Linux 6.9-rc5
[sfrench/cifs-2.6.git] / lib / percpu-refcount.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "%s: " fmt, __func__
3
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/wait.h>
7 #include <linux/slab.h>
8 #include <linux/mm.h>
9 #include <linux/percpu-refcount.h>
10
11 /*
12  * Initially, a percpu refcount is just a set of percpu counters. Initially, we
13  * don't try to detect the ref hitting 0 - which means that get/put can just
14  * increment or decrement the local counter. Note that the counter on a
15  * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
16  * percpu counters will all sum to the correct value
17  *
18  * (More precisely: because modular arithmetic is commutative the sum of all the
19  * percpu_count vars will be equal to what it would have been if all the gets
20  * and puts were done to a single integer, even if some of the percpu integers
21  * overflow or underflow).
22  *
23  * The real trick to implementing percpu refcounts is shutdown. We can't detect
24  * the ref hitting 0 on every put - this would require global synchronization
25  * and defeat the whole purpose of using percpu refs.
26  *
27  * What we do is require the user to keep track of the initial refcount; we know
28  * the ref can't hit 0 before the user drops the initial ref, so as long as we
29  * convert to non percpu mode before the initial ref is dropped everything
30  * works.
31  *
32  * Converting to non percpu mode is done with some RCUish stuff in
33  * percpu_ref_kill. Additionally, we need a bias value so that the
34  * atomic_long_t can't hit 0 before we've added up all the percpu refs.
35  */
36
37 #define PERCPU_COUNT_BIAS       (1LU << (BITS_PER_LONG - 1))
38
39 static DEFINE_SPINLOCK(percpu_ref_switch_lock);
40 static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
41
42 static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
43 {
44         return (unsigned long __percpu *)
45                 (ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
46 }
47
48 /**
49  * percpu_ref_init - initialize a percpu refcount
50  * @ref: percpu_ref to initialize
51  * @release: function which will be called when refcount hits 0
52  * @flags: PERCPU_REF_INIT_* flags
53  * @gfp: allocation mask to use
54  *
55  * Initializes @ref.  @ref starts out in percpu mode with a refcount of 1 unless
56  * @flags contains PERCPU_REF_INIT_ATOMIC or PERCPU_REF_INIT_DEAD.  These flags
57  * change the start state to atomic with the latter setting the initial refcount
58  * to 0.  See the definitions of PERCPU_REF_INIT_* flags for flag behaviors.
59  *
60  * Note that @release must not sleep - it may potentially be called from RCU
61  * callback context by percpu_ref_kill().
62  */
63 int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
64                     unsigned int flags, gfp_t gfp)
65 {
66         size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
67                              __alignof__(unsigned long));
68         unsigned long start_count = 0;
69         struct percpu_ref_data *data;
70
71         ref->percpu_count_ptr = (unsigned long)
72                 __alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
73         if (!ref->percpu_count_ptr)
74                 return -ENOMEM;
75
76         data = kzalloc(sizeof(*ref->data), gfp);
77         if (!data) {
78                 free_percpu((void __percpu *)ref->percpu_count_ptr);
79                 ref->percpu_count_ptr = 0;
80                 return -ENOMEM;
81         }
82
83         data->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
84         data->allow_reinit = flags & PERCPU_REF_ALLOW_REINIT;
85
86         if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD)) {
87                 ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
88                 data->allow_reinit = true;
89         } else {
90                 start_count += PERCPU_COUNT_BIAS;
91         }
92
93         if (flags & PERCPU_REF_INIT_DEAD)
94                 ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
95         else
96                 start_count++;
97
98         atomic_long_set(&data->count, start_count);
99
100         data->release = release;
101         data->confirm_switch = NULL;
102         data->ref = ref;
103         ref->data = data;
104         return 0;
105 }
106 EXPORT_SYMBOL_GPL(percpu_ref_init);
107
108 static void __percpu_ref_exit(struct percpu_ref *ref)
109 {
110         unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
111
112         if (percpu_count) {
113                 /* non-NULL confirm_switch indicates switching in progress */
114                 WARN_ON_ONCE(ref->data && ref->data->confirm_switch);
115                 free_percpu(percpu_count);
116                 ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
117         }
118 }
119
120 /**
121  * percpu_ref_exit - undo percpu_ref_init()
122  * @ref: percpu_ref to exit
123  *
124  * This function exits @ref.  The caller is responsible for ensuring that
125  * @ref is no longer in active use.  The usual places to invoke this
126  * function from are the @ref->release() callback or in init failure path
127  * where percpu_ref_init() succeeded but other parts of the initialization
128  * of the embedding object failed.
129  */
130 void percpu_ref_exit(struct percpu_ref *ref)
131 {
132         struct percpu_ref_data *data = ref->data;
133         unsigned long flags;
134
135         __percpu_ref_exit(ref);
136
137         if (!data)
138                 return;
139
140         spin_lock_irqsave(&percpu_ref_switch_lock, flags);
141         ref->percpu_count_ptr |= atomic_long_read(&ref->data->count) <<
142                 __PERCPU_REF_FLAG_BITS;
143         ref->data = NULL;
144         spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
145
146         kfree(data);
147 }
148 EXPORT_SYMBOL_GPL(percpu_ref_exit);
149
150 static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
151 {
152         struct percpu_ref_data *data = container_of(rcu,
153                         struct percpu_ref_data, rcu);
154         struct percpu_ref *ref = data->ref;
155
156         data->confirm_switch(ref);
157         data->confirm_switch = NULL;
158         wake_up_all(&percpu_ref_switch_waitq);
159
160         if (!data->allow_reinit)
161                 __percpu_ref_exit(ref);
162
163         /* drop ref from percpu_ref_switch_to_atomic() */
164         percpu_ref_put(ref);
165 }
166
167 static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
168 {
169         struct percpu_ref_data *data = container_of(rcu,
170                         struct percpu_ref_data, rcu);
171         struct percpu_ref *ref = data->ref;
172         unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
173         static atomic_t underflows;
174         unsigned long count = 0;
175         int cpu;
176
177         for_each_possible_cpu(cpu)
178                 count += *per_cpu_ptr(percpu_count, cpu);
179
180         pr_debug("global %lu percpu %lu\n",
181                  atomic_long_read(&data->count), count);
182
183         /*
184          * It's crucial that we sum the percpu counters _before_ adding the sum
185          * to &ref->count; since gets could be happening on one cpu while puts
186          * happen on another, adding a single cpu's count could cause
187          * @ref->count to hit 0 before we've got a consistent value - but the
188          * sum of all the counts will be consistent and correct.
189          *
190          * Subtracting the bias value then has to happen _after_ adding count to
191          * &ref->count; we need the bias value to prevent &ref->count from
192          * reaching 0 before we add the percpu counts. But doing it at the same
193          * time is equivalent and saves us atomic operations:
194          */
195         atomic_long_add((long)count - PERCPU_COUNT_BIAS, &data->count);
196
197         if (WARN_ONCE(atomic_long_read(&data->count) <= 0,
198                       "percpu ref (%ps) <= 0 (%ld) after switching to atomic",
199                       data->release, atomic_long_read(&data->count)) &&
200             atomic_inc_return(&underflows) < 4) {
201                 pr_err("%s(): percpu_ref underflow", __func__);
202                 mem_dump_obj(data);
203         }
204
205         /* @ref is viewed as dead on all CPUs, send out switch confirmation */
206         percpu_ref_call_confirm_rcu(rcu);
207 }
208
209 static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
210 {
211 }
212
213 static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
214                                           percpu_ref_func_t *confirm_switch)
215 {
216         if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) {
217                 if (confirm_switch)
218                         confirm_switch(ref);
219                 return;
220         }
221
222         /* switching from percpu to atomic */
223         ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
224
225         /*
226          * Non-NULL ->confirm_switch is used to indicate that switching is
227          * in progress.  Use noop one if unspecified.
228          */
229         ref->data->confirm_switch = confirm_switch ?:
230                 percpu_ref_noop_confirm_switch;
231
232         percpu_ref_get(ref);    /* put after confirmation */
233         call_rcu_hurry(&ref->data->rcu,
234                        percpu_ref_switch_to_atomic_rcu);
235 }
236
237 static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
238 {
239         unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
240         int cpu;
241
242         BUG_ON(!percpu_count);
243
244         if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
245                 return;
246
247         if (WARN_ON_ONCE(!ref->data->allow_reinit))
248                 return;
249
250         atomic_long_add(PERCPU_COUNT_BIAS, &ref->data->count);
251
252         /*
253          * Restore per-cpu operation.  smp_store_release() is paired
254          * with READ_ONCE() in __ref_is_percpu() and guarantees that the
255          * zeroing is visible to all percpu accesses which can see the
256          * following __PERCPU_REF_ATOMIC clearing.
257          */
258         for_each_possible_cpu(cpu)
259                 *per_cpu_ptr(percpu_count, cpu) = 0;
260
261         smp_store_release(&ref->percpu_count_ptr,
262                           ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
263 }
264
265 static void __percpu_ref_switch_mode(struct percpu_ref *ref,
266                                      percpu_ref_func_t *confirm_switch)
267 {
268         struct percpu_ref_data *data = ref->data;
269
270         lockdep_assert_held(&percpu_ref_switch_lock);
271
272         /*
273          * If the previous ATOMIC switching hasn't finished yet, wait for
274          * its completion.  If the caller ensures that ATOMIC switching
275          * isn't in progress, this function can be called from any context.
276          */
277         wait_event_lock_irq(percpu_ref_switch_waitq, !data->confirm_switch,
278                             percpu_ref_switch_lock);
279
280         if (data->force_atomic || percpu_ref_is_dying(ref))
281                 __percpu_ref_switch_to_atomic(ref, confirm_switch);
282         else
283                 __percpu_ref_switch_to_percpu(ref);
284 }
285
286 /**
287  * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
288  * @ref: percpu_ref to switch to atomic mode
289  * @confirm_switch: optional confirmation callback
290  *
291  * There's no reason to use this function for the usual reference counting.
292  * Use percpu_ref_kill[_and_confirm]().
293  *
294  * Schedule switching of @ref to atomic mode.  All its percpu counts will
295  * be collected to the main atomic counter.  On completion, when all CPUs
296  * are guaraneed to be in atomic mode, @confirm_switch, which may not
297  * block, is invoked.  This function may be invoked concurrently with all
298  * the get/put operations and can safely be mixed with kill and reinit
299  * operations.  Note that @ref will stay in atomic mode across kill/reinit
300  * cycles until percpu_ref_switch_to_percpu() is called.
301  *
302  * This function may block if @ref is in the process of switching to atomic
303  * mode.  If the caller ensures that @ref is not in the process of
304  * switching to atomic mode, this function can be called from any context.
305  */
306 void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
307                                  percpu_ref_func_t *confirm_switch)
308 {
309         unsigned long flags;
310
311         spin_lock_irqsave(&percpu_ref_switch_lock, flags);
312
313         ref->data->force_atomic = true;
314         __percpu_ref_switch_mode(ref, confirm_switch);
315
316         spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
317 }
318 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic);
319
320 /**
321  * percpu_ref_switch_to_atomic_sync - switch a percpu_ref to atomic mode
322  * @ref: percpu_ref to switch to atomic mode
323  *
324  * Schedule switching the ref to atomic mode, and wait for the
325  * switch to complete.  Caller must ensure that no other thread
326  * will switch back to percpu mode.
327  */
328 void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref)
329 {
330         percpu_ref_switch_to_atomic(ref, NULL);
331         wait_event(percpu_ref_switch_waitq, !ref->data->confirm_switch);
332 }
333 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic_sync);
334
335 /**
336  * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
337  * @ref: percpu_ref to switch to percpu mode
338  *
339  * There's no reason to use this function for the usual reference counting.
340  * To re-use an expired ref, use percpu_ref_reinit().
341  *
342  * Switch @ref to percpu mode.  This function may be invoked concurrently
343  * with all the get/put operations and can safely be mixed with kill and
344  * reinit operations.  This function reverses the sticky atomic state set
345  * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic().  If @ref is
346  * dying or dead, the actual switching takes place on the following
347  * percpu_ref_reinit().
348  *
349  * This function may block if @ref is in the process of switching to atomic
350  * mode.  If the caller ensures that @ref is not in the process of
351  * switching to atomic mode, this function can be called from any context.
352  */
353 void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
354 {
355         unsigned long flags;
356
357         spin_lock_irqsave(&percpu_ref_switch_lock, flags);
358
359         ref->data->force_atomic = false;
360         __percpu_ref_switch_mode(ref, NULL);
361
362         spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
363 }
364 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_percpu);
365
366 /**
367  * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
368  * @ref: percpu_ref to kill
369  * @confirm_kill: optional confirmation callback
370  *
371  * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
372  * @confirm_kill is not NULL.  @confirm_kill, which may not block, will be
373  * called after @ref is seen as dead from all CPUs at which point all
374  * further invocations of percpu_ref_tryget_live() will fail.  See
375  * percpu_ref_tryget_live() for details.
376  *
377  * This function normally doesn't block and can be called from any context
378  * but it may block if @confirm_kill is specified and @ref is in the
379  * process of switching to atomic mode by percpu_ref_switch_to_atomic().
380  *
381  * There are no implied RCU grace periods between kill and release.
382  */
383 void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
384                                  percpu_ref_func_t *confirm_kill)
385 {
386         unsigned long flags;
387
388         spin_lock_irqsave(&percpu_ref_switch_lock, flags);
389
390         WARN_ONCE(percpu_ref_is_dying(ref),
391                   "%s called more than once on %ps!", __func__,
392                   ref->data->release);
393
394         ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
395         __percpu_ref_switch_mode(ref, confirm_kill);
396         percpu_ref_put(ref);
397
398         spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
399 }
400 EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
401
402 /**
403  * percpu_ref_is_zero - test whether a percpu refcount reached zero
404  * @ref: percpu_ref to test
405  *
406  * Returns %true if @ref reached zero.
407  *
408  * This function is safe to call as long as @ref is between init and exit.
409  */
410 bool percpu_ref_is_zero(struct percpu_ref *ref)
411 {
412         unsigned long __percpu *percpu_count;
413         unsigned long count, flags;
414
415         if (__ref_is_percpu(ref, &percpu_count))
416                 return false;
417
418         /* protect us from being destroyed */
419         spin_lock_irqsave(&percpu_ref_switch_lock, flags);
420         if (ref->data)
421                 count = atomic_long_read(&ref->data->count);
422         else
423                 count = ref->percpu_count_ptr >> __PERCPU_REF_FLAG_BITS;
424         spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
425
426         return count == 0;
427 }
428 EXPORT_SYMBOL_GPL(percpu_ref_is_zero);
429
430 /**
431  * percpu_ref_reinit - re-initialize a percpu refcount
432  * @ref: perpcu_ref to re-initialize
433  *
434  * Re-initialize @ref so that it's in the same state as when it finished
435  * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD.  @ref must have been
436  * initialized successfully and reached 0 but not exited.
437  *
438  * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
439  * this function is in progress.
440  */
441 void percpu_ref_reinit(struct percpu_ref *ref)
442 {
443         WARN_ON_ONCE(!percpu_ref_is_zero(ref));
444
445         percpu_ref_resurrect(ref);
446 }
447 EXPORT_SYMBOL_GPL(percpu_ref_reinit);
448
449 /**
450  * percpu_ref_resurrect - modify a percpu refcount from dead to live
451  * @ref: perpcu_ref to resurrect
452  *
453  * Modify @ref so that it's in the same state as before percpu_ref_kill() was
454  * called. @ref must be dead but must not yet have exited.
455  *
456  * If @ref->release() frees @ref then the caller is responsible for
457  * guaranteeing that @ref->release() does not get called while this
458  * function is in progress.
459  *
460  * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
461  * this function is in progress.
462  */
463 void percpu_ref_resurrect(struct percpu_ref *ref)
464 {
465         unsigned long __percpu *percpu_count;
466         unsigned long flags;
467
468         spin_lock_irqsave(&percpu_ref_switch_lock, flags);
469
470         WARN_ON_ONCE(!percpu_ref_is_dying(ref));
471         WARN_ON_ONCE(__ref_is_percpu(ref, &percpu_count));
472
473         ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
474         percpu_ref_get(ref);
475         __percpu_ref_switch_mode(ref, NULL);
476
477         spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
478 }
479 EXPORT_SYMBOL_GPL(percpu_ref_resurrect);