Merge branch 'i2c-mux/for-next' of https://github.com/peda-r/i2c-mux into i2c/for-5.2
[sfrench/cifs-2.6.git] / lib / rhashtable.c
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31
32 #define HASH_DEFAULT_SIZE       64UL
33 #define HASH_MIN_SIZE           4U
34 #define BUCKET_LOCKS_PER_CPU    32UL
35
36 union nested_table {
37         union nested_table __rcu *table;
38         struct rhash_head __rcu *bucket;
39 };
40
41 static u32 head_hashfn(struct rhashtable *ht,
42                        const struct bucket_table *tbl,
43                        const struct rhash_head *he)
44 {
45         return rht_head_hashfn(ht, tbl, he, ht->p);
46 }
47
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
50
51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
52 {
53         return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
56
57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
58 {
59         spinlock_t *lock = rht_bucket_lock(tbl, hash);
60
61         return (debug_locks) ? lockdep_is_held(lock) : 1;
62 }
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
67
68 static void nested_table_free(union nested_table *ntbl, unsigned int size)
69 {
70         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
71         const unsigned int len = 1 << shift;
72         unsigned int i;
73
74         ntbl = rcu_dereference_raw(ntbl->table);
75         if (!ntbl)
76                 return;
77
78         if (size > len) {
79                 size >>= shift;
80                 for (i = 0; i < len; i++)
81                         nested_table_free(ntbl + i, size);
82         }
83
84         kfree(ntbl);
85 }
86
87 static void nested_bucket_table_free(const struct bucket_table *tbl)
88 {
89         unsigned int size = tbl->size >> tbl->nest;
90         unsigned int len = 1 << tbl->nest;
91         union nested_table *ntbl;
92         unsigned int i;
93
94         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
95
96         for (i = 0; i < len; i++)
97                 nested_table_free(ntbl + i, size);
98
99         kfree(ntbl);
100 }
101
102 static void bucket_table_free(const struct bucket_table *tbl)
103 {
104         if (tbl->nest)
105                 nested_bucket_table_free(tbl);
106
107         free_bucket_spinlocks(tbl->locks);
108         kvfree(tbl);
109 }
110
111 static void bucket_table_free_rcu(struct rcu_head *head)
112 {
113         bucket_table_free(container_of(head, struct bucket_table, rcu));
114 }
115
116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117                                               union nested_table __rcu **prev,
118                                               bool leaf)
119 {
120         union nested_table *ntbl;
121         int i;
122
123         ntbl = rcu_dereference(*prev);
124         if (ntbl)
125                 return ntbl;
126
127         ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
128
129         if (ntbl && leaf) {
130                 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
131                         INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
132         }
133
134         rcu_assign_pointer(*prev, ntbl);
135
136         return ntbl;
137 }
138
139 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
140                                                       size_t nbuckets,
141                                                       gfp_t gfp)
142 {
143         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
144         struct bucket_table *tbl;
145         size_t size;
146
147         if (nbuckets < (1 << (shift + 1)))
148                 return NULL;
149
150         size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
151
152         tbl = kzalloc(size, gfp);
153         if (!tbl)
154                 return NULL;
155
156         if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
157                                 false)) {
158                 kfree(tbl);
159                 return NULL;
160         }
161
162         tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
163
164         return tbl;
165 }
166
167 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
168                                                size_t nbuckets,
169                                                gfp_t gfp)
170 {
171         struct bucket_table *tbl = NULL;
172         size_t size, max_locks;
173         int i;
174
175         size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
176         tbl = kvzalloc(size, gfp);
177
178         size = nbuckets;
179
180         if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
181                 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
182                 nbuckets = 0;
183         }
184
185         if (tbl == NULL)
186                 return NULL;
187
188         tbl->size = size;
189
190         max_locks = size >> 1;
191         if (tbl->nest)
192                 max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
193
194         if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
195                                    ht->p.locks_mul, gfp) < 0) {
196                 bucket_table_free(tbl);
197                 return NULL;
198         }
199
200         INIT_LIST_HEAD(&tbl->walkers);
201
202         tbl->hash_rnd = get_random_u32();
203
204         for (i = 0; i < nbuckets; i++)
205                 INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
206
207         return tbl;
208 }
209
210 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
211                                                   struct bucket_table *tbl)
212 {
213         struct bucket_table *new_tbl;
214
215         do {
216                 new_tbl = tbl;
217                 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
218         } while (tbl);
219
220         return new_tbl;
221 }
222
223 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
224 {
225         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
226         struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
227         struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
228         int err = -EAGAIN;
229         struct rhash_head *head, *next, *entry;
230         spinlock_t *new_bucket_lock;
231         unsigned int new_hash;
232
233         if (new_tbl->nest)
234                 goto out;
235
236         err = -ENOENT;
237
238         rht_for_each(entry, old_tbl, old_hash) {
239                 err = 0;
240                 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
241
242                 if (rht_is_a_nulls(next))
243                         break;
244
245                 pprev = &entry->next;
246         }
247
248         if (err)
249                 goto out;
250
251         new_hash = head_hashfn(ht, new_tbl, entry);
252
253         new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
254
255         spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
256         head = rht_dereference_bucket(new_tbl->buckets[new_hash],
257                                       new_tbl, new_hash);
258
259         RCU_INIT_POINTER(entry->next, head);
260
261         rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
262         spin_unlock(new_bucket_lock);
263
264         rcu_assign_pointer(*pprev, next);
265
266 out:
267         return err;
268 }
269
270 static int rhashtable_rehash_chain(struct rhashtable *ht,
271                                     unsigned int old_hash)
272 {
273         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
274         spinlock_t *old_bucket_lock;
275         int err;
276
277         old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
278
279         spin_lock_bh(old_bucket_lock);
280         while (!(err = rhashtable_rehash_one(ht, old_hash)))
281                 ;
282
283         if (err == -ENOENT) {
284                 old_tbl->rehash++;
285                 err = 0;
286         }
287         spin_unlock_bh(old_bucket_lock);
288
289         return err;
290 }
291
292 static int rhashtable_rehash_attach(struct rhashtable *ht,
293                                     struct bucket_table *old_tbl,
294                                     struct bucket_table *new_tbl)
295 {
296         /* Make insertions go into the new, empty table right away. Deletions
297          * and lookups will be attempted in both tables until we synchronize.
298          * As cmpxchg() provides strong barriers, we do not need
299          * rcu_assign_pointer().
300          */
301
302         if (cmpxchg(&old_tbl->future_tbl, NULL, new_tbl) != NULL)
303                 return -EEXIST;
304
305         return 0;
306 }
307
308 static int rhashtable_rehash_table(struct rhashtable *ht)
309 {
310         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
311         struct bucket_table *new_tbl;
312         struct rhashtable_walker *walker;
313         unsigned int old_hash;
314         int err;
315
316         new_tbl = rht_dereference(old_tbl->future_tbl, ht);
317         if (!new_tbl)
318                 return 0;
319
320         for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
321                 err = rhashtable_rehash_chain(ht, old_hash);
322                 if (err)
323                         return err;
324                 cond_resched();
325         }
326
327         /* Publish the new table pointer. */
328         rcu_assign_pointer(ht->tbl, new_tbl);
329
330         spin_lock(&ht->lock);
331         list_for_each_entry(walker, &old_tbl->walkers, list)
332                 walker->tbl = NULL;
333         spin_unlock(&ht->lock);
334
335         /* Wait for readers. All new readers will see the new
336          * table, and thus no references to the old table will
337          * remain.
338          */
339         call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
340
341         return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
342 }
343
344 static int rhashtable_rehash_alloc(struct rhashtable *ht,
345                                    struct bucket_table *old_tbl,
346                                    unsigned int size)
347 {
348         struct bucket_table *new_tbl;
349         int err;
350
351         ASSERT_RHT_MUTEX(ht);
352
353         new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
354         if (new_tbl == NULL)
355                 return -ENOMEM;
356
357         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
358         if (err)
359                 bucket_table_free(new_tbl);
360
361         return err;
362 }
363
364 /**
365  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
366  * @ht:         the hash table to shrink
367  *
368  * This function shrinks the hash table to fit, i.e., the smallest
369  * size would not cause it to expand right away automatically.
370  *
371  * The caller must ensure that no concurrent resizing occurs by holding
372  * ht->mutex.
373  *
374  * The caller must ensure that no concurrent table mutations take place.
375  * It is however valid to have concurrent lookups if they are RCU protected.
376  *
377  * It is valid to have concurrent insertions and deletions protected by per
378  * bucket locks or concurrent RCU protected lookups and traversals.
379  */
380 static int rhashtable_shrink(struct rhashtable *ht)
381 {
382         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
383         unsigned int nelems = atomic_read(&ht->nelems);
384         unsigned int size = 0;
385
386         if (nelems)
387                 size = roundup_pow_of_two(nelems * 3 / 2);
388         if (size < ht->p.min_size)
389                 size = ht->p.min_size;
390
391         if (old_tbl->size <= size)
392                 return 0;
393
394         if (rht_dereference(old_tbl->future_tbl, ht))
395                 return -EEXIST;
396
397         return rhashtable_rehash_alloc(ht, old_tbl, size);
398 }
399
400 static void rht_deferred_worker(struct work_struct *work)
401 {
402         struct rhashtable *ht;
403         struct bucket_table *tbl;
404         int err = 0;
405
406         ht = container_of(work, struct rhashtable, run_work);
407         mutex_lock(&ht->mutex);
408
409         tbl = rht_dereference(ht->tbl, ht);
410         tbl = rhashtable_last_table(ht, tbl);
411
412         if (rht_grow_above_75(ht, tbl))
413                 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
414         else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
415                 err = rhashtable_shrink(ht);
416         else if (tbl->nest)
417                 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
418
419         if (!err || err == -EEXIST) {
420                 int nerr;
421
422                 nerr = rhashtable_rehash_table(ht);
423                 err = err ?: nerr;
424         }
425
426         mutex_unlock(&ht->mutex);
427
428         if (err)
429                 schedule_work(&ht->run_work);
430 }
431
432 static int rhashtable_insert_rehash(struct rhashtable *ht,
433                                     struct bucket_table *tbl)
434 {
435         struct bucket_table *old_tbl;
436         struct bucket_table *new_tbl;
437         unsigned int size;
438         int err;
439
440         old_tbl = rht_dereference_rcu(ht->tbl, ht);
441
442         size = tbl->size;
443
444         err = -EBUSY;
445
446         if (rht_grow_above_75(ht, tbl))
447                 size *= 2;
448         /* Do not schedule more than one rehash */
449         else if (old_tbl != tbl)
450                 goto fail;
451
452         err = -ENOMEM;
453
454         new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
455         if (new_tbl == NULL)
456                 goto fail;
457
458         err = rhashtable_rehash_attach(ht, tbl, new_tbl);
459         if (err) {
460                 bucket_table_free(new_tbl);
461                 if (err == -EEXIST)
462                         err = 0;
463         } else
464                 schedule_work(&ht->run_work);
465
466         return err;
467
468 fail:
469         /* Do not fail the insert if someone else did a rehash. */
470         if (likely(rcu_access_pointer(tbl->future_tbl)))
471                 return 0;
472
473         /* Schedule async rehash to retry allocation in process context. */
474         if (err == -ENOMEM)
475                 schedule_work(&ht->run_work);
476
477         return err;
478 }
479
480 static void *rhashtable_lookup_one(struct rhashtable *ht,
481                                    struct bucket_table *tbl, unsigned int hash,
482                                    const void *key, struct rhash_head *obj)
483 {
484         struct rhashtable_compare_arg arg = {
485                 .ht = ht,
486                 .key = key,
487         };
488         struct rhash_head __rcu **pprev;
489         struct rhash_head *head;
490         int elasticity;
491
492         elasticity = RHT_ELASTICITY;
493         pprev = rht_bucket_var(tbl, hash);
494         rht_for_each_continue(head, *pprev, tbl, hash) {
495                 struct rhlist_head *list;
496                 struct rhlist_head *plist;
497
498                 elasticity--;
499                 if (!key ||
500                     (ht->p.obj_cmpfn ?
501                      ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
502                      rhashtable_compare(&arg, rht_obj(ht, head)))) {
503                         pprev = &head->next;
504                         continue;
505                 }
506
507                 if (!ht->rhlist)
508                         return rht_obj(ht, head);
509
510                 list = container_of(obj, struct rhlist_head, rhead);
511                 plist = container_of(head, struct rhlist_head, rhead);
512
513                 RCU_INIT_POINTER(list->next, plist);
514                 head = rht_dereference_bucket(head->next, tbl, hash);
515                 RCU_INIT_POINTER(list->rhead.next, head);
516                 rcu_assign_pointer(*pprev, obj);
517
518                 return NULL;
519         }
520
521         if (elasticity <= 0)
522                 return ERR_PTR(-EAGAIN);
523
524         return ERR_PTR(-ENOENT);
525 }
526
527 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
528                                                   struct bucket_table *tbl,
529                                                   unsigned int hash,
530                                                   struct rhash_head *obj,
531                                                   void *data)
532 {
533         struct rhash_head __rcu **pprev;
534         struct bucket_table *new_tbl;
535         struct rhash_head *head;
536
537         if (!IS_ERR_OR_NULL(data))
538                 return ERR_PTR(-EEXIST);
539
540         if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
541                 return ERR_CAST(data);
542
543         new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
544         if (new_tbl)
545                 return new_tbl;
546
547         if (PTR_ERR(data) != -ENOENT)
548                 return ERR_CAST(data);
549
550         if (unlikely(rht_grow_above_max(ht, tbl)))
551                 return ERR_PTR(-E2BIG);
552
553         if (unlikely(rht_grow_above_100(ht, tbl)))
554                 return ERR_PTR(-EAGAIN);
555
556         pprev = rht_bucket_insert(ht, tbl, hash);
557         if (!pprev)
558                 return ERR_PTR(-ENOMEM);
559
560         head = rht_dereference_bucket(*pprev, tbl, hash);
561
562         RCU_INIT_POINTER(obj->next, head);
563         if (ht->rhlist) {
564                 struct rhlist_head *list;
565
566                 list = container_of(obj, struct rhlist_head, rhead);
567                 RCU_INIT_POINTER(list->next, NULL);
568         }
569
570         rcu_assign_pointer(*pprev, obj);
571
572         atomic_inc(&ht->nelems);
573         if (rht_grow_above_75(ht, tbl))
574                 schedule_work(&ht->run_work);
575
576         return NULL;
577 }
578
579 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
580                                    struct rhash_head *obj)
581 {
582         struct bucket_table *new_tbl;
583         struct bucket_table *tbl;
584         unsigned int hash;
585         spinlock_t *lock;
586         void *data;
587
588         tbl = rcu_dereference(ht->tbl);
589
590         /* All insertions must grab the oldest table containing
591          * the hashed bucket that is yet to be rehashed.
592          */
593         for (;;) {
594                 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
595                 lock = rht_bucket_lock(tbl, hash);
596                 spin_lock_bh(lock);
597
598                 if (tbl->rehash <= hash)
599                         break;
600
601                 spin_unlock_bh(lock);
602                 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
603         }
604
605         data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
606         new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
607         if (PTR_ERR(new_tbl) != -EEXIST)
608                 data = ERR_CAST(new_tbl);
609
610         while (!IS_ERR_OR_NULL(new_tbl)) {
611                 tbl = new_tbl;
612                 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
613                 spin_lock_nested(rht_bucket_lock(tbl, hash),
614                                  SINGLE_DEPTH_NESTING);
615
616                 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
617                 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
618                 if (PTR_ERR(new_tbl) != -EEXIST)
619                         data = ERR_CAST(new_tbl);
620
621                 spin_unlock(rht_bucket_lock(tbl, hash));
622         }
623
624         spin_unlock_bh(lock);
625
626         if (PTR_ERR(data) == -EAGAIN)
627                 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
628                                -EAGAIN);
629
630         return data;
631 }
632
633 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
634                              struct rhash_head *obj)
635 {
636         void *data;
637
638         do {
639                 rcu_read_lock();
640                 data = rhashtable_try_insert(ht, key, obj);
641                 rcu_read_unlock();
642         } while (PTR_ERR(data) == -EAGAIN);
643
644         return data;
645 }
646 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
647
648 /**
649  * rhashtable_walk_enter - Initialise an iterator
650  * @ht:         Table to walk over
651  * @iter:       Hash table Iterator
652  *
653  * This function prepares a hash table walk.
654  *
655  * Note that if you restart a walk after rhashtable_walk_stop you
656  * may see the same object twice.  Also, you may miss objects if
657  * there are removals in between rhashtable_walk_stop and the next
658  * call to rhashtable_walk_start.
659  *
660  * For a completely stable walk you should construct your own data
661  * structure outside the hash table.
662  *
663  * This function may be called from any process context, including
664  * non-preemptable context, but cannot be called from softirq or
665  * hardirq context.
666  *
667  * You must call rhashtable_walk_exit after this function returns.
668  */
669 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
670 {
671         iter->ht = ht;
672         iter->p = NULL;
673         iter->slot = 0;
674         iter->skip = 0;
675         iter->end_of_table = 0;
676
677         spin_lock(&ht->lock);
678         iter->walker.tbl =
679                 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
680         list_add(&iter->walker.list, &iter->walker.tbl->walkers);
681         spin_unlock(&ht->lock);
682 }
683 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
684
685 /**
686  * rhashtable_walk_exit - Free an iterator
687  * @iter:       Hash table Iterator
688  *
689  * This function frees resources allocated by rhashtable_walk_enter.
690  */
691 void rhashtable_walk_exit(struct rhashtable_iter *iter)
692 {
693         spin_lock(&iter->ht->lock);
694         if (iter->walker.tbl)
695                 list_del(&iter->walker.list);
696         spin_unlock(&iter->ht->lock);
697 }
698 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
699
700 /**
701  * rhashtable_walk_start_check - Start a hash table walk
702  * @iter:       Hash table iterator
703  *
704  * Start a hash table walk at the current iterator position.  Note that we take
705  * the RCU lock in all cases including when we return an error.  So you must
706  * always call rhashtable_walk_stop to clean up.
707  *
708  * Returns zero if successful.
709  *
710  * Returns -EAGAIN if resize event occured.  Note that the iterator
711  * will rewind back to the beginning and you may use it immediately
712  * by calling rhashtable_walk_next.
713  *
714  * rhashtable_walk_start is defined as an inline variant that returns
715  * void. This is preferred in cases where the caller would ignore
716  * resize events and always continue.
717  */
718 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
719         __acquires(RCU)
720 {
721         struct rhashtable *ht = iter->ht;
722         bool rhlist = ht->rhlist;
723
724         rcu_read_lock();
725
726         spin_lock(&ht->lock);
727         if (iter->walker.tbl)
728                 list_del(&iter->walker.list);
729         spin_unlock(&ht->lock);
730
731         if (iter->end_of_table)
732                 return 0;
733         if (!iter->walker.tbl) {
734                 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
735                 iter->slot = 0;
736                 iter->skip = 0;
737                 return -EAGAIN;
738         }
739
740         if (iter->p && !rhlist) {
741                 /*
742                  * We need to validate that 'p' is still in the table, and
743                  * if so, update 'skip'
744                  */
745                 struct rhash_head *p;
746                 int skip = 0;
747                 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
748                         skip++;
749                         if (p == iter->p) {
750                                 iter->skip = skip;
751                                 goto found;
752                         }
753                 }
754                 iter->p = NULL;
755         } else if (iter->p && rhlist) {
756                 /* Need to validate that 'list' is still in the table, and
757                  * if so, update 'skip' and 'p'.
758                  */
759                 struct rhash_head *p;
760                 struct rhlist_head *list;
761                 int skip = 0;
762                 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
763                         for (list = container_of(p, struct rhlist_head, rhead);
764                              list;
765                              list = rcu_dereference(list->next)) {
766                                 skip++;
767                                 if (list == iter->list) {
768                                         iter->p = p;
769                                         iter->skip = skip;
770                                         goto found;
771                                 }
772                         }
773                 }
774                 iter->p = NULL;
775         }
776 found:
777         return 0;
778 }
779 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
780
781 /**
782  * __rhashtable_walk_find_next - Find the next element in a table (or the first
783  * one in case of a new walk).
784  *
785  * @iter:       Hash table iterator
786  *
787  * Returns the found object or NULL when the end of the table is reached.
788  *
789  * Returns -EAGAIN if resize event occurred.
790  */
791 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
792 {
793         struct bucket_table *tbl = iter->walker.tbl;
794         struct rhlist_head *list = iter->list;
795         struct rhashtable *ht = iter->ht;
796         struct rhash_head *p = iter->p;
797         bool rhlist = ht->rhlist;
798
799         if (!tbl)
800                 return NULL;
801
802         for (; iter->slot < tbl->size; iter->slot++) {
803                 int skip = iter->skip;
804
805                 rht_for_each_rcu(p, tbl, iter->slot) {
806                         if (rhlist) {
807                                 list = container_of(p, struct rhlist_head,
808                                                     rhead);
809                                 do {
810                                         if (!skip)
811                                                 goto next;
812                                         skip--;
813                                         list = rcu_dereference(list->next);
814                                 } while (list);
815
816                                 continue;
817                         }
818                         if (!skip)
819                                 break;
820                         skip--;
821                 }
822
823 next:
824                 if (!rht_is_a_nulls(p)) {
825                         iter->skip++;
826                         iter->p = p;
827                         iter->list = list;
828                         return rht_obj(ht, rhlist ? &list->rhead : p);
829                 }
830
831                 iter->skip = 0;
832         }
833
834         iter->p = NULL;
835
836         /* Ensure we see any new tables. */
837         smp_rmb();
838
839         iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
840         if (iter->walker.tbl) {
841                 iter->slot = 0;
842                 iter->skip = 0;
843                 return ERR_PTR(-EAGAIN);
844         } else {
845                 iter->end_of_table = true;
846         }
847
848         return NULL;
849 }
850
851 /**
852  * rhashtable_walk_next - Return the next object and advance the iterator
853  * @iter:       Hash table iterator
854  *
855  * Note that you must call rhashtable_walk_stop when you are finished
856  * with the walk.
857  *
858  * Returns the next object or NULL when the end of the table is reached.
859  *
860  * Returns -EAGAIN if resize event occurred.  Note that the iterator
861  * will rewind back to the beginning and you may continue to use it.
862  */
863 void *rhashtable_walk_next(struct rhashtable_iter *iter)
864 {
865         struct rhlist_head *list = iter->list;
866         struct rhashtable *ht = iter->ht;
867         struct rhash_head *p = iter->p;
868         bool rhlist = ht->rhlist;
869
870         if (p) {
871                 if (!rhlist || !(list = rcu_dereference(list->next))) {
872                         p = rcu_dereference(p->next);
873                         list = container_of(p, struct rhlist_head, rhead);
874                 }
875                 if (!rht_is_a_nulls(p)) {
876                         iter->skip++;
877                         iter->p = p;
878                         iter->list = list;
879                         return rht_obj(ht, rhlist ? &list->rhead : p);
880                 }
881
882                 /* At the end of this slot, switch to next one and then find
883                  * next entry from that point.
884                  */
885                 iter->skip = 0;
886                 iter->slot++;
887         }
888
889         return __rhashtable_walk_find_next(iter);
890 }
891 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
892
893 /**
894  * rhashtable_walk_peek - Return the next object but don't advance the iterator
895  * @iter:       Hash table iterator
896  *
897  * Returns the next object or NULL when the end of the table is reached.
898  *
899  * Returns -EAGAIN if resize event occurred.  Note that the iterator
900  * will rewind back to the beginning and you may continue to use it.
901  */
902 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
903 {
904         struct rhlist_head *list = iter->list;
905         struct rhashtable *ht = iter->ht;
906         struct rhash_head *p = iter->p;
907
908         if (p)
909                 return rht_obj(ht, ht->rhlist ? &list->rhead : p);
910
911         /* No object found in current iter, find next one in the table. */
912
913         if (iter->skip) {
914                 /* A nonzero skip value points to the next entry in the table
915                  * beyond that last one that was found. Decrement skip so
916                  * we find the current value. __rhashtable_walk_find_next
917                  * will restore the original value of skip assuming that
918                  * the table hasn't changed.
919                  */
920                 iter->skip--;
921         }
922
923         return __rhashtable_walk_find_next(iter);
924 }
925 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
926
927 /**
928  * rhashtable_walk_stop - Finish a hash table walk
929  * @iter:       Hash table iterator
930  *
931  * Finish a hash table walk.  Does not reset the iterator to the start of the
932  * hash table.
933  */
934 void rhashtable_walk_stop(struct rhashtable_iter *iter)
935         __releases(RCU)
936 {
937         struct rhashtable *ht;
938         struct bucket_table *tbl = iter->walker.tbl;
939
940         if (!tbl)
941                 goto out;
942
943         ht = iter->ht;
944
945         spin_lock(&ht->lock);
946         if (tbl->rehash < tbl->size)
947                 list_add(&iter->walker.list, &tbl->walkers);
948         else
949                 iter->walker.tbl = NULL;
950         spin_unlock(&ht->lock);
951
952 out:
953         rcu_read_unlock();
954 }
955 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
956
957 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
958 {
959         size_t retsize;
960
961         if (params->nelem_hint)
962                 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
963                               (unsigned long)params->min_size);
964         else
965                 retsize = max(HASH_DEFAULT_SIZE,
966                               (unsigned long)params->min_size);
967
968         return retsize;
969 }
970
971 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
972 {
973         return jhash2(key, length, seed);
974 }
975
976 /**
977  * rhashtable_init - initialize a new hash table
978  * @ht:         hash table to be initialized
979  * @params:     configuration parameters
980  *
981  * Initializes a new hash table based on the provided configuration
982  * parameters. A table can be configured either with a variable or
983  * fixed length key:
984  *
985  * Configuration Example 1: Fixed length keys
986  * struct test_obj {
987  *      int                     key;
988  *      void *                  my_member;
989  *      struct rhash_head       node;
990  * };
991  *
992  * struct rhashtable_params params = {
993  *      .head_offset = offsetof(struct test_obj, node),
994  *      .key_offset = offsetof(struct test_obj, key),
995  *      .key_len = sizeof(int),
996  *      .hashfn = jhash,
997  * };
998  *
999  * Configuration Example 2: Variable length keys
1000  * struct test_obj {
1001  *      [...]
1002  *      struct rhash_head       node;
1003  * };
1004  *
1005  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1006  * {
1007  *      struct test_obj *obj = data;
1008  *
1009  *      return [... hash ...];
1010  * }
1011  *
1012  * struct rhashtable_params params = {
1013  *      .head_offset = offsetof(struct test_obj, node),
1014  *      .hashfn = jhash,
1015  *      .obj_hashfn = my_hash_fn,
1016  * };
1017  */
1018 int rhashtable_init(struct rhashtable *ht,
1019                     const struct rhashtable_params *params)
1020 {
1021         struct bucket_table *tbl;
1022         size_t size;
1023
1024         if ((!params->key_len && !params->obj_hashfn) ||
1025             (params->obj_hashfn && !params->obj_cmpfn))
1026                 return -EINVAL;
1027
1028         memset(ht, 0, sizeof(*ht));
1029         mutex_init(&ht->mutex);
1030         spin_lock_init(&ht->lock);
1031         memcpy(&ht->p, params, sizeof(*params));
1032
1033         if (params->min_size)
1034                 ht->p.min_size = roundup_pow_of_two(params->min_size);
1035
1036         /* Cap total entries at 2^31 to avoid nelems overflow. */
1037         ht->max_elems = 1u << 31;
1038
1039         if (params->max_size) {
1040                 ht->p.max_size = rounddown_pow_of_two(params->max_size);
1041                 if (ht->p.max_size < ht->max_elems / 2)
1042                         ht->max_elems = ht->p.max_size * 2;
1043         }
1044
1045         ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1046
1047         size = rounded_hashtable_size(&ht->p);
1048
1049         if (params->locks_mul)
1050                 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1051         else
1052                 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1053
1054         ht->key_len = ht->p.key_len;
1055         if (!params->hashfn) {
1056                 ht->p.hashfn = jhash;
1057
1058                 if (!(ht->key_len & (sizeof(u32) - 1))) {
1059                         ht->key_len /= sizeof(u32);
1060                         ht->p.hashfn = rhashtable_jhash2;
1061                 }
1062         }
1063
1064         /*
1065          * This is api initialization and thus we need to guarantee the
1066          * initial rhashtable allocation. Upon failure, retry with the
1067          * smallest possible size with __GFP_NOFAIL semantics.
1068          */
1069         tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1070         if (unlikely(tbl == NULL)) {
1071                 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1072                 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1073         }
1074
1075         atomic_set(&ht->nelems, 0);
1076
1077         RCU_INIT_POINTER(ht->tbl, tbl);
1078
1079         INIT_WORK(&ht->run_work, rht_deferred_worker);
1080
1081         return 0;
1082 }
1083 EXPORT_SYMBOL_GPL(rhashtable_init);
1084
1085 /**
1086  * rhltable_init - initialize a new hash list table
1087  * @hlt:        hash list table to be initialized
1088  * @params:     configuration parameters
1089  *
1090  * Initializes a new hash list table.
1091  *
1092  * See documentation for rhashtable_init.
1093  */
1094 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1095 {
1096         int err;
1097
1098         err = rhashtable_init(&hlt->ht, params);
1099         hlt->ht.rhlist = true;
1100         return err;
1101 }
1102 EXPORT_SYMBOL_GPL(rhltable_init);
1103
1104 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1105                                 void (*free_fn)(void *ptr, void *arg),
1106                                 void *arg)
1107 {
1108         struct rhlist_head *list;
1109
1110         if (!ht->rhlist) {
1111                 free_fn(rht_obj(ht, obj), arg);
1112                 return;
1113         }
1114
1115         list = container_of(obj, struct rhlist_head, rhead);
1116         do {
1117                 obj = &list->rhead;
1118                 list = rht_dereference(list->next, ht);
1119                 free_fn(rht_obj(ht, obj), arg);
1120         } while (list);
1121 }
1122
1123 /**
1124  * rhashtable_free_and_destroy - free elements and destroy hash table
1125  * @ht:         the hash table to destroy
1126  * @free_fn:    callback to release resources of element
1127  * @arg:        pointer passed to free_fn
1128  *
1129  * Stops an eventual async resize. If defined, invokes free_fn for each
1130  * element to releasal resources. Please note that RCU protected
1131  * readers may still be accessing the elements. Releasing of resources
1132  * must occur in a compatible manner. Then frees the bucket array.
1133  *
1134  * This function will eventually sleep to wait for an async resize
1135  * to complete. The caller is responsible that no further write operations
1136  * occurs in parallel.
1137  */
1138 void rhashtable_free_and_destroy(struct rhashtable *ht,
1139                                  void (*free_fn)(void *ptr, void *arg),
1140                                  void *arg)
1141 {
1142         struct bucket_table *tbl, *next_tbl;
1143         unsigned int i;
1144
1145         cancel_work_sync(&ht->run_work);
1146
1147         mutex_lock(&ht->mutex);
1148         tbl = rht_dereference(ht->tbl, ht);
1149 restart:
1150         if (free_fn) {
1151                 for (i = 0; i < tbl->size; i++) {
1152                         struct rhash_head *pos, *next;
1153
1154                         cond_resched();
1155                         for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1156                              next = !rht_is_a_nulls(pos) ?
1157                                         rht_dereference(pos->next, ht) : NULL;
1158                              !rht_is_a_nulls(pos);
1159                              pos = next,
1160                              next = !rht_is_a_nulls(pos) ?
1161                                         rht_dereference(pos->next, ht) : NULL)
1162                                 rhashtable_free_one(ht, pos, free_fn, arg);
1163                 }
1164         }
1165
1166         next_tbl = rht_dereference(tbl->future_tbl, ht);
1167         bucket_table_free(tbl);
1168         if (next_tbl) {
1169                 tbl = next_tbl;
1170                 goto restart;
1171         }
1172         mutex_unlock(&ht->mutex);
1173 }
1174 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1175
1176 void rhashtable_destroy(struct rhashtable *ht)
1177 {
1178         return rhashtable_free_and_destroy(ht, NULL, NULL);
1179 }
1180 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1181
1182 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1183                                             unsigned int hash)
1184 {
1185         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1186         static struct rhash_head __rcu *rhnull;
1187         unsigned int index = hash & ((1 << tbl->nest) - 1);
1188         unsigned int size = tbl->size >> tbl->nest;
1189         unsigned int subhash = hash;
1190         union nested_table *ntbl;
1191
1192         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1193         ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1194         subhash >>= tbl->nest;
1195
1196         while (ntbl && size > (1 << shift)) {
1197                 index = subhash & ((1 << shift) - 1);
1198                 ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1199                                                   tbl, hash);
1200                 size >>= shift;
1201                 subhash >>= shift;
1202         }
1203
1204         if (!ntbl) {
1205                 if (!rhnull)
1206                         INIT_RHT_NULLS_HEAD(rhnull);
1207                 return &rhnull;
1208         }
1209
1210         return &ntbl[subhash].bucket;
1211
1212 }
1213 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1214
1215 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1216                                                    struct bucket_table *tbl,
1217                                                    unsigned int hash)
1218 {
1219         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1220         unsigned int index = hash & ((1 << tbl->nest) - 1);
1221         unsigned int size = tbl->size >> tbl->nest;
1222         union nested_table *ntbl;
1223
1224         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1225         hash >>= tbl->nest;
1226         ntbl = nested_table_alloc(ht, &ntbl[index].table,
1227                                   size <= (1 << shift));
1228
1229         while (ntbl && size > (1 << shift)) {
1230                 index = hash & ((1 << shift) - 1);
1231                 size >>= shift;
1232                 hash >>= shift;
1233                 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1234                                           size <= (1 << shift));
1235         }
1236
1237         if (!ntbl)
1238                 return NULL;
1239
1240         return &ntbl[hash].bucket;
1241
1242 }
1243 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);