b8e1ca48be50f0ec8c6ccda334a425602cdc9849
[sfrench/cifs-2.6.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h>      /* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28
29 #include <asm/local.h>
30
31 static void update_pages_handler(struct work_struct *work);
32
33 /*
34  * The ring buffer header is special. We must manually up keep it.
35  */
36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38         trace_seq_puts(s, "# compressed entry header\n");
39         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
40         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
41         trace_seq_puts(s, "\tarray       :   32 bits\n");
42         trace_seq_putc(s, '\n');
43         trace_seq_printf(s, "\tpadding     : type == %d\n",
44                          RINGBUF_TYPE_PADDING);
45         trace_seq_printf(s, "\ttime_extend : type == %d\n",
46                          RINGBUF_TYPE_TIME_EXTEND);
47         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48                          RINGBUF_TYPE_TIME_STAMP);
49         trace_seq_printf(s, "\tdata max type_len  == %d\n",
50                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51
52         return !trace_seq_has_overflowed(s);
53 }
54
55 /*
56  * The ring buffer is made up of a list of pages. A separate list of pages is
57  * allocated for each CPU. A writer may only write to a buffer that is
58  * associated with the CPU it is currently executing on.  A reader may read
59  * from any per cpu buffer.
60  *
61  * The reader is special. For each per cpu buffer, the reader has its own
62  * reader page. When a reader has read the entire reader page, this reader
63  * page is swapped with another page in the ring buffer.
64  *
65  * Now, as long as the writer is off the reader page, the reader can do what
66  * ever it wants with that page. The writer will never write to that page
67  * again (as long as it is out of the ring buffer).
68  *
69  * Here's some silly ASCII art.
70  *
71  *   +------+
72  *   |reader|          RING BUFFER
73  *   |page  |
74  *   +------+        +---+   +---+   +---+
75  *                   |   |-->|   |-->|   |
76  *                   +---+   +---+   +---+
77  *                     ^               |
78  *                     |               |
79  *                     +---------------+
80  *
81  *
82  *   +------+
83  *   |reader|          RING BUFFER
84  *   |page  |------------------v
85  *   +------+        +---+   +---+   +---+
86  *                   |   |-->|   |-->|   |
87  *                   +---+   +---+   +---+
88  *                     ^               |
89  *                     |               |
90  *                     +---------------+
91  *
92  *
93  *   +------+
94  *   |reader|          RING BUFFER
95  *   |page  |------------------v
96  *   +------+        +---+   +---+   +---+
97  *      ^            |   |-->|   |-->|   |
98  *      |            +---+   +---+   +---+
99  *      |                              |
100  *      |                              |
101  *      +------------------------------+
102  *
103  *
104  *   +------+
105  *   |buffer|          RING BUFFER
106  *   |page  |------------------v
107  *   +------+        +---+   +---+   +---+
108  *      ^            |   |   |   |-->|   |
109  *      |   New      +---+   +---+   +---+
110  *      |  Reader------^               |
111  *      |   page                       |
112  *      +------------------------------+
113  *
114  *
115  * After we make this swap, the reader can hand this page off to the splice
116  * code and be done with it. It can even allocate a new page if it needs to
117  * and swap that into the ring buffer.
118  *
119  * We will be using cmpxchg soon to make all this lockless.
120  *
121  */
122
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF           (1 << 20)
125
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT            4U
130 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
132 #define RB_ALIGN_DATA           __aligned(RB_ALIGNMENT)
133
134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
136
137 enum {
138         RB_LEN_TIME_EXTEND = 8,
139         RB_LEN_TIME_STAMP =  8,
140 };
141
142 #define skip_time_extend(event) \
143         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
144
145 #define extended_time(event) \
146         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
147
148 static inline int rb_null_event(struct ring_buffer_event *event)
149 {
150         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
151 }
152
153 static void rb_event_set_padding(struct ring_buffer_event *event)
154 {
155         /* padding has a NULL time_delta */
156         event->type_len = RINGBUF_TYPE_PADDING;
157         event->time_delta = 0;
158 }
159
160 static unsigned
161 rb_event_data_length(struct ring_buffer_event *event)
162 {
163         unsigned length;
164
165         if (event->type_len)
166                 length = event->type_len * RB_ALIGNMENT;
167         else
168                 length = event->array[0];
169         return length + RB_EVNT_HDR_SIZE;
170 }
171
172 /*
173  * Return the length of the given event. Will return
174  * the length of the time extend if the event is a
175  * time extend.
176  */
177 static inline unsigned
178 rb_event_length(struct ring_buffer_event *event)
179 {
180         switch (event->type_len) {
181         case RINGBUF_TYPE_PADDING:
182                 if (rb_null_event(event))
183                         /* undefined */
184                         return -1;
185                 return  event->array[0] + RB_EVNT_HDR_SIZE;
186
187         case RINGBUF_TYPE_TIME_EXTEND:
188                 return RB_LEN_TIME_EXTEND;
189
190         case RINGBUF_TYPE_TIME_STAMP:
191                 return RB_LEN_TIME_STAMP;
192
193         case RINGBUF_TYPE_DATA:
194                 return rb_event_data_length(event);
195         default:
196                 WARN_ON_ONCE(1);
197         }
198         /* not hit */
199         return 0;
200 }
201
202 /*
203  * Return total length of time extend and data,
204  *   or just the event length for all other events.
205  */
206 static inline unsigned
207 rb_event_ts_length(struct ring_buffer_event *event)
208 {
209         unsigned len = 0;
210
211         if (extended_time(event)) {
212                 /* time extends include the data event after it */
213                 len = RB_LEN_TIME_EXTEND;
214                 event = skip_time_extend(event);
215         }
216         return len + rb_event_length(event);
217 }
218
219 /**
220  * ring_buffer_event_length - return the length of the event
221  * @event: the event to get the length of
222  *
223  * Returns the size of the data load of a data event.
224  * If the event is something other than a data event, it
225  * returns the size of the event itself. With the exception
226  * of a TIME EXTEND, where it still returns the size of the
227  * data load of the data event after it.
228  */
229 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
230 {
231         unsigned length;
232
233         if (extended_time(event))
234                 event = skip_time_extend(event);
235
236         length = rb_event_length(event);
237         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
238                 return length;
239         length -= RB_EVNT_HDR_SIZE;
240         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241                 length -= sizeof(event->array[0]);
242         return length;
243 }
244 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
245
246 /* inline for ring buffer fast paths */
247 static __always_inline void *
248 rb_event_data(struct ring_buffer_event *event)
249 {
250         if (extended_time(event))
251                 event = skip_time_extend(event);
252         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
253         /* If length is in len field, then array[0] has the data */
254         if (event->type_len)
255                 return (void *)&event->array[0];
256         /* Otherwise length is in array[0] and array[1] has the data */
257         return (void *)&event->array[1];
258 }
259
260 /**
261  * ring_buffer_event_data - return the data of the event
262  * @event: the event to get the data from
263  */
264 void *ring_buffer_event_data(struct ring_buffer_event *event)
265 {
266         return rb_event_data(event);
267 }
268 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
269
270 #define for_each_buffer_cpu(buffer, cpu)                \
271         for_each_cpu(cpu, buffer->cpumask)
272
273 #define TS_SHIFT        27
274 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
275 #define TS_DELTA_TEST   (~TS_MASK)
276
277 /**
278  * ring_buffer_event_time_stamp - return the event's extended timestamp
279  * @event: the event to get the timestamp of
280  *
281  * Returns the extended timestamp associated with a data event.
282  * An extended time_stamp is a 64-bit timestamp represented
283  * internally in a special way that makes the best use of space
284  * contained within a ring buffer event.  This function decodes
285  * it and maps it to a straight u64 value.
286  */
287 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
288 {
289         u64 ts;
290
291         ts = event->array[0];
292         ts <<= TS_SHIFT;
293         ts += event->time_delta;
294
295         return ts;
296 }
297
298 /* Flag when events were overwritten */
299 #define RB_MISSED_EVENTS        (1 << 31)
300 /* Missed count stored at end */
301 #define RB_MISSED_STORED        (1 << 30)
302
303 struct buffer_data_page {
304         u64              time_stamp;    /* page time stamp */
305         local_t          commit;        /* write committed index */
306         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
307 };
308
309 /*
310  * Note, the buffer_page list must be first. The buffer pages
311  * are allocated in cache lines, which means that each buffer
312  * page will be at the beginning of a cache line, and thus
313  * the least significant bits will be zero. We use this to
314  * add flags in the list struct pointers, to make the ring buffer
315  * lockless.
316  */
317 struct buffer_page {
318         struct list_head list;          /* list of buffer pages */
319         local_t          write;         /* index for next write */
320         unsigned         read;          /* index for next read */
321         local_t          entries;       /* entries on this page */
322         unsigned long    real_end;      /* real end of data */
323         struct buffer_data_page *page;  /* Actual data page */
324 };
325
326 /*
327  * The buffer page counters, write and entries, must be reset
328  * atomically when crossing page boundaries. To synchronize this
329  * update, two counters are inserted into the number. One is
330  * the actual counter for the write position or count on the page.
331  *
332  * The other is a counter of updaters. Before an update happens
333  * the update partition of the counter is incremented. This will
334  * allow the updater to update the counter atomically.
335  *
336  * The counter is 20 bits, and the state data is 12.
337  */
338 #define RB_WRITE_MASK           0xfffff
339 #define RB_WRITE_INTCNT         (1 << 20)
340
341 static void rb_init_page(struct buffer_data_page *bpage)
342 {
343         local_set(&bpage->commit, 0);
344 }
345
346 /*
347  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
348  * this issue out.
349  */
350 static void free_buffer_page(struct buffer_page *bpage)
351 {
352         free_page((unsigned long)bpage->page);
353         kfree(bpage);
354 }
355
356 /*
357  * We need to fit the time_stamp delta into 27 bits.
358  */
359 static inline int test_time_stamp(u64 delta)
360 {
361         if (delta & TS_DELTA_TEST)
362                 return 1;
363         return 0;
364 }
365
366 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
367
368 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
369 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
370
371 int ring_buffer_print_page_header(struct trace_seq *s)
372 {
373         struct buffer_data_page field;
374
375         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376                          "offset:0;\tsize:%u;\tsigned:%u;\n",
377                          (unsigned int)sizeof(field.time_stamp),
378                          (unsigned int)is_signed_type(u64));
379
380         trace_seq_printf(s, "\tfield: local_t commit;\t"
381                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
382                          (unsigned int)offsetof(typeof(field), commit),
383                          (unsigned int)sizeof(field.commit),
384                          (unsigned int)is_signed_type(long));
385
386         trace_seq_printf(s, "\tfield: int overwrite;\t"
387                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
388                          (unsigned int)offsetof(typeof(field), commit),
389                          1,
390                          (unsigned int)is_signed_type(long));
391
392         trace_seq_printf(s, "\tfield: char data;\t"
393                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
394                          (unsigned int)offsetof(typeof(field), data),
395                          (unsigned int)BUF_PAGE_SIZE,
396                          (unsigned int)is_signed_type(char));
397
398         return !trace_seq_has_overflowed(s);
399 }
400
401 struct rb_irq_work {
402         struct irq_work                 work;
403         wait_queue_head_t               waiters;
404         wait_queue_head_t               full_waiters;
405         bool                            waiters_pending;
406         bool                            full_waiters_pending;
407         bool                            wakeup_full;
408 };
409
410 /*
411  * Structure to hold event state and handle nested events.
412  */
413 struct rb_event_info {
414         u64                     ts;
415         u64                     delta;
416         unsigned long           length;
417         struct buffer_page      *tail_page;
418         int                     add_timestamp;
419 };
420
421 /*
422  * Used for which event context the event is in.
423  *  NMI     = 0
424  *  IRQ     = 1
425  *  SOFTIRQ = 2
426  *  NORMAL  = 3
427  *
428  * See trace_recursive_lock() comment below for more details.
429  */
430 enum {
431         RB_CTX_NMI,
432         RB_CTX_IRQ,
433         RB_CTX_SOFTIRQ,
434         RB_CTX_NORMAL,
435         RB_CTX_MAX
436 };
437
438 /*
439  * head_page == tail_page && head == tail then buffer is empty.
440  */
441 struct ring_buffer_per_cpu {
442         int                             cpu;
443         atomic_t                        record_disabled;
444         atomic_t                        resize_disabled;
445         struct trace_buffer     *buffer;
446         raw_spinlock_t                  reader_lock;    /* serialize readers */
447         arch_spinlock_t                 lock;
448         struct lock_class_key           lock_key;
449         struct buffer_data_page         *free_page;
450         unsigned long                   nr_pages;
451         unsigned int                    current_context;
452         struct list_head                *pages;
453         struct buffer_page              *head_page;     /* read from head */
454         struct buffer_page              *tail_page;     /* write to tail */
455         struct buffer_page              *commit_page;   /* committed pages */
456         struct buffer_page              *reader_page;
457         unsigned long                   lost_events;
458         unsigned long                   last_overrun;
459         unsigned long                   nest;
460         local_t                         entries_bytes;
461         local_t                         entries;
462         local_t                         overrun;
463         local_t                         commit_overrun;
464         local_t                         dropped_events;
465         local_t                         committing;
466         local_t                         commits;
467         local_t                         pages_touched;
468         local_t                         pages_read;
469         long                            last_pages_touch;
470         size_t                          shortest_full;
471         unsigned long                   read;
472         unsigned long                   read_bytes;
473         u64                             write_stamp;
474         u64                             read_stamp;
475         /* ring buffer pages to update, > 0 to add, < 0 to remove */
476         long                            nr_pages_to_update;
477         struct list_head                new_pages; /* new pages to add */
478         struct work_struct              update_pages_work;
479         struct completion               update_done;
480
481         struct rb_irq_work              irq_work;
482 };
483
484 struct trace_buffer {
485         unsigned                        flags;
486         int                             cpus;
487         atomic_t                        record_disabled;
488         cpumask_var_t                   cpumask;
489
490         struct lock_class_key           *reader_lock_key;
491
492         struct mutex                    mutex;
493
494         struct ring_buffer_per_cpu      **buffers;
495
496         struct hlist_node               node;
497         u64                             (*clock)(void);
498
499         struct rb_irq_work              irq_work;
500         bool                            time_stamp_abs;
501 };
502
503 struct ring_buffer_iter {
504         struct ring_buffer_per_cpu      *cpu_buffer;
505         unsigned long                   head;
506         unsigned long                   next_event;
507         struct buffer_page              *head_page;
508         struct buffer_page              *cache_reader_page;
509         unsigned long                   cache_read;
510         u64                             read_stamp;
511         u64                             page_stamp;
512         struct ring_buffer_event        *event;
513         int                             missed_events;
514 };
515
516 /**
517  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
518  * @buffer: The ring_buffer to get the number of pages from
519  * @cpu: The cpu of the ring_buffer to get the number of pages from
520  *
521  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
522  */
523 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
524 {
525         return buffer->buffers[cpu]->nr_pages;
526 }
527
528 /**
529  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
530  * @buffer: The ring_buffer to get the number of pages from
531  * @cpu: The cpu of the ring_buffer to get the number of pages from
532  *
533  * Returns the number of pages that have content in the ring buffer.
534  */
535 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
536 {
537         size_t read;
538         size_t cnt;
539
540         read = local_read(&buffer->buffers[cpu]->pages_read);
541         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
542         /* The reader can read an empty page, but not more than that */
543         if (cnt < read) {
544                 WARN_ON_ONCE(read > cnt + 1);
545                 return 0;
546         }
547
548         return cnt - read;
549 }
550
551 /*
552  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
553  *
554  * Schedules a delayed work to wake up any task that is blocked on the
555  * ring buffer waiters queue.
556  */
557 static void rb_wake_up_waiters(struct irq_work *work)
558 {
559         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
560
561         wake_up_all(&rbwork->waiters);
562         if (rbwork->wakeup_full) {
563                 rbwork->wakeup_full = false;
564                 wake_up_all(&rbwork->full_waiters);
565         }
566 }
567
568 /**
569  * ring_buffer_wait - wait for input to the ring buffer
570  * @buffer: buffer to wait on
571  * @cpu: the cpu buffer to wait on
572  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
573  *
574  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
575  * as data is added to any of the @buffer's cpu buffers. Otherwise
576  * it will wait for data to be added to a specific cpu buffer.
577  */
578 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
579 {
580         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
581         DEFINE_WAIT(wait);
582         struct rb_irq_work *work;
583         int ret = 0;
584
585         /*
586          * Depending on what the caller is waiting for, either any
587          * data in any cpu buffer, or a specific buffer, put the
588          * caller on the appropriate wait queue.
589          */
590         if (cpu == RING_BUFFER_ALL_CPUS) {
591                 work = &buffer->irq_work;
592                 /* Full only makes sense on per cpu reads */
593                 full = 0;
594         } else {
595                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
596                         return -ENODEV;
597                 cpu_buffer = buffer->buffers[cpu];
598                 work = &cpu_buffer->irq_work;
599         }
600
601
602         while (true) {
603                 if (full)
604                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
605                 else
606                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
607
608                 /*
609                  * The events can happen in critical sections where
610                  * checking a work queue can cause deadlocks.
611                  * After adding a task to the queue, this flag is set
612                  * only to notify events to try to wake up the queue
613                  * using irq_work.
614                  *
615                  * We don't clear it even if the buffer is no longer
616                  * empty. The flag only causes the next event to run
617                  * irq_work to do the work queue wake up. The worse
618                  * that can happen if we race with !trace_empty() is that
619                  * an event will cause an irq_work to try to wake up
620                  * an empty queue.
621                  *
622                  * There's no reason to protect this flag either, as
623                  * the work queue and irq_work logic will do the necessary
624                  * synchronization for the wake ups. The only thing
625                  * that is necessary is that the wake up happens after
626                  * a task has been queued. It's OK for spurious wake ups.
627                  */
628                 if (full)
629                         work->full_waiters_pending = true;
630                 else
631                         work->waiters_pending = true;
632
633                 if (signal_pending(current)) {
634                         ret = -EINTR;
635                         break;
636                 }
637
638                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
639                         break;
640
641                 if (cpu != RING_BUFFER_ALL_CPUS &&
642                     !ring_buffer_empty_cpu(buffer, cpu)) {
643                         unsigned long flags;
644                         bool pagebusy;
645                         size_t nr_pages;
646                         size_t dirty;
647
648                         if (!full)
649                                 break;
650
651                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
652                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
653                         nr_pages = cpu_buffer->nr_pages;
654                         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
655                         if (!cpu_buffer->shortest_full ||
656                             cpu_buffer->shortest_full < full)
657                                 cpu_buffer->shortest_full = full;
658                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659                         if (!pagebusy &&
660                             (!nr_pages || (dirty * 100) > full * nr_pages))
661                                 break;
662                 }
663
664                 schedule();
665         }
666
667         if (full)
668                 finish_wait(&work->full_waiters, &wait);
669         else
670                 finish_wait(&work->waiters, &wait);
671
672         return ret;
673 }
674
675 /**
676  * ring_buffer_poll_wait - poll on buffer input
677  * @buffer: buffer to wait on
678  * @cpu: the cpu buffer to wait on
679  * @filp: the file descriptor
680  * @poll_table: The poll descriptor
681  *
682  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
683  * as data is added to any of the @buffer's cpu buffers. Otherwise
684  * it will wait for data to be added to a specific cpu buffer.
685  *
686  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
687  * zero otherwise.
688  */
689 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
690                           struct file *filp, poll_table *poll_table)
691 {
692         struct ring_buffer_per_cpu *cpu_buffer;
693         struct rb_irq_work *work;
694
695         if (cpu == RING_BUFFER_ALL_CPUS)
696                 work = &buffer->irq_work;
697         else {
698                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
699                         return -EINVAL;
700
701                 cpu_buffer = buffer->buffers[cpu];
702                 work = &cpu_buffer->irq_work;
703         }
704
705         poll_wait(filp, &work->waiters, poll_table);
706         work->waiters_pending = true;
707         /*
708          * There's a tight race between setting the waiters_pending and
709          * checking if the ring buffer is empty.  Once the waiters_pending bit
710          * is set, the next event will wake the task up, but we can get stuck
711          * if there's only a single event in.
712          *
713          * FIXME: Ideally, we need a memory barrier on the writer side as well,
714          * but adding a memory barrier to all events will cause too much of a
715          * performance hit in the fast path.  We only need a memory barrier when
716          * the buffer goes from empty to having content.  But as this race is
717          * extremely small, and it's not a problem if another event comes in, we
718          * will fix it later.
719          */
720         smp_mb();
721
722         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
723             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
724                 return EPOLLIN | EPOLLRDNORM;
725         return 0;
726 }
727
728 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
729 #define RB_WARN_ON(b, cond)                                             \
730         ({                                                              \
731                 int _____ret = unlikely(cond);                          \
732                 if (_____ret) {                                         \
733                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
734                                 struct ring_buffer_per_cpu *__b =       \
735                                         (void *)b;                      \
736                                 atomic_inc(&__b->buffer->record_disabled); \
737                         } else                                          \
738                                 atomic_inc(&b->record_disabled);        \
739                         WARN_ON(1);                                     \
740                 }                                                       \
741                 _____ret;                                               \
742         })
743
744 /* Up this if you want to test the TIME_EXTENTS and normalization */
745 #define DEBUG_SHIFT 0
746
747 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
748 {
749         /* shift to debug/test normalization and TIME_EXTENTS */
750         return buffer->clock() << DEBUG_SHIFT;
751 }
752
753 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
754 {
755         u64 time;
756
757         preempt_disable_notrace();
758         time = rb_time_stamp(buffer);
759         preempt_enable_notrace();
760
761         return time;
762 }
763 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
764
765 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
766                                       int cpu, u64 *ts)
767 {
768         /* Just stupid testing the normalize function and deltas */
769         *ts >>= DEBUG_SHIFT;
770 }
771 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
772
773 /*
774  * Making the ring buffer lockless makes things tricky.
775  * Although writes only happen on the CPU that they are on,
776  * and they only need to worry about interrupts. Reads can
777  * happen on any CPU.
778  *
779  * The reader page is always off the ring buffer, but when the
780  * reader finishes with a page, it needs to swap its page with
781  * a new one from the buffer. The reader needs to take from
782  * the head (writes go to the tail). But if a writer is in overwrite
783  * mode and wraps, it must push the head page forward.
784  *
785  * Here lies the problem.
786  *
787  * The reader must be careful to replace only the head page, and
788  * not another one. As described at the top of the file in the
789  * ASCII art, the reader sets its old page to point to the next
790  * page after head. It then sets the page after head to point to
791  * the old reader page. But if the writer moves the head page
792  * during this operation, the reader could end up with the tail.
793  *
794  * We use cmpxchg to help prevent this race. We also do something
795  * special with the page before head. We set the LSB to 1.
796  *
797  * When the writer must push the page forward, it will clear the
798  * bit that points to the head page, move the head, and then set
799  * the bit that points to the new head page.
800  *
801  * We also don't want an interrupt coming in and moving the head
802  * page on another writer. Thus we use the second LSB to catch
803  * that too. Thus:
804  *
805  * head->list->prev->next        bit 1          bit 0
806  *                              -------        -------
807  * Normal page                     0              0
808  * Points to head page             0              1
809  * New head page                   1              0
810  *
811  * Note we can not trust the prev pointer of the head page, because:
812  *
813  * +----+       +-----+        +-----+
814  * |    |------>|  T  |---X--->|  N  |
815  * |    |<------|     |        |     |
816  * +----+       +-----+        +-----+
817  *   ^                           ^ |
818  *   |          +-----+          | |
819  *   +----------|  R  |----------+ |
820  *              |     |<-----------+
821  *              +-----+
822  *
823  * Key:  ---X-->  HEAD flag set in pointer
824  *         T      Tail page
825  *         R      Reader page
826  *         N      Next page
827  *
828  * (see __rb_reserve_next() to see where this happens)
829  *
830  *  What the above shows is that the reader just swapped out
831  *  the reader page with a page in the buffer, but before it
832  *  could make the new header point back to the new page added
833  *  it was preempted by a writer. The writer moved forward onto
834  *  the new page added by the reader and is about to move forward
835  *  again.
836  *
837  *  You can see, it is legitimate for the previous pointer of
838  *  the head (or any page) not to point back to itself. But only
839  *  temporarily.
840  */
841
842 #define RB_PAGE_NORMAL          0UL
843 #define RB_PAGE_HEAD            1UL
844 #define RB_PAGE_UPDATE          2UL
845
846
847 #define RB_FLAG_MASK            3UL
848
849 /* PAGE_MOVED is not part of the mask */
850 #define RB_PAGE_MOVED           4UL
851
852 /*
853  * rb_list_head - remove any bit
854  */
855 static struct list_head *rb_list_head(struct list_head *list)
856 {
857         unsigned long val = (unsigned long)list;
858
859         return (struct list_head *)(val & ~RB_FLAG_MASK);
860 }
861
862 /*
863  * rb_is_head_page - test if the given page is the head page
864  *
865  * Because the reader may move the head_page pointer, we can
866  * not trust what the head page is (it may be pointing to
867  * the reader page). But if the next page is a header page,
868  * its flags will be non zero.
869  */
870 static inline int
871 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
872                 struct buffer_page *page, struct list_head *list)
873 {
874         unsigned long val;
875
876         val = (unsigned long)list->next;
877
878         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
879                 return RB_PAGE_MOVED;
880
881         return val & RB_FLAG_MASK;
882 }
883
884 /*
885  * rb_is_reader_page
886  *
887  * The unique thing about the reader page, is that, if the
888  * writer is ever on it, the previous pointer never points
889  * back to the reader page.
890  */
891 static bool rb_is_reader_page(struct buffer_page *page)
892 {
893         struct list_head *list = page->list.prev;
894
895         return rb_list_head(list->next) != &page->list;
896 }
897
898 /*
899  * rb_set_list_to_head - set a list_head to be pointing to head.
900  */
901 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
902                                 struct list_head *list)
903 {
904         unsigned long *ptr;
905
906         ptr = (unsigned long *)&list->next;
907         *ptr |= RB_PAGE_HEAD;
908         *ptr &= ~RB_PAGE_UPDATE;
909 }
910
911 /*
912  * rb_head_page_activate - sets up head page
913  */
914 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
915 {
916         struct buffer_page *head;
917
918         head = cpu_buffer->head_page;
919         if (!head)
920                 return;
921
922         /*
923          * Set the previous list pointer to have the HEAD flag.
924          */
925         rb_set_list_to_head(cpu_buffer, head->list.prev);
926 }
927
928 static void rb_list_head_clear(struct list_head *list)
929 {
930         unsigned long *ptr = (unsigned long *)&list->next;
931
932         *ptr &= ~RB_FLAG_MASK;
933 }
934
935 /*
936  * rb_head_page_deactivate - clears head page ptr (for free list)
937  */
938 static void
939 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
940 {
941         struct list_head *hd;
942
943         /* Go through the whole list and clear any pointers found. */
944         rb_list_head_clear(cpu_buffer->pages);
945
946         list_for_each(hd, cpu_buffer->pages)
947                 rb_list_head_clear(hd);
948 }
949
950 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
951                             struct buffer_page *head,
952                             struct buffer_page *prev,
953                             int old_flag, int new_flag)
954 {
955         struct list_head *list;
956         unsigned long val = (unsigned long)&head->list;
957         unsigned long ret;
958
959         list = &prev->list;
960
961         val &= ~RB_FLAG_MASK;
962
963         ret = cmpxchg((unsigned long *)&list->next,
964                       val | old_flag, val | new_flag);
965
966         /* check if the reader took the page */
967         if ((ret & ~RB_FLAG_MASK) != val)
968                 return RB_PAGE_MOVED;
969
970         return ret & RB_FLAG_MASK;
971 }
972
973 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
974                                    struct buffer_page *head,
975                                    struct buffer_page *prev,
976                                    int old_flag)
977 {
978         return rb_head_page_set(cpu_buffer, head, prev,
979                                 old_flag, RB_PAGE_UPDATE);
980 }
981
982 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
983                                  struct buffer_page *head,
984                                  struct buffer_page *prev,
985                                  int old_flag)
986 {
987         return rb_head_page_set(cpu_buffer, head, prev,
988                                 old_flag, RB_PAGE_HEAD);
989 }
990
991 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
992                                    struct buffer_page *head,
993                                    struct buffer_page *prev,
994                                    int old_flag)
995 {
996         return rb_head_page_set(cpu_buffer, head, prev,
997                                 old_flag, RB_PAGE_NORMAL);
998 }
999
1000 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1001                                struct buffer_page **bpage)
1002 {
1003         struct list_head *p = rb_list_head((*bpage)->list.next);
1004
1005         *bpage = list_entry(p, struct buffer_page, list);
1006 }
1007
1008 static struct buffer_page *
1009 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1010 {
1011         struct buffer_page *head;
1012         struct buffer_page *page;
1013         struct list_head *list;
1014         int i;
1015
1016         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1017                 return NULL;
1018
1019         /* sanity check */
1020         list = cpu_buffer->pages;
1021         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1022                 return NULL;
1023
1024         page = head = cpu_buffer->head_page;
1025         /*
1026          * It is possible that the writer moves the header behind
1027          * where we started, and we miss in one loop.
1028          * A second loop should grab the header, but we'll do
1029          * three loops just because I'm paranoid.
1030          */
1031         for (i = 0; i < 3; i++) {
1032                 do {
1033                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1034                                 cpu_buffer->head_page = page;
1035                                 return page;
1036                         }
1037                         rb_inc_page(cpu_buffer, &page);
1038                 } while (page != head);
1039         }
1040
1041         RB_WARN_ON(cpu_buffer, 1);
1042
1043         return NULL;
1044 }
1045
1046 static int rb_head_page_replace(struct buffer_page *old,
1047                                 struct buffer_page *new)
1048 {
1049         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1050         unsigned long val;
1051         unsigned long ret;
1052
1053         val = *ptr & ~RB_FLAG_MASK;
1054         val |= RB_PAGE_HEAD;
1055
1056         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1057
1058         return ret == val;
1059 }
1060
1061 /*
1062  * rb_tail_page_update - move the tail page forward
1063  */
1064 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1065                                struct buffer_page *tail_page,
1066                                struct buffer_page *next_page)
1067 {
1068         unsigned long old_entries;
1069         unsigned long old_write;
1070
1071         /*
1072          * The tail page now needs to be moved forward.
1073          *
1074          * We need to reset the tail page, but without messing
1075          * with possible erasing of data brought in by interrupts
1076          * that have moved the tail page and are currently on it.
1077          *
1078          * We add a counter to the write field to denote this.
1079          */
1080         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1081         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1082
1083         local_inc(&cpu_buffer->pages_touched);
1084         /*
1085          * Just make sure we have seen our old_write and synchronize
1086          * with any interrupts that come in.
1087          */
1088         barrier();
1089
1090         /*
1091          * If the tail page is still the same as what we think
1092          * it is, then it is up to us to update the tail
1093          * pointer.
1094          */
1095         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1096                 /* Zero the write counter */
1097                 unsigned long val = old_write & ~RB_WRITE_MASK;
1098                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1099
1100                 /*
1101                  * This will only succeed if an interrupt did
1102                  * not come in and change it. In which case, we
1103                  * do not want to modify it.
1104                  *
1105                  * We add (void) to let the compiler know that we do not care
1106                  * about the return value of these functions. We use the
1107                  * cmpxchg to only update if an interrupt did not already
1108                  * do it for us. If the cmpxchg fails, we don't care.
1109                  */
1110                 (void)local_cmpxchg(&next_page->write, old_write, val);
1111                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1112
1113                 /*
1114                  * No need to worry about races with clearing out the commit.
1115                  * it only can increment when a commit takes place. But that
1116                  * only happens in the outer most nested commit.
1117                  */
1118                 local_set(&next_page->page->commit, 0);
1119
1120                 /* Again, either we update tail_page or an interrupt does */
1121                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1122         }
1123 }
1124
1125 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1126                           struct buffer_page *bpage)
1127 {
1128         unsigned long val = (unsigned long)bpage;
1129
1130         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1131                 return 1;
1132
1133         return 0;
1134 }
1135
1136 /**
1137  * rb_check_list - make sure a pointer to a list has the last bits zero
1138  */
1139 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1140                          struct list_head *list)
1141 {
1142         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1143                 return 1;
1144         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1145                 return 1;
1146         return 0;
1147 }
1148
1149 /**
1150  * rb_check_pages - integrity check of buffer pages
1151  * @cpu_buffer: CPU buffer with pages to test
1152  *
1153  * As a safety measure we check to make sure the data pages have not
1154  * been corrupted.
1155  */
1156 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1157 {
1158         struct list_head *head = cpu_buffer->pages;
1159         struct buffer_page *bpage, *tmp;
1160
1161         /* Reset the head page if it exists */
1162         if (cpu_buffer->head_page)
1163                 rb_set_head_page(cpu_buffer);
1164
1165         rb_head_page_deactivate(cpu_buffer);
1166
1167         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1168                 return -1;
1169         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1170                 return -1;
1171
1172         if (rb_check_list(cpu_buffer, head))
1173                 return -1;
1174
1175         list_for_each_entry_safe(bpage, tmp, head, list) {
1176                 if (RB_WARN_ON(cpu_buffer,
1177                                bpage->list.next->prev != &bpage->list))
1178                         return -1;
1179                 if (RB_WARN_ON(cpu_buffer,
1180                                bpage->list.prev->next != &bpage->list))
1181                         return -1;
1182                 if (rb_check_list(cpu_buffer, &bpage->list))
1183                         return -1;
1184         }
1185
1186         rb_head_page_activate(cpu_buffer);
1187
1188         return 0;
1189 }
1190
1191 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1192 {
1193         struct buffer_page *bpage, *tmp;
1194         bool user_thread = current->mm != NULL;
1195         gfp_t mflags;
1196         long i;
1197
1198         /*
1199          * Check if the available memory is there first.
1200          * Note, si_mem_available() only gives us a rough estimate of available
1201          * memory. It may not be accurate. But we don't care, we just want
1202          * to prevent doing any allocation when it is obvious that it is
1203          * not going to succeed.
1204          */
1205         i = si_mem_available();
1206         if (i < nr_pages)
1207                 return -ENOMEM;
1208
1209         /*
1210          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1211          * gracefully without invoking oom-killer and the system is not
1212          * destabilized.
1213          */
1214         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1215
1216         /*
1217          * If a user thread allocates too much, and si_mem_available()
1218          * reports there's enough memory, even though there is not.
1219          * Make sure the OOM killer kills this thread. This can happen
1220          * even with RETRY_MAYFAIL because another task may be doing
1221          * an allocation after this task has taken all memory.
1222          * This is the task the OOM killer needs to take out during this
1223          * loop, even if it was triggered by an allocation somewhere else.
1224          */
1225         if (user_thread)
1226                 set_current_oom_origin();
1227         for (i = 0; i < nr_pages; i++) {
1228                 struct page *page;
1229
1230                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1231                                     mflags, cpu_to_node(cpu));
1232                 if (!bpage)
1233                         goto free_pages;
1234
1235                 list_add(&bpage->list, pages);
1236
1237                 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1238                 if (!page)
1239                         goto free_pages;
1240                 bpage->page = page_address(page);
1241                 rb_init_page(bpage->page);
1242
1243                 if (user_thread && fatal_signal_pending(current))
1244                         goto free_pages;
1245         }
1246         if (user_thread)
1247                 clear_current_oom_origin();
1248
1249         return 0;
1250
1251 free_pages:
1252         list_for_each_entry_safe(bpage, tmp, pages, list) {
1253                 list_del_init(&bpage->list);
1254                 free_buffer_page(bpage);
1255         }
1256         if (user_thread)
1257                 clear_current_oom_origin();
1258
1259         return -ENOMEM;
1260 }
1261
1262 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1263                              unsigned long nr_pages)
1264 {
1265         LIST_HEAD(pages);
1266
1267         WARN_ON(!nr_pages);
1268
1269         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1270                 return -ENOMEM;
1271
1272         /*
1273          * The ring buffer page list is a circular list that does not
1274          * start and end with a list head. All page list items point to
1275          * other pages.
1276          */
1277         cpu_buffer->pages = pages.next;
1278         list_del(&pages);
1279
1280         cpu_buffer->nr_pages = nr_pages;
1281
1282         rb_check_pages(cpu_buffer);
1283
1284         return 0;
1285 }
1286
1287 static struct ring_buffer_per_cpu *
1288 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1289 {
1290         struct ring_buffer_per_cpu *cpu_buffer;
1291         struct buffer_page *bpage;
1292         struct page *page;
1293         int ret;
1294
1295         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1296                                   GFP_KERNEL, cpu_to_node(cpu));
1297         if (!cpu_buffer)
1298                 return NULL;
1299
1300         cpu_buffer->cpu = cpu;
1301         cpu_buffer->buffer = buffer;
1302         raw_spin_lock_init(&cpu_buffer->reader_lock);
1303         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1304         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1305         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1306         init_completion(&cpu_buffer->update_done);
1307         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1308         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1309         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1310
1311         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1312                             GFP_KERNEL, cpu_to_node(cpu));
1313         if (!bpage)
1314                 goto fail_free_buffer;
1315
1316         rb_check_bpage(cpu_buffer, bpage);
1317
1318         cpu_buffer->reader_page = bpage;
1319         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1320         if (!page)
1321                 goto fail_free_reader;
1322         bpage->page = page_address(page);
1323         rb_init_page(bpage->page);
1324
1325         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1326         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1327
1328         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1329         if (ret < 0)
1330                 goto fail_free_reader;
1331
1332         cpu_buffer->head_page
1333                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1334         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1335
1336         rb_head_page_activate(cpu_buffer);
1337
1338         return cpu_buffer;
1339
1340  fail_free_reader:
1341         free_buffer_page(cpu_buffer->reader_page);
1342
1343  fail_free_buffer:
1344         kfree(cpu_buffer);
1345         return NULL;
1346 }
1347
1348 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1349 {
1350         struct list_head *head = cpu_buffer->pages;
1351         struct buffer_page *bpage, *tmp;
1352
1353         free_buffer_page(cpu_buffer->reader_page);
1354
1355         rb_head_page_deactivate(cpu_buffer);
1356
1357         if (head) {
1358                 list_for_each_entry_safe(bpage, tmp, head, list) {
1359                         list_del_init(&bpage->list);
1360                         free_buffer_page(bpage);
1361                 }
1362                 bpage = list_entry(head, struct buffer_page, list);
1363                 free_buffer_page(bpage);
1364         }
1365
1366         kfree(cpu_buffer);
1367 }
1368
1369 /**
1370  * __ring_buffer_alloc - allocate a new ring_buffer
1371  * @size: the size in bytes per cpu that is needed.
1372  * @flags: attributes to set for the ring buffer.
1373  * @key: ring buffer reader_lock_key.
1374  *
1375  * Currently the only flag that is available is the RB_FL_OVERWRITE
1376  * flag. This flag means that the buffer will overwrite old data
1377  * when the buffer wraps. If this flag is not set, the buffer will
1378  * drop data when the tail hits the head.
1379  */
1380 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1381                                         struct lock_class_key *key)
1382 {
1383         struct trace_buffer *buffer;
1384         long nr_pages;
1385         int bsize;
1386         int cpu;
1387         int ret;
1388
1389         /* keep it in its own cache line */
1390         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1391                          GFP_KERNEL);
1392         if (!buffer)
1393                 return NULL;
1394
1395         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1396                 goto fail_free_buffer;
1397
1398         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1399         buffer->flags = flags;
1400         buffer->clock = trace_clock_local;
1401         buffer->reader_lock_key = key;
1402
1403         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1404         init_waitqueue_head(&buffer->irq_work.waiters);
1405
1406         /* need at least two pages */
1407         if (nr_pages < 2)
1408                 nr_pages = 2;
1409
1410         buffer->cpus = nr_cpu_ids;
1411
1412         bsize = sizeof(void *) * nr_cpu_ids;
1413         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1414                                   GFP_KERNEL);
1415         if (!buffer->buffers)
1416                 goto fail_free_cpumask;
1417
1418         cpu = raw_smp_processor_id();
1419         cpumask_set_cpu(cpu, buffer->cpumask);
1420         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1421         if (!buffer->buffers[cpu])
1422                 goto fail_free_buffers;
1423
1424         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1425         if (ret < 0)
1426                 goto fail_free_buffers;
1427
1428         mutex_init(&buffer->mutex);
1429
1430         return buffer;
1431
1432  fail_free_buffers:
1433         for_each_buffer_cpu(buffer, cpu) {
1434                 if (buffer->buffers[cpu])
1435                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1436         }
1437         kfree(buffer->buffers);
1438
1439  fail_free_cpumask:
1440         free_cpumask_var(buffer->cpumask);
1441
1442  fail_free_buffer:
1443         kfree(buffer);
1444         return NULL;
1445 }
1446 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1447
1448 /**
1449  * ring_buffer_free - free a ring buffer.
1450  * @buffer: the buffer to free.
1451  */
1452 void
1453 ring_buffer_free(struct trace_buffer *buffer)
1454 {
1455         int cpu;
1456
1457         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1458
1459         for_each_buffer_cpu(buffer, cpu)
1460                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1461
1462         kfree(buffer->buffers);
1463         free_cpumask_var(buffer->cpumask);
1464
1465         kfree(buffer);
1466 }
1467 EXPORT_SYMBOL_GPL(ring_buffer_free);
1468
1469 void ring_buffer_set_clock(struct trace_buffer *buffer,
1470                            u64 (*clock)(void))
1471 {
1472         buffer->clock = clock;
1473 }
1474
1475 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1476 {
1477         buffer->time_stamp_abs = abs;
1478 }
1479
1480 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1481 {
1482         return buffer->time_stamp_abs;
1483 }
1484
1485 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1486
1487 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1488 {
1489         return local_read(&bpage->entries) & RB_WRITE_MASK;
1490 }
1491
1492 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1493 {
1494         return local_read(&bpage->write) & RB_WRITE_MASK;
1495 }
1496
1497 static int
1498 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1499 {
1500         struct list_head *tail_page, *to_remove, *next_page;
1501         struct buffer_page *to_remove_page, *tmp_iter_page;
1502         struct buffer_page *last_page, *first_page;
1503         unsigned long nr_removed;
1504         unsigned long head_bit;
1505         int page_entries;
1506
1507         head_bit = 0;
1508
1509         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1510         atomic_inc(&cpu_buffer->record_disabled);
1511         /*
1512          * We don't race with the readers since we have acquired the reader
1513          * lock. We also don't race with writers after disabling recording.
1514          * This makes it easy to figure out the first and the last page to be
1515          * removed from the list. We unlink all the pages in between including
1516          * the first and last pages. This is done in a busy loop so that we
1517          * lose the least number of traces.
1518          * The pages are freed after we restart recording and unlock readers.
1519          */
1520         tail_page = &cpu_buffer->tail_page->list;
1521
1522         /*
1523          * tail page might be on reader page, we remove the next page
1524          * from the ring buffer
1525          */
1526         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1527                 tail_page = rb_list_head(tail_page->next);
1528         to_remove = tail_page;
1529
1530         /* start of pages to remove */
1531         first_page = list_entry(rb_list_head(to_remove->next),
1532                                 struct buffer_page, list);
1533
1534         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1535                 to_remove = rb_list_head(to_remove)->next;
1536                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1537         }
1538
1539         next_page = rb_list_head(to_remove)->next;
1540
1541         /*
1542          * Now we remove all pages between tail_page and next_page.
1543          * Make sure that we have head_bit value preserved for the
1544          * next page
1545          */
1546         tail_page->next = (struct list_head *)((unsigned long)next_page |
1547                                                 head_bit);
1548         next_page = rb_list_head(next_page);
1549         next_page->prev = tail_page;
1550
1551         /* make sure pages points to a valid page in the ring buffer */
1552         cpu_buffer->pages = next_page;
1553
1554         /* update head page */
1555         if (head_bit)
1556                 cpu_buffer->head_page = list_entry(next_page,
1557                                                 struct buffer_page, list);
1558
1559         /*
1560          * change read pointer to make sure any read iterators reset
1561          * themselves
1562          */
1563         cpu_buffer->read = 0;
1564
1565         /* pages are removed, resume tracing and then free the pages */
1566         atomic_dec(&cpu_buffer->record_disabled);
1567         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1568
1569         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1570
1571         /* last buffer page to remove */
1572         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1573                                 list);
1574         tmp_iter_page = first_page;
1575
1576         do {
1577                 cond_resched();
1578
1579                 to_remove_page = tmp_iter_page;
1580                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1581
1582                 /* update the counters */
1583                 page_entries = rb_page_entries(to_remove_page);
1584                 if (page_entries) {
1585                         /*
1586                          * If something was added to this page, it was full
1587                          * since it is not the tail page. So we deduct the
1588                          * bytes consumed in ring buffer from here.
1589                          * Increment overrun to account for the lost events.
1590                          */
1591                         local_add(page_entries, &cpu_buffer->overrun);
1592                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1593                 }
1594
1595                 /*
1596                  * We have already removed references to this list item, just
1597                  * free up the buffer_page and its page
1598                  */
1599                 free_buffer_page(to_remove_page);
1600                 nr_removed--;
1601
1602         } while (to_remove_page != last_page);
1603
1604         RB_WARN_ON(cpu_buffer, nr_removed);
1605
1606         return nr_removed == 0;
1607 }
1608
1609 static int
1610 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1611 {
1612         struct list_head *pages = &cpu_buffer->new_pages;
1613         int retries, success;
1614
1615         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1616         /*
1617          * We are holding the reader lock, so the reader page won't be swapped
1618          * in the ring buffer. Now we are racing with the writer trying to
1619          * move head page and the tail page.
1620          * We are going to adapt the reader page update process where:
1621          * 1. We first splice the start and end of list of new pages between
1622          *    the head page and its previous page.
1623          * 2. We cmpxchg the prev_page->next to point from head page to the
1624          *    start of new pages list.
1625          * 3. Finally, we update the head->prev to the end of new list.
1626          *
1627          * We will try this process 10 times, to make sure that we don't keep
1628          * spinning.
1629          */
1630         retries = 10;
1631         success = 0;
1632         while (retries--) {
1633                 struct list_head *head_page, *prev_page, *r;
1634                 struct list_head *last_page, *first_page;
1635                 struct list_head *head_page_with_bit;
1636
1637                 head_page = &rb_set_head_page(cpu_buffer)->list;
1638                 if (!head_page)
1639                         break;
1640                 prev_page = head_page->prev;
1641
1642                 first_page = pages->next;
1643                 last_page  = pages->prev;
1644
1645                 head_page_with_bit = (struct list_head *)
1646                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1647
1648                 last_page->next = head_page_with_bit;
1649                 first_page->prev = prev_page;
1650
1651                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1652
1653                 if (r == head_page_with_bit) {
1654                         /*
1655                          * yay, we replaced the page pointer to our new list,
1656                          * now, we just have to update to head page's prev
1657                          * pointer to point to end of list
1658                          */
1659                         head_page->prev = last_page;
1660                         success = 1;
1661                         break;
1662                 }
1663         }
1664
1665         if (success)
1666                 INIT_LIST_HEAD(pages);
1667         /*
1668          * If we weren't successful in adding in new pages, warn and stop
1669          * tracing
1670          */
1671         RB_WARN_ON(cpu_buffer, !success);
1672         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1673
1674         /* free pages if they weren't inserted */
1675         if (!success) {
1676                 struct buffer_page *bpage, *tmp;
1677                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1678                                          list) {
1679                         list_del_init(&bpage->list);
1680                         free_buffer_page(bpage);
1681                 }
1682         }
1683         return success;
1684 }
1685
1686 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1687 {
1688         int success;
1689
1690         if (cpu_buffer->nr_pages_to_update > 0)
1691                 success = rb_insert_pages(cpu_buffer);
1692         else
1693                 success = rb_remove_pages(cpu_buffer,
1694                                         -cpu_buffer->nr_pages_to_update);
1695
1696         if (success)
1697                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1698 }
1699
1700 static void update_pages_handler(struct work_struct *work)
1701 {
1702         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1703                         struct ring_buffer_per_cpu, update_pages_work);
1704         rb_update_pages(cpu_buffer);
1705         complete(&cpu_buffer->update_done);
1706 }
1707
1708 /**
1709  * ring_buffer_resize - resize the ring buffer
1710  * @buffer: the buffer to resize.
1711  * @size: the new size.
1712  * @cpu_id: the cpu buffer to resize
1713  *
1714  * Minimum size is 2 * BUF_PAGE_SIZE.
1715  *
1716  * Returns 0 on success and < 0 on failure.
1717  */
1718 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1719                         int cpu_id)
1720 {
1721         struct ring_buffer_per_cpu *cpu_buffer;
1722         unsigned long nr_pages;
1723         int cpu, err = 0;
1724
1725         /*
1726          * Always succeed at resizing a non-existent buffer:
1727          */
1728         if (!buffer)
1729                 return size;
1730
1731         /* Make sure the requested buffer exists */
1732         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1733             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1734                 return size;
1735
1736         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1737
1738         /* we need a minimum of two pages */
1739         if (nr_pages < 2)
1740                 nr_pages = 2;
1741
1742         size = nr_pages * BUF_PAGE_SIZE;
1743
1744         /* prevent another thread from changing buffer sizes */
1745         mutex_lock(&buffer->mutex);
1746
1747
1748         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1749                 /*
1750                  * Don't succeed if resizing is disabled, as a reader might be
1751                  * manipulating the ring buffer and is expecting a sane state while
1752                  * this is true.
1753                  */
1754                 for_each_buffer_cpu(buffer, cpu) {
1755                         cpu_buffer = buffer->buffers[cpu];
1756                         if (atomic_read(&cpu_buffer->resize_disabled)) {
1757                                 err = -EBUSY;
1758                                 goto out_err_unlock;
1759                         }
1760                 }
1761
1762                 /* calculate the pages to update */
1763                 for_each_buffer_cpu(buffer, cpu) {
1764                         cpu_buffer = buffer->buffers[cpu];
1765
1766                         cpu_buffer->nr_pages_to_update = nr_pages -
1767                                                         cpu_buffer->nr_pages;
1768                         /*
1769                          * nothing more to do for removing pages or no update
1770                          */
1771                         if (cpu_buffer->nr_pages_to_update <= 0)
1772                                 continue;
1773                         /*
1774                          * to add pages, make sure all new pages can be
1775                          * allocated without receiving ENOMEM
1776                          */
1777                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1778                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1779                                                 &cpu_buffer->new_pages, cpu)) {
1780                                 /* not enough memory for new pages */
1781                                 err = -ENOMEM;
1782                                 goto out_err;
1783                         }
1784                 }
1785
1786                 get_online_cpus();
1787                 /*
1788                  * Fire off all the required work handlers
1789                  * We can't schedule on offline CPUs, but it's not necessary
1790                  * since we can change their buffer sizes without any race.
1791                  */
1792                 for_each_buffer_cpu(buffer, cpu) {
1793                         cpu_buffer = buffer->buffers[cpu];
1794                         if (!cpu_buffer->nr_pages_to_update)
1795                                 continue;
1796
1797                         /* Can't run something on an offline CPU. */
1798                         if (!cpu_online(cpu)) {
1799                                 rb_update_pages(cpu_buffer);
1800                                 cpu_buffer->nr_pages_to_update = 0;
1801                         } else {
1802                                 schedule_work_on(cpu,
1803                                                 &cpu_buffer->update_pages_work);
1804                         }
1805                 }
1806
1807                 /* wait for all the updates to complete */
1808                 for_each_buffer_cpu(buffer, cpu) {
1809                         cpu_buffer = buffer->buffers[cpu];
1810                         if (!cpu_buffer->nr_pages_to_update)
1811                                 continue;
1812
1813                         if (cpu_online(cpu))
1814                                 wait_for_completion(&cpu_buffer->update_done);
1815                         cpu_buffer->nr_pages_to_update = 0;
1816                 }
1817
1818                 put_online_cpus();
1819         } else {
1820                 /* Make sure this CPU has been initialized */
1821                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1822                         goto out;
1823
1824                 cpu_buffer = buffer->buffers[cpu_id];
1825
1826                 if (nr_pages == cpu_buffer->nr_pages)
1827                         goto out;
1828
1829                 /*
1830                  * Don't succeed if resizing is disabled, as a reader might be
1831                  * manipulating the ring buffer and is expecting a sane state while
1832                  * this is true.
1833                  */
1834                 if (atomic_read(&cpu_buffer->resize_disabled)) {
1835                         err = -EBUSY;
1836                         goto out_err_unlock;
1837                 }
1838
1839                 cpu_buffer->nr_pages_to_update = nr_pages -
1840                                                 cpu_buffer->nr_pages;
1841
1842                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1843                 if (cpu_buffer->nr_pages_to_update > 0 &&
1844                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1845                                             &cpu_buffer->new_pages, cpu_id)) {
1846                         err = -ENOMEM;
1847                         goto out_err;
1848                 }
1849
1850                 get_online_cpus();
1851
1852                 /* Can't run something on an offline CPU. */
1853                 if (!cpu_online(cpu_id))
1854                         rb_update_pages(cpu_buffer);
1855                 else {
1856                         schedule_work_on(cpu_id,
1857                                          &cpu_buffer->update_pages_work);
1858                         wait_for_completion(&cpu_buffer->update_done);
1859                 }
1860
1861                 cpu_buffer->nr_pages_to_update = 0;
1862                 put_online_cpus();
1863         }
1864
1865  out:
1866         /*
1867          * The ring buffer resize can happen with the ring buffer
1868          * enabled, so that the update disturbs the tracing as little
1869          * as possible. But if the buffer is disabled, we do not need
1870          * to worry about that, and we can take the time to verify
1871          * that the buffer is not corrupt.
1872          */
1873         if (atomic_read(&buffer->record_disabled)) {
1874                 atomic_inc(&buffer->record_disabled);
1875                 /*
1876                  * Even though the buffer was disabled, we must make sure
1877                  * that it is truly disabled before calling rb_check_pages.
1878                  * There could have been a race between checking
1879                  * record_disable and incrementing it.
1880                  */
1881                 synchronize_rcu();
1882                 for_each_buffer_cpu(buffer, cpu) {
1883                         cpu_buffer = buffer->buffers[cpu];
1884                         rb_check_pages(cpu_buffer);
1885                 }
1886                 atomic_dec(&buffer->record_disabled);
1887         }
1888
1889         mutex_unlock(&buffer->mutex);
1890         return size;
1891
1892  out_err:
1893         for_each_buffer_cpu(buffer, cpu) {
1894                 struct buffer_page *bpage, *tmp;
1895
1896                 cpu_buffer = buffer->buffers[cpu];
1897                 cpu_buffer->nr_pages_to_update = 0;
1898
1899                 if (list_empty(&cpu_buffer->new_pages))
1900                         continue;
1901
1902                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1903                                         list) {
1904                         list_del_init(&bpage->list);
1905                         free_buffer_page(bpage);
1906                 }
1907         }
1908  out_err_unlock:
1909         mutex_unlock(&buffer->mutex);
1910         return err;
1911 }
1912 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1913
1914 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
1915 {
1916         mutex_lock(&buffer->mutex);
1917         if (val)
1918                 buffer->flags |= RB_FL_OVERWRITE;
1919         else
1920                 buffer->flags &= ~RB_FL_OVERWRITE;
1921         mutex_unlock(&buffer->mutex);
1922 }
1923 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1924
1925 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1926 {
1927         return bpage->page->data + index;
1928 }
1929
1930 static __always_inline struct ring_buffer_event *
1931 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1932 {
1933         return __rb_page_index(cpu_buffer->reader_page,
1934                                cpu_buffer->reader_page->read);
1935 }
1936
1937 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1938 {
1939         return local_read(&bpage->page->commit);
1940 }
1941
1942 static struct ring_buffer_event *
1943 rb_iter_head_event(struct ring_buffer_iter *iter)
1944 {
1945         struct ring_buffer_event *event;
1946         struct buffer_page *iter_head_page = iter->head_page;
1947         unsigned long commit;
1948         unsigned length;
1949
1950         if (iter->head != iter->next_event)
1951                 return iter->event;
1952
1953         /*
1954          * When the writer goes across pages, it issues a cmpxchg which
1955          * is a mb(), which will synchronize with the rmb here.
1956          * (see rb_tail_page_update() and __rb_reserve_next())
1957          */
1958         commit = rb_page_commit(iter_head_page);
1959         smp_rmb();
1960         event = __rb_page_index(iter_head_page, iter->head);
1961         length = rb_event_length(event);
1962
1963         /*
1964          * READ_ONCE() doesn't work on functions and we don't want the
1965          * compiler doing any crazy optimizations with length.
1966          */
1967         barrier();
1968
1969         if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
1970                 /* Writer corrupted the read? */
1971                 goto reset;
1972
1973         memcpy(iter->event, event, length);
1974         /*
1975          * If the page stamp is still the same after this rmb() then the
1976          * event was safely copied without the writer entering the page.
1977          */
1978         smp_rmb();
1979
1980         /* Make sure the page didn't change since we read this */
1981         if (iter->page_stamp != iter_head_page->page->time_stamp ||
1982             commit > rb_page_commit(iter_head_page))
1983                 goto reset;
1984
1985         iter->next_event = iter->head + length;
1986         return iter->event;
1987  reset:
1988         /* Reset to the beginning */
1989         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
1990         iter->head = 0;
1991         iter->next_event = 0;
1992         iter->missed_events = 1;
1993         return NULL;
1994 }
1995
1996 /* Size is determined by what has been committed */
1997 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1998 {
1999         return rb_page_commit(bpage);
2000 }
2001
2002 static __always_inline unsigned
2003 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2004 {
2005         return rb_page_commit(cpu_buffer->commit_page);
2006 }
2007
2008 static __always_inline unsigned
2009 rb_event_index(struct ring_buffer_event *event)
2010 {
2011         unsigned long addr = (unsigned long)event;
2012
2013         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2014 }
2015
2016 static void rb_inc_iter(struct ring_buffer_iter *iter)
2017 {
2018         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2019
2020         /*
2021          * The iterator could be on the reader page (it starts there).
2022          * But the head could have moved, since the reader was
2023          * found. Check for this case and assign the iterator
2024          * to the head page instead of next.
2025          */
2026         if (iter->head_page == cpu_buffer->reader_page)
2027                 iter->head_page = rb_set_head_page(cpu_buffer);
2028         else
2029                 rb_inc_page(cpu_buffer, &iter->head_page);
2030
2031         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2032         iter->head = 0;
2033         iter->next_event = 0;
2034 }
2035
2036 /*
2037  * rb_handle_head_page - writer hit the head page
2038  *
2039  * Returns: +1 to retry page
2040  *           0 to continue
2041  *          -1 on error
2042  */
2043 static int
2044 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2045                     struct buffer_page *tail_page,
2046                     struct buffer_page *next_page)
2047 {
2048         struct buffer_page *new_head;
2049         int entries;
2050         int type;
2051         int ret;
2052
2053         entries = rb_page_entries(next_page);
2054
2055         /*
2056          * The hard part is here. We need to move the head
2057          * forward, and protect against both readers on
2058          * other CPUs and writers coming in via interrupts.
2059          */
2060         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2061                                        RB_PAGE_HEAD);
2062
2063         /*
2064          * type can be one of four:
2065          *  NORMAL - an interrupt already moved it for us
2066          *  HEAD   - we are the first to get here.
2067          *  UPDATE - we are the interrupt interrupting
2068          *           a current move.
2069          *  MOVED  - a reader on another CPU moved the next
2070          *           pointer to its reader page. Give up
2071          *           and try again.
2072          */
2073
2074         switch (type) {
2075         case RB_PAGE_HEAD:
2076                 /*
2077                  * We changed the head to UPDATE, thus
2078                  * it is our responsibility to update
2079                  * the counters.
2080                  */
2081                 local_add(entries, &cpu_buffer->overrun);
2082                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2083
2084                 /*
2085                  * The entries will be zeroed out when we move the
2086                  * tail page.
2087                  */
2088
2089                 /* still more to do */
2090                 break;
2091
2092         case RB_PAGE_UPDATE:
2093                 /*
2094                  * This is an interrupt that interrupt the
2095                  * previous update. Still more to do.
2096                  */
2097                 break;
2098         case RB_PAGE_NORMAL:
2099                 /*
2100                  * An interrupt came in before the update
2101                  * and processed this for us.
2102                  * Nothing left to do.
2103                  */
2104                 return 1;
2105         case RB_PAGE_MOVED:
2106                 /*
2107                  * The reader is on another CPU and just did
2108                  * a swap with our next_page.
2109                  * Try again.
2110                  */
2111                 return 1;
2112         default:
2113                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2114                 return -1;
2115         }
2116
2117         /*
2118          * Now that we are here, the old head pointer is
2119          * set to UPDATE. This will keep the reader from
2120          * swapping the head page with the reader page.
2121          * The reader (on another CPU) will spin till
2122          * we are finished.
2123          *
2124          * We just need to protect against interrupts
2125          * doing the job. We will set the next pointer
2126          * to HEAD. After that, we set the old pointer
2127          * to NORMAL, but only if it was HEAD before.
2128          * otherwise we are an interrupt, and only
2129          * want the outer most commit to reset it.
2130          */
2131         new_head = next_page;
2132         rb_inc_page(cpu_buffer, &new_head);
2133
2134         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2135                                     RB_PAGE_NORMAL);
2136
2137         /*
2138          * Valid returns are:
2139          *  HEAD   - an interrupt came in and already set it.
2140          *  NORMAL - One of two things:
2141          *            1) We really set it.
2142          *            2) A bunch of interrupts came in and moved
2143          *               the page forward again.
2144          */
2145         switch (ret) {
2146         case RB_PAGE_HEAD:
2147         case RB_PAGE_NORMAL:
2148                 /* OK */
2149                 break;
2150         default:
2151                 RB_WARN_ON(cpu_buffer, 1);
2152                 return -1;
2153         }
2154
2155         /*
2156          * It is possible that an interrupt came in,
2157          * set the head up, then more interrupts came in
2158          * and moved it again. When we get back here,
2159          * the page would have been set to NORMAL but we
2160          * just set it back to HEAD.
2161          *
2162          * How do you detect this? Well, if that happened
2163          * the tail page would have moved.
2164          */
2165         if (ret == RB_PAGE_NORMAL) {
2166                 struct buffer_page *buffer_tail_page;
2167
2168                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2169                 /*
2170                  * If the tail had moved passed next, then we need
2171                  * to reset the pointer.
2172                  */
2173                 if (buffer_tail_page != tail_page &&
2174                     buffer_tail_page != next_page)
2175                         rb_head_page_set_normal(cpu_buffer, new_head,
2176                                                 next_page,
2177                                                 RB_PAGE_HEAD);
2178         }
2179
2180         /*
2181          * If this was the outer most commit (the one that
2182          * changed the original pointer from HEAD to UPDATE),
2183          * then it is up to us to reset it to NORMAL.
2184          */
2185         if (type == RB_PAGE_HEAD) {
2186                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2187                                               tail_page,
2188                                               RB_PAGE_UPDATE);
2189                 if (RB_WARN_ON(cpu_buffer,
2190                                ret != RB_PAGE_UPDATE))
2191                         return -1;
2192         }
2193
2194         return 0;
2195 }
2196
2197 static inline void
2198 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2199               unsigned long tail, struct rb_event_info *info)
2200 {
2201         struct buffer_page *tail_page = info->tail_page;
2202         struct ring_buffer_event *event;
2203         unsigned long length = info->length;
2204
2205         /*
2206          * Only the event that crossed the page boundary
2207          * must fill the old tail_page with padding.
2208          */
2209         if (tail >= BUF_PAGE_SIZE) {
2210                 /*
2211                  * If the page was filled, then we still need
2212                  * to update the real_end. Reset it to zero
2213                  * and the reader will ignore it.
2214                  */
2215                 if (tail == BUF_PAGE_SIZE)
2216                         tail_page->real_end = 0;
2217
2218                 local_sub(length, &tail_page->write);
2219                 return;
2220         }
2221
2222         event = __rb_page_index(tail_page, tail);
2223
2224         /* account for padding bytes */
2225         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2226
2227         /*
2228          * Save the original length to the meta data.
2229          * This will be used by the reader to add lost event
2230          * counter.
2231          */
2232         tail_page->real_end = tail;
2233
2234         /*
2235          * If this event is bigger than the minimum size, then
2236          * we need to be careful that we don't subtract the
2237          * write counter enough to allow another writer to slip
2238          * in on this page.
2239          * We put in a discarded commit instead, to make sure
2240          * that this space is not used again.
2241          *
2242          * If we are less than the minimum size, we don't need to
2243          * worry about it.
2244          */
2245         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2246                 /* No room for any events */
2247
2248                 /* Mark the rest of the page with padding */
2249                 rb_event_set_padding(event);
2250
2251                 /* Set the write back to the previous setting */
2252                 local_sub(length, &tail_page->write);
2253                 return;
2254         }
2255
2256         /* Put in a discarded event */
2257         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2258         event->type_len = RINGBUF_TYPE_PADDING;
2259         /* time delta must be non zero */
2260         event->time_delta = 1;
2261
2262         /* Set write to end of buffer */
2263         length = (tail + length) - BUF_PAGE_SIZE;
2264         local_sub(length, &tail_page->write);
2265 }
2266
2267 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2268
2269 /*
2270  * This is the slow path, force gcc not to inline it.
2271  */
2272 static noinline struct ring_buffer_event *
2273 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2274              unsigned long tail, struct rb_event_info *info)
2275 {
2276         struct buffer_page *tail_page = info->tail_page;
2277         struct buffer_page *commit_page = cpu_buffer->commit_page;
2278         struct trace_buffer *buffer = cpu_buffer->buffer;
2279         struct buffer_page *next_page;
2280         int ret;
2281
2282         next_page = tail_page;
2283
2284         rb_inc_page(cpu_buffer, &next_page);
2285
2286         /*
2287          * If for some reason, we had an interrupt storm that made
2288          * it all the way around the buffer, bail, and warn
2289          * about it.
2290          */
2291         if (unlikely(next_page == commit_page)) {
2292                 local_inc(&cpu_buffer->commit_overrun);
2293                 goto out_reset;
2294         }
2295
2296         /*
2297          * This is where the fun begins!
2298          *
2299          * We are fighting against races between a reader that
2300          * could be on another CPU trying to swap its reader
2301          * page with the buffer head.
2302          *
2303          * We are also fighting against interrupts coming in and
2304          * moving the head or tail on us as well.
2305          *
2306          * If the next page is the head page then we have filled
2307          * the buffer, unless the commit page is still on the
2308          * reader page.
2309          */
2310         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2311
2312                 /*
2313                  * If the commit is not on the reader page, then
2314                  * move the header page.
2315                  */
2316                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2317                         /*
2318                          * If we are not in overwrite mode,
2319                          * this is easy, just stop here.
2320                          */
2321                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2322                                 local_inc(&cpu_buffer->dropped_events);
2323                                 goto out_reset;
2324                         }
2325
2326                         ret = rb_handle_head_page(cpu_buffer,
2327                                                   tail_page,
2328                                                   next_page);
2329                         if (ret < 0)
2330                                 goto out_reset;
2331                         if (ret)
2332                                 goto out_again;
2333                 } else {
2334                         /*
2335                          * We need to be careful here too. The
2336                          * commit page could still be on the reader
2337                          * page. We could have a small buffer, and
2338                          * have filled up the buffer with events
2339                          * from interrupts and such, and wrapped.
2340                          *
2341                          * Note, if the tail page is also the on the
2342                          * reader_page, we let it move out.
2343                          */
2344                         if (unlikely((cpu_buffer->commit_page !=
2345                                       cpu_buffer->tail_page) &&
2346                                      (cpu_buffer->commit_page ==
2347                                       cpu_buffer->reader_page))) {
2348                                 local_inc(&cpu_buffer->commit_overrun);
2349                                 goto out_reset;
2350                         }
2351                 }
2352         }
2353
2354         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2355
2356  out_again:
2357
2358         rb_reset_tail(cpu_buffer, tail, info);
2359
2360         /* Commit what we have for now. */
2361         rb_end_commit(cpu_buffer);
2362         /* rb_end_commit() decs committing */
2363         local_inc(&cpu_buffer->committing);
2364
2365         /* fail and let the caller try again */
2366         return ERR_PTR(-EAGAIN);
2367
2368  out_reset:
2369         /* reset write */
2370         rb_reset_tail(cpu_buffer, tail, info);
2371
2372         return NULL;
2373 }
2374
2375 /* Slow path, do not inline */
2376 static noinline struct ring_buffer_event *
2377 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2378 {
2379         if (abs)
2380                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2381         else
2382                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2383
2384         /* Not the first event on the page, or not delta? */
2385         if (abs || rb_event_index(event)) {
2386                 event->time_delta = delta & TS_MASK;
2387                 event->array[0] = delta >> TS_SHIFT;
2388         } else {
2389                 /* nope, just zero it */
2390                 event->time_delta = 0;
2391                 event->array[0] = 0;
2392         }
2393
2394         return skip_time_extend(event);
2395 }
2396
2397 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2398                                      struct ring_buffer_event *event);
2399
2400 /**
2401  * rb_update_event - update event type and data
2402  * @cpu_buffer: The per cpu buffer of the @event
2403  * @event: the event to update
2404  * @info: The info to update the @event with (contains length and delta)
2405  *
2406  * Update the type and data fields of the @event. The length
2407  * is the actual size that is written to the ring buffer,
2408  * and with this, we can determine what to place into the
2409  * data field.
2410  */
2411 static void
2412 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2413                 struct ring_buffer_event *event,
2414                 struct rb_event_info *info)
2415 {
2416         unsigned length = info->length;
2417         u64 delta = info->delta;
2418
2419         /* Only a commit updates the timestamp */
2420         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2421                 delta = 0;
2422
2423         /*
2424          * If we need to add a timestamp, then we
2425          * add it to the start of the reserved space.
2426          */
2427         if (unlikely(info->add_timestamp)) {
2428                 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2429
2430                 event = rb_add_time_stamp(event, info->delta, abs);
2431                 length -= RB_LEN_TIME_EXTEND;
2432                 delta = 0;
2433         }
2434
2435         event->time_delta = delta;
2436         length -= RB_EVNT_HDR_SIZE;
2437         if (length > RB_MAX_SMALL_DATA) {
2438                 event->type_len = 0;
2439                 event->array[0] = length;
2440         } else
2441                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2442 }
2443
2444 static unsigned rb_calculate_event_length(unsigned length)
2445 {
2446         struct ring_buffer_event event; /* Used only for sizeof array */
2447
2448         /* zero length can cause confusions */
2449         if (!length)
2450                 length++;
2451
2452         if (length > RB_MAX_SMALL_DATA)
2453                 length += sizeof(event.array[0]);
2454
2455         length += RB_EVNT_HDR_SIZE;
2456         length = ALIGN(length, RB_ALIGNMENT);
2457
2458         /*
2459          * In case the time delta is larger than the 27 bits for it
2460          * in the header, we need to add a timestamp. If another
2461          * event comes in when trying to discard this one to increase
2462          * the length, then the timestamp will be added in the allocated
2463          * space of this event. If length is bigger than the size needed
2464          * for the TIME_EXTEND, then padding has to be used. The events
2465          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2466          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2467          * As length is a multiple of 4, we only need to worry if it
2468          * is 12 (RB_LEN_TIME_EXTEND + 4).
2469          */
2470         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2471                 length += RB_ALIGNMENT;
2472
2473         return length;
2474 }
2475
2476 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2477 static inline bool sched_clock_stable(void)
2478 {
2479         return true;
2480 }
2481 #endif
2482
2483 static inline int
2484 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2485                   struct ring_buffer_event *event)
2486 {
2487         unsigned long new_index, old_index;
2488         struct buffer_page *bpage;
2489         unsigned long index;
2490         unsigned long addr;
2491
2492         new_index = rb_event_index(event);
2493         old_index = new_index + rb_event_ts_length(event);
2494         addr = (unsigned long)event;
2495         addr &= PAGE_MASK;
2496
2497         bpage = READ_ONCE(cpu_buffer->tail_page);
2498
2499         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2500                 unsigned long write_mask =
2501                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2502                 unsigned long event_length = rb_event_length(event);
2503                 /*
2504                  * This is on the tail page. It is possible that
2505                  * a write could come in and move the tail page
2506                  * and write to the next page. That is fine
2507                  * because we just shorten what is on this page.
2508                  */
2509                 old_index += write_mask;
2510                 new_index += write_mask;
2511                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2512                 if (index == old_index) {
2513                         /* update counters */
2514                         local_sub(event_length, &cpu_buffer->entries_bytes);
2515                         return 1;
2516                 }
2517         }
2518
2519         /* could not discard */
2520         return 0;
2521 }
2522
2523 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2524 {
2525         local_inc(&cpu_buffer->committing);
2526         local_inc(&cpu_buffer->commits);
2527 }
2528
2529 static __always_inline void
2530 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2531 {
2532         unsigned long max_count;
2533
2534         /*
2535          * We only race with interrupts and NMIs on this CPU.
2536          * If we own the commit event, then we can commit
2537          * all others that interrupted us, since the interruptions
2538          * are in stack format (they finish before they come
2539          * back to us). This allows us to do a simple loop to
2540          * assign the commit to the tail.
2541          */
2542  again:
2543         max_count = cpu_buffer->nr_pages * 100;
2544
2545         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2546                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2547                         return;
2548                 if (RB_WARN_ON(cpu_buffer,
2549                                rb_is_reader_page(cpu_buffer->tail_page)))
2550                         return;
2551                 local_set(&cpu_buffer->commit_page->page->commit,
2552                           rb_page_write(cpu_buffer->commit_page));
2553                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2554                 /* Only update the write stamp if the page has an event */
2555                 if (rb_page_write(cpu_buffer->commit_page))
2556                         cpu_buffer->write_stamp =
2557                                 cpu_buffer->commit_page->page->time_stamp;
2558                 /* add barrier to keep gcc from optimizing too much */
2559                 barrier();
2560         }
2561         while (rb_commit_index(cpu_buffer) !=
2562                rb_page_write(cpu_buffer->commit_page)) {
2563
2564                 local_set(&cpu_buffer->commit_page->page->commit,
2565                           rb_page_write(cpu_buffer->commit_page));
2566                 RB_WARN_ON(cpu_buffer,
2567                            local_read(&cpu_buffer->commit_page->page->commit) &
2568                            ~RB_WRITE_MASK);
2569                 barrier();
2570         }
2571
2572         /* again, keep gcc from optimizing */
2573         barrier();
2574
2575         /*
2576          * If an interrupt came in just after the first while loop
2577          * and pushed the tail page forward, we will be left with
2578          * a dangling commit that will never go forward.
2579          */
2580         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2581                 goto again;
2582 }
2583
2584 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2585 {
2586         unsigned long commits;
2587
2588         if (RB_WARN_ON(cpu_buffer,
2589                        !local_read(&cpu_buffer->committing)))
2590                 return;
2591
2592  again:
2593         commits = local_read(&cpu_buffer->commits);
2594         /* synchronize with interrupts */
2595         barrier();
2596         if (local_read(&cpu_buffer->committing) == 1)
2597                 rb_set_commit_to_write(cpu_buffer);
2598
2599         local_dec(&cpu_buffer->committing);
2600
2601         /* synchronize with interrupts */
2602         barrier();
2603
2604         /*
2605          * Need to account for interrupts coming in between the
2606          * updating of the commit page and the clearing of the
2607          * committing counter.
2608          */
2609         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2610             !local_read(&cpu_buffer->committing)) {
2611                 local_inc(&cpu_buffer->committing);
2612                 goto again;
2613         }
2614 }
2615
2616 static inline void rb_event_discard(struct ring_buffer_event *event)
2617 {
2618         if (extended_time(event))
2619                 event = skip_time_extend(event);
2620
2621         /* array[0] holds the actual length for the discarded event */
2622         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2623         event->type_len = RINGBUF_TYPE_PADDING;
2624         /* time delta must be non zero */
2625         if (!event->time_delta)
2626                 event->time_delta = 1;
2627 }
2628
2629 static __always_inline bool
2630 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2631                    struct ring_buffer_event *event)
2632 {
2633         unsigned long addr = (unsigned long)event;
2634         unsigned long index;
2635
2636         index = rb_event_index(event);
2637         addr &= PAGE_MASK;
2638
2639         return cpu_buffer->commit_page->page == (void *)addr &&
2640                 rb_commit_index(cpu_buffer) == index;
2641 }
2642
2643 static __always_inline void
2644 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2645                       struct ring_buffer_event *event)
2646 {
2647         u64 delta;
2648
2649         /*
2650          * The event first in the commit queue updates the
2651          * time stamp.
2652          */
2653         if (rb_event_is_commit(cpu_buffer, event)) {
2654                 /*
2655                  * A commit event that is first on a page
2656                  * updates the write timestamp with the page stamp
2657                  */
2658                 if (!rb_event_index(event))
2659                         cpu_buffer->write_stamp =
2660                                 cpu_buffer->commit_page->page->time_stamp;
2661                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2662                         delta = ring_buffer_event_time_stamp(event);
2663                         cpu_buffer->write_stamp += delta;
2664                 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2665                         delta = ring_buffer_event_time_stamp(event);
2666                         cpu_buffer->write_stamp = delta;
2667                 } else
2668                         cpu_buffer->write_stamp += event->time_delta;
2669         }
2670 }
2671
2672 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2673                       struct ring_buffer_event *event)
2674 {
2675         local_inc(&cpu_buffer->entries);
2676         rb_update_write_stamp(cpu_buffer, event);
2677         rb_end_commit(cpu_buffer);
2678 }
2679
2680 static __always_inline void
2681 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2682 {
2683         size_t nr_pages;
2684         size_t dirty;
2685         size_t full;
2686
2687         if (buffer->irq_work.waiters_pending) {
2688                 buffer->irq_work.waiters_pending = false;
2689                 /* irq_work_queue() supplies it's own memory barriers */
2690                 irq_work_queue(&buffer->irq_work.work);
2691         }
2692
2693         if (cpu_buffer->irq_work.waiters_pending) {
2694                 cpu_buffer->irq_work.waiters_pending = false;
2695                 /* irq_work_queue() supplies it's own memory barriers */
2696                 irq_work_queue(&cpu_buffer->irq_work.work);
2697         }
2698
2699         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2700                 return;
2701
2702         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2703                 return;
2704
2705         if (!cpu_buffer->irq_work.full_waiters_pending)
2706                 return;
2707
2708         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2709
2710         full = cpu_buffer->shortest_full;
2711         nr_pages = cpu_buffer->nr_pages;
2712         dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2713         if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2714                 return;
2715
2716         cpu_buffer->irq_work.wakeup_full = true;
2717         cpu_buffer->irq_work.full_waiters_pending = false;
2718         /* irq_work_queue() supplies it's own memory barriers */
2719         irq_work_queue(&cpu_buffer->irq_work.work);
2720 }
2721
2722 /*
2723  * The lock and unlock are done within a preempt disable section.
2724  * The current_context per_cpu variable can only be modified
2725  * by the current task between lock and unlock. But it can
2726  * be modified more than once via an interrupt. To pass this
2727  * information from the lock to the unlock without having to
2728  * access the 'in_interrupt()' functions again (which do show
2729  * a bit of overhead in something as critical as function tracing,
2730  * we use a bitmask trick.
2731  *
2732  *  bit 0 =  NMI context
2733  *  bit 1 =  IRQ context
2734  *  bit 2 =  SoftIRQ context
2735  *  bit 3 =  normal context.
2736  *
2737  * This works because this is the order of contexts that can
2738  * preempt other contexts. A SoftIRQ never preempts an IRQ
2739  * context.
2740  *
2741  * When the context is determined, the corresponding bit is
2742  * checked and set (if it was set, then a recursion of that context
2743  * happened).
2744  *
2745  * On unlock, we need to clear this bit. To do so, just subtract
2746  * 1 from the current_context and AND it to itself.
2747  *
2748  * (binary)
2749  *  101 - 1 = 100
2750  *  101 & 100 = 100 (clearing bit zero)
2751  *
2752  *  1010 - 1 = 1001
2753  *  1010 & 1001 = 1000 (clearing bit 1)
2754  *
2755  * The least significant bit can be cleared this way, and it
2756  * just so happens that it is the same bit corresponding to
2757  * the current context.
2758  */
2759
2760 static __always_inline int
2761 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2762 {
2763         unsigned int val = cpu_buffer->current_context;
2764         unsigned long pc = preempt_count();
2765         int bit;
2766
2767         if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2768                 bit = RB_CTX_NORMAL;
2769         else
2770                 bit = pc & NMI_MASK ? RB_CTX_NMI :
2771                         pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2772
2773         if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2774                 return 1;
2775
2776         val |= (1 << (bit + cpu_buffer->nest));
2777         cpu_buffer->current_context = val;
2778
2779         return 0;
2780 }
2781
2782 static __always_inline void
2783 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2784 {
2785         cpu_buffer->current_context &=
2786                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2787 }
2788
2789 /* The recursive locking above uses 4 bits */
2790 #define NESTED_BITS 4
2791
2792 /**
2793  * ring_buffer_nest_start - Allow to trace while nested
2794  * @buffer: The ring buffer to modify
2795  *
2796  * The ring buffer has a safety mechanism to prevent recursion.
2797  * But there may be a case where a trace needs to be done while
2798  * tracing something else. In this case, calling this function
2799  * will allow this function to nest within a currently active
2800  * ring_buffer_lock_reserve().
2801  *
2802  * Call this function before calling another ring_buffer_lock_reserve() and
2803  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2804  */
2805 void ring_buffer_nest_start(struct trace_buffer *buffer)
2806 {
2807         struct ring_buffer_per_cpu *cpu_buffer;
2808         int cpu;
2809
2810         /* Enabled by ring_buffer_nest_end() */
2811         preempt_disable_notrace();
2812         cpu = raw_smp_processor_id();
2813         cpu_buffer = buffer->buffers[cpu];
2814         /* This is the shift value for the above recursive locking */
2815         cpu_buffer->nest += NESTED_BITS;
2816 }
2817
2818 /**
2819  * ring_buffer_nest_end - Allow to trace while nested
2820  * @buffer: The ring buffer to modify
2821  *
2822  * Must be called after ring_buffer_nest_start() and after the
2823  * ring_buffer_unlock_commit().
2824  */
2825 void ring_buffer_nest_end(struct trace_buffer *buffer)
2826 {
2827         struct ring_buffer_per_cpu *cpu_buffer;
2828         int cpu;
2829
2830         /* disabled by ring_buffer_nest_start() */
2831         cpu = raw_smp_processor_id();
2832         cpu_buffer = buffer->buffers[cpu];
2833         /* This is the shift value for the above recursive locking */
2834         cpu_buffer->nest -= NESTED_BITS;
2835         preempt_enable_notrace();
2836 }
2837
2838 /**
2839  * ring_buffer_unlock_commit - commit a reserved
2840  * @buffer: The buffer to commit to
2841  * @event: The event pointer to commit.
2842  *
2843  * This commits the data to the ring buffer, and releases any locks held.
2844  *
2845  * Must be paired with ring_buffer_lock_reserve.
2846  */
2847 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
2848                               struct ring_buffer_event *event)
2849 {
2850         struct ring_buffer_per_cpu *cpu_buffer;
2851         int cpu = raw_smp_processor_id();
2852
2853         cpu_buffer = buffer->buffers[cpu];
2854
2855         rb_commit(cpu_buffer, event);
2856
2857         rb_wakeups(buffer, cpu_buffer);
2858
2859         trace_recursive_unlock(cpu_buffer);
2860
2861         preempt_enable_notrace();
2862
2863         return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2866
2867 static noinline void
2868 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2869                     struct rb_event_info *info)
2870 {
2871         WARN_ONCE(info->delta > (1ULL << 59),
2872                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2873                   (unsigned long long)info->delta,
2874                   (unsigned long long)info->ts,
2875                   (unsigned long long)cpu_buffer->write_stamp,
2876                   sched_clock_stable() ? "" :
2877                   "If you just came from a suspend/resume,\n"
2878                   "please switch to the trace global clock:\n"
2879                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2880                   "or add trace_clock=global to the kernel command line\n");
2881         info->add_timestamp = 1;
2882 }
2883
2884 static struct ring_buffer_event *
2885 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2886                   struct rb_event_info *info)
2887 {
2888         struct ring_buffer_event *event;
2889         struct buffer_page *tail_page;
2890         unsigned long tail, write;
2891
2892         /*
2893          * If the time delta since the last event is too big to
2894          * hold in the time field of the event, then we append a
2895          * TIME EXTEND event ahead of the data event.
2896          */
2897         if (unlikely(info->add_timestamp))
2898                 info->length += RB_LEN_TIME_EXTEND;
2899
2900         /* Don't let the compiler play games with cpu_buffer->tail_page */
2901         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2902         write = local_add_return(info->length, &tail_page->write);
2903
2904         /* set write to only the index of the write */
2905         write &= RB_WRITE_MASK;
2906         tail = write - info->length;
2907
2908         /*
2909          * If this is the first commit on the page, then it has the same
2910          * timestamp as the page itself.
2911          */
2912         if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2913                 info->delta = 0;
2914
2915         /* See if we shot pass the end of this buffer page */
2916         if (unlikely(write > BUF_PAGE_SIZE))
2917                 return rb_move_tail(cpu_buffer, tail, info);
2918
2919         /* We reserved something on the buffer */
2920
2921         event = __rb_page_index(tail_page, tail);
2922         rb_update_event(cpu_buffer, event, info);
2923
2924         local_inc(&tail_page->entries);
2925
2926         /*
2927          * If this is the first commit on the page, then update
2928          * its timestamp.
2929          */
2930         if (!tail)
2931                 tail_page->page->time_stamp = info->ts;
2932
2933         /* account for these added bytes */
2934         local_add(info->length, &cpu_buffer->entries_bytes);
2935
2936         return event;
2937 }
2938
2939 static __always_inline struct ring_buffer_event *
2940 rb_reserve_next_event(struct trace_buffer *buffer,
2941                       struct ring_buffer_per_cpu *cpu_buffer,
2942                       unsigned long length)
2943 {
2944         struct ring_buffer_event *event;
2945         struct rb_event_info info;
2946         int nr_loops = 0;
2947         u64 diff;
2948
2949         rb_start_commit(cpu_buffer);
2950
2951 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2952         /*
2953          * Due to the ability to swap a cpu buffer from a buffer
2954          * it is possible it was swapped before we committed.
2955          * (committing stops a swap). We check for it here and
2956          * if it happened, we have to fail the write.
2957          */
2958         barrier();
2959         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2960                 local_dec(&cpu_buffer->committing);
2961                 local_dec(&cpu_buffer->commits);
2962                 return NULL;
2963         }
2964 #endif
2965
2966         info.length = rb_calculate_event_length(length);
2967  again:
2968         info.add_timestamp = 0;
2969         info.delta = 0;
2970
2971         /*
2972          * We allow for interrupts to reenter here and do a trace.
2973          * If one does, it will cause this original code to loop
2974          * back here. Even with heavy interrupts happening, this
2975          * should only happen a few times in a row. If this happens
2976          * 1000 times in a row, there must be either an interrupt
2977          * storm or we have something buggy.
2978          * Bail!
2979          */
2980         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2981                 goto out_fail;
2982
2983         info.ts = rb_time_stamp(cpu_buffer->buffer);
2984         diff = info.ts - cpu_buffer->write_stamp;
2985
2986         /* make sure this diff is calculated here */
2987         barrier();
2988
2989         if (ring_buffer_time_stamp_abs(buffer)) {
2990                 info.delta = info.ts;
2991                 rb_handle_timestamp(cpu_buffer, &info);
2992         } else /* Did the write stamp get updated already? */
2993                 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2994                 info.delta = diff;
2995                 if (unlikely(test_time_stamp(info.delta)))
2996                         rb_handle_timestamp(cpu_buffer, &info);
2997         }
2998
2999         event = __rb_reserve_next(cpu_buffer, &info);
3000
3001         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3002                 if (info.add_timestamp)
3003                         info.length -= RB_LEN_TIME_EXTEND;
3004                 goto again;
3005         }
3006
3007         if (!event)
3008                 goto out_fail;
3009
3010         return event;
3011
3012  out_fail:
3013         rb_end_commit(cpu_buffer);
3014         return NULL;
3015 }
3016
3017 /**
3018  * ring_buffer_lock_reserve - reserve a part of the buffer
3019  * @buffer: the ring buffer to reserve from
3020  * @length: the length of the data to reserve (excluding event header)
3021  *
3022  * Returns a reserved event on the ring buffer to copy directly to.
3023  * The user of this interface will need to get the body to write into
3024  * and can use the ring_buffer_event_data() interface.
3025  *
3026  * The length is the length of the data needed, not the event length
3027  * which also includes the event header.
3028  *
3029  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3030  * If NULL is returned, then nothing has been allocated or locked.
3031  */
3032 struct ring_buffer_event *
3033 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3034 {
3035         struct ring_buffer_per_cpu *cpu_buffer;
3036         struct ring_buffer_event *event;
3037         int cpu;
3038
3039         /* If we are tracing schedule, we don't want to recurse */
3040         preempt_disable_notrace();
3041
3042         if (unlikely(atomic_read(&buffer->record_disabled)))
3043                 goto out;
3044
3045         cpu = raw_smp_processor_id();
3046
3047         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3048                 goto out;
3049
3050         cpu_buffer = buffer->buffers[cpu];
3051
3052         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3053                 goto out;
3054
3055         if (unlikely(length > BUF_MAX_DATA_SIZE))
3056                 goto out;
3057
3058         if (unlikely(trace_recursive_lock(cpu_buffer)))
3059                 goto out;
3060
3061         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3062         if (!event)
3063                 goto out_unlock;
3064
3065         return event;
3066
3067  out_unlock:
3068         trace_recursive_unlock(cpu_buffer);
3069  out:
3070         preempt_enable_notrace();
3071         return NULL;
3072 }
3073 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3074
3075 /*
3076  * Decrement the entries to the page that an event is on.
3077  * The event does not even need to exist, only the pointer
3078  * to the page it is on. This may only be called before the commit
3079  * takes place.
3080  */
3081 static inline void
3082 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3083                    struct ring_buffer_event *event)
3084 {
3085         unsigned long addr = (unsigned long)event;
3086         struct buffer_page *bpage = cpu_buffer->commit_page;
3087         struct buffer_page *start;
3088
3089         addr &= PAGE_MASK;
3090
3091         /* Do the likely case first */
3092         if (likely(bpage->page == (void *)addr)) {
3093                 local_dec(&bpage->entries);
3094                 return;
3095         }
3096
3097         /*
3098          * Because the commit page may be on the reader page we
3099          * start with the next page and check the end loop there.
3100          */
3101         rb_inc_page(cpu_buffer, &bpage);
3102         start = bpage;
3103         do {
3104                 if (bpage->page == (void *)addr) {
3105                         local_dec(&bpage->entries);
3106                         return;
3107                 }
3108                 rb_inc_page(cpu_buffer, &bpage);
3109         } while (bpage != start);
3110
3111         /* commit not part of this buffer?? */
3112         RB_WARN_ON(cpu_buffer, 1);
3113 }
3114
3115 /**
3116  * ring_buffer_commit_discard - discard an event that has not been committed
3117  * @buffer: the ring buffer
3118  * @event: non committed event to discard
3119  *
3120  * Sometimes an event that is in the ring buffer needs to be ignored.
3121  * This function lets the user discard an event in the ring buffer
3122  * and then that event will not be read later.
3123  *
3124  * This function only works if it is called before the item has been
3125  * committed. It will try to free the event from the ring buffer
3126  * if another event has not been added behind it.
3127  *
3128  * If another event has been added behind it, it will set the event
3129  * up as discarded, and perform the commit.
3130  *
3131  * If this function is called, do not call ring_buffer_unlock_commit on
3132  * the event.
3133  */
3134 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3135                                 struct ring_buffer_event *event)
3136 {
3137         struct ring_buffer_per_cpu *cpu_buffer;
3138         int cpu;
3139
3140         /* The event is discarded regardless */
3141         rb_event_discard(event);
3142
3143         cpu = smp_processor_id();
3144         cpu_buffer = buffer->buffers[cpu];
3145
3146         /*
3147          * This must only be called if the event has not been
3148          * committed yet. Thus we can assume that preemption
3149          * is still disabled.
3150          */
3151         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3152
3153         rb_decrement_entry(cpu_buffer, event);
3154         if (rb_try_to_discard(cpu_buffer, event))
3155                 goto out;
3156
3157         /*
3158          * The commit is still visible by the reader, so we
3159          * must still update the timestamp.
3160          */
3161         rb_update_write_stamp(cpu_buffer, event);
3162  out:
3163         rb_end_commit(cpu_buffer);
3164
3165         trace_recursive_unlock(cpu_buffer);
3166
3167         preempt_enable_notrace();
3168
3169 }
3170 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3171
3172 /**
3173  * ring_buffer_write - write data to the buffer without reserving
3174  * @buffer: The ring buffer to write to.
3175  * @length: The length of the data being written (excluding the event header)
3176  * @data: The data to write to the buffer.
3177  *
3178  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3179  * one function. If you already have the data to write to the buffer, it
3180  * may be easier to simply call this function.
3181  *
3182  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3183  * and not the length of the event which would hold the header.
3184  */
3185 int ring_buffer_write(struct trace_buffer *buffer,
3186                       unsigned long length,
3187                       void *data)
3188 {
3189         struct ring_buffer_per_cpu *cpu_buffer;
3190         struct ring_buffer_event *event;
3191         void *body;
3192         int ret = -EBUSY;
3193         int cpu;
3194
3195         preempt_disable_notrace();
3196
3197         if (atomic_read(&buffer->record_disabled))
3198                 goto out;
3199
3200         cpu = raw_smp_processor_id();
3201
3202         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3203                 goto out;
3204
3205         cpu_buffer = buffer->buffers[cpu];
3206
3207         if (atomic_read(&cpu_buffer->record_disabled))
3208                 goto out;
3209
3210         if (length > BUF_MAX_DATA_SIZE)
3211                 goto out;
3212
3213         if (unlikely(trace_recursive_lock(cpu_buffer)))
3214                 goto out;
3215
3216         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3217         if (!event)
3218                 goto out_unlock;
3219
3220         body = rb_event_data(event);
3221
3222         memcpy(body, data, length);
3223
3224         rb_commit(cpu_buffer, event);
3225
3226         rb_wakeups(buffer, cpu_buffer);
3227
3228         ret = 0;
3229
3230  out_unlock:
3231         trace_recursive_unlock(cpu_buffer);
3232
3233  out:
3234         preempt_enable_notrace();
3235
3236         return ret;
3237 }
3238 EXPORT_SYMBOL_GPL(ring_buffer_write);
3239
3240 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3241 {
3242         struct buffer_page *reader = cpu_buffer->reader_page;
3243         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3244         struct buffer_page *commit = cpu_buffer->commit_page;
3245
3246         /* In case of error, head will be NULL */
3247         if (unlikely(!head))
3248                 return true;
3249
3250         return reader->read == rb_page_commit(reader) &&
3251                 (commit == reader ||
3252                  (commit == head &&
3253                   head->read == rb_page_commit(commit)));
3254 }
3255
3256 /**
3257  * ring_buffer_record_disable - stop all writes into the buffer
3258  * @buffer: The ring buffer to stop writes to.
3259  *
3260  * This prevents all writes to the buffer. Any attempt to write
3261  * to the buffer after this will fail and return NULL.
3262  *
3263  * The caller should call synchronize_rcu() after this.
3264  */
3265 void ring_buffer_record_disable(struct trace_buffer *buffer)
3266 {
3267         atomic_inc(&buffer->record_disabled);
3268 }
3269 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3270
3271 /**
3272  * ring_buffer_record_enable - enable writes to the buffer
3273  * @buffer: The ring buffer to enable writes
3274  *
3275  * Note, multiple disables will need the same number of enables
3276  * to truly enable the writing (much like preempt_disable).
3277  */
3278 void ring_buffer_record_enable(struct trace_buffer *buffer)
3279 {
3280         atomic_dec(&buffer->record_disabled);
3281 }
3282 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3283
3284 /**
3285  * ring_buffer_record_off - stop all writes into the buffer
3286  * @buffer: The ring buffer to stop writes to.
3287  *
3288  * This prevents all writes to the buffer. Any attempt to write
3289  * to the buffer after this will fail and return NULL.
3290  *
3291  * This is different than ring_buffer_record_disable() as
3292  * it works like an on/off switch, where as the disable() version
3293  * must be paired with a enable().
3294  */
3295 void ring_buffer_record_off(struct trace_buffer *buffer)
3296 {
3297         unsigned int rd;
3298         unsigned int new_rd;
3299
3300         do {
3301                 rd = atomic_read(&buffer->record_disabled);
3302                 new_rd = rd | RB_BUFFER_OFF;
3303         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3304 }
3305 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3306
3307 /**
3308  * ring_buffer_record_on - restart writes into the buffer
3309  * @buffer: The ring buffer to start writes to.
3310  *
3311  * This enables all writes to the buffer that was disabled by
3312  * ring_buffer_record_off().
3313  *
3314  * This is different than ring_buffer_record_enable() as
3315  * it works like an on/off switch, where as the enable() version
3316  * must be paired with a disable().
3317  */
3318 void ring_buffer_record_on(struct trace_buffer *buffer)
3319 {
3320         unsigned int rd;
3321         unsigned int new_rd;
3322
3323         do {
3324                 rd = atomic_read(&buffer->record_disabled);
3325                 new_rd = rd & ~RB_BUFFER_OFF;
3326         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3327 }
3328 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3329
3330 /**
3331  * ring_buffer_record_is_on - return true if the ring buffer can write
3332  * @buffer: The ring buffer to see if write is enabled
3333  *
3334  * Returns true if the ring buffer is in a state that it accepts writes.
3335  */
3336 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3337 {
3338         return !atomic_read(&buffer->record_disabled);
3339 }
3340
3341 /**
3342  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3343  * @buffer: The ring buffer to see if write is set enabled
3344  *
3345  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3346  * Note that this does NOT mean it is in a writable state.
3347  *
3348  * It may return true when the ring buffer has been disabled by
3349  * ring_buffer_record_disable(), as that is a temporary disabling of
3350  * the ring buffer.
3351  */
3352 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3353 {
3354         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3355 }
3356
3357 /**
3358  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3359  * @buffer: The ring buffer to stop writes to.
3360  * @cpu: The CPU buffer to stop
3361  *
3362  * This prevents all writes to the buffer. Any attempt to write
3363  * to the buffer after this will fail and return NULL.
3364  *
3365  * The caller should call synchronize_rcu() after this.
3366  */
3367 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3368 {
3369         struct ring_buffer_per_cpu *cpu_buffer;
3370
3371         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3372                 return;
3373
3374         cpu_buffer = buffer->buffers[cpu];
3375         atomic_inc(&cpu_buffer->record_disabled);
3376 }
3377 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3378
3379 /**
3380  * ring_buffer_record_enable_cpu - enable writes to the buffer
3381  * @buffer: The ring buffer to enable writes
3382  * @cpu: The CPU to enable.
3383  *
3384  * Note, multiple disables will need the same number of enables
3385  * to truly enable the writing (much like preempt_disable).
3386  */
3387 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3388 {
3389         struct ring_buffer_per_cpu *cpu_buffer;
3390
3391         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3392                 return;
3393
3394         cpu_buffer = buffer->buffers[cpu];
3395         atomic_dec(&cpu_buffer->record_disabled);
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3398
3399 /*
3400  * The total entries in the ring buffer is the running counter
3401  * of entries entered into the ring buffer, minus the sum of
3402  * the entries read from the ring buffer and the number of
3403  * entries that were overwritten.
3404  */
3405 static inline unsigned long
3406 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3407 {
3408         return local_read(&cpu_buffer->entries) -
3409                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3410 }
3411
3412 /**
3413  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3414  * @buffer: The ring buffer
3415  * @cpu: The per CPU buffer to read from.
3416  */
3417 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3418 {
3419         unsigned long flags;
3420         struct ring_buffer_per_cpu *cpu_buffer;
3421         struct buffer_page *bpage;
3422         u64 ret = 0;
3423
3424         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425                 return 0;
3426
3427         cpu_buffer = buffer->buffers[cpu];
3428         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3429         /*
3430          * if the tail is on reader_page, oldest time stamp is on the reader
3431          * page
3432          */
3433         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3434                 bpage = cpu_buffer->reader_page;
3435         else
3436                 bpage = rb_set_head_page(cpu_buffer);
3437         if (bpage)
3438                 ret = bpage->page->time_stamp;
3439         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3440
3441         return ret;
3442 }
3443 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3444
3445 /**
3446  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3447  * @buffer: The ring buffer
3448  * @cpu: The per CPU buffer to read from.
3449  */
3450 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3451 {
3452         struct ring_buffer_per_cpu *cpu_buffer;
3453         unsigned long ret;
3454
3455         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3456                 return 0;
3457
3458         cpu_buffer = buffer->buffers[cpu];
3459         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3460
3461         return ret;
3462 }
3463 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3464
3465 /**
3466  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3467  * @buffer: The ring buffer
3468  * @cpu: The per CPU buffer to get the entries from.
3469  */
3470 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3471 {
3472         struct ring_buffer_per_cpu *cpu_buffer;
3473
3474         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3475                 return 0;
3476
3477         cpu_buffer = buffer->buffers[cpu];
3478
3479         return rb_num_of_entries(cpu_buffer);
3480 }
3481 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3482
3483 /**
3484  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3485  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3486  * @buffer: The ring buffer
3487  * @cpu: The per CPU buffer to get the number of overruns from
3488  */
3489 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3490 {
3491         struct ring_buffer_per_cpu *cpu_buffer;
3492         unsigned long ret;
3493
3494         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3495                 return 0;
3496
3497         cpu_buffer = buffer->buffers[cpu];
3498         ret = local_read(&cpu_buffer->overrun);
3499
3500         return ret;
3501 }
3502 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3503
3504 /**
3505  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3506  * commits failing due to the buffer wrapping around while there are uncommitted
3507  * events, such as during an interrupt storm.
3508  * @buffer: The ring buffer
3509  * @cpu: The per CPU buffer to get the number of overruns from
3510  */
3511 unsigned long
3512 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3513 {
3514         struct ring_buffer_per_cpu *cpu_buffer;
3515         unsigned long ret;
3516
3517         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3518                 return 0;
3519
3520         cpu_buffer = buffer->buffers[cpu];
3521         ret = local_read(&cpu_buffer->commit_overrun);
3522
3523         return ret;
3524 }
3525 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3526
3527 /**
3528  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3529  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3530  * @buffer: The ring buffer
3531  * @cpu: The per CPU buffer to get the number of overruns from
3532  */
3533 unsigned long
3534 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3535 {
3536         struct ring_buffer_per_cpu *cpu_buffer;
3537         unsigned long ret;
3538
3539         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3540                 return 0;
3541
3542         cpu_buffer = buffer->buffers[cpu];
3543         ret = local_read(&cpu_buffer->dropped_events);
3544
3545         return ret;
3546 }
3547 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3548
3549 /**
3550  * ring_buffer_read_events_cpu - get the number of events successfully read
3551  * @buffer: The ring buffer
3552  * @cpu: The per CPU buffer to get the number of events read
3553  */
3554 unsigned long
3555 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3556 {
3557         struct ring_buffer_per_cpu *cpu_buffer;
3558
3559         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3560                 return 0;
3561
3562         cpu_buffer = buffer->buffers[cpu];
3563         return cpu_buffer->read;
3564 }
3565 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3566
3567 /**
3568  * ring_buffer_entries - get the number of entries in a buffer
3569  * @buffer: The ring buffer
3570  *
3571  * Returns the total number of entries in the ring buffer
3572  * (all CPU entries)
3573  */
3574 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3575 {
3576         struct ring_buffer_per_cpu *cpu_buffer;
3577         unsigned long entries = 0;
3578         int cpu;
3579
3580         /* if you care about this being correct, lock the buffer */
3581         for_each_buffer_cpu(buffer, cpu) {
3582                 cpu_buffer = buffer->buffers[cpu];
3583                 entries += rb_num_of_entries(cpu_buffer);
3584         }
3585
3586         return entries;
3587 }
3588 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3589
3590 /**
3591  * ring_buffer_overruns - get the number of overruns in buffer
3592  * @buffer: The ring buffer
3593  *
3594  * Returns the total number of overruns in the ring buffer
3595  * (all CPU entries)
3596  */
3597 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3598 {
3599         struct ring_buffer_per_cpu *cpu_buffer;
3600         unsigned long overruns = 0;
3601         int cpu;
3602
3603         /* if you care about this being correct, lock the buffer */
3604         for_each_buffer_cpu(buffer, cpu) {
3605                 cpu_buffer = buffer->buffers[cpu];
3606                 overruns += local_read(&cpu_buffer->overrun);
3607         }
3608
3609         return overruns;
3610 }
3611 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3612
3613 static void rb_iter_reset(struct ring_buffer_iter *iter)
3614 {
3615         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3616
3617         /* Iterator usage is expected to have record disabled */
3618         iter->head_page = cpu_buffer->reader_page;
3619         iter->head = cpu_buffer->reader_page->read;
3620         iter->next_event = iter->head;
3621
3622         iter->cache_reader_page = iter->head_page;
3623         iter->cache_read = cpu_buffer->read;
3624
3625         if (iter->head) {
3626                 iter->read_stamp = cpu_buffer->read_stamp;
3627                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3628         } else {
3629                 iter->read_stamp = iter->head_page->page->time_stamp;
3630                 iter->page_stamp = iter->read_stamp;
3631         }
3632 }
3633
3634 /**
3635  * ring_buffer_iter_reset - reset an iterator
3636  * @iter: The iterator to reset
3637  *
3638  * Resets the iterator, so that it will start from the beginning
3639  * again.
3640  */
3641 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3642 {
3643         struct ring_buffer_per_cpu *cpu_buffer;
3644         unsigned long flags;
3645
3646         if (!iter)
3647                 return;
3648
3649         cpu_buffer = iter->cpu_buffer;
3650
3651         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3652         rb_iter_reset(iter);
3653         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3654 }
3655 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3656
3657 /**
3658  * ring_buffer_iter_empty - check if an iterator has no more to read
3659  * @iter: The iterator to check
3660  */
3661 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3662 {
3663         struct ring_buffer_per_cpu *cpu_buffer;
3664         struct buffer_page *reader;
3665         struct buffer_page *head_page;
3666         struct buffer_page *commit_page;
3667         struct buffer_page *curr_commit_page;
3668         unsigned commit;
3669         u64 curr_commit_ts;
3670         u64 commit_ts;
3671
3672         cpu_buffer = iter->cpu_buffer;
3673         reader = cpu_buffer->reader_page;
3674         head_page = cpu_buffer->head_page;
3675         commit_page = cpu_buffer->commit_page;
3676         commit_ts = commit_page->page->time_stamp;
3677
3678         /*
3679          * When the writer goes across pages, it issues a cmpxchg which
3680          * is a mb(), which will synchronize with the rmb here.
3681          * (see rb_tail_page_update())
3682          */
3683         smp_rmb();
3684         commit = rb_page_commit(commit_page);
3685         /* We want to make sure that the commit page doesn't change */
3686         smp_rmb();
3687
3688         /* Make sure commit page didn't change */
3689         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
3690         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
3691
3692         /* If the commit page changed, then there's more data */
3693         if (curr_commit_page != commit_page ||
3694             curr_commit_ts != commit_ts)
3695                 return 0;
3696
3697         /* Still racy, as it may return a false positive, but that's OK */
3698         return ((iter->head_page == commit_page && iter->head >= commit) ||
3699                 (iter->head_page == reader && commit_page == head_page &&
3700                  head_page->read == commit &&
3701                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3702 }
3703 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3704
3705 static void
3706 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3707                      struct ring_buffer_event *event)
3708 {
3709         u64 delta;
3710
3711         switch (event->type_len) {
3712         case RINGBUF_TYPE_PADDING:
3713                 return;
3714
3715         case RINGBUF_TYPE_TIME_EXTEND:
3716                 delta = ring_buffer_event_time_stamp(event);
3717                 cpu_buffer->read_stamp += delta;
3718                 return;
3719
3720         case RINGBUF_TYPE_TIME_STAMP:
3721                 delta = ring_buffer_event_time_stamp(event);
3722                 cpu_buffer->read_stamp = delta;
3723                 return;
3724
3725         case RINGBUF_TYPE_DATA:
3726                 cpu_buffer->read_stamp += event->time_delta;
3727                 return;
3728
3729         default:
3730                 RB_WARN_ON(cpu_buffer, 1);
3731         }
3732         return;
3733 }
3734
3735 static void
3736 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3737                           struct ring_buffer_event *event)
3738 {
3739         u64 delta;
3740
3741         switch (event->type_len) {
3742         case RINGBUF_TYPE_PADDING:
3743                 return;
3744
3745         case RINGBUF_TYPE_TIME_EXTEND:
3746                 delta = ring_buffer_event_time_stamp(event);
3747                 iter->read_stamp += delta;
3748                 return;
3749
3750         case RINGBUF_TYPE_TIME_STAMP:
3751                 delta = ring_buffer_event_time_stamp(event);
3752                 iter->read_stamp = delta;
3753                 return;
3754
3755         case RINGBUF_TYPE_DATA:
3756                 iter->read_stamp += event->time_delta;
3757                 return;
3758
3759         default:
3760                 RB_WARN_ON(iter->cpu_buffer, 1);
3761         }
3762         return;
3763 }
3764
3765 static struct buffer_page *
3766 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3767 {
3768         struct buffer_page *reader = NULL;
3769         unsigned long overwrite;
3770         unsigned long flags;
3771         int nr_loops = 0;
3772         int ret;
3773
3774         local_irq_save(flags);
3775         arch_spin_lock(&cpu_buffer->lock);
3776
3777  again:
3778         /*
3779          * This should normally only loop twice. But because the
3780          * start of the reader inserts an empty page, it causes
3781          * a case where we will loop three times. There should be no
3782          * reason to loop four times (that I know of).
3783          */
3784         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3785                 reader = NULL;
3786                 goto out;
3787         }
3788
3789         reader = cpu_buffer->reader_page;
3790
3791         /* If there's more to read, return this page */
3792         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3793                 goto out;
3794
3795         /* Never should we have an index greater than the size */
3796         if (RB_WARN_ON(cpu_buffer,
3797                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3798                 goto out;
3799
3800         /* check if we caught up to the tail */
3801         reader = NULL;
3802         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3803                 goto out;
3804
3805         /* Don't bother swapping if the ring buffer is empty */
3806         if (rb_num_of_entries(cpu_buffer) == 0)
3807                 goto out;
3808
3809         /*
3810          * Reset the reader page to size zero.
3811          */
3812         local_set(&cpu_buffer->reader_page->write, 0);
3813         local_set(&cpu_buffer->reader_page->entries, 0);
3814         local_set(&cpu_buffer->reader_page->page->commit, 0);
3815         cpu_buffer->reader_page->real_end = 0;
3816
3817  spin:
3818         /*
3819          * Splice the empty reader page into the list around the head.
3820          */
3821         reader = rb_set_head_page(cpu_buffer);
3822         if (!reader)
3823                 goto out;
3824         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3825         cpu_buffer->reader_page->list.prev = reader->list.prev;
3826
3827         /*
3828          * cpu_buffer->pages just needs to point to the buffer, it
3829          *  has no specific buffer page to point to. Lets move it out
3830          *  of our way so we don't accidentally swap it.
3831          */
3832         cpu_buffer->pages = reader->list.prev;
3833
3834         /* The reader page will be pointing to the new head */
3835         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3836
3837         /*
3838          * We want to make sure we read the overruns after we set up our
3839          * pointers to the next object. The writer side does a
3840          * cmpxchg to cross pages which acts as the mb on the writer
3841          * side. Note, the reader will constantly fail the swap
3842          * while the writer is updating the pointers, so this
3843          * guarantees that the overwrite recorded here is the one we
3844          * want to compare with the last_overrun.
3845          */
3846         smp_mb();
3847         overwrite = local_read(&(cpu_buffer->overrun));
3848
3849         /*
3850          * Here's the tricky part.
3851          *
3852          * We need to move the pointer past the header page.
3853          * But we can only do that if a writer is not currently
3854          * moving it. The page before the header page has the
3855          * flag bit '1' set if it is pointing to the page we want.
3856          * but if the writer is in the process of moving it
3857          * than it will be '2' or already moved '0'.
3858          */
3859
3860         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3861
3862         /*
3863          * If we did not convert it, then we must try again.
3864          */
3865         if (!ret)
3866                 goto spin;
3867
3868         /*
3869          * Yay! We succeeded in replacing the page.
3870          *
3871          * Now make the new head point back to the reader page.
3872          */
3873         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3874         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3875
3876         local_inc(&cpu_buffer->pages_read);
3877
3878         /* Finally update the reader page to the new head */
3879         cpu_buffer->reader_page = reader;
3880         cpu_buffer->reader_page->read = 0;
3881
3882         if (overwrite != cpu_buffer->last_overrun) {
3883                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3884                 cpu_buffer->last_overrun = overwrite;
3885         }
3886
3887         goto again;
3888
3889  out:
3890         /* Update the read_stamp on the first event */
3891         if (reader && reader->read == 0)
3892                 cpu_buffer->read_stamp = reader->page->time_stamp;
3893
3894         arch_spin_unlock(&cpu_buffer->lock);
3895         local_irq_restore(flags);
3896
3897         return reader;
3898 }
3899
3900 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3901 {
3902         struct ring_buffer_event *event;
3903         struct buffer_page *reader;
3904         unsigned length;
3905
3906         reader = rb_get_reader_page(cpu_buffer);
3907
3908         /* This function should not be called when buffer is empty */
3909         if (RB_WARN_ON(cpu_buffer, !reader))
3910                 return;
3911
3912         event = rb_reader_event(cpu_buffer);
3913
3914         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3915                 cpu_buffer->read++;
3916
3917         rb_update_read_stamp(cpu_buffer, event);
3918
3919         length = rb_event_length(event);
3920         cpu_buffer->reader_page->read += length;
3921 }
3922
3923 static void rb_advance_iter(struct ring_buffer_iter *iter)
3924 {
3925         struct ring_buffer_per_cpu *cpu_buffer;
3926
3927         cpu_buffer = iter->cpu_buffer;
3928
3929         /* If head == next_event then we need to jump to the next event */
3930         if (iter->head == iter->next_event) {
3931                 /* If the event gets overwritten again, there's nothing to do */
3932                 if (rb_iter_head_event(iter) == NULL)
3933                         return;
3934         }
3935
3936         iter->head = iter->next_event;
3937
3938         /*
3939          * Check if we are at the end of the buffer.
3940          */
3941         if (iter->next_event >= rb_page_size(iter->head_page)) {
3942                 /* discarded commits can make the page empty */
3943                 if (iter->head_page == cpu_buffer->commit_page)
3944                         return;
3945                 rb_inc_iter(iter);
3946                 return;
3947         }
3948
3949         rb_update_iter_read_stamp(iter, iter->event);
3950 }
3951
3952 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3953 {
3954         return cpu_buffer->lost_events;
3955 }
3956
3957 static struct ring_buffer_event *
3958 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3959                unsigned long *lost_events)
3960 {
3961         struct ring_buffer_event *event;
3962         struct buffer_page *reader;
3963         int nr_loops = 0;
3964
3965         if (ts)
3966                 *ts = 0;
3967  again:
3968         /*
3969          * We repeat when a time extend is encountered.
3970          * Since the time extend is always attached to a data event,
3971          * we should never loop more than once.
3972          * (We never hit the following condition more than twice).
3973          */
3974         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3975                 return NULL;
3976
3977         reader = rb_get_reader_page(cpu_buffer);
3978         if (!reader)
3979                 return NULL;
3980
3981         event = rb_reader_event(cpu_buffer);
3982
3983         switch (event->type_len) {
3984         case RINGBUF_TYPE_PADDING:
3985                 if (rb_null_event(event))
3986                         RB_WARN_ON(cpu_buffer, 1);
3987                 /*
3988                  * Because the writer could be discarding every
3989                  * event it creates (which would probably be bad)
3990                  * if we were to go back to "again" then we may never
3991                  * catch up, and will trigger the warn on, or lock
3992                  * the box. Return the padding, and we will release
3993                  * the current locks, and try again.
3994                  */
3995                 return event;
3996
3997         case RINGBUF_TYPE_TIME_EXTEND:
3998                 /* Internal data, OK to advance */
3999                 rb_advance_reader(cpu_buffer);
4000                 goto again;
4001
4002         case RINGBUF_TYPE_TIME_STAMP:
4003                 if (ts) {
4004                         *ts = ring_buffer_event_time_stamp(event);
4005                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4006                                                          cpu_buffer->cpu, ts);
4007                 }
4008                 /* Internal data, OK to advance */
4009                 rb_advance_reader(cpu_buffer);
4010                 goto again;
4011
4012         case RINGBUF_TYPE_DATA:
4013                 if (ts && !(*ts)) {
4014                         *ts = cpu_buffer->read_stamp + event->time_delta;
4015                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4016                                                          cpu_buffer->cpu, ts);
4017                 }
4018                 if (lost_events)
4019                         *lost_events = rb_lost_events(cpu_buffer);
4020                 return event;
4021
4022         default:
4023                 RB_WARN_ON(cpu_buffer, 1);
4024         }
4025
4026         return NULL;
4027 }
4028 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4029
4030 static struct ring_buffer_event *
4031 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4032 {
4033         struct trace_buffer *buffer;
4034         struct ring_buffer_per_cpu *cpu_buffer;
4035         struct ring_buffer_event *event;
4036         int nr_loops = 0;
4037
4038         if (ts)
4039                 *ts = 0;
4040
4041         cpu_buffer = iter->cpu_buffer;
4042         buffer = cpu_buffer->buffer;
4043
4044         /*
4045          * Check if someone performed a consuming read to
4046          * the buffer. A consuming read invalidates the iterator
4047          * and we need to reset the iterator in this case.
4048          */
4049         if (unlikely(iter->cache_read != cpu_buffer->read ||
4050                      iter->cache_reader_page != cpu_buffer->reader_page))
4051                 rb_iter_reset(iter);
4052
4053  again:
4054         if (ring_buffer_iter_empty(iter))
4055                 return NULL;
4056
4057         /*
4058          * As the writer can mess with what the iterator is trying
4059          * to read, just give up if we fail to get an event after
4060          * three tries. The iterator is not as reliable when reading
4061          * the ring buffer with an active write as the consumer is.
4062          * Do not warn if the three failures is reached.
4063          */
4064         if (++nr_loops > 3)
4065                 return NULL;
4066
4067         if (rb_per_cpu_empty(cpu_buffer))
4068                 return NULL;
4069
4070         if (iter->head >= rb_page_size(iter->head_page)) {
4071                 rb_inc_iter(iter);
4072                 goto again;
4073         }
4074
4075         event = rb_iter_head_event(iter);
4076         if (!event)
4077                 goto again;
4078
4079         switch (event->type_len) {
4080         case RINGBUF_TYPE_PADDING:
4081                 if (rb_null_event(event)) {
4082                         rb_inc_iter(iter);
4083                         goto again;
4084                 }
4085                 rb_advance_iter(iter);
4086                 return event;
4087
4088         case RINGBUF_TYPE_TIME_EXTEND:
4089                 /* Internal data, OK to advance */
4090                 rb_advance_iter(iter);
4091                 goto again;
4092
4093         case RINGBUF_TYPE_TIME_STAMP:
4094                 if (ts) {
4095                         *ts = ring_buffer_event_time_stamp(event);
4096                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4097                                                          cpu_buffer->cpu, ts);
4098                 }
4099                 /* Internal data, OK to advance */
4100                 rb_advance_iter(iter);
4101                 goto again;
4102
4103         case RINGBUF_TYPE_DATA:
4104                 if (ts && !(*ts)) {
4105                         *ts = iter->read_stamp + event->time_delta;
4106                         ring_buffer_normalize_time_stamp(buffer,
4107                                                          cpu_buffer->cpu, ts);
4108                 }
4109                 return event;
4110
4111         default:
4112                 RB_WARN_ON(cpu_buffer, 1);
4113         }
4114
4115         return NULL;
4116 }
4117 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4118
4119 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4120 {
4121         if (likely(!in_nmi())) {
4122                 raw_spin_lock(&cpu_buffer->reader_lock);
4123                 return true;
4124         }
4125
4126         /*
4127          * If an NMI die dumps out the content of the ring buffer
4128          * trylock must be used to prevent a deadlock if the NMI
4129          * preempted a task that holds the ring buffer locks. If
4130          * we get the lock then all is fine, if not, then continue
4131          * to do the read, but this can corrupt the ring buffer,
4132          * so it must be permanently disabled from future writes.
4133          * Reading from NMI is a oneshot deal.
4134          */
4135         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4136                 return true;
4137
4138         /* Continue without locking, but disable the ring buffer */
4139         atomic_inc(&cpu_buffer->record_disabled);
4140         return false;
4141 }
4142
4143 static inline void
4144 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4145 {
4146         if (likely(locked))
4147                 raw_spin_unlock(&cpu_buffer->reader_lock);
4148         return;
4149 }
4150
4151 /**
4152  * ring_buffer_peek - peek at the next event to be read
4153  * @buffer: The ring buffer to read
4154  * @cpu: The cpu to peak at
4155  * @ts: The timestamp counter of this event.
4156  * @lost_events: a variable to store if events were lost (may be NULL)
4157  *
4158  * This will return the event that will be read next, but does
4159  * not consume the data.
4160  */
4161 struct ring_buffer_event *
4162 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4163                  unsigned long *lost_events)
4164 {
4165         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4166         struct ring_buffer_event *event;
4167         unsigned long flags;
4168         bool dolock;
4169
4170         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4171                 return NULL;
4172
4173  again:
4174         local_irq_save(flags);
4175         dolock = rb_reader_lock(cpu_buffer);
4176         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4177         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4178                 rb_advance_reader(cpu_buffer);
4179         rb_reader_unlock(cpu_buffer, dolock);
4180         local_irq_restore(flags);
4181
4182         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4183                 goto again;
4184
4185         return event;
4186 }
4187
4188 /** ring_buffer_iter_dropped - report if there are dropped events
4189  * @iter: The ring buffer iterator
4190  *
4191  * Returns true if there was dropped events since the last peek.
4192  */
4193 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4194 {
4195         bool ret = iter->missed_events != 0;
4196
4197         iter->missed_events = 0;
4198         return ret;
4199 }
4200 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4201
4202 /**
4203  * ring_buffer_iter_peek - peek at the next event to be read
4204  * @iter: The ring buffer iterator
4205  * @ts: The timestamp counter of this event.
4206  *
4207  * This will return the event that will be read next, but does
4208  * not increment the iterator.
4209  */
4210 struct ring_buffer_event *
4211 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4212 {
4213         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4214         struct ring_buffer_event *event;
4215         unsigned long flags;
4216
4217  again:
4218         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4219         event = rb_iter_peek(iter, ts);
4220         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4221
4222         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4223                 goto again;
4224
4225         return event;
4226 }
4227
4228 /**
4229  * ring_buffer_consume - return an event and consume it
4230  * @buffer: The ring buffer to get the next event from
4231  * @cpu: the cpu to read the buffer from
4232  * @ts: a variable to store the timestamp (may be NULL)
4233  * @lost_events: a variable to store if events were lost (may be NULL)
4234  *
4235  * Returns the next event in the ring buffer, and that event is consumed.
4236  * Meaning, that sequential reads will keep returning a different event,
4237  * and eventually empty the ring buffer if the producer is slower.
4238  */
4239 struct ring_buffer_event *
4240 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4241                     unsigned long *lost_events)
4242 {
4243         struct ring_buffer_per_cpu *cpu_buffer;
4244         struct ring_buffer_event *event = NULL;
4245         unsigned long flags;
4246         bool dolock;
4247
4248  again:
4249         /* might be called in atomic */
4250         preempt_disable();
4251
4252         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4253                 goto out;
4254
4255         cpu_buffer = buffer->buffers[cpu];
4256         local_irq_save(flags);
4257         dolock = rb_reader_lock(cpu_buffer);
4258
4259         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4260         if (event) {
4261                 cpu_buffer->lost_events = 0;
4262                 rb_advance_reader(cpu_buffer);
4263         }
4264
4265         rb_reader_unlock(cpu_buffer, dolock);
4266         local_irq_restore(flags);
4267
4268  out:
4269         preempt_enable();
4270
4271         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4272                 goto again;
4273
4274         return event;
4275 }
4276 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4277
4278 /**
4279  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4280  * @buffer: The ring buffer to read from
4281  * @cpu: The cpu buffer to iterate over
4282  * @flags: gfp flags to use for memory allocation
4283  *
4284  * This performs the initial preparations necessary to iterate
4285  * through the buffer.  Memory is allocated, buffer recording
4286  * is disabled, and the iterator pointer is returned to the caller.
4287  *
4288  * Disabling buffer recording prevents the reading from being
4289  * corrupted. This is not a consuming read, so a producer is not
4290  * expected.
4291  *
4292  * After a sequence of ring_buffer_read_prepare calls, the user is
4293  * expected to make at least one call to ring_buffer_read_prepare_sync.
4294  * Afterwards, ring_buffer_read_start is invoked to get things going
4295  * for real.
4296  *
4297  * This overall must be paired with ring_buffer_read_finish.
4298  */
4299 struct ring_buffer_iter *
4300 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4301 {
4302         struct ring_buffer_per_cpu *cpu_buffer;
4303         struct ring_buffer_iter *iter;
4304
4305         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4306                 return NULL;
4307
4308         iter = kzalloc(sizeof(*iter), flags);
4309         if (!iter)
4310                 return NULL;
4311
4312         iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4313         if (!iter->event) {
4314                 kfree(iter);
4315                 return NULL;
4316         }
4317
4318         cpu_buffer = buffer->buffers[cpu];
4319
4320         iter->cpu_buffer = cpu_buffer;
4321
4322         atomic_inc(&cpu_buffer->resize_disabled);
4323
4324         return iter;
4325 }
4326 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4327
4328 /**
4329  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4330  *
4331  * All previously invoked ring_buffer_read_prepare calls to prepare
4332  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4333  * calls on those iterators are allowed.
4334  */
4335 void
4336 ring_buffer_read_prepare_sync(void)
4337 {
4338         synchronize_rcu();
4339 }
4340 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4341
4342 /**
4343  * ring_buffer_read_start - start a non consuming read of the buffer
4344  * @iter: The iterator returned by ring_buffer_read_prepare
4345  *
4346  * This finalizes the startup of an iteration through the buffer.
4347  * The iterator comes from a call to ring_buffer_read_prepare and
4348  * an intervening ring_buffer_read_prepare_sync must have been
4349  * performed.
4350  *
4351  * Must be paired with ring_buffer_read_finish.
4352  */
4353 void
4354 ring_buffer_read_start(struct ring_buffer_iter *iter)
4355 {
4356         struct ring_buffer_per_cpu *cpu_buffer;
4357         unsigned long flags;
4358
4359         if (!iter)
4360                 return;
4361
4362         cpu_buffer = iter->cpu_buffer;
4363
4364         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4365         arch_spin_lock(&cpu_buffer->lock);
4366         rb_iter_reset(iter);
4367         arch_spin_unlock(&cpu_buffer->lock);
4368         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4369 }
4370 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4371
4372 /**
4373  * ring_buffer_read_finish - finish reading the iterator of the buffer
4374  * @iter: The iterator retrieved by ring_buffer_start
4375  *
4376  * This re-enables the recording to the buffer, and frees the
4377  * iterator.
4378  */
4379 void
4380 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4381 {
4382         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4383         unsigned long flags;
4384
4385         /*
4386          * Ring buffer is disabled from recording, here's a good place
4387          * to check the integrity of the ring buffer.
4388          * Must prevent readers from trying to read, as the check
4389          * clears the HEAD page and readers require it.
4390          */
4391         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4392         rb_check_pages(cpu_buffer);
4393         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4394
4395         atomic_dec(&cpu_buffer->resize_disabled);
4396         kfree(iter->event);
4397         kfree(iter);
4398 }
4399 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4400
4401 /**
4402  * ring_buffer_iter_advance - advance the iterator to the next location
4403  * @iter: The ring buffer iterator
4404  *
4405  * Move the location of the iterator such that the next read will
4406  * be the next location of the iterator.
4407  */
4408 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4409 {
4410         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4411         unsigned long flags;
4412
4413         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4414
4415         rb_advance_iter(iter);
4416
4417         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4418 }
4419 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4420
4421 /**
4422  * ring_buffer_size - return the size of the ring buffer (in bytes)
4423  * @buffer: The ring buffer.
4424  * @cpu: The CPU to get ring buffer size from.
4425  */
4426 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4427 {
4428         /*
4429          * Earlier, this method returned
4430          *      BUF_PAGE_SIZE * buffer->nr_pages
4431          * Since the nr_pages field is now removed, we have converted this to
4432          * return the per cpu buffer value.
4433          */
4434         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4435                 return 0;
4436
4437         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4438 }
4439 EXPORT_SYMBOL_GPL(ring_buffer_size);
4440
4441 static void
4442 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4443 {
4444         rb_head_page_deactivate(cpu_buffer);
4445
4446         cpu_buffer->head_page
4447                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4448         local_set(&cpu_buffer->head_page->write, 0);
4449         local_set(&cpu_buffer->head_page->entries, 0);
4450         local_set(&cpu_buffer->head_page->page->commit, 0);
4451
4452         cpu_buffer->head_page->read = 0;
4453
4454         cpu_buffer->tail_page = cpu_buffer->head_page;
4455         cpu_buffer->commit_page = cpu_buffer->head_page;
4456
4457         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4458         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4459         local_set(&cpu_buffer->reader_page->write, 0);
4460         local_set(&cpu_buffer->reader_page->entries, 0);
4461         local_set(&cpu_buffer->reader_page->page->commit, 0);
4462         cpu_buffer->reader_page->read = 0;
4463
4464         local_set(&cpu_buffer->entries_bytes, 0);
4465         local_set(&cpu_buffer->overrun, 0);
4466         local_set(&cpu_buffer->commit_overrun, 0);
4467         local_set(&cpu_buffer->dropped_events, 0);
4468         local_set(&cpu_buffer->entries, 0);
4469         local_set(&cpu_buffer->committing, 0);
4470         local_set(&cpu_buffer->commits, 0);
4471         local_set(&cpu_buffer->pages_touched, 0);
4472         local_set(&cpu_buffer->pages_read, 0);
4473         cpu_buffer->last_pages_touch = 0;
4474         cpu_buffer->shortest_full = 0;
4475         cpu_buffer->read = 0;
4476         cpu_buffer->read_bytes = 0;
4477
4478         cpu_buffer->write_stamp = 0;
4479         cpu_buffer->read_stamp = 0;
4480
4481         cpu_buffer->lost_events = 0;
4482         cpu_buffer->last_overrun = 0;
4483
4484         rb_head_page_activate(cpu_buffer);
4485 }
4486
4487 /**
4488  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4489  * @buffer: The ring buffer to reset a per cpu buffer of
4490  * @cpu: The CPU buffer to be reset
4491  */
4492 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4493 {
4494         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4495         unsigned long flags;
4496
4497         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4498                 return;
4499
4500         atomic_inc(&cpu_buffer->resize_disabled);
4501         atomic_inc(&cpu_buffer->record_disabled);
4502
4503         /* Make sure all commits have finished */
4504         synchronize_rcu();
4505
4506         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4507
4508         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4509                 goto out;
4510
4511         arch_spin_lock(&cpu_buffer->lock);
4512
4513         rb_reset_cpu(cpu_buffer);
4514
4515         arch_spin_unlock(&cpu_buffer->lock);
4516
4517  out:
4518         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4519
4520         atomic_dec(&cpu_buffer->record_disabled);
4521         atomic_dec(&cpu_buffer->resize_disabled);
4522 }
4523 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4524
4525 /**
4526  * ring_buffer_reset - reset a ring buffer
4527  * @buffer: The ring buffer to reset all cpu buffers
4528  */
4529 void ring_buffer_reset(struct trace_buffer *buffer)
4530 {
4531         int cpu;
4532
4533         for_each_buffer_cpu(buffer, cpu)
4534                 ring_buffer_reset_cpu(buffer, cpu);
4535 }
4536 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4537
4538 /**
4539  * rind_buffer_empty - is the ring buffer empty?
4540  * @buffer: The ring buffer to test
4541  */
4542 bool ring_buffer_empty(struct trace_buffer *buffer)
4543 {
4544         struct ring_buffer_per_cpu *cpu_buffer;
4545         unsigned long flags;
4546         bool dolock;
4547         int cpu;
4548         int ret;
4549
4550         /* yes this is racy, but if you don't like the race, lock the buffer */
4551         for_each_buffer_cpu(buffer, cpu) {
4552                 cpu_buffer = buffer->buffers[cpu];
4553                 local_irq_save(flags);
4554                 dolock = rb_reader_lock(cpu_buffer);
4555                 ret = rb_per_cpu_empty(cpu_buffer);
4556                 rb_reader_unlock(cpu_buffer, dolock);
4557                 local_irq_restore(flags);
4558
4559                 if (!ret)
4560                         return false;
4561         }
4562
4563         return true;
4564 }
4565 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4566
4567 /**
4568  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4569  * @buffer: The ring buffer
4570  * @cpu: The CPU buffer to test
4571  */
4572 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4573 {
4574         struct ring_buffer_per_cpu *cpu_buffer;
4575         unsigned long flags;
4576         bool dolock;
4577         int ret;
4578
4579         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4580                 return true;
4581
4582         cpu_buffer = buffer->buffers[cpu];
4583         local_irq_save(flags);
4584         dolock = rb_reader_lock(cpu_buffer);
4585         ret = rb_per_cpu_empty(cpu_buffer);
4586         rb_reader_unlock(cpu_buffer, dolock);
4587         local_irq_restore(flags);
4588
4589         return ret;
4590 }
4591 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4592
4593 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4594 /**
4595  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4596  * @buffer_a: One buffer to swap with
4597  * @buffer_b: The other buffer to swap with
4598  * @cpu: the CPU of the buffers to swap
4599  *
4600  * This function is useful for tracers that want to take a "snapshot"
4601  * of a CPU buffer and has another back up buffer lying around.
4602  * it is expected that the tracer handles the cpu buffer not being
4603  * used at the moment.
4604  */
4605 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
4606                          struct trace_buffer *buffer_b, int cpu)
4607 {
4608         struct ring_buffer_per_cpu *cpu_buffer_a;
4609         struct ring_buffer_per_cpu *cpu_buffer_b;
4610         int ret = -EINVAL;
4611
4612         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4613             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4614                 goto out;
4615
4616         cpu_buffer_a = buffer_a->buffers[cpu];
4617         cpu_buffer_b = buffer_b->buffers[cpu];
4618
4619         /* At least make sure the two buffers are somewhat the same */
4620         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4621                 goto out;
4622
4623         ret = -EAGAIN;
4624
4625         if (atomic_read(&buffer_a->record_disabled))
4626                 goto out;
4627
4628         if (atomic_read(&buffer_b->record_disabled))
4629                 goto out;
4630
4631         if (atomic_read(&cpu_buffer_a->record_disabled))
4632                 goto out;
4633
4634         if (atomic_read(&cpu_buffer_b->record_disabled))
4635                 goto out;
4636
4637         /*
4638          * We can't do a synchronize_rcu here because this
4639          * function can be called in atomic context.
4640          * Normally this will be called from the same CPU as cpu.
4641          * If not it's up to the caller to protect this.
4642          */
4643         atomic_inc(&cpu_buffer_a->record_disabled);
4644         atomic_inc(&cpu_buffer_b->record_disabled);
4645
4646         ret = -EBUSY;
4647         if (local_read(&cpu_buffer_a->committing))
4648                 goto out_dec;
4649         if (local_read(&cpu_buffer_b->committing))
4650                 goto out_dec;
4651
4652         buffer_a->buffers[cpu] = cpu_buffer_b;
4653         buffer_b->buffers[cpu] = cpu_buffer_a;
4654
4655         cpu_buffer_b->buffer = buffer_a;
4656         cpu_buffer_a->buffer = buffer_b;
4657
4658         ret = 0;
4659
4660 out_dec:
4661         atomic_dec(&cpu_buffer_a->record_disabled);
4662         atomic_dec(&cpu_buffer_b->record_disabled);
4663 out:
4664         return ret;
4665 }
4666 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4667 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4668
4669 /**
4670  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4671  * @buffer: the buffer to allocate for.
4672  * @cpu: the cpu buffer to allocate.
4673  *
4674  * This function is used in conjunction with ring_buffer_read_page.
4675  * When reading a full page from the ring buffer, these functions
4676  * can be used to speed up the process. The calling function should
4677  * allocate a few pages first with this function. Then when it
4678  * needs to get pages from the ring buffer, it passes the result
4679  * of this function into ring_buffer_read_page, which will swap
4680  * the page that was allocated, with the read page of the buffer.
4681  *
4682  * Returns:
4683  *  The page allocated, or ERR_PTR
4684  */
4685 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
4686 {
4687         struct ring_buffer_per_cpu *cpu_buffer;
4688         struct buffer_data_page *bpage = NULL;
4689         unsigned long flags;
4690         struct page *page;
4691
4692         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4693                 return ERR_PTR(-ENODEV);
4694
4695         cpu_buffer = buffer->buffers[cpu];
4696         local_irq_save(flags);
4697         arch_spin_lock(&cpu_buffer->lock);
4698
4699         if (cpu_buffer->free_page) {
4700                 bpage = cpu_buffer->free_page;
4701                 cpu_buffer->free_page = NULL;
4702         }
4703
4704         arch_spin_unlock(&cpu_buffer->lock);
4705         local_irq_restore(flags);
4706
4707         if (bpage)
4708                 goto out;
4709
4710         page = alloc_pages_node(cpu_to_node(cpu),
4711                                 GFP_KERNEL | __GFP_NORETRY, 0);
4712         if (!page)
4713                 return ERR_PTR(-ENOMEM);
4714
4715         bpage = page_address(page);
4716
4717  out:
4718         rb_init_page(bpage);
4719
4720         return bpage;
4721 }
4722 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4723
4724 /**
4725  * ring_buffer_free_read_page - free an allocated read page
4726  * @buffer: the buffer the page was allocate for
4727  * @cpu: the cpu buffer the page came from
4728  * @data: the page to free
4729  *
4730  * Free a page allocated from ring_buffer_alloc_read_page.
4731  */
4732 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
4733 {
4734         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4735         struct buffer_data_page *bpage = data;
4736         struct page *page = virt_to_page(bpage);
4737         unsigned long flags;
4738
4739         /* If the page is still in use someplace else, we can't reuse it */
4740         if (page_ref_count(page) > 1)
4741                 goto out;
4742
4743         local_irq_save(flags);
4744         arch_spin_lock(&cpu_buffer->lock);
4745
4746         if (!cpu_buffer->free_page) {
4747                 cpu_buffer->free_page = bpage;
4748                 bpage = NULL;
4749         }
4750
4751         arch_spin_unlock(&cpu_buffer->lock);
4752         local_irq_restore(flags);
4753
4754  out:
4755         free_page((unsigned long)bpage);
4756 }
4757 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4758
4759 /**
4760  * ring_buffer_read_page - extract a page from the ring buffer
4761  * @buffer: buffer to extract from
4762  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4763  * @len: amount to extract
4764  * @cpu: the cpu of the buffer to extract
4765  * @full: should the extraction only happen when the page is full.
4766  *
4767  * This function will pull out a page from the ring buffer and consume it.
4768  * @data_page must be the address of the variable that was returned
4769  * from ring_buffer_alloc_read_page. This is because the page might be used
4770  * to swap with a page in the ring buffer.
4771  *
4772  * for example:
4773  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4774  *      if (IS_ERR(rpage))
4775  *              return PTR_ERR(rpage);
4776  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4777  *      if (ret >= 0)
4778  *              process_page(rpage, ret);
4779  *
4780  * When @full is set, the function will not return true unless
4781  * the writer is off the reader page.
4782  *
4783  * Note: it is up to the calling functions to handle sleeps and wakeups.
4784  *  The ring buffer can be used anywhere in the kernel and can not
4785  *  blindly call wake_up. The layer that uses the ring buffer must be
4786  *  responsible for that.
4787  *
4788  * Returns:
4789  *  >=0 if data has been transferred, returns the offset of consumed data.
4790  *  <0 if no data has been transferred.
4791  */
4792 int ring_buffer_read_page(struct trace_buffer *buffer,
4793                           void **data_page, size_t len, int cpu, int full)
4794 {
4795         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4796         struct ring_buffer_event *event;
4797         struct buffer_data_page *bpage;
4798         struct buffer_page *reader;
4799         unsigned long missed_events;
4800         unsigned long flags;
4801         unsigned int commit;
4802         unsigned int read;
4803         u64 save_timestamp;
4804         int ret = -1;
4805
4806         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4807                 goto out;
4808
4809         /*
4810          * If len is not big enough to hold the page header, then
4811          * we can not copy anything.
4812          */
4813         if (len <= BUF_PAGE_HDR_SIZE)
4814                 goto out;
4815
4816         len -= BUF_PAGE_HDR_SIZE;
4817
4818         if (!data_page)
4819                 goto out;
4820
4821         bpage = *data_page;
4822         if (!bpage)
4823                 goto out;
4824
4825         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4826
4827         reader = rb_get_reader_page(cpu_buffer);
4828         if (!reader)
4829                 goto out_unlock;
4830
4831         event = rb_reader_event(cpu_buffer);
4832
4833         read = reader->read;
4834         commit = rb_page_commit(reader);
4835
4836         /* Check if any events were dropped */
4837         missed_events = cpu_buffer->lost_events;
4838
4839         /*
4840          * If this page has been partially read or
4841          * if len is not big enough to read the rest of the page or
4842          * a writer is still on the page, then
4843          * we must copy the data from the page to the buffer.
4844          * Otherwise, we can simply swap the page with the one passed in.
4845          */
4846         if (read || (len < (commit - read)) ||
4847             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4848                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4849                 unsigned int rpos = read;
4850                 unsigned int pos = 0;
4851                 unsigned int size;
4852
4853                 if (full)
4854                         goto out_unlock;
4855
4856                 if (len > (commit - read))
4857                         len = (commit - read);
4858
4859                 /* Always keep the time extend and data together */
4860                 size = rb_event_ts_length(event);
4861
4862                 if (len < size)
4863                         goto out_unlock;
4864
4865                 /* save the current timestamp, since the user will need it */
4866                 save_timestamp = cpu_buffer->read_stamp;
4867
4868                 /* Need to copy one event at a time */
4869                 do {
4870                         /* We need the size of one event, because
4871                          * rb_advance_reader only advances by one event,
4872                          * whereas rb_event_ts_length may include the size of
4873                          * one or two events.
4874                          * We have already ensured there's enough space if this
4875                          * is a time extend. */
4876                         size = rb_event_length(event);
4877                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4878
4879                         len -= size;
4880
4881                         rb_advance_reader(cpu_buffer);
4882                         rpos = reader->read;
4883                         pos += size;
4884
4885                         if (rpos >= commit)
4886                                 break;
4887
4888                         event = rb_reader_event(cpu_buffer);
4889                         /* Always keep the time extend and data together */
4890                         size = rb_event_ts_length(event);
4891                 } while (len >= size);
4892
4893                 /* update bpage */
4894                 local_set(&bpage->commit, pos);
4895                 bpage->time_stamp = save_timestamp;
4896
4897                 /* we copied everything to the beginning */
4898                 read = 0;
4899         } else {
4900                 /* update the entry counter */
4901                 cpu_buffer->read += rb_page_entries(reader);
4902                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4903
4904                 /* swap the pages */
4905                 rb_init_page(bpage);
4906                 bpage = reader->page;
4907                 reader->page = *data_page;
4908                 local_set(&reader->write, 0);
4909                 local_set(&reader->entries, 0);
4910                 reader->read = 0;
4911                 *data_page = bpage;
4912
4913                 /*
4914                  * Use the real_end for the data size,
4915                  * This gives us a chance to store the lost events
4916                  * on the page.
4917                  */
4918                 if (reader->real_end)
4919                         local_set(&bpage->commit, reader->real_end);
4920         }
4921         ret = read;
4922
4923         cpu_buffer->lost_events = 0;
4924
4925         commit = local_read(&bpage->commit);
4926         /*
4927          * Set a flag in the commit field if we lost events
4928          */
4929         if (missed_events) {
4930                 /* If there is room at the end of the page to save the
4931                  * missed events, then record it there.
4932                  */
4933                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4934                         memcpy(&bpage->data[commit], &missed_events,
4935                                sizeof(missed_events));
4936                         local_add(RB_MISSED_STORED, &bpage->commit);
4937                         commit += sizeof(missed_events);
4938                 }
4939                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4940         }
4941
4942         /*
4943          * This page may be off to user land. Zero it out here.
4944          */
4945         if (commit < BUF_PAGE_SIZE)
4946                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4947
4948  out_unlock:
4949         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4950
4951  out:
4952         return ret;
4953 }
4954 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4955
4956 /*
4957  * We only allocate new buffers, never free them if the CPU goes down.
4958  * If we were to free the buffer, then the user would lose any trace that was in
4959  * the buffer.
4960  */
4961 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4962 {
4963         struct trace_buffer *buffer;
4964         long nr_pages_same;
4965         int cpu_i;
4966         unsigned long nr_pages;
4967
4968         buffer = container_of(node, struct trace_buffer, node);
4969         if (cpumask_test_cpu(cpu, buffer->cpumask))
4970                 return 0;
4971
4972         nr_pages = 0;
4973         nr_pages_same = 1;
4974         /* check if all cpu sizes are same */
4975         for_each_buffer_cpu(buffer, cpu_i) {
4976                 /* fill in the size from first enabled cpu */
4977                 if (nr_pages == 0)
4978                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4979                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4980                         nr_pages_same = 0;
4981                         break;
4982                 }
4983         }
4984         /* allocate minimum pages, user can later expand it */
4985         if (!nr_pages_same)
4986                 nr_pages = 2;
4987         buffer->buffers[cpu] =
4988                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4989         if (!buffer->buffers[cpu]) {
4990                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4991                      cpu);
4992                 return -ENOMEM;
4993         }
4994         smp_wmb();
4995         cpumask_set_cpu(cpu, buffer->cpumask);
4996         return 0;
4997 }
4998
4999 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5000 /*
5001  * This is a basic integrity check of the ring buffer.
5002  * Late in the boot cycle this test will run when configured in.
5003  * It will kick off a thread per CPU that will go into a loop
5004  * writing to the per cpu ring buffer various sizes of data.
5005  * Some of the data will be large items, some small.
5006  *
5007  * Another thread is created that goes into a spin, sending out
5008  * IPIs to the other CPUs to also write into the ring buffer.
5009  * this is to test the nesting ability of the buffer.
5010  *
5011  * Basic stats are recorded and reported. If something in the
5012  * ring buffer should happen that's not expected, a big warning
5013  * is displayed and all ring buffers are disabled.
5014  */
5015 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5016
5017 struct rb_test_data {
5018         struct trace_buffer *buffer;
5019         unsigned long           events;
5020         unsigned long           bytes_written;
5021         unsigned long           bytes_alloc;
5022         unsigned long           bytes_dropped;
5023         unsigned long           events_nested;
5024         unsigned long           bytes_written_nested;
5025         unsigned long           bytes_alloc_nested;
5026         unsigned long           bytes_dropped_nested;
5027         int                     min_size_nested;
5028         int                     max_size_nested;
5029         int                     max_size;
5030         int                     min_size;
5031         int                     cpu;
5032         int                     cnt;
5033 };
5034
5035 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5036
5037 /* 1 meg per cpu */
5038 #define RB_TEST_BUFFER_SIZE     1048576
5039
5040 static char rb_string[] __initdata =
5041         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5042         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5043         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5044
5045 static bool rb_test_started __initdata;
5046
5047 struct rb_item {
5048         int size;
5049         char str[];
5050 };
5051
5052 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5053 {
5054         struct ring_buffer_event *event;
5055         struct rb_item *item;
5056         bool started;
5057         int event_len;
5058         int size;
5059         int len;
5060         int cnt;
5061
5062         /* Have nested writes different that what is written */
5063         cnt = data->cnt + (nested ? 27 : 0);
5064
5065         /* Multiply cnt by ~e, to make some unique increment */
5066         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5067
5068         len = size + sizeof(struct rb_item);
5069
5070         started = rb_test_started;
5071         /* read rb_test_started before checking buffer enabled */
5072         smp_rmb();
5073
5074         event = ring_buffer_lock_reserve(data->buffer, len);
5075         if (!event) {
5076                 /* Ignore dropped events before test starts. */
5077                 if (started) {
5078                         if (nested)
5079                                 data->bytes_dropped += len;
5080                         else
5081                                 data->bytes_dropped_nested += len;
5082                 }
5083                 return len;
5084         }
5085
5086         event_len = ring_buffer_event_length(event);
5087
5088         if (RB_WARN_ON(data->buffer, event_len < len))
5089                 goto out;
5090
5091         item = ring_buffer_event_data(event);
5092         item->size = size;
5093         memcpy(item->str, rb_string, size);
5094
5095         if (nested) {
5096                 data->bytes_alloc_nested += event_len;
5097                 data->bytes_written_nested += len;
5098                 data->events_nested++;
5099                 if (!data->min_size_nested || len < data->min_size_nested)
5100                         data->min_size_nested = len;
5101                 if (len > data->max_size_nested)
5102                         data->max_size_nested = len;
5103         } else {
5104                 data->bytes_alloc += event_len;
5105                 data->bytes_written += len;
5106                 data->events++;
5107                 if (!data->min_size || len < data->min_size)
5108                         data->max_size = len;
5109                 if (len > data->max_size)
5110                         data->max_size = len;
5111         }
5112
5113  out:
5114         ring_buffer_unlock_commit(data->buffer, event);
5115
5116         return 0;
5117 }
5118
5119 static __init int rb_test(void *arg)
5120 {
5121         struct rb_test_data *data = arg;
5122
5123         while (!kthread_should_stop()) {
5124                 rb_write_something(data, false);
5125                 data->cnt++;
5126
5127                 set_current_state(TASK_INTERRUPTIBLE);
5128                 /* Now sleep between a min of 100-300us and a max of 1ms */
5129                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5130         }
5131
5132         return 0;
5133 }
5134
5135 static __init void rb_ipi(void *ignore)
5136 {
5137         struct rb_test_data *data;
5138         int cpu = smp_processor_id();
5139
5140         data = &rb_data[cpu];
5141         rb_write_something(data, true);
5142 }
5143
5144 static __init int rb_hammer_test(void *arg)
5145 {
5146         while (!kthread_should_stop()) {
5147
5148                 /* Send an IPI to all cpus to write data! */
5149                 smp_call_function(rb_ipi, NULL, 1);
5150                 /* No sleep, but for non preempt, let others run */
5151                 schedule();
5152         }
5153
5154         return 0;
5155 }
5156
5157 static __init int test_ringbuffer(void)
5158 {
5159         struct task_struct *rb_hammer;
5160         struct trace_buffer *buffer;
5161         int cpu;
5162         int ret = 0;
5163
5164         if (security_locked_down(LOCKDOWN_TRACEFS)) {
5165                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5166                 return 0;
5167         }
5168
5169         pr_info("Running ring buffer tests...\n");
5170
5171         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5172         if (WARN_ON(!buffer))
5173                 return 0;
5174
5175         /* Disable buffer so that threads can't write to it yet */
5176         ring_buffer_record_off(buffer);
5177
5178         for_each_online_cpu(cpu) {
5179                 rb_data[cpu].buffer = buffer;
5180                 rb_data[cpu].cpu = cpu;
5181                 rb_data[cpu].cnt = cpu;
5182                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5183                                                  "rbtester/%d", cpu);
5184                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5185                         pr_cont("FAILED\n");
5186                         ret = PTR_ERR(rb_threads[cpu]);
5187                         goto out_free;
5188                 }
5189
5190                 kthread_bind(rb_threads[cpu], cpu);
5191                 wake_up_process(rb_threads[cpu]);
5192         }
5193
5194         /* Now create the rb hammer! */
5195         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5196         if (WARN_ON(IS_ERR(rb_hammer))) {
5197                 pr_cont("FAILED\n");
5198                 ret = PTR_ERR(rb_hammer);
5199                 goto out_free;
5200         }
5201
5202         ring_buffer_record_on(buffer);
5203         /*
5204          * Show buffer is enabled before setting rb_test_started.
5205          * Yes there's a small race window where events could be
5206          * dropped and the thread wont catch it. But when a ring
5207          * buffer gets enabled, there will always be some kind of
5208          * delay before other CPUs see it. Thus, we don't care about
5209          * those dropped events. We care about events dropped after
5210          * the threads see that the buffer is active.
5211          */
5212         smp_wmb();
5213         rb_test_started = true;
5214
5215         set_current_state(TASK_INTERRUPTIBLE);
5216         /* Just run for 10 seconds */;
5217         schedule_timeout(10 * HZ);
5218
5219         kthread_stop(rb_hammer);
5220
5221  out_free:
5222         for_each_online_cpu(cpu) {
5223                 if (!rb_threads[cpu])
5224                         break;
5225                 kthread_stop(rb_threads[cpu]);
5226         }
5227         if (ret) {
5228                 ring_buffer_free(buffer);
5229                 return ret;
5230         }
5231
5232         /* Report! */
5233         pr_info("finished\n");
5234         for_each_online_cpu(cpu) {
5235                 struct ring_buffer_event *event;
5236                 struct rb_test_data *data = &rb_data[cpu];
5237                 struct rb_item *item;
5238                 unsigned long total_events;
5239                 unsigned long total_dropped;
5240                 unsigned long total_written;
5241                 unsigned long total_alloc;
5242                 unsigned long total_read = 0;
5243                 unsigned long total_size = 0;
5244                 unsigned long total_len = 0;
5245                 unsigned long total_lost = 0;
5246                 unsigned long lost;
5247                 int big_event_size;
5248                 int small_event_size;
5249
5250                 ret = -1;
5251
5252                 total_events = data->events + data->events_nested;
5253                 total_written = data->bytes_written + data->bytes_written_nested;
5254                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5255                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5256
5257                 big_event_size = data->max_size + data->max_size_nested;
5258                 small_event_size = data->min_size + data->min_size_nested;
5259
5260                 pr_info("CPU %d:\n", cpu);
5261                 pr_info("              events:    %ld\n", total_events);
5262                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5263                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5264                 pr_info("       written bytes:    %ld\n", total_written);
5265                 pr_info("       biggest event:    %d\n", big_event_size);
5266                 pr_info("      smallest event:    %d\n", small_event_size);
5267
5268                 if (RB_WARN_ON(buffer, total_dropped))
5269                         break;
5270
5271                 ret = 0;
5272
5273                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5274                         total_lost += lost;
5275                         item = ring_buffer_event_data(event);
5276                         total_len += ring_buffer_event_length(event);
5277                         total_size += item->size + sizeof(struct rb_item);
5278                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5279                                 pr_info("FAILED!\n");
5280                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5281                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5282                                 RB_WARN_ON(buffer, 1);
5283                                 ret = -1;
5284                                 break;
5285                         }
5286                         total_read++;
5287                 }
5288                 if (ret)
5289                         break;
5290
5291                 ret = -1;
5292
5293                 pr_info("         read events:   %ld\n", total_read);
5294                 pr_info("         lost events:   %ld\n", total_lost);
5295                 pr_info("        total events:   %ld\n", total_lost + total_read);
5296                 pr_info("  recorded len bytes:   %ld\n", total_len);
5297                 pr_info(" recorded size bytes:   %ld\n", total_size);
5298                 if (total_lost)
5299                         pr_info(" With dropped events, record len and size may not match\n"
5300                                 " alloced and written from above\n");
5301                 if (!total_lost) {
5302                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5303                                        total_size != total_written))
5304                                 break;
5305                 }
5306                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5307                         break;
5308
5309                 ret = 0;
5310         }
5311         if (!ret)
5312                 pr_info("Ring buffer PASSED!\n");
5313
5314         ring_buffer_free(buffer);
5315         return 0;
5316 }
5317
5318 late_initcall(test_ringbuffer);
5319 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */