Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild...
[sfrench/cifs-2.6.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>        /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18
19 /* Up this if you want to test the TIME_EXTENTS and normalization */
20 #define DEBUG_SHIFT 0
21
22 /* FIXME!!! */
23 u64 ring_buffer_time_stamp(int cpu)
24 {
25         /* shift to debug/test normalization and TIME_EXTENTS */
26         return sched_clock() << DEBUG_SHIFT;
27 }
28
29 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
30 {
31         /* Just stupid testing the normalize function and deltas */
32         *ts >>= DEBUG_SHIFT;
33 }
34
35 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
36 #define RB_ALIGNMENT_SHIFT      2
37 #define RB_ALIGNMENT            (1 << RB_ALIGNMENT_SHIFT)
38 #define RB_MAX_SMALL_DATA       28
39
40 enum {
41         RB_LEN_TIME_EXTEND = 8,
42         RB_LEN_TIME_STAMP = 16,
43 };
44
45 /* inline for ring buffer fast paths */
46 static inline unsigned
47 rb_event_length(struct ring_buffer_event *event)
48 {
49         unsigned length;
50
51         switch (event->type) {
52         case RINGBUF_TYPE_PADDING:
53                 /* undefined */
54                 return -1;
55
56         case RINGBUF_TYPE_TIME_EXTEND:
57                 return RB_LEN_TIME_EXTEND;
58
59         case RINGBUF_TYPE_TIME_STAMP:
60                 return RB_LEN_TIME_STAMP;
61
62         case RINGBUF_TYPE_DATA:
63                 if (event->len)
64                         length = event->len << RB_ALIGNMENT_SHIFT;
65                 else
66                         length = event->array[0];
67                 return length + RB_EVNT_HDR_SIZE;
68         default:
69                 BUG();
70         }
71         /* not hit */
72         return 0;
73 }
74
75 /**
76  * ring_buffer_event_length - return the length of the event
77  * @event: the event to get the length of
78  */
79 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
80 {
81         return rb_event_length(event);
82 }
83
84 /* inline for ring buffer fast paths */
85 static inline void *
86 rb_event_data(struct ring_buffer_event *event)
87 {
88         BUG_ON(event->type != RINGBUF_TYPE_DATA);
89         /* If length is in len field, then array[0] has the data */
90         if (event->len)
91                 return (void *)&event->array[0];
92         /* Otherwise length is in array[0] and array[1] has the data */
93         return (void *)&event->array[1];
94 }
95
96 /**
97  * ring_buffer_event_data - return the data of the event
98  * @event: the event to get the data from
99  */
100 void *ring_buffer_event_data(struct ring_buffer_event *event)
101 {
102         return rb_event_data(event);
103 }
104
105 #define for_each_buffer_cpu(buffer, cpu)                \
106         for_each_cpu_mask(cpu, buffer->cpumask)
107
108 #define TS_SHIFT        27
109 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
110 #define TS_DELTA_TEST   (~TS_MASK)
111
112 /*
113  * This hack stolen from mm/slob.c.
114  * We can store per page timing information in the page frame of the page.
115  * Thanks to Peter Zijlstra for suggesting this idea.
116  */
117 struct buffer_page {
118         u64              time_stamp;    /* page time stamp */
119         local_t          write;         /* index for next write */
120         local_t          commit;        /* write commited index */
121         unsigned         read;          /* index for next read */
122         struct list_head list;          /* list of free pages */
123         void *page;                     /* Actual data page */
124 };
125
126 /*
127  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
128  * this issue out.
129  */
130 static inline void free_buffer_page(struct buffer_page *bpage)
131 {
132         if (bpage->page)
133                 free_page((unsigned long)bpage->page);
134         kfree(bpage);
135 }
136
137 /*
138  * We need to fit the time_stamp delta into 27 bits.
139  */
140 static inline int test_time_stamp(u64 delta)
141 {
142         if (delta & TS_DELTA_TEST)
143                 return 1;
144         return 0;
145 }
146
147 #define BUF_PAGE_SIZE PAGE_SIZE
148
149 /*
150  * head_page == tail_page && head == tail then buffer is empty.
151  */
152 struct ring_buffer_per_cpu {
153         int                             cpu;
154         struct ring_buffer              *buffer;
155         spinlock_t                      lock;
156         struct lock_class_key           lock_key;
157         struct list_head                pages;
158         struct buffer_page              *head_page;     /* read from head */
159         struct buffer_page              *tail_page;     /* write to tail */
160         struct buffer_page              *commit_page;   /* commited pages */
161         struct buffer_page              *reader_page;
162         unsigned long                   overrun;
163         unsigned long                   entries;
164         u64                             write_stamp;
165         u64                             read_stamp;
166         atomic_t                        record_disabled;
167 };
168
169 struct ring_buffer {
170         unsigned long                   size;
171         unsigned                        pages;
172         unsigned                        flags;
173         int                             cpus;
174         cpumask_t                       cpumask;
175         atomic_t                        record_disabled;
176
177         struct mutex                    mutex;
178
179         struct ring_buffer_per_cpu      **buffers;
180 };
181
182 struct ring_buffer_iter {
183         struct ring_buffer_per_cpu      *cpu_buffer;
184         unsigned long                   head;
185         struct buffer_page              *head_page;
186         u64                             read_stamp;
187 };
188
189 #define RB_WARN_ON(buffer, cond)                                \
190         do {                                                    \
191                 if (unlikely(cond)) {                           \
192                         atomic_inc(&buffer->record_disabled);   \
193                         WARN_ON(1);                             \
194                 }                                               \
195         } while (0)
196
197 #define RB_WARN_ON_RET(buffer, cond)                            \
198         do {                                                    \
199                 if (unlikely(cond)) {                           \
200                         atomic_inc(&buffer->record_disabled);   \
201                         WARN_ON(1);                             \
202                         return -1;                              \
203                 }                                               \
204         } while (0)
205
206 #define RB_WARN_ON_ONCE(buffer, cond)                           \
207         do {                                                    \
208                 static int once;                                \
209                 if (unlikely(cond) && !once) {                  \
210                         once++;                                 \
211                         atomic_inc(&buffer->record_disabled);   \
212                         WARN_ON(1);                             \
213                 }                                               \
214         } while (0)
215
216 /**
217  * check_pages - integrity check of buffer pages
218  * @cpu_buffer: CPU buffer with pages to test
219  *
220  * As a safty measure we check to make sure the data pages have not
221  * been corrupted.
222  */
223 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
224 {
225         struct list_head *head = &cpu_buffer->pages;
226         struct buffer_page *page, *tmp;
227
228         RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
229         RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
230
231         list_for_each_entry_safe(page, tmp, head, list) {
232                 RB_WARN_ON_RET(cpu_buffer,
233                                page->list.next->prev != &page->list);
234                 RB_WARN_ON_RET(cpu_buffer,
235                                page->list.prev->next != &page->list);
236         }
237
238         return 0;
239 }
240
241 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
242                              unsigned nr_pages)
243 {
244         struct list_head *head = &cpu_buffer->pages;
245         struct buffer_page *page, *tmp;
246         unsigned long addr;
247         LIST_HEAD(pages);
248         unsigned i;
249
250         for (i = 0; i < nr_pages; i++) {
251                 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
252                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
253                 if (!page)
254                         goto free_pages;
255                 list_add(&page->list, &pages);
256
257                 addr = __get_free_page(GFP_KERNEL);
258                 if (!addr)
259                         goto free_pages;
260                 page->page = (void *)addr;
261         }
262
263         list_splice(&pages, head);
264
265         rb_check_pages(cpu_buffer);
266
267         return 0;
268
269  free_pages:
270         list_for_each_entry_safe(page, tmp, &pages, list) {
271                 list_del_init(&page->list);
272                 free_buffer_page(page);
273         }
274         return -ENOMEM;
275 }
276
277 static struct ring_buffer_per_cpu *
278 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
279 {
280         struct ring_buffer_per_cpu *cpu_buffer;
281         struct buffer_page *page;
282         unsigned long addr;
283         int ret;
284
285         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
286                                   GFP_KERNEL, cpu_to_node(cpu));
287         if (!cpu_buffer)
288                 return NULL;
289
290         cpu_buffer->cpu = cpu;
291         cpu_buffer->buffer = buffer;
292         spin_lock_init(&cpu_buffer->lock);
293         INIT_LIST_HEAD(&cpu_buffer->pages);
294
295         page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
296                             GFP_KERNEL, cpu_to_node(cpu));
297         if (!page)
298                 goto fail_free_buffer;
299
300         cpu_buffer->reader_page = page;
301         addr = __get_free_page(GFP_KERNEL);
302         if (!addr)
303                 goto fail_free_reader;
304         page->page = (void *)addr;
305
306         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
307
308         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
309         if (ret < 0)
310                 goto fail_free_reader;
311
312         cpu_buffer->head_page
313                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
314         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
315
316         return cpu_buffer;
317
318  fail_free_reader:
319         free_buffer_page(cpu_buffer->reader_page);
320
321  fail_free_buffer:
322         kfree(cpu_buffer);
323         return NULL;
324 }
325
326 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
327 {
328         struct list_head *head = &cpu_buffer->pages;
329         struct buffer_page *page, *tmp;
330
331         list_del_init(&cpu_buffer->reader_page->list);
332         free_buffer_page(cpu_buffer->reader_page);
333
334         list_for_each_entry_safe(page, tmp, head, list) {
335                 list_del_init(&page->list);
336                 free_buffer_page(page);
337         }
338         kfree(cpu_buffer);
339 }
340
341 /*
342  * Causes compile errors if the struct buffer_page gets bigger
343  * than the struct page.
344  */
345 extern int ring_buffer_page_too_big(void);
346
347 /**
348  * ring_buffer_alloc - allocate a new ring_buffer
349  * @size: the size in bytes that is needed.
350  * @flags: attributes to set for the ring buffer.
351  *
352  * Currently the only flag that is available is the RB_FL_OVERWRITE
353  * flag. This flag means that the buffer will overwrite old data
354  * when the buffer wraps. If this flag is not set, the buffer will
355  * drop data when the tail hits the head.
356  */
357 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
358 {
359         struct ring_buffer *buffer;
360         int bsize;
361         int cpu;
362
363         /* Paranoid! Optimizes out when all is well */
364         if (sizeof(struct buffer_page) > sizeof(struct page))
365                 ring_buffer_page_too_big();
366
367
368         /* keep it in its own cache line */
369         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
370                          GFP_KERNEL);
371         if (!buffer)
372                 return NULL;
373
374         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
375         buffer->flags = flags;
376
377         /* need at least two pages */
378         if (buffer->pages == 1)
379                 buffer->pages++;
380
381         buffer->cpumask = cpu_possible_map;
382         buffer->cpus = nr_cpu_ids;
383
384         bsize = sizeof(void *) * nr_cpu_ids;
385         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
386                                   GFP_KERNEL);
387         if (!buffer->buffers)
388                 goto fail_free_buffer;
389
390         for_each_buffer_cpu(buffer, cpu) {
391                 buffer->buffers[cpu] =
392                         rb_allocate_cpu_buffer(buffer, cpu);
393                 if (!buffer->buffers[cpu])
394                         goto fail_free_buffers;
395         }
396
397         mutex_init(&buffer->mutex);
398
399         return buffer;
400
401  fail_free_buffers:
402         for_each_buffer_cpu(buffer, cpu) {
403                 if (buffer->buffers[cpu])
404                         rb_free_cpu_buffer(buffer->buffers[cpu]);
405         }
406         kfree(buffer->buffers);
407
408  fail_free_buffer:
409         kfree(buffer);
410         return NULL;
411 }
412
413 /**
414  * ring_buffer_free - free a ring buffer.
415  * @buffer: the buffer to free.
416  */
417 void
418 ring_buffer_free(struct ring_buffer *buffer)
419 {
420         int cpu;
421
422         for_each_buffer_cpu(buffer, cpu)
423                 rb_free_cpu_buffer(buffer->buffers[cpu]);
424
425         kfree(buffer);
426 }
427
428 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
429
430 static void
431 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
432 {
433         struct buffer_page *page;
434         struct list_head *p;
435         unsigned i;
436
437         atomic_inc(&cpu_buffer->record_disabled);
438         synchronize_sched();
439
440         for (i = 0; i < nr_pages; i++) {
441                 BUG_ON(list_empty(&cpu_buffer->pages));
442                 p = cpu_buffer->pages.next;
443                 page = list_entry(p, struct buffer_page, list);
444                 list_del_init(&page->list);
445                 free_buffer_page(page);
446         }
447         BUG_ON(list_empty(&cpu_buffer->pages));
448
449         rb_reset_cpu(cpu_buffer);
450
451         rb_check_pages(cpu_buffer);
452
453         atomic_dec(&cpu_buffer->record_disabled);
454
455 }
456
457 static void
458 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
459                 struct list_head *pages, unsigned nr_pages)
460 {
461         struct buffer_page *page;
462         struct list_head *p;
463         unsigned i;
464
465         atomic_inc(&cpu_buffer->record_disabled);
466         synchronize_sched();
467
468         for (i = 0; i < nr_pages; i++) {
469                 BUG_ON(list_empty(pages));
470                 p = pages->next;
471                 page = list_entry(p, struct buffer_page, list);
472                 list_del_init(&page->list);
473                 list_add_tail(&page->list, &cpu_buffer->pages);
474         }
475         rb_reset_cpu(cpu_buffer);
476
477         rb_check_pages(cpu_buffer);
478
479         atomic_dec(&cpu_buffer->record_disabled);
480 }
481
482 /**
483  * ring_buffer_resize - resize the ring buffer
484  * @buffer: the buffer to resize.
485  * @size: the new size.
486  *
487  * The tracer is responsible for making sure that the buffer is
488  * not being used while changing the size.
489  * Note: We may be able to change the above requirement by using
490  *  RCU synchronizations.
491  *
492  * Minimum size is 2 * BUF_PAGE_SIZE.
493  *
494  * Returns -1 on failure.
495  */
496 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
497 {
498         struct ring_buffer_per_cpu *cpu_buffer;
499         unsigned nr_pages, rm_pages, new_pages;
500         struct buffer_page *page, *tmp;
501         unsigned long buffer_size;
502         unsigned long addr;
503         LIST_HEAD(pages);
504         int i, cpu;
505
506         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
507         size *= BUF_PAGE_SIZE;
508         buffer_size = buffer->pages * BUF_PAGE_SIZE;
509
510         /* we need a minimum of two pages */
511         if (size < BUF_PAGE_SIZE * 2)
512                 size = BUF_PAGE_SIZE * 2;
513
514         if (size == buffer_size)
515                 return size;
516
517         mutex_lock(&buffer->mutex);
518
519         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
520
521         if (size < buffer_size) {
522
523                 /* easy case, just free pages */
524                 BUG_ON(nr_pages >= buffer->pages);
525
526                 rm_pages = buffer->pages - nr_pages;
527
528                 for_each_buffer_cpu(buffer, cpu) {
529                         cpu_buffer = buffer->buffers[cpu];
530                         rb_remove_pages(cpu_buffer, rm_pages);
531                 }
532                 goto out;
533         }
534
535         /*
536          * This is a bit more difficult. We only want to add pages
537          * when we can allocate enough for all CPUs. We do this
538          * by allocating all the pages and storing them on a local
539          * link list. If we succeed in our allocation, then we
540          * add these pages to the cpu_buffers. Otherwise we just free
541          * them all and return -ENOMEM;
542          */
543         BUG_ON(nr_pages <= buffer->pages);
544         new_pages = nr_pages - buffer->pages;
545
546         for_each_buffer_cpu(buffer, cpu) {
547                 for (i = 0; i < new_pages; i++) {
548                         page = kzalloc_node(ALIGN(sizeof(*page),
549                                                   cache_line_size()),
550                                             GFP_KERNEL, cpu_to_node(cpu));
551                         if (!page)
552                                 goto free_pages;
553                         list_add(&page->list, &pages);
554                         addr = __get_free_page(GFP_KERNEL);
555                         if (!addr)
556                                 goto free_pages;
557                         page->page = (void *)addr;
558                 }
559         }
560
561         for_each_buffer_cpu(buffer, cpu) {
562                 cpu_buffer = buffer->buffers[cpu];
563                 rb_insert_pages(cpu_buffer, &pages, new_pages);
564         }
565
566         BUG_ON(!list_empty(&pages));
567
568  out:
569         buffer->pages = nr_pages;
570         mutex_unlock(&buffer->mutex);
571
572         return size;
573
574  free_pages:
575         list_for_each_entry_safe(page, tmp, &pages, list) {
576                 list_del_init(&page->list);
577                 free_buffer_page(page);
578         }
579         return -ENOMEM;
580 }
581
582 static inline int rb_null_event(struct ring_buffer_event *event)
583 {
584         return event->type == RINGBUF_TYPE_PADDING;
585 }
586
587 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
588 {
589         return page->page + index;
590 }
591
592 static inline struct ring_buffer_event *
593 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
594 {
595         return __rb_page_index(cpu_buffer->reader_page,
596                                cpu_buffer->reader_page->read);
597 }
598
599 static inline struct ring_buffer_event *
600 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
601 {
602         return __rb_page_index(cpu_buffer->head_page,
603                                cpu_buffer->head_page->read);
604 }
605
606 static inline struct ring_buffer_event *
607 rb_iter_head_event(struct ring_buffer_iter *iter)
608 {
609         return __rb_page_index(iter->head_page, iter->head);
610 }
611
612 static inline unsigned rb_page_write(struct buffer_page *bpage)
613 {
614         return local_read(&bpage->write);
615 }
616
617 static inline unsigned rb_page_commit(struct buffer_page *bpage)
618 {
619         return local_read(&bpage->commit);
620 }
621
622 /* Size is determined by what has been commited */
623 static inline unsigned rb_page_size(struct buffer_page *bpage)
624 {
625         return rb_page_commit(bpage);
626 }
627
628 static inline unsigned
629 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
630 {
631         return rb_page_commit(cpu_buffer->commit_page);
632 }
633
634 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
635 {
636         return rb_page_commit(cpu_buffer->head_page);
637 }
638
639 /*
640  * When the tail hits the head and the buffer is in overwrite mode,
641  * the head jumps to the next page and all content on the previous
642  * page is discarded. But before doing so, we update the overrun
643  * variable of the buffer.
644  */
645 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
646 {
647         struct ring_buffer_event *event;
648         unsigned long head;
649
650         for (head = 0; head < rb_head_size(cpu_buffer);
651              head += rb_event_length(event)) {
652
653                 event = __rb_page_index(cpu_buffer->head_page, head);
654                 BUG_ON(rb_null_event(event));
655                 /* Only count data entries */
656                 if (event->type != RINGBUF_TYPE_DATA)
657                         continue;
658                 cpu_buffer->overrun++;
659                 cpu_buffer->entries--;
660         }
661 }
662
663 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
664                                struct buffer_page **page)
665 {
666         struct list_head *p = (*page)->list.next;
667
668         if (p == &cpu_buffer->pages)
669                 p = p->next;
670
671         *page = list_entry(p, struct buffer_page, list);
672 }
673
674 static inline unsigned
675 rb_event_index(struct ring_buffer_event *event)
676 {
677         unsigned long addr = (unsigned long)event;
678
679         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
680 }
681
682 static inline int
683 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
684              struct ring_buffer_event *event)
685 {
686         unsigned long addr = (unsigned long)event;
687         unsigned long index;
688
689         index = rb_event_index(event);
690         addr &= PAGE_MASK;
691
692         return cpu_buffer->commit_page->page == (void *)addr &&
693                 rb_commit_index(cpu_buffer) == index;
694 }
695
696 static inline void
697 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
698                     struct ring_buffer_event *event)
699 {
700         unsigned long addr = (unsigned long)event;
701         unsigned long index;
702
703         index = rb_event_index(event);
704         addr &= PAGE_MASK;
705
706         while (cpu_buffer->commit_page->page != (void *)addr) {
707                 RB_WARN_ON(cpu_buffer,
708                            cpu_buffer->commit_page == cpu_buffer->tail_page);
709                 cpu_buffer->commit_page->commit =
710                         cpu_buffer->commit_page->write;
711                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
712                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
713         }
714
715         /* Now set the commit to the event's index */
716         local_set(&cpu_buffer->commit_page->commit, index);
717 }
718
719 static inline void
720 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
721 {
722         /*
723          * We only race with interrupts and NMIs on this CPU.
724          * If we own the commit event, then we can commit
725          * all others that interrupted us, since the interruptions
726          * are in stack format (they finish before they come
727          * back to us). This allows us to do a simple loop to
728          * assign the commit to the tail.
729          */
730         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
731                 cpu_buffer->commit_page->commit =
732                         cpu_buffer->commit_page->write;
733                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
734                 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
735                 /* add barrier to keep gcc from optimizing too much */
736                 barrier();
737         }
738         while (rb_commit_index(cpu_buffer) !=
739                rb_page_write(cpu_buffer->commit_page)) {
740                 cpu_buffer->commit_page->commit =
741                         cpu_buffer->commit_page->write;
742                 barrier();
743         }
744 }
745
746 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
747 {
748         cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
749         cpu_buffer->reader_page->read = 0;
750 }
751
752 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
753 {
754         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
755
756         /*
757          * The iterator could be on the reader page (it starts there).
758          * But the head could have moved, since the reader was
759          * found. Check for this case and assign the iterator
760          * to the head page instead of next.
761          */
762         if (iter->head_page == cpu_buffer->reader_page)
763                 iter->head_page = cpu_buffer->head_page;
764         else
765                 rb_inc_page(cpu_buffer, &iter->head_page);
766
767         iter->read_stamp = iter->head_page->time_stamp;
768         iter->head = 0;
769 }
770
771 /**
772  * ring_buffer_update_event - update event type and data
773  * @event: the even to update
774  * @type: the type of event
775  * @length: the size of the event field in the ring buffer
776  *
777  * Update the type and data fields of the event. The length
778  * is the actual size that is written to the ring buffer,
779  * and with this, we can determine what to place into the
780  * data field.
781  */
782 static inline void
783 rb_update_event(struct ring_buffer_event *event,
784                          unsigned type, unsigned length)
785 {
786         event->type = type;
787
788         switch (type) {
789
790         case RINGBUF_TYPE_PADDING:
791                 break;
792
793         case RINGBUF_TYPE_TIME_EXTEND:
794                 event->len =
795                         (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
796                         >> RB_ALIGNMENT_SHIFT;
797                 break;
798
799         case RINGBUF_TYPE_TIME_STAMP:
800                 event->len =
801                         (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
802                         >> RB_ALIGNMENT_SHIFT;
803                 break;
804
805         case RINGBUF_TYPE_DATA:
806                 length -= RB_EVNT_HDR_SIZE;
807                 if (length > RB_MAX_SMALL_DATA) {
808                         event->len = 0;
809                         event->array[0] = length;
810                 } else
811                         event->len =
812                                 (length + (RB_ALIGNMENT-1))
813                                 >> RB_ALIGNMENT_SHIFT;
814                 break;
815         default:
816                 BUG();
817         }
818 }
819
820 static inline unsigned rb_calculate_event_length(unsigned length)
821 {
822         struct ring_buffer_event event; /* Used only for sizeof array */
823
824         /* zero length can cause confusions */
825         if (!length)
826                 length = 1;
827
828         if (length > RB_MAX_SMALL_DATA)
829                 length += sizeof(event.array[0]);
830
831         length += RB_EVNT_HDR_SIZE;
832         length = ALIGN(length, RB_ALIGNMENT);
833
834         return length;
835 }
836
837 static struct ring_buffer_event *
838 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
839                   unsigned type, unsigned long length, u64 *ts)
840 {
841         struct buffer_page *tail_page, *head_page, *reader_page;
842         unsigned long tail, write;
843         struct ring_buffer *buffer = cpu_buffer->buffer;
844         struct ring_buffer_event *event;
845         unsigned long flags;
846
847         tail_page = cpu_buffer->tail_page;
848         write = local_add_return(length, &tail_page->write);
849         tail = write - length;
850
851         /* See if we shot pass the end of this buffer page */
852         if (write > BUF_PAGE_SIZE) {
853                 struct buffer_page *next_page = tail_page;
854
855                 spin_lock_irqsave(&cpu_buffer->lock, flags);
856
857                 rb_inc_page(cpu_buffer, &next_page);
858
859                 head_page = cpu_buffer->head_page;
860                 reader_page = cpu_buffer->reader_page;
861
862                 /* we grabbed the lock before incrementing */
863                 RB_WARN_ON(cpu_buffer, next_page == reader_page);
864
865                 /*
866                  * If for some reason, we had an interrupt storm that made
867                  * it all the way around the buffer, bail, and warn
868                  * about it.
869                  */
870                 if (unlikely(next_page == cpu_buffer->commit_page)) {
871                         WARN_ON_ONCE(1);
872                         goto out_unlock;
873                 }
874
875                 if (next_page == head_page) {
876                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
877                                 /* reset write */
878                                 if (tail <= BUF_PAGE_SIZE)
879                                         local_set(&tail_page->write, tail);
880                                 goto out_unlock;
881                         }
882
883                         /* tail_page has not moved yet? */
884                         if (tail_page == cpu_buffer->tail_page) {
885                                 /* count overflows */
886                                 rb_update_overflow(cpu_buffer);
887
888                                 rb_inc_page(cpu_buffer, &head_page);
889                                 cpu_buffer->head_page = head_page;
890                                 cpu_buffer->head_page->read = 0;
891                         }
892                 }
893
894                 /*
895                  * If the tail page is still the same as what we think
896                  * it is, then it is up to us to update the tail
897                  * pointer.
898                  */
899                 if (tail_page == cpu_buffer->tail_page) {
900                         local_set(&next_page->write, 0);
901                         local_set(&next_page->commit, 0);
902                         cpu_buffer->tail_page = next_page;
903
904                         /* reread the time stamp */
905                         *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
906                         cpu_buffer->tail_page->time_stamp = *ts;
907                 }
908
909                 /*
910                  * The actual tail page has moved forward.
911                  */
912                 if (tail < BUF_PAGE_SIZE) {
913                         /* Mark the rest of the page with padding */
914                         event = __rb_page_index(tail_page, tail);
915                         event->type = RINGBUF_TYPE_PADDING;
916                 }
917
918                 if (tail <= BUF_PAGE_SIZE)
919                         /* Set the write back to the previous setting */
920                         local_set(&tail_page->write, tail);
921
922                 /*
923                  * If this was a commit entry that failed,
924                  * increment that too
925                  */
926                 if (tail_page == cpu_buffer->commit_page &&
927                     tail == rb_commit_index(cpu_buffer)) {
928                         rb_set_commit_to_write(cpu_buffer);
929                 }
930
931                 spin_unlock_irqrestore(&cpu_buffer->lock, flags);
932
933                 /* fail and let the caller try again */
934                 return ERR_PTR(-EAGAIN);
935         }
936
937         /* We reserved something on the buffer */
938
939         BUG_ON(write > BUF_PAGE_SIZE);
940
941         event = __rb_page_index(tail_page, tail);
942         rb_update_event(event, type, length);
943
944         /*
945          * If this is a commit and the tail is zero, then update
946          * this page's time stamp.
947          */
948         if (!tail && rb_is_commit(cpu_buffer, event))
949                 cpu_buffer->commit_page->time_stamp = *ts;
950
951         return event;
952
953  out_unlock:
954         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
955         return NULL;
956 }
957
958 static int
959 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
960                   u64 *ts, u64 *delta)
961 {
962         struct ring_buffer_event *event;
963         static int once;
964         int ret;
965
966         if (unlikely(*delta > (1ULL << 59) && !once++)) {
967                 printk(KERN_WARNING "Delta way too big! %llu"
968                        " ts=%llu write stamp = %llu\n",
969                        (unsigned long long)*delta,
970                        (unsigned long long)*ts,
971                        (unsigned long long)cpu_buffer->write_stamp);
972                 WARN_ON(1);
973         }
974
975         /*
976          * The delta is too big, we to add a
977          * new timestamp.
978          */
979         event = __rb_reserve_next(cpu_buffer,
980                                   RINGBUF_TYPE_TIME_EXTEND,
981                                   RB_LEN_TIME_EXTEND,
982                                   ts);
983         if (!event)
984                 return -EBUSY;
985
986         if (PTR_ERR(event) == -EAGAIN)
987                 return -EAGAIN;
988
989         /* Only a commited time event can update the write stamp */
990         if (rb_is_commit(cpu_buffer, event)) {
991                 /*
992                  * If this is the first on the page, then we need to
993                  * update the page itself, and just put in a zero.
994                  */
995                 if (rb_event_index(event)) {
996                         event->time_delta = *delta & TS_MASK;
997                         event->array[0] = *delta >> TS_SHIFT;
998                 } else {
999                         cpu_buffer->commit_page->time_stamp = *ts;
1000                         event->time_delta = 0;
1001                         event->array[0] = 0;
1002                 }
1003                 cpu_buffer->write_stamp = *ts;
1004                 /* let the caller know this was the commit */
1005                 ret = 1;
1006         } else {
1007                 /* Darn, this is just wasted space */
1008                 event->time_delta = 0;
1009                 event->array[0] = 0;
1010                 ret = 0;
1011         }
1012
1013         *delta = 0;
1014
1015         return ret;
1016 }
1017
1018 static struct ring_buffer_event *
1019 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1020                       unsigned type, unsigned long length)
1021 {
1022         struct ring_buffer_event *event;
1023         u64 ts, delta;
1024         int commit = 0;
1025         int nr_loops = 0;
1026
1027  again:
1028         /*
1029          * We allow for interrupts to reenter here and do a trace.
1030          * If one does, it will cause this original code to loop
1031          * back here. Even with heavy interrupts happening, this
1032          * should only happen a few times in a row. If this happens
1033          * 1000 times in a row, there must be either an interrupt
1034          * storm or we have something buggy.
1035          * Bail!
1036          */
1037         if (unlikely(++nr_loops > 1000)) {
1038                 RB_WARN_ON(cpu_buffer, 1);
1039                 return NULL;
1040         }
1041
1042         ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1043
1044         /*
1045          * Only the first commit can update the timestamp.
1046          * Yes there is a race here. If an interrupt comes in
1047          * just after the conditional and it traces too, then it
1048          * will also check the deltas. More than one timestamp may
1049          * also be made. But only the entry that did the actual
1050          * commit will be something other than zero.
1051          */
1052         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1053             rb_page_write(cpu_buffer->tail_page) ==
1054             rb_commit_index(cpu_buffer)) {
1055
1056                 delta = ts - cpu_buffer->write_stamp;
1057
1058                 /* make sure this delta is calculated here */
1059                 barrier();
1060
1061                 /* Did the write stamp get updated already? */
1062                 if (unlikely(ts < cpu_buffer->write_stamp))
1063                         goto again;
1064
1065                 if (test_time_stamp(delta)) {
1066
1067                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1068
1069                         if (commit == -EBUSY)
1070                                 return NULL;
1071
1072                         if (commit == -EAGAIN)
1073                                 goto again;
1074
1075                         RB_WARN_ON(cpu_buffer, commit < 0);
1076                 }
1077         } else
1078                 /* Non commits have zero deltas */
1079                 delta = 0;
1080
1081         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1082         if (PTR_ERR(event) == -EAGAIN)
1083                 goto again;
1084
1085         if (!event) {
1086                 if (unlikely(commit))
1087                         /*
1088                          * Ouch! We needed a timestamp and it was commited. But
1089                          * we didn't get our event reserved.
1090                          */
1091                         rb_set_commit_to_write(cpu_buffer);
1092                 return NULL;
1093         }
1094
1095         /*
1096          * If the timestamp was commited, make the commit our entry
1097          * now so that we will update it when needed.
1098          */
1099         if (commit)
1100                 rb_set_commit_event(cpu_buffer, event);
1101         else if (!rb_is_commit(cpu_buffer, event))
1102                 delta = 0;
1103
1104         event->time_delta = delta;
1105
1106         return event;
1107 }
1108
1109 static DEFINE_PER_CPU(int, rb_need_resched);
1110
1111 /**
1112  * ring_buffer_lock_reserve - reserve a part of the buffer
1113  * @buffer: the ring buffer to reserve from
1114  * @length: the length of the data to reserve (excluding event header)
1115  * @flags: a pointer to save the interrupt flags
1116  *
1117  * Returns a reseverd event on the ring buffer to copy directly to.
1118  * The user of this interface will need to get the body to write into
1119  * and can use the ring_buffer_event_data() interface.
1120  *
1121  * The length is the length of the data needed, not the event length
1122  * which also includes the event header.
1123  *
1124  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1125  * If NULL is returned, then nothing has been allocated or locked.
1126  */
1127 struct ring_buffer_event *
1128 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1129                          unsigned long length,
1130                          unsigned long *flags)
1131 {
1132         struct ring_buffer_per_cpu *cpu_buffer;
1133         struct ring_buffer_event *event;
1134         int cpu, resched;
1135
1136         if (atomic_read(&buffer->record_disabled))
1137                 return NULL;
1138
1139         /* If we are tracing schedule, we don't want to recurse */
1140         resched = need_resched();
1141         preempt_disable_notrace();
1142
1143         cpu = raw_smp_processor_id();
1144
1145         if (!cpu_isset(cpu, buffer->cpumask))
1146                 goto out;
1147
1148         cpu_buffer = buffer->buffers[cpu];
1149
1150         if (atomic_read(&cpu_buffer->record_disabled))
1151                 goto out;
1152
1153         length = rb_calculate_event_length(length);
1154         if (length > BUF_PAGE_SIZE)
1155                 goto out;
1156
1157         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1158         if (!event)
1159                 goto out;
1160
1161         /*
1162          * Need to store resched state on this cpu.
1163          * Only the first needs to.
1164          */
1165
1166         if (preempt_count() == 1)
1167                 per_cpu(rb_need_resched, cpu) = resched;
1168
1169         return event;
1170
1171  out:
1172         if (resched)
1173                 preempt_enable_notrace();
1174         else
1175                 preempt_enable_notrace();
1176         return NULL;
1177 }
1178
1179 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1180                       struct ring_buffer_event *event)
1181 {
1182         cpu_buffer->entries++;
1183
1184         /* Only process further if we own the commit */
1185         if (!rb_is_commit(cpu_buffer, event))
1186                 return;
1187
1188         cpu_buffer->write_stamp += event->time_delta;
1189
1190         rb_set_commit_to_write(cpu_buffer);
1191 }
1192
1193 /**
1194  * ring_buffer_unlock_commit - commit a reserved
1195  * @buffer: The buffer to commit to
1196  * @event: The event pointer to commit.
1197  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1198  *
1199  * This commits the data to the ring buffer, and releases any locks held.
1200  *
1201  * Must be paired with ring_buffer_lock_reserve.
1202  */
1203 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1204                               struct ring_buffer_event *event,
1205                               unsigned long flags)
1206 {
1207         struct ring_buffer_per_cpu *cpu_buffer;
1208         int cpu = raw_smp_processor_id();
1209
1210         cpu_buffer = buffer->buffers[cpu];
1211
1212         rb_commit(cpu_buffer, event);
1213
1214         /*
1215          * Only the last preempt count needs to restore preemption.
1216          */
1217         if (preempt_count() == 1) {
1218                 if (per_cpu(rb_need_resched, cpu))
1219                         preempt_enable_no_resched_notrace();
1220                 else
1221                         preempt_enable_notrace();
1222         } else
1223                 preempt_enable_no_resched_notrace();
1224
1225         return 0;
1226 }
1227
1228 /**
1229  * ring_buffer_write - write data to the buffer without reserving
1230  * @buffer: The ring buffer to write to.
1231  * @length: The length of the data being written (excluding the event header)
1232  * @data: The data to write to the buffer.
1233  *
1234  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1235  * one function. If you already have the data to write to the buffer, it
1236  * may be easier to simply call this function.
1237  *
1238  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1239  * and not the length of the event which would hold the header.
1240  */
1241 int ring_buffer_write(struct ring_buffer *buffer,
1242                         unsigned long length,
1243                         void *data)
1244 {
1245         struct ring_buffer_per_cpu *cpu_buffer;
1246         struct ring_buffer_event *event;
1247         unsigned long event_length;
1248         void *body;
1249         int ret = -EBUSY;
1250         int cpu, resched;
1251
1252         if (atomic_read(&buffer->record_disabled))
1253                 return -EBUSY;
1254
1255         resched = need_resched();
1256         preempt_disable_notrace();
1257
1258         cpu = raw_smp_processor_id();
1259
1260         if (!cpu_isset(cpu, buffer->cpumask))
1261                 goto out;
1262
1263         cpu_buffer = buffer->buffers[cpu];
1264
1265         if (atomic_read(&cpu_buffer->record_disabled))
1266                 goto out;
1267
1268         event_length = rb_calculate_event_length(length);
1269         event = rb_reserve_next_event(cpu_buffer,
1270                                       RINGBUF_TYPE_DATA, event_length);
1271         if (!event)
1272                 goto out;
1273
1274         body = rb_event_data(event);
1275
1276         memcpy(body, data, length);
1277
1278         rb_commit(cpu_buffer, event);
1279
1280         ret = 0;
1281  out:
1282         if (resched)
1283                 preempt_enable_no_resched_notrace();
1284         else
1285                 preempt_enable_notrace();
1286
1287         return ret;
1288 }
1289
1290 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1291 {
1292         struct buffer_page *reader = cpu_buffer->reader_page;
1293         struct buffer_page *head = cpu_buffer->head_page;
1294         struct buffer_page *commit = cpu_buffer->commit_page;
1295
1296         return reader->read == rb_page_commit(reader) &&
1297                 (commit == reader ||
1298                  (commit == head &&
1299                   head->read == rb_page_commit(commit)));
1300 }
1301
1302 /**
1303  * ring_buffer_record_disable - stop all writes into the buffer
1304  * @buffer: The ring buffer to stop writes to.
1305  *
1306  * This prevents all writes to the buffer. Any attempt to write
1307  * to the buffer after this will fail and return NULL.
1308  *
1309  * The caller should call synchronize_sched() after this.
1310  */
1311 void ring_buffer_record_disable(struct ring_buffer *buffer)
1312 {
1313         atomic_inc(&buffer->record_disabled);
1314 }
1315
1316 /**
1317  * ring_buffer_record_enable - enable writes to the buffer
1318  * @buffer: The ring buffer to enable writes
1319  *
1320  * Note, multiple disables will need the same number of enables
1321  * to truely enable the writing (much like preempt_disable).
1322  */
1323 void ring_buffer_record_enable(struct ring_buffer *buffer)
1324 {
1325         atomic_dec(&buffer->record_disabled);
1326 }
1327
1328 /**
1329  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1330  * @buffer: The ring buffer to stop writes to.
1331  * @cpu: The CPU buffer to stop
1332  *
1333  * This prevents all writes to the buffer. Any attempt to write
1334  * to the buffer after this will fail and return NULL.
1335  *
1336  * The caller should call synchronize_sched() after this.
1337  */
1338 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1339 {
1340         struct ring_buffer_per_cpu *cpu_buffer;
1341
1342         if (!cpu_isset(cpu, buffer->cpumask))
1343                 return;
1344
1345         cpu_buffer = buffer->buffers[cpu];
1346         atomic_inc(&cpu_buffer->record_disabled);
1347 }
1348
1349 /**
1350  * ring_buffer_record_enable_cpu - enable writes to the buffer
1351  * @buffer: The ring buffer to enable writes
1352  * @cpu: The CPU to enable.
1353  *
1354  * Note, multiple disables will need the same number of enables
1355  * to truely enable the writing (much like preempt_disable).
1356  */
1357 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1358 {
1359         struct ring_buffer_per_cpu *cpu_buffer;
1360
1361         if (!cpu_isset(cpu, buffer->cpumask))
1362                 return;
1363
1364         cpu_buffer = buffer->buffers[cpu];
1365         atomic_dec(&cpu_buffer->record_disabled);
1366 }
1367
1368 /**
1369  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1370  * @buffer: The ring buffer
1371  * @cpu: The per CPU buffer to get the entries from.
1372  */
1373 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1374 {
1375         struct ring_buffer_per_cpu *cpu_buffer;
1376
1377         if (!cpu_isset(cpu, buffer->cpumask))
1378                 return 0;
1379
1380         cpu_buffer = buffer->buffers[cpu];
1381         return cpu_buffer->entries;
1382 }
1383
1384 /**
1385  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1386  * @buffer: The ring buffer
1387  * @cpu: The per CPU buffer to get the number of overruns from
1388  */
1389 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1390 {
1391         struct ring_buffer_per_cpu *cpu_buffer;
1392
1393         if (!cpu_isset(cpu, buffer->cpumask))
1394                 return 0;
1395
1396         cpu_buffer = buffer->buffers[cpu];
1397         return cpu_buffer->overrun;
1398 }
1399
1400 /**
1401  * ring_buffer_entries - get the number of entries in a buffer
1402  * @buffer: The ring buffer
1403  *
1404  * Returns the total number of entries in the ring buffer
1405  * (all CPU entries)
1406  */
1407 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1408 {
1409         struct ring_buffer_per_cpu *cpu_buffer;
1410         unsigned long entries = 0;
1411         int cpu;
1412
1413         /* if you care about this being correct, lock the buffer */
1414         for_each_buffer_cpu(buffer, cpu) {
1415                 cpu_buffer = buffer->buffers[cpu];
1416                 entries += cpu_buffer->entries;
1417         }
1418
1419         return entries;
1420 }
1421
1422 /**
1423  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1424  * @buffer: The ring buffer
1425  *
1426  * Returns the total number of overruns in the ring buffer
1427  * (all CPU entries)
1428  */
1429 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1430 {
1431         struct ring_buffer_per_cpu *cpu_buffer;
1432         unsigned long overruns = 0;
1433         int cpu;
1434
1435         /* if you care about this being correct, lock the buffer */
1436         for_each_buffer_cpu(buffer, cpu) {
1437                 cpu_buffer = buffer->buffers[cpu];
1438                 overruns += cpu_buffer->overrun;
1439         }
1440
1441         return overruns;
1442 }
1443
1444 /**
1445  * ring_buffer_iter_reset - reset an iterator
1446  * @iter: The iterator to reset
1447  *
1448  * Resets the iterator, so that it will start from the beginning
1449  * again.
1450  */
1451 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1452 {
1453         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1454
1455         /* Iterator usage is expected to have record disabled */
1456         if (list_empty(&cpu_buffer->reader_page->list)) {
1457                 iter->head_page = cpu_buffer->head_page;
1458                 iter->head = cpu_buffer->head_page->read;
1459         } else {
1460                 iter->head_page = cpu_buffer->reader_page;
1461                 iter->head = cpu_buffer->reader_page->read;
1462         }
1463         if (iter->head)
1464                 iter->read_stamp = cpu_buffer->read_stamp;
1465         else
1466                 iter->read_stamp = iter->head_page->time_stamp;
1467 }
1468
1469 /**
1470  * ring_buffer_iter_empty - check if an iterator has no more to read
1471  * @iter: The iterator to check
1472  */
1473 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1474 {
1475         struct ring_buffer_per_cpu *cpu_buffer;
1476
1477         cpu_buffer = iter->cpu_buffer;
1478
1479         return iter->head_page == cpu_buffer->commit_page &&
1480                 iter->head == rb_commit_index(cpu_buffer);
1481 }
1482
1483 static void
1484 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1485                      struct ring_buffer_event *event)
1486 {
1487         u64 delta;
1488
1489         switch (event->type) {
1490         case RINGBUF_TYPE_PADDING:
1491                 return;
1492
1493         case RINGBUF_TYPE_TIME_EXTEND:
1494                 delta = event->array[0];
1495                 delta <<= TS_SHIFT;
1496                 delta += event->time_delta;
1497                 cpu_buffer->read_stamp += delta;
1498                 return;
1499
1500         case RINGBUF_TYPE_TIME_STAMP:
1501                 /* FIXME: not implemented */
1502                 return;
1503
1504         case RINGBUF_TYPE_DATA:
1505                 cpu_buffer->read_stamp += event->time_delta;
1506                 return;
1507
1508         default:
1509                 BUG();
1510         }
1511         return;
1512 }
1513
1514 static void
1515 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1516                           struct ring_buffer_event *event)
1517 {
1518         u64 delta;
1519
1520         switch (event->type) {
1521         case RINGBUF_TYPE_PADDING:
1522                 return;
1523
1524         case RINGBUF_TYPE_TIME_EXTEND:
1525                 delta = event->array[0];
1526                 delta <<= TS_SHIFT;
1527                 delta += event->time_delta;
1528                 iter->read_stamp += delta;
1529                 return;
1530
1531         case RINGBUF_TYPE_TIME_STAMP:
1532                 /* FIXME: not implemented */
1533                 return;
1534
1535         case RINGBUF_TYPE_DATA:
1536                 iter->read_stamp += event->time_delta;
1537                 return;
1538
1539         default:
1540                 BUG();
1541         }
1542         return;
1543 }
1544
1545 static struct buffer_page *
1546 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1547 {
1548         struct buffer_page *reader = NULL;
1549         unsigned long flags;
1550         int nr_loops = 0;
1551
1552         spin_lock_irqsave(&cpu_buffer->lock, flags);
1553
1554  again:
1555         /*
1556          * This should normally only loop twice. But because the
1557          * start of the reader inserts an empty page, it causes
1558          * a case where we will loop three times. There should be no
1559          * reason to loop four times (that I know of).
1560          */
1561         if (unlikely(++nr_loops > 3)) {
1562                 RB_WARN_ON(cpu_buffer, 1);
1563                 reader = NULL;
1564                 goto out;
1565         }
1566
1567         reader = cpu_buffer->reader_page;
1568
1569         /* If there's more to read, return this page */
1570         if (cpu_buffer->reader_page->read < rb_page_size(reader))
1571                 goto out;
1572
1573         /* Never should we have an index greater than the size */
1574         RB_WARN_ON(cpu_buffer,
1575                    cpu_buffer->reader_page->read > rb_page_size(reader));
1576
1577         /* check if we caught up to the tail */
1578         reader = NULL;
1579         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1580                 goto out;
1581
1582         /*
1583          * Splice the empty reader page into the list around the head.
1584          * Reset the reader page to size zero.
1585          */
1586
1587         reader = cpu_buffer->head_page;
1588         cpu_buffer->reader_page->list.next = reader->list.next;
1589         cpu_buffer->reader_page->list.prev = reader->list.prev;
1590
1591         local_set(&cpu_buffer->reader_page->write, 0);
1592         local_set(&cpu_buffer->reader_page->commit, 0);
1593
1594         /* Make the reader page now replace the head */
1595         reader->list.prev->next = &cpu_buffer->reader_page->list;
1596         reader->list.next->prev = &cpu_buffer->reader_page->list;
1597
1598         /*
1599          * If the tail is on the reader, then we must set the head
1600          * to the inserted page, otherwise we set it one before.
1601          */
1602         cpu_buffer->head_page = cpu_buffer->reader_page;
1603
1604         if (cpu_buffer->commit_page != reader)
1605                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1606
1607         /* Finally update the reader page to the new head */
1608         cpu_buffer->reader_page = reader;
1609         rb_reset_reader_page(cpu_buffer);
1610
1611         goto again;
1612
1613  out:
1614         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1615
1616         return reader;
1617 }
1618
1619 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1620 {
1621         struct ring_buffer_event *event;
1622         struct buffer_page *reader;
1623         unsigned length;
1624
1625         reader = rb_get_reader_page(cpu_buffer);
1626
1627         /* This function should not be called when buffer is empty */
1628         BUG_ON(!reader);
1629
1630         event = rb_reader_event(cpu_buffer);
1631
1632         if (event->type == RINGBUF_TYPE_DATA)
1633                 cpu_buffer->entries--;
1634
1635         rb_update_read_stamp(cpu_buffer, event);
1636
1637         length = rb_event_length(event);
1638         cpu_buffer->reader_page->read += length;
1639 }
1640
1641 static void rb_advance_iter(struct ring_buffer_iter *iter)
1642 {
1643         struct ring_buffer *buffer;
1644         struct ring_buffer_per_cpu *cpu_buffer;
1645         struct ring_buffer_event *event;
1646         unsigned length;
1647
1648         cpu_buffer = iter->cpu_buffer;
1649         buffer = cpu_buffer->buffer;
1650
1651         /*
1652          * Check if we are at the end of the buffer.
1653          */
1654         if (iter->head >= rb_page_size(iter->head_page)) {
1655                 BUG_ON(iter->head_page == cpu_buffer->commit_page);
1656                 rb_inc_iter(iter);
1657                 return;
1658         }
1659
1660         event = rb_iter_head_event(iter);
1661
1662         length = rb_event_length(event);
1663
1664         /*
1665          * This should not be called to advance the header if we are
1666          * at the tail of the buffer.
1667          */
1668         BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
1669                (iter->head + length > rb_commit_index(cpu_buffer)));
1670
1671         rb_update_iter_read_stamp(iter, event);
1672
1673         iter->head += length;
1674
1675         /* check for end of page padding */
1676         if ((iter->head >= rb_page_size(iter->head_page)) &&
1677             (iter->head_page != cpu_buffer->commit_page))
1678                 rb_advance_iter(iter);
1679 }
1680
1681 /**
1682  * ring_buffer_peek - peek at the next event to be read
1683  * @buffer: The ring buffer to read
1684  * @cpu: The cpu to peak at
1685  * @ts: The timestamp counter of this event.
1686  *
1687  * This will return the event that will be read next, but does
1688  * not consume the data.
1689  */
1690 struct ring_buffer_event *
1691 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1692 {
1693         struct ring_buffer_per_cpu *cpu_buffer;
1694         struct ring_buffer_event *event;
1695         struct buffer_page *reader;
1696         int nr_loops = 0;
1697
1698         if (!cpu_isset(cpu, buffer->cpumask))
1699                 return NULL;
1700
1701         cpu_buffer = buffer->buffers[cpu];
1702
1703  again:
1704         /*
1705          * We repeat when a timestamp is encountered. It is possible
1706          * to get multiple timestamps from an interrupt entering just
1707          * as one timestamp is about to be written. The max times
1708          * that this can happen is the number of nested interrupts we
1709          * can have.  Nesting 10 deep of interrupts is clearly
1710          * an anomaly.
1711          */
1712         if (unlikely(++nr_loops > 10)) {
1713                 RB_WARN_ON(cpu_buffer, 1);
1714                 return NULL;
1715         }
1716
1717         reader = rb_get_reader_page(cpu_buffer);
1718         if (!reader)
1719                 return NULL;
1720
1721         event = rb_reader_event(cpu_buffer);
1722
1723         switch (event->type) {
1724         case RINGBUF_TYPE_PADDING:
1725                 RB_WARN_ON(cpu_buffer, 1);
1726                 rb_advance_reader(cpu_buffer);
1727                 return NULL;
1728
1729         case RINGBUF_TYPE_TIME_EXTEND:
1730                 /* Internal data, OK to advance */
1731                 rb_advance_reader(cpu_buffer);
1732                 goto again;
1733
1734         case RINGBUF_TYPE_TIME_STAMP:
1735                 /* FIXME: not implemented */
1736                 rb_advance_reader(cpu_buffer);
1737                 goto again;
1738
1739         case RINGBUF_TYPE_DATA:
1740                 if (ts) {
1741                         *ts = cpu_buffer->read_stamp + event->time_delta;
1742                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1743                 }
1744                 return event;
1745
1746         default:
1747                 BUG();
1748         }
1749
1750         return NULL;
1751 }
1752
1753 /**
1754  * ring_buffer_iter_peek - peek at the next event to be read
1755  * @iter: The ring buffer iterator
1756  * @ts: The timestamp counter of this event.
1757  *
1758  * This will return the event that will be read next, but does
1759  * not increment the iterator.
1760  */
1761 struct ring_buffer_event *
1762 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1763 {
1764         struct ring_buffer *buffer;
1765         struct ring_buffer_per_cpu *cpu_buffer;
1766         struct ring_buffer_event *event;
1767         int nr_loops = 0;
1768
1769         if (ring_buffer_iter_empty(iter))
1770                 return NULL;
1771
1772         cpu_buffer = iter->cpu_buffer;
1773         buffer = cpu_buffer->buffer;
1774
1775  again:
1776         /*
1777          * We repeat when a timestamp is encountered. It is possible
1778          * to get multiple timestamps from an interrupt entering just
1779          * as one timestamp is about to be written. The max times
1780          * that this can happen is the number of nested interrupts we
1781          * can have. Nesting 10 deep of interrupts is clearly
1782          * an anomaly.
1783          */
1784         if (unlikely(++nr_loops > 10)) {
1785                 RB_WARN_ON(cpu_buffer, 1);
1786                 return NULL;
1787         }
1788
1789         if (rb_per_cpu_empty(cpu_buffer))
1790                 return NULL;
1791
1792         event = rb_iter_head_event(iter);
1793
1794         switch (event->type) {
1795         case RINGBUF_TYPE_PADDING:
1796                 rb_inc_iter(iter);
1797                 goto again;
1798
1799         case RINGBUF_TYPE_TIME_EXTEND:
1800                 /* Internal data, OK to advance */
1801                 rb_advance_iter(iter);
1802                 goto again;
1803
1804         case RINGBUF_TYPE_TIME_STAMP:
1805                 /* FIXME: not implemented */
1806                 rb_advance_iter(iter);
1807                 goto again;
1808
1809         case RINGBUF_TYPE_DATA:
1810                 if (ts) {
1811                         *ts = iter->read_stamp + event->time_delta;
1812                         ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1813                 }
1814                 return event;
1815
1816         default:
1817                 BUG();
1818         }
1819
1820         return NULL;
1821 }
1822
1823 /**
1824  * ring_buffer_consume - return an event and consume it
1825  * @buffer: The ring buffer to get the next event from
1826  *
1827  * Returns the next event in the ring buffer, and that event is consumed.
1828  * Meaning, that sequential reads will keep returning a different event,
1829  * and eventually empty the ring buffer if the producer is slower.
1830  */
1831 struct ring_buffer_event *
1832 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1833 {
1834         struct ring_buffer_per_cpu *cpu_buffer;
1835         struct ring_buffer_event *event;
1836
1837         if (!cpu_isset(cpu, buffer->cpumask))
1838                 return NULL;
1839
1840         event = ring_buffer_peek(buffer, cpu, ts);
1841         if (!event)
1842                 return NULL;
1843
1844         cpu_buffer = buffer->buffers[cpu];
1845         rb_advance_reader(cpu_buffer);
1846
1847         return event;
1848 }
1849
1850 /**
1851  * ring_buffer_read_start - start a non consuming read of the buffer
1852  * @buffer: The ring buffer to read from
1853  * @cpu: The cpu buffer to iterate over
1854  *
1855  * This starts up an iteration through the buffer. It also disables
1856  * the recording to the buffer until the reading is finished.
1857  * This prevents the reading from being corrupted. This is not
1858  * a consuming read, so a producer is not expected.
1859  *
1860  * Must be paired with ring_buffer_finish.
1861  */
1862 struct ring_buffer_iter *
1863 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1864 {
1865         struct ring_buffer_per_cpu *cpu_buffer;
1866         struct ring_buffer_iter *iter;
1867         unsigned long flags;
1868
1869         if (!cpu_isset(cpu, buffer->cpumask))
1870                 return NULL;
1871
1872         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1873         if (!iter)
1874                 return NULL;
1875
1876         cpu_buffer = buffer->buffers[cpu];
1877
1878         iter->cpu_buffer = cpu_buffer;
1879
1880         atomic_inc(&cpu_buffer->record_disabled);
1881         synchronize_sched();
1882
1883         spin_lock_irqsave(&cpu_buffer->lock, flags);
1884         ring_buffer_iter_reset(iter);
1885         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1886
1887         return iter;
1888 }
1889
1890 /**
1891  * ring_buffer_finish - finish reading the iterator of the buffer
1892  * @iter: The iterator retrieved by ring_buffer_start
1893  *
1894  * This re-enables the recording to the buffer, and frees the
1895  * iterator.
1896  */
1897 void
1898 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1899 {
1900         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1901
1902         atomic_dec(&cpu_buffer->record_disabled);
1903         kfree(iter);
1904 }
1905
1906 /**
1907  * ring_buffer_read - read the next item in the ring buffer by the iterator
1908  * @iter: The ring buffer iterator
1909  * @ts: The time stamp of the event read.
1910  *
1911  * This reads the next event in the ring buffer and increments the iterator.
1912  */
1913 struct ring_buffer_event *
1914 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1915 {
1916         struct ring_buffer_event *event;
1917
1918         event = ring_buffer_iter_peek(iter, ts);
1919         if (!event)
1920                 return NULL;
1921
1922         rb_advance_iter(iter);
1923
1924         return event;
1925 }
1926
1927 /**
1928  * ring_buffer_size - return the size of the ring buffer (in bytes)
1929  * @buffer: The ring buffer.
1930  */
1931 unsigned long ring_buffer_size(struct ring_buffer *buffer)
1932 {
1933         return BUF_PAGE_SIZE * buffer->pages;
1934 }
1935
1936 static void
1937 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
1938 {
1939         cpu_buffer->head_page
1940                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
1941         local_set(&cpu_buffer->head_page->write, 0);
1942         local_set(&cpu_buffer->head_page->commit, 0);
1943
1944         cpu_buffer->head_page->read = 0;
1945
1946         cpu_buffer->tail_page = cpu_buffer->head_page;
1947         cpu_buffer->commit_page = cpu_buffer->head_page;
1948
1949         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1950         local_set(&cpu_buffer->reader_page->write, 0);
1951         local_set(&cpu_buffer->reader_page->commit, 0);
1952         cpu_buffer->reader_page->read = 0;
1953
1954         cpu_buffer->overrun = 0;
1955         cpu_buffer->entries = 0;
1956 }
1957
1958 /**
1959  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
1960  * @buffer: The ring buffer to reset a per cpu buffer of
1961  * @cpu: The CPU buffer to be reset
1962  */
1963 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
1964 {
1965         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1966         unsigned long flags;
1967
1968         if (!cpu_isset(cpu, buffer->cpumask))
1969                 return;
1970
1971         spin_lock_irqsave(&cpu_buffer->lock, flags);
1972
1973         rb_reset_cpu(cpu_buffer);
1974
1975         spin_unlock_irqrestore(&cpu_buffer->lock, flags);
1976 }
1977
1978 /**
1979  * ring_buffer_reset - reset a ring buffer
1980  * @buffer: The ring buffer to reset all cpu buffers
1981  */
1982 void ring_buffer_reset(struct ring_buffer *buffer)
1983 {
1984         int cpu;
1985
1986         for_each_buffer_cpu(buffer, cpu)
1987                 ring_buffer_reset_cpu(buffer, cpu);
1988 }
1989
1990 /**
1991  * rind_buffer_empty - is the ring buffer empty?
1992  * @buffer: The ring buffer to test
1993  */
1994 int ring_buffer_empty(struct ring_buffer *buffer)
1995 {
1996         struct ring_buffer_per_cpu *cpu_buffer;
1997         int cpu;
1998
1999         /* yes this is racy, but if you don't like the race, lock the buffer */
2000         for_each_buffer_cpu(buffer, cpu) {
2001                 cpu_buffer = buffer->buffers[cpu];
2002                 if (!rb_per_cpu_empty(cpu_buffer))
2003                         return 0;
2004         }
2005         return 1;
2006 }
2007
2008 /**
2009  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2010  * @buffer: The ring buffer
2011  * @cpu: The CPU buffer to test
2012  */
2013 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2014 {
2015         struct ring_buffer_per_cpu *cpu_buffer;
2016
2017         if (!cpu_isset(cpu, buffer->cpumask))
2018                 return 1;
2019
2020         cpu_buffer = buffer->buffers[cpu];
2021         return rb_per_cpu_empty(cpu_buffer);
2022 }
2023
2024 /**
2025  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2026  * @buffer_a: One buffer to swap with
2027  * @buffer_b: The other buffer to swap with
2028  *
2029  * This function is useful for tracers that want to take a "snapshot"
2030  * of a CPU buffer and has another back up buffer lying around.
2031  * it is expected that the tracer handles the cpu buffer not being
2032  * used at the moment.
2033  */
2034 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2035                          struct ring_buffer *buffer_b, int cpu)
2036 {
2037         struct ring_buffer_per_cpu *cpu_buffer_a;
2038         struct ring_buffer_per_cpu *cpu_buffer_b;
2039
2040         if (!cpu_isset(cpu, buffer_a->cpumask) ||
2041             !cpu_isset(cpu, buffer_b->cpumask))
2042                 return -EINVAL;
2043
2044         /* At least make sure the two buffers are somewhat the same */
2045         if (buffer_a->size != buffer_b->size ||
2046             buffer_a->pages != buffer_b->pages)
2047                 return -EINVAL;
2048
2049         cpu_buffer_a = buffer_a->buffers[cpu];
2050         cpu_buffer_b = buffer_b->buffers[cpu];
2051
2052         /*
2053          * We can't do a synchronize_sched here because this
2054          * function can be called in atomic context.
2055          * Normally this will be called from the same CPU as cpu.
2056          * If not it's up to the caller to protect this.
2057          */
2058         atomic_inc(&cpu_buffer_a->record_disabled);
2059         atomic_inc(&cpu_buffer_b->record_disabled);
2060
2061         buffer_a->buffers[cpu] = cpu_buffer_b;
2062         buffer_b->buffers[cpu] = cpu_buffer_a;
2063
2064         cpu_buffer_b->buffer = buffer_a;
2065         cpu_buffer_a->buffer = buffer_b;
2066
2067         atomic_dec(&cpu_buffer_a->record_disabled);
2068         atomic_dec(&cpu_buffer_b->record_disabled);
2069
2070         return 0;
2071 }
2072