posix-cpu-timers: Remove useless call to check_dl_overrun()
[sfrench/cifs-2.6.git] / kernel / time / posix-cpu-timers.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implement CPU time clocks for the POSIX clock interface.
4  */
5
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 #include <linux/sched/deadline.h>
18
19 #include "posix-timers.h"
20
21 static void posix_cpu_timer_rearm(struct k_itimer *timer);
22
23 /*
24  * Called after updating RLIMIT_CPU to run cpu timer and update
25  * tsk->signal->cputime_expires expiration cache if necessary. Needs
26  * siglock protection since other code may update expiration cache as
27  * well.
28  */
29 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
30 {
31         u64 nsecs = rlim_new * NSEC_PER_SEC;
32
33         spin_lock_irq(&task->sighand->siglock);
34         set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
35         spin_unlock_irq(&task->sighand->siglock);
36 }
37
38 static int check_clock(const clockid_t which_clock)
39 {
40         int error = 0;
41         struct task_struct *p;
42         const pid_t pid = CPUCLOCK_PID(which_clock);
43
44         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
45                 return -EINVAL;
46
47         if (pid == 0)
48                 return 0;
49
50         rcu_read_lock();
51         p = find_task_by_vpid(pid);
52         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
53                    same_thread_group(p, current) : has_group_leader_pid(p))) {
54                 error = -EINVAL;
55         }
56         rcu_read_unlock();
57
58         return error;
59 }
60
61 /*
62  * Update expiry time from increment, and increase overrun count,
63  * given the current clock sample.
64  */
65 static void bump_cpu_timer(struct k_itimer *timer, u64 now)
66 {
67         int i;
68         u64 delta, incr;
69
70         if (timer->it.cpu.incr == 0)
71                 return;
72
73         if (now < timer->it.cpu.expires)
74                 return;
75
76         incr = timer->it.cpu.incr;
77         delta = now + incr - timer->it.cpu.expires;
78
79         /* Don't use (incr*2 < delta), incr*2 might overflow. */
80         for (i = 0; incr < delta - incr; i++)
81                 incr = incr << 1;
82
83         for (; i >= 0; incr >>= 1, i--) {
84                 if (delta < incr)
85                         continue;
86
87                 timer->it.cpu.expires += incr;
88                 timer->it_overrun += 1LL << i;
89                 delta -= incr;
90         }
91 }
92
93 /**
94  * task_cputime_zero - Check a task_cputime struct for all zero fields.
95  *
96  * @cputime:    The struct to compare.
97  *
98  * Checks @cputime to see if all fields are zero.  Returns true if all fields
99  * are zero, false if any field is nonzero.
100  */
101 static inline int task_cputime_zero(const struct task_cputime *cputime)
102 {
103         if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
104                 return 1;
105         return 0;
106 }
107
108 static inline u64 prof_ticks(struct task_struct *p)
109 {
110         u64 utime, stime;
111
112         task_cputime(p, &utime, &stime);
113
114         return utime + stime;
115 }
116 static inline u64 virt_ticks(struct task_struct *p)
117 {
118         u64 utime, stime;
119
120         task_cputime(p, &utime, &stime);
121
122         return utime;
123 }
124
125 static int
126 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
127 {
128         int error = check_clock(which_clock);
129         if (!error) {
130                 tp->tv_sec = 0;
131                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
132                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
133                         /*
134                          * If sched_clock is using a cycle counter, we
135                          * don't have any idea of its true resolution
136                          * exported, but it is much more than 1s/HZ.
137                          */
138                         tp->tv_nsec = 1;
139                 }
140         }
141         return error;
142 }
143
144 static int
145 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
146 {
147         /*
148          * You can never reset a CPU clock, but we check for other errors
149          * in the call before failing with EPERM.
150          */
151         int error = check_clock(which_clock);
152         if (error == 0) {
153                 error = -EPERM;
154         }
155         return error;
156 }
157
158
159 /*
160  * Sample a per-thread clock for the given task.
161  */
162 static int cpu_clock_sample(const clockid_t which_clock,
163                             struct task_struct *p, u64 *sample)
164 {
165         switch (CPUCLOCK_WHICH(which_clock)) {
166         default:
167                 return -EINVAL;
168         case CPUCLOCK_PROF:
169                 *sample = prof_ticks(p);
170                 break;
171         case CPUCLOCK_VIRT:
172                 *sample = virt_ticks(p);
173                 break;
174         case CPUCLOCK_SCHED:
175                 *sample = task_sched_runtime(p);
176                 break;
177         }
178         return 0;
179 }
180
181 /*
182  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
183  * to avoid race conditions with concurrent updates to cputime.
184  */
185 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
186 {
187         u64 curr_cputime;
188 retry:
189         curr_cputime = atomic64_read(cputime);
190         if (sum_cputime > curr_cputime) {
191                 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
192                         goto retry;
193         }
194 }
195
196 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
197 {
198         __update_gt_cputime(&cputime_atomic->utime, sum->utime);
199         __update_gt_cputime(&cputime_atomic->stime, sum->stime);
200         __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
201 }
202
203 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
204 static inline void sample_cputime_atomic(struct task_cputime *times,
205                                          struct task_cputime_atomic *atomic_times)
206 {
207         times->utime = atomic64_read(&atomic_times->utime);
208         times->stime = atomic64_read(&atomic_times->stime);
209         times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
210 }
211
212 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
213 {
214         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
215         struct task_cputime sum;
216
217         /* Check if cputimer isn't running. This is accessed without locking. */
218         if (!READ_ONCE(cputimer->running)) {
219                 /*
220                  * The POSIX timer interface allows for absolute time expiry
221                  * values through the TIMER_ABSTIME flag, therefore we have
222                  * to synchronize the timer to the clock every time we start it.
223                  */
224                 thread_group_cputime(tsk, &sum);
225                 update_gt_cputime(&cputimer->cputime_atomic, &sum);
226
227                 /*
228                  * We're setting cputimer->running without a lock. Ensure
229                  * this only gets written to in one operation. We set
230                  * running after update_gt_cputime() as a small optimization,
231                  * but barriers are not required because update_gt_cputime()
232                  * can handle concurrent updates.
233                  */
234                 WRITE_ONCE(cputimer->running, true);
235         }
236         sample_cputime_atomic(times, &cputimer->cputime_atomic);
237 }
238
239 /*
240  * Sample a process (thread group) clock for the given group_leader task.
241  * Must be called with task sighand lock held for safe while_each_thread()
242  * traversal.
243  */
244 static int cpu_clock_sample_group(const clockid_t which_clock,
245                                   struct task_struct *p,
246                                   u64 *sample)
247 {
248         struct task_cputime cputime;
249
250         switch (CPUCLOCK_WHICH(which_clock)) {
251         default:
252                 return -EINVAL;
253         case CPUCLOCK_PROF:
254                 thread_group_cputime(p, &cputime);
255                 *sample = cputime.utime + cputime.stime;
256                 break;
257         case CPUCLOCK_VIRT:
258                 thread_group_cputime(p, &cputime);
259                 *sample = cputime.utime;
260                 break;
261         case CPUCLOCK_SCHED:
262                 thread_group_cputime(p, &cputime);
263                 *sample = cputime.sum_exec_runtime;
264                 break;
265         }
266         return 0;
267 }
268
269 static int posix_cpu_clock_get_task(struct task_struct *tsk,
270                                     const clockid_t which_clock,
271                                     struct timespec64 *tp)
272 {
273         int err = -EINVAL;
274         u64 rtn;
275
276         if (CPUCLOCK_PERTHREAD(which_clock)) {
277                 if (same_thread_group(tsk, current))
278                         err = cpu_clock_sample(which_clock, tsk, &rtn);
279         } else {
280                 if (tsk == current || thread_group_leader(tsk))
281                         err = cpu_clock_sample_group(which_clock, tsk, &rtn);
282         }
283
284         if (!err)
285                 *tp = ns_to_timespec64(rtn);
286
287         return err;
288 }
289
290
291 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
292 {
293         const pid_t pid = CPUCLOCK_PID(which_clock);
294         int err = -EINVAL;
295
296         if (pid == 0) {
297                 /*
298                  * Special case constant value for our own clocks.
299                  * We don't have to do any lookup to find ourselves.
300                  */
301                 err = posix_cpu_clock_get_task(current, which_clock, tp);
302         } else {
303                 /*
304                  * Find the given PID, and validate that the caller
305                  * should be able to see it.
306                  */
307                 struct task_struct *p;
308                 rcu_read_lock();
309                 p = find_task_by_vpid(pid);
310                 if (p)
311                         err = posix_cpu_clock_get_task(p, which_clock, tp);
312                 rcu_read_unlock();
313         }
314
315         return err;
316 }
317
318 /*
319  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
320  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
321  * new timer already all-zeros initialized.
322  */
323 static int posix_cpu_timer_create(struct k_itimer *new_timer)
324 {
325         int ret = 0;
326         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
327         struct task_struct *p;
328
329         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
330                 return -EINVAL;
331
332         new_timer->kclock = &clock_posix_cpu;
333
334         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
335
336         rcu_read_lock();
337         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
338                 if (pid == 0) {
339                         p = current;
340                 } else {
341                         p = find_task_by_vpid(pid);
342                         if (p && !same_thread_group(p, current))
343                                 p = NULL;
344                 }
345         } else {
346                 if (pid == 0) {
347                         p = current->group_leader;
348                 } else {
349                         p = find_task_by_vpid(pid);
350                         if (p && !has_group_leader_pid(p))
351                                 p = NULL;
352                 }
353         }
354         new_timer->it.cpu.task = p;
355         if (p) {
356                 get_task_struct(p);
357         } else {
358                 ret = -EINVAL;
359         }
360         rcu_read_unlock();
361
362         return ret;
363 }
364
365 /*
366  * Clean up a CPU-clock timer that is about to be destroyed.
367  * This is called from timer deletion with the timer already locked.
368  * If we return TIMER_RETRY, it's necessary to release the timer's lock
369  * and try again.  (This happens when the timer is in the middle of firing.)
370  */
371 static int posix_cpu_timer_del(struct k_itimer *timer)
372 {
373         int ret = 0;
374         unsigned long flags;
375         struct sighand_struct *sighand;
376         struct task_struct *p = timer->it.cpu.task;
377
378         WARN_ON_ONCE(p == NULL);
379
380         /*
381          * Protect against sighand release/switch in exit/exec and process/
382          * thread timer list entry concurrent read/writes.
383          */
384         sighand = lock_task_sighand(p, &flags);
385         if (unlikely(sighand == NULL)) {
386                 /*
387                  * We raced with the reaping of the task.
388                  * The deletion should have cleared us off the list.
389                  */
390                 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
391         } else {
392                 if (timer->it.cpu.firing)
393                         ret = TIMER_RETRY;
394                 else
395                         list_del(&timer->it.cpu.entry);
396
397                 unlock_task_sighand(p, &flags);
398         }
399
400         if (!ret)
401                 put_task_struct(p);
402
403         return ret;
404 }
405
406 static void cleanup_timers_list(struct list_head *head)
407 {
408         struct cpu_timer_list *timer, *next;
409
410         list_for_each_entry_safe(timer, next, head, entry)
411                 list_del_init(&timer->entry);
412 }
413
414 /*
415  * Clean out CPU timers still ticking when a thread exited.  The task
416  * pointer is cleared, and the expiry time is replaced with the residual
417  * time for later timer_gettime calls to return.
418  * This must be called with the siglock held.
419  */
420 static void cleanup_timers(struct list_head *head)
421 {
422         cleanup_timers_list(head);
423         cleanup_timers_list(++head);
424         cleanup_timers_list(++head);
425 }
426
427 /*
428  * These are both called with the siglock held, when the current thread
429  * is being reaped.  When the final (leader) thread in the group is reaped,
430  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
431  */
432 void posix_cpu_timers_exit(struct task_struct *tsk)
433 {
434         cleanup_timers(tsk->cpu_timers);
435 }
436 void posix_cpu_timers_exit_group(struct task_struct *tsk)
437 {
438         cleanup_timers(tsk->signal->cpu_timers);
439 }
440
441 static inline int expires_gt(u64 expires, u64 new_exp)
442 {
443         return expires == 0 || expires > new_exp;
444 }
445
446 /*
447  * Insert the timer on the appropriate list before any timers that
448  * expire later.  This must be called with the sighand lock held.
449  */
450 static void arm_timer(struct k_itimer *timer)
451 {
452         struct task_struct *p = timer->it.cpu.task;
453         struct list_head *head, *listpos;
454         struct task_cputime *cputime_expires;
455         struct cpu_timer_list *const nt = &timer->it.cpu;
456         struct cpu_timer_list *next;
457
458         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
459                 head = p->cpu_timers;
460                 cputime_expires = &p->cputime_expires;
461         } else {
462                 head = p->signal->cpu_timers;
463                 cputime_expires = &p->signal->cputime_expires;
464         }
465         head += CPUCLOCK_WHICH(timer->it_clock);
466
467         listpos = head;
468         list_for_each_entry(next, head, entry) {
469                 if (nt->expires < next->expires)
470                         break;
471                 listpos = &next->entry;
472         }
473         list_add(&nt->entry, listpos);
474
475         if (listpos == head) {
476                 u64 exp = nt->expires;
477
478                 /*
479                  * We are the new earliest-expiring POSIX 1.b timer, hence
480                  * need to update expiration cache. Take into account that
481                  * for process timers we share expiration cache with itimers
482                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
483                  */
484
485                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
486                 case CPUCLOCK_PROF:
487                         if (expires_gt(cputime_expires->prof_exp, exp))
488                                 cputime_expires->prof_exp = exp;
489                         break;
490                 case CPUCLOCK_VIRT:
491                         if (expires_gt(cputime_expires->virt_exp, exp))
492                                 cputime_expires->virt_exp = exp;
493                         break;
494                 case CPUCLOCK_SCHED:
495                         if (expires_gt(cputime_expires->sched_exp, exp))
496                                 cputime_expires->sched_exp = exp;
497                         break;
498                 }
499                 if (CPUCLOCK_PERTHREAD(timer->it_clock))
500                         tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
501                 else
502                         tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
503         }
504 }
505
506 /*
507  * The timer is locked, fire it and arrange for its reload.
508  */
509 static void cpu_timer_fire(struct k_itimer *timer)
510 {
511         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
512                 /*
513                  * User don't want any signal.
514                  */
515                 timer->it.cpu.expires = 0;
516         } else if (unlikely(timer->sigq == NULL)) {
517                 /*
518                  * This a special case for clock_nanosleep,
519                  * not a normal timer from sys_timer_create.
520                  */
521                 wake_up_process(timer->it_process);
522                 timer->it.cpu.expires = 0;
523         } else if (timer->it.cpu.incr == 0) {
524                 /*
525                  * One-shot timer.  Clear it as soon as it's fired.
526                  */
527                 posix_timer_event(timer, 0);
528                 timer->it.cpu.expires = 0;
529         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
530                 /*
531                  * The signal did not get queued because the signal
532                  * was ignored, so we won't get any callback to
533                  * reload the timer.  But we need to keep it
534                  * ticking in case the signal is deliverable next time.
535                  */
536                 posix_cpu_timer_rearm(timer);
537                 ++timer->it_requeue_pending;
538         }
539 }
540
541 /*
542  * Sample a process (thread group) timer for the given group_leader task.
543  * Must be called with task sighand lock held for safe while_each_thread()
544  * traversal.
545  */
546 static int cpu_timer_sample_group(const clockid_t which_clock,
547                                   struct task_struct *p, u64 *sample)
548 {
549         struct task_cputime cputime;
550
551         thread_group_cputimer(p, &cputime);
552         switch (CPUCLOCK_WHICH(which_clock)) {
553         default:
554                 return -EINVAL;
555         case CPUCLOCK_PROF:
556                 *sample = cputime.utime + cputime.stime;
557                 break;
558         case CPUCLOCK_VIRT:
559                 *sample = cputime.utime;
560                 break;
561         case CPUCLOCK_SCHED:
562                 *sample = cputime.sum_exec_runtime;
563                 break;
564         }
565         return 0;
566 }
567
568 /*
569  * Guts of sys_timer_settime for CPU timers.
570  * This is called with the timer locked and interrupts disabled.
571  * If we return TIMER_RETRY, it's necessary to release the timer's lock
572  * and try again.  (This happens when the timer is in the middle of firing.)
573  */
574 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
575                                struct itimerspec64 *new, struct itimerspec64 *old)
576 {
577         unsigned long flags;
578         struct sighand_struct *sighand;
579         struct task_struct *p = timer->it.cpu.task;
580         u64 old_expires, new_expires, old_incr, val;
581         int ret;
582
583         WARN_ON_ONCE(p == NULL);
584
585         /*
586          * Use the to_ktime conversion because that clamps the maximum
587          * value to KTIME_MAX and avoid multiplication overflows.
588          */
589         new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
590
591         /*
592          * Protect against sighand release/switch in exit/exec and p->cpu_timers
593          * and p->signal->cpu_timers read/write in arm_timer()
594          */
595         sighand = lock_task_sighand(p, &flags);
596         /*
597          * If p has just been reaped, we can no
598          * longer get any information about it at all.
599          */
600         if (unlikely(sighand == NULL)) {
601                 return -ESRCH;
602         }
603
604         /*
605          * Disarm any old timer after extracting its expiry time.
606          */
607
608         ret = 0;
609         old_incr = timer->it.cpu.incr;
610         old_expires = timer->it.cpu.expires;
611         if (unlikely(timer->it.cpu.firing)) {
612                 timer->it.cpu.firing = -1;
613                 ret = TIMER_RETRY;
614         } else
615                 list_del_init(&timer->it.cpu.entry);
616
617         /*
618          * We need to sample the current value to convert the new
619          * value from to relative and absolute, and to convert the
620          * old value from absolute to relative.  To set a process
621          * timer, we need a sample to balance the thread expiry
622          * times (in arm_timer).  With an absolute time, we must
623          * check if it's already passed.  In short, we need a sample.
624          */
625         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
626                 cpu_clock_sample(timer->it_clock, p, &val);
627         } else {
628                 cpu_timer_sample_group(timer->it_clock, p, &val);
629         }
630
631         if (old) {
632                 if (old_expires == 0) {
633                         old->it_value.tv_sec = 0;
634                         old->it_value.tv_nsec = 0;
635                 } else {
636                         /*
637                          * Update the timer in case it has
638                          * overrun already.  If it has,
639                          * we'll report it as having overrun
640                          * and with the next reloaded timer
641                          * already ticking, though we are
642                          * swallowing that pending
643                          * notification here to install the
644                          * new setting.
645                          */
646                         bump_cpu_timer(timer, val);
647                         if (val < timer->it.cpu.expires) {
648                                 old_expires = timer->it.cpu.expires - val;
649                                 old->it_value = ns_to_timespec64(old_expires);
650                         } else {
651                                 old->it_value.tv_nsec = 1;
652                                 old->it_value.tv_sec = 0;
653                         }
654                 }
655         }
656
657         if (unlikely(ret)) {
658                 /*
659                  * We are colliding with the timer actually firing.
660                  * Punt after filling in the timer's old value, and
661                  * disable this firing since we are already reporting
662                  * it as an overrun (thanks to bump_cpu_timer above).
663                  */
664                 unlock_task_sighand(p, &flags);
665                 goto out;
666         }
667
668         if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
669                 new_expires += val;
670         }
671
672         /*
673          * Install the new expiry time (or zero).
674          * For a timer with no notification action, we don't actually
675          * arm the timer (we'll just fake it for timer_gettime).
676          */
677         timer->it.cpu.expires = new_expires;
678         if (new_expires != 0 && val < new_expires) {
679                 arm_timer(timer);
680         }
681
682         unlock_task_sighand(p, &flags);
683         /*
684          * Install the new reload setting, and
685          * set up the signal and overrun bookkeeping.
686          */
687         timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
688
689         /*
690          * This acts as a modification timestamp for the timer,
691          * so any automatic reload attempt will punt on seeing
692          * that we have reset the timer manually.
693          */
694         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
695                 ~REQUEUE_PENDING;
696         timer->it_overrun_last = 0;
697         timer->it_overrun = -1;
698
699         if (new_expires != 0 && !(val < new_expires)) {
700                 /*
701                  * The designated time already passed, so we notify
702                  * immediately, even if the thread never runs to
703                  * accumulate more time on this clock.
704                  */
705                 cpu_timer_fire(timer);
706         }
707
708         ret = 0;
709  out:
710         if (old)
711                 old->it_interval = ns_to_timespec64(old_incr);
712
713         return ret;
714 }
715
716 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
717 {
718         u64 now;
719         struct task_struct *p = timer->it.cpu.task;
720
721         WARN_ON_ONCE(p == NULL);
722
723         /*
724          * Easy part: convert the reload time.
725          */
726         itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
727
728         if (!timer->it.cpu.expires)
729                 return;
730
731         /*
732          * Sample the clock to take the difference with the expiry time.
733          */
734         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
735                 cpu_clock_sample(timer->it_clock, p, &now);
736         } else {
737                 struct sighand_struct *sighand;
738                 unsigned long flags;
739
740                 /*
741                  * Protect against sighand release/switch in exit/exec and
742                  * also make timer sampling safe if it ends up calling
743                  * thread_group_cputime().
744                  */
745                 sighand = lock_task_sighand(p, &flags);
746                 if (unlikely(sighand == NULL)) {
747                         /*
748                          * The process has been reaped.
749                          * We can't even collect a sample any more.
750                          * Call the timer disarmed, nothing else to do.
751                          */
752                         timer->it.cpu.expires = 0;
753                         return;
754                 } else {
755                         cpu_timer_sample_group(timer->it_clock, p, &now);
756                         unlock_task_sighand(p, &flags);
757                 }
758         }
759
760         if (now < timer->it.cpu.expires) {
761                 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
762         } else {
763                 /*
764                  * The timer should have expired already, but the firing
765                  * hasn't taken place yet.  Say it's just about to expire.
766                  */
767                 itp->it_value.tv_nsec = 1;
768                 itp->it_value.tv_sec = 0;
769         }
770 }
771
772 static unsigned long long
773 check_timers_list(struct list_head *timers,
774                   struct list_head *firing,
775                   unsigned long long curr)
776 {
777         int maxfire = 20;
778
779         while (!list_empty(timers)) {
780                 struct cpu_timer_list *t;
781
782                 t = list_first_entry(timers, struct cpu_timer_list, entry);
783
784                 if (!--maxfire || curr < t->expires)
785                         return t->expires;
786
787                 t->firing = 1;
788                 list_move_tail(&t->entry, firing);
789         }
790
791         return 0;
792 }
793
794 static inline void check_dl_overrun(struct task_struct *tsk)
795 {
796         if (tsk->dl.dl_overrun) {
797                 tsk->dl.dl_overrun = 0;
798                 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
799         }
800 }
801
802 /*
803  * Check for any per-thread CPU timers that have fired and move them off
804  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
805  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
806  */
807 static void check_thread_timers(struct task_struct *tsk,
808                                 struct list_head *firing)
809 {
810         struct list_head *timers = tsk->cpu_timers;
811         struct task_cputime *tsk_expires = &tsk->cputime_expires;
812         u64 expires;
813         unsigned long soft;
814
815         if (dl_task(tsk))
816                 check_dl_overrun(tsk);
817
818         /*
819          * If cputime_expires is zero, then there are no active
820          * per thread CPU timers.
821          */
822         if (task_cputime_zero(&tsk->cputime_expires))
823                 return;
824
825         expires = check_timers_list(timers, firing, prof_ticks(tsk));
826         tsk_expires->prof_exp = expires;
827
828         expires = check_timers_list(++timers, firing, virt_ticks(tsk));
829         tsk_expires->virt_exp = expires;
830
831         tsk_expires->sched_exp = check_timers_list(++timers, firing,
832                                                    tsk->se.sum_exec_runtime);
833
834         /*
835          * Check for the special case thread timers.
836          */
837         soft = task_rlimit(tsk, RLIMIT_RTTIME);
838         if (soft != RLIM_INFINITY) {
839                 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
840
841                 if (hard != RLIM_INFINITY &&
842                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
843                         /*
844                          * At the hard limit, we just die.
845                          * No need to calculate anything else now.
846                          */
847                         if (print_fatal_signals) {
848                                 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
849                                         tsk->comm, task_pid_nr(tsk));
850                         }
851                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
852                         return;
853                 }
854                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
855                         /*
856                          * At the soft limit, send a SIGXCPU every second.
857                          */
858                         if (soft < hard) {
859                                 soft += USEC_PER_SEC;
860                                 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
861                                         soft;
862                         }
863                         if (print_fatal_signals) {
864                                 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
865                                         tsk->comm, task_pid_nr(tsk));
866                         }
867                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
868                 }
869         }
870         if (task_cputime_zero(tsk_expires))
871                 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
872 }
873
874 static inline void stop_process_timers(struct signal_struct *sig)
875 {
876         struct thread_group_cputimer *cputimer = &sig->cputimer;
877
878         /* Turn off cputimer->running. This is done without locking. */
879         WRITE_ONCE(cputimer->running, false);
880         tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
881 }
882
883 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
884                              u64 *expires, u64 cur_time, int signo)
885 {
886         if (!it->expires)
887                 return;
888
889         if (cur_time >= it->expires) {
890                 if (it->incr)
891                         it->expires += it->incr;
892                 else
893                         it->expires = 0;
894
895                 trace_itimer_expire(signo == SIGPROF ?
896                                     ITIMER_PROF : ITIMER_VIRTUAL,
897                                     task_tgid(tsk), cur_time);
898                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
899         }
900
901         if (it->expires && (!*expires || it->expires < *expires))
902                 *expires = it->expires;
903 }
904
905 /*
906  * Check for any per-thread CPU timers that have fired and move them
907  * off the tsk->*_timers list onto the firing list.  Per-thread timers
908  * have already been taken off.
909  */
910 static void check_process_timers(struct task_struct *tsk,
911                                  struct list_head *firing)
912 {
913         struct signal_struct *const sig = tsk->signal;
914         u64 utime, ptime, virt_expires, prof_expires;
915         u64 sum_sched_runtime, sched_expires;
916         struct list_head *timers = sig->cpu_timers;
917         struct task_cputime cputime;
918         unsigned long soft;
919
920         /*
921          * If cputimer is not running, then there are no active
922          * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
923          */
924         if (!READ_ONCE(tsk->signal->cputimer.running))
925                 return;
926
927         /*
928          * Signify that a thread is checking for process timers.
929          * Write access to this field is protected by the sighand lock.
930          */
931         sig->cputimer.checking_timer = true;
932
933         /*
934          * Collect the current process totals.
935          */
936         thread_group_cputimer(tsk, &cputime);
937         utime = cputime.utime;
938         ptime = utime + cputime.stime;
939         sum_sched_runtime = cputime.sum_exec_runtime;
940
941         prof_expires = check_timers_list(timers, firing, ptime);
942         virt_expires = check_timers_list(++timers, firing, utime);
943         sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
944
945         /*
946          * Check for the special case process timers.
947          */
948         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
949                          SIGPROF);
950         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
951                          SIGVTALRM);
952         soft = task_rlimit(tsk, RLIMIT_CPU);
953         if (soft != RLIM_INFINITY) {
954                 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
955                 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
956                 u64 x;
957                 if (psecs >= hard) {
958                         /*
959                          * At the hard limit, we just die.
960                          * No need to calculate anything else now.
961                          */
962                         if (print_fatal_signals) {
963                                 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
964                                         tsk->comm, task_pid_nr(tsk));
965                         }
966                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
967                         return;
968                 }
969                 if (psecs >= soft) {
970                         /*
971                          * At the soft limit, send a SIGXCPU every second.
972                          */
973                         if (print_fatal_signals) {
974                                 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
975                                         tsk->comm, task_pid_nr(tsk));
976                         }
977                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
978                         if (soft < hard) {
979                                 soft++;
980                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
981                         }
982                 }
983                 x = soft * NSEC_PER_SEC;
984                 if (!prof_expires || x < prof_expires)
985                         prof_expires = x;
986         }
987
988         sig->cputime_expires.prof_exp = prof_expires;
989         sig->cputime_expires.virt_exp = virt_expires;
990         sig->cputime_expires.sched_exp = sched_expires;
991         if (task_cputime_zero(&sig->cputime_expires))
992                 stop_process_timers(sig);
993
994         sig->cputimer.checking_timer = false;
995 }
996
997 /*
998  * This is called from the signal code (via posixtimer_rearm)
999  * when the last timer signal was delivered and we have to reload the timer.
1000  */
1001 static void posix_cpu_timer_rearm(struct k_itimer *timer)
1002 {
1003         struct sighand_struct *sighand;
1004         unsigned long flags;
1005         struct task_struct *p = timer->it.cpu.task;
1006         u64 now;
1007
1008         WARN_ON_ONCE(p == NULL);
1009
1010         /*
1011          * Fetch the current sample and update the timer's expiry time.
1012          */
1013         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1014                 cpu_clock_sample(timer->it_clock, p, &now);
1015                 bump_cpu_timer(timer, now);
1016                 if (unlikely(p->exit_state))
1017                         return;
1018
1019                 /* Protect timer list r/w in arm_timer() */
1020                 sighand = lock_task_sighand(p, &flags);
1021                 if (!sighand)
1022                         return;
1023         } else {
1024                 /*
1025                  * Protect arm_timer() and timer sampling in case of call to
1026                  * thread_group_cputime().
1027                  */
1028                 sighand = lock_task_sighand(p, &flags);
1029                 if (unlikely(sighand == NULL)) {
1030                         /*
1031                          * The process has been reaped.
1032                          * We can't even collect a sample any more.
1033                          */
1034                         timer->it.cpu.expires = 0;
1035                         return;
1036                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1037                         /* If the process is dying, no need to rearm */
1038                         goto unlock;
1039                 }
1040                 cpu_timer_sample_group(timer->it_clock, p, &now);
1041                 bump_cpu_timer(timer, now);
1042                 /* Leave the sighand locked for the call below.  */
1043         }
1044
1045         /*
1046          * Now re-arm for the new expiry time.
1047          */
1048         arm_timer(timer);
1049 unlock:
1050         unlock_task_sighand(p, &flags);
1051 }
1052
1053 /**
1054  * task_cputime_expired - Compare two task_cputime entities.
1055  *
1056  * @sample:     The task_cputime structure to be checked for expiration.
1057  * @expires:    Expiration times, against which @sample will be checked.
1058  *
1059  * Checks @sample against @expires to see if any field of @sample has expired.
1060  * Returns true if any field of the former is greater than the corresponding
1061  * field of the latter if the latter field is set.  Otherwise returns false.
1062  */
1063 static inline int task_cputime_expired(const struct task_cputime *sample,
1064                                         const struct task_cputime *expires)
1065 {
1066         if (expires->utime && sample->utime >= expires->utime)
1067                 return 1;
1068         if (expires->stime && sample->utime + sample->stime >= expires->stime)
1069                 return 1;
1070         if (expires->sum_exec_runtime != 0 &&
1071             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1072                 return 1;
1073         return 0;
1074 }
1075
1076 /**
1077  * fastpath_timer_check - POSIX CPU timers fast path.
1078  *
1079  * @tsk:        The task (thread) being checked.
1080  *
1081  * Check the task and thread group timers.  If both are zero (there are no
1082  * timers set) return false.  Otherwise snapshot the task and thread group
1083  * timers and compare them with the corresponding expiration times.  Return
1084  * true if a timer has expired, else return false.
1085  */
1086 static inline int fastpath_timer_check(struct task_struct *tsk)
1087 {
1088         struct signal_struct *sig;
1089
1090         if (!task_cputime_zero(&tsk->cputime_expires)) {
1091                 struct task_cputime task_sample;
1092
1093                 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1094                 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1095                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1096                         return 1;
1097         }
1098
1099         sig = tsk->signal;
1100         /*
1101          * Check if thread group timers expired when the cputimer is
1102          * running and no other thread in the group is already checking
1103          * for thread group cputimers. These fields are read without the
1104          * sighand lock. However, this is fine because this is meant to
1105          * be a fastpath heuristic to determine whether we should try to
1106          * acquire the sighand lock to check/handle timers.
1107          *
1108          * In the worst case scenario, if 'running' or 'checking_timer' gets
1109          * set but the current thread doesn't see the change yet, we'll wait
1110          * until the next thread in the group gets a scheduler interrupt to
1111          * handle the timer. This isn't an issue in practice because these
1112          * types of delays with signals actually getting sent are expected.
1113          */
1114         if (READ_ONCE(sig->cputimer.running) &&
1115             !READ_ONCE(sig->cputimer.checking_timer)) {
1116                 struct task_cputime group_sample;
1117
1118                 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1119
1120                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1121                         return 1;
1122         }
1123
1124         if (dl_task(tsk) && tsk->dl.dl_overrun)
1125                 return 1;
1126
1127         return 0;
1128 }
1129
1130 /*
1131  * This is called from the timer interrupt handler.  The irq handler has
1132  * already updated our counts.  We need to check if any timers fire now.
1133  * Interrupts are disabled.
1134  */
1135 void run_posix_cpu_timers(struct task_struct *tsk)
1136 {
1137         LIST_HEAD(firing);
1138         struct k_itimer *timer, *next;
1139         unsigned long flags;
1140
1141         lockdep_assert_irqs_disabled();
1142
1143         /*
1144          * The fast path checks that there are no expired thread or thread
1145          * group timers.  If that's so, just return.
1146          */
1147         if (!fastpath_timer_check(tsk))
1148                 return;
1149
1150         if (!lock_task_sighand(tsk, &flags))
1151                 return;
1152         /*
1153          * Here we take off tsk->signal->cpu_timers[N] and
1154          * tsk->cpu_timers[N] all the timers that are firing, and
1155          * put them on the firing list.
1156          */
1157         check_thread_timers(tsk, &firing);
1158
1159         check_process_timers(tsk, &firing);
1160
1161         /*
1162          * We must release these locks before taking any timer's lock.
1163          * There is a potential race with timer deletion here, as the
1164          * siglock now protects our private firing list.  We have set
1165          * the firing flag in each timer, so that a deletion attempt
1166          * that gets the timer lock before we do will give it up and
1167          * spin until we've taken care of that timer below.
1168          */
1169         unlock_task_sighand(tsk, &flags);
1170
1171         /*
1172          * Now that all the timers on our list have the firing flag,
1173          * no one will touch their list entries but us.  We'll take
1174          * each timer's lock before clearing its firing flag, so no
1175          * timer call will interfere.
1176          */
1177         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1178                 int cpu_firing;
1179
1180                 spin_lock(&timer->it_lock);
1181                 list_del_init(&timer->it.cpu.entry);
1182                 cpu_firing = timer->it.cpu.firing;
1183                 timer->it.cpu.firing = 0;
1184                 /*
1185                  * The firing flag is -1 if we collided with a reset
1186                  * of the timer, which already reported this
1187                  * almost-firing as an overrun.  So don't generate an event.
1188                  */
1189                 if (likely(cpu_firing >= 0))
1190                         cpu_timer_fire(timer);
1191                 spin_unlock(&timer->it_lock);
1192         }
1193 }
1194
1195 /*
1196  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1197  * The tsk->sighand->siglock must be held by the caller.
1198  */
1199 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1200                            u64 *newval, u64 *oldval)
1201 {
1202         u64 now;
1203         int ret;
1204
1205         WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1206         ret = cpu_timer_sample_group(clock_idx, tsk, &now);
1207
1208         if (oldval && ret != -EINVAL) {
1209                 /*
1210                  * We are setting itimer. The *oldval is absolute and we update
1211                  * it to be relative, *newval argument is relative and we update
1212                  * it to be absolute.
1213                  */
1214                 if (*oldval) {
1215                         if (*oldval <= now) {
1216                                 /* Just about to fire. */
1217                                 *oldval = TICK_NSEC;
1218                         } else {
1219                                 *oldval -= now;
1220                         }
1221                 }
1222
1223                 if (!*newval)
1224                         return;
1225                 *newval += now;
1226         }
1227
1228         /*
1229          * Update expiration cache if we are the earliest timer, or eventually
1230          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1231          */
1232         switch (clock_idx) {
1233         case CPUCLOCK_PROF:
1234                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1235                         tsk->signal->cputime_expires.prof_exp = *newval;
1236                 break;
1237         case CPUCLOCK_VIRT:
1238                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1239                         tsk->signal->cputime_expires.virt_exp = *newval;
1240                 break;
1241         }
1242
1243         tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1244 }
1245
1246 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1247                             const struct timespec64 *rqtp)
1248 {
1249         struct itimerspec64 it;
1250         struct k_itimer timer;
1251         u64 expires;
1252         int error;
1253
1254         /*
1255          * Set up a temporary timer and then wait for it to go off.
1256          */
1257         memset(&timer, 0, sizeof timer);
1258         spin_lock_init(&timer.it_lock);
1259         timer.it_clock = which_clock;
1260         timer.it_overrun = -1;
1261         error = posix_cpu_timer_create(&timer);
1262         timer.it_process = current;
1263         if (!error) {
1264                 static struct itimerspec64 zero_it;
1265                 struct restart_block *restart;
1266
1267                 memset(&it, 0, sizeof(it));
1268                 it.it_value = *rqtp;
1269
1270                 spin_lock_irq(&timer.it_lock);
1271                 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1272                 if (error) {
1273                         spin_unlock_irq(&timer.it_lock);
1274                         return error;
1275                 }
1276
1277                 while (!signal_pending(current)) {
1278                         if (timer.it.cpu.expires == 0) {
1279                                 /*
1280                                  * Our timer fired and was reset, below
1281                                  * deletion can not fail.
1282                                  */
1283                                 posix_cpu_timer_del(&timer);
1284                                 spin_unlock_irq(&timer.it_lock);
1285                                 return 0;
1286                         }
1287
1288                         /*
1289                          * Block until cpu_timer_fire (or a signal) wakes us.
1290                          */
1291                         __set_current_state(TASK_INTERRUPTIBLE);
1292                         spin_unlock_irq(&timer.it_lock);
1293                         schedule();
1294                         spin_lock_irq(&timer.it_lock);
1295                 }
1296
1297                 /*
1298                  * We were interrupted by a signal.
1299                  */
1300                 expires = timer.it.cpu.expires;
1301                 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1302                 if (!error) {
1303                         /*
1304                          * Timer is now unarmed, deletion can not fail.
1305                          */
1306                         posix_cpu_timer_del(&timer);
1307                 }
1308                 spin_unlock_irq(&timer.it_lock);
1309
1310                 while (error == TIMER_RETRY) {
1311                         /*
1312                          * We need to handle case when timer was or is in the
1313                          * middle of firing. In other cases we already freed
1314                          * resources.
1315                          */
1316                         spin_lock_irq(&timer.it_lock);
1317                         error = posix_cpu_timer_del(&timer);
1318                         spin_unlock_irq(&timer.it_lock);
1319                 }
1320
1321                 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1322                         /*
1323                          * It actually did fire already.
1324                          */
1325                         return 0;
1326                 }
1327
1328                 error = -ERESTART_RESTARTBLOCK;
1329                 /*
1330                  * Report back to the user the time still remaining.
1331                  */
1332                 restart = &current->restart_block;
1333                 restart->nanosleep.expires = expires;
1334                 if (restart->nanosleep.type != TT_NONE)
1335                         error = nanosleep_copyout(restart, &it.it_value);
1336         }
1337
1338         return error;
1339 }
1340
1341 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1342
1343 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1344                             const struct timespec64 *rqtp)
1345 {
1346         struct restart_block *restart_block = &current->restart_block;
1347         int error;
1348
1349         /*
1350          * Diagnose required errors first.
1351          */
1352         if (CPUCLOCK_PERTHREAD(which_clock) &&
1353             (CPUCLOCK_PID(which_clock) == 0 ||
1354              CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1355                 return -EINVAL;
1356
1357         error = do_cpu_nanosleep(which_clock, flags, rqtp);
1358
1359         if (error == -ERESTART_RESTARTBLOCK) {
1360
1361                 if (flags & TIMER_ABSTIME)
1362                         return -ERESTARTNOHAND;
1363
1364                 restart_block->fn = posix_cpu_nsleep_restart;
1365                 restart_block->nanosleep.clockid = which_clock;
1366         }
1367         return error;
1368 }
1369
1370 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1371 {
1372         clockid_t which_clock = restart_block->nanosleep.clockid;
1373         struct timespec64 t;
1374
1375         t = ns_to_timespec64(restart_block->nanosleep.expires);
1376
1377         return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1378 }
1379
1380 #define PROCESS_CLOCK   make_process_cpuclock(0, CPUCLOCK_SCHED)
1381 #define THREAD_CLOCK    make_thread_cpuclock(0, CPUCLOCK_SCHED)
1382
1383 static int process_cpu_clock_getres(const clockid_t which_clock,
1384                                     struct timespec64 *tp)
1385 {
1386         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1387 }
1388 static int process_cpu_clock_get(const clockid_t which_clock,
1389                                  struct timespec64 *tp)
1390 {
1391         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1392 }
1393 static int process_cpu_timer_create(struct k_itimer *timer)
1394 {
1395         timer->it_clock = PROCESS_CLOCK;
1396         return posix_cpu_timer_create(timer);
1397 }
1398 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1399                               const struct timespec64 *rqtp)
1400 {
1401         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1402 }
1403 static int thread_cpu_clock_getres(const clockid_t which_clock,
1404                                    struct timespec64 *tp)
1405 {
1406         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1407 }
1408 static int thread_cpu_clock_get(const clockid_t which_clock,
1409                                 struct timespec64 *tp)
1410 {
1411         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1412 }
1413 static int thread_cpu_timer_create(struct k_itimer *timer)
1414 {
1415         timer->it_clock = THREAD_CLOCK;
1416         return posix_cpu_timer_create(timer);
1417 }
1418
1419 const struct k_clock clock_posix_cpu = {
1420         .clock_getres   = posix_cpu_clock_getres,
1421         .clock_set      = posix_cpu_clock_set,
1422         .clock_get      = posix_cpu_clock_get,
1423         .timer_create   = posix_cpu_timer_create,
1424         .nsleep         = posix_cpu_nsleep,
1425         .timer_set      = posix_cpu_timer_set,
1426         .timer_del      = posix_cpu_timer_del,
1427         .timer_get      = posix_cpu_timer_get,
1428         .timer_rearm    = posix_cpu_timer_rearm,
1429 };
1430
1431 const struct k_clock clock_process = {
1432         .clock_getres   = process_cpu_clock_getres,
1433         .clock_get      = process_cpu_clock_get,
1434         .timer_create   = process_cpu_timer_create,
1435         .nsleep         = process_cpu_nsleep,
1436 };
1437
1438 const struct k_clock clock_thread = {
1439         .clock_getres   = thread_cpu_clock_getres,
1440         .clock_get      = thread_cpu_clock_get,
1441         .timer_create   = thread_cpu_timer_create,
1442 };