Merge branch 'akpm' (patches from Andrew)
[sfrench/cifs-2.6.git] / kernel / time / timekeeping.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24
25 #include "tick-internal.h"
26 #include "ntp_internal.h"
27 #include "timekeeping_internal.h"
28
29 #define TK_CLEAR_NTP            (1 << 0)
30 #define TK_MIRROR               (1 << 1)
31 #define TK_CLOCK_WAS_SET        (1 << 2)
32
33 enum timekeeping_adv_mode {
34         /* Update timekeeper when a tick has passed */
35         TK_ADV_TICK,
36
37         /* Update timekeeper on a direct frequency change */
38         TK_ADV_FREQ
39 };
40
41 /*
42  * The most important data for readout fits into a single 64 byte
43  * cache line.
44  */
45 static struct {
46         seqcount_t              seq;
47         struct timekeeper       timekeeper;
48 } tk_core ____cacheline_aligned = {
49         .seq = SEQCNT_ZERO(tk_core.seq),
50 };
51
52 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
53 static struct timekeeper shadow_timekeeper;
54
55 /**
56  * struct tk_fast - NMI safe timekeeper
57  * @seq:        Sequence counter for protecting updates. The lowest bit
58  *              is the index for the tk_read_base array
59  * @base:       tk_read_base array. Access is indexed by the lowest bit of
60  *              @seq.
61  *
62  * See @update_fast_timekeeper() below.
63  */
64 struct tk_fast {
65         seqcount_t              seq;
66         struct tk_read_base     base[2];
67 };
68
69 /* Suspend-time cycles value for halted fast timekeeper. */
70 static u64 cycles_at_suspend;
71
72 static u64 dummy_clock_read(struct clocksource *cs)
73 {
74         return cycles_at_suspend;
75 }
76
77 static struct clocksource dummy_clock = {
78         .read = dummy_clock_read,
79 };
80
81 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
82         .base[0] = { .clock = &dummy_clock, },
83         .base[1] = { .clock = &dummy_clock, },
84 };
85
86 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
87         .base[0] = { .clock = &dummy_clock, },
88         .base[1] = { .clock = &dummy_clock, },
89 };
90
91 /* flag for if timekeeping is suspended */
92 int __read_mostly timekeeping_suspended;
93
94 static inline void tk_normalize_xtime(struct timekeeper *tk)
95 {
96         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
97                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
98                 tk->xtime_sec++;
99         }
100         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
101                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
102                 tk->raw_sec++;
103         }
104 }
105
106 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
107 {
108         struct timespec64 ts;
109
110         ts.tv_sec = tk->xtime_sec;
111         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
112         return ts;
113 }
114
115 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
116 {
117         tk->xtime_sec = ts->tv_sec;
118         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
119 }
120
121 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
122 {
123         tk->xtime_sec += ts->tv_sec;
124         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
125         tk_normalize_xtime(tk);
126 }
127
128 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
129 {
130         struct timespec64 tmp;
131
132         /*
133          * Verify consistency of: offset_real = -wall_to_monotonic
134          * before modifying anything
135          */
136         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
137                                         -tk->wall_to_monotonic.tv_nsec);
138         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
139         tk->wall_to_monotonic = wtm;
140         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
141         tk->offs_real = timespec64_to_ktime(tmp);
142         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
143 }
144
145 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
146 {
147         tk->offs_boot = ktime_add(tk->offs_boot, delta);
148 }
149
150 /*
151  * tk_clock_read - atomic clocksource read() helper
152  *
153  * This helper is necessary to use in the read paths because, while the
154  * seqlock ensures we don't return a bad value while structures are updated,
155  * it doesn't protect from potential crashes. There is the possibility that
156  * the tkr's clocksource may change between the read reference, and the
157  * clock reference passed to the read function.  This can cause crashes if
158  * the wrong clocksource is passed to the wrong read function.
159  * This isn't necessary to use when holding the timekeeper_lock or doing
160  * a read of the fast-timekeeper tkrs (which is protected by its own locking
161  * and update logic).
162  */
163 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
164 {
165         struct clocksource *clock = READ_ONCE(tkr->clock);
166
167         return clock->read(clock);
168 }
169
170 #ifdef CONFIG_DEBUG_TIMEKEEPING
171 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
172
173 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
174 {
175
176         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
177         const char *name = tk->tkr_mono.clock->name;
178
179         if (offset > max_cycles) {
180                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
181                                 offset, name, max_cycles);
182                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
183         } else {
184                 if (offset > (max_cycles >> 1)) {
185                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
186                                         offset, name, max_cycles >> 1);
187                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
188                 }
189         }
190
191         if (tk->underflow_seen) {
192                 if (jiffies - tk->last_warning > WARNING_FREQ) {
193                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
194                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
195                         printk_deferred("         Your kernel is probably still fine.\n");
196                         tk->last_warning = jiffies;
197                 }
198                 tk->underflow_seen = 0;
199         }
200
201         if (tk->overflow_seen) {
202                 if (jiffies - tk->last_warning > WARNING_FREQ) {
203                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
204                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
205                         printk_deferred("         Your kernel is probably still fine.\n");
206                         tk->last_warning = jiffies;
207                 }
208                 tk->overflow_seen = 0;
209         }
210 }
211
212 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
213 {
214         struct timekeeper *tk = &tk_core.timekeeper;
215         u64 now, last, mask, max, delta;
216         unsigned int seq;
217
218         /*
219          * Since we're called holding a seqlock, the data may shift
220          * under us while we're doing the calculation. This can cause
221          * false positives, since we'd note a problem but throw the
222          * results away. So nest another seqlock here to atomically
223          * grab the points we are checking with.
224          */
225         do {
226                 seq = read_seqcount_begin(&tk_core.seq);
227                 now = tk_clock_read(tkr);
228                 last = tkr->cycle_last;
229                 mask = tkr->mask;
230                 max = tkr->clock->max_cycles;
231         } while (read_seqcount_retry(&tk_core.seq, seq));
232
233         delta = clocksource_delta(now, last, mask);
234
235         /*
236          * Try to catch underflows by checking if we are seeing small
237          * mask-relative negative values.
238          */
239         if (unlikely((~delta & mask) < (mask >> 3))) {
240                 tk->underflow_seen = 1;
241                 delta = 0;
242         }
243
244         /* Cap delta value to the max_cycles values to avoid mult overflows */
245         if (unlikely(delta > max)) {
246                 tk->overflow_seen = 1;
247                 delta = tkr->clock->max_cycles;
248         }
249
250         return delta;
251 }
252 #else
253 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
254 {
255 }
256 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
257 {
258         u64 cycle_now, delta;
259
260         /* read clocksource */
261         cycle_now = tk_clock_read(tkr);
262
263         /* calculate the delta since the last update_wall_time */
264         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
265
266         return delta;
267 }
268 #endif
269
270 /**
271  * tk_setup_internals - Set up internals to use clocksource clock.
272  *
273  * @tk:         The target timekeeper to setup.
274  * @clock:              Pointer to clocksource.
275  *
276  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
277  * pair and interval request.
278  *
279  * Unless you're the timekeeping code, you should not be using this!
280  */
281 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
282 {
283         u64 interval;
284         u64 tmp, ntpinterval;
285         struct clocksource *old_clock;
286
287         ++tk->cs_was_changed_seq;
288         old_clock = tk->tkr_mono.clock;
289         tk->tkr_mono.clock = clock;
290         tk->tkr_mono.mask = clock->mask;
291         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
292
293         tk->tkr_raw.clock = clock;
294         tk->tkr_raw.mask = clock->mask;
295         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
296
297         /* Do the ns -> cycle conversion first, using original mult */
298         tmp = NTP_INTERVAL_LENGTH;
299         tmp <<= clock->shift;
300         ntpinterval = tmp;
301         tmp += clock->mult/2;
302         do_div(tmp, clock->mult);
303         if (tmp == 0)
304                 tmp = 1;
305
306         interval = (u64) tmp;
307         tk->cycle_interval = interval;
308
309         /* Go back from cycles -> shifted ns */
310         tk->xtime_interval = interval * clock->mult;
311         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
312         tk->raw_interval = interval * clock->mult;
313
314          /* if changing clocks, convert xtime_nsec shift units */
315         if (old_clock) {
316                 int shift_change = clock->shift - old_clock->shift;
317                 if (shift_change < 0) {
318                         tk->tkr_mono.xtime_nsec >>= -shift_change;
319                         tk->tkr_raw.xtime_nsec >>= -shift_change;
320                 } else {
321                         tk->tkr_mono.xtime_nsec <<= shift_change;
322                         tk->tkr_raw.xtime_nsec <<= shift_change;
323                 }
324         }
325
326         tk->tkr_mono.shift = clock->shift;
327         tk->tkr_raw.shift = clock->shift;
328
329         tk->ntp_error = 0;
330         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
331         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
332
333         /*
334          * The timekeeper keeps its own mult values for the currently
335          * active clocksource. These value will be adjusted via NTP
336          * to counteract clock drifting.
337          */
338         tk->tkr_mono.mult = clock->mult;
339         tk->tkr_raw.mult = clock->mult;
340         tk->ntp_err_mult = 0;
341         tk->skip_second_overflow = 0;
342 }
343
344 /* Timekeeper helper functions. */
345
346 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
347 static u32 default_arch_gettimeoffset(void) { return 0; }
348 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
349 #else
350 static inline u32 arch_gettimeoffset(void) { return 0; }
351 #endif
352
353 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
354 {
355         u64 nsec;
356
357         nsec = delta * tkr->mult + tkr->xtime_nsec;
358         nsec >>= tkr->shift;
359
360         /* If arch requires, add in get_arch_timeoffset() */
361         return nsec + arch_gettimeoffset();
362 }
363
364 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
365 {
366         u64 delta;
367
368         delta = timekeeping_get_delta(tkr);
369         return timekeeping_delta_to_ns(tkr, delta);
370 }
371
372 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
373 {
374         u64 delta;
375
376         /* calculate the delta since the last update_wall_time */
377         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
378         return timekeeping_delta_to_ns(tkr, delta);
379 }
380
381 /**
382  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
383  * @tkr: Timekeeping readout base from which we take the update
384  *
385  * We want to use this from any context including NMI and tracing /
386  * instrumenting the timekeeping code itself.
387  *
388  * Employ the latch technique; see @raw_write_seqcount_latch.
389  *
390  * So if a NMI hits the update of base[0] then it will use base[1]
391  * which is still consistent. In the worst case this can result is a
392  * slightly wrong timestamp (a few nanoseconds). See
393  * @ktime_get_mono_fast_ns.
394  */
395 static void update_fast_timekeeper(const struct tk_read_base *tkr,
396                                    struct tk_fast *tkf)
397 {
398         struct tk_read_base *base = tkf->base;
399
400         /* Force readers off to base[1] */
401         raw_write_seqcount_latch(&tkf->seq);
402
403         /* Update base[0] */
404         memcpy(base, tkr, sizeof(*base));
405
406         /* Force readers back to base[0] */
407         raw_write_seqcount_latch(&tkf->seq);
408
409         /* Update base[1] */
410         memcpy(base + 1, base, sizeof(*base));
411 }
412
413 /**
414  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
415  *
416  * This timestamp is not guaranteed to be monotonic across an update.
417  * The timestamp is calculated by:
418  *
419  *      now = base_mono + clock_delta * slope
420  *
421  * So if the update lowers the slope, readers who are forced to the
422  * not yet updated second array are still using the old steeper slope.
423  *
424  * tmono
425  * ^
426  * |    o  n
427  * |   o n
428  * |  u
429  * | o
430  * |o
431  * |12345678---> reader order
432  *
433  * o = old slope
434  * u = update
435  * n = new slope
436  *
437  * So reader 6 will observe time going backwards versus reader 5.
438  *
439  * While other CPUs are likely to be able observe that, the only way
440  * for a CPU local observation is when an NMI hits in the middle of
441  * the update. Timestamps taken from that NMI context might be ahead
442  * of the following timestamps. Callers need to be aware of that and
443  * deal with it.
444  */
445 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
446 {
447         struct tk_read_base *tkr;
448         unsigned int seq;
449         u64 now;
450
451         do {
452                 seq = raw_read_seqcount_latch(&tkf->seq);
453                 tkr = tkf->base + (seq & 0x01);
454                 now = ktime_to_ns(tkr->base);
455
456                 now += timekeeping_delta_to_ns(tkr,
457                                 clocksource_delta(
458                                         tk_clock_read(tkr),
459                                         tkr->cycle_last,
460                                         tkr->mask));
461         } while (read_seqcount_retry(&tkf->seq, seq));
462
463         return now;
464 }
465
466 u64 ktime_get_mono_fast_ns(void)
467 {
468         return __ktime_get_fast_ns(&tk_fast_mono);
469 }
470 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
471
472 u64 ktime_get_raw_fast_ns(void)
473 {
474         return __ktime_get_fast_ns(&tk_fast_raw);
475 }
476 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
477
478 /**
479  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
480  *
481  * To keep it NMI safe since we're accessing from tracing, we're not using a
482  * separate timekeeper with updates to monotonic clock and boot offset
483  * protected with seqlocks. This has the following minor side effects:
484  *
485  * (1) Its possible that a timestamp be taken after the boot offset is updated
486  * but before the timekeeper is updated. If this happens, the new boot offset
487  * is added to the old timekeeping making the clock appear to update slightly
488  * earlier:
489  *    CPU 0                                        CPU 1
490  *    timekeeping_inject_sleeptime64()
491  *    __timekeeping_inject_sleeptime(tk, delta);
492  *                                                 timestamp();
493  *    timekeeping_update(tk, TK_CLEAR_NTP...);
494  *
495  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
496  * partially updated.  Since the tk->offs_boot update is a rare event, this
497  * should be a rare occurrence which postprocessing should be able to handle.
498  */
499 u64 notrace ktime_get_boot_fast_ns(void)
500 {
501         struct timekeeper *tk = &tk_core.timekeeper;
502
503         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
504 }
505 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
506
507
508 /*
509  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
510  */
511 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
512 {
513         struct tk_read_base *tkr;
514         unsigned int seq;
515         u64 now;
516
517         do {
518                 seq = raw_read_seqcount_latch(&tkf->seq);
519                 tkr = tkf->base + (seq & 0x01);
520                 now = ktime_to_ns(tkr->base_real);
521
522                 now += timekeeping_delta_to_ns(tkr,
523                                 clocksource_delta(
524                                         tk_clock_read(tkr),
525                                         tkr->cycle_last,
526                                         tkr->mask));
527         } while (read_seqcount_retry(&tkf->seq, seq));
528
529         return now;
530 }
531
532 /**
533  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
534  */
535 u64 ktime_get_real_fast_ns(void)
536 {
537         return __ktime_get_real_fast_ns(&tk_fast_mono);
538 }
539 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
540
541 /**
542  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
543  * @tk: Timekeeper to snapshot.
544  *
545  * It generally is unsafe to access the clocksource after timekeeping has been
546  * suspended, so take a snapshot of the readout base of @tk and use it as the
547  * fast timekeeper's readout base while suspended.  It will return the same
548  * number of cycles every time until timekeeping is resumed at which time the
549  * proper readout base for the fast timekeeper will be restored automatically.
550  */
551 static void halt_fast_timekeeper(const struct timekeeper *tk)
552 {
553         static struct tk_read_base tkr_dummy;
554         const struct tk_read_base *tkr = &tk->tkr_mono;
555
556         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
557         cycles_at_suspend = tk_clock_read(tkr);
558         tkr_dummy.clock = &dummy_clock;
559         tkr_dummy.base_real = tkr->base + tk->offs_real;
560         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
561
562         tkr = &tk->tkr_raw;
563         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
564         tkr_dummy.clock = &dummy_clock;
565         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
566 }
567
568 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
569
570 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
571 {
572         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
573 }
574
575 /**
576  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
577  */
578 int pvclock_gtod_register_notifier(struct notifier_block *nb)
579 {
580         struct timekeeper *tk = &tk_core.timekeeper;
581         unsigned long flags;
582         int ret;
583
584         raw_spin_lock_irqsave(&timekeeper_lock, flags);
585         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
586         update_pvclock_gtod(tk, true);
587         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
588
589         return ret;
590 }
591 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
592
593 /**
594  * pvclock_gtod_unregister_notifier - unregister a pvclock
595  * timedata update listener
596  */
597 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
598 {
599         unsigned long flags;
600         int ret;
601
602         raw_spin_lock_irqsave(&timekeeper_lock, flags);
603         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
604         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
605
606         return ret;
607 }
608 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
609
610 /*
611  * tk_update_leap_state - helper to update the next_leap_ktime
612  */
613 static inline void tk_update_leap_state(struct timekeeper *tk)
614 {
615         tk->next_leap_ktime = ntp_get_next_leap();
616         if (tk->next_leap_ktime != KTIME_MAX)
617                 /* Convert to monotonic time */
618                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
619 }
620
621 /*
622  * Update the ktime_t based scalar nsec members of the timekeeper
623  */
624 static inline void tk_update_ktime_data(struct timekeeper *tk)
625 {
626         u64 seconds;
627         u32 nsec;
628
629         /*
630          * The xtime based monotonic readout is:
631          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
632          * The ktime based monotonic readout is:
633          *      nsec = base_mono + now();
634          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
635          */
636         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
637         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
638         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
639
640         /*
641          * The sum of the nanoseconds portions of xtime and
642          * wall_to_monotonic can be greater/equal one second. Take
643          * this into account before updating tk->ktime_sec.
644          */
645         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
646         if (nsec >= NSEC_PER_SEC)
647                 seconds++;
648         tk->ktime_sec = seconds;
649
650         /* Update the monotonic raw base */
651         tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
652 }
653
654 /* must hold timekeeper_lock */
655 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
656 {
657         if (action & TK_CLEAR_NTP) {
658                 tk->ntp_error = 0;
659                 ntp_clear();
660         }
661
662         tk_update_leap_state(tk);
663         tk_update_ktime_data(tk);
664
665         update_vsyscall(tk);
666         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
667
668         tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
669         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
670         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
671
672         if (action & TK_CLOCK_WAS_SET)
673                 tk->clock_was_set_seq++;
674         /*
675          * The mirroring of the data to the shadow-timekeeper needs
676          * to happen last here to ensure we don't over-write the
677          * timekeeper structure on the next update with stale data
678          */
679         if (action & TK_MIRROR)
680                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
681                        sizeof(tk_core.timekeeper));
682 }
683
684 /**
685  * timekeeping_forward_now - update clock to the current time
686  *
687  * Forward the current clock to update its state since the last call to
688  * update_wall_time(). This is useful before significant clock changes,
689  * as it avoids having to deal with this time offset explicitly.
690  */
691 static void timekeeping_forward_now(struct timekeeper *tk)
692 {
693         u64 cycle_now, delta;
694
695         cycle_now = tk_clock_read(&tk->tkr_mono);
696         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
697         tk->tkr_mono.cycle_last = cycle_now;
698         tk->tkr_raw.cycle_last  = cycle_now;
699
700         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
701
702         /* If arch requires, add in get_arch_timeoffset() */
703         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
704
705
706         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
707
708         /* If arch requires, add in get_arch_timeoffset() */
709         tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
710
711         tk_normalize_xtime(tk);
712 }
713
714 /**
715  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
716  * @ts:         pointer to the timespec to be set
717  *
718  * Returns the time of day in a timespec64 (WARN if suspended).
719  */
720 void ktime_get_real_ts64(struct timespec64 *ts)
721 {
722         struct timekeeper *tk = &tk_core.timekeeper;
723         unsigned long seq;
724         u64 nsecs;
725
726         WARN_ON(timekeeping_suspended);
727
728         do {
729                 seq = read_seqcount_begin(&tk_core.seq);
730
731                 ts->tv_sec = tk->xtime_sec;
732                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
733
734         } while (read_seqcount_retry(&tk_core.seq, seq));
735
736         ts->tv_nsec = 0;
737         timespec64_add_ns(ts, nsecs);
738 }
739 EXPORT_SYMBOL(ktime_get_real_ts64);
740
741 ktime_t ktime_get(void)
742 {
743         struct timekeeper *tk = &tk_core.timekeeper;
744         unsigned int seq;
745         ktime_t base;
746         u64 nsecs;
747
748         WARN_ON(timekeeping_suspended);
749
750         do {
751                 seq = read_seqcount_begin(&tk_core.seq);
752                 base = tk->tkr_mono.base;
753                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
754
755         } while (read_seqcount_retry(&tk_core.seq, seq));
756
757         return ktime_add_ns(base, nsecs);
758 }
759 EXPORT_SYMBOL_GPL(ktime_get);
760
761 u32 ktime_get_resolution_ns(void)
762 {
763         struct timekeeper *tk = &tk_core.timekeeper;
764         unsigned int seq;
765         u32 nsecs;
766
767         WARN_ON(timekeeping_suspended);
768
769         do {
770                 seq = read_seqcount_begin(&tk_core.seq);
771                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
772         } while (read_seqcount_retry(&tk_core.seq, seq));
773
774         return nsecs;
775 }
776 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
777
778 static ktime_t *offsets[TK_OFFS_MAX] = {
779         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
780         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
781         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
782 };
783
784 ktime_t ktime_get_with_offset(enum tk_offsets offs)
785 {
786         struct timekeeper *tk = &tk_core.timekeeper;
787         unsigned int seq;
788         ktime_t base, *offset = offsets[offs];
789         u64 nsecs;
790
791         WARN_ON(timekeeping_suspended);
792
793         do {
794                 seq = read_seqcount_begin(&tk_core.seq);
795                 base = ktime_add(tk->tkr_mono.base, *offset);
796                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
797
798         } while (read_seqcount_retry(&tk_core.seq, seq));
799
800         return ktime_add_ns(base, nsecs);
801
802 }
803 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
804
805 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
806 {
807         struct timekeeper *tk = &tk_core.timekeeper;
808         unsigned int seq;
809         ktime_t base, *offset = offsets[offs];
810
811         WARN_ON(timekeeping_suspended);
812
813         do {
814                 seq = read_seqcount_begin(&tk_core.seq);
815                 base = ktime_add(tk->tkr_mono.base, *offset);
816
817         } while (read_seqcount_retry(&tk_core.seq, seq));
818
819         return base;
820
821 }
822 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
823
824 /**
825  * ktime_mono_to_any() - convert mononotic time to any other time
826  * @tmono:      time to convert.
827  * @offs:       which offset to use
828  */
829 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
830 {
831         ktime_t *offset = offsets[offs];
832         unsigned long seq;
833         ktime_t tconv;
834
835         do {
836                 seq = read_seqcount_begin(&tk_core.seq);
837                 tconv = ktime_add(tmono, *offset);
838         } while (read_seqcount_retry(&tk_core.seq, seq));
839
840         return tconv;
841 }
842 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
843
844 /**
845  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
846  */
847 ktime_t ktime_get_raw(void)
848 {
849         struct timekeeper *tk = &tk_core.timekeeper;
850         unsigned int seq;
851         ktime_t base;
852         u64 nsecs;
853
854         do {
855                 seq = read_seqcount_begin(&tk_core.seq);
856                 base = tk->tkr_raw.base;
857                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
858
859         } while (read_seqcount_retry(&tk_core.seq, seq));
860
861         return ktime_add_ns(base, nsecs);
862 }
863 EXPORT_SYMBOL_GPL(ktime_get_raw);
864
865 /**
866  * ktime_get_ts64 - get the monotonic clock in timespec64 format
867  * @ts:         pointer to timespec variable
868  *
869  * The function calculates the monotonic clock from the realtime
870  * clock and the wall_to_monotonic offset and stores the result
871  * in normalized timespec64 format in the variable pointed to by @ts.
872  */
873 void ktime_get_ts64(struct timespec64 *ts)
874 {
875         struct timekeeper *tk = &tk_core.timekeeper;
876         struct timespec64 tomono;
877         unsigned int seq;
878         u64 nsec;
879
880         WARN_ON(timekeeping_suspended);
881
882         do {
883                 seq = read_seqcount_begin(&tk_core.seq);
884                 ts->tv_sec = tk->xtime_sec;
885                 nsec = timekeeping_get_ns(&tk->tkr_mono);
886                 tomono = tk->wall_to_monotonic;
887
888         } while (read_seqcount_retry(&tk_core.seq, seq));
889
890         ts->tv_sec += tomono.tv_sec;
891         ts->tv_nsec = 0;
892         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
893 }
894 EXPORT_SYMBOL_GPL(ktime_get_ts64);
895
896 /**
897  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
898  *
899  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
900  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
901  * works on both 32 and 64 bit systems. On 32 bit systems the readout
902  * covers ~136 years of uptime which should be enough to prevent
903  * premature wrap arounds.
904  */
905 time64_t ktime_get_seconds(void)
906 {
907         struct timekeeper *tk = &tk_core.timekeeper;
908
909         WARN_ON(timekeeping_suspended);
910         return tk->ktime_sec;
911 }
912 EXPORT_SYMBOL_GPL(ktime_get_seconds);
913
914 /**
915  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
916  *
917  * Returns the wall clock seconds since 1970. This replaces the
918  * get_seconds() interface which is not y2038 safe on 32bit systems.
919  *
920  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
921  * 32bit systems the access must be protected with the sequence
922  * counter to provide "atomic" access to the 64bit tk->xtime_sec
923  * value.
924  */
925 time64_t ktime_get_real_seconds(void)
926 {
927         struct timekeeper *tk = &tk_core.timekeeper;
928         time64_t seconds;
929         unsigned int seq;
930
931         if (IS_ENABLED(CONFIG_64BIT))
932                 return tk->xtime_sec;
933
934         do {
935                 seq = read_seqcount_begin(&tk_core.seq);
936                 seconds = tk->xtime_sec;
937
938         } while (read_seqcount_retry(&tk_core.seq, seq));
939
940         return seconds;
941 }
942 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
943
944 /**
945  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
946  * but without the sequence counter protect. This internal function
947  * is called just when timekeeping lock is already held.
948  */
949 time64_t __ktime_get_real_seconds(void)
950 {
951         struct timekeeper *tk = &tk_core.timekeeper;
952
953         return tk->xtime_sec;
954 }
955
956 /**
957  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
958  * @systime_snapshot:   pointer to struct receiving the system time snapshot
959  */
960 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
961 {
962         struct timekeeper *tk = &tk_core.timekeeper;
963         unsigned long seq;
964         ktime_t base_raw;
965         ktime_t base_real;
966         u64 nsec_raw;
967         u64 nsec_real;
968         u64 now;
969
970         WARN_ON_ONCE(timekeeping_suspended);
971
972         do {
973                 seq = read_seqcount_begin(&tk_core.seq);
974                 now = tk_clock_read(&tk->tkr_mono);
975                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
976                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
977                 base_real = ktime_add(tk->tkr_mono.base,
978                                       tk_core.timekeeper.offs_real);
979                 base_raw = tk->tkr_raw.base;
980                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
981                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
982         } while (read_seqcount_retry(&tk_core.seq, seq));
983
984         systime_snapshot->cycles = now;
985         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
986         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
987 }
988 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
989
990 /* Scale base by mult/div checking for overflow */
991 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
992 {
993         u64 tmp, rem;
994
995         tmp = div64_u64_rem(*base, div, &rem);
996
997         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
998             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
999                 return -EOVERFLOW;
1000         tmp *= mult;
1001         rem *= mult;
1002
1003         do_div(rem, div);
1004         *base = tmp + rem;
1005         return 0;
1006 }
1007
1008 /**
1009  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1010  * @history:                    Snapshot representing start of history
1011  * @partial_history_cycles:     Cycle offset into history (fractional part)
1012  * @total_history_cycles:       Total history length in cycles
1013  * @discontinuity:              True indicates clock was set on history period
1014  * @ts:                         Cross timestamp that should be adjusted using
1015  *      partial/total ratio
1016  *
1017  * Helper function used by get_device_system_crosststamp() to correct the
1018  * crosstimestamp corresponding to the start of the current interval to the
1019  * system counter value (timestamp point) provided by the driver. The
1020  * total_history_* quantities are the total history starting at the provided
1021  * reference point and ending at the start of the current interval. The cycle
1022  * count between the driver timestamp point and the start of the current
1023  * interval is partial_history_cycles.
1024  */
1025 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1026                                          u64 partial_history_cycles,
1027                                          u64 total_history_cycles,
1028                                          bool discontinuity,
1029                                          struct system_device_crosststamp *ts)
1030 {
1031         struct timekeeper *tk = &tk_core.timekeeper;
1032         u64 corr_raw, corr_real;
1033         bool interp_forward;
1034         int ret;
1035
1036         if (total_history_cycles == 0 || partial_history_cycles == 0)
1037                 return 0;
1038
1039         /* Interpolate shortest distance from beginning or end of history */
1040         interp_forward = partial_history_cycles > total_history_cycles / 2;
1041         partial_history_cycles = interp_forward ?
1042                 total_history_cycles - partial_history_cycles :
1043                 partial_history_cycles;
1044
1045         /*
1046          * Scale the monotonic raw time delta by:
1047          *      partial_history_cycles / total_history_cycles
1048          */
1049         corr_raw = (u64)ktime_to_ns(
1050                 ktime_sub(ts->sys_monoraw, history->raw));
1051         ret = scale64_check_overflow(partial_history_cycles,
1052                                      total_history_cycles, &corr_raw);
1053         if (ret)
1054                 return ret;
1055
1056         /*
1057          * If there is a discontinuity in the history, scale monotonic raw
1058          *      correction by:
1059          *      mult(real)/mult(raw) yielding the realtime correction
1060          * Otherwise, calculate the realtime correction similar to monotonic
1061          *      raw calculation
1062          */
1063         if (discontinuity) {
1064                 corr_real = mul_u64_u32_div
1065                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1066         } else {
1067                 corr_real = (u64)ktime_to_ns(
1068                         ktime_sub(ts->sys_realtime, history->real));
1069                 ret = scale64_check_overflow(partial_history_cycles,
1070                                              total_history_cycles, &corr_real);
1071                 if (ret)
1072                         return ret;
1073         }
1074
1075         /* Fixup monotonic raw and real time time values */
1076         if (interp_forward) {
1077                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1078                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1079         } else {
1080                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1081                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1082         }
1083
1084         return 0;
1085 }
1086
1087 /*
1088  * cycle_between - true if test occurs chronologically between before and after
1089  */
1090 static bool cycle_between(u64 before, u64 test, u64 after)
1091 {
1092         if (test > before && test < after)
1093                 return true;
1094         if (test < before && before > after)
1095                 return true;
1096         return false;
1097 }
1098
1099 /**
1100  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1101  * @get_time_fn:        Callback to get simultaneous device time and
1102  *      system counter from the device driver
1103  * @ctx:                Context passed to get_time_fn()
1104  * @history_begin:      Historical reference point used to interpolate system
1105  *      time when counter provided by the driver is before the current interval
1106  * @xtstamp:            Receives simultaneously captured system and device time
1107  *
1108  * Reads a timestamp from a device and correlates it to system time
1109  */
1110 int get_device_system_crosststamp(int (*get_time_fn)
1111                                   (ktime_t *device_time,
1112                                    struct system_counterval_t *sys_counterval,
1113                                    void *ctx),
1114                                   void *ctx,
1115                                   struct system_time_snapshot *history_begin,
1116                                   struct system_device_crosststamp *xtstamp)
1117 {
1118         struct system_counterval_t system_counterval;
1119         struct timekeeper *tk = &tk_core.timekeeper;
1120         u64 cycles, now, interval_start;
1121         unsigned int clock_was_set_seq = 0;
1122         ktime_t base_real, base_raw;
1123         u64 nsec_real, nsec_raw;
1124         u8 cs_was_changed_seq;
1125         unsigned long seq;
1126         bool do_interp;
1127         int ret;
1128
1129         do {
1130                 seq = read_seqcount_begin(&tk_core.seq);
1131                 /*
1132                  * Try to synchronously capture device time and a system
1133                  * counter value calling back into the device driver
1134                  */
1135                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1136                 if (ret)
1137                         return ret;
1138
1139                 /*
1140                  * Verify that the clocksource associated with the captured
1141                  * system counter value is the same as the currently installed
1142                  * timekeeper clocksource
1143                  */
1144                 if (tk->tkr_mono.clock != system_counterval.cs)
1145                         return -ENODEV;
1146                 cycles = system_counterval.cycles;
1147
1148                 /*
1149                  * Check whether the system counter value provided by the
1150                  * device driver is on the current timekeeping interval.
1151                  */
1152                 now = tk_clock_read(&tk->tkr_mono);
1153                 interval_start = tk->tkr_mono.cycle_last;
1154                 if (!cycle_between(interval_start, cycles, now)) {
1155                         clock_was_set_seq = tk->clock_was_set_seq;
1156                         cs_was_changed_seq = tk->cs_was_changed_seq;
1157                         cycles = interval_start;
1158                         do_interp = true;
1159                 } else {
1160                         do_interp = false;
1161                 }
1162
1163                 base_real = ktime_add(tk->tkr_mono.base,
1164                                       tk_core.timekeeper.offs_real);
1165                 base_raw = tk->tkr_raw.base;
1166
1167                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1168                                                      system_counterval.cycles);
1169                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1170                                                     system_counterval.cycles);
1171         } while (read_seqcount_retry(&tk_core.seq, seq));
1172
1173         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1174         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1175
1176         /*
1177          * Interpolate if necessary, adjusting back from the start of the
1178          * current interval
1179          */
1180         if (do_interp) {
1181                 u64 partial_history_cycles, total_history_cycles;
1182                 bool discontinuity;
1183
1184                 /*
1185                  * Check that the counter value occurs after the provided
1186                  * history reference and that the history doesn't cross a
1187                  * clocksource change
1188                  */
1189                 if (!history_begin ||
1190                     !cycle_between(history_begin->cycles,
1191                                    system_counterval.cycles, cycles) ||
1192                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1193                         return -EINVAL;
1194                 partial_history_cycles = cycles - system_counterval.cycles;
1195                 total_history_cycles = cycles - history_begin->cycles;
1196                 discontinuity =
1197                         history_begin->clock_was_set_seq != clock_was_set_seq;
1198
1199                 ret = adjust_historical_crosststamp(history_begin,
1200                                                     partial_history_cycles,
1201                                                     total_history_cycles,
1202                                                     discontinuity, xtstamp);
1203                 if (ret)
1204                         return ret;
1205         }
1206
1207         return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1210
1211 /**
1212  * do_settimeofday64 - Sets the time of day.
1213  * @ts:     pointer to the timespec64 variable containing the new time
1214  *
1215  * Sets the time of day to the new time and update NTP and notify hrtimers
1216  */
1217 int do_settimeofday64(const struct timespec64 *ts)
1218 {
1219         struct timekeeper *tk = &tk_core.timekeeper;
1220         struct timespec64 ts_delta, xt;
1221         unsigned long flags;
1222         int ret = 0;
1223
1224         if (!timespec64_valid_strict(ts))
1225                 return -EINVAL;
1226
1227         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1228         write_seqcount_begin(&tk_core.seq);
1229
1230         timekeeping_forward_now(tk);
1231
1232         xt = tk_xtime(tk);
1233         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1234         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1235
1236         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1237                 ret = -EINVAL;
1238                 goto out;
1239         }
1240
1241         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1242
1243         tk_set_xtime(tk, ts);
1244 out:
1245         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1246
1247         write_seqcount_end(&tk_core.seq);
1248         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1249
1250         /* signal hrtimers about time change */
1251         clock_was_set();
1252
1253         return ret;
1254 }
1255 EXPORT_SYMBOL(do_settimeofday64);
1256
1257 /**
1258  * timekeeping_inject_offset - Adds or subtracts from the current time.
1259  * @tv:         pointer to the timespec variable containing the offset
1260  *
1261  * Adds or subtracts an offset value from the current time.
1262  */
1263 static int timekeeping_inject_offset(const struct timespec64 *ts)
1264 {
1265         struct timekeeper *tk = &tk_core.timekeeper;
1266         unsigned long flags;
1267         struct timespec64 tmp;
1268         int ret = 0;
1269
1270         if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1271                 return -EINVAL;
1272
1273         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1274         write_seqcount_begin(&tk_core.seq);
1275
1276         timekeeping_forward_now(tk);
1277
1278         /* Make sure the proposed value is valid */
1279         tmp = timespec64_add(tk_xtime(tk), *ts);
1280         if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1281             !timespec64_valid_strict(&tmp)) {
1282                 ret = -EINVAL;
1283                 goto error;
1284         }
1285
1286         tk_xtime_add(tk, ts);
1287         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1288
1289 error: /* even if we error out, we forwarded the time, so call update */
1290         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1291
1292         write_seqcount_end(&tk_core.seq);
1293         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1294
1295         /* signal hrtimers about time change */
1296         clock_was_set();
1297
1298         return ret;
1299 }
1300
1301 /*
1302  * Indicates if there is an offset between the system clock and the hardware
1303  * clock/persistent clock/rtc.
1304  */
1305 int persistent_clock_is_local;
1306
1307 /*
1308  * Adjust the time obtained from the CMOS to be UTC time instead of
1309  * local time.
1310  *
1311  * This is ugly, but preferable to the alternatives.  Otherwise we
1312  * would either need to write a program to do it in /etc/rc (and risk
1313  * confusion if the program gets run more than once; it would also be
1314  * hard to make the program warp the clock precisely n hours)  or
1315  * compile in the timezone information into the kernel.  Bad, bad....
1316  *
1317  *                                              - TYT, 1992-01-01
1318  *
1319  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1320  * as real UNIX machines always do it. This avoids all headaches about
1321  * daylight saving times and warping kernel clocks.
1322  */
1323 void timekeeping_warp_clock(void)
1324 {
1325         if (sys_tz.tz_minuteswest != 0) {
1326                 struct timespec64 adjust;
1327
1328                 persistent_clock_is_local = 1;
1329                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1330                 adjust.tv_nsec = 0;
1331                 timekeeping_inject_offset(&adjust);
1332         }
1333 }
1334
1335 /**
1336  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1337  *
1338  */
1339 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1340 {
1341         tk->tai_offset = tai_offset;
1342         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1343 }
1344
1345 /**
1346  * change_clocksource - Swaps clocksources if a new one is available
1347  *
1348  * Accumulates current time interval and initializes new clocksource
1349  */
1350 static int change_clocksource(void *data)
1351 {
1352         struct timekeeper *tk = &tk_core.timekeeper;
1353         struct clocksource *new, *old;
1354         unsigned long flags;
1355
1356         new = (struct clocksource *) data;
1357
1358         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1359         write_seqcount_begin(&tk_core.seq);
1360
1361         timekeeping_forward_now(tk);
1362         /*
1363          * If the cs is in module, get a module reference. Succeeds
1364          * for built-in code (owner == NULL) as well.
1365          */
1366         if (try_module_get(new->owner)) {
1367                 if (!new->enable || new->enable(new) == 0) {
1368                         old = tk->tkr_mono.clock;
1369                         tk_setup_internals(tk, new);
1370                         if (old->disable)
1371                                 old->disable(old);
1372                         module_put(old->owner);
1373                 } else {
1374                         module_put(new->owner);
1375                 }
1376         }
1377         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1378
1379         write_seqcount_end(&tk_core.seq);
1380         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1381
1382         return 0;
1383 }
1384
1385 /**
1386  * timekeeping_notify - Install a new clock source
1387  * @clock:              pointer to the clock source
1388  *
1389  * This function is called from clocksource.c after a new, better clock
1390  * source has been registered. The caller holds the clocksource_mutex.
1391  */
1392 int timekeeping_notify(struct clocksource *clock)
1393 {
1394         struct timekeeper *tk = &tk_core.timekeeper;
1395
1396         if (tk->tkr_mono.clock == clock)
1397                 return 0;
1398         stop_machine(change_clocksource, clock, NULL);
1399         tick_clock_notify();
1400         return tk->tkr_mono.clock == clock ? 0 : -1;
1401 }
1402
1403 /**
1404  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1405  * @ts:         pointer to the timespec64 to be set
1406  *
1407  * Returns the raw monotonic time (completely un-modified by ntp)
1408  */
1409 void ktime_get_raw_ts64(struct timespec64 *ts)
1410 {
1411         struct timekeeper *tk = &tk_core.timekeeper;
1412         unsigned long seq;
1413         u64 nsecs;
1414
1415         do {
1416                 seq = read_seqcount_begin(&tk_core.seq);
1417                 ts->tv_sec = tk->raw_sec;
1418                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1419
1420         } while (read_seqcount_retry(&tk_core.seq, seq));
1421
1422         ts->tv_nsec = 0;
1423         timespec64_add_ns(ts, nsecs);
1424 }
1425 EXPORT_SYMBOL(ktime_get_raw_ts64);
1426
1427
1428 /**
1429  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1430  */
1431 int timekeeping_valid_for_hres(void)
1432 {
1433         struct timekeeper *tk = &tk_core.timekeeper;
1434         unsigned long seq;
1435         int ret;
1436
1437         do {
1438                 seq = read_seqcount_begin(&tk_core.seq);
1439
1440                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1441
1442         } while (read_seqcount_retry(&tk_core.seq, seq));
1443
1444         return ret;
1445 }
1446
1447 /**
1448  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1449  */
1450 u64 timekeeping_max_deferment(void)
1451 {
1452         struct timekeeper *tk = &tk_core.timekeeper;
1453         unsigned long seq;
1454         u64 ret;
1455
1456         do {
1457                 seq = read_seqcount_begin(&tk_core.seq);
1458
1459                 ret = tk->tkr_mono.clock->max_idle_ns;
1460
1461         } while (read_seqcount_retry(&tk_core.seq, seq));
1462
1463         return ret;
1464 }
1465
1466 /**
1467  * read_persistent_clock64 -  Return time from the persistent clock.
1468  *
1469  * Weak dummy function for arches that do not yet support it.
1470  * Reads the time from the battery backed persistent clock.
1471  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1472  *
1473  *  XXX - Do be sure to remove it once all arches implement it.
1474  */
1475 void __weak read_persistent_clock64(struct timespec64 *ts)
1476 {
1477         ts->tv_sec = 0;
1478         ts->tv_nsec = 0;
1479 }
1480
1481 /**
1482  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1483  *                                        from the boot.
1484  *
1485  * Weak dummy function for arches that do not yet support it.
1486  * wall_time    - current time as returned by persistent clock
1487  * boot_offset  - offset that is defined as wall_time - boot_time
1488  * The default function calculates offset based on the current value of
1489  * local_clock(). This way architectures that support sched_clock() but don't
1490  * support dedicated boot time clock will provide the best estimate of the
1491  * boot time.
1492  */
1493 void __weak __init
1494 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1495                                      struct timespec64 *boot_offset)
1496 {
1497         read_persistent_clock64(wall_time);
1498         *boot_offset = ns_to_timespec64(local_clock());
1499 }
1500
1501 /*
1502  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1503  *
1504  * The flag starts of false and is only set when a suspend reaches
1505  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1506  * timekeeper clocksource is not stopping across suspend and has been
1507  * used to update sleep time. If the timekeeper clocksource has stopped
1508  * then the flag stays true and is used by the RTC resume code to decide
1509  * whether sleeptime must be injected and if so the flag gets false then.
1510  *
1511  * If a suspend fails before reaching timekeeping_resume() then the flag
1512  * stays false and prevents erroneous sleeptime injection.
1513  */
1514 static bool suspend_timing_needed;
1515
1516 /* Flag for if there is a persistent clock on this platform */
1517 static bool persistent_clock_exists;
1518
1519 /*
1520  * timekeeping_init - Initializes the clocksource and common timekeeping values
1521  */
1522 void __init timekeeping_init(void)
1523 {
1524         struct timespec64 wall_time, boot_offset, wall_to_mono;
1525         struct timekeeper *tk = &tk_core.timekeeper;
1526         struct clocksource *clock;
1527         unsigned long flags;
1528
1529         read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1530         if (timespec64_valid_strict(&wall_time) &&
1531             timespec64_to_ns(&wall_time) > 0) {
1532                 persistent_clock_exists = true;
1533         } else if (timespec64_to_ns(&wall_time) != 0) {
1534                 pr_warn("Persistent clock returned invalid value");
1535                 wall_time = (struct timespec64){0};
1536         }
1537
1538         if (timespec64_compare(&wall_time, &boot_offset) < 0)
1539                 boot_offset = (struct timespec64){0};
1540
1541         /*
1542          * We want set wall_to_mono, so the following is true:
1543          * wall time + wall_to_mono = boot time
1544          */
1545         wall_to_mono = timespec64_sub(boot_offset, wall_time);
1546
1547         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1548         write_seqcount_begin(&tk_core.seq);
1549         ntp_init();
1550
1551         clock = clocksource_default_clock();
1552         if (clock->enable)
1553                 clock->enable(clock);
1554         tk_setup_internals(tk, clock);
1555
1556         tk_set_xtime(tk, &wall_time);
1557         tk->raw_sec = 0;
1558
1559         tk_set_wall_to_mono(tk, wall_to_mono);
1560
1561         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1562
1563         write_seqcount_end(&tk_core.seq);
1564         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1565 }
1566
1567 /* time in seconds when suspend began for persistent clock */
1568 static struct timespec64 timekeeping_suspend_time;
1569
1570 /**
1571  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1572  * @delta: pointer to a timespec delta value
1573  *
1574  * Takes a timespec offset measuring a suspend interval and properly
1575  * adds the sleep offset to the timekeeping variables.
1576  */
1577 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1578                                            const struct timespec64 *delta)
1579 {
1580         if (!timespec64_valid_strict(delta)) {
1581                 printk_deferred(KERN_WARNING
1582                                 "__timekeeping_inject_sleeptime: Invalid "
1583                                 "sleep delta value!\n");
1584                 return;
1585         }
1586         tk_xtime_add(tk, delta);
1587         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1588         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1589         tk_debug_account_sleep_time(delta);
1590 }
1591
1592 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1593 /**
1594  * We have three kinds of time sources to use for sleep time
1595  * injection, the preference order is:
1596  * 1) non-stop clocksource
1597  * 2) persistent clock (ie: RTC accessible when irqs are off)
1598  * 3) RTC
1599  *
1600  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1601  * If system has neither 1) nor 2), 3) will be used finally.
1602  *
1603  *
1604  * If timekeeping has injected sleeptime via either 1) or 2),
1605  * 3) becomes needless, so in this case we don't need to call
1606  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1607  * means.
1608  */
1609 bool timekeeping_rtc_skipresume(void)
1610 {
1611         return !suspend_timing_needed;
1612 }
1613
1614 /**
1615  * 1) can be determined whether to use or not only when doing
1616  * timekeeping_resume() which is invoked after rtc_suspend(),
1617  * so we can't skip rtc_suspend() surely if system has 1).
1618  *
1619  * But if system has 2), 2) will definitely be used, so in this
1620  * case we don't need to call rtc_suspend(), and this is what
1621  * timekeeping_rtc_skipsuspend() means.
1622  */
1623 bool timekeeping_rtc_skipsuspend(void)
1624 {
1625         return persistent_clock_exists;
1626 }
1627
1628 /**
1629  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1630  * @delta: pointer to a timespec64 delta value
1631  *
1632  * This hook is for architectures that cannot support read_persistent_clock64
1633  * because their RTC/persistent clock is only accessible when irqs are enabled.
1634  * and also don't have an effective nonstop clocksource.
1635  *
1636  * This function should only be called by rtc_resume(), and allows
1637  * a suspend offset to be injected into the timekeeping values.
1638  */
1639 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1640 {
1641         struct timekeeper *tk = &tk_core.timekeeper;
1642         unsigned long flags;
1643
1644         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1645         write_seqcount_begin(&tk_core.seq);
1646
1647         suspend_timing_needed = false;
1648
1649         timekeeping_forward_now(tk);
1650
1651         __timekeeping_inject_sleeptime(tk, delta);
1652
1653         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1654
1655         write_seqcount_end(&tk_core.seq);
1656         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1657
1658         /* signal hrtimers about time change */
1659         clock_was_set();
1660 }
1661 #endif
1662
1663 /**
1664  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1665  */
1666 void timekeeping_resume(void)
1667 {
1668         struct timekeeper *tk = &tk_core.timekeeper;
1669         struct clocksource *clock = tk->tkr_mono.clock;
1670         unsigned long flags;
1671         struct timespec64 ts_new, ts_delta;
1672         u64 cycle_now, nsec;
1673         bool inject_sleeptime = false;
1674
1675         read_persistent_clock64(&ts_new);
1676
1677         clockevents_resume();
1678         clocksource_resume();
1679
1680         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1681         write_seqcount_begin(&tk_core.seq);
1682
1683         /*
1684          * After system resumes, we need to calculate the suspended time and
1685          * compensate it for the OS time. There are 3 sources that could be
1686          * used: Nonstop clocksource during suspend, persistent clock and rtc
1687          * device.
1688          *
1689          * One specific platform may have 1 or 2 or all of them, and the
1690          * preference will be:
1691          *      suspend-nonstop clocksource -> persistent clock -> rtc
1692          * The less preferred source will only be tried if there is no better
1693          * usable source. The rtc part is handled separately in rtc core code.
1694          */
1695         cycle_now = tk_clock_read(&tk->tkr_mono);
1696         nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1697         if (nsec > 0) {
1698                 ts_delta = ns_to_timespec64(nsec);
1699                 inject_sleeptime = true;
1700         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1701                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1702                 inject_sleeptime = true;
1703         }
1704
1705         if (inject_sleeptime) {
1706                 suspend_timing_needed = false;
1707                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1708         }
1709
1710         /* Re-base the last cycle value */
1711         tk->tkr_mono.cycle_last = cycle_now;
1712         tk->tkr_raw.cycle_last  = cycle_now;
1713
1714         tk->ntp_error = 0;
1715         timekeeping_suspended = 0;
1716         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1717         write_seqcount_end(&tk_core.seq);
1718         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1719
1720         touch_softlockup_watchdog();
1721
1722         tick_resume();
1723         hrtimers_resume();
1724 }
1725
1726 int timekeeping_suspend(void)
1727 {
1728         struct timekeeper *tk = &tk_core.timekeeper;
1729         unsigned long flags;
1730         struct timespec64               delta, delta_delta;
1731         static struct timespec64        old_delta;
1732         struct clocksource *curr_clock;
1733         u64 cycle_now;
1734
1735         read_persistent_clock64(&timekeeping_suspend_time);
1736
1737         /*
1738          * On some systems the persistent_clock can not be detected at
1739          * timekeeping_init by its return value, so if we see a valid
1740          * value returned, update the persistent_clock_exists flag.
1741          */
1742         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1743                 persistent_clock_exists = true;
1744
1745         suspend_timing_needed = true;
1746
1747         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1748         write_seqcount_begin(&tk_core.seq);
1749         timekeeping_forward_now(tk);
1750         timekeeping_suspended = 1;
1751
1752         /*
1753          * Since we've called forward_now, cycle_last stores the value
1754          * just read from the current clocksource. Save this to potentially
1755          * use in suspend timing.
1756          */
1757         curr_clock = tk->tkr_mono.clock;
1758         cycle_now = tk->tkr_mono.cycle_last;
1759         clocksource_start_suspend_timing(curr_clock, cycle_now);
1760
1761         if (persistent_clock_exists) {
1762                 /*
1763                  * To avoid drift caused by repeated suspend/resumes,
1764                  * which each can add ~1 second drift error,
1765                  * try to compensate so the difference in system time
1766                  * and persistent_clock time stays close to constant.
1767                  */
1768                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1769                 delta_delta = timespec64_sub(delta, old_delta);
1770                 if (abs(delta_delta.tv_sec) >= 2) {
1771                         /*
1772                          * if delta_delta is too large, assume time correction
1773                          * has occurred and set old_delta to the current delta.
1774                          */
1775                         old_delta = delta;
1776                 } else {
1777                         /* Otherwise try to adjust old_system to compensate */
1778                         timekeeping_suspend_time =
1779                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1780                 }
1781         }
1782
1783         timekeeping_update(tk, TK_MIRROR);
1784         halt_fast_timekeeper(tk);
1785         write_seqcount_end(&tk_core.seq);
1786         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1787
1788         tick_suspend();
1789         clocksource_suspend();
1790         clockevents_suspend();
1791
1792         return 0;
1793 }
1794
1795 /* sysfs resume/suspend bits for timekeeping */
1796 static struct syscore_ops timekeeping_syscore_ops = {
1797         .resume         = timekeeping_resume,
1798         .suspend        = timekeeping_suspend,
1799 };
1800
1801 static int __init timekeeping_init_ops(void)
1802 {
1803         register_syscore_ops(&timekeeping_syscore_ops);
1804         return 0;
1805 }
1806 device_initcall(timekeeping_init_ops);
1807
1808 /*
1809  * Apply a multiplier adjustment to the timekeeper
1810  */
1811 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1812                                                          s64 offset,
1813                                                          s32 mult_adj)
1814 {
1815         s64 interval = tk->cycle_interval;
1816
1817         if (mult_adj == 0) {
1818                 return;
1819         } else if (mult_adj == -1) {
1820                 interval = -interval;
1821                 offset = -offset;
1822         } else if (mult_adj != 1) {
1823                 interval *= mult_adj;
1824                 offset *= mult_adj;
1825         }
1826
1827         /*
1828          * So the following can be confusing.
1829          *
1830          * To keep things simple, lets assume mult_adj == 1 for now.
1831          *
1832          * When mult_adj != 1, remember that the interval and offset values
1833          * have been appropriately scaled so the math is the same.
1834          *
1835          * The basic idea here is that we're increasing the multiplier
1836          * by one, this causes the xtime_interval to be incremented by
1837          * one cycle_interval. This is because:
1838          *      xtime_interval = cycle_interval * mult
1839          * So if mult is being incremented by one:
1840          *      xtime_interval = cycle_interval * (mult + 1)
1841          * Its the same as:
1842          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1843          * Which can be shortened to:
1844          *      xtime_interval += cycle_interval
1845          *
1846          * So offset stores the non-accumulated cycles. Thus the current
1847          * time (in shifted nanoseconds) is:
1848          *      now = (offset * adj) + xtime_nsec
1849          * Now, even though we're adjusting the clock frequency, we have
1850          * to keep time consistent. In other words, we can't jump back
1851          * in time, and we also want to avoid jumping forward in time.
1852          *
1853          * So given the same offset value, we need the time to be the same
1854          * both before and after the freq adjustment.
1855          *      now = (offset * adj_1) + xtime_nsec_1
1856          *      now = (offset * adj_2) + xtime_nsec_2
1857          * So:
1858          *      (offset * adj_1) + xtime_nsec_1 =
1859          *              (offset * adj_2) + xtime_nsec_2
1860          * And we know:
1861          *      adj_2 = adj_1 + 1
1862          * So:
1863          *      (offset * adj_1) + xtime_nsec_1 =
1864          *              (offset * (adj_1+1)) + xtime_nsec_2
1865          *      (offset * adj_1) + xtime_nsec_1 =
1866          *              (offset * adj_1) + offset + xtime_nsec_2
1867          * Canceling the sides:
1868          *      xtime_nsec_1 = offset + xtime_nsec_2
1869          * Which gives us:
1870          *      xtime_nsec_2 = xtime_nsec_1 - offset
1871          * Which simplfies to:
1872          *      xtime_nsec -= offset
1873          */
1874         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1875                 /* NTP adjustment caused clocksource mult overflow */
1876                 WARN_ON_ONCE(1);
1877                 return;
1878         }
1879
1880         tk->tkr_mono.mult += mult_adj;
1881         tk->xtime_interval += interval;
1882         tk->tkr_mono.xtime_nsec -= offset;
1883 }
1884
1885 /*
1886  * Adjust the timekeeper's multiplier to the correct frequency
1887  * and also to reduce the accumulated error value.
1888  */
1889 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1890 {
1891         u32 mult;
1892
1893         /*
1894          * Determine the multiplier from the current NTP tick length.
1895          * Avoid expensive division when the tick length doesn't change.
1896          */
1897         if (likely(tk->ntp_tick == ntp_tick_length())) {
1898                 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1899         } else {
1900                 tk->ntp_tick = ntp_tick_length();
1901                 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1902                                  tk->xtime_remainder, tk->cycle_interval);
1903         }
1904
1905         /*
1906          * If the clock is behind the NTP time, increase the multiplier by 1
1907          * to catch up with it. If it's ahead and there was a remainder in the
1908          * tick division, the clock will slow down. Otherwise it will stay
1909          * ahead until the tick length changes to a non-divisible value.
1910          */
1911         tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1912         mult += tk->ntp_err_mult;
1913
1914         timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1915
1916         if (unlikely(tk->tkr_mono.clock->maxadj &&
1917                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1918                         > tk->tkr_mono.clock->maxadj))) {
1919                 printk_once(KERN_WARNING
1920                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1921                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1922                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1923         }
1924
1925         /*
1926          * It may be possible that when we entered this function, xtime_nsec
1927          * was very small.  Further, if we're slightly speeding the clocksource
1928          * in the code above, its possible the required corrective factor to
1929          * xtime_nsec could cause it to underflow.
1930          *
1931          * Now, since we have already accumulated the second and the NTP
1932          * subsystem has been notified via second_overflow(), we need to skip
1933          * the next update.
1934          */
1935         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1936                 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1937                                                         tk->tkr_mono.shift;
1938                 tk->xtime_sec--;
1939                 tk->skip_second_overflow = 1;
1940         }
1941 }
1942
1943 /**
1944  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1945  *
1946  * Helper function that accumulates the nsecs greater than a second
1947  * from the xtime_nsec field to the xtime_secs field.
1948  * It also calls into the NTP code to handle leapsecond processing.
1949  *
1950  */
1951 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1952 {
1953         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1954         unsigned int clock_set = 0;
1955
1956         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1957                 int leap;
1958
1959                 tk->tkr_mono.xtime_nsec -= nsecps;
1960                 tk->xtime_sec++;
1961
1962                 /*
1963                  * Skip NTP update if this second was accumulated before,
1964                  * i.e. xtime_nsec underflowed in timekeeping_adjust()
1965                  */
1966                 if (unlikely(tk->skip_second_overflow)) {
1967                         tk->skip_second_overflow = 0;
1968                         continue;
1969                 }
1970
1971                 /* Figure out if its a leap sec and apply if needed */
1972                 leap = second_overflow(tk->xtime_sec);
1973                 if (unlikely(leap)) {
1974                         struct timespec64 ts;
1975
1976                         tk->xtime_sec += leap;
1977
1978                         ts.tv_sec = leap;
1979                         ts.tv_nsec = 0;
1980                         tk_set_wall_to_mono(tk,
1981                                 timespec64_sub(tk->wall_to_monotonic, ts));
1982
1983                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1984
1985                         clock_set = TK_CLOCK_WAS_SET;
1986                 }
1987         }
1988         return clock_set;
1989 }
1990
1991 /**
1992  * logarithmic_accumulation - shifted accumulation of cycles
1993  *
1994  * This functions accumulates a shifted interval of cycles into
1995  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1996  * loop.
1997  *
1998  * Returns the unconsumed cycles.
1999  */
2000 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2001                                     u32 shift, unsigned int *clock_set)
2002 {
2003         u64 interval = tk->cycle_interval << shift;
2004         u64 snsec_per_sec;
2005
2006         /* If the offset is smaller than a shifted interval, do nothing */
2007         if (offset < interval)
2008                 return offset;
2009
2010         /* Accumulate one shifted interval */
2011         offset -= interval;
2012         tk->tkr_mono.cycle_last += interval;
2013         tk->tkr_raw.cycle_last  += interval;
2014
2015         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2016         *clock_set |= accumulate_nsecs_to_secs(tk);
2017
2018         /* Accumulate raw time */
2019         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2020         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2021         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2022                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2023                 tk->raw_sec++;
2024         }
2025
2026         /* Accumulate error between NTP and clock interval */
2027         tk->ntp_error += tk->ntp_tick << shift;
2028         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2029                                                 (tk->ntp_error_shift + shift);
2030
2031         return offset;
2032 }
2033
2034 /*
2035  * timekeeping_advance - Updates the timekeeper to the current time and
2036  * current NTP tick length
2037  */
2038 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2039 {
2040         struct timekeeper *real_tk = &tk_core.timekeeper;
2041         struct timekeeper *tk = &shadow_timekeeper;
2042         u64 offset;
2043         int shift = 0, maxshift;
2044         unsigned int clock_set = 0;
2045         unsigned long flags;
2046
2047         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2048
2049         /* Make sure we're fully resumed: */
2050         if (unlikely(timekeeping_suspended))
2051                 goto out;
2052
2053 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2054         offset = real_tk->cycle_interval;
2055
2056         if (mode != TK_ADV_TICK)
2057                 goto out;
2058 #else
2059         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2060                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2061
2062         /* Check if there's really nothing to do */
2063         if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2064                 goto out;
2065 #endif
2066
2067         /* Do some additional sanity checking */
2068         timekeeping_check_update(tk, offset);
2069
2070         /*
2071          * With NO_HZ we may have to accumulate many cycle_intervals
2072          * (think "ticks") worth of time at once. To do this efficiently,
2073          * we calculate the largest doubling multiple of cycle_intervals
2074          * that is smaller than the offset.  We then accumulate that
2075          * chunk in one go, and then try to consume the next smaller
2076          * doubled multiple.
2077          */
2078         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2079         shift = max(0, shift);
2080         /* Bound shift to one less than what overflows tick_length */
2081         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2082         shift = min(shift, maxshift);
2083         while (offset >= tk->cycle_interval) {
2084                 offset = logarithmic_accumulation(tk, offset, shift,
2085                                                         &clock_set);
2086                 if (offset < tk->cycle_interval<<shift)
2087                         shift--;
2088         }
2089
2090         /* Adjust the multiplier to correct NTP error */
2091         timekeeping_adjust(tk, offset);
2092
2093         /*
2094          * Finally, make sure that after the rounding
2095          * xtime_nsec isn't larger than NSEC_PER_SEC
2096          */
2097         clock_set |= accumulate_nsecs_to_secs(tk);
2098
2099         write_seqcount_begin(&tk_core.seq);
2100         /*
2101          * Update the real timekeeper.
2102          *
2103          * We could avoid this memcpy by switching pointers, but that
2104          * requires changes to all other timekeeper usage sites as
2105          * well, i.e. move the timekeeper pointer getter into the
2106          * spinlocked/seqcount protected sections. And we trade this
2107          * memcpy under the tk_core.seq against one before we start
2108          * updating.
2109          */
2110         timekeeping_update(tk, clock_set);
2111         memcpy(real_tk, tk, sizeof(*tk));
2112         /* The memcpy must come last. Do not put anything here! */
2113         write_seqcount_end(&tk_core.seq);
2114 out:
2115         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2116         if (clock_set)
2117                 /* Have to call _delayed version, since in irq context*/
2118                 clock_was_set_delayed();
2119 }
2120
2121 /**
2122  * update_wall_time - Uses the current clocksource to increment the wall time
2123  *
2124  */
2125 void update_wall_time(void)
2126 {
2127         timekeeping_advance(TK_ADV_TICK);
2128 }
2129
2130 /**
2131  * getboottime64 - Return the real time of system boot.
2132  * @ts:         pointer to the timespec64 to be set
2133  *
2134  * Returns the wall-time of boot in a timespec64.
2135  *
2136  * This is based on the wall_to_monotonic offset and the total suspend
2137  * time. Calls to settimeofday will affect the value returned (which
2138  * basically means that however wrong your real time clock is at boot time,
2139  * you get the right time here).
2140  */
2141 void getboottime64(struct timespec64 *ts)
2142 {
2143         struct timekeeper *tk = &tk_core.timekeeper;
2144         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2145
2146         *ts = ktime_to_timespec64(t);
2147 }
2148 EXPORT_SYMBOL_GPL(getboottime64);
2149
2150 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2151 {
2152         struct timekeeper *tk = &tk_core.timekeeper;
2153         unsigned long seq;
2154
2155         do {
2156                 seq = read_seqcount_begin(&tk_core.seq);
2157
2158                 *ts = tk_xtime(tk);
2159         } while (read_seqcount_retry(&tk_core.seq, seq));
2160 }
2161 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2162
2163 void ktime_get_coarse_ts64(struct timespec64 *ts)
2164 {
2165         struct timekeeper *tk = &tk_core.timekeeper;
2166         struct timespec64 now, mono;
2167         unsigned long seq;
2168
2169         do {
2170                 seq = read_seqcount_begin(&tk_core.seq);
2171
2172                 now = tk_xtime(tk);
2173                 mono = tk->wall_to_monotonic;
2174         } while (read_seqcount_retry(&tk_core.seq, seq));
2175
2176         set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2177                                 now.tv_nsec + mono.tv_nsec);
2178 }
2179 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2180
2181 /*
2182  * Must hold jiffies_lock
2183  */
2184 void do_timer(unsigned long ticks)
2185 {
2186         jiffies_64 += ticks;
2187         calc_global_load(ticks);
2188 }
2189
2190 /**
2191  * ktime_get_update_offsets_now - hrtimer helper
2192  * @cwsseq:     pointer to check and store the clock was set sequence number
2193  * @offs_real:  pointer to storage for monotonic -> realtime offset
2194  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2195  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2196  *
2197  * Returns current monotonic time and updates the offsets if the
2198  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2199  * different.
2200  *
2201  * Called from hrtimer_interrupt() or retrigger_next_event()
2202  */
2203 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2204                                      ktime_t *offs_boot, ktime_t *offs_tai)
2205 {
2206         struct timekeeper *tk = &tk_core.timekeeper;
2207         unsigned int seq;
2208         ktime_t base;
2209         u64 nsecs;
2210
2211         do {
2212                 seq = read_seqcount_begin(&tk_core.seq);
2213
2214                 base = tk->tkr_mono.base;
2215                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2216                 base = ktime_add_ns(base, nsecs);
2217
2218                 if (*cwsseq != tk->clock_was_set_seq) {
2219                         *cwsseq = tk->clock_was_set_seq;
2220                         *offs_real = tk->offs_real;
2221                         *offs_boot = tk->offs_boot;
2222                         *offs_tai = tk->offs_tai;
2223                 }
2224
2225                 /* Handle leapsecond insertion adjustments */
2226                 if (unlikely(base >= tk->next_leap_ktime))
2227                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2228
2229         } while (read_seqcount_retry(&tk_core.seq, seq));
2230
2231         return base;
2232 }
2233
2234 /**
2235  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2236  */
2237 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2238 {
2239         if (txc->modes & ADJ_ADJTIME) {
2240                 /* singleshot must not be used with any other mode bits */
2241                 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2242                         return -EINVAL;
2243                 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2244                     !capable(CAP_SYS_TIME))
2245                         return -EPERM;
2246         } else {
2247                 /* In order to modify anything, you gotta be super-user! */
2248                 if (txc->modes && !capable(CAP_SYS_TIME))
2249                         return -EPERM;
2250                 /*
2251                  * if the quartz is off by more than 10% then
2252                  * something is VERY wrong!
2253                  */
2254                 if (txc->modes & ADJ_TICK &&
2255                     (txc->tick <  900000/USER_HZ ||
2256                      txc->tick > 1100000/USER_HZ))
2257                         return -EINVAL;
2258         }
2259
2260         if (txc->modes & ADJ_SETOFFSET) {
2261                 /* In order to inject time, you gotta be super-user! */
2262                 if (!capable(CAP_SYS_TIME))
2263                         return -EPERM;
2264
2265                 /*
2266                  * Validate if a timespec/timeval used to inject a time
2267                  * offset is valid.  Offsets can be postive or negative, so
2268                  * we don't check tv_sec. The value of the timeval/timespec
2269                  * is the sum of its fields,but *NOTE*:
2270                  * The field tv_usec/tv_nsec must always be non-negative and
2271                  * we can't have more nanoseconds/microseconds than a second.
2272                  */
2273                 if (txc->time.tv_usec < 0)
2274                         return -EINVAL;
2275
2276                 if (txc->modes & ADJ_NANO) {
2277                         if (txc->time.tv_usec >= NSEC_PER_SEC)
2278                                 return -EINVAL;
2279                 } else {
2280                         if (txc->time.tv_usec >= USEC_PER_SEC)
2281                                 return -EINVAL;
2282                 }
2283         }
2284
2285         /*
2286          * Check for potential multiplication overflows that can
2287          * only happen on 64-bit systems:
2288          */
2289         if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2290                 if (LLONG_MIN / PPM_SCALE > txc->freq)
2291                         return -EINVAL;
2292                 if (LLONG_MAX / PPM_SCALE < txc->freq)
2293                         return -EINVAL;
2294         }
2295
2296         return 0;
2297 }
2298
2299
2300 /**
2301  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2302  */
2303 int do_adjtimex(struct __kernel_timex *txc)
2304 {
2305         struct timekeeper *tk = &tk_core.timekeeper;
2306         unsigned long flags;
2307         struct timespec64 ts;
2308         s32 orig_tai, tai;
2309         int ret;
2310
2311         /* Validate the data before disabling interrupts */
2312         ret = timekeeping_validate_timex(txc);
2313         if (ret)
2314                 return ret;
2315
2316         if (txc->modes & ADJ_SETOFFSET) {
2317                 struct timespec64 delta;
2318                 delta.tv_sec  = txc->time.tv_sec;
2319                 delta.tv_nsec = txc->time.tv_usec;
2320                 if (!(txc->modes & ADJ_NANO))
2321                         delta.tv_nsec *= 1000;
2322                 ret = timekeeping_inject_offset(&delta);
2323                 if (ret)
2324                         return ret;
2325         }
2326
2327         ktime_get_real_ts64(&ts);
2328
2329         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2330         write_seqcount_begin(&tk_core.seq);
2331
2332         orig_tai = tai = tk->tai_offset;
2333         ret = __do_adjtimex(txc, &ts, &tai);
2334
2335         if (tai != orig_tai) {
2336                 __timekeeping_set_tai_offset(tk, tai);
2337                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2338         }
2339         tk_update_leap_state(tk);
2340
2341         write_seqcount_end(&tk_core.seq);
2342         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2343
2344         /* Update the multiplier immediately if frequency was set directly */
2345         if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2346                 timekeeping_advance(TK_ADV_FREQ);
2347
2348         if (tai != orig_tai)
2349                 clock_was_set();
2350
2351         ntp_notify_cmos_timer();
2352
2353         return ret;
2354 }
2355
2356 #ifdef CONFIG_NTP_PPS
2357 /**
2358  * hardpps() - Accessor function to NTP __hardpps function
2359  */
2360 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2361 {
2362         unsigned long flags;
2363
2364         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2365         write_seqcount_begin(&tk_core.seq);
2366
2367         __hardpps(phase_ts, raw_ts);
2368
2369         write_seqcount_end(&tk_core.seq);
2370         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2371 }
2372 EXPORT_SYMBOL(hardpps);
2373 #endif /* CONFIG_NTP_PPS */
2374
2375 /**
2376  * xtime_update() - advances the timekeeping infrastructure
2377  * @ticks:      number of ticks, that have elapsed since the last call.
2378  *
2379  * Must be called with interrupts disabled.
2380  */
2381 void xtime_update(unsigned long ticks)
2382 {
2383         write_seqlock(&jiffies_lock);
2384         do_timer(ticks);
2385         write_sequnlock(&jiffies_lock);
2386         update_wall_time();
2387 }