Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26
27 #include <asm/local.h>
28
29 static void update_pages_handler(struct work_struct *work);
30
31 /*
32  * The ring buffer header is special. We must manually up keep it.
33  */
34 int ring_buffer_print_entry_header(struct trace_seq *s)
35 {
36         trace_seq_puts(s, "# compressed entry header\n");
37         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
38         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
39         trace_seq_puts(s, "\tarray       :   32 bits\n");
40         trace_seq_putc(s, '\n');
41         trace_seq_printf(s, "\tpadding     : type == %d\n",
42                          RINGBUF_TYPE_PADDING);
43         trace_seq_printf(s, "\ttime_extend : type == %d\n",
44                          RINGBUF_TYPE_TIME_EXTEND);
45         trace_seq_printf(s, "\tdata max type_len  == %d\n",
46                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47
48         return !trace_seq_has_overflowed(s);
49 }
50
51 /*
52  * The ring buffer is made up of a list of pages. A separate list of pages is
53  * allocated for each CPU. A writer may only write to a buffer that is
54  * associated with the CPU it is currently executing on.  A reader may read
55  * from any per cpu buffer.
56  *
57  * The reader is special. For each per cpu buffer, the reader has its own
58  * reader page. When a reader has read the entire reader page, this reader
59  * page is swapped with another page in the ring buffer.
60  *
61  * Now, as long as the writer is off the reader page, the reader can do what
62  * ever it wants with that page. The writer will never write to that page
63  * again (as long as it is out of the ring buffer).
64  *
65  * Here's some silly ASCII art.
66  *
67  *   +------+
68  *   |reader|          RING BUFFER
69  *   |page  |
70  *   +------+        +---+   +---+   +---+
71  *                   |   |-->|   |-->|   |
72  *                   +---+   +---+   +---+
73  *                     ^               |
74  *                     |               |
75  *                     +---------------+
76  *
77  *
78  *   +------+
79  *   |reader|          RING BUFFER
80  *   |page  |------------------v
81  *   +------+        +---+   +---+   +---+
82  *                   |   |-->|   |-->|   |
83  *                   +---+   +---+   +---+
84  *                     ^               |
85  *                     |               |
86  *                     +---------------+
87  *
88  *
89  *   +------+
90  *   |reader|          RING BUFFER
91  *   |page  |------------------v
92  *   +------+        +---+   +---+   +---+
93  *      ^            |   |-->|   |-->|   |
94  *      |            +---+   +---+   +---+
95  *      |                              |
96  *      |                              |
97  *      +------------------------------+
98  *
99  *
100  *   +------+
101  *   |buffer|          RING BUFFER
102  *   |page  |------------------v
103  *   +------+        +---+   +---+   +---+
104  *      ^            |   |   |   |-->|   |
105  *      |   New      +---+   +---+   +---+
106  *      |  Reader------^               |
107  *      |   page                       |
108  *      +------------------------------+
109  *
110  *
111  * After we make this swap, the reader can hand this page off to the splice
112  * code and be done with it. It can even allocate a new page if it needs to
113  * and swap that into the ring buffer.
114  *
115  * We will be using cmpxchg soon to make all this lockless.
116  *
117  */
118
119 /* Used for individual buffers (after the counter) */
120 #define RB_BUFFER_OFF           (1 << 20)
121
122 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123
124 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
125 #define RB_ALIGNMENT            4U
126 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
127 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
128
129 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
130 # define RB_FORCE_8BYTE_ALIGNMENT       0
131 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
132 #else
133 # define RB_FORCE_8BYTE_ALIGNMENT       1
134 # define RB_ARCH_ALIGNMENT              8U
135 #endif
136
137 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
138
139 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
140 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
141
142 enum {
143         RB_LEN_TIME_EXTEND = 8,
144         RB_LEN_TIME_STAMP = 16,
145 };
146
147 #define skip_time_extend(event) \
148         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149
150 static inline int rb_null_event(struct ring_buffer_event *event)
151 {
152         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
153 }
154
155 static void rb_event_set_padding(struct ring_buffer_event *event)
156 {
157         /* padding has a NULL time_delta */
158         event->type_len = RINGBUF_TYPE_PADDING;
159         event->time_delta = 0;
160 }
161
162 static unsigned
163 rb_event_data_length(struct ring_buffer_event *event)
164 {
165         unsigned length;
166
167         if (event->type_len)
168                 length = event->type_len * RB_ALIGNMENT;
169         else
170                 length = event->array[0];
171         return length + RB_EVNT_HDR_SIZE;
172 }
173
174 /*
175  * Return the length of the given event. Will return
176  * the length of the time extend if the event is a
177  * time extend.
178  */
179 static inline unsigned
180 rb_event_length(struct ring_buffer_event *event)
181 {
182         switch (event->type_len) {
183         case RINGBUF_TYPE_PADDING:
184                 if (rb_null_event(event))
185                         /* undefined */
186                         return -1;
187                 return  event->array[0] + RB_EVNT_HDR_SIZE;
188
189         case RINGBUF_TYPE_TIME_EXTEND:
190                 return RB_LEN_TIME_EXTEND;
191
192         case RINGBUF_TYPE_TIME_STAMP:
193                 return RB_LEN_TIME_STAMP;
194
195         case RINGBUF_TYPE_DATA:
196                 return rb_event_data_length(event);
197         default:
198                 BUG();
199         }
200         /* not hit */
201         return 0;
202 }
203
204 /*
205  * Return total length of time extend and data,
206  *   or just the event length for all other events.
207  */
208 static inline unsigned
209 rb_event_ts_length(struct ring_buffer_event *event)
210 {
211         unsigned len = 0;
212
213         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
214                 /* time extends include the data event after it */
215                 len = RB_LEN_TIME_EXTEND;
216                 event = skip_time_extend(event);
217         }
218         return len + rb_event_length(event);
219 }
220
221 /**
222  * ring_buffer_event_length - return the length of the event
223  * @event: the event to get the length of
224  *
225  * Returns the size of the data load of a data event.
226  * If the event is something other than a data event, it
227  * returns the size of the event itself. With the exception
228  * of a TIME EXTEND, where it still returns the size of the
229  * data load of the data event after it.
230  */
231 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
232 {
233         unsigned length;
234
235         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
236                 event = skip_time_extend(event);
237
238         length = rb_event_length(event);
239         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
240                 return length;
241         length -= RB_EVNT_HDR_SIZE;
242         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
243                 length -= sizeof(event->array[0]);
244         return length;
245 }
246 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
247
248 /* inline for ring buffer fast paths */
249 static __always_inline void *
250 rb_event_data(struct ring_buffer_event *event)
251 {
252         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
253                 event = skip_time_extend(event);
254         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
255         /* If length is in len field, then array[0] has the data */
256         if (event->type_len)
257                 return (void *)&event->array[0];
258         /* Otherwise length is in array[0] and array[1] has the data */
259         return (void *)&event->array[1];
260 }
261
262 /**
263  * ring_buffer_event_data - return the data of the event
264  * @event: the event to get the data from
265  */
266 void *ring_buffer_event_data(struct ring_buffer_event *event)
267 {
268         return rb_event_data(event);
269 }
270 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
271
272 #define for_each_buffer_cpu(buffer, cpu)                \
273         for_each_cpu(cpu, buffer->cpumask)
274
275 #define TS_SHIFT        27
276 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
277 #define TS_DELTA_TEST   (~TS_MASK)
278
279 /* Flag when events were overwritten */
280 #define RB_MISSED_EVENTS        (1 << 31)
281 /* Missed count stored at end */
282 #define RB_MISSED_STORED        (1 << 30)
283
284 struct buffer_data_page {
285         u64              time_stamp;    /* page time stamp */
286         local_t          commit;        /* write committed index */
287         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
288 };
289
290 /*
291  * Note, the buffer_page list must be first. The buffer pages
292  * are allocated in cache lines, which means that each buffer
293  * page will be at the beginning of a cache line, and thus
294  * the least significant bits will be zero. We use this to
295  * add flags in the list struct pointers, to make the ring buffer
296  * lockless.
297  */
298 struct buffer_page {
299         struct list_head list;          /* list of buffer pages */
300         local_t          write;         /* index for next write */
301         unsigned         read;          /* index for next read */
302         local_t          entries;       /* entries on this page */
303         unsigned long    real_end;      /* real end of data */
304         struct buffer_data_page *page;  /* Actual data page */
305 };
306
307 /*
308  * The buffer page counters, write and entries, must be reset
309  * atomically when crossing page boundaries. To synchronize this
310  * update, two counters are inserted into the number. One is
311  * the actual counter for the write position or count on the page.
312  *
313  * The other is a counter of updaters. Before an update happens
314  * the update partition of the counter is incremented. This will
315  * allow the updater to update the counter atomically.
316  *
317  * The counter is 20 bits, and the state data is 12.
318  */
319 #define RB_WRITE_MASK           0xfffff
320 #define RB_WRITE_INTCNT         (1 << 20)
321
322 static void rb_init_page(struct buffer_data_page *bpage)
323 {
324         local_set(&bpage->commit, 0);
325 }
326
327 /**
328  * ring_buffer_page_len - the size of data on the page.
329  * @page: The page to read
330  *
331  * Returns the amount of data on the page, including buffer page header.
332  */
333 size_t ring_buffer_page_len(void *page)
334 {
335         return local_read(&((struct buffer_data_page *)page)->commit)
336                 + BUF_PAGE_HDR_SIZE;
337 }
338
339 /*
340  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
341  * this issue out.
342  */
343 static void free_buffer_page(struct buffer_page *bpage)
344 {
345         free_page((unsigned long)bpage->page);
346         kfree(bpage);
347 }
348
349 /*
350  * We need to fit the time_stamp delta into 27 bits.
351  */
352 static inline int test_time_stamp(u64 delta)
353 {
354         if (delta & TS_DELTA_TEST)
355                 return 1;
356         return 0;
357 }
358
359 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
360
361 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
362 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363
364 int ring_buffer_print_page_header(struct trace_seq *s)
365 {
366         struct buffer_data_page field;
367
368         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
369                          "offset:0;\tsize:%u;\tsigned:%u;\n",
370                          (unsigned int)sizeof(field.time_stamp),
371                          (unsigned int)is_signed_type(u64));
372
373         trace_seq_printf(s, "\tfield: local_t commit;\t"
374                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
375                          (unsigned int)offsetof(typeof(field), commit),
376                          (unsigned int)sizeof(field.commit),
377                          (unsigned int)is_signed_type(long));
378
379         trace_seq_printf(s, "\tfield: int overwrite;\t"
380                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
381                          (unsigned int)offsetof(typeof(field), commit),
382                          1,
383                          (unsigned int)is_signed_type(long));
384
385         trace_seq_printf(s, "\tfield: char data;\t"
386                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
387                          (unsigned int)offsetof(typeof(field), data),
388                          (unsigned int)BUF_PAGE_SIZE,
389                          (unsigned int)is_signed_type(char));
390
391         return !trace_seq_has_overflowed(s);
392 }
393
394 struct rb_irq_work {
395         struct irq_work                 work;
396         wait_queue_head_t               waiters;
397         wait_queue_head_t               full_waiters;
398         bool                            waiters_pending;
399         bool                            full_waiters_pending;
400         bool                            wakeup_full;
401 };
402
403 /*
404  * Structure to hold event state and handle nested events.
405  */
406 struct rb_event_info {
407         u64                     ts;
408         u64                     delta;
409         unsigned long           length;
410         struct buffer_page      *tail_page;
411         int                     add_timestamp;
412 };
413
414 /*
415  * Used for which event context the event is in.
416  *  NMI     = 0
417  *  IRQ     = 1
418  *  SOFTIRQ = 2
419  *  NORMAL  = 3
420  *
421  * See trace_recursive_lock() comment below for more details.
422  */
423 enum {
424         RB_CTX_NMI,
425         RB_CTX_IRQ,
426         RB_CTX_SOFTIRQ,
427         RB_CTX_NORMAL,
428         RB_CTX_MAX
429 };
430
431 /*
432  * head_page == tail_page && head == tail then buffer is empty.
433  */
434 struct ring_buffer_per_cpu {
435         int                             cpu;
436         atomic_t                        record_disabled;
437         struct ring_buffer              *buffer;
438         raw_spinlock_t                  reader_lock;    /* serialize readers */
439         arch_spinlock_t                 lock;
440         struct lock_class_key           lock_key;
441         unsigned long                   nr_pages;
442         unsigned int                    current_context;
443         struct list_head                *pages;
444         struct buffer_page              *head_page;     /* read from head */
445         struct buffer_page              *tail_page;     /* write to tail */
446         struct buffer_page              *commit_page;   /* committed pages */
447         struct buffer_page              *reader_page;
448         unsigned long                   lost_events;
449         unsigned long                   last_overrun;
450         local_t                         entries_bytes;
451         local_t                         entries;
452         local_t                         overrun;
453         local_t                         commit_overrun;
454         local_t                         dropped_events;
455         local_t                         committing;
456         local_t                         commits;
457         unsigned long                   read;
458         unsigned long                   read_bytes;
459         u64                             write_stamp;
460         u64                             read_stamp;
461         /* ring buffer pages to update, > 0 to add, < 0 to remove */
462         long                            nr_pages_to_update;
463         struct list_head                new_pages; /* new pages to add */
464         struct work_struct              update_pages_work;
465         struct completion               update_done;
466
467         struct rb_irq_work              irq_work;
468 };
469
470 struct ring_buffer {
471         unsigned                        flags;
472         int                             cpus;
473         atomic_t                        record_disabled;
474         atomic_t                        resize_disabled;
475         cpumask_var_t                   cpumask;
476
477         struct lock_class_key           *reader_lock_key;
478
479         struct mutex                    mutex;
480
481         struct ring_buffer_per_cpu      **buffers;
482
483         struct hlist_node               node;
484         u64                             (*clock)(void);
485
486         struct rb_irq_work              irq_work;
487 };
488
489 struct ring_buffer_iter {
490         struct ring_buffer_per_cpu      *cpu_buffer;
491         unsigned long                   head;
492         struct buffer_page              *head_page;
493         struct buffer_page              *cache_reader_page;
494         unsigned long                   cache_read;
495         u64                             read_stamp;
496 };
497
498 /*
499  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
500  *
501  * Schedules a delayed work to wake up any task that is blocked on the
502  * ring buffer waiters queue.
503  */
504 static void rb_wake_up_waiters(struct irq_work *work)
505 {
506         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
507
508         wake_up_all(&rbwork->waiters);
509         if (rbwork->wakeup_full) {
510                 rbwork->wakeup_full = false;
511                 wake_up_all(&rbwork->full_waiters);
512         }
513 }
514
515 /**
516  * ring_buffer_wait - wait for input to the ring buffer
517  * @buffer: buffer to wait on
518  * @cpu: the cpu buffer to wait on
519  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
520  *
521  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
522  * as data is added to any of the @buffer's cpu buffers. Otherwise
523  * it will wait for data to be added to a specific cpu buffer.
524  */
525 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
526 {
527         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
528         DEFINE_WAIT(wait);
529         struct rb_irq_work *work;
530         int ret = 0;
531
532         /*
533          * Depending on what the caller is waiting for, either any
534          * data in any cpu buffer, or a specific buffer, put the
535          * caller on the appropriate wait queue.
536          */
537         if (cpu == RING_BUFFER_ALL_CPUS) {
538                 work = &buffer->irq_work;
539                 /* Full only makes sense on per cpu reads */
540                 full = false;
541         } else {
542                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
543                         return -ENODEV;
544                 cpu_buffer = buffer->buffers[cpu];
545                 work = &cpu_buffer->irq_work;
546         }
547
548
549         while (true) {
550                 if (full)
551                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
552                 else
553                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
554
555                 /*
556                  * The events can happen in critical sections where
557                  * checking a work queue can cause deadlocks.
558                  * After adding a task to the queue, this flag is set
559                  * only to notify events to try to wake up the queue
560                  * using irq_work.
561                  *
562                  * We don't clear it even if the buffer is no longer
563                  * empty. The flag only causes the next event to run
564                  * irq_work to do the work queue wake up. The worse
565                  * that can happen if we race with !trace_empty() is that
566                  * an event will cause an irq_work to try to wake up
567                  * an empty queue.
568                  *
569                  * There's no reason to protect this flag either, as
570                  * the work queue and irq_work logic will do the necessary
571                  * synchronization for the wake ups. The only thing
572                  * that is necessary is that the wake up happens after
573                  * a task has been queued. It's OK for spurious wake ups.
574                  */
575                 if (full)
576                         work->full_waiters_pending = true;
577                 else
578                         work->waiters_pending = true;
579
580                 if (signal_pending(current)) {
581                         ret = -EINTR;
582                         break;
583                 }
584
585                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
586                         break;
587
588                 if (cpu != RING_BUFFER_ALL_CPUS &&
589                     !ring_buffer_empty_cpu(buffer, cpu)) {
590                         unsigned long flags;
591                         bool pagebusy;
592
593                         if (!full)
594                                 break;
595
596                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
597                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
598                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
599
600                         if (!pagebusy)
601                                 break;
602                 }
603
604                 schedule();
605         }
606
607         if (full)
608                 finish_wait(&work->full_waiters, &wait);
609         else
610                 finish_wait(&work->waiters, &wait);
611
612         return ret;
613 }
614
615 /**
616  * ring_buffer_poll_wait - poll on buffer input
617  * @buffer: buffer to wait on
618  * @cpu: the cpu buffer to wait on
619  * @filp: the file descriptor
620  * @poll_table: The poll descriptor
621  *
622  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
623  * as data is added to any of the @buffer's cpu buffers. Otherwise
624  * it will wait for data to be added to a specific cpu buffer.
625  *
626  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
627  * zero otherwise.
628  */
629 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
630                           struct file *filp, poll_table *poll_table)
631 {
632         struct ring_buffer_per_cpu *cpu_buffer;
633         struct rb_irq_work *work;
634
635         if (cpu == RING_BUFFER_ALL_CPUS)
636                 work = &buffer->irq_work;
637         else {
638                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
639                         return -EINVAL;
640
641                 cpu_buffer = buffer->buffers[cpu];
642                 work = &cpu_buffer->irq_work;
643         }
644
645         poll_wait(filp, &work->waiters, poll_table);
646         work->waiters_pending = true;
647         /*
648          * There's a tight race between setting the waiters_pending and
649          * checking if the ring buffer is empty.  Once the waiters_pending bit
650          * is set, the next event will wake the task up, but we can get stuck
651          * if there's only a single event in.
652          *
653          * FIXME: Ideally, we need a memory barrier on the writer side as well,
654          * but adding a memory barrier to all events will cause too much of a
655          * performance hit in the fast path.  We only need a memory barrier when
656          * the buffer goes from empty to having content.  But as this race is
657          * extremely small, and it's not a problem if another event comes in, we
658          * will fix it later.
659          */
660         smp_mb();
661
662         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
663             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
664                 return POLLIN | POLLRDNORM;
665         return 0;
666 }
667
668 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
669 #define RB_WARN_ON(b, cond)                                             \
670         ({                                                              \
671                 int _____ret = unlikely(cond);                          \
672                 if (_____ret) {                                         \
673                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
674                                 struct ring_buffer_per_cpu *__b =       \
675                                         (void *)b;                      \
676                                 atomic_inc(&__b->buffer->record_disabled); \
677                         } else                                          \
678                                 atomic_inc(&b->record_disabled);        \
679                         WARN_ON(1);                                     \
680                 }                                                       \
681                 _____ret;                                               \
682         })
683
684 /* Up this if you want to test the TIME_EXTENTS and normalization */
685 #define DEBUG_SHIFT 0
686
687 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
688 {
689         /* shift to debug/test normalization and TIME_EXTENTS */
690         return buffer->clock() << DEBUG_SHIFT;
691 }
692
693 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
694 {
695         u64 time;
696
697         preempt_disable_notrace();
698         time = rb_time_stamp(buffer);
699         preempt_enable_no_resched_notrace();
700
701         return time;
702 }
703 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
704
705 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
706                                       int cpu, u64 *ts)
707 {
708         /* Just stupid testing the normalize function and deltas */
709         *ts >>= DEBUG_SHIFT;
710 }
711 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
712
713 /*
714  * Making the ring buffer lockless makes things tricky.
715  * Although writes only happen on the CPU that they are on,
716  * and they only need to worry about interrupts. Reads can
717  * happen on any CPU.
718  *
719  * The reader page is always off the ring buffer, but when the
720  * reader finishes with a page, it needs to swap its page with
721  * a new one from the buffer. The reader needs to take from
722  * the head (writes go to the tail). But if a writer is in overwrite
723  * mode and wraps, it must push the head page forward.
724  *
725  * Here lies the problem.
726  *
727  * The reader must be careful to replace only the head page, and
728  * not another one. As described at the top of the file in the
729  * ASCII art, the reader sets its old page to point to the next
730  * page after head. It then sets the page after head to point to
731  * the old reader page. But if the writer moves the head page
732  * during this operation, the reader could end up with the tail.
733  *
734  * We use cmpxchg to help prevent this race. We also do something
735  * special with the page before head. We set the LSB to 1.
736  *
737  * When the writer must push the page forward, it will clear the
738  * bit that points to the head page, move the head, and then set
739  * the bit that points to the new head page.
740  *
741  * We also don't want an interrupt coming in and moving the head
742  * page on another writer. Thus we use the second LSB to catch
743  * that too. Thus:
744  *
745  * head->list->prev->next        bit 1          bit 0
746  *                              -------        -------
747  * Normal page                     0              0
748  * Points to head page             0              1
749  * New head page                   1              0
750  *
751  * Note we can not trust the prev pointer of the head page, because:
752  *
753  * +----+       +-----+        +-----+
754  * |    |------>|  T  |---X--->|  N  |
755  * |    |<------|     |        |     |
756  * +----+       +-----+        +-----+
757  *   ^                           ^ |
758  *   |          +-----+          | |
759  *   +----------|  R  |----------+ |
760  *              |     |<-----------+
761  *              +-----+
762  *
763  * Key:  ---X-->  HEAD flag set in pointer
764  *         T      Tail page
765  *         R      Reader page
766  *         N      Next page
767  *
768  * (see __rb_reserve_next() to see where this happens)
769  *
770  *  What the above shows is that the reader just swapped out
771  *  the reader page with a page in the buffer, but before it
772  *  could make the new header point back to the new page added
773  *  it was preempted by a writer. The writer moved forward onto
774  *  the new page added by the reader and is about to move forward
775  *  again.
776  *
777  *  You can see, it is legitimate for the previous pointer of
778  *  the head (or any page) not to point back to itself. But only
779  *  temporarially.
780  */
781
782 #define RB_PAGE_NORMAL          0UL
783 #define RB_PAGE_HEAD            1UL
784 #define RB_PAGE_UPDATE          2UL
785
786
787 #define RB_FLAG_MASK            3UL
788
789 /* PAGE_MOVED is not part of the mask */
790 #define RB_PAGE_MOVED           4UL
791
792 /*
793  * rb_list_head - remove any bit
794  */
795 static struct list_head *rb_list_head(struct list_head *list)
796 {
797         unsigned long val = (unsigned long)list;
798
799         return (struct list_head *)(val & ~RB_FLAG_MASK);
800 }
801
802 /*
803  * rb_is_head_page - test if the given page is the head page
804  *
805  * Because the reader may move the head_page pointer, we can
806  * not trust what the head page is (it may be pointing to
807  * the reader page). But if the next page is a header page,
808  * its flags will be non zero.
809  */
810 static inline int
811 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
812                 struct buffer_page *page, struct list_head *list)
813 {
814         unsigned long val;
815
816         val = (unsigned long)list->next;
817
818         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
819                 return RB_PAGE_MOVED;
820
821         return val & RB_FLAG_MASK;
822 }
823
824 /*
825  * rb_is_reader_page
826  *
827  * The unique thing about the reader page, is that, if the
828  * writer is ever on it, the previous pointer never points
829  * back to the reader page.
830  */
831 static bool rb_is_reader_page(struct buffer_page *page)
832 {
833         struct list_head *list = page->list.prev;
834
835         return rb_list_head(list->next) != &page->list;
836 }
837
838 /*
839  * rb_set_list_to_head - set a list_head to be pointing to head.
840  */
841 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
842                                 struct list_head *list)
843 {
844         unsigned long *ptr;
845
846         ptr = (unsigned long *)&list->next;
847         *ptr |= RB_PAGE_HEAD;
848         *ptr &= ~RB_PAGE_UPDATE;
849 }
850
851 /*
852  * rb_head_page_activate - sets up head page
853  */
854 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
855 {
856         struct buffer_page *head;
857
858         head = cpu_buffer->head_page;
859         if (!head)
860                 return;
861
862         /*
863          * Set the previous list pointer to have the HEAD flag.
864          */
865         rb_set_list_to_head(cpu_buffer, head->list.prev);
866 }
867
868 static void rb_list_head_clear(struct list_head *list)
869 {
870         unsigned long *ptr = (unsigned long *)&list->next;
871
872         *ptr &= ~RB_FLAG_MASK;
873 }
874
875 /*
876  * rb_head_page_dactivate - clears head page ptr (for free list)
877  */
878 static void
879 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
880 {
881         struct list_head *hd;
882
883         /* Go through the whole list and clear any pointers found. */
884         rb_list_head_clear(cpu_buffer->pages);
885
886         list_for_each(hd, cpu_buffer->pages)
887                 rb_list_head_clear(hd);
888 }
889
890 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
891                             struct buffer_page *head,
892                             struct buffer_page *prev,
893                             int old_flag, int new_flag)
894 {
895         struct list_head *list;
896         unsigned long val = (unsigned long)&head->list;
897         unsigned long ret;
898
899         list = &prev->list;
900
901         val &= ~RB_FLAG_MASK;
902
903         ret = cmpxchg((unsigned long *)&list->next,
904                       val | old_flag, val | new_flag);
905
906         /* check if the reader took the page */
907         if ((ret & ~RB_FLAG_MASK) != val)
908                 return RB_PAGE_MOVED;
909
910         return ret & RB_FLAG_MASK;
911 }
912
913 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
914                                    struct buffer_page *head,
915                                    struct buffer_page *prev,
916                                    int old_flag)
917 {
918         return rb_head_page_set(cpu_buffer, head, prev,
919                                 old_flag, RB_PAGE_UPDATE);
920 }
921
922 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
923                                  struct buffer_page *head,
924                                  struct buffer_page *prev,
925                                  int old_flag)
926 {
927         return rb_head_page_set(cpu_buffer, head, prev,
928                                 old_flag, RB_PAGE_HEAD);
929 }
930
931 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
932                                    struct buffer_page *head,
933                                    struct buffer_page *prev,
934                                    int old_flag)
935 {
936         return rb_head_page_set(cpu_buffer, head, prev,
937                                 old_flag, RB_PAGE_NORMAL);
938 }
939
940 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
941                                struct buffer_page **bpage)
942 {
943         struct list_head *p = rb_list_head((*bpage)->list.next);
944
945         *bpage = list_entry(p, struct buffer_page, list);
946 }
947
948 static struct buffer_page *
949 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
950 {
951         struct buffer_page *head;
952         struct buffer_page *page;
953         struct list_head *list;
954         int i;
955
956         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
957                 return NULL;
958
959         /* sanity check */
960         list = cpu_buffer->pages;
961         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
962                 return NULL;
963
964         page = head = cpu_buffer->head_page;
965         /*
966          * It is possible that the writer moves the header behind
967          * where we started, and we miss in one loop.
968          * A second loop should grab the header, but we'll do
969          * three loops just because I'm paranoid.
970          */
971         for (i = 0; i < 3; i++) {
972                 do {
973                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
974                                 cpu_buffer->head_page = page;
975                                 return page;
976                         }
977                         rb_inc_page(cpu_buffer, &page);
978                 } while (page != head);
979         }
980
981         RB_WARN_ON(cpu_buffer, 1);
982
983         return NULL;
984 }
985
986 static int rb_head_page_replace(struct buffer_page *old,
987                                 struct buffer_page *new)
988 {
989         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
990         unsigned long val;
991         unsigned long ret;
992
993         val = *ptr & ~RB_FLAG_MASK;
994         val |= RB_PAGE_HEAD;
995
996         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
997
998         return ret == val;
999 }
1000
1001 /*
1002  * rb_tail_page_update - move the tail page forward
1003  */
1004 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1005                                struct buffer_page *tail_page,
1006                                struct buffer_page *next_page)
1007 {
1008         unsigned long old_entries;
1009         unsigned long old_write;
1010
1011         /*
1012          * The tail page now needs to be moved forward.
1013          *
1014          * We need to reset the tail page, but without messing
1015          * with possible erasing of data brought in by interrupts
1016          * that have moved the tail page and are currently on it.
1017          *
1018          * We add a counter to the write field to denote this.
1019          */
1020         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1021         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1022
1023         /*
1024          * Just make sure we have seen our old_write and synchronize
1025          * with any interrupts that come in.
1026          */
1027         barrier();
1028
1029         /*
1030          * If the tail page is still the same as what we think
1031          * it is, then it is up to us to update the tail
1032          * pointer.
1033          */
1034         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1035                 /* Zero the write counter */
1036                 unsigned long val = old_write & ~RB_WRITE_MASK;
1037                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1038
1039                 /*
1040                  * This will only succeed if an interrupt did
1041                  * not come in and change it. In which case, we
1042                  * do not want to modify it.
1043                  *
1044                  * We add (void) to let the compiler know that we do not care
1045                  * about the return value of these functions. We use the
1046                  * cmpxchg to only update if an interrupt did not already
1047                  * do it for us. If the cmpxchg fails, we don't care.
1048                  */
1049                 (void)local_cmpxchg(&next_page->write, old_write, val);
1050                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1051
1052                 /*
1053                  * No need to worry about races with clearing out the commit.
1054                  * it only can increment when a commit takes place. But that
1055                  * only happens in the outer most nested commit.
1056                  */
1057                 local_set(&next_page->page->commit, 0);
1058
1059                 /* Again, either we update tail_page or an interrupt does */
1060                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1061         }
1062 }
1063
1064 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1065                           struct buffer_page *bpage)
1066 {
1067         unsigned long val = (unsigned long)bpage;
1068
1069         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1070                 return 1;
1071
1072         return 0;
1073 }
1074
1075 /**
1076  * rb_check_list - make sure a pointer to a list has the last bits zero
1077  */
1078 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1079                          struct list_head *list)
1080 {
1081         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1082                 return 1;
1083         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1084                 return 1;
1085         return 0;
1086 }
1087
1088 /**
1089  * rb_check_pages - integrity check of buffer pages
1090  * @cpu_buffer: CPU buffer with pages to test
1091  *
1092  * As a safety measure we check to make sure the data pages have not
1093  * been corrupted.
1094  */
1095 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1096 {
1097         struct list_head *head = cpu_buffer->pages;
1098         struct buffer_page *bpage, *tmp;
1099
1100         /* Reset the head page if it exists */
1101         if (cpu_buffer->head_page)
1102                 rb_set_head_page(cpu_buffer);
1103
1104         rb_head_page_deactivate(cpu_buffer);
1105
1106         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1107                 return -1;
1108         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1109                 return -1;
1110
1111         if (rb_check_list(cpu_buffer, head))
1112                 return -1;
1113
1114         list_for_each_entry_safe(bpage, tmp, head, list) {
1115                 if (RB_WARN_ON(cpu_buffer,
1116                                bpage->list.next->prev != &bpage->list))
1117                         return -1;
1118                 if (RB_WARN_ON(cpu_buffer,
1119                                bpage->list.prev->next != &bpage->list))
1120                         return -1;
1121                 if (rb_check_list(cpu_buffer, &bpage->list))
1122                         return -1;
1123         }
1124
1125         rb_head_page_activate(cpu_buffer);
1126
1127         return 0;
1128 }
1129
1130 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1131 {
1132         struct buffer_page *bpage, *tmp;
1133         long i;
1134
1135         for (i = 0; i < nr_pages; i++) {
1136                 struct page *page;
1137                 /*
1138                  * __GFP_NORETRY flag makes sure that the allocation fails
1139                  * gracefully without invoking oom-killer and the system is
1140                  * not destabilized.
1141                  */
1142                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1143                                     GFP_KERNEL | __GFP_NORETRY,
1144                                     cpu_to_node(cpu));
1145                 if (!bpage)
1146                         goto free_pages;
1147
1148                 list_add(&bpage->list, pages);
1149
1150                 page = alloc_pages_node(cpu_to_node(cpu),
1151                                         GFP_KERNEL | __GFP_NORETRY, 0);
1152                 if (!page)
1153                         goto free_pages;
1154                 bpage->page = page_address(page);
1155                 rb_init_page(bpage->page);
1156         }
1157
1158         return 0;
1159
1160 free_pages:
1161         list_for_each_entry_safe(bpage, tmp, pages, list) {
1162                 list_del_init(&bpage->list);
1163                 free_buffer_page(bpage);
1164         }
1165
1166         return -ENOMEM;
1167 }
1168
1169 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1170                              unsigned long nr_pages)
1171 {
1172         LIST_HEAD(pages);
1173
1174         WARN_ON(!nr_pages);
1175
1176         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1177                 return -ENOMEM;
1178
1179         /*
1180          * The ring buffer page list is a circular list that does not
1181          * start and end with a list head. All page list items point to
1182          * other pages.
1183          */
1184         cpu_buffer->pages = pages.next;
1185         list_del(&pages);
1186
1187         cpu_buffer->nr_pages = nr_pages;
1188
1189         rb_check_pages(cpu_buffer);
1190
1191         return 0;
1192 }
1193
1194 static struct ring_buffer_per_cpu *
1195 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1196 {
1197         struct ring_buffer_per_cpu *cpu_buffer;
1198         struct buffer_page *bpage;
1199         struct page *page;
1200         int ret;
1201
1202         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1203                                   GFP_KERNEL, cpu_to_node(cpu));
1204         if (!cpu_buffer)
1205                 return NULL;
1206
1207         cpu_buffer->cpu = cpu;
1208         cpu_buffer->buffer = buffer;
1209         raw_spin_lock_init(&cpu_buffer->reader_lock);
1210         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1211         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1212         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1213         init_completion(&cpu_buffer->update_done);
1214         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1215         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1216         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1217
1218         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1219                             GFP_KERNEL, cpu_to_node(cpu));
1220         if (!bpage)
1221                 goto fail_free_buffer;
1222
1223         rb_check_bpage(cpu_buffer, bpage);
1224
1225         cpu_buffer->reader_page = bpage;
1226         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1227         if (!page)
1228                 goto fail_free_reader;
1229         bpage->page = page_address(page);
1230         rb_init_page(bpage->page);
1231
1232         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1233         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1234
1235         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1236         if (ret < 0)
1237                 goto fail_free_reader;
1238
1239         cpu_buffer->head_page
1240                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1241         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1242
1243         rb_head_page_activate(cpu_buffer);
1244
1245         return cpu_buffer;
1246
1247  fail_free_reader:
1248         free_buffer_page(cpu_buffer->reader_page);
1249
1250  fail_free_buffer:
1251         kfree(cpu_buffer);
1252         return NULL;
1253 }
1254
1255 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1256 {
1257         struct list_head *head = cpu_buffer->pages;
1258         struct buffer_page *bpage, *tmp;
1259
1260         free_buffer_page(cpu_buffer->reader_page);
1261
1262         rb_head_page_deactivate(cpu_buffer);
1263
1264         if (head) {
1265                 list_for_each_entry_safe(bpage, tmp, head, list) {
1266                         list_del_init(&bpage->list);
1267                         free_buffer_page(bpage);
1268                 }
1269                 bpage = list_entry(head, struct buffer_page, list);
1270                 free_buffer_page(bpage);
1271         }
1272
1273         kfree(cpu_buffer);
1274 }
1275
1276 /**
1277  * __ring_buffer_alloc - allocate a new ring_buffer
1278  * @size: the size in bytes per cpu that is needed.
1279  * @flags: attributes to set for the ring buffer.
1280  *
1281  * Currently the only flag that is available is the RB_FL_OVERWRITE
1282  * flag. This flag means that the buffer will overwrite old data
1283  * when the buffer wraps. If this flag is not set, the buffer will
1284  * drop data when the tail hits the head.
1285  */
1286 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1287                                         struct lock_class_key *key)
1288 {
1289         struct ring_buffer *buffer;
1290         long nr_pages;
1291         int bsize;
1292         int cpu;
1293         int ret;
1294
1295         /* keep it in its own cache line */
1296         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1297                          GFP_KERNEL);
1298         if (!buffer)
1299                 return NULL;
1300
1301         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1302                 goto fail_free_buffer;
1303
1304         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1305         buffer->flags = flags;
1306         buffer->clock = trace_clock_local;
1307         buffer->reader_lock_key = key;
1308
1309         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1310         init_waitqueue_head(&buffer->irq_work.waiters);
1311
1312         /* need at least two pages */
1313         if (nr_pages < 2)
1314                 nr_pages = 2;
1315
1316         buffer->cpus = nr_cpu_ids;
1317
1318         bsize = sizeof(void *) * nr_cpu_ids;
1319         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1320                                   GFP_KERNEL);
1321         if (!buffer->buffers)
1322                 goto fail_free_cpumask;
1323
1324         cpu = raw_smp_processor_id();
1325         cpumask_set_cpu(cpu, buffer->cpumask);
1326         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1327         if (!buffer->buffers[cpu])
1328                 goto fail_free_buffers;
1329
1330         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1331         if (ret < 0)
1332                 goto fail_free_buffers;
1333
1334         mutex_init(&buffer->mutex);
1335
1336         return buffer;
1337
1338  fail_free_buffers:
1339         for_each_buffer_cpu(buffer, cpu) {
1340                 if (buffer->buffers[cpu])
1341                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1342         }
1343         kfree(buffer->buffers);
1344
1345  fail_free_cpumask:
1346         free_cpumask_var(buffer->cpumask);
1347
1348  fail_free_buffer:
1349         kfree(buffer);
1350         return NULL;
1351 }
1352 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1353
1354 /**
1355  * ring_buffer_free - free a ring buffer.
1356  * @buffer: the buffer to free.
1357  */
1358 void
1359 ring_buffer_free(struct ring_buffer *buffer)
1360 {
1361         int cpu;
1362
1363         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1364
1365         for_each_buffer_cpu(buffer, cpu)
1366                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1367
1368         kfree(buffer->buffers);
1369         free_cpumask_var(buffer->cpumask);
1370
1371         kfree(buffer);
1372 }
1373 EXPORT_SYMBOL_GPL(ring_buffer_free);
1374
1375 void ring_buffer_set_clock(struct ring_buffer *buffer,
1376                            u64 (*clock)(void))
1377 {
1378         buffer->clock = clock;
1379 }
1380
1381 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1382
1383 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1384 {
1385         return local_read(&bpage->entries) & RB_WRITE_MASK;
1386 }
1387
1388 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1389 {
1390         return local_read(&bpage->write) & RB_WRITE_MASK;
1391 }
1392
1393 static int
1394 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1395 {
1396         struct list_head *tail_page, *to_remove, *next_page;
1397         struct buffer_page *to_remove_page, *tmp_iter_page;
1398         struct buffer_page *last_page, *first_page;
1399         unsigned long nr_removed;
1400         unsigned long head_bit;
1401         int page_entries;
1402
1403         head_bit = 0;
1404
1405         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1406         atomic_inc(&cpu_buffer->record_disabled);
1407         /*
1408          * We don't race with the readers since we have acquired the reader
1409          * lock. We also don't race with writers after disabling recording.
1410          * This makes it easy to figure out the first and the last page to be
1411          * removed from the list. We unlink all the pages in between including
1412          * the first and last pages. This is done in a busy loop so that we
1413          * lose the least number of traces.
1414          * The pages are freed after we restart recording and unlock readers.
1415          */
1416         tail_page = &cpu_buffer->tail_page->list;
1417
1418         /*
1419          * tail page might be on reader page, we remove the next page
1420          * from the ring buffer
1421          */
1422         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1423                 tail_page = rb_list_head(tail_page->next);
1424         to_remove = tail_page;
1425
1426         /* start of pages to remove */
1427         first_page = list_entry(rb_list_head(to_remove->next),
1428                                 struct buffer_page, list);
1429
1430         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1431                 to_remove = rb_list_head(to_remove)->next;
1432                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1433         }
1434
1435         next_page = rb_list_head(to_remove)->next;
1436
1437         /*
1438          * Now we remove all pages between tail_page and next_page.
1439          * Make sure that we have head_bit value preserved for the
1440          * next page
1441          */
1442         tail_page->next = (struct list_head *)((unsigned long)next_page |
1443                                                 head_bit);
1444         next_page = rb_list_head(next_page);
1445         next_page->prev = tail_page;
1446
1447         /* make sure pages points to a valid page in the ring buffer */
1448         cpu_buffer->pages = next_page;
1449
1450         /* update head page */
1451         if (head_bit)
1452                 cpu_buffer->head_page = list_entry(next_page,
1453                                                 struct buffer_page, list);
1454
1455         /*
1456          * change read pointer to make sure any read iterators reset
1457          * themselves
1458          */
1459         cpu_buffer->read = 0;
1460
1461         /* pages are removed, resume tracing and then free the pages */
1462         atomic_dec(&cpu_buffer->record_disabled);
1463         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1464
1465         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1466
1467         /* last buffer page to remove */
1468         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1469                                 list);
1470         tmp_iter_page = first_page;
1471
1472         do {
1473                 to_remove_page = tmp_iter_page;
1474                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1475
1476                 /* update the counters */
1477                 page_entries = rb_page_entries(to_remove_page);
1478                 if (page_entries) {
1479                         /*
1480                          * If something was added to this page, it was full
1481                          * since it is not the tail page. So we deduct the
1482                          * bytes consumed in ring buffer from here.
1483                          * Increment overrun to account for the lost events.
1484                          */
1485                         local_add(page_entries, &cpu_buffer->overrun);
1486                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1487                 }
1488
1489                 /*
1490                  * We have already removed references to this list item, just
1491                  * free up the buffer_page and its page
1492                  */
1493                 free_buffer_page(to_remove_page);
1494                 nr_removed--;
1495
1496         } while (to_remove_page != last_page);
1497
1498         RB_WARN_ON(cpu_buffer, nr_removed);
1499
1500         return nr_removed == 0;
1501 }
1502
1503 static int
1504 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1505 {
1506         struct list_head *pages = &cpu_buffer->new_pages;
1507         int retries, success;
1508
1509         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1510         /*
1511          * We are holding the reader lock, so the reader page won't be swapped
1512          * in the ring buffer. Now we are racing with the writer trying to
1513          * move head page and the tail page.
1514          * We are going to adapt the reader page update process where:
1515          * 1. We first splice the start and end of list of new pages between
1516          *    the head page and its previous page.
1517          * 2. We cmpxchg the prev_page->next to point from head page to the
1518          *    start of new pages list.
1519          * 3. Finally, we update the head->prev to the end of new list.
1520          *
1521          * We will try this process 10 times, to make sure that we don't keep
1522          * spinning.
1523          */
1524         retries = 10;
1525         success = 0;
1526         while (retries--) {
1527                 struct list_head *head_page, *prev_page, *r;
1528                 struct list_head *last_page, *first_page;
1529                 struct list_head *head_page_with_bit;
1530
1531                 head_page = &rb_set_head_page(cpu_buffer)->list;
1532                 if (!head_page)
1533                         break;
1534                 prev_page = head_page->prev;
1535
1536                 first_page = pages->next;
1537                 last_page  = pages->prev;
1538
1539                 head_page_with_bit = (struct list_head *)
1540                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1541
1542                 last_page->next = head_page_with_bit;
1543                 first_page->prev = prev_page;
1544
1545                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1546
1547                 if (r == head_page_with_bit) {
1548                         /*
1549                          * yay, we replaced the page pointer to our new list,
1550                          * now, we just have to update to head page's prev
1551                          * pointer to point to end of list
1552                          */
1553                         head_page->prev = last_page;
1554                         success = 1;
1555                         break;
1556                 }
1557         }
1558
1559         if (success)
1560                 INIT_LIST_HEAD(pages);
1561         /*
1562          * If we weren't successful in adding in new pages, warn and stop
1563          * tracing
1564          */
1565         RB_WARN_ON(cpu_buffer, !success);
1566         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1567
1568         /* free pages if they weren't inserted */
1569         if (!success) {
1570                 struct buffer_page *bpage, *tmp;
1571                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1572                                          list) {
1573                         list_del_init(&bpage->list);
1574                         free_buffer_page(bpage);
1575                 }
1576         }
1577         return success;
1578 }
1579
1580 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1581 {
1582         int success;
1583
1584         if (cpu_buffer->nr_pages_to_update > 0)
1585                 success = rb_insert_pages(cpu_buffer);
1586         else
1587                 success = rb_remove_pages(cpu_buffer,
1588                                         -cpu_buffer->nr_pages_to_update);
1589
1590         if (success)
1591                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1592 }
1593
1594 static void update_pages_handler(struct work_struct *work)
1595 {
1596         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1597                         struct ring_buffer_per_cpu, update_pages_work);
1598         rb_update_pages(cpu_buffer);
1599         complete(&cpu_buffer->update_done);
1600 }
1601
1602 /**
1603  * ring_buffer_resize - resize the ring buffer
1604  * @buffer: the buffer to resize.
1605  * @size: the new size.
1606  * @cpu_id: the cpu buffer to resize
1607  *
1608  * Minimum size is 2 * BUF_PAGE_SIZE.
1609  *
1610  * Returns 0 on success and < 0 on failure.
1611  */
1612 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1613                         int cpu_id)
1614 {
1615         struct ring_buffer_per_cpu *cpu_buffer;
1616         unsigned long nr_pages;
1617         int cpu, err = 0;
1618
1619         /*
1620          * Always succeed at resizing a non-existent buffer:
1621          */
1622         if (!buffer)
1623                 return size;
1624
1625         /* Make sure the requested buffer exists */
1626         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1627             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1628                 return size;
1629
1630         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1631
1632         /* we need a minimum of two pages */
1633         if (nr_pages < 2)
1634                 nr_pages = 2;
1635
1636         size = nr_pages * BUF_PAGE_SIZE;
1637
1638         /*
1639          * Don't succeed if resizing is disabled, as a reader might be
1640          * manipulating the ring buffer and is expecting a sane state while
1641          * this is true.
1642          */
1643         if (atomic_read(&buffer->resize_disabled))
1644                 return -EBUSY;
1645
1646         /* prevent another thread from changing buffer sizes */
1647         mutex_lock(&buffer->mutex);
1648
1649         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1650                 /* calculate the pages to update */
1651                 for_each_buffer_cpu(buffer, cpu) {
1652                         cpu_buffer = buffer->buffers[cpu];
1653
1654                         cpu_buffer->nr_pages_to_update = nr_pages -
1655                                                         cpu_buffer->nr_pages;
1656                         /*
1657                          * nothing more to do for removing pages or no update
1658                          */
1659                         if (cpu_buffer->nr_pages_to_update <= 0)
1660                                 continue;
1661                         /*
1662                          * to add pages, make sure all new pages can be
1663                          * allocated without receiving ENOMEM
1664                          */
1665                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1666                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1667                                                 &cpu_buffer->new_pages, cpu)) {
1668                                 /* not enough memory for new pages */
1669                                 err = -ENOMEM;
1670                                 goto out_err;
1671                         }
1672                 }
1673
1674                 get_online_cpus();
1675                 /*
1676                  * Fire off all the required work handlers
1677                  * We can't schedule on offline CPUs, but it's not necessary
1678                  * since we can change their buffer sizes without any race.
1679                  */
1680                 for_each_buffer_cpu(buffer, cpu) {
1681                         cpu_buffer = buffer->buffers[cpu];
1682                         if (!cpu_buffer->nr_pages_to_update)
1683                                 continue;
1684
1685                         /* Can't run something on an offline CPU. */
1686                         if (!cpu_online(cpu)) {
1687                                 rb_update_pages(cpu_buffer);
1688                                 cpu_buffer->nr_pages_to_update = 0;
1689                         } else {
1690                                 schedule_work_on(cpu,
1691                                                 &cpu_buffer->update_pages_work);
1692                         }
1693                 }
1694
1695                 /* wait for all the updates to complete */
1696                 for_each_buffer_cpu(buffer, cpu) {
1697                         cpu_buffer = buffer->buffers[cpu];
1698                         if (!cpu_buffer->nr_pages_to_update)
1699                                 continue;
1700
1701                         if (cpu_online(cpu))
1702                                 wait_for_completion(&cpu_buffer->update_done);
1703                         cpu_buffer->nr_pages_to_update = 0;
1704                 }
1705
1706                 put_online_cpus();
1707         } else {
1708                 /* Make sure this CPU has been intitialized */
1709                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1710                         goto out;
1711
1712                 cpu_buffer = buffer->buffers[cpu_id];
1713
1714                 if (nr_pages == cpu_buffer->nr_pages)
1715                         goto out;
1716
1717                 cpu_buffer->nr_pages_to_update = nr_pages -
1718                                                 cpu_buffer->nr_pages;
1719
1720                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1721                 if (cpu_buffer->nr_pages_to_update > 0 &&
1722                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1723                                             &cpu_buffer->new_pages, cpu_id)) {
1724                         err = -ENOMEM;
1725                         goto out_err;
1726                 }
1727
1728                 get_online_cpus();
1729
1730                 /* Can't run something on an offline CPU. */
1731                 if (!cpu_online(cpu_id))
1732                         rb_update_pages(cpu_buffer);
1733                 else {
1734                         schedule_work_on(cpu_id,
1735                                          &cpu_buffer->update_pages_work);
1736                         wait_for_completion(&cpu_buffer->update_done);
1737                 }
1738
1739                 cpu_buffer->nr_pages_to_update = 0;
1740                 put_online_cpus();
1741         }
1742
1743  out:
1744         /*
1745          * The ring buffer resize can happen with the ring buffer
1746          * enabled, so that the update disturbs the tracing as little
1747          * as possible. But if the buffer is disabled, we do not need
1748          * to worry about that, and we can take the time to verify
1749          * that the buffer is not corrupt.
1750          */
1751         if (atomic_read(&buffer->record_disabled)) {
1752                 atomic_inc(&buffer->record_disabled);
1753                 /*
1754                  * Even though the buffer was disabled, we must make sure
1755                  * that it is truly disabled before calling rb_check_pages.
1756                  * There could have been a race between checking
1757                  * record_disable and incrementing it.
1758                  */
1759                 synchronize_sched();
1760                 for_each_buffer_cpu(buffer, cpu) {
1761                         cpu_buffer = buffer->buffers[cpu];
1762                         rb_check_pages(cpu_buffer);
1763                 }
1764                 atomic_dec(&buffer->record_disabled);
1765         }
1766
1767         mutex_unlock(&buffer->mutex);
1768         return size;
1769
1770  out_err:
1771         for_each_buffer_cpu(buffer, cpu) {
1772                 struct buffer_page *bpage, *tmp;
1773
1774                 cpu_buffer = buffer->buffers[cpu];
1775                 cpu_buffer->nr_pages_to_update = 0;
1776
1777                 if (list_empty(&cpu_buffer->new_pages))
1778                         continue;
1779
1780                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1781                                         list) {
1782                         list_del_init(&bpage->list);
1783                         free_buffer_page(bpage);
1784                 }
1785         }
1786         mutex_unlock(&buffer->mutex);
1787         return err;
1788 }
1789 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1790
1791 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1792 {
1793         mutex_lock(&buffer->mutex);
1794         if (val)
1795                 buffer->flags |= RB_FL_OVERWRITE;
1796         else
1797                 buffer->flags &= ~RB_FL_OVERWRITE;
1798         mutex_unlock(&buffer->mutex);
1799 }
1800 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1801
1802 static __always_inline void *
1803 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1804 {
1805         return bpage->data + index;
1806 }
1807
1808 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1809 {
1810         return bpage->page->data + index;
1811 }
1812
1813 static __always_inline struct ring_buffer_event *
1814 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1815 {
1816         return __rb_page_index(cpu_buffer->reader_page,
1817                                cpu_buffer->reader_page->read);
1818 }
1819
1820 static __always_inline struct ring_buffer_event *
1821 rb_iter_head_event(struct ring_buffer_iter *iter)
1822 {
1823         return __rb_page_index(iter->head_page, iter->head);
1824 }
1825
1826 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1827 {
1828         return local_read(&bpage->page->commit);
1829 }
1830
1831 /* Size is determined by what has been committed */
1832 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1833 {
1834         return rb_page_commit(bpage);
1835 }
1836
1837 static __always_inline unsigned
1838 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1839 {
1840         return rb_page_commit(cpu_buffer->commit_page);
1841 }
1842
1843 static __always_inline unsigned
1844 rb_event_index(struct ring_buffer_event *event)
1845 {
1846         unsigned long addr = (unsigned long)event;
1847
1848         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1849 }
1850
1851 static void rb_inc_iter(struct ring_buffer_iter *iter)
1852 {
1853         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1854
1855         /*
1856          * The iterator could be on the reader page (it starts there).
1857          * But the head could have moved, since the reader was
1858          * found. Check for this case and assign the iterator
1859          * to the head page instead of next.
1860          */
1861         if (iter->head_page == cpu_buffer->reader_page)
1862                 iter->head_page = rb_set_head_page(cpu_buffer);
1863         else
1864                 rb_inc_page(cpu_buffer, &iter->head_page);
1865
1866         iter->read_stamp = iter->head_page->page->time_stamp;
1867         iter->head = 0;
1868 }
1869
1870 /*
1871  * rb_handle_head_page - writer hit the head page
1872  *
1873  * Returns: +1 to retry page
1874  *           0 to continue
1875  *          -1 on error
1876  */
1877 static int
1878 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1879                     struct buffer_page *tail_page,
1880                     struct buffer_page *next_page)
1881 {
1882         struct buffer_page *new_head;
1883         int entries;
1884         int type;
1885         int ret;
1886
1887         entries = rb_page_entries(next_page);
1888
1889         /*
1890          * The hard part is here. We need to move the head
1891          * forward, and protect against both readers on
1892          * other CPUs and writers coming in via interrupts.
1893          */
1894         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1895                                        RB_PAGE_HEAD);
1896
1897         /*
1898          * type can be one of four:
1899          *  NORMAL - an interrupt already moved it for us
1900          *  HEAD   - we are the first to get here.
1901          *  UPDATE - we are the interrupt interrupting
1902          *           a current move.
1903          *  MOVED  - a reader on another CPU moved the next
1904          *           pointer to its reader page. Give up
1905          *           and try again.
1906          */
1907
1908         switch (type) {
1909         case RB_PAGE_HEAD:
1910                 /*
1911                  * We changed the head to UPDATE, thus
1912                  * it is our responsibility to update
1913                  * the counters.
1914                  */
1915                 local_add(entries, &cpu_buffer->overrun);
1916                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1917
1918                 /*
1919                  * The entries will be zeroed out when we move the
1920                  * tail page.
1921                  */
1922
1923                 /* still more to do */
1924                 break;
1925
1926         case RB_PAGE_UPDATE:
1927                 /*
1928                  * This is an interrupt that interrupt the
1929                  * previous update. Still more to do.
1930                  */
1931                 break;
1932         case RB_PAGE_NORMAL:
1933                 /*
1934                  * An interrupt came in before the update
1935                  * and processed this for us.
1936                  * Nothing left to do.
1937                  */
1938                 return 1;
1939         case RB_PAGE_MOVED:
1940                 /*
1941                  * The reader is on another CPU and just did
1942                  * a swap with our next_page.
1943                  * Try again.
1944                  */
1945                 return 1;
1946         default:
1947                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1948                 return -1;
1949         }
1950
1951         /*
1952          * Now that we are here, the old head pointer is
1953          * set to UPDATE. This will keep the reader from
1954          * swapping the head page with the reader page.
1955          * The reader (on another CPU) will spin till
1956          * we are finished.
1957          *
1958          * We just need to protect against interrupts
1959          * doing the job. We will set the next pointer
1960          * to HEAD. After that, we set the old pointer
1961          * to NORMAL, but only if it was HEAD before.
1962          * otherwise we are an interrupt, and only
1963          * want the outer most commit to reset it.
1964          */
1965         new_head = next_page;
1966         rb_inc_page(cpu_buffer, &new_head);
1967
1968         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1969                                     RB_PAGE_NORMAL);
1970
1971         /*
1972          * Valid returns are:
1973          *  HEAD   - an interrupt came in and already set it.
1974          *  NORMAL - One of two things:
1975          *            1) We really set it.
1976          *            2) A bunch of interrupts came in and moved
1977          *               the page forward again.
1978          */
1979         switch (ret) {
1980         case RB_PAGE_HEAD:
1981         case RB_PAGE_NORMAL:
1982                 /* OK */
1983                 break;
1984         default:
1985                 RB_WARN_ON(cpu_buffer, 1);
1986                 return -1;
1987         }
1988
1989         /*
1990          * It is possible that an interrupt came in,
1991          * set the head up, then more interrupts came in
1992          * and moved it again. When we get back here,
1993          * the page would have been set to NORMAL but we
1994          * just set it back to HEAD.
1995          *
1996          * How do you detect this? Well, if that happened
1997          * the tail page would have moved.
1998          */
1999         if (ret == RB_PAGE_NORMAL) {
2000                 struct buffer_page *buffer_tail_page;
2001
2002                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2003                 /*
2004                  * If the tail had moved passed next, then we need
2005                  * to reset the pointer.
2006                  */
2007                 if (buffer_tail_page != tail_page &&
2008                     buffer_tail_page != next_page)
2009                         rb_head_page_set_normal(cpu_buffer, new_head,
2010                                                 next_page,
2011                                                 RB_PAGE_HEAD);
2012         }
2013
2014         /*
2015          * If this was the outer most commit (the one that
2016          * changed the original pointer from HEAD to UPDATE),
2017          * then it is up to us to reset it to NORMAL.
2018          */
2019         if (type == RB_PAGE_HEAD) {
2020                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2021                                               tail_page,
2022                                               RB_PAGE_UPDATE);
2023                 if (RB_WARN_ON(cpu_buffer,
2024                                ret != RB_PAGE_UPDATE))
2025                         return -1;
2026         }
2027
2028         return 0;
2029 }
2030
2031 static inline void
2032 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2033               unsigned long tail, struct rb_event_info *info)
2034 {
2035         struct buffer_page *tail_page = info->tail_page;
2036         struct ring_buffer_event *event;
2037         unsigned long length = info->length;
2038
2039         /*
2040          * Only the event that crossed the page boundary
2041          * must fill the old tail_page with padding.
2042          */
2043         if (tail >= BUF_PAGE_SIZE) {
2044                 /*
2045                  * If the page was filled, then we still need
2046                  * to update the real_end. Reset it to zero
2047                  * and the reader will ignore it.
2048                  */
2049                 if (tail == BUF_PAGE_SIZE)
2050                         tail_page->real_end = 0;
2051
2052                 local_sub(length, &tail_page->write);
2053                 return;
2054         }
2055
2056         event = __rb_page_index(tail_page, tail);
2057         kmemcheck_annotate_bitfield(event, bitfield);
2058
2059         /* account for padding bytes */
2060         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2061
2062         /*
2063          * Save the original length to the meta data.
2064          * This will be used by the reader to add lost event
2065          * counter.
2066          */
2067         tail_page->real_end = tail;
2068
2069         /*
2070          * If this event is bigger than the minimum size, then
2071          * we need to be careful that we don't subtract the
2072          * write counter enough to allow another writer to slip
2073          * in on this page.
2074          * We put in a discarded commit instead, to make sure
2075          * that this space is not used again.
2076          *
2077          * If we are less than the minimum size, we don't need to
2078          * worry about it.
2079          */
2080         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081                 /* No room for any events */
2082
2083                 /* Mark the rest of the page with padding */
2084                 rb_event_set_padding(event);
2085
2086                 /* Set the write back to the previous setting */
2087                 local_sub(length, &tail_page->write);
2088                 return;
2089         }
2090
2091         /* Put in a discarded event */
2092         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093         event->type_len = RINGBUF_TYPE_PADDING;
2094         /* time delta must be non zero */
2095         event->time_delta = 1;
2096
2097         /* Set write to end of buffer */
2098         length = (tail + length) - BUF_PAGE_SIZE;
2099         local_sub(length, &tail_page->write);
2100 }
2101
2102 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2103
2104 /*
2105  * This is the slow path, force gcc not to inline it.
2106  */
2107 static noinline struct ring_buffer_event *
2108 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2109              unsigned long tail, struct rb_event_info *info)
2110 {
2111         struct buffer_page *tail_page = info->tail_page;
2112         struct buffer_page *commit_page = cpu_buffer->commit_page;
2113         struct ring_buffer *buffer = cpu_buffer->buffer;
2114         struct buffer_page *next_page;
2115         int ret;
2116
2117         next_page = tail_page;
2118
2119         rb_inc_page(cpu_buffer, &next_page);
2120
2121         /*
2122          * If for some reason, we had an interrupt storm that made
2123          * it all the way around the buffer, bail, and warn
2124          * about it.
2125          */
2126         if (unlikely(next_page == commit_page)) {
2127                 local_inc(&cpu_buffer->commit_overrun);
2128                 goto out_reset;
2129         }
2130
2131         /*
2132          * This is where the fun begins!
2133          *
2134          * We are fighting against races between a reader that
2135          * could be on another CPU trying to swap its reader
2136          * page with the buffer head.
2137          *
2138          * We are also fighting against interrupts coming in and
2139          * moving the head or tail on us as well.
2140          *
2141          * If the next page is the head page then we have filled
2142          * the buffer, unless the commit page is still on the
2143          * reader page.
2144          */
2145         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2146
2147                 /*
2148                  * If the commit is not on the reader page, then
2149                  * move the header page.
2150                  */
2151                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2152                         /*
2153                          * If we are not in overwrite mode,
2154                          * this is easy, just stop here.
2155                          */
2156                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2157                                 local_inc(&cpu_buffer->dropped_events);
2158                                 goto out_reset;
2159                         }
2160
2161                         ret = rb_handle_head_page(cpu_buffer,
2162                                                   tail_page,
2163                                                   next_page);
2164                         if (ret < 0)
2165                                 goto out_reset;
2166                         if (ret)
2167                                 goto out_again;
2168                 } else {
2169                         /*
2170                          * We need to be careful here too. The
2171                          * commit page could still be on the reader
2172                          * page. We could have a small buffer, and
2173                          * have filled up the buffer with events
2174                          * from interrupts and such, and wrapped.
2175                          *
2176                          * Note, if the tail page is also the on the
2177                          * reader_page, we let it move out.
2178                          */
2179                         if (unlikely((cpu_buffer->commit_page !=
2180                                       cpu_buffer->tail_page) &&
2181                                      (cpu_buffer->commit_page ==
2182                                       cpu_buffer->reader_page))) {
2183                                 local_inc(&cpu_buffer->commit_overrun);
2184                                 goto out_reset;
2185                         }
2186                 }
2187         }
2188
2189         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2190
2191  out_again:
2192
2193         rb_reset_tail(cpu_buffer, tail, info);
2194
2195         /* Commit what we have for now. */
2196         rb_end_commit(cpu_buffer);
2197         /* rb_end_commit() decs committing */
2198         local_inc(&cpu_buffer->committing);
2199
2200         /* fail and let the caller try again */
2201         return ERR_PTR(-EAGAIN);
2202
2203  out_reset:
2204         /* reset write */
2205         rb_reset_tail(cpu_buffer, tail, info);
2206
2207         return NULL;
2208 }
2209
2210 /* Slow path, do not inline */
2211 static noinline struct ring_buffer_event *
2212 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2213 {
2214         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2215
2216         /* Not the first event on the page? */
2217         if (rb_event_index(event)) {
2218                 event->time_delta = delta & TS_MASK;
2219                 event->array[0] = delta >> TS_SHIFT;
2220         } else {
2221                 /* nope, just zero it */
2222                 event->time_delta = 0;
2223                 event->array[0] = 0;
2224         }
2225
2226         return skip_time_extend(event);
2227 }
2228
2229 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2230                                      struct ring_buffer_event *event);
2231
2232 /**
2233  * rb_update_event - update event type and data
2234  * @event: the event to update
2235  * @type: the type of event
2236  * @length: the size of the event field in the ring buffer
2237  *
2238  * Update the type and data fields of the event. The length
2239  * is the actual size that is written to the ring buffer,
2240  * and with this, we can determine what to place into the
2241  * data field.
2242  */
2243 static void
2244 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2245                 struct ring_buffer_event *event,
2246                 struct rb_event_info *info)
2247 {
2248         unsigned length = info->length;
2249         u64 delta = info->delta;
2250
2251         /* Only a commit updates the timestamp */
2252         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2253                 delta = 0;
2254
2255         /*
2256          * If we need to add a timestamp, then we
2257          * add it to the start of the resevered space.
2258          */
2259         if (unlikely(info->add_timestamp)) {
2260                 event = rb_add_time_stamp(event, delta);
2261                 length -= RB_LEN_TIME_EXTEND;
2262                 delta = 0;
2263         }
2264
2265         event->time_delta = delta;
2266         length -= RB_EVNT_HDR_SIZE;
2267         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2268                 event->type_len = 0;
2269                 event->array[0] = length;
2270         } else
2271                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2272 }
2273
2274 static unsigned rb_calculate_event_length(unsigned length)
2275 {
2276         struct ring_buffer_event event; /* Used only for sizeof array */
2277
2278         /* zero length can cause confusions */
2279         if (!length)
2280                 length++;
2281
2282         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2283                 length += sizeof(event.array[0]);
2284
2285         length += RB_EVNT_HDR_SIZE;
2286         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2287
2288         /*
2289          * In case the time delta is larger than the 27 bits for it
2290          * in the header, we need to add a timestamp. If another
2291          * event comes in when trying to discard this one to increase
2292          * the length, then the timestamp will be added in the allocated
2293          * space of this event. If length is bigger than the size needed
2294          * for the TIME_EXTEND, then padding has to be used. The events
2295          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2296          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2297          * As length is a multiple of 4, we only need to worry if it
2298          * is 12 (RB_LEN_TIME_EXTEND + 4).
2299          */
2300         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2301                 length += RB_ALIGNMENT;
2302
2303         return length;
2304 }
2305
2306 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2307 static inline bool sched_clock_stable(void)
2308 {
2309         return true;
2310 }
2311 #endif
2312
2313 static inline int
2314 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2315                   struct ring_buffer_event *event)
2316 {
2317         unsigned long new_index, old_index;
2318         struct buffer_page *bpage;
2319         unsigned long index;
2320         unsigned long addr;
2321
2322         new_index = rb_event_index(event);
2323         old_index = new_index + rb_event_ts_length(event);
2324         addr = (unsigned long)event;
2325         addr &= PAGE_MASK;
2326
2327         bpage = READ_ONCE(cpu_buffer->tail_page);
2328
2329         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2330                 unsigned long write_mask =
2331                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2332                 unsigned long event_length = rb_event_length(event);
2333                 /*
2334                  * This is on the tail page. It is possible that
2335                  * a write could come in and move the tail page
2336                  * and write to the next page. That is fine
2337                  * because we just shorten what is on this page.
2338                  */
2339                 old_index += write_mask;
2340                 new_index += write_mask;
2341                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2342                 if (index == old_index) {
2343                         /* update counters */
2344                         local_sub(event_length, &cpu_buffer->entries_bytes);
2345                         return 1;
2346                 }
2347         }
2348
2349         /* could not discard */
2350         return 0;
2351 }
2352
2353 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2354 {
2355         local_inc(&cpu_buffer->committing);
2356         local_inc(&cpu_buffer->commits);
2357 }
2358
2359 static __always_inline void
2360 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2361 {
2362         unsigned long max_count;
2363
2364         /*
2365          * We only race with interrupts and NMIs on this CPU.
2366          * If we own the commit event, then we can commit
2367          * all others that interrupted us, since the interruptions
2368          * are in stack format (they finish before they come
2369          * back to us). This allows us to do a simple loop to
2370          * assign the commit to the tail.
2371          */
2372  again:
2373         max_count = cpu_buffer->nr_pages * 100;
2374
2375         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2376                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2377                         return;
2378                 if (RB_WARN_ON(cpu_buffer,
2379                                rb_is_reader_page(cpu_buffer->tail_page)))
2380                         return;
2381                 local_set(&cpu_buffer->commit_page->page->commit,
2382                           rb_page_write(cpu_buffer->commit_page));
2383                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2384                 /* Only update the write stamp if the page has an event */
2385                 if (rb_page_write(cpu_buffer->commit_page))
2386                         cpu_buffer->write_stamp =
2387                                 cpu_buffer->commit_page->page->time_stamp;
2388                 /* add barrier to keep gcc from optimizing too much */
2389                 barrier();
2390         }
2391         while (rb_commit_index(cpu_buffer) !=
2392                rb_page_write(cpu_buffer->commit_page)) {
2393
2394                 local_set(&cpu_buffer->commit_page->page->commit,
2395                           rb_page_write(cpu_buffer->commit_page));
2396                 RB_WARN_ON(cpu_buffer,
2397                            local_read(&cpu_buffer->commit_page->page->commit) &
2398                            ~RB_WRITE_MASK);
2399                 barrier();
2400         }
2401
2402         /* again, keep gcc from optimizing */
2403         barrier();
2404
2405         /*
2406          * If an interrupt came in just after the first while loop
2407          * and pushed the tail page forward, we will be left with
2408          * a dangling commit that will never go forward.
2409          */
2410         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2411                 goto again;
2412 }
2413
2414 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2415 {
2416         unsigned long commits;
2417
2418         if (RB_WARN_ON(cpu_buffer,
2419                        !local_read(&cpu_buffer->committing)))
2420                 return;
2421
2422  again:
2423         commits = local_read(&cpu_buffer->commits);
2424         /* synchronize with interrupts */
2425         barrier();
2426         if (local_read(&cpu_buffer->committing) == 1)
2427                 rb_set_commit_to_write(cpu_buffer);
2428
2429         local_dec(&cpu_buffer->committing);
2430
2431         /* synchronize with interrupts */
2432         barrier();
2433
2434         /*
2435          * Need to account for interrupts coming in between the
2436          * updating of the commit page and the clearing of the
2437          * committing counter.
2438          */
2439         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2440             !local_read(&cpu_buffer->committing)) {
2441                 local_inc(&cpu_buffer->committing);
2442                 goto again;
2443         }
2444 }
2445
2446 static inline void rb_event_discard(struct ring_buffer_event *event)
2447 {
2448         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2449                 event = skip_time_extend(event);
2450
2451         /* array[0] holds the actual length for the discarded event */
2452         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2453         event->type_len = RINGBUF_TYPE_PADDING;
2454         /* time delta must be non zero */
2455         if (!event->time_delta)
2456                 event->time_delta = 1;
2457 }
2458
2459 static __always_inline bool
2460 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2461                    struct ring_buffer_event *event)
2462 {
2463         unsigned long addr = (unsigned long)event;
2464         unsigned long index;
2465
2466         index = rb_event_index(event);
2467         addr &= PAGE_MASK;
2468
2469         return cpu_buffer->commit_page->page == (void *)addr &&
2470                 rb_commit_index(cpu_buffer) == index;
2471 }
2472
2473 static __always_inline void
2474 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2475                       struct ring_buffer_event *event)
2476 {
2477         u64 delta;
2478
2479         /*
2480          * The event first in the commit queue updates the
2481          * time stamp.
2482          */
2483         if (rb_event_is_commit(cpu_buffer, event)) {
2484                 /*
2485                  * A commit event that is first on a page
2486                  * updates the write timestamp with the page stamp
2487                  */
2488                 if (!rb_event_index(event))
2489                         cpu_buffer->write_stamp =
2490                                 cpu_buffer->commit_page->page->time_stamp;
2491                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2492                         delta = event->array[0];
2493                         delta <<= TS_SHIFT;
2494                         delta += event->time_delta;
2495                         cpu_buffer->write_stamp += delta;
2496                 } else
2497                         cpu_buffer->write_stamp += event->time_delta;
2498         }
2499 }
2500
2501 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2502                       struct ring_buffer_event *event)
2503 {
2504         local_inc(&cpu_buffer->entries);
2505         rb_update_write_stamp(cpu_buffer, event);
2506         rb_end_commit(cpu_buffer);
2507 }
2508
2509 static __always_inline void
2510 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2511 {
2512         bool pagebusy;
2513
2514         if (buffer->irq_work.waiters_pending) {
2515                 buffer->irq_work.waiters_pending = false;
2516                 /* irq_work_queue() supplies it's own memory barriers */
2517                 irq_work_queue(&buffer->irq_work.work);
2518         }
2519
2520         if (cpu_buffer->irq_work.waiters_pending) {
2521                 cpu_buffer->irq_work.waiters_pending = false;
2522                 /* irq_work_queue() supplies it's own memory barriers */
2523                 irq_work_queue(&cpu_buffer->irq_work.work);
2524         }
2525
2526         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2527
2528         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2529                 cpu_buffer->irq_work.wakeup_full = true;
2530                 cpu_buffer->irq_work.full_waiters_pending = false;
2531                 /* irq_work_queue() supplies it's own memory barriers */
2532                 irq_work_queue(&cpu_buffer->irq_work.work);
2533         }
2534 }
2535
2536 /*
2537  * The lock and unlock are done within a preempt disable section.
2538  * The current_context per_cpu variable can only be modified
2539  * by the current task between lock and unlock. But it can
2540  * be modified more than once via an interrupt. To pass this
2541  * information from the lock to the unlock without having to
2542  * access the 'in_interrupt()' functions again (which do show
2543  * a bit of overhead in something as critical as function tracing,
2544  * we use a bitmask trick.
2545  *
2546  *  bit 0 =  NMI context
2547  *  bit 1 =  IRQ context
2548  *  bit 2 =  SoftIRQ context
2549  *  bit 3 =  normal context.
2550  *
2551  * This works because this is the order of contexts that can
2552  * preempt other contexts. A SoftIRQ never preempts an IRQ
2553  * context.
2554  *
2555  * When the context is determined, the corresponding bit is
2556  * checked and set (if it was set, then a recursion of that context
2557  * happened).
2558  *
2559  * On unlock, we need to clear this bit. To do so, just subtract
2560  * 1 from the current_context and AND it to itself.
2561  *
2562  * (binary)
2563  *  101 - 1 = 100
2564  *  101 & 100 = 100 (clearing bit zero)
2565  *
2566  *  1010 - 1 = 1001
2567  *  1010 & 1001 = 1000 (clearing bit 1)
2568  *
2569  * The least significant bit can be cleared this way, and it
2570  * just so happens that it is the same bit corresponding to
2571  * the current context.
2572  */
2573
2574 static __always_inline int
2575 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2576 {
2577         unsigned int val = cpu_buffer->current_context;
2578         int bit;
2579
2580         if (in_interrupt()) {
2581                 if (in_nmi())
2582                         bit = RB_CTX_NMI;
2583                 else if (in_irq())
2584                         bit = RB_CTX_IRQ;
2585                 else
2586                         bit = RB_CTX_SOFTIRQ;
2587         } else
2588                 bit = RB_CTX_NORMAL;
2589
2590         if (unlikely(val & (1 << bit)))
2591                 return 1;
2592
2593         val |= (1 << bit);
2594         cpu_buffer->current_context = val;
2595
2596         return 0;
2597 }
2598
2599 static __always_inline void
2600 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2601 {
2602         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2603 }
2604
2605 /**
2606  * ring_buffer_unlock_commit - commit a reserved
2607  * @buffer: The buffer to commit to
2608  * @event: The event pointer to commit.
2609  *
2610  * This commits the data to the ring buffer, and releases any locks held.
2611  *
2612  * Must be paired with ring_buffer_lock_reserve.
2613  */
2614 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2615                               struct ring_buffer_event *event)
2616 {
2617         struct ring_buffer_per_cpu *cpu_buffer;
2618         int cpu = raw_smp_processor_id();
2619
2620         cpu_buffer = buffer->buffers[cpu];
2621
2622         rb_commit(cpu_buffer, event);
2623
2624         rb_wakeups(buffer, cpu_buffer);
2625
2626         trace_recursive_unlock(cpu_buffer);
2627
2628         preempt_enable_notrace();
2629
2630         return 0;
2631 }
2632 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2633
2634 static noinline void
2635 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2636                     struct rb_event_info *info)
2637 {
2638         WARN_ONCE(info->delta > (1ULL << 59),
2639                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2640                   (unsigned long long)info->delta,
2641                   (unsigned long long)info->ts,
2642                   (unsigned long long)cpu_buffer->write_stamp,
2643                   sched_clock_stable() ? "" :
2644                   "If you just came from a suspend/resume,\n"
2645                   "please switch to the trace global clock:\n"
2646                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2647         info->add_timestamp = 1;
2648 }
2649
2650 static struct ring_buffer_event *
2651 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2652                   struct rb_event_info *info)
2653 {
2654         struct ring_buffer_event *event;
2655         struct buffer_page *tail_page;
2656         unsigned long tail, write;
2657
2658         /*
2659          * If the time delta since the last event is too big to
2660          * hold in the time field of the event, then we append a
2661          * TIME EXTEND event ahead of the data event.
2662          */
2663         if (unlikely(info->add_timestamp))
2664                 info->length += RB_LEN_TIME_EXTEND;
2665
2666         /* Don't let the compiler play games with cpu_buffer->tail_page */
2667         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2668         write = local_add_return(info->length, &tail_page->write);
2669
2670         /* set write to only the index of the write */
2671         write &= RB_WRITE_MASK;
2672         tail = write - info->length;
2673
2674         /*
2675          * If this is the first commit on the page, then it has the same
2676          * timestamp as the page itself.
2677          */
2678         if (!tail)
2679                 info->delta = 0;
2680
2681         /* See if we shot pass the end of this buffer page */
2682         if (unlikely(write > BUF_PAGE_SIZE))
2683                 return rb_move_tail(cpu_buffer, tail, info);
2684
2685         /* We reserved something on the buffer */
2686
2687         event = __rb_page_index(tail_page, tail);
2688         kmemcheck_annotate_bitfield(event, bitfield);
2689         rb_update_event(cpu_buffer, event, info);
2690
2691         local_inc(&tail_page->entries);
2692
2693         /*
2694          * If this is the first commit on the page, then update
2695          * its timestamp.
2696          */
2697         if (!tail)
2698                 tail_page->page->time_stamp = info->ts;
2699
2700         /* account for these added bytes */
2701         local_add(info->length, &cpu_buffer->entries_bytes);
2702
2703         return event;
2704 }
2705
2706 static __always_inline struct ring_buffer_event *
2707 rb_reserve_next_event(struct ring_buffer *buffer,
2708                       struct ring_buffer_per_cpu *cpu_buffer,
2709                       unsigned long length)
2710 {
2711         struct ring_buffer_event *event;
2712         struct rb_event_info info;
2713         int nr_loops = 0;
2714         u64 diff;
2715
2716         rb_start_commit(cpu_buffer);
2717
2718 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2719         /*
2720          * Due to the ability to swap a cpu buffer from a buffer
2721          * it is possible it was swapped before we committed.
2722          * (committing stops a swap). We check for it here and
2723          * if it happened, we have to fail the write.
2724          */
2725         barrier();
2726         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2727                 local_dec(&cpu_buffer->committing);
2728                 local_dec(&cpu_buffer->commits);
2729                 return NULL;
2730         }
2731 #endif
2732
2733         info.length = rb_calculate_event_length(length);
2734  again:
2735         info.add_timestamp = 0;
2736         info.delta = 0;
2737
2738         /*
2739          * We allow for interrupts to reenter here and do a trace.
2740          * If one does, it will cause this original code to loop
2741          * back here. Even with heavy interrupts happening, this
2742          * should only happen a few times in a row. If this happens
2743          * 1000 times in a row, there must be either an interrupt
2744          * storm or we have something buggy.
2745          * Bail!
2746          */
2747         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2748                 goto out_fail;
2749
2750         info.ts = rb_time_stamp(cpu_buffer->buffer);
2751         diff = info.ts - cpu_buffer->write_stamp;
2752
2753         /* make sure this diff is calculated here */
2754         barrier();
2755
2756         /* Did the write stamp get updated already? */
2757         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2758                 info.delta = diff;
2759                 if (unlikely(test_time_stamp(info.delta)))
2760                         rb_handle_timestamp(cpu_buffer, &info);
2761         }
2762
2763         event = __rb_reserve_next(cpu_buffer, &info);
2764
2765         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2766                 if (info.add_timestamp)
2767                         info.length -= RB_LEN_TIME_EXTEND;
2768                 goto again;
2769         }
2770
2771         if (!event)
2772                 goto out_fail;
2773
2774         return event;
2775
2776  out_fail:
2777         rb_end_commit(cpu_buffer);
2778         return NULL;
2779 }
2780
2781 /**
2782  * ring_buffer_lock_reserve - reserve a part of the buffer
2783  * @buffer: the ring buffer to reserve from
2784  * @length: the length of the data to reserve (excluding event header)
2785  *
2786  * Returns a reseverd event on the ring buffer to copy directly to.
2787  * The user of this interface will need to get the body to write into
2788  * and can use the ring_buffer_event_data() interface.
2789  *
2790  * The length is the length of the data needed, not the event length
2791  * which also includes the event header.
2792  *
2793  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2794  * If NULL is returned, then nothing has been allocated or locked.
2795  */
2796 struct ring_buffer_event *
2797 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2798 {
2799         struct ring_buffer_per_cpu *cpu_buffer;
2800         struct ring_buffer_event *event;
2801         int cpu;
2802
2803         /* If we are tracing schedule, we don't want to recurse */
2804         preempt_disable_notrace();
2805
2806         if (unlikely(atomic_read(&buffer->record_disabled)))
2807                 goto out;
2808
2809         cpu = raw_smp_processor_id();
2810
2811         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2812                 goto out;
2813
2814         cpu_buffer = buffer->buffers[cpu];
2815
2816         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2817                 goto out;
2818
2819         if (unlikely(length > BUF_MAX_DATA_SIZE))
2820                 goto out;
2821
2822         if (unlikely(trace_recursive_lock(cpu_buffer)))
2823                 goto out;
2824
2825         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2826         if (!event)
2827                 goto out_unlock;
2828
2829         return event;
2830
2831  out_unlock:
2832         trace_recursive_unlock(cpu_buffer);
2833  out:
2834         preempt_enable_notrace();
2835         return NULL;
2836 }
2837 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2838
2839 /*
2840  * Decrement the entries to the page that an event is on.
2841  * The event does not even need to exist, only the pointer
2842  * to the page it is on. This may only be called before the commit
2843  * takes place.
2844  */
2845 static inline void
2846 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2847                    struct ring_buffer_event *event)
2848 {
2849         unsigned long addr = (unsigned long)event;
2850         struct buffer_page *bpage = cpu_buffer->commit_page;
2851         struct buffer_page *start;
2852
2853         addr &= PAGE_MASK;
2854
2855         /* Do the likely case first */
2856         if (likely(bpage->page == (void *)addr)) {
2857                 local_dec(&bpage->entries);
2858                 return;
2859         }
2860
2861         /*
2862          * Because the commit page may be on the reader page we
2863          * start with the next page and check the end loop there.
2864          */
2865         rb_inc_page(cpu_buffer, &bpage);
2866         start = bpage;
2867         do {
2868                 if (bpage->page == (void *)addr) {
2869                         local_dec(&bpage->entries);
2870                         return;
2871                 }
2872                 rb_inc_page(cpu_buffer, &bpage);
2873         } while (bpage != start);
2874
2875         /* commit not part of this buffer?? */
2876         RB_WARN_ON(cpu_buffer, 1);
2877 }
2878
2879 /**
2880  * ring_buffer_commit_discard - discard an event that has not been committed
2881  * @buffer: the ring buffer
2882  * @event: non committed event to discard
2883  *
2884  * Sometimes an event that is in the ring buffer needs to be ignored.
2885  * This function lets the user discard an event in the ring buffer
2886  * and then that event will not be read later.
2887  *
2888  * This function only works if it is called before the the item has been
2889  * committed. It will try to free the event from the ring buffer
2890  * if another event has not been added behind it.
2891  *
2892  * If another event has been added behind it, it will set the event
2893  * up as discarded, and perform the commit.
2894  *
2895  * If this function is called, do not call ring_buffer_unlock_commit on
2896  * the event.
2897  */
2898 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2899                                 struct ring_buffer_event *event)
2900 {
2901         struct ring_buffer_per_cpu *cpu_buffer;
2902         int cpu;
2903
2904         /* The event is discarded regardless */
2905         rb_event_discard(event);
2906
2907         cpu = smp_processor_id();
2908         cpu_buffer = buffer->buffers[cpu];
2909
2910         /*
2911          * This must only be called if the event has not been
2912          * committed yet. Thus we can assume that preemption
2913          * is still disabled.
2914          */
2915         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2916
2917         rb_decrement_entry(cpu_buffer, event);
2918         if (rb_try_to_discard(cpu_buffer, event))
2919                 goto out;
2920
2921         /*
2922          * The commit is still visible by the reader, so we
2923          * must still update the timestamp.
2924          */
2925         rb_update_write_stamp(cpu_buffer, event);
2926  out:
2927         rb_end_commit(cpu_buffer);
2928
2929         trace_recursive_unlock(cpu_buffer);
2930
2931         preempt_enable_notrace();
2932
2933 }
2934 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2935
2936 /**
2937  * ring_buffer_write - write data to the buffer without reserving
2938  * @buffer: The ring buffer to write to.
2939  * @length: The length of the data being written (excluding the event header)
2940  * @data: The data to write to the buffer.
2941  *
2942  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2943  * one function. If you already have the data to write to the buffer, it
2944  * may be easier to simply call this function.
2945  *
2946  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2947  * and not the length of the event which would hold the header.
2948  */
2949 int ring_buffer_write(struct ring_buffer *buffer,
2950                       unsigned long length,
2951                       void *data)
2952 {
2953         struct ring_buffer_per_cpu *cpu_buffer;
2954         struct ring_buffer_event *event;
2955         void *body;
2956         int ret = -EBUSY;
2957         int cpu;
2958
2959         preempt_disable_notrace();
2960
2961         if (atomic_read(&buffer->record_disabled))
2962                 goto out;
2963
2964         cpu = raw_smp_processor_id();
2965
2966         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2967                 goto out;
2968
2969         cpu_buffer = buffer->buffers[cpu];
2970
2971         if (atomic_read(&cpu_buffer->record_disabled))
2972                 goto out;
2973
2974         if (length > BUF_MAX_DATA_SIZE)
2975                 goto out;
2976
2977         if (unlikely(trace_recursive_lock(cpu_buffer)))
2978                 goto out;
2979
2980         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2981         if (!event)
2982                 goto out_unlock;
2983
2984         body = rb_event_data(event);
2985
2986         memcpy(body, data, length);
2987
2988         rb_commit(cpu_buffer, event);
2989
2990         rb_wakeups(buffer, cpu_buffer);
2991
2992         ret = 0;
2993
2994  out_unlock:
2995         trace_recursive_unlock(cpu_buffer);
2996
2997  out:
2998         preempt_enable_notrace();
2999
3000         return ret;
3001 }
3002 EXPORT_SYMBOL_GPL(ring_buffer_write);
3003
3004 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3005 {
3006         struct buffer_page *reader = cpu_buffer->reader_page;
3007         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3008         struct buffer_page *commit = cpu_buffer->commit_page;
3009
3010         /* In case of error, head will be NULL */
3011         if (unlikely(!head))
3012                 return true;
3013
3014         return reader->read == rb_page_commit(reader) &&
3015                 (commit == reader ||
3016                  (commit == head &&
3017                   head->read == rb_page_commit(commit)));
3018 }
3019
3020 /**
3021  * ring_buffer_record_disable - stop all writes into the buffer
3022  * @buffer: The ring buffer to stop writes to.
3023  *
3024  * This prevents all writes to the buffer. Any attempt to write
3025  * to the buffer after this will fail and return NULL.
3026  *
3027  * The caller should call synchronize_sched() after this.
3028  */
3029 void ring_buffer_record_disable(struct ring_buffer *buffer)
3030 {
3031         atomic_inc(&buffer->record_disabled);
3032 }
3033 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3034
3035 /**
3036  * ring_buffer_record_enable - enable writes to the buffer
3037  * @buffer: The ring buffer to enable writes
3038  *
3039  * Note, multiple disables will need the same number of enables
3040  * to truly enable the writing (much like preempt_disable).
3041  */
3042 void ring_buffer_record_enable(struct ring_buffer *buffer)
3043 {
3044         atomic_dec(&buffer->record_disabled);
3045 }
3046 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3047
3048 /**
3049  * ring_buffer_record_off - stop all writes into the buffer
3050  * @buffer: The ring buffer to stop writes to.
3051  *
3052  * This prevents all writes to the buffer. Any attempt to write
3053  * to the buffer after this will fail and return NULL.
3054  *
3055  * This is different than ring_buffer_record_disable() as
3056  * it works like an on/off switch, where as the disable() version
3057  * must be paired with a enable().
3058  */
3059 void ring_buffer_record_off(struct ring_buffer *buffer)
3060 {
3061         unsigned int rd;
3062         unsigned int new_rd;
3063
3064         do {
3065                 rd = atomic_read(&buffer->record_disabled);
3066                 new_rd = rd | RB_BUFFER_OFF;
3067         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3068 }
3069 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3070
3071 /**
3072  * ring_buffer_record_on - restart writes into the buffer
3073  * @buffer: The ring buffer to start writes to.
3074  *
3075  * This enables all writes to the buffer that was disabled by
3076  * ring_buffer_record_off().
3077  *
3078  * This is different than ring_buffer_record_enable() as
3079  * it works like an on/off switch, where as the enable() version
3080  * must be paired with a disable().
3081  */
3082 void ring_buffer_record_on(struct ring_buffer *buffer)
3083 {
3084         unsigned int rd;
3085         unsigned int new_rd;
3086
3087         do {
3088                 rd = atomic_read(&buffer->record_disabled);
3089                 new_rd = rd & ~RB_BUFFER_OFF;
3090         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3091 }
3092 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3093
3094 /**
3095  * ring_buffer_record_is_on - return true if the ring buffer can write
3096  * @buffer: The ring buffer to see if write is enabled
3097  *
3098  * Returns true if the ring buffer is in a state that it accepts writes.
3099  */
3100 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3101 {
3102         return !atomic_read(&buffer->record_disabled);
3103 }
3104
3105 /**
3106  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3107  * @buffer: The ring buffer to stop writes to.
3108  * @cpu: The CPU buffer to stop
3109  *
3110  * This prevents all writes to the buffer. Any attempt to write
3111  * to the buffer after this will fail and return NULL.
3112  *
3113  * The caller should call synchronize_sched() after this.
3114  */
3115 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3116 {
3117         struct ring_buffer_per_cpu *cpu_buffer;
3118
3119         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3120                 return;
3121
3122         cpu_buffer = buffer->buffers[cpu];
3123         atomic_inc(&cpu_buffer->record_disabled);
3124 }
3125 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3126
3127 /**
3128  * ring_buffer_record_enable_cpu - enable writes to the buffer
3129  * @buffer: The ring buffer to enable writes
3130  * @cpu: The CPU to enable.
3131  *
3132  * Note, multiple disables will need the same number of enables
3133  * to truly enable the writing (much like preempt_disable).
3134  */
3135 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3136 {
3137         struct ring_buffer_per_cpu *cpu_buffer;
3138
3139         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3140                 return;
3141
3142         cpu_buffer = buffer->buffers[cpu];
3143         atomic_dec(&cpu_buffer->record_disabled);
3144 }
3145 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3146
3147 /*
3148  * The total entries in the ring buffer is the running counter
3149  * of entries entered into the ring buffer, minus the sum of
3150  * the entries read from the ring buffer and the number of
3151  * entries that were overwritten.
3152  */
3153 static inline unsigned long
3154 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3155 {
3156         return local_read(&cpu_buffer->entries) -
3157                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3158 }
3159
3160 /**
3161  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3162  * @buffer: The ring buffer
3163  * @cpu: The per CPU buffer to read from.
3164  */
3165 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3166 {
3167         unsigned long flags;
3168         struct ring_buffer_per_cpu *cpu_buffer;
3169         struct buffer_page *bpage;
3170         u64 ret = 0;
3171
3172         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3173                 return 0;
3174
3175         cpu_buffer = buffer->buffers[cpu];
3176         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3177         /*
3178          * if the tail is on reader_page, oldest time stamp is on the reader
3179          * page
3180          */
3181         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3182                 bpage = cpu_buffer->reader_page;
3183         else
3184                 bpage = rb_set_head_page(cpu_buffer);
3185         if (bpage)
3186                 ret = bpage->page->time_stamp;
3187         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3188
3189         return ret;
3190 }
3191 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3192
3193 /**
3194  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3195  * @buffer: The ring buffer
3196  * @cpu: The per CPU buffer to read from.
3197  */
3198 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3199 {
3200         struct ring_buffer_per_cpu *cpu_buffer;
3201         unsigned long ret;
3202
3203         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3204                 return 0;
3205
3206         cpu_buffer = buffer->buffers[cpu];
3207         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3208
3209         return ret;
3210 }
3211 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3212
3213 /**
3214  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3215  * @buffer: The ring buffer
3216  * @cpu: The per CPU buffer to get the entries from.
3217  */
3218 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3219 {
3220         struct ring_buffer_per_cpu *cpu_buffer;
3221
3222         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3223                 return 0;
3224
3225         cpu_buffer = buffer->buffers[cpu];
3226
3227         return rb_num_of_entries(cpu_buffer);
3228 }
3229 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3230
3231 /**
3232  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3233  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3234  * @buffer: The ring buffer
3235  * @cpu: The per CPU buffer to get the number of overruns from
3236  */
3237 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3238 {
3239         struct ring_buffer_per_cpu *cpu_buffer;
3240         unsigned long ret;
3241
3242         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3243                 return 0;
3244
3245         cpu_buffer = buffer->buffers[cpu];
3246         ret = local_read(&cpu_buffer->overrun);
3247
3248         return ret;
3249 }
3250 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3251
3252 /**
3253  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3254  * commits failing due to the buffer wrapping around while there are uncommitted
3255  * events, such as during an interrupt storm.
3256  * @buffer: The ring buffer
3257  * @cpu: The per CPU buffer to get the number of overruns from
3258  */
3259 unsigned long
3260 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3261 {
3262         struct ring_buffer_per_cpu *cpu_buffer;
3263         unsigned long ret;
3264
3265         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3266                 return 0;
3267
3268         cpu_buffer = buffer->buffers[cpu];
3269         ret = local_read(&cpu_buffer->commit_overrun);
3270
3271         return ret;
3272 }
3273 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3274
3275 /**
3276  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3277  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3278  * @buffer: The ring buffer
3279  * @cpu: The per CPU buffer to get the number of overruns from
3280  */
3281 unsigned long
3282 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3283 {
3284         struct ring_buffer_per_cpu *cpu_buffer;
3285         unsigned long ret;
3286
3287         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3288                 return 0;
3289
3290         cpu_buffer = buffer->buffers[cpu];
3291         ret = local_read(&cpu_buffer->dropped_events);
3292
3293         return ret;
3294 }
3295 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3296
3297 /**
3298  * ring_buffer_read_events_cpu - get the number of events successfully read
3299  * @buffer: The ring buffer
3300  * @cpu: The per CPU buffer to get the number of events read
3301  */
3302 unsigned long
3303 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3304 {
3305         struct ring_buffer_per_cpu *cpu_buffer;
3306
3307         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3308                 return 0;
3309
3310         cpu_buffer = buffer->buffers[cpu];
3311         return cpu_buffer->read;
3312 }
3313 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3314
3315 /**
3316  * ring_buffer_entries - get the number of entries in a buffer
3317  * @buffer: The ring buffer
3318  *
3319  * Returns the total number of entries in the ring buffer
3320  * (all CPU entries)
3321  */
3322 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3323 {
3324         struct ring_buffer_per_cpu *cpu_buffer;
3325         unsigned long entries = 0;
3326         int cpu;
3327
3328         /* if you care about this being correct, lock the buffer */
3329         for_each_buffer_cpu(buffer, cpu) {
3330                 cpu_buffer = buffer->buffers[cpu];
3331                 entries += rb_num_of_entries(cpu_buffer);
3332         }
3333
3334         return entries;
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3337
3338 /**
3339  * ring_buffer_overruns - get the number of overruns in buffer
3340  * @buffer: The ring buffer
3341  *
3342  * Returns the total number of overruns in the ring buffer
3343  * (all CPU entries)
3344  */
3345 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3346 {
3347         struct ring_buffer_per_cpu *cpu_buffer;
3348         unsigned long overruns = 0;
3349         int cpu;
3350
3351         /* if you care about this being correct, lock the buffer */
3352         for_each_buffer_cpu(buffer, cpu) {
3353                 cpu_buffer = buffer->buffers[cpu];
3354                 overruns += local_read(&cpu_buffer->overrun);
3355         }
3356
3357         return overruns;
3358 }
3359 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3360
3361 static void rb_iter_reset(struct ring_buffer_iter *iter)
3362 {
3363         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3364
3365         /* Iterator usage is expected to have record disabled */
3366         iter->head_page = cpu_buffer->reader_page;
3367         iter->head = cpu_buffer->reader_page->read;
3368
3369         iter->cache_reader_page = iter->head_page;
3370         iter->cache_read = cpu_buffer->read;
3371
3372         if (iter->head)
3373                 iter->read_stamp = cpu_buffer->read_stamp;
3374         else
3375                 iter->read_stamp = iter->head_page->page->time_stamp;
3376 }
3377
3378 /**
3379  * ring_buffer_iter_reset - reset an iterator
3380  * @iter: The iterator to reset
3381  *
3382  * Resets the iterator, so that it will start from the beginning
3383  * again.
3384  */
3385 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3386 {
3387         struct ring_buffer_per_cpu *cpu_buffer;
3388         unsigned long flags;
3389
3390         if (!iter)
3391                 return;
3392
3393         cpu_buffer = iter->cpu_buffer;
3394
3395         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3396         rb_iter_reset(iter);
3397         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3398 }
3399 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3400
3401 /**
3402  * ring_buffer_iter_empty - check if an iterator has no more to read
3403  * @iter: The iterator to check
3404  */
3405 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3406 {
3407         struct ring_buffer_per_cpu *cpu_buffer;
3408
3409         cpu_buffer = iter->cpu_buffer;
3410
3411         return iter->head_page == cpu_buffer->commit_page &&
3412                 iter->head == rb_commit_index(cpu_buffer);
3413 }
3414 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3415
3416 static void
3417 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3418                      struct ring_buffer_event *event)
3419 {
3420         u64 delta;
3421
3422         switch (event->type_len) {
3423         case RINGBUF_TYPE_PADDING:
3424                 return;
3425
3426         case RINGBUF_TYPE_TIME_EXTEND:
3427                 delta = event->array[0];
3428                 delta <<= TS_SHIFT;
3429                 delta += event->time_delta;
3430                 cpu_buffer->read_stamp += delta;
3431                 return;
3432
3433         case RINGBUF_TYPE_TIME_STAMP:
3434                 /* FIXME: not implemented */
3435                 return;
3436
3437         case RINGBUF_TYPE_DATA:
3438                 cpu_buffer->read_stamp += event->time_delta;
3439                 return;
3440
3441         default:
3442                 BUG();
3443         }
3444         return;
3445 }
3446
3447 static void
3448 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3449                           struct ring_buffer_event *event)
3450 {
3451         u64 delta;
3452
3453         switch (event->type_len) {
3454         case RINGBUF_TYPE_PADDING:
3455                 return;
3456
3457         case RINGBUF_TYPE_TIME_EXTEND:
3458                 delta = event->array[0];
3459                 delta <<= TS_SHIFT;
3460                 delta += event->time_delta;
3461                 iter->read_stamp += delta;
3462                 return;
3463
3464         case RINGBUF_TYPE_TIME_STAMP:
3465                 /* FIXME: not implemented */
3466                 return;
3467
3468         case RINGBUF_TYPE_DATA:
3469                 iter->read_stamp += event->time_delta;
3470                 return;
3471
3472         default:
3473                 BUG();
3474         }
3475         return;
3476 }
3477
3478 static struct buffer_page *
3479 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3480 {
3481         struct buffer_page *reader = NULL;
3482         unsigned long overwrite;
3483         unsigned long flags;
3484         int nr_loops = 0;
3485         int ret;
3486
3487         local_irq_save(flags);
3488         arch_spin_lock(&cpu_buffer->lock);
3489
3490  again:
3491         /*
3492          * This should normally only loop twice. But because the
3493          * start of the reader inserts an empty page, it causes
3494          * a case where we will loop three times. There should be no
3495          * reason to loop four times (that I know of).
3496          */
3497         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3498                 reader = NULL;
3499                 goto out;
3500         }
3501
3502         reader = cpu_buffer->reader_page;
3503
3504         /* If there's more to read, return this page */
3505         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3506                 goto out;
3507
3508         /* Never should we have an index greater than the size */
3509         if (RB_WARN_ON(cpu_buffer,
3510                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3511                 goto out;
3512
3513         /* check if we caught up to the tail */
3514         reader = NULL;
3515         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3516                 goto out;
3517
3518         /* Don't bother swapping if the ring buffer is empty */
3519         if (rb_num_of_entries(cpu_buffer) == 0)
3520                 goto out;
3521
3522         /*
3523          * Reset the reader page to size zero.
3524          */
3525         local_set(&cpu_buffer->reader_page->write, 0);
3526         local_set(&cpu_buffer->reader_page->entries, 0);
3527         local_set(&cpu_buffer->reader_page->page->commit, 0);
3528         cpu_buffer->reader_page->real_end = 0;
3529
3530  spin:
3531         /*
3532          * Splice the empty reader page into the list around the head.
3533          */
3534         reader = rb_set_head_page(cpu_buffer);
3535         if (!reader)
3536                 goto out;
3537         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3538         cpu_buffer->reader_page->list.prev = reader->list.prev;
3539
3540         /*
3541          * cpu_buffer->pages just needs to point to the buffer, it
3542          *  has no specific buffer page to point to. Lets move it out
3543          *  of our way so we don't accidentally swap it.
3544          */
3545         cpu_buffer->pages = reader->list.prev;
3546
3547         /* The reader page will be pointing to the new head */
3548         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3549
3550         /*
3551          * We want to make sure we read the overruns after we set up our
3552          * pointers to the next object. The writer side does a
3553          * cmpxchg to cross pages which acts as the mb on the writer
3554          * side. Note, the reader will constantly fail the swap
3555          * while the writer is updating the pointers, so this
3556          * guarantees that the overwrite recorded here is the one we
3557          * want to compare with the last_overrun.
3558          */
3559         smp_mb();
3560         overwrite = local_read(&(cpu_buffer->overrun));
3561
3562         /*
3563          * Here's the tricky part.
3564          *
3565          * We need to move the pointer past the header page.
3566          * But we can only do that if a writer is not currently
3567          * moving it. The page before the header page has the
3568          * flag bit '1' set if it is pointing to the page we want.
3569          * but if the writer is in the process of moving it
3570          * than it will be '2' or already moved '0'.
3571          */
3572
3573         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3574
3575         /*
3576          * If we did not convert it, then we must try again.
3577          */
3578         if (!ret)
3579                 goto spin;
3580
3581         /*
3582          * Yeah! We succeeded in replacing the page.
3583          *
3584          * Now make the new head point back to the reader page.
3585          */
3586         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3587         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3588
3589         /* Finally update the reader page to the new head */
3590         cpu_buffer->reader_page = reader;
3591         cpu_buffer->reader_page->read = 0;
3592
3593         if (overwrite != cpu_buffer->last_overrun) {
3594                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3595                 cpu_buffer->last_overrun = overwrite;
3596         }
3597
3598         goto again;
3599
3600  out:
3601         /* Update the read_stamp on the first event */
3602         if (reader && reader->read == 0)
3603                 cpu_buffer->read_stamp = reader->page->time_stamp;
3604
3605         arch_spin_unlock(&cpu_buffer->lock);
3606         local_irq_restore(flags);
3607
3608         return reader;
3609 }
3610
3611 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3612 {
3613         struct ring_buffer_event *event;
3614         struct buffer_page *reader;
3615         unsigned length;
3616
3617         reader = rb_get_reader_page(cpu_buffer);
3618
3619         /* This function should not be called when buffer is empty */
3620         if (RB_WARN_ON(cpu_buffer, !reader))
3621                 return;
3622
3623         event = rb_reader_event(cpu_buffer);
3624
3625         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3626                 cpu_buffer->read++;
3627
3628         rb_update_read_stamp(cpu_buffer, event);
3629
3630         length = rb_event_length(event);
3631         cpu_buffer->reader_page->read += length;
3632 }
3633
3634 static void rb_advance_iter(struct ring_buffer_iter *iter)
3635 {
3636         struct ring_buffer_per_cpu *cpu_buffer;
3637         struct ring_buffer_event *event;
3638         unsigned length;
3639
3640         cpu_buffer = iter->cpu_buffer;
3641
3642         /*
3643          * Check if we are at the end of the buffer.
3644          */
3645         if (iter->head >= rb_page_size(iter->head_page)) {
3646                 /* discarded commits can make the page empty */
3647                 if (iter->head_page == cpu_buffer->commit_page)
3648                         return;
3649                 rb_inc_iter(iter);
3650                 return;
3651         }
3652
3653         event = rb_iter_head_event(iter);
3654
3655         length = rb_event_length(event);
3656
3657         /*
3658          * This should not be called to advance the header if we are
3659          * at the tail of the buffer.
3660          */
3661         if (RB_WARN_ON(cpu_buffer,
3662                        (iter->head_page == cpu_buffer->commit_page) &&
3663                        (iter->head + length > rb_commit_index(cpu_buffer))))
3664                 return;
3665
3666         rb_update_iter_read_stamp(iter, event);
3667
3668         iter->head += length;
3669
3670         /* check for end of page padding */
3671         if ((iter->head >= rb_page_size(iter->head_page)) &&
3672             (iter->head_page != cpu_buffer->commit_page))
3673                 rb_inc_iter(iter);
3674 }
3675
3676 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3677 {
3678         return cpu_buffer->lost_events;
3679 }
3680
3681 static struct ring_buffer_event *
3682 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3683                unsigned long *lost_events)
3684 {
3685         struct ring_buffer_event *event;
3686         struct buffer_page *reader;
3687         int nr_loops = 0;
3688
3689  again:
3690         /*
3691          * We repeat when a time extend is encountered.
3692          * Since the time extend is always attached to a data event,
3693          * we should never loop more than once.
3694          * (We never hit the following condition more than twice).
3695          */
3696         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3697                 return NULL;
3698
3699         reader = rb_get_reader_page(cpu_buffer);
3700         if (!reader)
3701                 return NULL;
3702
3703         event = rb_reader_event(cpu_buffer);
3704
3705         switch (event->type_len) {
3706         case RINGBUF_TYPE_PADDING:
3707                 if (rb_null_event(event))
3708                         RB_WARN_ON(cpu_buffer, 1);
3709                 /*
3710                  * Because the writer could be discarding every
3711                  * event it creates (which would probably be bad)
3712                  * if we were to go back to "again" then we may never
3713                  * catch up, and will trigger the warn on, or lock
3714                  * the box. Return the padding, and we will release
3715                  * the current locks, and try again.
3716                  */
3717                 return event;
3718
3719         case RINGBUF_TYPE_TIME_EXTEND:
3720                 /* Internal data, OK to advance */
3721                 rb_advance_reader(cpu_buffer);
3722                 goto again;
3723
3724         case RINGBUF_TYPE_TIME_STAMP:
3725                 /* FIXME: not implemented */
3726                 rb_advance_reader(cpu_buffer);
3727                 goto again;
3728
3729         case RINGBUF_TYPE_DATA:
3730                 if (ts) {
3731                         *ts = cpu_buffer->read_stamp + event->time_delta;
3732                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3733                                                          cpu_buffer->cpu, ts);
3734                 }
3735                 if (lost_events)
3736                         *lost_events = rb_lost_events(cpu_buffer);
3737                 return event;
3738
3739         default:
3740                 BUG();
3741         }
3742
3743         return NULL;
3744 }
3745 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3746
3747 static struct ring_buffer_event *
3748 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3749 {
3750         struct ring_buffer *buffer;
3751         struct ring_buffer_per_cpu *cpu_buffer;
3752         struct ring_buffer_event *event;
3753         int nr_loops = 0;
3754
3755         cpu_buffer = iter->cpu_buffer;
3756         buffer = cpu_buffer->buffer;
3757
3758         /*
3759          * Check if someone performed a consuming read to
3760          * the buffer. A consuming read invalidates the iterator
3761          * and we need to reset the iterator in this case.
3762          */
3763         if (unlikely(iter->cache_read != cpu_buffer->read ||
3764                      iter->cache_reader_page != cpu_buffer->reader_page))
3765                 rb_iter_reset(iter);
3766
3767  again:
3768         if (ring_buffer_iter_empty(iter))
3769                 return NULL;
3770
3771         /*
3772          * We repeat when a time extend is encountered or we hit
3773          * the end of the page. Since the time extend is always attached
3774          * to a data event, we should never loop more than three times.
3775          * Once for going to next page, once on time extend, and
3776          * finally once to get the event.
3777          * (We never hit the following condition more than thrice).
3778          */
3779         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3780                 return NULL;
3781
3782         if (rb_per_cpu_empty(cpu_buffer))
3783                 return NULL;
3784
3785         if (iter->head >= rb_page_size(iter->head_page)) {
3786                 rb_inc_iter(iter);
3787                 goto again;
3788         }
3789
3790         event = rb_iter_head_event(iter);
3791
3792         switch (event->type_len) {
3793         case RINGBUF_TYPE_PADDING:
3794                 if (rb_null_event(event)) {
3795                         rb_inc_iter(iter);
3796                         goto again;
3797                 }
3798                 rb_advance_iter(iter);
3799                 return event;
3800
3801         case RINGBUF_TYPE_TIME_EXTEND:
3802                 /* Internal data, OK to advance */
3803                 rb_advance_iter(iter);
3804                 goto again;
3805
3806         case RINGBUF_TYPE_TIME_STAMP:
3807                 /* FIXME: not implemented */
3808                 rb_advance_iter(iter);
3809                 goto again;
3810
3811         case RINGBUF_TYPE_DATA:
3812                 if (ts) {
3813                         *ts = iter->read_stamp + event->time_delta;
3814                         ring_buffer_normalize_time_stamp(buffer,
3815                                                          cpu_buffer->cpu, ts);
3816                 }
3817                 return event;
3818
3819         default:
3820                 BUG();
3821         }
3822
3823         return NULL;
3824 }
3825 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3826
3827 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3828 {
3829         if (likely(!in_nmi())) {
3830                 raw_spin_lock(&cpu_buffer->reader_lock);
3831                 return true;
3832         }
3833
3834         /*
3835          * If an NMI die dumps out the content of the ring buffer
3836          * trylock must be used to prevent a deadlock if the NMI
3837          * preempted a task that holds the ring buffer locks. If
3838          * we get the lock then all is fine, if not, then continue
3839          * to do the read, but this can corrupt the ring buffer,
3840          * so it must be permanently disabled from future writes.
3841          * Reading from NMI is a oneshot deal.
3842          */
3843         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3844                 return true;
3845
3846         /* Continue without locking, but disable the ring buffer */
3847         atomic_inc(&cpu_buffer->record_disabled);
3848         return false;
3849 }
3850
3851 static inline void
3852 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3853 {
3854         if (likely(locked))
3855                 raw_spin_unlock(&cpu_buffer->reader_lock);
3856         return;
3857 }
3858
3859 /**
3860  * ring_buffer_peek - peek at the next event to be read
3861  * @buffer: The ring buffer to read
3862  * @cpu: The cpu to peak at
3863  * @ts: The timestamp counter of this event.
3864  * @lost_events: a variable to store if events were lost (may be NULL)
3865  *
3866  * This will return the event that will be read next, but does
3867  * not consume the data.
3868  */
3869 struct ring_buffer_event *
3870 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3871                  unsigned long *lost_events)
3872 {
3873         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3874         struct ring_buffer_event *event;
3875         unsigned long flags;
3876         bool dolock;
3877
3878         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3879                 return NULL;
3880
3881  again:
3882         local_irq_save(flags);
3883         dolock = rb_reader_lock(cpu_buffer);
3884         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3885         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3886                 rb_advance_reader(cpu_buffer);
3887         rb_reader_unlock(cpu_buffer, dolock);
3888         local_irq_restore(flags);
3889
3890         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3891                 goto again;
3892
3893         return event;
3894 }
3895
3896 /**
3897  * ring_buffer_iter_peek - peek at the next event to be read
3898  * @iter: The ring buffer iterator
3899  * @ts: The timestamp counter of this event.
3900  *
3901  * This will return the event that will be read next, but does
3902  * not increment the iterator.
3903  */
3904 struct ring_buffer_event *
3905 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3906 {
3907         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3908         struct ring_buffer_event *event;
3909         unsigned long flags;
3910
3911  again:
3912         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3913         event = rb_iter_peek(iter, ts);
3914         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3915
3916         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3917                 goto again;
3918
3919         return event;
3920 }
3921
3922 /**
3923  * ring_buffer_consume - return an event and consume it
3924  * @buffer: The ring buffer to get the next event from
3925  * @cpu: the cpu to read the buffer from
3926  * @ts: a variable to store the timestamp (may be NULL)
3927  * @lost_events: a variable to store if events were lost (may be NULL)
3928  *
3929  * Returns the next event in the ring buffer, and that event is consumed.
3930  * Meaning, that sequential reads will keep returning a different event,
3931  * and eventually empty the ring buffer if the producer is slower.
3932  */
3933 struct ring_buffer_event *
3934 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3935                     unsigned long *lost_events)
3936 {
3937         struct ring_buffer_per_cpu *cpu_buffer;
3938         struct ring_buffer_event *event = NULL;
3939         unsigned long flags;
3940         bool dolock;
3941
3942  again:
3943         /* might be called in atomic */
3944         preempt_disable();
3945
3946         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3947                 goto out;
3948
3949         cpu_buffer = buffer->buffers[cpu];
3950         local_irq_save(flags);
3951         dolock = rb_reader_lock(cpu_buffer);
3952
3953         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3954         if (event) {
3955                 cpu_buffer->lost_events = 0;
3956                 rb_advance_reader(cpu_buffer);
3957         }
3958
3959         rb_reader_unlock(cpu_buffer, dolock);
3960         local_irq_restore(flags);
3961
3962  out:
3963         preempt_enable();
3964
3965         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3966                 goto again;
3967
3968         return event;
3969 }
3970 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3971
3972 /**
3973  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3974  * @buffer: The ring buffer to read from
3975  * @cpu: The cpu buffer to iterate over
3976  *
3977  * This performs the initial preparations necessary to iterate
3978  * through the buffer.  Memory is allocated, buffer recording
3979  * is disabled, and the iterator pointer is returned to the caller.
3980  *
3981  * Disabling buffer recordng prevents the reading from being
3982  * corrupted. This is not a consuming read, so a producer is not
3983  * expected.
3984  *
3985  * After a sequence of ring_buffer_read_prepare calls, the user is
3986  * expected to make at least one call to ring_buffer_read_prepare_sync.
3987  * Afterwards, ring_buffer_read_start is invoked to get things going
3988  * for real.
3989  *
3990  * This overall must be paired with ring_buffer_read_finish.
3991  */
3992 struct ring_buffer_iter *
3993 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3994 {
3995         struct ring_buffer_per_cpu *cpu_buffer;
3996         struct ring_buffer_iter *iter;
3997
3998         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3999                 return NULL;
4000
4001         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4002         if (!iter)
4003                 return NULL;
4004
4005         cpu_buffer = buffer->buffers[cpu];
4006
4007         iter->cpu_buffer = cpu_buffer;
4008
4009         atomic_inc(&buffer->resize_disabled);
4010         atomic_inc(&cpu_buffer->record_disabled);
4011
4012         return iter;
4013 }
4014 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4015
4016 /**
4017  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4018  *
4019  * All previously invoked ring_buffer_read_prepare calls to prepare
4020  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4021  * calls on those iterators are allowed.
4022  */
4023 void
4024 ring_buffer_read_prepare_sync(void)
4025 {
4026         synchronize_sched();
4027 }
4028 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4029
4030 /**
4031  * ring_buffer_read_start - start a non consuming read of the buffer
4032  * @iter: The iterator returned by ring_buffer_read_prepare
4033  *
4034  * This finalizes the startup of an iteration through the buffer.
4035  * The iterator comes from a call to ring_buffer_read_prepare and
4036  * an intervening ring_buffer_read_prepare_sync must have been
4037  * performed.
4038  *
4039  * Must be paired with ring_buffer_read_finish.
4040  */
4041 void
4042 ring_buffer_read_start(struct ring_buffer_iter *iter)
4043 {
4044         struct ring_buffer_per_cpu *cpu_buffer;
4045         unsigned long flags;
4046
4047         if (!iter)
4048                 return;
4049
4050         cpu_buffer = iter->cpu_buffer;
4051
4052         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4053         arch_spin_lock(&cpu_buffer->lock);
4054         rb_iter_reset(iter);
4055         arch_spin_unlock(&cpu_buffer->lock);
4056         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4057 }
4058 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4059
4060 /**
4061  * ring_buffer_read_finish - finish reading the iterator of the buffer
4062  * @iter: The iterator retrieved by ring_buffer_start
4063  *
4064  * This re-enables the recording to the buffer, and frees the
4065  * iterator.
4066  */
4067 void
4068 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4069 {
4070         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4071         unsigned long flags;
4072
4073         /*
4074          * Ring buffer is disabled from recording, here's a good place
4075          * to check the integrity of the ring buffer.
4076          * Must prevent readers from trying to read, as the check
4077          * clears the HEAD page and readers require it.
4078          */
4079         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4080         rb_check_pages(cpu_buffer);
4081         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4082
4083         atomic_dec(&cpu_buffer->record_disabled);
4084         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4085         kfree(iter);
4086 }
4087 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4088
4089 /**
4090  * ring_buffer_read - read the next item in the ring buffer by the iterator
4091  * @iter: The ring buffer iterator
4092  * @ts: The time stamp of the event read.
4093  *
4094  * This reads the next event in the ring buffer and increments the iterator.
4095  */
4096 struct ring_buffer_event *
4097 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4098 {
4099         struct ring_buffer_event *event;
4100         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4101         unsigned long flags;
4102
4103         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4104  again:
4105         event = rb_iter_peek(iter, ts);
4106         if (!event)
4107                 goto out;
4108
4109         if (event->type_len == RINGBUF_TYPE_PADDING)
4110                 goto again;
4111
4112         rb_advance_iter(iter);
4113  out:
4114         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4115
4116         return event;
4117 }
4118 EXPORT_SYMBOL_GPL(ring_buffer_read);
4119
4120 /**
4121  * ring_buffer_size - return the size of the ring buffer (in bytes)
4122  * @buffer: The ring buffer.
4123  */
4124 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4125 {
4126         /*
4127          * Earlier, this method returned
4128          *      BUF_PAGE_SIZE * buffer->nr_pages
4129          * Since the nr_pages field is now removed, we have converted this to
4130          * return the per cpu buffer value.
4131          */
4132         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4133                 return 0;
4134
4135         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4136 }
4137 EXPORT_SYMBOL_GPL(ring_buffer_size);
4138
4139 static void
4140 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4141 {
4142         rb_head_page_deactivate(cpu_buffer);
4143
4144         cpu_buffer->head_page
4145                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4146         local_set(&cpu_buffer->head_page->write, 0);
4147         local_set(&cpu_buffer->head_page->entries, 0);
4148         local_set(&cpu_buffer->head_page->page->commit, 0);
4149
4150         cpu_buffer->head_page->read = 0;
4151
4152         cpu_buffer->tail_page = cpu_buffer->head_page;
4153         cpu_buffer->commit_page = cpu_buffer->head_page;
4154
4155         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4156         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4157         local_set(&cpu_buffer->reader_page->write, 0);
4158         local_set(&cpu_buffer->reader_page->entries, 0);
4159         local_set(&cpu_buffer->reader_page->page->commit, 0);
4160         cpu_buffer->reader_page->read = 0;
4161
4162         local_set(&cpu_buffer->entries_bytes, 0);
4163         local_set(&cpu_buffer->overrun, 0);
4164         local_set(&cpu_buffer->commit_overrun, 0);
4165         local_set(&cpu_buffer->dropped_events, 0);
4166         local_set(&cpu_buffer->entries, 0);
4167         local_set(&cpu_buffer->committing, 0);
4168         local_set(&cpu_buffer->commits, 0);
4169         cpu_buffer->read = 0;
4170         cpu_buffer->read_bytes = 0;
4171
4172         cpu_buffer->write_stamp = 0;
4173         cpu_buffer->read_stamp = 0;
4174
4175         cpu_buffer->lost_events = 0;
4176         cpu_buffer->last_overrun = 0;
4177
4178         rb_head_page_activate(cpu_buffer);
4179 }
4180
4181 /**
4182  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4183  * @buffer: The ring buffer to reset a per cpu buffer of
4184  * @cpu: The CPU buffer to be reset
4185  */
4186 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4187 {
4188         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4189         unsigned long flags;
4190
4191         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4192                 return;
4193
4194         atomic_inc(&buffer->resize_disabled);
4195         atomic_inc(&cpu_buffer->record_disabled);
4196
4197         /* Make sure all commits have finished */
4198         synchronize_sched();
4199
4200         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4201
4202         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4203                 goto out;
4204
4205         arch_spin_lock(&cpu_buffer->lock);
4206
4207         rb_reset_cpu(cpu_buffer);
4208
4209         arch_spin_unlock(&cpu_buffer->lock);
4210
4211  out:
4212         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4213
4214         atomic_dec(&cpu_buffer->record_disabled);
4215         atomic_dec(&buffer->resize_disabled);
4216 }
4217 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4218
4219 /**
4220  * ring_buffer_reset - reset a ring buffer
4221  * @buffer: The ring buffer to reset all cpu buffers
4222  */
4223 void ring_buffer_reset(struct ring_buffer *buffer)
4224 {
4225         int cpu;
4226
4227         for_each_buffer_cpu(buffer, cpu)
4228                 ring_buffer_reset_cpu(buffer, cpu);
4229 }
4230 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4231
4232 /**
4233  * rind_buffer_empty - is the ring buffer empty?
4234  * @buffer: The ring buffer to test
4235  */
4236 bool ring_buffer_empty(struct ring_buffer *buffer)
4237 {
4238         struct ring_buffer_per_cpu *cpu_buffer;
4239         unsigned long flags;
4240         bool dolock;
4241         int cpu;
4242         int ret;
4243
4244         /* yes this is racy, but if you don't like the race, lock the buffer */
4245         for_each_buffer_cpu(buffer, cpu) {
4246                 cpu_buffer = buffer->buffers[cpu];
4247                 local_irq_save(flags);
4248                 dolock = rb_reader_lock(cpu_buffer);
4249                 ret = rb_per_cpu_empty(cpu_buffer);
4250                 rb_reader_unlock(cpu_buffer, dolock);
4251                 local_irq_restore(flags);
4252
4253                 if (!ret)
4254                         return false;
4255         }
4256
4257         return true;
4258 }
4259 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4260
4261 /**
4262  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4263  * @buffer: The ring buffer
4264  * @cpu: The CPU buffer to test
4265  */
4266 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4267 {
4268         struct ring_buffer_per_cpu *cpu_buffer;
4269         unsigned long flags;
4270         bool dolock;
4271         int ret;
4272
4273         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4274                 return true;
4275
4276         cpu_buffer = buffer->buffers[cpu];
4277         local_irq_save(flags);
4278         dolock = rb_reader_lock(cpu_buffer);
4279         ret = rb_per_cpu_empty(cpu_buffer);
4280         rb_reader_unlock(cpu_buffer, dolock);
4281         local_irq_restore(flags);
4282
4283         return ret;
4284 }
4285 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4286
4287 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4288 /**
4289  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4290  * @buffer_a: One buffer to swap with
4291  * @buffer_b: The other buffer to swap with
4292  *
4293  * This function is useful for tracers that want to take a "snapshot"
4294  * of a CPU buffer and has another back up buffer lying around.
4295  * it is expected that the tracer handles the cpu buffer not being
4296  * used at the moment.
4297  */
4298 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4299                          struct ring_buffer *buffer_b, int cpu)
4300 {
4301         struct ring_buffer_per_cpu *cpu_buffer_a;
4302         struct ring_buffer_per_cpu *cpu_buffer_b;
4303         int ret = -EINVAL;
4304
4305         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4306             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4307                 goto out;
4308
4309         cpu_buffer_a = buffer_a->buffers[cpu];
4310         cpu_buffer_b = buffer_b->buffers[cpu];
4311
4312         /* At least make sure the two buffers are somewhat the same */
4313         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4314                 goto out;
4315
4316         ret = -EAGAIN;
4317
4318         if (atomic_read(&buffer_a->record_disabled))
4319                 goto out;
4320
4321         if (atomic_read(&buffer_b->record_disabled))
4322                 goto out;
4323
4324         if (atomic_read(&cpu_buffer_a->record_disabled))
4325                 goto out;
4326
4327         if (atomic_read(&cpu_buffer_b->record_disabled))
4328                 goto out;
4329
4330         /*
4331          * We can't do a synchronize_sched here because this
4332          * function can be called in atomic context.
4333          * Normally this will be called from the same CPU as cpu.
4334          * If not it's up to the caller to protect this.
4335          */
4336         atomic_inc(&cpu_buffer_a->record_disabled);
4337         atomic_inc(&cpu_buffer_b->record_disabled);
4338
4339         ret = -EBUSY;
4340         if (local_read(&cpu_buffer_a->committing))
4341                 goto out_dec;
4342         if (local_read(&cpu_buffer_b->committing))
4343                 goto out_dec;
4344
4345         buffer_a->buffers[cpu] = cpu_buffer_b;
4346         buffer_b->buffers[cpu] = cpu_buffer_a;
4347
4348         cpu_buffer_b->buffer = buffer_a;
4349         cpu_buffer_a->buffer = buffer_b;
4350
4351         ret = 0;
4352
4353 out_dec:
4354         atomic_dec(&cpu_buffer_a->record_disabled);
4355         atomic_dec(&cpu_buffer_b->record_disabled);
4356 out:
4357         return ret;
4358 }
4359 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4360 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4361
4362 /**
4363  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4364  * @buffer: the buffer to allocate for.
4365  * @cpu: the cpu buffer to allocate.
4366  *
4367  * This function is used in conjunction with ring_buffer_read_page.
4368  * When reading a full page from the ring buffer, these functions
4369  * can be used to speed up the process. The calling function should
4370  * allocate a few pages first with this function. Then when it
4371  * needs to get pages from the ring buffer, it passes the result
4372  * of this function into ring_buffer_read_page, which will swap
4373  * the page that was allocated, with the read page of the buffer.
4374  *
4375  * Returns:
4376  *  The page allocated, or NULL on error.
4377  */
4378 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4379 {
4380         struct buffer_data_page *bpage;
4381         struct page *page;
4382
4383         page = alloc_pages_node(cpu_to_node(cpu),
4384                                 GFP_KERNEL | __GFP_NORETRY, 0);
4385         if (!page)
4386                 return NULL;
4387
4388         bpage = page_address(page);
4389
4390         rb_init_page(bpage);
4391
4392         return bpage;
4393 }
4394 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4395
4396 /**
4397  * ring_buffer_free_read_page - free an allocated read page
4398  * @buffer: the buffer the page was allocate for
4399  * @data: the page to free
4400  *
4401  * Free a page allocated from ring_buffer_alloc_read_page.
4402  */
4403 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4404 {
4405         free_page((unsigned long)data);
4406 }
4407 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4408
4409 /**
4410  * ring_buffer_read_page - extract a page from the ring buffer
4411  * @buffer: buffer to extract from
4412  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4413  * @len: amount to extract
4414  * @cpu: the cpu of the buffer to extract
4415  * @full: should the extraction only happen when the page is full.
4416  *
4417  * This function will pull out a page from the ring buffer and consume it.
4418  * @data_page must be the address of the variable that was returned
4419  * from ring_buffer_alloc_read_page. This is because the page might be used
4420  * to swap with a page in the ring buffer.
4421  *
4422  * for example:
4423  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4424  *      if (!rpage)
4425  *              return error;
4426  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4427  *      if (ret >= 0)
4428  *              process_page(rpage, ret);
4429  *
4430  * When @full is set, the function will not return true unless
4431  * the writer is off the reader page.
4432  *
4433  * Note: it is up to the calling functions to handle sleeps and wakeups.
4434  *  The ring buffer can be used anywhere in the kernel and can not
4435  *  blindly call wake_up. The layer that uses the ring buffer must be
4436  *  responsible for that.
4437  *
4438  * Returns:
4439  *  >=0 if data has been transferred, returns the offset of consumed data.
4440  *  <0 if no data has been transferred.
4441  */
4442 int ring_buffer_read_page(struct ring_buffer *buffer,
4443                           void **data_page, size_t len, int cpu, int full)
4444 {
4445         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4446         struct ring_buffer_event *event;
4447         struct buffer_data_page *bpage;
4448         struct buffer_page *reader;
4449         unsigned long missed_events;
4450         unsigned long flags;
4451         unsigned int commit;
4452         unsigned int read;
4453         u64 save_timestamp;
4454         int ret = -1;
4455
4456         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4457                 goto out;
4458
4459         /*
4460          * If len is not big enough to hold the page header, then
4461          * we can not copy anything.
4462          */
4463         if (len <= BUF_PAGE_HDR_SIZE)
4464                 goto out;
4465
4466         len -= BUF_PAGE_HDR_SIZE;
4467
4468         if (!data_page)
4469                 goto out;
4470
4471         bpage = *data_page;
4472         if (!bpage)
4473                 goto out;
4474
4475         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4476
4477         reader = rb_get_reader_page(cpu_buffer);
4478         if (!reader)
4479                 goto out_unlock;
4480
4481         event = rb_reader_event(cpu_buffer);
4482
4483         read = reader->read;
4484         commit = rb_page_commit(reader);
4485
4486         /* Check if any events were dropped */
4487         missed_events = cpu_buffer->lost_events;
4488
4489         /*
4490          * If this page has been partially read or
4491          * if len is not big enough to read the rest of the page or
4492          * a writer is still on the page, then
4493          * we must copy the data from the page to the buffer.
4494          * Otherwise, we can simply swap the page with the one passed in.
4495          */
4496         if (read || (len < (commit - read)) ||
4497             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4498                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4499                 unsigned int rpos = read;
4500                 unsigned int pos = 0;
4501                 unsigned int size;
4502
4503                 if (full)
4504                         goto out_unlock;
4505
4506                 if (len > (commit - read))
4507                         len = (commit - read);
4508
4509                 /* Always keep the time extend and data together */
4510                 size = rb_event_ts_length(event);
4511
4512                 if (len < size)
4513                         goto out_unlock;
4514
4515                 /* save the current timestamp, since the user will need it */
4516                 save_timestamp = cpu_buffer->read_stamp;
4517
4518                 /* Need to copy one event at a time */
4519                 do {
4520                         /* We need the size of one event, because
4521                          * rb_advance_reader only advances by one event,
4522                          * whereas rb_event_ts_length may include the size of
4523                          * one or two events.
4524                          * We have already ensured there's enough space if this
4525                          * is a time extend. */
4526                         size = rb_event_length(event);
4527                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4528
4529                         len -= size;
4530
4531                         rb_advance_reader(cpu_buffer);
4532                         rpos = reader->read;
4533                         pos += size;
4534
4535                         if (rpos >= commit)
4536                                 break;
4537
4538                         event = rb_reader_event(cpu_buffer);
4539                         /* Always keep the time extend and data together */
4540                         size = rb_event_ts_length(event);
4541                 } while (len >= size);
4542
4543                 /* update bpage */
4544                 local_set(&bpage->commit, pos);
4545                 bpage->time_stamp = save_timestamp;
4546
4547                 /* we copied everything to the beginning */
4548                 read = 0;
4549         } else {
4550                 /* update the entry counter */
4551                 cpu_buffer->read += rb_page_entries(reader);
4552                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4553
4554                 /* swap the pages */
4555                 rb_init_page(bpage);
4556                 bpage = reader->page;
4557                 reader->page = *data_page;
4558                 local_set(&reader->write, 0);
4559                 local_set(&reader->entries, 0);
4560                 reader->read = 0;
4561                 *data_page = bpage;
4562
4563                 /*
4564                  * Use the real_end for the data size,
4565                  * This gives us a chance to store the lost events
4566                  * on the page.
4567                  */
4568                 if (reader->real_end)
4569                         local_set(&bpage->commit, reader->real_end);
4570         }
4571         ret = read;
4572
4573         cpu_buffer->lost_events = 0;
4574
4575         commit = local_read(&bpage->commit);
4576         /*
4577          * Set a flag in the commit field if we lost events
4578          */
4579         if (missed_events) {
4580                 /* If there is room at the end of the page to save the
4581                  * missed events, then record it there.
4582                  */
4583                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4584                         memcpy(&bpage->data[commit], &missed_events,
4585                                sizeof(missed_events));
4586                         local_add(RB_MISSED_STORED, &bpage->commit);
4587                         commit += sizeof(missed_events);
4588                 }
4589                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4590         }
4591
4592         /*
4593          * This page may be off to user land. Zero it out here.
4594          */
4595         if (commit < BUF_PAGE_SIZE)
4596                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4597
4598  out_unlock:
4599         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4600
4601  out:
4602         return ret;
4603 }
4604 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4605
4606 /*
4607  * We only allocate new buffers, never free them if the CPU goes down.
4608  * If we were to free the buffer, then the user would lose any trace that was in
4609  * the buffer.
4610  */
4611 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4612 {
4613         struct ring_buffer *buffer;
4614         long nr_pages_same;
4615         int cpu_i;
4616         unsigned long nr_pages;
4617
4618         buffer = container_of(node, struct ring_buffer, node);
4619         if (cpumask_test_cpu(cpu, buffer->cpumask))
4620                 return 0;
4621
4622         nr_pages = 0;
4623         nr_pages_same = 1;
4624         /* check if all cpu sizes are same */
4625         for_each_buffer_cpu(buffer, cpu_i) {
4626                 /* fill in the size from first enabled cpu */
4627                 if (nr_pages == 0)
4628                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4629                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4630                         nr_pages_same = 0;
4631                         break;
4632                 }
4633         }
4634         /* allocate minimum pages, user can later expand it */
4635         if (!nr_pages_same)
4636                 nr_pages = 2;
4637         buffer->buffers[cpu] =
4638                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4639         if (!buffer->buffers[cpu]) {
4640                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4641                      cpu);
4642                 return -ENOMEM;
4643         }
4644         smp_wmb();
4645         cpumask_set_cpu(cpu, buffer->cpumask);
4646         return 0;
4647 }
4648
4649 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4650 /*
4651  * This is a basic integrity check of the ring buffer.
4652  * Late in the boot cycle this test will run when configured in.
4653  * It will kick off a thread per CPU that will go into a loop
4654  * writing to the per cpu ring buffer various sizes of data.
4655  * Some of the data will be large items, some small.
4656  *
4657  * Another thread is created that goes into a spin, sending out
4658  * IPIs to the other CPUs to also write into the ring buffer.
4659  * this is to test the nesting ability of the buffer.
4660  *
4661  * Basic stats are recorded and reported. If something in the
4662  * ring buffer should happen that's not expected, a big warning
4663  * is displayed and all ring buffers are disabled.
4664  */
4665 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4666
4667 struct rb_test_data {
4668         struct ring_buffer      *buffer;
4669         unsigned long           events;
4670         unsigned long           bytes_written;
4671         unsigned long           bytes_alloc;
4672         unsigned long           bytes_dropped;
4673         unsigned long           events_nested;
4674         unsigned long           bytes_written_nested;
4675         unsigned long           bytes_alloc_nested;
4676         unsigned long           bytes_dropped_nested;
4677         int                     min_size_nested;
4678         int                     max_size_nested;
4679         int                     max_size;
4680         int                     min_size;
4681         int                     cpu;
4682         int                     cnt;
4683 };
4684
4685 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4686
4687 /* 1 meg per cpu */
4688 #define RB_TEST_BUFFER_SIZE     1048576
4689
4690 static char rb_string[] __initdata =
4691         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4692         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4693         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4694
4695 static bool rb_test_started __initdata;
4696
4697 struct rb_item {
4698         int size;
4699         char str[];
4700 };
4701
4702 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4703 {
4704         struct ring_buffer_event *event;
4705         struct rb_item *item;
4706         bool started;
4707         int event_len;
4708         int size;
4709         int len;
4710         int cnt;
4711
4712         /* Have nested writes different that what is written */
4713         cnt = data->cnt + (nested ? 27 : 0);
4714
4715         /* Multiply cnt by ~e, to make some unique increment */
4716         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4717
4718         len = size + sizeof(struct rb_item);
4719
4720         started = rb_test_started;
4721         /* read rb_test_started before checking buffer enabled */
4722         smp_rmb();
4723
4724         event = ring_buffer_lock_reserve(data->buffer, len);
4725         if (!event) {
4726                 /* Ignore dropped events before test starts. */
4727                 if (started) {
4728                         if (nested)
4729                                 data->bytes_dropped += len;
4730                         else
4731                                 data->bytes_dropped_nested += len;
4732                 }
4733                 return len;
4734         }
4735
4736         event_len = ring_buffer_event_length(event);
4737
4738         if (RB_WARN_ON(data->buffer, event_len < len))
4739                 goto out;
4740
4741         item = ring_buffer_event_data(event);
4742         item->size = size;
4743         memcpy(item->str, rb_string, size);
4744
4745         if (nested) {
4746                 data->bytes_alloc_nested += event_len;
4747                 data->bytes_written_nested += len;
4748                 data->events_nested++;
4749                 if (!data->min_size_nested || len < data->min_size_nested)
4750                         data->min_size_nested = len;
4751                 if (len > data->max_size_nested)
4752                         data->max_size_nested = len;
4753         } else {
4754                 data->bytes_alloc += event_len;
4755                 data->bytes_written += len;
4756                 data->events++;
4757                 if (!data->min_size || len < data->min_size)
4758                         data->max_size = len;
4759                 if (len > data->max_size)
4760                         data->max_size = len;
4761         }
4762
4763  out:
4764         ring_buffer_unlock_commit(data->buffer, event);
4765
4766         return 0;
4767 }
4768
4769 static __init int rb_test(void *arg)
4770 {
4771         struct rb_test_data *data = arg;
4772
4773         while (!kthread_should_stop()) {
4774                 rb_write_something(data, false);
4775                 data->cnt++;
4776
4777                 set_current_state(TASK_INTERRUPTIBLE);
4778                 /* Now sleep between a min of 100-300us and a max of 1ms */
4779                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4780         }
4781
4782         return 0;
4783 }
4784
4785 static __init void rb_ipi(void *ignore)
4786 {
4787         struct rb_test_data *data;
4788         int cpu = smp_processor_id();
4789
4790         data = &rb_data[cpu];
4791         rb_write_something(data, true);
4792 }
4793
4794 static __init int rb_hammer_test(void *arg)
4795 {
4796         while (!kthread_should_stop()) {
4797
4798                 /* Send an IPI to all cpus to write data! */
4799                 smp_call_function(rb_ipi, NULL, 1);
4800                 /* No sleep, but for non preempt, let others run */
4801                 schedule();
4802         }
4803
4804         return 0;
4805 }
4806
4807 static __init int test_ringbuffer(void)
4808 {
4809         struct task_struct *rb_hammer;
4810         struct ring_buffer *buffer;
4811         int cpu;
4812         int ret = 0;
4813
4814         pr_info("Running ring buffer tests...\n");
4815
4816         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4817         if (WARN_ON(!buffer))
4818                 return 0;
4819
4820         /* Disable buffer so that threads can't write to it yet */
4821         ring_buffer_record_off(buffer);
4822
4823         for_each_online_cpu(cpu) {
4824                 rb_data[cpu].buffer = buffer;
4825                 rb_data[cpu].cpu = cpu;
4826                 rb_data[cpu].cnt = cpu;
4827                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4828                                                  "rbtester/%d", cpu);
4829                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4830                         pr_cont("FAILED\n");
4831                         ret = PTR_ERR(rb_threads[cpu]);
4832                         goto out_free;
4833                 }
4834
4835                 kthread_bind(rb_threads[cpu], cpu);
4836                 wake_up_process(rb_threads[cpu]);
4837         }
4838
4839         /* Now create the rb hammer! */
4840         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4841         if (WARN_ON(IS_ERR(rb_hammer))) {
4842                 pr_cont("FAILED\n");
4843                 ret = PTR_ERR(rb_hammer);
4844                 goto out_free;
4845         }
4846
4847         ring_buffer_record_on(buffer);
4848         /*
4849          * Show buffer is enabled before setting rb_test_started.
4850          * Yes there's a small race window where events could be
4851          * dropped and the thread wont catch it. But when a ring
4852          * buffer gets enabled, there will always be some kind of
4853          * delay before other CPUs see it. Thus, we don't care about
4854          * those dropped events. We care about events dropped after
4855          * the threads see that the buffer is active.
4856          */
4857         smp_wmb();
4858         rb_test_started = true;
4859
4860         set_current_state(TASK_INTERRUPTIBLE);
4861         /* Just run for 10 seconds */;
4862         schedule_timeout(10 * HZ);
4863
4864         kthread_stop(rb_hammer);
4865
4866  out_free:
4867         for_each_online_cpu(cpu) {
4868                 if (!rb_threads[cpu])
4869                         break;
4870                 kthread_stop(rb_threads[cpu]);
4871         }
4872         if (ret) {
4873                 ring_buffer_free(buffer);
4874                 return ret;
4875         }
4876
4877         /* Report! */
4878         pr_info("finished\n");
4879         for_each_online_cpu(cpu) {
4880                 struct ring_buffer_event *event;
4881                 struct rb_test_data *data = &rb_data[cpu];
4882                 struct rb_item *item;
4883                 unsigned long total_events;
4884                 unsigned long total_dropped;
4885                 unsigned long total_written;
4886                 unsigned long total_alloc;
4887                 unsigned long total_read = 0;
4888                 unsigned long total_size = 0;
4889                 unsigned long total_len = 0;
4890                 unsigned long total_lost = 0;
4891                 unsigned long lost;
4892                 int big_event_size;
4893                 int small_event_size;
4894
4895                 ret = -1;
4896
4897                 total_events = data->events + data->events_nested;
4898                 total_written = data->bytes_written + data->bytes_written_nested;
4899                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4900                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4901
4902                 big_event_size = data->max_size + data->max_size_nested;
4903                 small_event_size = data->min_size + data->min_size_nested;
4904
4905                 pr_info("CPU %d:\n", cpu);
4906                 pr_info("              events:    %ld\n", total_events);
4907                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4908                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4909                 pr_info("       written bytes:    %ld\n", total_written);
4910                 pr_info("       biggest event:    %d\n", big_event_size);
4911                 pr_info("      smallest event:    %d\n", small_event_size);
4912
4913                 if (RB_WARN_ON(buffer, total_dropped))
4914                         break;
4915
4916                 ret = 0;
4917
4918                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4919                         total_lost += lost;
4920                         item = ring_buffer_event_data(event);
4921                         total_len += ring_buffer_event_length(event);
4922                         total_size += item->size + sizeof(struct rb_item);
4923                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4924                                 pr_info("FAILED!\n");
4925                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4926                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4927                                 RB_WARN_ON(buffer, 1);
4928                                 ret = -1;
4929                                 break;
4930                         }
4931                         total_read++;
4932                 }
4933                 if (ret)
4934                         break;
4935
4936                 ret = -1;
4937
4938                 pr_info("         read events:   %ld\n", total_read);
4939                 pr_info("         lost events:   %ld\n", total_lost);
4940                 pr_info("        total events:   %ld\n", total_lost + total_read);
4941                 pr_info("  recorded len bytes:   %ld\n", total_len);
4942                 pr_info(" recorded size bytes:   %ld\n", total_size);
4943                 if (total_lost)
4944                         pr_info(" With dropped events, record len and size may not match\n"
4945                                 " alloced and written from above\n");
4946                 if (!total_lost) {
4947                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4948                                        total_size != total_written))
4949                                 break;
4950                 }
4951                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4952                         break;
4953
4954                 ret = 0;
4955         }
4956         if (!ret)
4957                 pr_info("Ring buffer PASSED!\n");
4958
4959         ring_buffer_free(buffer);
4960         return 0;
4961 }
4962
4963 late_initcall(test_ringbuffer);
4964 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */