4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19 #include <linux/compat.h>
21 #include <linux/blkdev.h>
22 #include <linux/kprobes.h>
23 #include <linux/mmu_context.h>
24 #include <linux/module.h>
25 #include <linux/nmi.h>
26 #include <linux/prefetch.h>
27 #include <linux/profile.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/sched/isolation.h>
32 #include <asm/switch_to.h>
34 #ifdef CONFIG_PARAVIRT
35 #include <asm/paravirt.h>
39 #include "../workqueue_internal.h"
40 #include "../smpboot.h"
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/sched.h>
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
47 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
49 * Debugging: various feature bits
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
70 * period over which we average the RT time consumption, measured
75 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
78 * period over which we measure -rt task CPU usage in us.
81 unsigned int sysctl_sched_rt_period = 1000000;
83 __read_mostly int scheduler_running;
86 * part of the period that we allow rt tasks to run in us.
89 int sysctl_sched_rt_runtime = 950000;
92 * __task_rq_lock - lock the rq @p resides on.
94 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
99 lockdep_assert_held(&p->pi_lock);
103 raw_spin_lock(&rq->lock);
104 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
108 raw_spin_unlock(&rq->lock);
110 while (unlikely(task_on_rq_migrating(p)))
116 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
118 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
119 __acquires(p->pi_lock)
125 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
127 raw_spin_lock(&rq->lock);
129 * move_queued_task() task_rq_lock()
132 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
133 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
134 * [S] ->cpu = new_cpu [L] task_rq()
138 * If we observe the old cpu in task_rq_lock, the acquire of
139 * the old rq->lock will fully serialize against the stores.
141 * If we observe the new CPU in task_rq_lock, the acquire will
142 * pair with the WMB to ensure we must then also see migrating.
144 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
148 raw_spin_unlock(&rq->lock);
149 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
151 while (unlikely(task_on_rq_migrating(p)))
157 * RQ-clock updating methods:
160 static void update_rq_clock_task(struct rq *rq, s64 delta)
163 * In theory, the compile should just see 0 here, and optimize out the call
164 * to sched_rt_avg_update. But I don't trust it...
166 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
167 s64 steal = 0, irq_delta = 0;
169 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
170 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
173 * Since irq_time is only updated on {soft,}irq_exit, we might run into
174 * this case when a previous update_rq_clock() happened inside a
177 * When this happens, we stop ->clock_task and only update the
178 * prev_irq_time stamp to account for the part that fit, so that a next
179 * update will consume the rest. This ensures ->clock_task is
182 * It does however cause some slight miss-attribution of {soft,}irq
183 * time, a more accurate solution would be to update the irq_time using
184 * the current rq->clock timestamp, except that would require using
187 if (irq_delta > delta)
190 rq->prev_irq_time += irq_delta;
193 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
194 if (static_key_false((¶virt_steal_rq_enabled))) {
195 steal = paravirt_steal_clock(cpu_of(rq));
196 steal -= rq->prev_steal_time_rq;
198 if (unlikely(steal > delta))
201 rq->prev_steal_time_rq += steal;
206 rq->clock_task += delta;
208 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
209 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
210 sched_rt_avg_update(rq, irq_delta + steal);
214 void update_rq_clock(struct rq *rq)
218 lockdep_assert_held(&rq->lock);
220 if (rq->clock_update_flags & RQCF_ACT_SKIP)
223 #ifdef CONFIG_SCHED_DEBUG
224 if (sched_feat(WARN_DOUBLE_CLOCK))
225 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
226 rq->clock_update_flags |= RQCF_UPDATED;
229 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
233 update_rq_clock_task(rq, delta);
237 #ifdef CONFIG_SCHED_HRTICK
239 * Use HR-timers to deliver accurate preemption points.
242 static void hrtick_clear(struct rq *rq)
244 if (hrtimer_active(&rq->hrtick_timer))
245 hrtimer_cancel(&rq->hrtick_timer);
249 * High-resolution timer tick.
250 * Runs from hardirq context with interrupts disabled.
252 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
264 return HRTIMER_NORESTART;
269 static void __hrtick_restart(struct rq *rq)
271 struct hrtimer *timer = &rq->hrtick_timer;
273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
277 * called from hardirq (IPI) context
279 static void __hrtick_start(void *arg)
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
291 * Called to set the hrtick timer state.
293 * called with rq->lock held and irqs disabled
295 void hrtick_start(struct rq *rq, u64 delay)
297 struct hrtimer *timer = &rq->hrtick_timer;
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
308 hrtimer_set_expires(timer, time);
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
320 * Called to set the hrtick timer state.
322 * called with rq->lock held and irqs disabled
324 void hrtick_start(struct rq *rq, u64 delay)
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
334 #endif /* CONFIG_SMP */
336 static void init_rq_hrtick(struct rq *rq)
339 rq->hrtick_csd_pending = 0;
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
354 static inline void init_rq_hrtick(struct rq *rq)
357 #endif /* CONFIG_SCHED_HRTICK */
360 * cmpxchg based fetch_or, macro so it works for different integer types
362 #define fetch_or(ptr, mask) \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
383 static bool set_nr_and_not_polling(struct task_struct *p)
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
395 static bool set_nr_if_polling(struct task_struct *p)
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
401 if (!(val & _TIF_POLLING_NRFLAG))
403 if (val & _TIF_NEED_RESCHED)
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
414 static bool set_nr_and_not_polling(struct task_struct *p)
416 set_tsk_need_resched(p);
421 static bool set_nr_if_polling(struct task_struct *p)
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
430 struct wake_q_node *node = &task->wake_q;
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
443 get_task_struct(task);
446 * The head is context local, there can be no concurrency.
449 head->lastp = &node->next;
452 void wake_up_q(struct wake_q_head *head)
454 struct wake_q_node *node = head->first;
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
459 task = container_of(node, struct task_struct, wake_q);
461 /* Task can safely be re-inserted now: */
463 task->wake_q.next = NULL;
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
469 wake_up_process(task);
470 put_task_struct(task);
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
481 void resched_curr(struct rq *rq)
483 struct task_struct *curr = rq->curr;
486 lockdep_assert_held(&rq->lock);
488 if (test_tsk_need_resched(curr))
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
502 trace_sched_wake_idle_without_ipi(cpu);
505 void resched_cpu(int cpu)
507 struct rq *rq = cpu_rq(cpu);
510 raw_spin_lock_irqsave(&rq->lock, flags);
511 if (cpu_online(cpu) || cpu == smp_processor_id())
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
517 #ifdef CONFIG_NO_HZ_COMMON
519 * In the semi idle case, use the nearest busy CPU for migrating timers
520 * from an idle CPU. This is good for power-savings.
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle CPU will add more delays to the timers than intended
524 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
526 int get_nohz_timer_target(void)
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
531 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
540 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
547 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
548 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
555 * When add_timer_on() enqueues a timer into the timer wheel of an
556 * idle CPU then this timer might expire before the next timer event
557 * which is scheduled to wake up that CPU. In case of a completely
558 * idle system the next event might even be infinite time into the
559 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
560 * leaves the inner idle loop so the newly added timer is taken into
561 * account when the CPU goes back to idle and evaluates the timer
562 * wheel for the next timer event.
564 static void wake_up_idle_cpu(int cpu)
566 struct rq *rq = cpu_rq(cpu);
568 if (cpu == smp_processor_id())
571 if (set_nr_and_not_polling(rq->idle))
572 smp_send_reschedule(cpu);
574 trace_sched_wake_idle_without_ipi(cpu);
577 static bool wake_up_full_nohz_cpu(int cpu)
580 * We just need the target to call irq_exit() and re-evaluate
581 * the next tick. The nohz full kick at least implies that.
582 * If needed we can still optimize that later with an
585 if (cpu_is_offline(cpu))
586 return true; /* Don't try to wake offline CPUs. */
587 if (tick_nohz_full_cpu(cpu)) {
588 if (cpu != smp_processor_id() ||
589 tick_nohz_tick_stopped())
590 tick_nohz_full_kick_cpu(cpu);
598 * Wake up the specified CPU. If the CPU is going offline, it is the
599 * caller's responsibility to deal with the lost wakeup, for example,
600 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
602 void wake_up_nohz_cpu(int cpu)
604 if (!wake_up_full_nohz_cpu(cpu))
605 wake_up_idle_cpu(cpu);
608 static inline bool got_nohz_idle_kick(void)
610 int cpu = smp_processor_id();
612 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
615 if (idle_cpu(cpu) && !need_resched())
619 * We can't run Idle Load Balance on this CPU for this time so we
620 * cancel it and clear NOHZ_BALANCE_KICK
622 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
626 #else /* CONFIG_NO_HZ_COMMON */
628 static inline bool got_nohz_idle_kick(void)
633 #endif /* CONFIG_NO_HZ_COMMON */
635 #ifdef CONFIG_NO_HZ_FULL
636 bool sched_can_stop_tick(struct rq *rq)
640 /* Deadline tasks, even if single, need the tick */
641 if (rq->dl.dl_nr_running)
645 * If there are more than one RR tasks, we need the tick to effect the
646 * actual RR behaviour.
648 if (rq->rt.rr_nr_running) {
649 if (rq->rt.rr_nr_running == 1)
656 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
657 * forced preemption between FIFO tasks.
659 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
664 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
665 * if there's more than one we need the tick for involuntary
668 if (rq->nr_running > 1)
673 #endif /* CONFIG_NO_HZ_FULL */
675 void sched_avg_update(struct rq *rq)
677 s64 period = sched_avg_period();
679 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
681 * Inline assembly required to prevent the compiler
682 * optimising this loop into a divmod call.
683 * See __iter_div_u64_rem() for another example of this.
685 asm("" : "+rm" (rq->age_stamp));
686 rq->age_stamp += period;
691 #endif /* CONFIG_SMP */
693 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
694 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
696 * Iterate task_group tree rooted at *from, calling @down when first entering a
697 * node and @up when leaving it for the final time.
699 * Caller must hold rcu_lock or sufficient equivalent.
701 int walk_tg_tree_from(struct task_group *from,
702 tg_visitor down, tg_visitor up, void *data)
704 struct task_group *parent, *child;
710 ret = (*down)(parent, data);
713 list_for_each_entry_rcu(child, &parent->children, siblings) {
720 ret = (*up)(parent, data);
721 if (ret || parent == from)
725 parent = parent->parent;
732 int tg_nop(struct task_group *tg, void *data)
738 static void set_load_weight(struct task_struct *p, bool update_load)
740 int prio = p->static_prio - MAX_RT_PRIO;
741 struct load_weight *load = &p->se.load;
744 * SCHED_IDLE tasks get minimal weight:
746 if (idle_policy(p->policy)) {
747 load->weight = scale_load(WEIGHT_IDLEPRIO);
748 load->inv_weight = WMULT_IDLEPRIO;
753 * SCHED_OTHER tasks have to update their load when changing their
756 if (update_load && p->sched_class == &fair_sched_class) {
757 reweight_task(p, prio);
759 load->weight = scale_load(sched_prio_to_weight[prio]);
760 load->inv_weight = sched_prio_to_wmult[prio];
764 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766 if (!(flags & ENQUEUE_NOCLOCK))
769 if (!(flags & ENQUEUE_RESTORE))
770 sched_info_queued(rq, p);
772 p->sched_class->enqueue_task(rq, p, flags);
775 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
777 if (!(flags & DEQUEUE_NOCLOCK))
780 if (!(flags & DEQUEUE_SAVE))
781 sched_info_dequeued(rq, p);
783 p->sched_class->dequeue_task(rq, p, flags);
786 void activate_task(struct rq *rq, struct task_struct *p, int flags)
788 if (task_contributes_to_load(p))
789 rq->nr_uninterruptible--;
791 enqueue_task(rq, p, flags);
794 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
796 if (task_contributes_to_load(p))
797 rq->nr_uninterruptible++;
799 dequeue_task(rq, p, flags);
803 * __normal_prio - return the priority that is based on the static prio
805 static inline int __normal_prio(struct task_struct *p)
807 return p->static_prio;
811 * Calculate the expected normal priority: i.e. priority
812 * without taking RT-inheritance into account. Might be
813 * boosted by interactivity modifiers. Changes upon fork,
814 * setprio syscalls, and whenever the interactivity
815 * estimator recalculates.
817 static inline int normal_prio(struct task_struct *p)
821 if (task_has_dl_policy(p))
822 prio = MAX_DL_PRIO-1;
823 else if (task_has_rt_policy(p))
824 prio = MAX_RT_PRIO-1 - p->rt_priority;
826 prio = __normal_prio(p);
831 * Calculate the current priority, i.e. the priority
832 * taken into account by the scheduler. This value might
833 * be boosted by RT tasks, or might be boosted by
834 * interactivity modifiers. Will be RT if the task got
835 * RT-boosted. If not then it returns p->normal_prio.
837 static int effective_prio(struct task_struct *p)
839 p->normal_prio = normal_prio(p);
841 * If we are RT tasks or we were boosted to RT priority,
842 * keep the priority unchanged. Otherwise, update priority
843 * to the normal priority:
845 if (!rt_prio(p->prio))
846 return p->normal_prio;
851 * task_curr - is this task currently executing on a CPU?
852 * @p: the task in question.
854 * Return: 1 if the task is currently executing. 0 otherwise.
856 inline int task_curr(const struct task_struct *p)
858 return cpu_curr(task_cpu(p)) == p;
862 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
863 * use the balance_callback list if you want balancing.
865 * this means any call to check_class_changed() must be followed by a call to
866 * balance_callback().
868 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
869 const struct sched_class *prev_class,
872 if (prev_class != p->sched_class) {
873 if (prev_class->switched_from)
874 prev_class->switched_from(rq, p);
876 p->sched_class->switched_to(rq, p);
877 } else if (oldprio != p->prio || dl_task(p))
878 p->sched_class->prio_changed(rq, p, oldprio);
881 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
883 const struct sched_class *class;
885 if (p->sched_class == rq->curr->sched_class) {
886 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
888 for_each_class(class) {
889 if (class == rq->curr->sched_class)
891 if (class == p->sched_class) {
899 * A queue event has occurred, and we're going to schedule. In
900 * this case, we can save a useless back to back clock update.
902 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
903 rq_clock_skip_update(rq, true);
908 * This is how migration works:
910 * 1) we invoke migration_cpu_stop() on the target CPU using
912 * 2) stopper starts to run (implicitly forcing the migrated thread
914 * 3) it checks whether the migrated task is still in the wrong runqueue.
915 * 4) if it's in the wrong runqueue then the migration thread removes
916 * it and puts it into the right queue.
917 * 5) stopper completes and stop_one_cpu() returns and the migration
922 * move_queued_task - move a queued task to new rq.
924 * Returns (locked) new rq. Old rq's lock is released.
926 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
927 struct task_struct *p, int new_cpu)
929 lockdep_assert_held(&rq->lock);
931 p->on_rq = TASK_ON_RQ_MIGRATING;
932 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
933 set_task_cpu(p, new_cpu);
936 rq = cpu_rq(new_cpu);
939 BUG_ON(task_cpu(p) != new_cpu);
940 enqueue_task(rq, p, 0);
941 p->on_rq = TASK_ON_RQ_QUEUED;
942 check_preempt_curr(rq, p, 0);
947 struct migration_arg {
948 struct task_struct *task;
953 * Move (not current) task off this CPU, onto the destination CPU. We're doing
954 * this because either it can't run here any more (set_cpus_allowed()
955 * away from this CPU, or CPU going down), or because we're
956 * attempting to rebalance this task on exec (sched_exec).
958 * So we race with normal scheduler movements, but that's OK, as long
959 * as the task is no longer on this CPU.
961 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
962 struct task_struct *p, int dest_cpu)
964 if (p->flags & PF_KTHREAD) {
965 if (unlikely(!cpu_online(dest_cpu)))
968 if (unlikely(!cpu_active(dest_cpu)))
972 /* Affinity changed (again). */
973 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
977 rq = move_queued_task(rq, rf, p, dest_cpu);
983 * migration_cpu_stop - this will be executed by a highprio stopper thread
984 * and performs thread migration by bumping thread off CPU then
985 * 'pushing' onto another runqueue.
987 static int migration_cpu_stop(void *data)
989 struct migration_arg *arg = data;
990 struct task_struct *p = arg->task;
991 struct rq *rq = this_rq();
995 * The original target CPU might have gone down and we might
996 * be on another CPU but it doesn't matter.
1000 * We need to explicitly wake pending tasks before running
1001 * __migrate_task() such that we will not miss enforcing cpus_allowed
1002 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1004 sched_ttwu_pending();
1006 raw_spin_lock(&p->pi_lock);
1009 * If task_rq(p) != rq, it cannot be migrated here, because we're
1010 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1011 * we're holding p->pi_lock.
1013 if (task_rq(p) == rq) {
1014 if (task_on_rq_queued(p))
1015 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1017 p->wake_cpu = arg->dest_cpu;
1020 raw_spin_unlock(&p->pi_lock);
1027 * sched_class::set_cpus_allowed must do the below, but is not required to
1028 * actually call this function.
1030 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1032 cpumask_copy(&p->cpus_allowed, new_mask);
1033 p->nr_cpus_allowed = cpumask_weight(new_mask);
1036 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1038 struct rq *rq = task_rq(p);
1039 bool queued, running;
1041 lockdep_assert_held(&p->pi_lock);
1043 queued = task_on_rq_queued(p);
1044 running = task_current(rq, p);
1048 * Because __kthread_bind() calls this on blocked tasks without
1051 lockdep_assert_held(&rq->lock);
1052 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1055 put_prev_task(rq, p);
1057 p->sched_class->set_cpus_allowed(p, new_mask);
1060 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1062 set_curr_task(rq, p);
1066 * Change a given task's CPU affinity. Migrate the thread to a
1067 * proper CPU and schedule it away if the CPU it's executing on
1068 * is removed from the allowed bitmask.
1070 * NOTE: the caller must have a valid reference to the task, the
1071 * task must not exit() & deallocate itself prematurely. The
1072 * call is not atomic; no spinlocks may be held.
1074 static int __set_cpus_allowed_ptr(struct task_struct *p,
1075 const struct cpumask *new_mask, bool check)
1077 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1078 unsigned int dest_cpu;
1083 rq = task_rq_lock(p, &rf);
1084 update_rq_clock(rq);
1086 if (p->flags & PF_KTHREAD) {
1088 * Kernel threads are allowed on online && !active CPUs
1090 cpu_valid_mask = cpu_online_mask;
1094 * Must re-check here, to close a race against __kthread_bind(),
1095 * sched_setaffinity() is not guaranteed to observe the flag.
1097 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1102 if (cpumask_equal(&p->cpus_allowed, new_mask))
1105 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1110 do_set_cpus_allowed(p, new_mask);
1112 if (p->flags & PF_KTHREAD) {
1114 * For kernel threads that do indeed end up on online &&
1115 * !active we want to ensure they are strict per-CPU threads.
1117 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1118 !cpumask_intersects(new_mask, cpu_active_mask) &&
1119 p->nr_cpus_allowed != 1);
1122 /* Can the task run on the task's current CPU? If so, we're done */
1123 if (cpumask_test_cpu(task_cpu(p), new_mask))
1126 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1127 if (task_running(rq, p) || p->state == TASK_WAKING) {
1128 struct migration_arg arg = { p, dest_cpu };
1129 /* Need help from migration thread: drop lock and wait. */
1130 task_rq_unlock(rq, p, &rf);
1131 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1132 tlb_migrate_finish(p->mm);
1134 } else if (task_on_rq_queued(p)) {
1136 * OK, since we're going to drop the lock immediately
1137 * afterwards anyway.
1139 rq = move_queued_task(rq, &rf, p, dest_cpu);
1142 task_rq_unlock(rq, p, &rf);
1147 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1149 return __set_cpus_allowed_ptr(p, new_mask, false);
1151 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1153 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1155 #ifdef CONFIG_SCHED_DEBUG
1157 * We should never call set_task_cpu() on a blocked task,
1158 * ttwu() will sort out the placement.
1160 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1164 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1165 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1166 * time relying on p->on_rq.
1168 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1169 p->sched_class == &fair_sched_class &&
1170 (p->on_rq && !task_on_rq_migrating(p)));
1172 #ifdef CONFIG_LOCKDEP
1174 * The caller should hold either p->pi_lock or rq->lock, when changing
1175 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1177 * sched_move_task() holds both and thus holding either pins the cgroup,
1180 * Furthermore, all task_rq users should acquire both locks, see
1183 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1184 lockdep_is_held(&task_rq(p)->lock)));
1187 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1189 WARN_ON_ONCE(!cpu_online(new_cpu));
1192 trace_sched_migrate_task(p, new_cpu);
1194 if (task_cpu(p) != new_cpu) {
1195 if (p->sched_class->migrate_task_rq)
1196 p->sched_class->migrate_task_rq(p);
1197 p->se.nr_migrations++;
1198 perf_event_task_migrate(p);
1201 __set_task_cpu(p, new_cpu);
1204 static void __migrate_swap_task(struct task_struct *p, int cpu)
1206 if (task_on_rq_queued(p)) {
1207 struct rq *src_rq, *dst_rq;
1208 struct rq_flags srf, drf;
1210 src_rq = task_rq(p);
1211 dst_rq = cpu_rq(cpu);
1213 rq_pin_lock(src_rq, &srf);
1214 rq_pin_lock(dst_rq, &drf);
1216 p->on_rq = TASK_ON_RQ_MIGRATING;
1217 deactivate_task(src_rq, p, 0);
1218 set_task_cpu(p, cpu);
1219 activate_task(dst_rq, p, 0);
1220 p->on_rq = TASK_ON_RQ_QUEUED;
1221 check_preempt_curr(dst_rq, p, 0);
1223 rq_unpin_lock(dst_rq, &drf);
1224 rq_unpin_lock(src_rq, &srf);
1228 * Task isn't running anymore; make it appear like we migrated
1229 * it before it went to sleep. This means on wakeup we make the
1230 * previous CPU our target instead of where it really is.
1236 struct migration_swap_arg {
1237 struct task_struct *src_task, *dst_task;
1238 int src_cpu, dst_cpu;
1241 static int migrate_swap_stop(void *data)
1243 struct migration_swap_arg *arg = data;
1244 struct rq *src_rq, *dst_rq;
1247 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1250 src_rq = cpu_rq(arg->src_cpu);
1251 dst_rq = cpu_rq(arg->dst_cpu);
1253 double_raw_lock(&arg->src_task->pi_lock,
1254 &arg->dst_task->pi_lock);
1255 double_rq_lock(src_rq, dst_rq);
1257 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1260 if (task_cpu(arg->src_task) != arg->src_cpu)
1263 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1266 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1269 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1270 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1275 double_rq_unlock(src_rq, dst_rq);
1276 raw_spin_unlock(&arg->dst_task->pi_lock);
1277 raw_spin_unlock(&arg->src_task->pi_lock);
1283 * Cross migrate two tasks
1285 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1287 struct migration_swap_arg arg;
1290 arg = (struct migration_swap_arg){
1292 .src_cpu = task_cpu(cur),
1294 .dst_cpu = task_cpu(p),
1297 if (arg.src_cpu == arg.dst_cpu)
1301 * These three tests are all lockless; this is OK since all of them
1302 * will be re-checked with proper locks held further down the line.
1304 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1307 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1310 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1313 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1314 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1321 * wait_task_inactive - wait for a thread to unschedule.
1323 * If @match_state is nonzero, it's the @p->state value just checked and
1324 * not expected to change. If it changes, i.e. @p might have woken up,
1325 * then return zero. When we succeed in waiting for @p to be off its CPU,
1326 * we return a positive number (its total switch count). If a second call
1327 * a short while later returns the same number, the caller can be sure that
1328 * @p has remained unscheduled the whole time.
1330 * The caller must ensure that the task *will* unschedule sometime soon,
1331 * else this function might spin for a *long* time. This function can't
1332 * be called with interrupts off, or it may introduce deadlock with
1333 * smp_call_function() if an IPI is sent by the same process we are
1334 * waiting to become inactive.
1336 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1338 int running, queued;
1345 * We do the initial early heuristics without holding
1346 * any task-queue locks at all. We'll only try to get
1347 * the runqueue lock when things look like they will
1353 * If the task is actively running on another CPU
1354 * still, just relax and busy-wait without holding
1357 * NOTE! Since we don't hold any locks, it's not
1358 * even sure that "rq" stays as the right runqueue!
1359 * But we don't care, since "task_running()" will
1360 * return false if the runqueue has changed and p
1361 * is actually now running somewhere else!
1363 while (task_running(rq, p)) {
1364 if (match_state && unlikely(p->state != match_state))
1370 * Ok, time to look more closely! We need the rq
1371 * lock now, to be *sure*. If we're wrong, we'll
1372 * just go back and repeat.
1374 rq = task_rq_lock(p, &rf);
1375 trace_sched_wait_task(p);
1376 running = task_running(rq, p);
1377 queued = task_on_rq_queued(p);
1379 if (!match_state || p->state == match_state)
1380 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1381 task_rq_unlock(rq, p, &rf);
1384 * If it changed from the expected state, bail out now.
1386 if (unlikely(!ncsw))
1390 * Was it really running after all now that we
1391 * checked with the proper locks actually held?
1393 * Oops. Go back and try again..
1395 if (unlikely(running)) {
1401 * It's not enough that it's not actively running,
1402 * it must be off the runqueue _entirely_, and not
1405 * So if it was still runnable (but just not actively
1406 * running right now), it's preempted, and we should
1407 * yield - it could be a while.
1409 if (unlikely(queued)) {
1410 ktime_t to = NSEC_PER_SEC / HZ;
1412 set_current_state(TASK_UNINTERRUPTIBLE);
1413 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1418 * Ahh, all good. It wasn't running, and it wasn't
1419 * runnable, which means that it will never become
1420 * running in the future either. We're all done!
1429 * kick_process - kick a running thread to enter/exit the kernel
1430 * @p: the to-be-kicked thread
1432 * Cause a process which is running on another CPU to enter
1433 * kernel-mode, without any delay. (to get signals handled.)
1435 * NOTE: this function doesn't have to take the runqueue lock,
1436 * because all it wants to ensure is that the remote task enters
1437 * the kernel. If the IPI races and the task has been migrated
1438 * to another CPU then no harm is done and the purpose has been
1441 void kick_process(struct task_struct *p)
1447 if ((cpu != smp_processor_id()) && task_curr(p))
1448 smp_send_reschedule(cpu);
1451 EXPORT_SYMBOL_GPL(kick_process);
1454 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1456 * A few notes on cpu_active vs cpu_online:
1458 * - cpu_active must be a subset of cpu_online
1460 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1461 * see __set_cpus_allowed_ptr(). At this point the newly online
1462 * CPU isn't yet part of the sched domains, and balancing will not
1465 * - on CPU-down we clear cpu_active() to mask the sched domains and
1466 * avoid the load balancer to place new tasks on the to be removed
1467 * CPU. Existing tasks will remain running there and will be taken
1470 * This means that fallback selection must not select !active CPUs.
1471 * And can assume that any active CPU must be online. Conversely
1472 * select_task_rq() below may allow selection of !active CPUs in order
1473 * to satisfy the above rules.
1475 static int select_fallback_rq(int cpu, struct task_struct *p)
1477 int nid = cpu_to_node(cpu);
1478 const struct cpumask *nodemask = NULL;
1479 enum { cpuset, possible, fail } state = cpuset;
1483 * If the node that the CPU is on has been offlined, cpu_to_node()
1484 * will return -1. There is no CPU on the node, and we should
1485 * select the CPU on the other node.
1488 nodemask = cpumask_of_node(nid);
1490 /* Look for allowed, online CPU in same node. */
1491 for_each_cpu(dest_cpu, nodemask) {
1492 if (!cpu_active(dest_cpu))
1494 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1500 /* Any allowed, online CPU? */
1501 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1502 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1504 if (!cpu_online(dest_cpu))
1509 /* No more Mr. Nice Guy. */
1512 if (IS_ENABLED(CONFIG_CPUSETS)) {
1513 cpuset_cpus_allowed_fallback(p);
1519 do_set_cpus_allowed(p, cpu_possible_mask);
1530 if (state != cpuset) {
1532 * Don't tell them about moving exiting tasks or
1533 * kernel threads (both mm NULL), since they never
1536 if (p->mm && printk_ratelimit()) {
1537 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1538 task_pid_nr(p), p->comm, cpu);
1546 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1549 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1551 lockdep_assert_held(&p->pi_lock);
1553 if (p->nr_cpus_allowed > 1)
1554 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1556 cpu = cpumask_any(&p->cpus_allowed);
1559 * In order not to call set_task_cpu() on a blocking task we need
1560 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1563 * Since this is common to all placement strategies, this lives here.
1565 * [ this allows ->select_task() to simply return task_cpu(p) and
1566 * not worry about this generic constraint ]
1568 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1570 cpu = select_fallback_rq(task_cpu(p), p);
1575 static void update_avg(u64 *avg, u64 sample)
1577 s64 diff = sample - *avg;
1581 void sched_set_stop_task(int cpu, struct task_struct *stop)
1583 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1584 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1588 * Make it appear like a SCHED_FIFO task, its something
1589 * userspace knows about and won't get confused about.
1591 * Also, it will make PI more or less work without too
1592 * much confusion -- but then, stop work should not
1593 * rely on PI working anyway.
1595 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
1597 stop->sched_class = &stop_sched_class;
1600 cpu_rq(cpu)->stop = stop;
1604 * Reset it back to a normal scheduling class so that
1605 * it can die in pieces.
1607 old_stop->sched_class = &rt_sched_class;
1613 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1614 const struct cpumask *new_mask, bool check)
1616 return set_cpus_allowed_ptr(p, new_mask);
1619 #endif /* CONFIG_SMP */
1622 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1626 if (!schedstat_enabled())
1632 if (cpu == rq->cpu) {
1633 __schedstat_inc(rq->ttwu_local);
1634 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1636 struct sched_domain *sd;
1638 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1640 for_each_domain(rq->cpu, sd) {
1641 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1642 __schedstat_inc(sd->ttwu_wake_remote);
1649 if (wake_flags & WF_MIGRATED)
1650 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1651 #endif /* CONFIG_SMP */
1653 __schedstat_inc(rq->ttwu_count);
1654 __schedstat_inc(p->se.statistics.nr_wakeups);
1656 if (wake_flags & WF_SYNC)
1657 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1660 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1662 activate_task(rq, p, en_flags);
1663 p->on_rq = TASK_ON_RQ_QUEUED;
1665 /* If a worker is waking up, notify the workqueue: */
1666 if (p->flags & PF_WQ_WORKER)
1667 wq_worker_waking_up(p, cpu_of(rq));
1671 * Mark the task runnable and perform wakeup-preemption.
1673 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1674 struct rq_flags *rf)
1676 check_preempt_curr(rq, p, wake_flags);
1677 p->state = TASK_RUNNING;
1678 trace_sched_wakeup(p);
1681 if (p->sched_class->task_woken) {
1683 * Our task @p is fully woken up and running; so its safe to
1684 * drop the rq->lock, hereafter rq is only used for statistics.
1686 rq_unpin_lock(rq, rf);
1687 p->sched_class->task_woken(rq, p);
1688 rq_repin_lock(rq, rf);
1691 if (rq->idle_stamp) {
1692 u64 delta = rq_clock(rq) - rq->idle_stamp;
1693 u64 max = 2*rq->max_idle_balance_cost;
1695 update_avg(&rq->avg_idle, delta);
1697 if (rq->avg_idle > max)
1706 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1707 struct rq_flags *rf)
1709 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1711 lockdep_assert_held(&rq->lock);
1714 if (p->sched_contributes_to_load)
1715 rq->nr_uninterruptible--;
1717 if (wake_flags & WF_MIGRATED)
1718 en_flags |= ENQUEUE_MIGRATED;
1721 ttwu_activate(rq, p, en_flags);
1722 ttwu_do_wakeup(rq, p, wake_flags, rf);
1726 * Called in case the task @p isn't fully descheduled from its runqueue,
1727 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1728 * since all we need to do is flip p->state to TASK_RUNNING, since
1729 * the task is still ->on_rq.
1731 static int ttwu_remote(struct task_struct *p, int wake_flags)
1737 rq = __task_rq_lock(p, &rf);
1738 if (task_on_rq_queued(p)) {
1739 /* check_preempt_curr() may use rq clock */
1740 update_rq_clock(rq);
1741 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1744 __task_rq_unlock(rq, &rf);
1750 void sched_ttwu_pending(void)
1752 struct rq *rq = this_rq();
1753 struct llist_node *llist = llist_del_all(&rq->wake_list);
1754 struct task_struct *p, *t;
1760 rq_lock_irqsave(rq, &rf);
1761 update_rq_clock(rq);
1763 llist_for_each_entry_safe(p, t, llist, wake_entry)
1764 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1766 rq_unlock_irqrestore(rq, &rf);
1769 void scheduler_ipi(void)
1772 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1773 * TIF_NEED_RESCHED remotely (for the first time) will also send
1776 preempt_fold_need_resched();
1778 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1782 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1783 * traditionally all their work was done from the interrupt return
1784 * path. Now that we actually do some work, we need to make sure
1787 * Some archs already do call them, luckily irq_enter/exit nest
1790 * Arguably we should visit all archs and update all handlers,
1791 * however a fair share of IPIs are still resched only so this would
1792 * somewhat pessimize the simple resched case.
1795 sched_ttwu_pending();
1798 * Check if someone kicked us for doing the nohz idle load balance.
1800 if (unlikely(got_nohz_idle_kick())) {
1801 this_rq()->idle_balance = 1;
1802 raise_softirq_irqoff(SCHED_SOFTIRQ);
1807 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1809 struct rq *rq = cpu_rq(cpu);
1811 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1813 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1814 if (!set_nr_if_polling(rq->idle))
1815 smp_send_reschedule(cpu);
1817 trace_sched_wake_idle_without_ipi(cpu);
1821 void wake_up_if_idle(int cpu)
1823 struct rq *rq = cpu_rq(cpu);
1828 if (!is_idle_task(rcu_dereference(rq->curr)))
1831 if (set_nr_if_polling(rq->idle)) {
1832 trace_sched_wake_idle_without_ipi(cpu);
1834 rq_lock_irqsave(rq, &rf);
1835 if (is_idle_task(rq->curr))
1836 smp_send_reschedule(cpu);
1837 /* Else CPU is not idle, do nothing here: */
1838 rq_unlock_irqrestore(rq, &rf);
1845 bool cpus_share_cache(int this_cpu, int that_cpu)
1847 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1849 #endif /* CONFIG_SMP */
1851 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1853 struct rq *rq = cpu_rq(cpu);
1856 #if defined(CONFIG_SMP)
1857 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1858 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1859 ttwu_queue_remote(p, cpu, wake_flags);
1865 update_rq_clock(rq);
1866 ttwu_do_activate(rq, p, wake_flags, &rf);
1871 * Notes on Program-Order guarantees on SMP systems.
1875 * The basic program-order guarantee on SMP systems is that when a task [t]
1876 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1877 * execution on its new CPU [c1].
1879 * For migration (of runnable tasks) this is provided by the following means:
1881 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1882 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1883 * rq(c1)->lock (if not at the same time, then in that order).
1884 * C) LOCK of the rq(c1)->lock scheduling in task
1886 * Transitivity guarantees that B happens after A and C after B.
1887 * Note: we only require RCpc transitivity.
1888 * Note: the CPU doing B need not be c0 or c1
1897 * UNLOCK rq(0)->lock
1899 * LOCK rq(0)->lock // orders against CPU0
1901 * UNLOCK rq(0)->lock
1905 * UNLOCK rq(1)->lock
1907 * LOCK rq(1)->lock // orders against CPU2
1910 * UNLOCK rq(1)->lock
1913 * BLOCKING -- aka. SLEEP + WAKEUP
1915 * For blocking we (obviously) need to provide the same guarantee as for
1916 * migration. However the means are completely different as there is no lock
1917 * chain to provide order. Instead we do:
1919 * 1) smp_store_release(X->on_cpu, 0)
1920 * 2) smp_cond_load_acquire(!X->on_cpu)
1924 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1926 * LOCK rq(0)->lock LOCK X->pi_lock
1929 * smp_store_release(X->on_cpu, 0);
1931 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1937 * X->state = RUNNING
1938 * UNLOCK rq(2)->lock
1940 * LOCK rq(2)->lock // orders against CPU1
1943 * UNLOCK rq(2)->lock
1946 * UNLOCK rq(0)->lock
1949 * However; for wakeups there is a second guarantee we must provide, namely we
1950 * must observe the state that lead to our wakeup. That is, not only must our
1951 * task observe its own prior state, it must also observe the stores prior to
1954 * This means that any means of doing remote wakeups must order the CPU doing
1955 * the wakeup against the CPU the task is going to end up running on. This,
1956 * however, is already required for the regular Program-Order guarantee above,
1957 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1962 * try_to_wake_up - wake up a thread
1963 * @p: the thread to be awakened
1964 * @state: the mask of task states that can be woken
1965 * @wake_flags: wake modifier flags (WF_*)
1967 * If (@state & @p->state) @p->state = TASK_RUNNING.
1969 * If the task was not queued/runnable, also place it back on a runqueue.
1971 * Atomic against schedule() which would dequeue a task, also see
1972 * set_current_state().
1974 * Return: %true if @p->state changes (an actual wakeup was done),
1978 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1980 unsigned long flags;
1981 int cpu, success = 0;
1984 * If we are going to wake up a thread waiting for CONDITION we
1985 * need to ensure that CONDITION=1 done by the caller can not be
1986 * reordered with p->state check below. This pairs with mb() in
1987 * set_current_state() the waiting thread does.
1989 raw_spin_lock_irqsave(&p->pi_lock, flags);
1990 smp_mb__after_spinlock();
1991 if (!(p->state & state))
1994 trace_sched_waking(p);
1996 /* We're going to change ->state: */
2001 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2002 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2003 * in smp_cond_load_acquire() below.
2005 * sched_ttwu_pending() try_to_wake_up()
2006 * [S] p->on_rq = 1; [L] P->state
2007 * UNLOCK rq->lock -----.
2011 * LOCK rq->lock -----'
2015 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2017 * Pairs with the UNLOCK+LOCK on rq->lock from the
2018 * last wakeup of our task and the schedule that got our task
2022 if (p->on_rq && ttwu_remote(p, wake_flags))
2027 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2028 * possible to, falsely, observe p->on_cpu == 0.
2030 * One must be running (->on_cpu == 1) in order to remove oneself
2031 * from the runqueue.
2033 * [S] ->on_cpu = 1; [L] ->on_rq
2037 * [S] ->on_rq = 0; [L] ->on_cpu
2039 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2040 * from the consecutive calls to schedule(); the first switching to our
2041 * task, the second putting it to sleep.
2046 * If the owning (remote) CPU is still in the middle of schedule() with
2047 * this task as prev, wait until its done referencing the task.
2049 * Pairs with the smp_store_release() in finish_task().
2051 * This ensures that tasks getting woken will be fully ordered against
2052 * their previous state and preserve Program Order.
2054 smp_cond_load_acquire(&p->on_cpu, !VAL);
2056 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2057 p->state = TASK_WAKING;
2060 delayacct_blkio_end(p);
2061 atomic_dec(&task_rq(p)->nr_iowait);
2064 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2065 if (task_cpu(p) != cpu) {
2066 wake_flags |= WF_MIGRATED;
2067 set_task_cpu(p, cpu);
2070 #else /* CONFIG_SMP */
2073 delayacct_blkio_end(p);
2074 atomic_dec(&task_rq(p)->nr_iowait);
2077 #endif /* CONFIG_SMP */
2079 ttwu_queue(p, cpu, wake_flags);
2081 ttwu_stat(p, cpu, wake_flags);
2083 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2089 * try_to_wake_up_local - try to wake up a local task with rq lock held
2090 * @p: the thread to be awakened
2091 * @rf: request-queue flags for pinning
2093 * Put @p on the run-queue if it's not already there. The caller must
2094 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2097 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2099 struct rq *rq = task_rq(p);
2101 if (WARN_ON_ONCE(rq != this_rq()) ||
2102 WARN_ON_ONCE(p == current))
2105 lockdep_assert_held(&rq->lock);
2107 if (!raw_spin_trylock(&p->pi_lock)) {
2109 * This is OK, because current is on_cpu, which avoids it being
2110 * picked for load-balance and preemption/IRQs are still
2111 * disabled avoiding further scheduler activity on it and we've
2112 * not yet picked a replacement task.
2115 raw_spin_lock(&p->pi_lock);
2119 if (!(p->state & TASK_NORMAL))
2122 trace_sched_waking(p);
2124 if (!task_on_rq_queued(p)) {
2126 delayacct_blkio_end(p);
2127 atomic_dec(&rq->nr_iowait);
2129 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2132 ttwu_do_wakeup(rq, p, 0, rf);
2133 ttwu_stat(p, smp_processor_id(), 0);
2135 raw_spin_unlock(&p->pi_lock);
2139 * wake_up_process - Wake up a specific process
2140 * @p: The process to be woken up.
2142 * Attempt to wake up the nominated process and move it to the set of runnable
2145 * Return: 1 if the process was woken up, 0 if it was already running.
2147 * It may be assumed that this function implies a write memory barrier before
2148 * changing the task state if and only if any tasks are woken up.
2150 int wake_up_process(struct task_struct *p)
2152 return try_to_wake_up(p, TASK_NORMAL, 0);
2154 EXPORT_SYMBOL(wake_up_process);
2156 int wake_up_state(struct task_struct *p, unsigned int state)
2158 return try_to_wake_up(p, state, 0);
2162 * Perform scheduler related setup for a newly forked process p.
2163 * p is forked by current.
2165 * __sched_fork() is basic setup used by init_idle() too:
2167 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2172 p->se.exec_start = 0;
2173 p->se.sum_exec_runtime = 0;
2174 p->se.prev_sum_exec_runtime = 0;
2175 p->se.nr_migrations = 0;
2177 INIT_LIST_HEAD(&p->se.group_node);
2179 #ifdef CONFIG_FAIR_GROUP_SCHED
2180 p->se.cfs_rq = NULL;
2183 #ifdef CONFIG_SCHEDSTATS
2184 /* Even if schedstat is disabled, there should not be garbage */
2185 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2188 RB_CLEAR_NODE(&p->dl.rb_node);
2189 init_dl_task_timer(&p->dl);
2190 init_dl_inactive_task_timer(&p->dl);
2191 __dl_clear_params(p);
2193 INIT_LIST_HEAD(&p->rt.run_list);
2195 p->rt.time_slice = sched_rr_timeslice;
2199 #ifdef CONFIG_PREEMPT_NOTIFIERS
2200 INIT_HLIST_HEAD(&p->preempt_notifiers);
2203 #ifdef CONFIG_NUMA_BALANCING
2204 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2205 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2206 p->mm->numa_scan_seq = 0;
2209 if (clone_flags & CLONE_VM)
2210 p->numa_preferred_nid = current->numa_preferred_nid;
2212 p->numa_preferred_nid = -1;
2214 p->node_stamp = 0ULL;
2215 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2216 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2217 p->numa_work.next = &p->numa_work;
2218 p->numa_faults = NULL;
2219 p->last_task_numa_placement = 0;
2220 p->last_sum_exec_runtime = 0;
2222 p->numa_group = NULL;
2223 #endif /* CONFIG_NUMA_BALANCING */
2226 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2228 #ifdef CONFIG_NUMA_BALANCING
2230 void set_numabalancing_state(bool enabled)
2233 static_branch_enable(&sched_numa_balancing);
2235 static_branch_disable(&sched_numa_balancing);
2238 #ifdef CONFIG_PROC_SYSCTL
2239 int sysctl_numa_balancing(struct ctl_table *table, int write,
2240 void __user *buffer, size_t *lenp, loff_t *ppos)
2244 int state = static_branch_likely(&sched_numa_balancing);
2246 if (write && !capable(CAP_SYS_ADMIN))
2251 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2255 set_numabalancing_state(state);
2261 #ifdef CONFIG_SCHEDSTATS
2263 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2264 static bool __initdata __sched_schedstats = false;
2266 static void set_schedstats(bool enabled)
2269 static_branch_enable(&sched_schedstats);
2271 static_branch_disable(&sched_schedstats);
2274 void force_schedstat_enabled(void)
2276 if (!schedstat_enabled()) {
2277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2278 static_branch_enable(&sched_schedstats);
2282 static int __init setup_schedstats(char *str)
2289 * This code is called before jump labels have been set up, so we can't
2290 * change the static branch directly just yet. Instead set a temporary
2291 * variable so init_schedstats() can do it later.
2293 if (!strcmp(str, "enable")) {
2294 __sched_schedstats = true;
2296 } else if (!strcmp(str, "disable")) {
2297 __sched_schedstats = false;
2302 pr_warn("Unable to parse schedstats=\n");
2306 __setup("schedstats=", setup_schedstats);
2308 static void __init init_schedstats(void)
2310 set_schedstats(__sched_schedstats);
2313 #ifdef CONFIG_PROC_SYSCTL
2314 int sysctl_schedstats(struct ctl_table *table, int write,
2315 void __user *buffer, size_t *lenp, loff_t *ppos)
2319 int state = static_branch_likely(&sched_schedstats);
2321 if (write && !capable(CAP_SYS_ADMIN))
2326 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2330 set_schedstats(state);
2333 #endif /* CONFIG_PROC_SYSCTL */
2334 #else /* !CONFIG_SCHEDSTATS */
2335 static inline void init_schedstats(void) {}
2336 #endif /* CONFIG_SCHEDSTATS */
2339 * fork()/clone()-time setup:
2341 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2343 unsigned long flags;
2344 int cpu = get_cpu();
2346 __sched_fork(clone_flags, p);
2348 * We mark the process as NEW here. This guarantees that
2349 * nobody will actually run it, and a signal or other external
2350 * event cannot wake it up and insert it on the runqueue either.
2352 p->state = TASK_NEW;
2355 * Make sure we do not leak PI boosting priority to the child.
2357 p->prio = current->normal_prio;
2360 * Revert to default priority/policy on fork if requested.
2362 if (unlikely(p->sched_reset_on_fork)) {
2363 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2364 p->policy = SCHED_NORMAL;
2365 p->static_prio = NICE_TO_PRIO(0);
2367 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2368 p->static_prio = NICE_TO_PRIO(0);
2370 p->prio = p->normal_prio = __normal_prio(p);
2371 set_load_weight(p, false);
2374 * We don't need the reset flag anymore after the fork. It has
2375 * fulfilled its duty:
2377 p->sched_reset_on_fork = 0;
2380 if (dl_prio(p->prio)) {
2383 } else if (rt_prio(p->prio)) {
2384 p->sched_class = &rt_sched_class;
2386 p->sched_class = &fair_sched_class;
2389 init_entity_runnable_average(&p->se);
2392 * The child is not yet in the pid-hash so no cgroup attach races,
2393 * and the cgroup is pinned to this child due to cgroup_fork()
2394 * is ran before sched_fork().
2396 * Silence PROVE_RCU.
2398 raw_spin_lock_irqsave(&p->pi_lock, flags);
2400 * We're setting the CPU for the first time, we don't migrate,
2401 * so use __set_task_cpu().
2403 __set_task_cpu(p, cpu);
2404 if (p->sched_class->task_fork)
2405 p->sched_class->task_fork(p);
2406 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2408 #ifdef CONFIG_SCHED_INFO
2409 if (likely(sched_info_on()))
2410 memset(&p->sched_info, 0, sizeof(p->sched_info));
2412 #if defined(CONFIG_SMP)
2415 init_task_preempt_count(p);
2417 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2418 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2425 unsigned long to_ratio(u64 period, u64 runtime)
2427 if (runtime == RUNTIME_INF)
2431 * Doing this here saves a lot of checks in all
2432 * the calling paths, and returning zero seems
2433 * safe for them anyway.
2438 return div64_u64(runtime << BW_SHIFT, period);
2442 * wake_up_new_task - wake up a newly created task for the first time.
2444 * This function will do some initial scheduler statistics housekeeping
2445 * that must be done for every newly created context, then puts the task
2446 * on the runqueue and wakes it.
2448 void wake_up_new_task(struct task_struct *p)
2453 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2454 p->state = TASK_RUNNING;
2457 * Fork balancing, do it here and not earlier because:
2458 * - cpus_allowed can change in the fork path
2459 * - any previously selected CPU might disappear through hotplug
2461 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2462 * as we're not fully set-up yet.
2464 p->recent_used_cpu = task_cpu(p);
2465 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2467 rq = __task_rq_lock(p, &rf);
2468 update_rq_clock(rq);
2469 post_init_entity_util_avg(&p->se);
2471 activate_task(rq, p, ENQUEUE_NOCLOCK);
2472 p->on_rq = TASK_ON_RQ_QUEUED;
2473 trace_sched_wakeup_new(p);
2474 check_preempt_curr(rq, p, WF_FORK);
2476 if (p->sched_class->task_woken) {
2478 * Nothing relies on rq->lock after this, so its fine to
2481 rq_unpin_lock(rq, &rf);
2482 p->sched_class->task_woken(rq, p);
2483 rq_repin_lock(rq, &rf);
2486 task_rq_unlock(rq, p, &rf);
2489 #ifdef CONFIG_PREEMPT_NOTIFIERS
2491 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2493 void preempt_notifier_inc(void)
2495 static_key_slow_inc(&preempt_notifier_key);
2497 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2499 void preempt_notifier_dec(void)
2501 static_key_slow_dec(&preempt_notifier_key);
2503 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2506 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2507 * @notifier: notifier struct to register
2509 void preempt_notifier_register(struct preempt_notifier *notifier)
2511 if (!static_key_false(&preempt_notifier_key))
2512 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2514 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2516 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2519 * preempt_notifier_unregister - no longer interested in preemption notifications
2520 * @notifier: notifier struct to unregister
2522 * This is *not* safe to call from within a preemption notifier.
2524 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2526 hlist_del(¬ifier->link);
2528 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2530 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2532 struct preempt_notifier *notifier;
2534 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2535 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2538 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2540 if (static_key_false(&preempt_notifier_key))
2541 __fire_sched_in_preempt_notifiers(curr);
2545 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2546 struct task_struct *next)
2548 struct preempt_notifier *notifier;
2550 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2551 notifier->ops->sched_out(notifier, next);
2554 static __always_inline void
2555 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2556 struct task_struct *next)
2558 if (static_key_false(&preempt_notifier_key))
2559 __fire_sched_out_preempt_notifiers(curr, next);
2562 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2564 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2569 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2570 struct task_struct *next)
2574 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2576 static inline void prepare_task(struct task_struct *next)
2580 * Claim the task as running, we do this before switching to it
2581 * such that any running task will have this set.
2587 static inline void finish_task(struct task_struct *prev)
2591 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2592 * We must ensure this doesn't happen until the switch is completely
2595 * In particular, the load of prev->state in finish_task_switch() must
2596 * happen before this.
2598 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2600 smp_store_release(&prev->on_cpu, 0);
2605 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2608 * Since the runqueue lock will be released by the next
2609 * task (which is an invalid locking op but in the case
2610 * of the scheduler it's an obvious special-case), so we
2611 * do an early lockdep release here:
2613 rq_unpin_lock(rq, rf);
2614 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2615 #ifdef CONFIG_DEBUG_SPINLOCK
2616 /* this is a valid case when another task releases the spinlock */
2617 rq->lock.owner = next;
2621 static inline void finish_lock_switch(struct rq *rq)
2624 * If we are tracking spinlock dependencies then we have to
2625 * fix up the runqueue lock - which gets 'carried over' from
2626 * prev into current:
2628 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2629 raw_spin_unlock_irq(&rq->lock);
2633 * prepare_task_switch - prepare to switch tasks
2634 * @rq: the runqueue preparing to switch
2635 * @prev: the current task that is being switched out
2636 * @next: the task we are going to switch to.
2638 * This is called with the rq lock held and interrupts off. It must
2639 * be paired with a subsequent finish_task_switch after the context
2642 * prepare_task_switch sets up locking and calls architecture specific
2646 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2647 struct task_struct *next)
2649 sched_info_switch(rq, prev, next);
2650 perf_event_task_sched_out(prev, next);
2651 fire_sched_out_preempt_notifiers(prev, next);
2653 prepare_arch_switch(next);
2657 * finish_task_switch - clean up after a task-switch
2658 * @prev: the thread we just switched away from.
2660 * finish_task_switch must be called after the context switch, paired
2661 * with a prepare_task_switch call before the context switch.
2662 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2663 * and do any other architecture-specific cleanup actions.
2665 * Note that we may have delayed dropping an mm in context_switch(). If
2666 * so, we finish that here outside of the runqueue lock. (Doing it
2667 * with the lock held can cause deadlocks; see schedule() for
2670 * The context switch have flipped the stack from under us and restored the
2671 * local variables which were saved when this task called schedule() in the
2672 * past. prev == current is still correct but we need to recalculate this_rq
2673 * because prev may have moved to another CPU.
2675 static struct rq *finish_task_switch(struct task_struct *prev)
2676 __releases(rq->lock)
2678 struct rq *rq = this_rq();
2679 struct mm_struct *mm = rq->prev_mm;
2683 * The previous task will have left us with a preempt_count of 2
2684 * because it left us after:
2687 * preempt_disable(); // 1
2689 * raw_spin_lock_irq(&rq->lock) // 2
2691 * Also, see FORK_PREEMPT_COUNT.
2693 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2694 "corrupted preempt_count: %s/%d/0x%x\n",
2695 current->comm, current->pid, preempt_count()))
2696 preempt_count_set(FORK_PREEMPT_COUNT);
2701 * A task struct has one reference for the use as "current".
2702 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2703 * schedule one last time. The schedule call will never return, and
2704 * the scheduled task must drop that reference.
2706 * We must observe prev->state before clearing prev->on_cpu (in
2707 * finish_task), otherwise a concurrent wakeup can get prev
2708 * running on another CPU and we could rave with its RUNNING -> DEAD
2709 * transition, resulting in a double drop.
2711 prev_state = prev->state;
2712 vtime_task_switch(prev);
2713 perf_event_task_sched_in(prev, current);
2715 finish_lock_switch(rq);
2716 finish_arch_post_lock_switch();
2718 fire_sched_in_preempt_notifiers(current);
2720 * When switching through a kernel thread, the loop in
2721 * membarrier_{private,global}_expedited() may have observed that
2722 * kernel thread and not issued an IPI. It is therefore possible to
2723 * schedule between user->kernel->user threads without passing though
2724 * switch_mm(). Membarrier requires a barrier after storing to
2725 * rq->curr, before returning to userspace, so provide them here:
2727 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2728 * provided by mmdrop(),
2729 * - a sync_core for SYNC_CORE.
2732 membarrier_mm_sync_core_before_usermode(mm);
2735 if (unlikely(prev_state == TASK_DEAD)) {
2736 if (prev->sched_class->task_dead)
2737 prev->sched_class->task_dead(prev);
2740 * Remove function-return probe instances associated with this
2741 * task and put them back on the free list.
2743 kprobe_flush_task(prev);
2745 /* Task is done with its stack. */
2746 put_task_stack(prev);
2748 put_task_struct(prev);
2751 tick_nohz_task_switch();
2757 /* rq->lock is NOT held, but preemption is disabled */
2758 static void __balance_callback(struct rq *rq)
2760 struct callback_head *head, *next;
2761 void (*func)(struct rq *rq);
2762 unsigned long flags;
2764 raw_spin_lock_irqsave(&rq->lock, flags);
2765 head = rq->balance_callback;
2766 rq->balance_callback = NULL;
2768 func = (void (*)(struct rq *))head->func;
2775 raw_spin_unlock_irqrestore(&rq->lock, flags);
2778 static inline void balance_callback(struct rq *rq)
2780 if (unlikely(rq->balance_callback))
2781 __balance_callback(rq);
2786 static inline void balance_callback(struct rq *rq)
2793 * schedule_tail - first thing a freshly forked thread must call.
2794 * @prev: the thread we just switched away from.
2796 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2797 __releases(rq->lock)
2802 * New tasks start with FORK_PREEMPT_COUNT, see there and
2803 * finish_task_switch() for details.
2805 * finish_task_switch() will drop rq->lock() and lower preempt_count
2806 * and the preempt_enable() will end up enabling preemption (on
2807 * PREEMPT_COUNT kernels).
2810 rq = finish_task_switch(prev);
2811 balance_callback(rq);
2814 if (current->set_child_tid)
2815 put_user(task_pid_vnr(current), current->set_child_tid);
2819 * context_switch - switch to the new MM and the new thread's register state.
2821 static __always_inline struct rq *
2822 context_switch(struct rq *rq, struct task_struct *prev,
2823 struct task_struct *next, struct rq_flags *rf)
2825 struct mm_struct *mm, *oldmm;
2827 prepare_task_switch(rq, prev, next);
2830 oldmm = prev->active_mm;
2832 * For paravirt, this is coupled with an exit in switch_to to
2833 * combine the page table reload and the switch backend into
2836 arch_start_context_switch(prev);
2839 * If mm is non-NULL, we pass through switch_mm(). If mm is
2840 * NULL, we will pass through mmdrop() in finish_task_switch().
2841 * Both of these contain the full memory barrier required by
2842 * membarrier after storing to rq->curr, before returning to
2846 next->active_mm = oldmm;
2848 enter_lazy_tlb(oldmm, next);
2850 switch_mm_irqs_off(oldmm, mm, next);
2853 prev->active_mm = NULL;
2854 rq->prev_mm = oldmm;
2857 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2859 prepare_lock_switch(rq, next, rf);
2861 /* Here we just switch the register state and the stack. */
2862 switch_to(prev, next, prev);
2865 return finish_task_switch(prev);
2869 * nr_running and nr_context_switches:
2871 * externally visible scheduler statistics: current number of runnable
2872 * threads, total number of context switches performed since bootup.
2874 unsigned long nr_running(void)
2876 unsigned long i, sum = 0;
2878 for_each_online_cpu(i)
2879 sum += cpu_rq(i)->nr_running;
2885 * Check if only the current task is running on the CPU.
2887 * Caution: this function does not check that the caller has disabled
2888 * preemption, thus the result might have a time-of-check-to-time-of-use
2889 * race. The caller is responsible to use it correctly, for example:
2891 * - from a non-preemptable section (of course)
2893 * - from a thread that is bound to a single CPU
2895 * - in a loop with very short iterations (e.g. a polling loop)
2897 bool single_task_running(void)
2899 return raw_rq()->nr_running == 1;
2901 EXPORT_SYMBOL(single_task_running);
2903 unsigned long long nr_context_switches(void)
2906 unsigned long long sum = 0;
2908 for_each_possible_cpu(i)
2909 sum += cpu_rq(i)->nr_switches;
2915 * IO-wait accounting, and how its mostly bollocks (on SMP).
2917 * The idea behind IO-wait account is to account the idle time that we could
2918 * have spend running if it were not for IO. That is, if we were to improve the
2919 * storage performance, we'd have a proportional reduction in IO-wait time.
2921 * This all works nicely on UP, where, when a task blocks on IO, we account
2922 * idle time as IO-wait, because if the storage were faster, it could've been
2923 * running and we'd not be idle.
2925 * This has been extended to SMP, by doing the same for each CPU. This however
2928 * Imagine for instance the case where two tasks block on one CPU, only the one
2929 * CPU will have IO-wait accounted, while the other has regular idle. Even
2930 * though, if the storage were faster, both could've ran at the same time,
2931 * utilising both CPUs.
2933 * This means, that when looking globally, the current IO-wait accounting on
2934 * SMP is a lower bound, by reason of under accounting.
2936 * Worse, since the numbers are provided per CPU, they are sometimes
2937 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2938 * associated with any one particular CPU, it can wake to another CPU than it
2939 * blocked on. This means the per CPU IO-wait number is meaningless.
2941 * Task CPU affinities can make all that even more 'interesting'.
2944 unsigned long nr_iowait(void)
2946 unsigned long i, sum = 0;
2948 for_each_possible_cpu(i)
2949 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2955 * Consumers of these two interfaces, like for example the cpufreq menu
2956 * governor are using nonsensical data. Boosting frequency for a CPU that has
2957 * IO-wait which might not even end up running the task when it does become
2961 unsigned long nr_iowait_cpu(int cpu)
2963 struct rq *this = cpu_rq(cpu);
2964 return atomic_read(&this->nr_iowait);
2967 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2969 struct rq *rq = this_rq();
2970 *nr_waiters = atomic_read(&rq->nr_iowait);
2971 *load = rq->load.weight;
2977 * sched_exec - execve() is a valuable balancing opportunity, because at
2978 * this point the task has the smallest effective memory and cache footprint.
2980 void sched_exec(void)
2982 struct task_struct *p = current;
2983 unsigned long flags;
2986 raw_spin_lock_irqsave(&p->pi_lock, flags);
2987 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2988 if (dest_cpu == smp_processor_id())
2991 if (likely(cpu_active(dest_cpu))) {
2992 struct migration_arg arg = { p, dest_cpu };
2994 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2995 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2999 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3004 DEFINE_PER_CPU(struct kernel_stat, kstat);
3005 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3007 EXPORT_PER_CPU_SYMBOL(kstat);
3008 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3011 * The function fair_sched_class.update_curr accesses the struct curr
3012 * and its field curr->exec_start; when called from task_sched_runtime(),
3013 * we observe a high rate of cache misses in practice.
3014 * Prefetching this data results in improved performance.
3016 static inline void prefetch_curr_exec_start(struct task_struct *p)
3018 #ifdef CONFIG_FAIR_GROUP_SCHED
3019 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3021 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3024 prefetch(&curr->exec_start);
3028 * Return accounted runtime for the task.
3029 * In case the task is currently running, return the runtime plus current's
3030 * pending runtime that have not been accounted yet.
3032 unsigned long long task_sched_runtime(struct task_struct *p)
3038 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3040 * 64-bit doesn't need locks to atomically read a 64bit value.
3041 * So we have a optimization chance when the task's delta_exec is 0.
3042 * Reading ->on_cpu is racy, but this is ok.
3044 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3045 * If we race with it entering CPU, unaccounted time is 0. This is
3046 * indistinguishable from the read occurring a few cycles earlier.
3047 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3048 * been accounted, so we're correct here as well.
3050 if (!p->on_cpu || !task_on_rq_queued(p))
3051 return p->se.sum_exec_runtime;
3054 rq = task_rq_lock(p, &rf);
3056 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3057 * project cycles that may never be accounted to this
3058 * thread, breaking clock_gettime().
3060 if (task_current(rq, p) && task_on_rq_queued(p)) {
3061 prefetch_curr_exec_start(p);
3062 update_rq_clock(rq);
3063 p->sched_class->update_curr(rq);
3065 ns = p->se.sum_exec_runtime;
3066 task_rq_unlock(rq, p, &rf);
3072 * This function gets called by the timer code, with HZ frequency.
3073 * We call it with interrupts disabled.
3075 void scheduler_tick(void)
3077 int cpu = smp_processor_id();
3078 struct rq *rq = cpu_rq(cpu);
3079 struct task_struct *curr = rq->curr;
3086 update_rq_clock(rq);
3087 curr->sched_class->task_tick(rq, curr, 0);
3088 cpu_load_update_active(rq);
3089 calc_global_load_tick(rq);
3093 perf_event_task_tick();
3096 rq->idle_balance = idle_cpu(cpu);
3097 trigger_load_balance(rq);
3099 rq_last_tick_reset(rq);
3102 #ifdef CONFIG_NO_HZ_FULL
3104 * scheduler_tick_max_deferment
3106 * Keep at least one tick per second when a single
3107 * active task is running because the scheduler doesn't
3108 * yet completely support full dynticks environment.
3110 * This makes sure that uptime, CFS vruntime, load
3111 * balancing, etc... continue to move forward, even
3112 * with a very low granularity.
3114 * Return: Maximum deferment in nanoseconds.
3116 u64 scheduler_tick_max_deferment(void)
3118 struct rq *rq = this_rq();
3119 unsigned long next, now = READ_ONCE(jiffies);
3121 next = rq->last_sched_tick + HZ;
3123 if (time_before_eq(next, now))
3126 return jiffies_to_nsecs(next - now);
3130 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3131 defined(CONFIG_PREEMPT_TRACER))
3133 * If the value passed in is equal to the current preempt count
3134 * then we just disabled preemption. Start timing the latency.
3136 static inline void preempt_latency_start(int val)
3138 if (preempt_count() == val) {
3139 unsigned long ip = get_lock_parent_ip();
3140 #ifdef CONFIG_DEBUG_PREEMPT
3141 current->preempt_disable_ip = ip;
3143 trace_preempt_off(CALLER_ADDR0, ip);
3147 void preempt_count_add(int val)
3149 #ifdef CONFIG_DEBUG_PREEMPT
3153 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3156 __preempt_count_add(val);
3157 #ifdef CONFIG_DEBUG_PREEMPT
3159 * Spinlock count overflowing soon?
3161 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3164 preempt_latency_start(val);
3166 EXPORT_SYMBOL(preempt_count_add);
3167 NOKPROBE_SYMBOL(preempt_count_add);
3170 * If the value passed in equals to the current preempt count
3171 * then we just enabled preemption. Stop timing the latency.
3173 static inline void preempt_latency_stop(int val)
3175 if (preempt_count() == val)
3176 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3179 void preempt_count_sub(int val)
3181 #ifdef CONFIG_DEBUG_PREEMPT
3185 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3188 * Is the spinlock portion underflowing?
3190 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3191 !(preempt_count() & PREEMPT_MASK)))
3195 preempt_latency_stop(val);
3196 __preempt_count_sub(val);
3198 EXPORT_SYMBOL(preempt_count_sub);
3199 NOKPROBE_SYMBOL(preempt_count_sub);
3202 static inline void preempt_latency_start(int val) { }
3203 static inline void preempt_latency_stop(int val) { }
3206 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3208 #ifdef CONFIG_DEBUG_PREEMPT
3209 return p->preempt_disable_ip;
3216 * Print scheduling while atomic bug:
3218 static noinline void __schedule_bug(struct task_struct *prev)
3220 /* Save this before calling printk(), since that will clobber it */
3221 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3223 if (oops_in_progress)
3226 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3227 prev->comm, prev->pid, preempt_count());
3229 debug_show_held_locks(prev);
3231 if (irqs_disabled())
3232 print_irqtrace_events(prev);
3233 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3234 && in_atomic_preempt_off()) {
3235 pr_err("Preemption disabled at:");
3236 print_ip_sym(preempt_disable_ip);
3240 panic("scheduling while atomic\n");
3243 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3247 * Various schedule()-time debugging checks and statistics:
3249 static inline void schedule_debug(struct task_struct *prev)
3251 #ifdef CONFIG_SCHED_STACK_END_CHECK
3252 if (task_stack_end_corrupted(prev))
3253 panic("corrupted stack end detected inside scheduler\n");
3256 if (unlikely(in_atomic_preempt_off())) {
3257 __schedule_bug(prev);
3258 preempt_count_set(PREEMPT_DISABLED);
3262 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3264 schedstat_inc(this_rq()->sched_count);
3268 * Pick up the highest-prio task:
3270 static inline struct task_struct *
3271 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3273 const struct sched_class *class;
3274 struct task_struct *p;
3277 * Optimization: we know that if all tasks are in the fair class we can
3278 * call that function directly, but only if the @prev task wasn't of a
3279 * higher scheduling class, because otherwise those loose the
3280 * opportunity to pull in more work from other CPUs.
3282 if (likely((prev->sched_class == &idle_sched_class ||
3283 prev->sched_class == &fair_sched_class) &&
3284 rq->nr_running == rq->cfs.h_nr_running)) {
3286 p = fair_sched_class.pick_next_task(rq, prev, rf);
3287 if (unlikely(p == RETRY_TASK))
3290 /* Assumes fair_sched_class->next == idle_sched_class */
3292 p = idle_sched_class.pick_next_task(rq, prev, rf);
3298 for_each_class(class) {
3299 p = class->pick_next_task(rq, prev, rf);
3301 if (unlikely(p == RETRY_TASK))
3307 /* The idle class should always have a runnable task: */
3312 * __schedule() is the main scheduler function.
3314 * The main means of driving the scheduler and thus entering this function are:
3316 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3318 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3319 * paths. For example, see arch/x86/entry_64.S.
3321 * To drive preemption between tasks, the scheduler sets the flag in timer
3322 * interrupt handler scheduler_tick().
3324 * 3. Wakeups don't really cause entry into schedule(). They add a
3325 * task to the run-queue and that's it.
3327 * Now, if the new task added to the run-queue preempts the current
3328 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3329 * called on the nearest possible occasion:
3331 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3333 * - in syscall or exception context, at the next outmost
3334 * preempt_enable(). (this might be as soon as the wake_up()'s
3337 * - in IRQ context, return from interrupt-handler to
3338 * preemptible context
3340 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3343 * - cond_resched() call
3344 * - explicit schedule() call
3345 * - return from syscall or exception to user-space
3346 * - return from interrupt-handler to user-space
3348 * WARNING: must be called with preemption disabled!
3350 static void __sched notrace __schedule(bool preempt)
3352 struct task_struct *prev, *next;
3353 unsigned long *switch_count;
3358 cpu = smp_processor_id();
3362 schedule_debug(prev);
3364 if (sched_feat(HRTICK))
3367 local_irq_disable();
3368 rcu_note_context_switch(preempt);
3371 * Make sure that signal_pending_state()->signal_pending() below
3372 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3373 * done by the caller to avoid the race with signal_wake_up().
3375 * The membarrier system call requires a full memory barrier
3376 * after coming from user-space, before storing to rq->curr.
3379 smp_mb__after_spinlock();
3381 /* Promote REQ to ACT */
3382 rq->clock_update_flags <<= 1;
3383 update_rq_clock(rq);
3385 switch_count = &prev->nivcsw;
3386 if (!preempt && prev->state) {
3387 if (unlikely(signal_pending_state(prev->state, prev))) {
3388 prev->state = TASK_RUNNING;
3390 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3393 if (prev->in_iowait) {
3394 atomic_inc(&rq->nr_iowait);
3395 delayacct_blkio_start();
3399 * If a worker went to sleep, notify and ask workqueue
3400 * whether it wants to wake up a task to maintain
3403 if (prev->flags & PF_WQ_WORKER) {
3404 struct task_struct *to_wakeup;
3406 to_wakeup = wq_worker_sleeping(prev);
3408 try_to_wake_up_local(to_wakeup, &rf);
3411 switch_count = &prev->nvcsw;
3414 next = pick_next_task(rq, prev, &rf);
3415 clear_tsk_need_resched(prev);
3416 clear_preempt_need_resched();
3418 if (likely(prev != next)) {
3422 * The membarrier system call requires each architecture
3423 * to have a full memory barrier after updating
3424 * rq->curr, before returning to user-space.
3426 * Here are the schemes providing that barrier on the
3427 * various architectures:
3428 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3429 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3430 * - finish_lock_switch() for weakly-ordered
3431 * architectures where spin_unlock is a full barrier,
3432 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3433 * is a RELEASE barrier),
3437 trace_sched_switch(preempt, prev, next);
3439 /* Also unlocks the rq: */
3440 rq = context_switch(rq, prev, next, &rf);
3442 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);