1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
25 #include <trace/events/sched.h>
28 * Targeted preemption latency for CPU-bound tasks:
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 unsigned int sysctl_sched_latency = 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
44 * The initial- and re-scaling of tunables is configurable
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
57 * Minimal preemption granularity for CPU-bound tasks:
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
61 unsigned int sysctl_sched_min_granularity = 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
67 static unsigned int sched_nr_latency = 8;
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
76 * SCHED_OTHER wake-up granularity.
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91 * For asym packing, by default the lower numbered CPU has higher priority.
93 int __weak arch_asym_cpu_priority(int cpu)
99 * The margin used when comparing utilization with CPU capacity:
100 * util * margin < capacity * 1024
104 static unsigned int capacity_margin = 1280;
107 #ifdef CONFIG_CFS_BANDWIDTH
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
116 * (default: 5 msec, units: microseconds)
118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
146 * This idea comes from the SD scheduler of Con Kolivas:
148 static unsigned int get_update_sysctl_factor(void)
150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
157 case SCHED_TUNABLESCALING_LINEAR:
160 case SCHED_TUNABLESCALING_LOG:
162 factor = 1 + ilog2(cpus);
169 static void update_sysctl(void)
171 unsigned int factor = get_update_sysctl_factor();
173 #define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
181 void sched_init_granularity(void)
186 #define WMULT_CONST (~0U)
187 #define WMULT_SHIFT 32
189 static void __update_inv_weight(struct load_weight *lw)
193 if (likely(lw->inv_weight))
196 w = scale_load_down(lw->weight);
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
203 lw->inv_weight = WMULT_CONST / w;
207 * delta_exec * weight / lw.weight
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
223 __update_inv_weight(lw);
225 if (unlikely(fact >> 32)) {
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
240 return mul_u64_u32_shr(delta_exec, fact, shift);
244 const struct sched_class fair_sched_class;
246 /**************************************************************
247 * CFS operations on generic schedulable entities:
250 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
258 static inline struct task_struct *task_of(struct sched_entity *se)
260 SCHED_WARN_ON(!entity_is_task(se));
261 return container_of(se, struct task_struct, se);
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 if (!cfs_rq->on_list) {
288 struct rq *rq = rq_of(cfs_rq);
289 int cpu = cpu_of(rq);
291 * Ensure we either appear before our parent (if already
292 * enqueued) or force our parent to appear after us when it is
293 * enqueued. The fact that we always enqueue bottom-up
294 * reduces this to two cases and a special case for the root
295 * cfs_rq. Furthermore, it also means that we will always reset
296 * tmp_alone_branch either when the branch is connected
297 * to a tree or when we reach the beg of the tree
299 if (cfs_rq->tg->parent &&
300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
302 * If parent is already on the list, we add the child
303 * just before. Thanks to circular linked property of
304 * the list, this means to put the child at the tail
305 * of the list that starts by parent.
307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
310 * The branch is now connected to its tree so we can
311 * reset tmp_alone_branch to the beginning of the
314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 } else if (!cfs_rq->tg->parent) {
317 * cfs rq without parent should be put
318 * at the tail of the list.
320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 &rq->leaf_cfs_rq_list);
323 * We have reach the beg of a tree so we can reset
324 * tmp_alone_branch to the beginning of the list.
326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
329 * The parent has not already been added so we want to
330 * make sure that it will be put after us.
331 * tmp_alone_branch points to the beg of the branch
332 * where we will add parent.
334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 rq->tmp_alone_branch);
337 * update tmp_alone_branch to points to the new beg
340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
349 if (cfs_rq->on_list) {
350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
355 /* Iterate through all leaf cfs_rq's on a runqueue: */
356 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
357 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
359 /* Do the two (enqueued) entities belong to the same group ? */
360 static inline struct cfs_rq *
361 is_same_group(struct sched_entity *se, struct sched_entity *pse)
363 if (se->cfs_rq == pse->cfs_rq)
369 static inline struct sched_entity *parent_entity(struct sched_entity *se)
375 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377 int se_depth, pse_depth;
380 * preemption test can be made between sibling entities who are in the
381 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
382 * both tasks until we find their ancestors who are siblings of common
386 /* First walk up until both entities are at same depth */
387 se_depth = (*se)->depth;
388 pse_depth = (*pse)->depth;
390 while (se_depth > pse_depth) {
392 *se = parent_entity(*se);
395 while (pse_depth > se_depth) {
397 *pse = parent_entity(*pse);
400 while (!is_same_group(*se, *pse)) {
401 *se = parent_entity(*se);
402 *pse = parent_entity(*pse);
406 #else /* !CONFIG_FAIR_GROUP_SCHED */
408 static inline struct task_struct *task_of(struct sched_entity *se)
410 return container_of(se, struct task_struct, se);
413 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415 return container_of(cfs_rq, struct rq, cfs);
419 #define for_each_sched_entity(se) \
420 for (; se; se = NULL)
422 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424 return &task_rq(p)->cfs;
427 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429 struct task_struct *p = task_of(se);
430 struct rq *rq = task_rq(p);
435 /* runqueue "owned" by this group */
436 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
441 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
445 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
449 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
450 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
452 static inline struct sched_entity *parent_entity(struct sched_entity *se)
458 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
462 #endif /* CONFIG_FAIR_GROUP_SCHED */
464 static __always_inline
465 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 /**************************************************************
468 * Scheduling class tree data structure manipulation methods:
471 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473 s64 delta = (s64)(vruntime - max_vruntime);
475 max_vruntime = vruntime;
480 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
482 s64 delta = (s64)(vruntime - min_vruntime);
484 min_vruntime = vruntime;
489 static inline int entity_before(struct sched_entity *a,
490 struct sched_entity *b)
492 return (s64)(a->vruntime - b->vruntime) < 0;
495 static void update_min_vruntime(struct cfs_rq *cfs_rq)
497 struct sched_entity *curr = cfs_rq->curr;
498 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500 u64 vruntime = cfs_rq->min_vruntime;
504 vruntime = curr->vruntime;
509 if (leftmost) { /* non-empty tree */
510 struct sched_entity *se;
511 se = rb_entry(leftmost, struct sched_entity, run_node);
514 vruntime = se->vruntime;
516 vruntime = min_vruntime(vruntime, se->vruntime);
519 /* ensure we never gain time by being placed backwards. */
520 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
523 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
528 * Enqueue an entity into the rb-tree:
530 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
533 struct rb_node *parent = NULL;
534 struct sched_entity *entry;
535 bool leftmost = true;
538 * Find the right place in the rbtree:
542 entry = rb_entry(parent, struct sched_entity, run_node);
544 * We dont care about collisions. Nodes with
545 * the same key stay together.
547 if (entity_before(se, entry)) {
548 link = &parent->rb_left;
550 link = &parent->rb_right;
555 rb_link_node(&se->run_node, parent, link);
556 rb_insert_color_cached(&se->run_node,
557 &cfs_rq->tasks_timeline, leftmost);
560 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
565 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
572 return rb_entry(left, struct sched_entity, run_node);
575 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577 struct rb_node *next = rb_next(&se->run_node);
582 return rb_entry(next, struct sched_entity, run_node);
585 #ifdef CONFIG_SCHED_DEBUG
586 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
593 return rb_entry(last, struct sched_entity, run_node);
596 /**************************************************************
597 * Scheduling class statistics methods:
600 int sched_proc_update_handler(struct ctl_table *table, int write,
601 void __user *buffer, size_t *lenp,
604 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
605 unsigned int factor = get_update_sysctl_factor();
610 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
611 sysctl_sched_min_granularity);
613 #define WRT_SYSCTL(name) \
614 (normalized_sysctl_##name = sysctl_##name / (factor))
615 WRT_SYSCTL(sched_min_granularity);
616 WRT_SYSCTL(sched_latency);
617 WRT_SYSCTL(sched_wakeup_granularity);
627 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629 if (unlikely(se->load.weight != NICE_0_LOAD))
630 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
636 * The idea is to set a period in which each task runs once.
638 * When there are too many tasks (sched_nr_latency) we have to stretch
639 * this period because otherwise the slices get too small.
641 * p = (nr <= nl) ? l : l*nr/nl
643 static u64 __sched_period(unsigned long nr_running)
645 if (unlikely(nr_running > sched_nr_latency))
646 return nr_running * sysctl_sched_min_granularity;
648 return sysctl_sched_latency;
652 * We calculate the wall-time slice from the period by taking a part
653 * proportional to the weight.
657 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661 for_each_sched_entity(se) {
662 struct load_weight *load;
663 struct load_weight lw;
665 cfs_rq = cfs_rq_of(se);
666 load = &cfs_rq->load;
668 if (unlikely(!se->on_rq)) {
671 update_load_add(&lw, se->load.weight);
674 slice = __calc_delta(slice, se->load.weight, load);
680 * We calculate the vruntime slice of a to-be-inserted task.
684 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 return calc_delta_fair(sched_slice(cfs_rq, se), se);
691 #include "sched-pelt.h"
693 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
694 static unsigned long task_h_load(struct task_struct *p);
695 static unsigned long capacity_of(int cpu);
697 /* Give new sched_entity start runnable values to heavy its load in infant time */
698 void init_entity_runnable_average(struct sched_entity *se)
700 struct sched_avg *sa = &se->avg;
702 memset(sa, 0, sizeof(*sa));
705 * Tasks are initialized with full load to be seen as heavy tasks until
706 * they get a chance to stabilize to their real load level.
707 * Group entities are initialized with zero load to reflect the fact that
708 * nothing has been attached to the task group yet.
710 if (entity_is_task(se))
711 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
713 se->runnable_weight = se->load.weight;
715 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
718 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
719 static void attach_entity_cfs_rq(struct sched_entity *se);
722 * With new tasks being created, their initial util_avgs are extrapolated
723 * based on the cfs_rq's current util_avg:
725 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
727 * However, in many cases, the above util_avg does not give a desired
728 * value. Moreover, the sum of the util_avgs may be divergent, such
729 * as when the series is a harmonic series.
731 * To solve this problem, we also cap the util_avg of successive tasks to
732 * only 1/2 of the left utilization budget:
734 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
736 * where n denotes the nth task and cpu_scale the CPU capacity.
738 * For example, for a CPU with 1024 of capacity, a simplest series from
739 * the beginning would be like:
741 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
742 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
744 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
745 * if util_avg > util_avg_cap.
747 void post_init_entity_util_avg(struct sched_entity *se)
749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
750 struct sched_avg *sa = &se->avg;
751 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
752 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
755 if (cfs_rq->avg.util_avg != 0) {
756 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
757 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
759 if (sa->util_avg > cap)
766 if (entity_is_task(se)) {
767 struct task_struct *p = task_of(se);
768 if (p->sched_class != &fair_sched_class) {
770 * For !fair tasks do:
772 update_cfs_rq_load_avg(now, cfs_rq);
773 attach_entity_load_avg(cfs_rq, se, 0);
774 switched_from_fair(rq, p);
776 * such that the next switched_to_fair() has the
779 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
784 attach_entity_cfs_rq(se);
787 #else /* !CONFIG_SMP */
788 void init_entity_runnable_average(struct sched_entity *se)
791 void post_init_entity_util_avg(struct sched_entity *se)
794 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
797 #endif /* CONFIG_SMP */
800 * Update the current task's runtime statistics.
802 static void update_curr(struct cfs_rq *cfs_rq)
804 struct sched_entity *curr = cfs_rq->curr;
805 u64 now = rq_clock_task(rq_of(cfs_rq));
811 delta_exec = now - curr->exec_start;
812 if (unlikely((s64)delta_exec <= 0))
815 curr->exec_start = now;
817 schedstat_set(curr->statistics.exec_max,
818 max(delta_exec, curr->statistics.exec_max));
820 curr->sum_exec_runtime += delta_exec;
821 schedstat_add(cfs_rq->exec_clock, delta_exec);
823 curr->vruntime += calc_delta_fair(delta_exec, curr);
824 update_min_vruntime(cfs_rq);
826 if (entity_is_task(curr)) {
827 struct task_struct *curtask = task_of(curr);
829 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
830 cgroup_account_cputime(curtask, delta_exec);
831 account_group_exec_runtime(curtask, delta_exec);
834 account_cfs_rq_runtime(cfs_rq, delta_exec);
837 static void update_curr_fair(struct rq *rq)
839 update_curr(cfs_rq_of(&rq->curr->se));
843 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845 u64 wait_start, prev_wait_start;
847 if (!schedstat_enabled())
850 wait_start = rq_clock(rq_of(cfs_rq));
851 prev_wait_start = schedstat_val(se->statistics.wait_start);
853 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
854 likely(wait_start > prev_wait_start))
855 wait_start -= prev_wait_start;
857 __schedstat_set(se->statistics.wait_start, wait_start);
861 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
863 struct task_struct *p;
866 if (!schedstat_enabled())
869 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
871 if (entity_is_task(se)) {
873 if (task_on_rq_migrating(p)) {
875 * Preserve migrating task's wait time so wait_start
876 * time stamp can be adjusted to accumulate wait time
877 * prior to migration.
879 __schedstat_set(se->statistics.wait_start, delta);
882 trace_sched_stat_wait(p, delta);
885 __schedstat_set(se->statistics.wait_max,
886 max(schedstat_val(se->statistics.wait_max), delta));
887 __schedstat_inc(se->statistics.wait_count);
888 __schedstat_add(se->statistics.wait_sum, delta);
889 __schedstat_set(se->statistics.wait_start, 0);
893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
895 struct task_struct *tsk = NULL;
896 u64 sleep_start, block_start;
898 if (!schedstat_enabled())
901 sleep_start = schedstat_val(se->statistics.sleep_start);
902 block_start = schedstat_val(se->statistics.block_start);
904 if (entity_is_task(se))
908 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
913 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914 __schedstat_set(se->statistics.sleep_max, delta);
916 __schedstat_set(se->statistics.sleep_start, 0);
917 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
920 account_scheduler_latency(tsk, delta >> 10, 1);
921 trace_sched_stat_sleep(tsk, delta);
925 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
930 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931 __schedstat_set(se->statistics.block_max, delta);
933 __schedstat_set(se->statistics.block_start, 0);
934 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
937 if (tsk->in_iowait) {
938 __schedstat_add(se->statistics.iowait_sum, delta);
939 __schedstat_inc(se->statistics.iowait_count);
940 trace_sched_stat_iowait(tsk, delta);
943 trace_sched_stat_blocked(tsk, delta);
946 * Blocking time is in units of nanosecs, so shift by
947 * 20 to get a milliseconds-range estimation of the
948 * amount of time that the task spent sleeping:
950 if (unlikely(prof_on == SLEEP_PROFILING)) {
951 profile_hits(SLEEP_PROFILING,
952 (void *)get_wchan(tsk),
955 account_scheduler_latency(tsk, delta >> 10, 0);
961 * Task is being enqueued - update stats:
964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
966 if (!schedstat_enabled())
970 * Are we enqueueing a waiting task? (for current tasks
971 * a dequeue/enqueue event is a NOP)
973 if (se != cfs_rq->curr)
974 update_stats_wait_start(cfs_rq, se);
976 if (flags & ENQUEUE_WAKEUP)
977 update_stats_enqueue_sleeper(cfs_rq, se);
981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
984 if (!schedstat_enabled())
988 * Mark the end of the wait period if dequeueing a
991 if (se != cfs_rq->curr)
992 update_stats_wait_end(cfs_rq, se);
994 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 struct task_struct *tsk = task_of(se);
997 if (tsk->state & TASK_INTERRUPTIBLE)
998 __schedstat_set(se->statistics.sleep_start,
999 rq_clock(rq_of(cfs_rq)));
1000 if (tsk->state & TASK_UNINTERRUPTIBLE)
1001 __schedstat_set(se->statistics.block_start,
1002 rq_clock(rq_of(cfs_rq)));
1007 * We are picking a new current task - update its stats:
1010 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1013 * We are starting a new run period:
1015 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1018 /**************************************************
1019 * Scheduling class queueing methods:
1022 #ifdef CONFIG_NUMA_BALANCING
1024 * Approximate time to scan a full NUMA task in ms. The task scan period is
1025 * calculated based on the tasks virtual memory size and
1026 * numa_balancing_scan_size.
1028 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1029 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1031 /* Portion of address space to scan in MB */
1032 unsigned int sysctl_numa_balancing_scan_size = 256;
1034 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1035 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1040 spinlock_t lock; /* nr_tasks, tasks */
1045 struct rcu_head rcu;
1046 unsigned long total_faults;
1047 unsigned long max_faults_cpu;
1049 * Faults_cpu is used to decide whether memory should move
1050 * towards the CPU. As a consequence, these stats are weighted
1051 * more by CPU use than by memory faults.
1053 unsigned long *faults_cpu;
1054 unsigned long faults[0];
1057 static inline unsigned long group_faults_priv(struct numa_group *ng);
1058 static inline unsigned long group_faults_shared(struct numa_group *ng);
1060 static unsigned int task_nr_scan_windows(struct task_struct *p)
1062 unsigned long rss = 0;
1063 unsigned long nr_scan_pages;
1066 * Calculations based on RSS as non-present and empty pages are skipped
1067 * by the PTE scanner and NUMA hinting faults should be trapped based
1070 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1071 rss = get_mm_rss(p->mm);
1073 rss = nr_scan_pages;
1075 rss = round_up(rss, nr_scan_pages);
1076 return rss / nr_scan_pages;
1079 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1080 #define MAX_SCAN_WINDOW 2560
1082 static unsigned int task_scan_min(struct task_struct *p)
1084 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1085 unsigned int scan, floor;
1086 unsigned int windows = 1;
1088 if (scan_size < MAX_SCAN_WINDOW)
1089 windows = MAX_SCAN_WINDOW / scan_size;
1090 floor = 1000 / windows;
1092 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1093 return max_t(unsigned int, floor, scan);
1096 static unsigned int task_scan_start(struct task_struct *p)
1098 unsigned long smin = task_scan_min(p);
1099 unsigned long period = smin;
1101 /* Scale the maximum scan period with the amount of shared memory. */
1102 if (p->numa_group) {
1103 struct numa_group *ng = p->numa_group;
1104 unsigned long shared = group_faults_shared(ng);
1105 unsigned long private = group_faults_priv(ng);
1107 period *= atomic_read(&ng->refcount);
1108 period *= shared + 1;
1109 period /= private + shared + 1;
1112 return max(smin, period);
1115 static unsigned int task_scan_max(struct task_struct *p)
1117 unsigned long smin = task_scan_min(p);
1120 /* Watch for min being lower than max due to floor calculations */
1121 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1123 /* Scale the maximum scan period with the amount of shared memory. */
1124 if (p->numa_group) {
1125 struct numa_group *ng = p->numa_group;
1126 unsigned long shared = group_faults_shared(ng);
1127 unsigned long private = group_faults_priv(ng);
1128 unsigned long period = smax;
1130 period *= atomic_read(&ng->refcount);
1131 period *= shared + 1;
1132 period /= private + shared + 1;
1134 smax = max(smax, period);
1137 return max(smin, smax);
1140 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1143 struct mm_struct *mm = p->mm;
1146 mm_users = atomic_read(&mm->mm_users);
1147 if (mm_users == 1) {
1148 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1149 mm->numa_scan_seq = 0;
1153 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1154 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1155 p->numa_work.next = &p->numa_work;
1156 p->numa_faults = NULL;
1157 p->numa_group = NULL;
1158 p->last_task_numa_placement = 0;
1159 p->last_sum_exec_runtime = 0;
1161 /* New address space, reset the preferred nid */
1162 if (!(clone_flags & CLONE_VM)) {
1163 p->numa_preferred_nid = NUMA_NO_NODE;
1168 * New thread, keep existing numa_preferred_nid which should be copied
1169 * already by arch_dup_task_struct but stagger when scans start.
1174 delay = min_t(unsigned int, task_scan_max(current),
1175 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1176 delay += 2 * TICK_NSEC;
1177 p->node_stamp = delay;
1181 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1183 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1184 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1187 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1189 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1190 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1193 /* Shared or private faults. */
1194 #define NR_NUMA_HINT_FAULT_TYPES 2
1196 /* Memory and CPU locality */
1197 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1199 /* Averaged statistics, and temporary buffers. */
1200 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1202 pid_t task_numa_group_id(struct task_struct *p)
1204 return p->numa_group ? p->numa_group->gid : 0;
1208 * The averaged statistics, shared & private, memory & CPU,
1209 * occupy the first half of the array. The second half of the
1210 * array is for current counters, which are averaged into the
1211 * first set by task_numa_placement.
1213 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1215 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1218 static inline unsigned long task_faults(struct task_struct *p, int nid)
1220 if (!p->numa_faults)
1223 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1224 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1227 static inline unsigned long group_faults(struct task_struct *p, int nid)
1232 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1233 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1236 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1238 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1239 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1242 static inline unsigned long group_faults_priv(struct numa_group *ng)
1244 unsigned long faults = 0;
1247 for_each_online_node(node) {
1248 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1254 static inline unsigned long group_faults_shared(struct numa_group *ng)
1256 unsigned long faults = 0;
1259 for_each_online_node(node) {
1260 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1267 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1268 * considered part of a numa group's pseudo-interleaving set. Migrations
1269 * between these nodes are slowed down, to allow things to settle down.
1271 #define ACTIVE_NODE_FRACTION 3
1273 static bool numa_is_active_node(int nid, struct numa_group *ng)
1275 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1278 /* Handle placement on systems where not all nodes are directly connected. */
1279 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1280 int maxdist, bool task)
1282 unsigned long score = 0;
1286 * All nodes are directly connected, and the same distance
1287 * from each other. No need for fancy placement algorithms.
1289 if (sched_numa_topology_type == NUMA_DIRECT)
1293 * This code is called for each node, introducing N^2 complexity,
1294 * which should be ok given the number of nodes rarely exceeds 8.
1296 for_each_online_node(node) {
1297 unsigned long faults;
1298 int dist = node_distance(nid, node);
1301 * The furthest away nodes in the system are not interesting
1302 * for placement; nid was already counted.
1304 if (dist == sched_max_numa_distance || node == nid)
1308 * On systems with a backplane NUMA topology, compare groups
1309 * of nodes, and move tasks towards the group with the most
1310 * memory accesses. When comparing two nodes at distance
1311 * "hoplimit", only nodes closer by than "hoplimit" are part
1312 * of each group. Skip other nodes.
1314 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1318 /* Add up the faults from nearby nodes. */
1320 faults = task_faults(p, node);
1322 faults = group_faults(p, node);
1325 * On systems with a glueless mesh NUMA topology, there are
1326 * no fixed "groups of nodes". Instead, nodes that are not
1327 * directly connected bounce traffic through intermediate
1328 * nodes; a numa_group can occupy any set of nodes.
1329 * The further away a node is, the less the faults count.
1330 * This seems to result in good task placement.
1332 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1333 faults *= (sched_max_numa_distance - dist);
1334 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1344 * These return the fraction of accesses done by a particular task, or
1345 * task group, on a particular numa node. The group weight is given a
1346 * larger multiplier, in order to group tasks together that are almost
1347 * evenly spread out between numa nodes.
1349 static inline unsigned long task_weight(struct task_struct *p, int nid,
1352 unsigned long faults, total_faults;
1354 if (!p->numa_faults)
1357 total_faults = p->total_numa_faults;
1362 faults = task_faults(p, nid);
1363 faults += score_nearby_nodes(p, nid, dist, true);
1365 return 1000 * faults / total_faults;
1368 static inline unsigned long group_weight(struct task_struct *p, int nid,
1371 unsigned long faults, total_faults;
1376 total_faults = p->numa_group->total_faults;
1381 faults = group_faults(p, nid);
1382 faults += score_nearby_nodes(p, nid, dist, false);
1384 return 1000 * faults / total_faults;
1387 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1388 int src_nid, int dst_cpu)
1390 struct numa_group *ng = p->numa_group;
1391 int dst_nid = cpu_to_node(dst_cpu);
1392 int last_cpupid, this_cpupid;
1394 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1395 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1398 * Allow first faults or private faults to migrate immediately early in
1399 * the lifetime of a task. The magic number 4 is based on waiting for
1400 * two full passes of the "multi-stage node selection" test that is
1403 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1404 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1408 * Multi-stage node selection is used in conjunction with a periodic
1409 * migration fault to build a temporal task<->page relation. By using
1410 * a two-stage filter we remove short/unlikely relations.
1412 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1413 * a task's usage of a particular page (n_p) per total usage of this
1414 * page (n_t) (in a given time-span) to a probability.
1416 * Our periodic faults will sample this probability and getting the
1417 * same result twice in a row, given these samples are fully
1418 * independent, is then given by P(n)^2, provided our sample period
1419 * is sufficiently short compared to the usage pattern.
1421 * This quadric squishes small probabilities, making it less likely we
1422 * act on an unlikely task<->page relation.
1424 if (!cpupid_pid_unset(last_cpupid) &&
1425 cpupid_to_nid(last_cpupid) != dst_nid)
1428 /* Always allow migrate on private faults */
1429 if (cpupid_match_pid(p, last_cpupid))
1432 /* A shared fault, but p->numa_group has not been set up yet. */
1437 * Destination node is much more heavily used than the source
1438 * node? Allow migration.
1440 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1441 ACTIVE_NODE_FRACTION)
1445 * Distribute memory according to CPU & memory use on each node,
1446 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1448 * faults_cpu(dst) 3 faults_cpu(src)
1449 * --------------- * - > ---------------
1450 * faults_mem(dst) 4 faults_mem(src)
1452 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1453 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1456 static unsigned long weighted_cpuload(struct rq *rq);
1457 static unsigned long source_load(int cpu, int type);
1458 static unsigned long target_load(int cpu, int type);
1460 /* Cached statistics for all CPUs within a node */
1464 /* Total compute capacity of CPUs on a node */
1465 unsigned long compute_capacity;
1469 * XXX borrowed from update_sg_lb_stats
1471 static void update_numa_stats(struct numa_stats *ns, int nid)
1475 memset(ns, 0, sizeof(*ns));
1476 for_each_cpu(cpu, cpumask_of_node(nid)) {
1477 struct rq *rq = cpu_rq(cpu);
1479 ns->load += weighted_cpuload(rq);
1480 ns->compute_capacity += capacity_of(cpu);
1485 struct task_numa_env {
1486 struct task_struct *p;
1488 int src_cpu, src_nid;
1489 int dst_cpu, dst_nid;
1491 struct numa_stats src_stats, dst_stats;
1496 struct task_struct *best_task;
1501 static void task_numa_assign(struct task_numa_env *env,
1502 struct task_struct *p, long imp)
1504 struct rq *rq = cpu_rq(env->dst_cpu);
1506 /* Bail out if run-queue part of active NUMA balance. */
1507 if (xchg(&rq->numa_migrate_on, 1))
1511 * Clear previous best_cpu/rq numa-migrate flag, since task now
1512 * found a better CPU to move/swap.
1514 if (env->best_cpu != -1) {
1515 rq = cpu_rq(env->best_cpu);
1516 WRITE_ONCE(rq->numa_migrate_on, 0);
1520 put_task_struct(env->best_task);
1525 env->best_imp = imp;
1526 env->best_cpu = env->dst_cpu;
1529 static bool load_too_imbalanced(long src_load, long dst_load,
1530 struct task_numa_env *env)
1533 long orig_src_load, orig_dst_load;
1534 long src_capacity, dst_capacity;
1537 * The load is corrected for the CPU capacity available on each node.
1540 * ------------ vs ---------
1541 * src_capacity dst_capacity
1543 src_capacity = env->src_stats.compute_capacity;
1544 dst_capacity = env->dst_stats.compute_capacity;
1546 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1548 orig_src_load = env->src_stats.load;
1549 orig_dst_load = env->dst_stats.load;
1551 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1553 /* Would this change make things worse? */
1554 return (imb > old_imb);
1558 * Maximum NUMA importance can be 1998 (2*999);
1559 * SMALLIMP @ 30 would be close to 1998/64.
1560 * Used to deter task migration.
1565 * This checks if the overall compute and NUMA accesses of the system would
1566 * be improved if the source tasks was migrated to the target dst_cpu taking
1567 * into account that it might be best if task running on the dst_cpu should
1568 * be exchanged with the source task
1570 static void task_numa_compare(struct task_numa_env *env,
1571 long taskimp, long groupimp, bool maymove)
1573 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1574 struct task_struct *cur;
1575 long src_load, dst_load;
1577 long imp = env->p->numa_group ? groupimp : taskimp;
1579 int dist = env->dist;
1581 if (READ_ONCE(dst_rq->numa_migrate_on))
1585 cur = task_rcu_dereference(&dst_rq->curr);
1586 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1590 * Because we have preemption enabled we can get migrated around and
1591 * end try selecting ourselves (current == env->p) as a swap candidate.
1597 if (maymove && moveimp >= env->best_imp)
1604 * "imp" is the fault differential for the source task between the
1605 * source and destination node. Calculate the total differential for
1606 * the source task and potential destination task. The more negative
1607 * the value is, the more remote accesses that would be expected to
1608 * be incurred if the tasks were swapped.
1610 /* Skip this swap candidate if cannot move to the source cpu */
1611 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1615 * If dst and source tasks are in the same NUMA group, or not
1616 * in any group then look only at task weights.
1618 if (cur->numa_group == env->p->numa_group) {
1619 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1620 task_weight(cur, env->dst_nid, dist);
1622 * Add some hysteresis to prevent swapping the
1623 * tasks within a group over tiny differences.
1625 if (cur->numa_group)
1629 * Compare the group weights. If a task is all by itself
1630 * (not part of a group), use the task weight instead.
1632 if (cur->numa_group && env->p->numa_group)
1633 imp += group_weight(cur, env->src_nid, dist) -
1634 group_weight(cur, env->dst_nid, dist);
1636 imp += task_weight(cur, env->src_nid, dist) -
1637 task_weight(cur, env->dst_nid, dist);
1640 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1647 * If the NUMA importance is less than SMALLIMP,
1648 * task migration might only result in ping pong
1649 * of tasks and also hurt performance due to cache
1652 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1656 * In the overloaded case, try and keep the load balanced.
1658 load = task_h_load(env->p) - task_h_load(cur);
1662 dst_load = env->dst_stats.load + load;
1663 src_load = env->src_stats.load - load;
1665 if (load_too_imbalanced(src_load, dst_load, env))
1670 * One idle CPU per node is evaluated for a task numa move.
1671 * Call select_idle_sibling to maybe find a better one.
1675 * select_idle_siblings() uses an per-CPU cpumask that
1676 * can be used from IRQ context.
1678 local_irq_disable();
1679 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1684 task_numa_assign(env, cur, imp);
1689 static void task_numa_find_cpu(struct task_numa_env *env,
1690 long taskimp, long groupimp)
1692 long src_load, dst_load, load;
1693 bool maymove = false;
1696 load = task_h_load(env->p);
1697 dst_load = env->dst_stats.load + load;
1698 src_load = env->src_stats.load - load;
1701 * If the improvement from just moving env->p direction is better
1702 * than swapping tasks around, check if a move is possible.
1704 maymove = !load_too_imbalanced(src_load, dst_load, env);
1706 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1707 /* Skip this CPU if the source task cannot migrate */
1708 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1712 task_numa_compare(env, taskimp, groupimp, maymove);
1716 static int task_numa_migrate(struct task_struct *p)
1718 struct task_numa_env env = {
1721 .src_cpu = task_cpu(p),
1722 .src_nid = task_node(p),
1724 .imbalance_pct = 112,
1730 struct sched_domain *sd;
1732 unsigned long taskweight, groupweight;
1734 long taskimp, groupimp;
1737 * Pick the lowest SD_NUMA domain, as that would have the smallest
1738 * imbalance and would be the first to start moving tasks about.
1740 * And we want to avoid any moving of tasks about, as that would create
1741 * random movement of tasks -- counter the numa conditions we're trying
1745 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1747 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1751 * Cpusets can break the scheduler domain tree into smaller
1752 * balance domains, some of which do not cross NUMA boundaries.
1753 * Tasks that are "trapped" in such domains cannot be migrated
1754 * elsewhere, so there is no point in (re)trying.
1756 if (unlikely(!sd)) {
1757 sched_setnuma(p, task_node(p));
1761 env.dst_nid = p->numa_preferred_nid;
1762 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1763 taskweight = task_weight(p, env.src_nid, dist);
1764 groupweight = group_weight(p, env.src_nid, dist);
1765 update_numa_stats(&env.src_stats, env.src_nid);
1766 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1767 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1768 update_numa_stats(&env.dst_stats, env.dst_nid);
1770 /* Try to find a spot on the preferred nid. */
1771 task_numa_find_cpu(&env, taskimp, groupimp);
1774 * Look at other nodes in these cases:
1775 * - there is no space available on the preferred_nid
1776 * - the task is part of a numa_group that is interleaved across
1777 * multiple NUMA nodes; in order to better consolidate the group,
1778 * we need to check other locations.
1780 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1781 for_each_online_node(nid) {
1782 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1785 dist = node_distance(env.src_nid, env.dst_nid);
1786 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1788 taskweight = task_weight(p, env.src_nid, dist);
1789 groupweight = group_weight(p, env.src_nid, dist);
1792 /* Only consider nodes where both task and groups benefit */
1793 taskimp = task_weight(p, nid, dist) - taskweight;
1794 groupimp = group_weight(p, nid, dist) - groupweight;
1795 if (taskimp < 0 && groupimp < 0)
1800 update_numa_stats(&env.dst_stats, env.dst_nid);
1801 task_numa_find_cpu(&env, taskimp, groupimp);
1806 * If the task is part of a workload that spans multiple NUMA nodes,
1807 * and is migrating into one of the workload's active nodes, remember
1808 * this node as the task's preferred numa node, so the workload can
1810 * A task that migrated to a second choice node will be better off
1811 * trying for a better one later. Do not set the preferred node here.
1813 if (p->numa_group) {
1814 if (env.best_cpu == -1)
1817 nid = cpu_to_node(env.best_cpu);
1819 if (nid != p->numa_preferred_nid)
1820 sched_setnuma(p, nid);
1823 /* No better CPU than the current one was found. */
1824 if (env.best_cpu == -1)
1827 best_rq = cpu_rq(env.best_cpu);
1828 if (env.best_task == NULL) {
1829 ret = migrate_task_to(p, env.best_cpu);
1830 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1832 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1836 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1837 WRITE_ONCE(best_rq->numa_migrate_on, 0);
1840 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1841 put_task_struct(env.best_task);
1845 /* Attempt to migrate a task to a CPU on the preferred node. */
1846 static void numa_migrate_preferred(struct task_struct *p)
1848 unsigned long interval = HZ;
1850 /* This task has no NUMA fault statistics yet */
1851 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1854 /* Periodically retry migrating the task to the preferred node */
1855 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1856 p->numa_migrate_retry = jiffies + interval;
1858 /* Success if task is already running on preferred CPU */
1859 if (task_node(p) == p->numa_preferred_nid)
1862 /* Otherwise, try migrate to a CPU on the preferred node */
1863 task_numa_migrate(p);
1867 * Find out how many nodes on the workload is actively running on. Do this by
1868 * tracking the nodes from which NUMA hinting faults are triggered. This can
1869 * be different from the set of nodes where the workload's memory is currently
1872 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1874 unsigned long faults, max_faults = 0;
1875 int nid, active_nodes = 0;
1877 for_each_online_node(nid) {
1878 faults = group_faults_cpu(numa_group, nid);
1879 if (faults > max_faults)
1880 max_faults = faults;
1883 for_each_online_node(nid) {
1884 faults = group_faults_cpu(numa_group, nid);
1885 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1889 numa_group->max_faults_cpu = max_faults;
1890 numa_group->active_nodes = active_nodes;
1894 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1895 * increments. The more local the fault statistics are, the higher the scan
1896 * period will be for the next scan window. If local/(local+remote) ratio is
1897 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1898 * the scan period will decrease. Aim for 70% local accesses.
1900 #define NUMA_PERIOD_SLOTS 10
1901 #define NUMA_PERIOD_THRESHOLD 7
1904 * Increase the scan period (slow down scanning) if the majority of
1905 * our memory is already on our local node, or if the majority of
1906 * the page accesses are shared with other processes.
1907 * Otherwise, decrease the scan period.
1909 static void update_task_scan_period(struct task_struct *p,
1910 unsigned long shared, unsigned long private)
1912 unsigned int period_slot;
1913 int lr_ratio, ps_ratio;
1916 unsigned long remote = p->numa_faults_locality[0];
1917 unsigned long local = p->numa_faults_locality[1];
1920 * If there were no record hinting faults then either the task is
1921 * completely idle or all activity is areas that are not of interest
1922 * to automatic numa balancing. Related to that, if there were failed
1923 * migration then it implies we are migrating too quickly or the local
1924 * node is overloaded. In either case, scan slower
1926 if (local + shared == 0 || p->numa_faults_locality[2]) {
1927 p->numa_scan_period = min(p->numa_scan_period_max,
1928 p->numa_scan_period << 1);
1930 p->mm->numa_next_scan = jiffies +
1931 msecs_to_jiffies(p->numa_scan_period);
1937 * Prepare to scale scan period relative to the current period.
1938 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1939 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1940 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1942 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1943 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1944 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1946 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1948 * Most memory accesses are local. There is no need to
1949 * do fast NUMA scanning, since memory is already local.
1951 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1954 diff = slot * period_slot;
1955 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1957 * Most memory accesses are shared with other tasks.
1958 * There is no point in continuing fast NUMA scanning,
1959 * since other tasks may just move the memory elsewhere.
1961 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1964 diff = slot * period_slot;
1967 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1968 * yet they are not on the local NUMA node. Speed up
1969 * NUMA scanning to get the memory moved over.
1971 int ratio = max(lr_ratio, ps_ratio);
1972 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1975 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1976 task_scan_min(p), task_scan_max(p));
1977 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1981 * Get the fraction of time the task has been running since the last
1982 * NUMA placement cycle. The scheduler keeps similar statistics, but
1983 * decays those on a 32ms period, which is orders of magnitude off
1984 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1985 * stats only if the task is so new there are no NUMA statistics yet.
1987 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1989 u64 runtime, delta, now;
1990 /* Use the start of this time slice to avoid calculations. */
1991 now = p->se.exec_start;
1992 runtime = p->se.sum_exec_runtime;
1994 if (p->last_task_numa_placement) {
1995 delta = runtime - p->last_sum_exec_runtime;
1996 *period = now - p->last_task_numa_placement;
1998 delta = p->se.avg.load_sum;
1999 *period = LOAD_AVG_MAX;
2002 p->last_sum_exec_runtime = runtime;
2003 p->last_task_numa_placement = now;
2009 * Determine the preferred nid for a task in a numa_group. This needs to
2010 * be done in a way that produces consistent results with group_weight,
2011 * otherwise workloads might not converge.
2013 static int preferred_group_nid(struct task_struct *p, int nid)
2018 /* Direct connections between all NUMA nodes. */
2019 if (sched_numa_topology_type == NUMA_DIRECT)
2023 * On a system with glueless mesh NUMA topology, group_weight
2024 * scores nodes according to the number of NUMA hinting faults on
2025 * both the node itself, and on nearby nodes.
2027 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2028 unsigned long score, max_score = 0;
2029 int node, max_node = nid;
2031 dist = sched_max_numa_distance;
2033 for_each_online_node(node) {
2034 score = group_weight(p, node, dist);
2035 if (score > max_score) {
2044 * Finding the preferred nid in a system with NUMA backplane
2045 * interconnect topology is more involved. The goal is to locate
2046 * tasks from numa_groups near each other in the system, and
2047 * untangle workloads from different sides of the system. This requires
2048 * searching down the hierarchy of node groups, recursively searching
2049 * inside the highest scoring group of nodes. The nodemask tricks
2050 * keep the complexity of the search down.
2052 nodes = node_online_map;
2053 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2054 unsigned long max_faults = 0;
2055 nodemask_t max_group = NODE_MASK_NONE;
2058 /* Are there nodes at this distance from each other? */
2059 if (!find_numa_distance(dist))
2062 for_each_node_mask(a, nodes) {
2063 unsigned long faults = 0;
2064 nodemask_t this_group;
2065 nodes_clear(this_group);
2067 /* Sum group's NUMA faults; includes a==b case. */
2068 for_each_node_mask(b, nodes) {
2069 if (node_distance(a, b) < dist) {
2070 faults += group_faults(p, b);
2071 node_set(b, this_group);
2072 node_clear(b, nodes);
2076 /* Remember the top group. */
2077 if (faults > max_faults) {
2078 max_faults = faults;
2079 max_group = this_group;
2081 * subtle: at the smallest distance there is
2082 * just one node left in each "group", the
2083 * winner is the preferred nid.
2088 /* Next round, evaluate the nodes within max_group. */
2096 static void task_numa_placement(struct task_struct *p)
2098 int seq, nid, max_nid = NUMA_NO_NODE;
2099 unsigned long max_faults = 0;
2100 unsigned long fault_types[2] = { 0, 0 };
2101 unsigned long total_faults;
2102 u64 runtime, period;
2103 spinlock_t *group_lock = NULL;
2106 * The p->mm->numa_scan_seq field gets updated without
2107 * exclusive access. Use READ_ONCE() here to ensure
2108 * that the field is read in a single access:
2110 seq = READ_ONCE(p->mm->numa_scan_seq);
2111 if (p->numa_scan_seq == seq)
2113 p->numa_scan_seq = seq;
2114 p->numa_scan_period_max = task_scan_max(p);
2116 total_faults = p->numa_faults_locality[0] +
2117 p->numa_faults_locality[1];
2118 runtime = numa_get_avg_runtime(p, &period);
2120 /* If the task is part of a group prevent parallel updates to group stats */
2121 if (p->numa_group) {
2122 group_lock = &p->numa_group->lock;
2123 spin_lock_irq(group_lock);
2126 /* Find the node with the highest number of faults */
2127 for_each_online_node(nid) {
2128 /* Keep track of the offsets in numa_faults array */
2129 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2130 unsigned long faults = 0, group_faults = 0;
2133 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2134 long diff, f_diff, f_weight;
2136 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2137 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2138 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2139 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2141 /* Decay existing window, copy faults since last scan */
2142 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2143 fault_types[priv] += p->numa_faults[membuf_idx];
2144 p->numa_faults[membuf_idx] = 0;
2147 * Normalize the faults_from, so all tasks in a group
2148 * count according to CPU use, instead of by the raw
2149 * number of faults. Tasks with little runtime have
2150 * little over-all impact on throughput, and thus their
2151 * faults are less important.
2153 f_weight = div64_u64(runtime << 16, period + 1);
2154 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2156 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2157 p->numa_faults[cpubuf_idx] = 0;
2159 p->numa_faults[mem_idx] += diff;
2160 p->numa_faults[cpu_idx] += f_diff;
2161 faults += p->numa_faults[mem_idx];
2162 p->total_numa_faults += diff;
2163 if (p->numa_group) {
2165 * safe because we can only change our own group
2167 * mem_idx represents the offset for a given
2168 * nid and priv in a specific region because it
2169 * is at the beginning of the numa_faults array.
2171 p->numa_group->faults[mem_idx] += diff;
2172 p->numa_group->faults_cpu[mem_idx] += f_diff;
2173 p->numa_group->total_faults += diff;
2174 group_faults += p->numa_group->faults[mem_idx];
2178 if (!p->numa_group) {
2179 if (faults > max_faults) {
2180 max_faults = faults;
2183 } else if (group_faults > max_faults) {
2184 max_faults = group_faults;
2189 if (p->numa_group) {
2190 numa_group_count_active_nodes(p->numa_group);
2191 spin_unlock_irq(group_lock);
2192 max_nid = preferred_group_nid(p, max_nid);
2196 /* Set the new preferred node */
2197 if (max_nid != p->numa_preferred_nid)
2198 sched_setnuma(p, max_nid);
2201 update_task_scan_period(p, fault_types[0], fault_types[1]);
2204 static inline int get_numa_group(struct numa_group *grp)
2206 return atomic_inc_not_zero(&grp->refcount);
2209 static inline void put_numa_group(struct numa_group *grp)
2211 if (atomic_dec_and_test(&grp->refcount))
2212 kfree_rcu(grp, rcu);
2215 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2218 struct numa_group *grp, *my_grp;
2219 struct task_struct *tsk;
2221 int cpu = cpupid_to_cpu(cpupid);
2224 if (unlikely(!p->numa_group)) {
2225 unsigned int size = sizeof(struct numa_group) +
2226 4*nr_node_ids*sizeof(unsigned long);
2228 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2232 atomic_set(&grp->refcount, 1);
2233 grp->active_nodes = 1;
2234 grp->max_faults_cpu = 0;
2235 spin_lock_init(&grp->lock);
2237 /* Second half of the array tracks nids where faults happen */
2238 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2241 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2242 grp->faults[i] = p->numa_faults[i];
2244 grp->total_faults = p->total_numa_faults;
2247 rcu_assign_pointer(p->numa_group, grp);
2251 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2253 if (!cpupid_match_pid(tsk, cpupid))
2256 grp = rcu_dereference(tsk->numa_group);
2260 my_grp = p->numa_group;
2265 * Only join the other group if its bigger; if we're the bigger group,
2266 * the other task will join us.
2268 if (my_grp->nr_tasks > grp->nr_tasks)
2272 * Tie-break on the grp address.
2274 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2277 /* Always join threads in the same process. */
2278 if (tsk->mm == current->mm)
2281 /* Simple filter to avoid false positives due to PID collisions */
2282 if (flags & TNF_SHARED)
2285 /* Update priv based on whether false sharing was detected */
2288 if (join && !get_numa_group(grp))
2296 BUG_ON(irqs_disabled());
2297 double_lock_irq(&my_grp->lock, &grp->lock);
2299 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2300 my_grp->faults[i] -= p->numa_faults[i];
2301 grp->faults[i] += p->numa_faults[i];
2303 my_grp->total_faults -= p->total_numa_faults;
2304 grp->total_faults += p->total_numa_faults;
2309 spin_unlock(&my_grp->lock);
2310 spin_unlock_irq(&grp->lock);
2312 rcu_assign_pointer(p->numa_group, grp);
2314 put_numa_group(my_grp);
2322 void task_numa_free(struct task_struct *p)
2324 struct numa_group *grp = p->numa_group;
2325 void *numa_faults = p->numa_faults;
2326 unsigned long flags;
2330 spin_lock_irqsave(&grp->lock, flags);
2331 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2332 grp->faults[i] -= p->numa_faults[i];
2333 grp->total_faults -= p->total_numa_faults;
2336 spin_unlock_irqrestore(&grp->lock, flags);
2337 RCU_INIT_POINTER(p->numa_group, NULL);
2338 put_numa_group(grp);
2341 p->numa_faults = NULL;
2346 * Got a PROT_NONE fault for a page on @node.
2348 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2350 struct task_struct *p = current;
2351 bool migrated = flags & TNF_MIGRATED;
2352 int cpu_node = task_node(current);
2353 int local = !!(flags & TNF_FAULT_LOCAL);
2354 struct numa_group *ng;
2357 if (!static_branch_likely(&sched_numa_balancing))
2360 /* for example, ksmd faulting in a user's mm */
2364 /* Allocate buffer to track faults on a per-node basis */
2365 if (unlikely(!p->numa_faults)) {
2366 int size = sizeof(*p->numa_faults) *
2367 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2369 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2370 if (!p->numa_faults)
2373 p->total_numa_faults = 0;
2374 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2378 * First accesses are treated as private, otherwise consider accesses
2379 * to be private if the accessing pid has not changed
2381 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2384 priv = cpupid_match_pid(p, last_cpupid);
2385 if (!priv && !(flags & TNF_NO_GROUP))
2386 task_numa_group(p, last_cpupid, flags, &priv);
2390 * If a workload spans multiple NUMA nodes, a shared fault that
2391 * occurs wholly within the set of nodes that the workload is
2392 * actively using should be counted as local. This allows the
2393 * scan rate to slow down when a workload has settled down.
2396 if (!priv && !local && ng && ng->active_nodes > 1 &&
2397 numa_is_active_node(cpu_node, ng) &&
2398 numa_is_active_node(mem_node, ng))
2402 * Retry to migrate task to preferred node periodically, in case it
2403 * previously failed, or the scheduler moved us.
2405 if (time_after(jiffies, p->numa_migrate_retry)) {
2406 task_numa_placement(p);
2407 numa_migrate_preferred(p);
2411 p->numa_pages_migrated += pages;
2412 if (flags & TNF_MIGRATE_FAIL)
2413 p->numa_faults_locality[2] += pages;
2415 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2416 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2417 p->numa_faults_locality[local] += pages;
2420 static void reset_ptenuma_scan(struct task_struct *p)
2423 * We only did a read acquisition of the mmap sem, so
2424 * p->mm->numa_scan_seq is written to without exclusive access
2425 * and the update is not guaranteed to be atomic. That's not
2426 * much of an issue though, since this is just used for
2427 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2428 * expensive, to avoid any form of compiler optimizations:
2430 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2431 p->mm->numa_scan_offset = 0;
2435 * The expensive part of numa migration is done from task_work context.
2436 * Triggered from task_tick_numa().
2438 void task_numa_work(struct callback_head *work)
2440 unsigned long migrate, next_scan, now = jiffies;
2441 struct task_struct *p = current;
2442 struct mm_struct *mm = p->mm;
2443 u64 runtime = p->se.sum_exec_runtime;
2444 struct vm_area_struct *vma;
2445 unsigned long start, end;
2446 unsigned long nr_pte_updates = 0;
2447 long pages, virtpages;
2449 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2451 work->next = work; /* protect against double add */
2453 * Who cares about NUMA placement when they're dying.
2455 * NOTE: make sure not to dereference p->mm before this check,
2456 * exit_task_work() happens _after_ exit_mm() so we could be called
2457 * without p->mm even though we still had it when we enqueued this
2460 if (p->flags & PF_EXITING)
2463 if (!mm->numa_next_scan) {
2464 mm->numa_next_scan = now +
2465 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2469 * Enforce maximal scan/migration frequency..
2471 migrate = mm->numa_next_scan;
2472 if (time_before(now, migrate))
2475 if (p->numa_scan_period == 0) {
2476 p->numa_scan_period_max = task_scan_max(p);
2477 p->numa_scan_period = task_scan_start(p);
2480 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2481 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2485 * Delay this task enough that another task of this mm will likely win
2486 * the next time around.
2488 p->node_stamp += 2 * TICK_NSEC;
2490 start = mm->numa_scan_offset;
2491 pages = sysctl_numa_balancing_scan_size;
2492 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2493 virtpages = pages * 8; /* Scan up to this much virtual space */
2498 if (!down_read_trylock(&mm->mmap_sem))
2500 vma = find_vma(mm, start);
2502 reset_ptenuma_scan(p);
2506 for (; vma; vma = vma->vm_next) {
2507 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2508 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2513 * Shared library pages mapped by multiple processes are not
2514 * migrated as it is expected they are cache replicated. Avoid
2515 * hinting faults in read-only file-backed mappings or the vdso
2516 * as migrating the pages will be of marginal benefit.
2519 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2523 * Skip inaccessible VMAs to avoid any confusion between
2524 * PROT_NONE and NUMA hinting ptes
2526 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2530 start = max(start, vma->vm_start);
2531 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2532 end = min(end, vma->vm_end);
2533 nr_pte_updates = change_prot_numa(vma, start, end);
2536 * Try to scan sysctl_numa_balancing_size worth of
2537 * hpages that have at least one present PTE that
2538 * is not already pte-numa. If the VMA contains
2539 * areas that are unused or already full of prot_numa
2540 * PTEs, scan up to virtpages, to skip through those
2544 pages -= (end - start) >> PAGE_SHIFT;
2545 virtpages -= (end - start) >> PAGE_SHIFT;
2548 if (pages <= 0 || virtpages <= 0)
2552 } while (end != vma->vm_end);
2557 * It is possible to reach the end of the VMA list but the last few
2558 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2559 * would find the !migratable VMA on the next scan but not reset the
2560 * scanner to the start so check it now.
2563 mm->numa_scan_offset = start;
2565 reset_ptenuma_scan(p);
2566 up_read(&mm->mmap_sem);
2569 * Make sure tasks use at least 32x as much time to run other code
2570 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2571 * Usually update_task_scan_period slows down scanning enough; on an
2572 * overloaded system we need to limit overhead on a per task basis.
2574 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2575 u64 diff = p->se.sum_exec_runtime - runtime;
2576 p->node_stamp += 32 * diff;
2581 * Drive the periodic memory faults..
2583 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2585 struct callback_head *work = &curr->numa_work;
2589 * We don't care about NUMA placement if we don't have memory.
2591 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2595 * Using runtime rather than walltime has the dual advantage that
2596 * we (mostly) drive the selection from busy threads and that the
2597 * task needs to have done some actual work before we bother with
2600 now = curr->se.sum_exec_runtime;
2601 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2603 if (now > curr->node_stamp + period) {
2604 if (!curr->node_stamp)
2605 curr->numa_scan_period = task_scan_start(curr);
2606 curr->node_stamp += period;
2608 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2609 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2610 task_work_add(curr, work, true);
2615 static void update_scan_period(struct task_struct *p, int new_cpu)
2617 int src_nid = cpu_to_node(task_cpu(p));
2618 int dst_nid = cpu_to_node(new_cpu);
2620 if (!static_branch_likely(&sched_numa_balancing))
2623 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2626 if (src_nid == dst_nid)
2630 * Allow resets if faults have been trapped before one scan
2631 * has completed. This is most likely due to a new task that
2632 * is pulled cross-node due to wakeups or load balancing.
2634 if (p->numa_scan_seq) {
2636 * Avoid scan adjustments if moving to the preferred
2637 * node or if the task was not previously running on
2638 * the preferred node.
2640 if (dst_nid == p->numa_preferred_nid ||
2641 (p->numa_preferred_nid != NUMA_NO_NODE &&
2642 src_nid != p->numa_preferred_nid))
2646 p->numa_scan_period = task_scan_start(p);
2650 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2654 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2658 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2662 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2666 #endif /* CONFIG_NUMA_BALANCING */
2669 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2671 update_load_add(&cfs_rq->load, se->load.weight);
2672 if (!parent_entity(se))
2673 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2675 if (entity_is_task(se)) {
2676 struct rq *rq = rq_of(cfs_rq);
2678 account_numa_enqueue(rq, task_of(se));
2679 list_add(&se->group_node, &rq->cfs_tasks);
2682 cfs_rq->nr_running++;
2686 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2688 update_load_sub(&cfs_rq->load, se->load.weight);
2689 if (!parent_entity(se))
2690 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2692 if (entity_is_task(se)) {
2693 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2694 list_del_init(&se->group_node);
2697 cfs_rq->nr_running--;
2701 * Signed add and clamp on underflow.
2703 * Explicitly do a load-store to ensure the intermediate value never hits
2704 * memory. This allows lockless observations without ever seeing the negative
2707 #define add_positive(_ptr, _val) do { \
2708 typeof(_ptr) ptr = (_ptr); \
2709 typeof(_val) val = (_val); \
2710 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2714 if (val < 0 && res > var) \
2717 WRITE_ONCE(*ptr, res); \
2721 * Unsigned subtract and clamp on underflow.
2723 * Explicitly do a load-store to ensure the intermediate value never hits
2724 * memory. This allows lockless observations without ever seeing the negative
2727 #define sub_positive(_ptr, _val) do { \
2728 typeof(_ptr) ptr = (_ptr); \
2729 typeof(*ptr) val = (_val); \
2730 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2734 WRITE_ONCE(*ptr, res); \
2738 * Remove and clamp on negative, from a local variable.
2740 * A variant of sub_positive(), which does not use explicit load-store
2741 * and is thus optimized for local variable updates.
2743 #define lsub_positive(_ptr, _val) do { \
2744 typeof(_ptr) ptr = (_ptr); \
2745 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2750 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2752 cfs_rq->runnable_weight += se->runnable_weight;
2754 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2755 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2759 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2761 cfs_rq->runnable_weight -= se->runnable_weight;
2763 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2764 sub_positive(&cfs_rq->avg.runnable_load_sum,
2765 se_runnable(se) * se->avg.runnable_load_sum);
2769 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2771 cfs_rq->avg.load_avg += se->avg.load_avg;
2772 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2776 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2778 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2779 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2783 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2785 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2787 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2789 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2792 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2793 unsigned long weight, unsigned long runnable)
2796 /* commit outstanding execution time */
2797 if (cfs_rq->curr == se)
2798 update_curr(cfs_rq);
2799 account_entity_dequeue(cfs_rq, se);
2800 dequeue_runnable_load_avg(cfs_rq, se);
2802 dequeue_load_avg(cfs_rq, se);
2804 se->runnable_weight = runnable;
2805 update_load_set(&se->load, weight);
2809 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2811 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2812 se->avg.runnable_load_avg =
2813 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2817 enqueue_load_avg(cfs_rq, se);
2819 account_entity_enqueue(cfs_rq, se);
2820 enqueue_runnable_load_avg(cfs_rq, se);
2824 void reweight_task(struct task_struct *p, int prio)
2826 struct sched_entity *se = &p->se;
2827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2828 struct load_weight *load = &se->load;
2829 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2831 reweight_entity(cfs_rq, se, weight, weight);
2832 load->inv_weight = sched_prio_to_wmult[prio];
2835 #ifdef CONFIG_FAIR_GROUP_SCHED
2838 * All this does is approximate the hierarchical proportion which includes that
2839 * global sum we all love to hate.
2841 * That is, the weight of a group entity, is the proportional share of the
2842 * group weight based on the group runqueue weights. That is:
2844 * tg->weight * grq->load.weight
2845 * ge->load.weight = ----------------------------- (1)
2846 * \Sum grq->load.weight
2848 * Now, because computing that sum is prohibitively expensive to compute (been
2849 * there, done that) we approximate it with this average stuff. The average
2850 * moves slower and therefore the approximation is cheaper and more stable.
2852 * So instead of the above, we substitute:
2854 * grq->load.weight -> grq->avg.load_avg (2)
2856 * which yields the following:
2858 * tg->weight * grq->avg.load_avg
2859 * ge->load.weight = ------------------------------ (3)
2862 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2864 * That is shares_avg, and it is right (given the approximation (2)).
2866 * The problem with it is that because the average is slow -- it was designed
2867 * to be exactly that of course -- this leads to transients in boundary
2868 * conditions. In specific, the case where the group was idle and we start the
2869 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2870 * yielding bad latency etc..
2872 * Now, in that special case (1) reduces to:
2874 * tg->weight * grq->load.weight
2875 * ge->load.weight = ----------------------------- = tg->weight (4)
2878 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2880 * So what we do is modify our approximation (3) to approach (4) in the (near)
2885 * tg->weight * grq->load.weight
2886 * --------------------------------------------------- (5)
2887 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2889 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2890 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2893 * tg->weight * grq->load.weight
2894 * ge->load.weight = ----------------------------- (6)
2899 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2900 * max(grq->load.weight, grq->avg.load_avg)
2902 * And that is shares_weight and is icky. In the (near) UP case it approaches
2903 * (4) while in the normal case it approaches (3). It consistently
2904 * overestimates the ge->load.weight and therefore:
2906 * \Sum ge->load.weight >= tg->weight
2910 static long calc_group_shares(struct cfs_rq *cfs_rq)
2912 long tg_weight, tg_shares, load, shares;
2913 struct task_group *tg = cfs_rq->tg;
2915 tg_shares = READ_ONCE(tg->shares);
2917 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2919 tg_weight = atomic_long_read(&tg->load_avg);
2921 /* Ensure tg_weight >= load */
2922 tg_weight -= cfs_rq->tg_load_avg_contrib;
2925 shares = (tg_shares * load);
2927 shares /= tg_weight;
2930 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2931 * of a group with small tg->shares value. It is a floor value which is
2932 * assigned as a minimum load.weight to the sched_entity representing
2933 * the group on a CPU.
2935 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2936 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2937 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2938 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2941 return clamp_t(long, shares, MIN_SHARES, tg_shares);
2945 * This calculates the effective runnable weight for a group entity based on
2946 * the group entity weight calculated above.
2948 * Because of the above approximation (2), our group entity weight is
2949 * an load_avg based ratio (3). This means that it includes blocked load and
2950 * does not represent the runnable weight.
2952 * Approximate the group entity's runnable weight per ratio from the group
2955 * grq->avg.runnable_load_avg
2956 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2959 * However, analogous to above, since the avg numbers are slow, this leads to
2960 * transients in the from-idle case. Instead we use:
2962 * ge->runnable_weight = ge->load.weight *
2964 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2965 * ----------------------------------------------------- (8)
2966 * max(grq->avg.load_avg, grq->load.weight)
2968 * Where these max() serve both to use the 'instant' values to fix the slow
2969 * from-idle and avoid the /0 on to-idle, similar to (6).
2971 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2973 long runnable, load_avg;
2975 load_avg = max(cfs_rq->avg.load_avg,
2976 scale_load_down(cfs_rq->load.weight));
2978 runnable = max(cfs_rq->avg.runnable_load_avg,
2979 scale_load_down(cfs_rq->runnable_weight));
2983 runnable /= load_avg;
2985 return clamp_t(long, runnable, MIN_SHARES, shares);
2987 #endif /* CONFIG_SMP */
2989 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2992 * Recomputes the group entity based on the current state of its group
2995 static void update_cfs_group(struct sched_entity *se)
2997 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2998 long shares, runnable;
3003 if (throttled_hierarchy(gcfs_rq))
3007 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3009 if (likely(se->load.weight == shares))
3012 shares = calc_group_shares(gcfs_rq);
3013 runnable = calc_group_runnable(gcfs_rq, shares);
3016 reweight_entity(cfs_rq_of(se), se, shares, runnable);
3019 #else /* CONFIG_FAIR_GROUP_SCHED */
3020 static inline void update_cfs_group(struct sched_entity *se)
3023 #endif /* CONFIG_FAIR_GROUP_SCHED */
3025 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3027 struct rq *rq = rq_of(cfs_rq);
3029 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3031 * There are a few boundary cases this might miss but it should
3032 * get called often enough that that should (hopefully) not be
3035 * It will not get called when we go idle, because the idle
3036 * thread is a different class (!fair), nor will the utilization
3037 * number include things like RT tasks.
3039 * As is, the util number is not freq-invariant (we'd have to
3040 * implement arch_scale_freq_capacity() for that).
3044 cpufreq_update_util(rq, flags);
3049 #ifdef CONFIG_FAIR_GROUP_SCHED
3051 * update_tg_load_avg - update the tg's load avg
3052 * @cfs_rq: the cfs_rq whose avg changed
3053 * @force: update regardless of how small the difference
3055 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3056 * However, because tg->load_avg is a global value there are performance
3059 * In order to avoid having to look at the other cfs_rq's, we use a
3060 * differential update where we store the last value we propagated. This in
3061 * turn allows skipping updates if the differential is 'small'.
3063 * Updating tg's load_avg is necessary before update_cfs_share().
3065 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3067 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3070 * No need to update load_avg for root_task_group as it is not used.
3072 if (cfs_rq->tg == &root_task_group)
3075 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3076 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3077 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3082 * Called within set_task_rq() right before setting a task's CPU. The
3083 * caller only guarantees p->pi_lock is held; no other assumptions,
3084 * including the state of rq->lock, should be made.
3086 void set_task_rq_fair(struct sched_entity *se,
3087 struct cfs_rq *prev, struct cfs_rq *next)
3089 u64 p_last_update_time;
3090 u64 n_last_update_time;
3092 if (!sched_feat(ATTACH_AGE_LOAD))
3096 * We are supposed to update the task to "current" time, then its up to
3097 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3098 * getting what current time is, so simply throw away the out-of-date
3099 * time. This will result in the wakee task is less decayed, but giving
3100 * the wakee more load sounds not bad.
3102 if (!(se->avg.last_update_time && prev))
3105 #ifndef CONFIG_64BIT
3107 u64 p_last_update_time_copy;
3108 u64 n_last_update_time_copy;
3111 p_last_update_time_copy = prev->load_last_update_time_copy;
3112 n_last_update_time_copy = next->load_last_update_time_copy;
3116 p_last_update_time = prev->avg.last_update_time;
3117 n_last_update_time = next->avg.last_update_time;
3119 } while (p_last_update_time != p_last_update_time_copy ||
3120 n_last_update_time != n_last_update_time_copy);
3123 p_last_update_time = prev->avg.last_update_time;
3124 n_last_update_time = next->avg.last_update_time;
3126 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3127 se->avg.last_update_time = n_last_update_time;
3132 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3133 * propagate its contribution. The key to this propagation is the invariant
3134 * that for each group:
3136 * ge->avg == grq->avg (1)
3138 * _IFF_ we look at the pure running and runnable sums. Because they
3139 * represent the very same entity, just at different points in the hierarchy.
3141 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3142 * sum over (but still wrong, because the group entity and group rq do not have
3143 * their PELT windows aligned).
3145 * However, update_tg_cfs_runnable() is more complex. So we have:
3147 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3149 * And since, like util, the runnable part should be directly transferable,
3150 * the following would _appear_ to be the straight forward approach:
3152 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3154 * And per (1) we have:
3156 * ge->avg.runnable_avg == grq->avg.runnable_avg
3160 * ge->load.weight * grq->avg.load_avg
3161 * ge->avg.load_avg = ----------------------------------- (4)
3164 * Except that is wrong!
3166 * Because while for entities historical weight is not important and we
3167 * really only care about our future and therefore can consider a pure
3168 * runnable sum, runqueues can NOT do this.
3170 * We specifically want runqueues to have a load_avg that includes
3171 * historical weights. Those represent the blocked load, the load we expect
3172 * to (shortly) return to us. This only works by keeping the weights as
3173 * integral part of the sum. We therefore cannot decompose as per (3).
3175 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3176 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3177 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3178 * runnable section of these tasks overlap (or not). If they were to perfectly
3179 * align the rq as a whole would be runnable 2/3 of the time. If however we
3180 * always have at least 1 runnable task, the rq as a whole is always runnable.
3182 * So we'll have to approximate.. :/
3184 * Given the constraint:
3186 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3188 * We can construct a rule that adds runnable to a rq by assuming minimal
3191 * On removal, we'll assume each task is equally runnable; which yields:
3193 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3195 * XXX: only do this for the part of runnable > running ?
3200 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3202 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3204 /* Nothing to update */
3209 * The relation between sum and avg is:
3211 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3213 * however, the PELT windows are not aligned between grq and gse.
3216 /* Set new sched_entity's utilization */
3217 se->avg.util_avg = gcfs_rq->avg.util_avg;
3218 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3220 /* Update parent cfs_rq utilization */
3221 add_positive(&cfs_rq->avg.util_avg, delta);
3222 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3226 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3228 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3229 unsigned long runnable_load_avg, load_avg;
3230 u64 runnable_load_sum, load_sum = 0;
3236 gcfs_rq->prop_runnable_sum = 0;
3238 if (runnable_sum >= 0) {
3240 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3241 * the CPU is saturated running == runnable.
3243 runnable_sum += se->avg.load_sum;
3244 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3247 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3248 * assuming all tasks are equally runnable.
3250 if (scale_load_down(gcfs_rq->load.weight)) {
3251 load_sum = div_s64(gcfs_rq->avg.load_sum,
3252 scale_load_down(gcfs_rq->load.weight));
3255 /* But make sure to not inflate se's runnable */
3256 runnable_sum = min(se->avg.load_sum, load_sum);
3260 * runnable_sum can't be lower than running_sum
3261 * As running sum is scale with CPU capacity wehreas the runnable sum
3262 * is not we rescale running_sum 1st
3264 running_sum = se->avg.util_sum /
3265 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3266 runnable_sum = max(runnable_sum, running_sum);
3268 load_sum = (s64)se_weight(se) * runnable_sum;
3269 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3271 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3272 delta_avg = load_avg - se->avg.load_avg;
3274 se->avg.load_sum = runnable_sum;
3275 se->avg.load_avg = load_avg;
3276 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3277 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3279 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3280 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3281 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3282 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3284 se->avg.runnable_load_sum = runnable_sum;
3285 se->avg.runnable_load_avg = runnable_load_avg;
3288 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3289 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3293 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3295 cfs_rq->propagate = 1;
3296 cfs_rq->prop_runnable_sum += runnable_sum;
3299 /* Update task and its cfs_rq load average */
3300 static inline int propagate_entity_load_avg(struct sched_entity *se)
3302 struct cfs_rq *cfs_rq, *gcfs_rq;
3304 if (entity_is_task(se))
3307 gcfs_rq = group_cfs_rq(se);
3308 if (!gcfs_rq->propagate)
3311 gcfs_rq->propagate = 0;
3313 cfs_rq = cfs_rq_of(se);
3315 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3317 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3318 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3324 * Check if we need to update the load and the utilization of a blocked
3327 static inline bool skip_blocked_update(struct sched_entity *se)
3329 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3332 * If sched_entity still have not zero load or utilization, we have to
3335 if (se->avg.load_avg || se->avg.util_avg)