last_pgoff;
2585 last_pgoff = iter.index;
2586 if (alloc_set_pte(vmf, NULL, page))
2595 /* Huge page is mapped? No need to proceed. */
2596 if (pmd_trans_huge(*vmf->pmd))
2598 if (iter.index == end_pgoff)
2603 EXPORT_SYMBOL(filemap_map_pages);
2605 int filemap_page_mkwrite(struct vm_fault *vmf)
2607 struct page *page = vmf->page;
2608 struct inode *inode = file_inode(vmf->vma->vm_file);
2609 int ret = VM_FAULT_LOCKED;
2611 sb_start_pagefault(inode->i_sb);
2612 file_update_time(vmf->vma->vm_file);
2614 if (page->mapping != inode->i_mapping) {
2616 ret = VM_FAULT_NOPAGE;
2620 * We mark the page dirty already here so that when freeze is in
2621 * progress, we are guaranteed that writeback during freezing will
2622 * see the dirty page and writeprotect it again.
2624 set_page_dirty(page);
2625 wait_for_stable_page(page);
2627 sb_end_pagefault(inode->i_sb);
2630 EXPORT_SYMBOL(filemap_page_mkwrite);
2632 const struct vm_operations_struct generic_file_vm_ops = {
2633 .fault = filemap_fault,
2634 .map_pages = filemap_map_pages,
2635 .page_mkwrite = filemap_page_mkwrite,
2638 /* This is used for a general mmap of a disk file */
2640 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2642 struct address_space *mapping = file->f_mapping;
2644 if (!mapping->a_ops->readpage)
2646 file_accessed(file);
2647 vma->vm_ops = &generic_file_vm_ops;
2652 * This is for filesystems which do not implement ->writepage.
2654 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2656 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2658 return generic_file_mmap(file, vma);
2661 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2665 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2669 #endif /* CONFIG_MMU */
2671 EXPORT_SYMBOL(generic_file_mmap);
2672 EXPORT_SYMBOL(generic_file_readonly_mmap);
2674 static struct page *wait_on_page_read(struct page *page)
2676 if (!IS_ERR(page)) {
2677 wait_on_page_locked(page);
2678 if (!PageUptodate(page)) {
2680 page = ERR_PTR(-EIO);
2686 static struct page *do_read_cache_page(struct address_space *mapping,
2688 int (*filler)(void *, struct page *),
2695 page = find_get_page(mapping, index);
2697 page = __page_cache_alloc(gfp | __GFP_COLD);
2699 return ERR_PTR(-ENOMEM);
2700 err = add_to_page_cache_lru(page, mapping, index, gfp);
2701 if (unlikely(err)) {
2705 /* Presumably ENOMEM for radix tree node */
2706 return ERR_PTR(err);
2710 err = filler(data, page);
2713 return ERR_PTR(err);
2716 page = wait_on_page_read(page);
2721 if (PageUptodate(page))
2725 * Page is not up to date and may be locked due one of the following
2726 * case a: Page is being filled and the page lock is held
2727 * case b: Read/write error clearing the page uptodate status
2728 * case c: Truncation in progress (page locked)
2729 * case d: Reclaim in progress
2731 * Case a, the page will be up to date when the page is unlocked.
2732 * There is no need to serialise on the page lock here as the page
2733 * is pinned so the lock gives no additional protection. Even if the
2734 * the page is truncated, the data is still valid if PageUptodate as
2735 * it's a race vs truncate race.
2736 * Case b, the page will not be up to date
2737 * Case c, the page may be truncated but in itself, the data may still
2738 * be valid after IO completes as it's a read vs truncate race. The
2739 * operation must restart if the page is not uptodate on unlock but
2740 * otherwise serialising on page lock to stabilise the mapping gives
2741 * no additional guarantees to the caller as the page lock is
2742 * released before return.
2743 * Case d, similar to truncation. If reclaim holds the page lock, it
2744 * will be a race with remove_mapping that determines if the mapping
2745 * is valid on unlock but otherwise the data is valid and there is
2746 * no need to serialise with page lock.
2748 * As the page lock gives no additional guarantee, we optimistically
2749 * wait on the page to be unlocked and check if it's up to date and
2750 * use the page if it is. Otherwise, the page lock is required to
2751 * distinguish between the different cases. The motivation is that we
2752 * avoid spurious serialisations and wakeups when multiple processes
2753 * wait on the same page for IO to complete.
2755 wait_on_page_locked(page);
2756 if (PageUptodate(page))
2759 /* Distinguish between all the cases under the safety of the lock */
2762 /* Case c or d, restart the operation */
2763 if (!page->mapping) {
2769 /* Someone else locked and filled the page in a very small window */
2770 if (PageUptodate(page)) {
2777 mark_page_accessed(page);
2782 * read_cache_page - read into page cache, fill it if needed
2783 * @mapping: the page's address_space
2784 * @index: the page index
2785 * @filler: function to perform the read
2786 * @data: first arg to filler(data, page) function, often left as NULL
2788 * Read into the page cache. If a page already exists, and PageUptodate() is
2789 * not set, try to fill the page and wait for it to become unlocked.
2791 * If the page does not get brought uptodate, return -EIO.
2793 struct page *read_cache_page(struct address_space *mapping,
2795 int (*filler)(void *, struct page *),
2798 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2800 EXPORT_SYMBOL(read_cache_page);
2803 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2804 * @mapping: the page's address_space
2805 * @index: the page index
2806 * @gfp: the page allocator flags to use if allocating
2808 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2809 * any new page allocations done using the specified allocation flags.
2811 * If the page does not get brought uptodate, return -EIO.
2813 struct page *read_cache_page_gfp(struct address_space *mapping,
2817 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2819 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2821 EXPORT_SYMBOL(read_cache_page_gfp);
2824 * Performs necessary checks before doing a write
2826 * Can adjust writing position or amount of bytes to write.
2827 * Returns appropriate error code that caller should return or
2828 * zero in case that write should be allowed.
2830 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2832 struct file *file = iocb->ki_filp;
2833 struct inode *inode = file->f_mapping->host;
2834 unsigned long limit = rlimit(RLIMIT_FSIZE);
2837 if (!iov_iter_count(from))
2840 /* FIXME: this is for backwards compatibility with 2.4 */
2841 if (iocb->ki_flags & IOCB_APPEND)
2842 iocb->ki_pos = i_size_read(inode);
2846 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2849 if (limit != RLIM_INFINITY) {
2850 if (iocb->ki_pos >= limit) {
2851 send_sig(SIGXFSZ, current, 0);
2854 iov_iter_truncate(from, limit - (unsigned long)pos);
2860 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2861 !(file->f_flags & O_LARGEFILE))) {
2862 if (pos >= MAX_NON_LFS)
2864 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2868 * Are we about to exceed the fs block limit ?
2870 * If we have written data it becomes a short write. If we have
2871 * exceeded without writing data we send a signal and return EFBIG.
2872 * Linus frestrict idea will clean these up nicely..
2874 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2877 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2878 return iov_iter_count(from);
2880 EXPORT_SYMBOL(generic_write_checks);
2882 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2883 loff_t pos, unsigned len, unsigned flags,
2884 struct page **pagep, void **fsdata)
2886 const struct address_space_operations *aops = mapping->a_ops;
2888 return aops->write_begin(file, mapping, pos, len, flags,
2891 EXPORT_SYMBOL(pagecache_write_begin);
2893 int pagecache_write_end(struct file *file, struct address_space *mapping,
2894 loff_t pos, unsigned len, unsigned copied,
2895 struct page *page, void *fsdata)
2897 const struct address_space_operations *aops = mapping->a_ops;
2899 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2901 EXPORT_SYMBOL(pagecache_write_end);
2904 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2906 struct file *file = iocb->ki_filp;
2907 struct address_space *mapping = file->f_mapping;
2908 struct inode *inode = mapping->host;
2909 loff_t pos = iocb->ki_pos;
2914 write_len = iov_iter_count(from);
2915 end = (pos + write_len - 1) >> PAGE_SHIFT;
2917 if (iocb->ki_flags & IOCB_NOWAIT) {
2918 /* If there are pages to writeback, return */
2919 if (filemap_range_has_page(inode->i_mapping, pos,
2920 pos + iov_iter_count(from)))
2923 written = filemap_write_and_wait_range(mapping, pos,
2924 pos + write_len - 1);
2930 * After a write we want buffered reads to be sure to go to disk to get
2931 * the new data. We invalidate clean cached page from the region we're
2932 * about to write. We do this *before* the write so that we can return
2933 * without clobbering -EIOCBQUEUED from ->direct_IO().
2935 written = invalidate_inode_pages2_range(mapping,
2936 pos >> PAGE_SHIFT, end);
2938 * If a page can not be invalidated, return 0 to fall back
2939 * to buffered write.
2942 if (written == -EBUSY)
2947 written = mapping->a_ops->direct_IO(iocb, from);
2950 * Finally, try again to invalidate clean pages which might have been
2951 * cached by non-direct readahead, or faulted in by get_user_pages()
2952 * if the source of the write was an mmap'ed region of the file
2953 * we're writing. Either one is a pretty crazy thing to do,
2954 * so we don't support it 100%. If this invalidation
2955 * fails, tough, the write still worked...
2957 * Most of the time we do not need this since dio_complete() will do
2958 * the invalidation for us. However there are some file systems that
2959 * do not end up with dio_complete() being called, so let's not break
2960 * them by removing it completely
2962 if (mapping->nrpages)
2963 invalidate_inode_pages2_range(mapping,
2964 pos >> PAGE_SHIFT, end);
2968 write_len -= written;
2969 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2970 i_size_write(inode, pos);
2971 mark_inode_dirty(inode);
2975 iov_iter_revert(from, write_len - iov_iter_count(from));
2979 EXPORT_SYMBOL(generic_file_direct_write);
2982 * Find or create a page at the given pagecache position. Return the locked
2983 * page. This function is specifically for buffered writes.
2985 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2986 pgoff_t index, unsigned flags)
2989 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2991 if (flags & AOP_FLAG_NOFS)
2992 fgp_flags |= FGP_NOFS;
2994 page = pagecache_get_page(mapping, index, fgp_flags,
2995 mapping_gfp_mask(mapping));
2997 wait_for_stable_page(page);
3001 EXPORT_SYMBOL(grab_cache_page_write_begin);
3003 ssize_t generic_perform_write(struct file *file,
3004 struct iov_iter *i, loff_t pos)
3006 struct address_space *mapping = file->f_mapping;
3007 const struct address_space_operations *a_ops = mapping->a_ops;
3009 ssize_t written = 0;
3010 unsigned int flags = 0;
3014 unsigned long offset; /* Offset into pagecache page */
3015 unsigned long bytes; /* Bytes to write to page */
3016 size_t copied; /* Bytes copied from user */
3019 offset = (pos & (PAGE_SIZE - 1));
3020 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3025 * Bring in the user page that we will copy from _first_.
3026 * Otherwise there's a nasty deadlock on copying from the
3027 * same page as we're writing to, without it being marked
3030 * Not only is this an optimisation, but it is also required
3031 * to check that the address is actually valid, when atomic
3032 * usercopies are used, below.
3034 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3039 if (fatal_signal_pending(current)) {
3044 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3046 if (unlikely(status < 0))
3049 if (mapping_writably_mapped(mapping))
3050 flush_dcache_page(page);
3052 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3053 flush_dcache_page(page);
3055 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3057 if (unlikely(status < 0))
3063 iov_iter_advance(i, copied);
3064 if (unlikely(copied == 0)) {
3066 * If we were unable to copy any data at all, we must
3067 * fall back to a single segment length write.
3069 * If we didn't fallback here, we could livelock
3070 * because not all segments in the iov can be copied at
3071 * once without a pagefault.
3073 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3074 iov_iter_single_seg_count(i));
3080 balance_dirty_pages_ratelimited(mapping);
3081 } while (iov_iter_count(i));
3083 return written ? written : status;
3085 EXPORT_SYMBOL(generic_perform_write);
3088 * __generic_file_write_iter - write data to a file
3089 * @iocb: IO state structure (file, offset, etc.)
3090 * @from: iov_iter with data to write
3092 * This function does all the work needed for actually writing data to a
3093 * file. It does all basic checks, removes SUID from the file, updates
3094 * modification times and calls proper subroutines depending on whether we
3095 * do direct IO or a standard buffered write.
3097 * It expects i_mutex to be grabbed unless we work on a block device or similar
3098 * object which does not need locking at all.
3100 * This function does *not* take care of syncing data in case of O_SYNC write.
3101 * A caller has to handle it. This is mainly due to the fact that we want to
3102 * avoid syncing under i_mutex.
3104 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3106 struct file *file = iocb->ki_filp;
3107 struct address_space * mapping = file->f_mapping;
3108 struct inode *inode = mapping->host;
3109 ssize_t written = 0;
3113 /* We can write back this queue in page reclaim */
3114 current->backing_dev_info = inode_to_bdi(inode);
3115 err = file_remove_privs(file);
3119 err = file_update_time(file);
3123 if (iocb->ki_flags & IOCB_DIRECT) {
3124 loff_t pos, endbyte;
3126 written = generic_file_direct_write(iocb, from);
3128 * If the write stopped short of completing, fall back to
3129 * buffered writes. Some filesystems do this for writes to
3130 * holes, for example. For DAX files, a buffered write will
3131 * not succeed (even if it did, DAX does not handle dirty
3132 * page-cache pages correctly).
3134 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3137 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3139 * If generic_perform_write() returned a synchronous error
3140 * then we want to return the number of bytes which were
3141 * direct-written, or the error code if that was zero. Note
3142 * that this differs from normal direct-io semantics, which
3143 * will return -EFOO even if some bytes were written.
3145 if (unlikely(status < 0)) {
3150 * We need to ensure that the page cache pages are written to
3151 * disk and invalidated to preserve the expected O_DIRECT
3154 endbyte = pos + status - 1;
3155 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3157 iocb->ki_pos = endbyte + 1;
3159 invalidate_mapping_pages(mapping,
3161 endbyte >> PAGE_SHIFT);
3164 * We don't know how much we wrote, so just return
3165 * the number of bytes which were direct-written
3169 written = generic_perform_write(file, from, iocb->ki_pos);
3170 if (likely(written > 0))
3171 iocb->ki_pos += written;
3174 current->backing_dev_info = NULL;
3175 return written ? written : err;
3177 EXPORT_SYMBOL(__generic_file_write_iter);
3180 * generic_file_write_iter - write data to a file
3181 * @iocb: IO state structure
3182 * @from: iov_iter with data to write
3184 * This is a wrapper around __generic_file_write_iter() to be used by most
3185 * filesystems. It takes care of syncing the file in case of O_SYNC file
3186 * and acquires i_mutex as needed.
3188 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3190 struct file *file = iocb->ki_filp;
3191 struct inode *inode = file->f_mapping->host;
3195 ret = generic_write_checks(iocb, from);
3197 ret = __generic_file_write_iter(iocb, from);
3198 inode_unlock(inode);
3201 ret = generic_write_sync(iocb, ret);
3204 EXPORT_SYMBOL(generic_file_write_iter);
3207 * try_to_release_page() - release old fs-specific metadata on a page
3209 * @page: the page which the kernel is trying to free
3210 * @gfp_mask: memory allocation flags (and I/O mode)
3212 * The address_space is to try to release any data against the page
3213 * (presumably at page->private). If the release was successful, return '1'.
3214 * Otherwise return zero.
3216 * This may also be called if PG_fscache is set on a page, indicating that the
3217 * page is known to the local caching routines.
3219 * The @gfp_mask argument specifies whether I/O may be performed to release
3220 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3223 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3225 struct address_space * const mapping = page->mapping;
3227 BUG_ON(!PageLocked(page));
3228 if (PageWriteback(page))
3231 if (mapping && mapping->a_ops->releasepage)
3232 return mapping->a_ops->releasepage(page, gfp_mask);
3233 return try_to_free_buffers(page);
3236 EXPORT_SYMBOL(try_to_release_page);