staging: vc04_services: Fix bulk cache maintenance
[sfrench/cifs-2.6.git] / lib / swiotlb.c
1 /*
2  * Dynamic DMA mapping support.
3  *
4  * This implementation is a fallback for platforms that do not support
5  * I/O TLBs (aka DMA address translation hardware).
6  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8  * Copyright (C) 2000, 2003 Hewlett-Packard Co
9  *      David Mosberger-Tang <davidm@hpl.hp.com>
10  *
11  * 03/05/07 davidm      Switch from PCI-DMA to generic device DMA API.
12  * 00/12/13 davidm      Rename to swiotlb.c and add mark_clean() to avoid
13  *                      unnecessary i-cache flushing.
14  * 04/07/.. ak          Better overflow handling. Assorted fixes.
15  * 05/09/10 linville    Add support for syncing ranges, support syncing for
16  *                      DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17  * 08/12/11 beckyb      Add highmem support
18  */
19
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 #include <linux/scatterlist.h>
33
34 #include <asm/io.h>
35 #include <asm/dma.h>
36
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/swiotlb.h>
43
44 #define OFFSET(val,align) ((unsigned long)      \
45                            ( (val) & ( (align) - 1)))
46
47 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
48
49 /*
50  * Minimum IO TLB size to bother booting with.  Systems with mainly
51  * 64bit capable cards will only lightly use the swiotlb.  If we can't
52  * allocate a contiguous 1MB, we're probably in trouble anyway.
53  */
54 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
55
56 enum swiotlb_force swiotlb_force;
57
58 /*
59  * Used to do a quick range check in swiotlb_tbl_unmap_single and
60  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
61  * API.
62  */
63 static phys_addr_t io_tlb_start, io_tlb_end;
64
65 /*
66  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
67  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
68  */
69 static unsigned long io_tlb_nslabs;
70
71 /*
72  * When the IOMMU overflows we return a fallback buffer. This sets the size.
73  */
74 static unsigned long io_tlb_overflow = 32*1024;
75
76 static phys_addr_t io_tlb_overflow_buffer;
77
78 /*
79  * This is a free list describing the number of free entries available from
80  * each index
81  */
82 static unsigned int *io_tlb_list;
83 static unsigned int io_tlb_index;
84
85 /*
86  * Max segment that we can provide which (if pages are contingous) will
87  * not be bounced (unless SWIOTLB_FORCE is set).
88  */
89 unsigned int max_segment;
90
91 /*
92  * We need to save away the original address corresponding to a mapped entry
93  * for the sync operations.
94  */
95 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
96 static phys_addr_t *io_tlb_orig_addr;
97
98 /*
99  * Protect the above data structures in the map and unmap calls
100  */
101 static DEFINE_SPINLOCK(io_tlb_lock);
102
103 static int late_alloc;
104
105 static int __init
106 setup_io_tlb_npages(char *str)
107 {
108         if (isdigit(*str)) {
109                 io_tlb_nslabs = simple_strtoul(str, &str, 0);
110                 /* avoid tail segment of size < IO_TLB_SEGSIZE */
111                 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
112         }
113         if (*str == ',')
114                 ++str;
115         if (!strcmp(str, "force")) {
116                 swiotlb_force = SWIOTLB_FORCE;
117         } else if (!strcmp(str, "noforce")) {
118                 swiotlb_force = SWIOTLB_NO_FORCE;
119                 io_tlb_nslabs = 1;
120         }
121
122         return 0;
123 }
124 early_param("swiotlb", setup_io_tlb_npages);
125 /* make io_tlb_overflow tunable too? */
126
127 unsigned long swiotlb_nr_tbl(void)
128 {
129         return io_tlb_nslabs;
130 }
131 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
132
133 unsigned int swiotlb_max_segment(void)
134 {
135         return max_segment;
136 }
137 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
138
139 void swiotlb_set_max_segment(unsigned int val)
140 {
141         if (swiotlb_force == SWIOTLB_FORCE)
142                 max_segment = 1;
143         else
144                 max_segment = rounddown(val, PAGE_SIZE);
145 }
146
147 /* default to 64MB */
148 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
149 unsigned long swiotlb_size_or_default(void)
150 {
151         unsigned long size;
152
153         size = io_tlb_nslabs << IO_TLB_SHIFT;
154
155         return size ? size : (IO_TLB_DEFAULT_SIZE);
156 }
157
158 /* Note that this doesn't work with highmem page */
159 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
160                                       volatile void *address)
161 {
162         return phys_to_dma(hwdev, virt_to_phys(address));
163 }
164
165 static bool no_iotlb_memory;
166
167 void swiotlb_print_info(void)
168 {
169         unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
170         unsigned char *vstart, *vend;
171
172         if (no_iotlb_memory) {
173                 pr_warn("software IO TLB: No low mem\n");
174                 return;
175         }
176
177         vstart = phys_to_virt(io_tlb_start);
178         vend = phys_to_virt(io_tlb_end);
179
180         printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
181                (unsigned long long)io_tlb_start,
182                (unsigned long long)io_tlb_end,
183                bytes >> 20, vstart, vend - 1);
184 }
185
186 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
187 {
188         void *v_overflow_buffer;
189         unsigned long i, bytes;
190
191         bytes = nslabs << IO_TLB_SHIFT;
192
193         io_tlb_nslabs = nslabs;
194         io_tlb_start = __pa(tlb);
195         io_tlb_end = io_tlb_start + bytes;
196
197         /*
198          * Get the overflow emergency buffer
199          */
200         v_overflow_buffer = memblock_virt_alloc_low_nopanic(
201                                                 PAGE_ALIGN(io_tlb_overflow),
202                                                 PAGE_SIZE);
203         if (!v_overflow_buffer)
204                 return -ENOMEM;
205
206         io_tlb_overflow_buffer = __pa(v_overflow_buffer);
207
208         /*
209          * Allocate and initialize the free list array.  This array is used
210          * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
211          * between io_tlb_start and io_tlb_end.
212          */
213         io_tlb_list = memblock_virt_alloc(
214                                 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
215                                 PAGE_SIZE);
216         io_tlb_orig_addr = memblock_virt_alloc(
217                                 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
218                                 PAGE_SIZE);
219         for (i = 0; i < io_tlb_nslabs; i++) {
220                 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
221                 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
222         }
223         io_tlb_index = 0;
224
225         if (verbose)
226                 swiotlb_print_info();
227
228         swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
229         return 0;
230 }
231
232 /*
233  * Statically reserve bounce buffer space and initialize bounce buffer data
234  * structures for the software IO TLB used to implement the DMA API.
235  */
236 void  __init
237 swiotlb_init(int verbose)
238 {
239         size_t default_size = IO_TLB_DEFAULT_SIZE;
240         unsigned char *vstart;
241         unsigned long bytes;
242
243         if (!io_tlb_nslabs) {
244                 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
245                 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
246         }
247
248         bytes = io_tlb_nslabs << IO_TLB_SHIFT;
249
250         /* Get IO TLB memory from the low pages */
251         vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
252         if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
253                 return;
254
255         if (io_tlb_start)
256                 memblock_free_early(io_tlb_start,
257                                     PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
258         pr_warn("Cannot allocate SWIOTLB buffer");
259         no_iotlb_memory = true;
260 }
261
262 /*
263  * Systems with larger DMA zones (those that don't support ISA) can
264  * initialize the swiotlb later using the slab allocator if needed.
265  * This should be just like above, but with some error catching.
266  */
267 int
268 swiotlb_late_init_with_default_size(size_t default_size)
269 {
270         unsigned long bytes, req_nslabs = io_tlb_nslabs;
271         unsigned char *vstart = NULL;
272         unsigned int order;
273         int rc = 0;
274
275         if (!io_tlb_nslabs) {
276                 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
277                 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
278         }
279
280         /*
281          * Get IO TLB memory from the low pages
282          */
283         order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
284         io_tlb_nslabs = SLABS_PER_PAGE << order;
285         bytes = io_tlb_nslabs << IO_TLB_SHIFT;
286
287         while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
288                 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
289                                                   order);
290                 if (vstart)
291                         break;
292                 order--;
293         }
294
295         if (!vstart) {
296                 io_tlb_nslabs = req_nslabs;
297                 return -ENOMEM;
298         }
299         if (order != get_order(bytes)) {
300                 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
301                        "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
302                 io_tlb_nslabs = SLABS_PER_PAGE << order;
303         }
304         rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
305         if (rc)
306                 free_pages((unsigned long)vstart, order);
307
308         return rc;
309 }
310
311 int
312 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
313 {
314         unsigned long i, bytes;
315         unsigned char *v_overflow_buffer;
316
317         bytes = nslabs << IO_TLB_SHIFT;
318
319         io_tlb_nslabs = nslabs;
320         io_tlb_start = virt_to_phys(tlb);
321         io_tlb_end = io_tlb_start + bytes;
322
323         memset(tlb, 0, bytes);
324
325         /*
326          * Get the overflow emergency buffer
327          */
328         v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
329                                                      get_order(io_tlb_overflow));
330         if (!v_overflow_buffer)
331                 goto cleanup2;
332
333         io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
334
335         /*
336          * Allocate and initialize the free list array.  This array is used
337          * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
338          * between io_tlb_start and io_tlb_end.
339          */
340         io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
341                                       get_order(io_tlb_nslabs * sizeof(int)));
342         if (!io_tlb_list)
343                 goto cleanup3;
344
345         io_tlb_orig_addr = (phys_addr_t *)
346                 __get_free_pages(GFP_KERNEL,
347                                  get_order(io_tlb_nslabs *
348                                            sizeof(phys_addr_t)));
349         if (!io_tlb_orig_addr)
350                 goto cleanup4;
351
352         for (i = 0; i < io_tlb_nslabs; i++) {
353                 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
354                 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
355         }
356         io_tlb_index = 0;
357
358         swiotlb_print_info();
359
360         late_alloc = 1;
361
362         swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
363
364         return 0;
365
366 cleanup4:
367         free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
368                                                          sizeof(int)));
369         io_tlb_list = NULL;
370 cleanup3:
371         free_pages((unsigned long)v_overflow_buffer,
372                    get_order(io_tlb_overflow));
373         io_tlb_overflow_buffer = 0;
374 cleanup2:
375         io_tlb_end = 0;
376         io_tlb_start = 0;
377         io_tlb_nslabs = 0;
378         max_segment = 0;
379         return -ENOMEM;
380 }
381
382 void __init swiotlb_free(void)
383 {
384         if (!io_tlb_orig_addr)
385                 return;
386
387         if (late_alloc) {
388                 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
389                            get_order(io_tlb_overflow));
390                 free_pages((unsigned long)io_tlb_orig_addr,
391                            get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
392                 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
393                                                                  sizeof(int)));
394                 free_pages((unsigned long)phys_to_virt(io_tlb_start),
395                            get_order(io_tlb_nslabs << IO_TLB_SHIFT));
396         } else {
397                 memblock_free_late(io_tlb_overflow_buffer,
398                                    PAGE_ALIGN(io_tlb_overflow));
399                 memblock_free_late(__pa(io_tlb_orig_addr),
400                                    PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
401                 memblock_free_late(__pa(io_tlb_list),
402                                    PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
403                 memblock_free_late(io_tlb_start,
404                                    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
405         }
406         io_tlb_nslabs = 0;
407         max_segment = 0;
408 }
409
410 int is_swiotlb_buffer(phys_addr_t paddr)
411 {
412         return paddr >= io_tlb_start && paddr < io_tlb_end;
413 }
414
415 /*
416  * Bounce: copy the swiotlb buffer back to the original dma location
417  */
418 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
419                            size_t size, enum dma_data_direction dir)
420 {
421         unsigned long pfn = PFN_DOWN(orig_addr);
422         unsigned char *vaddr = phys_to_virt(tlb_addr);
423
424         if (PageHighMem(pfn_to_page(pfn))) {
425                 /* The buffer does not have a mapping.  Map it in and copy */
426                 unsigned int offset = orig_addr & ~PAGE_MASK;
427                 char *buffer;
428                 unsigned int sz = 0;
429                 unsigned long flags;
430
431                 while (size) {
432                         sz = min_t(size_t, PAGE_SIZE - offset, size);
433
434                         local_irq_save(flags);
435                         buffer = kmap_atomic(pfn_to_page(pfn));
436                         if (dir == DMA_TO_DEVICE)
437                                 memcpy(vaddr, buffer + offset, sz);
438                         else
439                                 memcpy(buffer + offset, vaddr, sz);
440                         kunmap_atomic(buffer);
441                         local_irq_restore(flags);
442
443                         size -= sz;
444                         pfn++;
445                         vaddr += sz;
446                         offset = 0;
447                 }
448         } else if (dir == DMA_TO_DEVICE) {
449                 memcpy(vaddr, phys_to_virt(orig_addr), size);
450         } else {
451                 memcpy(phys_to_virt(orig_addr), vaddr, size);
452         }
453 }
454
455 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
456                                    dma_addr_t tbl_dma_addr,
457                                    phys_addr_t orig_addr, size_t size,
458                                    enum dma_data_direction dir,
459                                    unsigned long attrs)
460 {
461         unsigned long flags;
462         phys_addr_t tlb_addr;
463         unsigned int nslots, stride, index, wrap;
464         int i;
465         unsigned long mask;
466         unsigned long offset_slots;
467         unsigned long max_slots;
468
469         if (no_iotlb_memory)
470                 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
471
472         mask = dma_get_seg_boundary(hwdev);
473
474         tbl_dma_addr &= mask;
475
476         offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
477
478         /*
479          * Carefully handle integer overflow which can occur when mask == ~0UL.
480          */
481         max_slots = mask + 1
482                     ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
483                     : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
484
485         /*
486          * For mappings greater than or equal to a page, we limit the stride
487          * (and hence alignment) to a page size.
488          */
489         nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
490         if (size >= PAGE_SIZE)
491                 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
492         else
493                 stride = 1;
494
495         BUG_ON(!nslots);
496
497         /*
498          * Find suitable number of IO TLB entries size that will fit this
499          * request and allocate a buffer from that IO TLB pool.
500          */
501         spin_lock_irqsave(&io_tlb_lock, flags);
502         index = ALIGN(io_tlb_index, stride);
503         if (index >= io_tlb_nslabs)
504                 index = 0;
505         wrap = index;
506
507         do {
508                 while (iommu_is_span_boundary(index, nslots, offset_slots,
509                                               max_slots)) {
510                         index += stride;
511                         if (index >= io_tlb_nslabs)
512                                 index = 0;
513                         if (index == wrap)
514                                 goto not_found;
515                 }
516
517                 /*
518                  * If we find a slot that indicates we have 'nslots' number of
519                  * contiguous buffers, we allocate the buffers from that slot
520                  * and mark the entries as '0' indicating unavailable.
521                  */
522                 if (io_tlb_list[index] >= nslots) {
523                         int count = 0;
524
525                         for (i = index; i < (int) (index + nslots); i++)
526                                 io_tlb_list[i] = 0;
527                         for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
528                                 io_tlb_list[i] = ++count;
529                         tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
530
531                         /*
532                          * Update the indices to avoid searching in the next
533                          * round.
534                          */
535                         io_tlb_index = ((index + nslots) < io_tlb_nslabs
536                                         ? (index + nslots) : 0);
537
538                         goto found;
539                 }
540                 index += stride;
541                 if (index >= io_tlb_nslabs)
542                         index = 0;
543         } while (index != wrap);
544
545 not_found:
546         spin_unlock_irqrestore(&io_tlb_lock, flags);
547         if (printk_ratelimit())
548                 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
549         return SWIOTLB_MAP_ERROR;
550 found:
551         spin_unlock_irqrestore(&io_tlb_lock, flags);
552
553         /*
554          * Save away the mapping from the original address to the DMA address.
555          * This is needed when we sync the memory.  Then we sync the buffer if
556          * needed.
557          */
558         for (i = 0; i < nslots; i++)
559                 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
560         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
561             (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
562                 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
563
564         return tlb_addr;
565 }
566 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
567
568 /*
569  * Allocates bounce buffer and returns its kernel virtual address.
570  */
571
572 static phys_addr_t
573 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
574            enum dma_data_direction dir, unsigned long attrs)
575 {
576         dma_addr_t start_dma_addr;
577
578         if (swiotlb_force == SWIOTLB_NO_FORCE) {
579                 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
580                                      &phys);
581                 return SWIOTLB_MAP_ERROR;
582         }
583
584         start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
585         return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
586                                       dir, attrs);
587 }
588
589 /*
590  * dma_addr is the kernel virtual address of the bounce buffer to unmap.
591  */
592 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
593                               size_t size, enum dma_data_direction dir,
594                               unsigned long attrs)
595 {
596         unsigned long flags;
597         int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
598         int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
599         phys_addr_t orig_addr = io_tlb_orig_addr[index];
600
601         /*
602          * First, sync the memory before unmapping the entry
603          */
604         if (orig_addr != INVALID_PHYS_ADDR &&
605             !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
606             ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
607                 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
608
609         /*
610          * Return the buffer to the free list by setting the corresponding
611          * entries to indicate the number of contiguous entries available.
612          * While returning the entries to the free list, we merge the entries
613          * with slots below and above the pool being returned.
614          */
615         spin_lock_irqsave(&io_tlb_lock, flags);
616         {
617                 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
618                          io_tlb_list[index + nslots] : 0);
619                 /*
620                  * Step 1: return the slots to the free list, merging the
621                  * slots with superceeding slots
622                  */
623                 for (i = index + nslots - 1; i >= index; i--) {
624                         io_tlb_list[i] = ++count;
625                         io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
626                 }
627                 /*
628                  * Step 2: merge the returned slots with the preceding slots,
629                  * if available (non zero)
630                  */
631                 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
632                         io_tlb_list[i] = ++count;
633         }
634         spin_unlock_irqrestore(&io_tlb_lock, flags);
635 }
636 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
637
638 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
639                              size_t size, enum dma_data_direction dir,
640                              enum dma_sync_target target)
641 {
642         int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
643         phys_addr_t orig_addr = io_tlb_orig_addr[index];
644
645         if (orig_addr == INVALID_PHYS_ADDR)
646                 return;
647         orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
648
649         switch (target) {
650         case SYNC_FOR_CPU:
651                 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
652                         swiotlb_bounce(orig_addr, tlb_addr,
653                                        size, DMA_FROM_DEVICE);
654                 else
655                         BUG_ON(dir != DMA_TO_DEVICE);
656                 break;
657         case SYNC_FOR_DEVICE:
658                 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
659                         swiotlb_bounce(orig_addr, tlb_addr,
660                                        size, DMA_TO_DEVICE);
661                 else
662                         BUG_ON(dir != DMA_FROM_DEVICE);
663                 break;
664         default:
665                 BUG();
666         }
667 }
668 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
669
670 void *
671 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
672                        dma_addr_t *dma_handle, gfp_t flags)
673 {
674         dma_addr_t dev_addr;
675         void *ret;
676         int order = get_order(size);
677         u64 dma_mask = DMA_BIT_MASK(32);
678
679         if (hwdev && hwdev->coherent_dma_mask)
680                 dma_mask = hwdev->coherent_dma_mask;
681
682         ret = (void *)__get_free_pages(flags, order);
683         if (ret) {
684                 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
685                 if (dev_addr + size - 1 > dma_mask) {
686                         /*
687                          * The allocated memory isn't reachable by the device.
688                          */
689                         free_pages((unsigned long) ret, order);
690                         ret = NULL;
691                 }
692         }
693         if (!ret) {
694                 /*
695                  * We are either out of memory or the device can't DMA to
696                  * GFP_DMA memory; fall back on map_single(), which
697                  * will grab memory from the lowest available address range.
698                  */
699                 phys_addr_t paddr = map_single(hwdev, 0, size,
700                                                DMA_FROM_DEVICE, 0);
701                 if (paddr == SWIOTLB_MAP_ERROR)
702                         goto err_warn;
703
704                 ret = phys_to_virt(paddr);
705                 dev_addr = phys_to_dma(hwdev, paddr);
706
707                 /* Confirm address can be DMA'd by device */
708                 if (dev_addr + size - 1 > dma_mask) {
709                         printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
710                                (unsigned long long)dma_mask,
711                                (unsigned long long)dev_addr);
712
713                         /*
714                          * DMA_TO_DEVICE to avoid memcpy in unmap_single.
715                          * The DMA_ATTR_SKIP_CPU_SYNC is optional.
716                          */
717                         swiotlb_tbl_unmap_single(hwdev, paddr,
718                                                  size, DMA_TO_DEVICE,
719                                                  DMA_ATTR_SKIP_CPU_SYNC);
720                         goto err_warn;
721                 }
722         }
723
724         *dma_handle = dev_addr;
725         memset(ret, 0, size);
726
727         return ret;
728
729 err_warn:
730         pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
731                 dev_name(hwdev), size);
732         dump_stack();
733
734         return NULL;
735 }
736 EXPORT_SYMBOL(swiotlb_alloc_coherent);
737
738 void
739 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
740                       dma_addr_t dev_addr)
741 {
742         phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
743
744         WARN_ON(irqs_disabled());
745         if (!is_swiotlb_buffer(paddr))
746                 free_pages((unsigned long)vaddr, get_order(size));
747         else
748                 /*
749                  * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
750                  * DMA_ATTR_SKIP_CPU_SYNC is optional.
751                  */
752                 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
753                                          DMA_ATTR_SKIP_CPU_SYNC);
754 }
755 EXPORT_SYMBOL(swiotlb_free_coherent);
756
757 static void
758 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
759              int do_panic)
760 {
761         if (swiotlb_force == SWIOTLB_NO_FORCE)
762                 return;
763
764         /*
765          * Ran out of IOMMU space for this operation. This is very bad.
766          * Unfortunately the drivers cannot handle this operation properly.
767          * unless they check for dma_mapping_error (most don't)
768          * When the mapping is small enough return a static buffer to limit
769          * the damage, or panic when the transfer is too big.
770          */
771         dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
772                             size);
773
774         if (size <= io_tlb_overflow || !do_panic)
775                 return;
776
777         if (dir == DMA_BIDIRECTIONAL)
778                 panic("DMA: Random memory could be DMA accessed\n");
779         if (dir == DMA_FROM_DEVICE)
780                 panic("DMA: Random memory could be DMA written\n");
781         if (dir == DMA_TO_DEVICE)
782                 panic("DMA: Random memory could be DMA read\n");
783 }
784
785 /*
786  * Map a single buffer of the indicated size for DMA in streaming mode.  The
787  * physical address to use is returned.
788  *
789  * Once the device is given the dma address, the device owns this memory until
790  * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
791  */
792 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
793                             unsigned long offset, size_t size,
794                             enum dma_data_direction dir,
795                             unsigned long attrs)
796 {
797         phys_addr_t map, phys = page_to_phys(page) + offset;
798         dma_addr_t dev_addr = phys_to_dma(dev, phys);
799
800         BUG_ON(dir == DMA_NONE);
801         /*
802          * If the address happens to be in the device's DMA window,
803          * we can safely return the device addr and not worry about bounce
804          * buffering it.
805          */
806         if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
807                 return dev_addr;
808
809         trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
810
811         /* Oh well, have to allocate and map a bounce buffer. */
812         map = map_single(dev, phys, size, dir, attrs);
813         if (map == SWIOTLB_MAP_ERROR) {
814                 swiotlb_full(dev, size, dir, 1);
815                 return phys_to_dma(dev, io_tlb_overflow_buffer);
816         }
817
818         dev_addr = phys_to_dma(dev, map);
819
820         /* Ensure that the address returned is DMA'ble */
821         if (dma_capable(dev, dev_addr, size))
822                 return dev_addr;
823
824         attrs |= DMA_ATTR_SKIP_CPU_SYNC;
825         swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
826
827         return phys_to_dma(dev, io_tlb_overflow_buffer);
828 }
829 EXPORT_SYMBOL_GPL(swiotlb_map_page);
830
831 /*
832  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
833  * match what was provided for in a previous swiotlb_map_page call.  All
834  * other usages are undefined.
835  *
836  * After this call, reads by the cpu to the buffer are guaranteed to see
837  * whatever the device wrote there.
838  */
839 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
840                          size_t size, enum dma_data_direction dir,
841                          unsigned long attrs)
842 {
843         phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
844
845         BUG_ON(dir == DMA_NONE);
846
847         if (is_swiotlb_buffer(paddr)) {
848                 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
849                 return;
850         }
851
852         if (dir != DMA_FROM_DEVICE)
853                 return;
854
855         /*
856          * phys_to_virt doesn't work with hihgmem page but we could
857          * call dma_mark_clean() with hihgmem page here. However, we
858          * are fine since dma_mark_clean() is null on POWERPC. We can
859          * make dma_mark_clean() take a physical address if necessary.
860          */
861         dma_mark_clean(phys_to_virt(paddr), size);
862 }
863
864 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
865                         size_t size, enum dma_data_direction dir,
866                         unsigned long attrs)
867 {
868         unmap_single(hwdev, dev_addr, size, dir, attrs);
869 }
870 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
871
872 /*
873  * Make physical memory consistent for a single streaming mode DMA translation
874  * after a transfer.
875  *
876  * If you perform a swiotlb_map_page() but wish to interrogate the buffer
877  * using the cpu, yet do not wish to teardown the dma mapping, you must
878  * call this function before doing so.  At the next point you give the dma
879  * address back to the card, you must first perform a
880  * swiotlb_dma_sync_for_device, and then the device again owns the buffer
881  */
882 static void
883 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
884                     size_t size, enum dma_data_direction dir,
885                     enum dma_sync_target target)
886 {
887         phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
888
889         BUG_ON(dir == DMA_NONE);
890
891         if (is_swiotlb_buffer(paddr)) {
892                 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
893                 return;
894         }
895
896         if (dir != DMA_FROM_DEVICE)
897                 return;
898
899         dma_mark_clean(phys_to_virt(paddr), size);
900 }
901
902 void
903 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
904                             size_t size, enum dma_data_direction dir)
905 {
906         swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
907 }
908 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
909
910 void
911 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
912                                size_t size, enum dma_data_direction dir)
913 {
914         swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
915 }
916 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
917
918 /*
919  * Map a set of buffers described by scatterlist in streaming mode for DMA.
920  * This is the scatter-gather version of the above swiotlb_map_page
921  * interface.  Here the scatter gather list elements are each tagged with the
922  * appropriate dma address and length.  They are obtained via
923  * sg_dma_{address,length}(SG).
924  *
925  * NOTE: An implementation may be able to use a smaller number of
926  *       DMA address/length pairs than there are SG table elements.
927  *       (for example via virtual mapping capabilities)
928  *       The routine returns the number of addr/length pairs actually
929  *       used, at most nents.
930  *
931  * Device ownership issues as mentioned above for swiotlb_map_page are the
932  * same here.
933  */
934 int
935 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
936                      enum dma_data_direction dir, unsigned long attrs)
937 {
938         struct scatterlist *sg;
939         int i;
940
941         BUG_ON(dir == DMA_NONE);
942
943         for_each_sg(sgl, sg, nelems, i) {
944                 phys_addr_t paddr = sg_phys(sg);
945                 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
946
947                 if (swiotlb_force == SWIOTLB_FORCE ||
948                     !dma_capable(hwdev, dev_addr, sg->length)) {
949                         phys_addr_t map = map_single(hwdev, sg_phys(sg),
950                                                      sg->length, dir, attrs);
951                         if (map == SWIOTLB_MAP_ERROR) {
952                                 /* Don't panic here, we expect map_sg users
953                                    to do proper error handling. */
954                                 swiotlb_full(hwdev, sg->length, dir, 0);
955                                 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
956                                 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
957                                                        attrs);
958                                 sg_dma_len(sgl) = 0;
959                                 return 0;
960                         }
961                         sg->dma_address = phys_to_dma(hwdev, map);
962                 } else
963                         sg->dma_address = dev_addr;
964                 sg_dma_len(sg) = sg->length;
965         }
966         return nelems;
967 }
968 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
969
970 /*
971  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
972  * concerning calls here are the same as for swiotlb_unmap_page() above.
973  */
974 void
975 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
976                        int nelems, enum dma_data_direction dir,
977                        unsigned long attrs)
978 {
979         struct scatterlist *sg;
980         int i;
981
982         BUG_ON(dir == DMA_NONE);
983
984         for_each_sg(sgl, sg, nelems, i)
985                 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
986                              attrs);
987 }
988 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
989
990 /*
991  * Make physical memory consistent for a set of streaming mode DMA translations
992  * after a transfer.
993  *
994  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
995  * and usage.
996  */
997 static void
998 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
999                 int nelems, enum dma_data_direction dir,
1000                 enum dma_sync_target target)
1001 {
1002         struct scatterlist *sg;
1003         int i;
1004
1005         for_each_sg(sgl, sg, nelems, i)
1006                 swiotlb_sync_single(hwdev, sg->dma_address,
1007                                     sg_dma_len(sg), dir, target);
1008 }
1009
1010 void
1011 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1012                         int nelems, enum dma_data_direction dir)
1013 {
1014         swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1015 }
1016 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
1017
1018 void
1019 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1020                            int nelems, enum dma_data_direction dir)
1021 {
1022         swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1023 }
1024 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1025
1026 int
1027 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1028 {
1029         return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1030 }
1031 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1032
1033 /*
1034  * Return whether the given device DMA address mask can be supported
1035  * properly.  For example, if your device can only drive the low 24-bits
1036  * during bus mastering, then you would pass 0x00ffffff as the mask to
1037  * this function.
1038  */
1039 int
1040 swiotlb_dma_supported(struct device *hwdev, u64 mask)
1041 {
1042         return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1043 }
1044 EXPORT_SYMBOL(swiotlb_dma_supported);