3da7a2444a911131589ce616147efd517c7bd354
[sfrench/cifs-2.6.git] / kernel / sched / core.c
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19 #include <linux/compat.h>
20
21 #include <linux/blkdev.h>
22 #include <linux/kprobes.h>
23 #include <linux/mmu_context.h>
24 #include <linux/module.h>
25 #include <linux/nmi.h>
26 #include <linux/prefetch.h>
27 #include <linux/profile.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/sched/isolation.h>
31
32 #include <asm/switch_to.h>
33 #include <asm/tlb.h>
34 #ifdef CONFIG_PARAVIRT
35 #include <asm/paravirt.h>
36 #endif
37
38 #include "sched.h"
39 #include "../workqueue_internal.h"
40 #include "../smpboot.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/sched.h>
44
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)       \
56         (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59         0;
60 #undef SCHED_FEAT
61 #endif
62
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
69 /*
70  * period over which we average the RT time consumption, measured
71  * in ms.
72  *
73  * default: 1s
74  */
75 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
76
77 /*
78  * period over which we measure -rt task CPU usage in us.
79  * default: 1s
80  */
81 unsigned int sysctl_sched_rt_period = 1000000;
82
83 __read_mostly int scheduler_running;
84
85 /*
86  * part of the period that we allow rt tasks to run in us.
87  * default: 0.95s
88  */
89 int sysctl_sched_rt_runtime = 950000;
90
91 /*
92  * __task_rq_lock - lock the rq @p resides on.
93  */
94 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
95         __acquires(rq->lock)
96 {
97         struct rq *rq;
98
99         lockdep_assert_held(&p->pi_lock);
100
101         for (;;) {
102                 rq = task_rq(p);
103                 raw_spin_lock(&rq->lock);
104                 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
105                         rq_pin_lock(rq, rf);
106                         return rq;
107                 }
108                 raw_spin_unlock(&rq->lock);
109
110                 while (unlikely(task_on_rq_migrating(p)))
111                         cpu_relax();
112         }
113 }
114
115 /*
116  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
117  */
118 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
119         __acquires(p->pi_lock)
120         __acquires(rq->lock)
121 {
122         struct rq *rq;
123
124         for (;;) {
125                 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
126                 rq = task_rq(p);
127                 raw_spin_lock(&rq->lock);
128                 /*
129                  *      move_queued_task()              task_rq_lock()
130                  *
131                  *      ACQUIRE (rq->lock)
132                  *      [S] ->on_rq = MIGRATING         [L] rq = task_rq()
133                  *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
134                  *      [S] ->cpu = new_cpu             [L] task_rq()
135                  *                                      [L] ->on_rq
136                  *      RELEASE (rq->lock)
137                  *
138                  * If we observe the old cpu in task_rq_lock, the acquire of
139                  * the old rq->lock will fully serialize against the stores.
140                  *
141                  * If we observe the new CPU in task_rq_lock, the acquire will
142                  * pair with the WMB to ensure we must then also see migrating.
143                  */
144                 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
145                         rq_pin_lock(rq, rf);
146                         return rq;
147                 }
148                 raw_spin_unlock(&rq->lock);
149                 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
150
151                 while (unlikely(task_on_rq_migrating(p)))
152                         cpu_relax();
153         }
154 }
155
156 /*
157  * RQ-clock updating methods:
158  */
159
160 static void update_rq_clock_task(struct rq *rq, s64 delta)
161 {
162 /*
163  * In theory, the compile should just see 0 here, and optimize out the call
164  * to sched_rt_avg_update. But I don't trust it...
165  */
166 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
167         s64 steal = 0, irq_delta = 0;
168 #endif
169 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
170         irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
171
172         /*
173          * Since irq_time is only updated on {soft,}irq_exit, we might run into
174          * this case when a previous update_rq_clock() happened inside a
175          * {soft,}irq region.
176          *
177          * When this happens, we stop ->clock_task and only update the
178          * prev_irq_time stamp to account for the part that fit, so that a next
179          * update will consume the rest. This ensures ->clock_task is
180          * monotonic.
181          *
182          * It does however cause some slight miss-attribution of {soft,}irq
183          * time, a more accurate solution would be to update the irq_time using
184          * the current rq->clock timestamp, except that would require using
185          * atomic ops.
186          */
187         if (irq_delta > delta)
188                 irq_delta = delta;
189
190         rq->prev_irq_time += irq_delta;
191         delta -= irq_delta;
192 #endif
193 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
194         if (static_key_false((&paravirt_steal_rq_enabled))) {
195                 steal = paravirt_steal_clock(cpu_of(rq));
196                 steal -= rq->prev_steal_time_rq;
197
198                 if (unlikely(steal > delta))
199                         steal = delta;
200
201                 rq->prev_steal_time_rq += steal;
202                 delta -= steal;
203         }
204 #endif
205
206         rq->clock_task += delta;
207
208 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
209         if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
210                 sched_rt_avg_update(rq, irq_delta + steal);
211 #endif
212 }
213
214 void update_rq_clock(struct rq *rq)
215 {
216         s64 delta;
217
218         lockdep_assert_held(&rq->lock);
219
220         if (rq->clock_update_flags & RQCF_ACT_SKIP)
221                 return;
222
223 #ifdef CONFIG_SCHED_DEBUG
224         if (sched_feat(WARN_DOUBLE_CLOCK))
225                 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
226         rq->clock_update_flags |= RQCF_UPDATED;
227 #endif
228
229         delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
230         if (delta < 0)
231                 return;
232         rq->clock += delta;
233         update_rq_clock_task(rq, delta);
234 }
235
236
237 #ifdef CONFIG_SCHED_HRTICK
238 /*
239  * Use HR-timers to deliver accurate preemption points.
240  */
241
242 static void hrtick_clear(struct rq *rq)
243 {
244         if (hrtimer_active(&rq->hrtick_timer))
245                 hrtimer_cancel(&rq->hrtick_timer);
246 }
247
248 /*
249  * High-resolution timer tick.
250  * Runs from hardirq context with interrupts disabled.
251  */
252 static enum hrtimer_restart hrtick(struct hrtimer *timer)
253 {
254         struct rq *rq = container_of(timer, struct rq, hrtick_timer);
255         struct rq_flags rf;
256
257         WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
259         rq_lock(rq, &rf);
260         update_rq_clock(rq);
261         rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262         rq_unlock(rq, &rf);
263
264         return HRTIMER_NORESTART;
265 }
266
267 #ifdef CONFIG_SMP
268
269 static void __hrtick_restart(struct rq *rq)
270 {
271         struct hrtimer *timer = &rq->hrtick_timer;
272
273         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275
276 /*
277  * called from hardirq (IPI) context
278  */
279 static void __hrtick_start(void *arg)
280 {
281         struct rq *rq = arg;
282         struct rq_flags rf;
283
284         rq_lock(rq, &rf);
285         __hrtick_restart(rq);
286         rq->hrtick_csd_pending = 0;
287         rq_unlock(rq, &rf);
288 }
289
290 /*
291  * Called to set the hrtick timer state.
292  *
293  * called with rq->lock held and irqs disabled
294  */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297         struct hrtimer *timer = &rq->hrtick_timer;
298         ktime_t time;
299         s64 delta;
300
301         /*
302          * Don't schedule slices shorter than 10000ns, that just
303          * doesn't make sense and can cause timer DoS.
304          */
305         delta = max_t(s64, delay, 10000LL);
306         time = ktime_add_ns(timer->base->get_time(), delta);
307
308         hrtimer_set_expires(timer, time);
309
310         if (rq == this_rq()) {
311                 __hrtick_restart(rq);
312         } else if (!rq->hrtick_csd_pending) {
313                 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314                 rq->hrtick_csd_pending = 1;
315         }
316 }
317
318 #else
319 /*
320  * Called to set the hrtick timer state.
321  *
322  * called with rq->lock held and irqs disabled
323  */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326         /*
327          * Don't schedule slices shorter than 10000ns, that just
328          * doesn't make sense. Rely on vruntime for fairness.
329          */
330         delay = max_t(u64, delay, 10000LL);
331         hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332                       HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339         rq->hrtick_csd_pending = 0;
340
341         rq->hrtick_csd.flags = 0;
342         rq->hrtick_csd.func = __hrtick_start;
343         rq->hrtick_csd.info = rq;
344 #endif
345
346         hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347         rq->hrtick_timer.function = hrtick;
348 }
349 #else   /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif  /* CONFIG_SCHED_HRTICK */
358
359 /*
360  * cmpxchg based fetch_or, macro so it works for different integer types
361  */
362 #define fetch_or(ptr, mask)                                             \
363         ({                                                              \
364                 typeof(ptr) _ptr = (ptr);                               \
365                 typeof(mask) _mask = (mask);                            \
366                 typeof(*_ptr) _old, _val = *_ptr;                       \
367                                                                         \
368                 for (;;) {                                              \
369                         _old = cmpxchg(_ptr, _val, _val | _mask);       \
370                         if (_old == _val)                               \
371                                 break;                                  \
372                         _val = _old;                                    \
373                 }                                                       \
374         _old;                                                           \
375 })
376
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380  * this avoids any races wrt polling state changes and thereby avoids
381  * spurious IPIs.
382  */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385         struct thread_info *ti = task_thread_info(p);
386         return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388
389 /*
390  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391  *
392  * If this returns true, then the idle task promises to call
393  * sched_ttwu_pending() and reschedule soon.
394  */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397         struct thread_info *ti = task_thread_info(p);
398         typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399
400         for (;;) {
401                 if (!(val & _TIF_POLLING_NRFLAG))
402                         return false;
403                 if (val & _TIF_NEED_RESCHED)
404                         return true;
405                 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406                 if (old == val)
407                         break;
408                 val = old;
409         }
410         return true;
411 }
412
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416         set_tsk_need_resched(p);
417         return true;
418 }
419
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423         return false;
424 }
425 #endif
426 #endif
427
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430         struct wake_q_node *node = &task->wake_q;
431
432         /*
433          * Atomically grab the task, if ->wake_q is !nil already it means
434          * its already queued (either by us or someone else) and will get the
435          * wakeup due to that.
436          *
437          * This cmpxchg() implies a full barrier, which pairs with the write
438          * barrier implied by the wakeup in wake_up_q().
439          */
440         if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441                 return;
442
443         get_task_struct(task);
444
445         /*
446          * The head is context local, there can be no concurrency.
447          */
448         *head->lastp = node;
449         head->lastp = &node->next;
450 }
451
452 void wake_up_q(struct wake_q_head *head)
453 {
454         struct wake_q_node *node = head->first;
455
456         while (node != WAKE_Q_TAIL) {
457                 struct task_struct *task;
458
459                 task = container_of(node, struct task_struct, wake_q);
460                 BUG_ON(!task);
461                 /* Task can safely be re-inserted now: */
462                 node = node->next;
463                 task->wake_q.next = NULL;
464
465                 /*
466                  * wake_up_process() implies a wmb() to pair with the queueing
467                  * in wake_q_add() so as not to miss wakeups.
468                  */
469                 wake_up_process(task);
470                 put_task_struct(task);
471         }
472 }
473
474 /*
475  * resched_curr - mark rq's current task 'to be rescheduled now'.
476  *
477  * On UP this means the setting of the need_resched flag, on SMP it
478  * might also involve a cross-CPU call to trigger the scheduler on
479  * the target CPU.
480  */
481 void resched_curr(struct rq *rq)
482 {
483         struct task_struct *curr = rq->curr;
484         int cpu;
485
486         lockdep_assert_held(&rq->lock);
487
488         if (test_tsk_need_resched(curr))
489                 return;
490
491         cpu = cpu_of(rq);
492
493         if (cpu == smp_processor_id()) {
494                 set_tsk_need_resched(curr);
495                 set_preempt_need_resched();
496                 return;
497         }
498
499         if (set_nr_and_not_polling(curr))
500                 smp_send_reschedule(cpu);
501         else
502                 trace_sched_wake_idle_without_ipi(cpu);
503 }
504
505 void resched_cpu(int cpu)
506 {
507         struct rq *rq = cpu_rq(cpu);
508         unsigned long flags;
509
510         raw_spin_lock_irqsave(&rq->lock, flags);
511         if (cpu_online(cpu) || cpu == smp_processor_id())
512                 resched_curr(rq);
513         raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519  * In the semi idle case, use the nearest busy CPU for migrating timers
520  * from an idle CPU.  This is good for power-savings.
521  *
522  * We don't do similar optimization for completely idle system, as
523  * selecting an idle CPU will add more delays to the timers than intended
524  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
525  */
526 int get_nohz_timer_target(void)
527 {
528         int i, cpu = smp_processor_id();
529         struct sched_domain *sd;
530
531         if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
532                 return cpu;
533
534         rcu_read_lock();
535         for_each_domain(cpu, sd) {
536                 for_each_cpu(i, sched_domain_span(sd)) {
537                         if (cpu == i)
538                                 continue;
539
540                         if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
541                                 cpu = i;
542                                 goto unlock;
543                         }
544                 }
545         }
546
547         if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
548                 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
549 unlock:
550         rcu_read_unlock();
551         return cpu;
552 }
553
554 /*
555  * When add_timer_on() enqueues a timer into the timer wheel of an
556  * idle CPU then this timer might expire before the next timer event
557  * which is scheduled to wake up that CPU. In case of a completely
558  * idle system the next event might even be infinite time into the
559  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
560  * leaves the inner idle loop so the newly added timer is taken into
561  * account when the CPU goes back to idle and evaluates the timer
562  * wheel for the next timer event.
563  */
564 static void wake_up_idle_cpu(int cpu)
565 {
566         struct rq *rq = cpu_rq(cpu);
567
568         if (cpu == smp_processor_id())
569                 return;
570
571         if (set_nr_and_not_polling(rq->idle))
572                 smp_send_reschedule(cpu);
573         else
574                 trace_sched_wake_idle_without_ipi(cpu);
575 }
576
577 static bool wake_up_full_nohz_cpu(int cpu)
578 {
579         /*
580          * We just need the target to call irq_exit() and re-evaluate
581          * the next tick. The nohz full kick at least implies that.
582          * If needed we can still optimize that later with an
583          * empty IRQ.
584          */
585         if (cpu_is_offline(cpu))
586                 return true;  /* Don't try to wake offline CPUs. */
587         if (tick_nohz_full_cpu(cpu)) {
588                 if (cpu != smp_processor_id() ||
589                     tick_nohz_tick_stopped())
590                         tick_nohz_full_kick_cpu(cpu);
591                 return true;
592         }
593
594         return false;
595 }
596
597 /*
598  * Wake up the specified CPU.  If the CPU is going offline, it is the
599  * caller's responsibility to deal with the lost wakeup, for example,
600  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
601  */
602 void wake_up_nohz_cpu(int cpu)
603 {
604         if (!wake_up_full_nohz_cpu(cpu))
605                 wake_up_idle_cpu(cpu);
606 }
607
608 static inline bool got_nohz_idle_kick(void)
609 {
610         int cpu = smp_processor_id();
611
612         if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
613                 return false;
614
615         if (idle_cpu(cpu) && !need_resched())
616                 return true;
617
618         /*
619          * We can't run Idle Load Balance on this CPU for this time so we
620          * cancel it and clear NOHZ_BALANCE_KICK
621          */
622         clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
623         return false;
624 }
625
626 #else /* CONFIG_NO_HZ_COMMON */
627
628 static inline bool got_nohz_idle_kick(void)
629 {
630         return false;
631 }
632
633 #endif /* CONFIG_NO_HZ_COMMON */
634
635 #ifdef CONFIG_NO_HZ_FULL
636 bool sched_can_stop_tick(struct rq *rq)
637 {
638         int fifo_nr_running;
639
640         /* Deadline tasks, even if single, need the tick */
641         if (rq->dl.dl_nr_running)
642                 return false;
643
644         /*
645          * If there are more than one RR tasks, we need the tick to effect the
646          * actual RR behaviour.
647          */
648         if (rq->rt.rr_nr_running) {
649                 if (rq->rt.rr_nr_running == 1)
650                         return true;
651                 else
652                         return false;
653         }
654
655         /*
656          * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
657          * forced preemption between FIFO tasks.
658          */
659         fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
660         if (fifo_nr_running)
661                 return true;
662
663         /*
664          * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
665          * if there's more than one we need the tick for involuntary
666          * preemption.
667          */
668         if (rq->nr_running > 1)
669                 return false;
670
671         return true;
672 }
673 #endif /* CONFIG_NO_HZ_FULL */
674
675 void sched_avg_update(struct rq *rq)
676 {
677         s64 period = sched_avg_period();
678
679         while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
680                 /*
681                  * Inline assembly required to prevent the compiler
682                  * optimising this loop into a divmod call.
683                  * See __iter_div_u64_rem() for another example of this.
684                  */
685                 asm("" : "+rm" (rq->age_stamp));
686                 rq->age_stamp += period;
687                 rq->rt_avg /= 2;
688         }
689 }
690
691 #endif /* CONFIG_SMP */
692
693 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
694                         (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
695 /*
696  * Iterate task_group tree rooted at *from, calling @down when first entering a
697  * node and @up when leaving it for the final time.
698  *
699  * Caller must hold rcu_lock or sufficient equivalent.
700  */
701 int walk_tg_tree_from(struct task_group *from,
702                              tg_visitor down, tg_visitor up, void *data)
703 {
704         struct task_group *parent, *child;
705         int ret;
706
707         parent = from;
708
709 down:
710         ret = (*down)(parent, data);
711         if (ret)
712                 goto out;
713         list_for_each_entry_rcu(child, &parent->children, siblings) {
714                 parent = child;
715                 goto down;
716
717 up:
718                 continue;
719         }
720         ret = (*up)(parent, data);
721         if (ret || parent == from)
722                 goto out;
723
724         child = parent;
725         parent = parent->parent;
726         if (parent)
727                 goto up;
728 out:
729         return ret;
730 }
731
732 int tg_nop(struct task_group *tg, void *data)
733 {
734         return 0;
735 }
736 #endif
737
738 static void set_load_weight(struct task_struct *p, bool update_load)
739 {
740         int prio = p->static_prio - MAX_RT_PRIO;
741         struct load_weight *load = &p->se.load;
742
743         /*
744          * SCHED_IDLE tasks get minimal weight:
745          */
746         if (idle_policy(p->policy)) {
747                 load->weight = scale_load(WEIGHT_IDLEPRIO);
748                 load->inv_weight = WMULT_IDLEPRIO;
749                 return;
750         }
751
752         /*
753          * SCHED_OTHER tasks have to update their load when changing their
754          * weight
755          */
756         if (update_load && p->sched_class == &fair_sched_class) {
757                 reweight_task(p, prio);
758         } else {
759                 load->weight = scale_load(sched_prio_to_weight[prio]);
760                 load->inv_weight = sched_prio_to_wmult[prio];
761         }
762 }
763
764 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766         if (!(flags & ENQUEUE_NOCLOCK))
767                 update_rq_clock(rq);
768
769         if (!(flags & ENQUEUE_RESTORE))
770                 sched_info_queued(rq, p);
771
772         p->sched_class->enqueue_task(rq, p, flags);
773 }
774
775 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777         if (!(flags & DEQUEUE_NOCLOCK))
778                 update_rq_clock(rq);
779
780         if (!(flags & DEQUEUE_SAVE))
781                 sched_info_dequeued(rq, p);
782
783         p->sched_class->dequeue_task(rq, p, flags);
784 }
785
786 void activate_task(struct rq *rq, struct task_struct *p, int flags)
787 {
788         if (task_contributes_to_load(p))
789                 rq->nr_uninterruptible--;
790
791         enqueue_task(rq, p, flags);
792 }
793
794 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
795 {
796         if (task_contributes_to_load(p))
797                 rq->nr_uninterruptible++;
798
799         dequeue_task(rq, p, flags);
800 }
801
802 /*
803  * __normal_prio - return the priority that is based on the static prio
804  */
805 static inline int __normal_prio(struct task_struct *p)
806 {
807         return p->static_prio;
808 }
809
810 /*
811  * Calculate the expected normal priority: i.e. priority
812  * without taking RT-inheritance into account. Might be
813  * boosted by interactivity modifiers. Changes upon fork,
814  * setprio syscalls, and whenever the interactivity
815  * estimator recalculates.
816  */
817 static inline int normal_prio(struct task_struct *p)
818 {
819         int prio;
820
821         if (task_has_dl_policy(p))
822                 prio = MAX_DL_PRIO-1;
823         else if (task_has_rt_policy(p))
824                 prio = MAX_RT_PRIO-1 - p->rt_priority;
825         else
826                 prio = __normal_prio(p);
827         return prio;
828 }
829
830 /*
831  * Calculate the current priority, i.e. the priority
832  * taken into account by the scheduler. This value might
833  * be boosted by RT tasks, or might be boosted by
834  * interactivity modifiers. Will be RT if the task got
835  * RT-boosted. If not then it returns p->normal_prio.
836  */
837 static int effective_prio(struct task_struct *p)
838 {
839         p->normal_prio = normal_prio(p);
840         /*
841          * If we are RT tasks or we were boosted to RT priority,
842          * keep the priority unchanged. Otherwise, update priority
843          * to the normal priority:
844          */
845         if (!rt_prio(p->prio))
846                 return p->normal_prio;
847         return p->prio;
848 }
849
850 /**
851  * task_curr - is this task currently executing on a CPU?
852  * @p: the task in question.
853  *
854  * Return: 1 if the task is currently executing. 0 otherwise.
855  */
856 inline int task_curr(const struct task_struct *p)
857 {
858         return cpu_curr(task_cpu(p)) == p;
859 }
860
861 /*
862  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
863  * use the balance_callback list if you want balancing.
864  *
865  * this means any call to check_class_changed() must be followed by a call to
866  * balance_callback().
867  */
868 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
869                                        const struct sched_class *prev_class,
870                                        int oldprio)
871 {
872         if (prev_class != p->sched_class) {
873                 if (prev_class->switched_from)
874                         prev_class->switched_from(rq, p);
875
876                 p->sched_class->switched_to(rq, p);
877         } else if (oldprio != p->prio || dl_task(p))
878                 p->sched_class->prio_changed(rq, p, oldprio);
879 }
880
881 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
882 {
883         const struct sched_class *class;
884
885         if (p->sched_class == rq->curr->sched_class) {
886                 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
887         } else {
888                 for_each_class(class) {
889                         if (class == rq->curr->sched_class)
890                                 break;
891                         if (class == p->sched_class) {
892                                 resched_curr(rq);
893                                 break;
894                         }
895                 }
896         }
897
898         /*
899          * A queue event has occurred, and we're going to schedule.  In
900          * this case, we can save a useless back to back clock update.
901          */
902         if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
903                 rq_clock_skip_update(rq, true);
904 }
905
906 #ifdef CONFIG_SMP
907 /*
908  * This is how migration works:
909  *
910  * 1) we invoke migration_cpu_stop() on the target CPU using
911  *    stop_one_cpu().
912  * 2) stopper starts to run (implicitly forcing the migrated thread
913  *    off the CPU)
914  * 3) it checks whether the migrated task is still in the wrong runqueue.
915  * 4) if it's in the wrong runqueue then the migration thread removes
916  *    it and puts it into the right queue.
917  * 5) stopper completes and stop_one_cpu() returns and the migration
918  *    is done.
919  */
920
921 /*
922  * move_queued_task - move a queued task to new rq.
923  *
924  * Returns (locked) new rq. Old rq's lock is released.
925  */
926 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
927                                    struct task_struct *p, int new_cpu)
928 {
929         lockdep_assert_held(&rq->lock);
930
931         p->on_rq = TASK_ON_RQ_MIGRATING;
932         dequeue_task(rq, p, DEQUEUE_NOCLOCK);
933         set_task_cpu(p, new_cpu);
934         rq_unlock(rq, rf);
935
936         rq = cpu_rq(new_cpu);
937
938         rq_lock(rq, rf);
939         BUG_ON(task_cpu(p) != new_cpu);
940         enqueue_task(rq, p, 0);
941         p->on_rq = TASK_ON_RQ_QUEUED;
942         check_preempt_curr(rq, p, 0);
943
944         return rq;
945 }
946
947 struct migration_arg {
948         struct task_struct *task;
949         int dest_cpu;
950 };
951
952 /*
953  * Move (not current) task off this CPU, onto the destination CPU. We're doing
954  * this because either it can't run here any more (set_cpus_allowed()
955  * away from this CPU, or CPU going down), or because we're
956  * attempting to rebalance this task on exec (sched_exec).
957  *
958  * So we race with normal scheduler movements, but that's OK, as long
959  * as the task is no longer on this CPU.
960  */
961 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
962                                  struct task_struct *p, int dest_cpu)
963 {
964         if (p->flags & PF_KTHREAD) {
965                 if (unlikely(!cpu_online(dest_cpu)))
966                         return rq;
967         } else {
968                 if (unlikely(!cpu_active(dest_cpu)))
969                         return rq;
970         }
971
972         /* Affinity changed (again). */
973         if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
974                 return rq;
975
976         update_rq_clock(rq);
977         rq = move_queued_task(rq, rf, p, dest_cpu);
978
979         return rq;
980 }
981
982 /*
983  * migration_cpu_stop - this will be executed by a highprio stopper thread
984  * and performs thread migration by bumping thread off CPU then
985  * 'pushing' onto another runqueue.
986  */
987 static int migration_cpu_stop(void *data)
988 {
989         struct migration_arg *arg = data;
990         struct task_struct *p = arg->task;
991         struct rq *rq = this_rq();
992         struct rq_flags rf;
993
994         /*
995          * The original target CPU might have gone down and we might
996          * be on another CPU but it doesn't matter.
997          */
998         local_irq_disable();
999         /*
1000          * We need to explicitly wake pending tasks before running
1001          * __migrate_task() such that we will not miss enforcing cpus_allowed
1002          * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1003          */
1004         sched_ttwu_pending();
1005
1006         raw_spin_lock(&p->pi_lock);
1007         rq_lock(rq, &rf);
1008         /*
1009          * If task_rq(p) != rq, it cannot be migrated here, because we're
1010          * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1011          * we're holding p->pi_lock.
1012          */
1013         if (task_rq(p) == rq) {
1014                 if (task_on_rq_queued(p))
1015                         rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1016                 else
1017                         p->wake_cpu = arg->dest_cpu;
1018         }
1019         rq_unlock(rq, &rf);
1020         raw_spin_unlock(&p->pi_lock);
1021
1022         local_irq_enable();
1023         return 0;
1024 }
1025
1026 /*
1027  * sched_class::set_cpus_allowed must do the below, but is not required to
1028  * actually call this function.
1029  */
1030 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1031 {
1032         cpumask_copy(&p->cpus_allowed, new_mask);
1033         p->nr_cpus_allowed = cpumask_weight(new_mask);
1034 }
1035
1036 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1037 {
1038         struct rq *rq = task_rq(p);
1039         bool queued, running;
1040
1041         lockdep_assert_held(&p->pi_lock);
1042
1043         queued = task_on_rq_queued(p);
1044         running = task_current(rq, p);
1045
1046         if (queued) {
1047                 /*
1048                  * Because __kthread_bind() calls this on blocked tasks without
1049                  * holding rq->lock.
1050                  */
1051                 lockdep_assert_held(&rq->lock);
1052                 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1053         }
1054         if (running)
1055                 put_prev_task(rq, p);
1056
1057         p->sched_class->set_cpus_allowed(p, new_mask);
1058
1059         if (queued)
1060                 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1061         if (running)
1062                 set_curr_task(rq, p);
1063 }
1064
1065 /*
1066  * Change a given task's CPU affinity. Migrate the thread to a
1067  * proper CPU and schedule it away if the CPU it's executing on
1068  * is removed from the allowed bitmask.
1069  *
1070  * NOTE: the caller must have a valid reference to the task, the
1071  * task must not exit() & deallocate itself prematurely. The
1072  * call is not atomic; no spinlocks may be held.
1073  */
1074 static int __set_cpus_allowed_ptr(struct task_struct *p,
1075                                   const struct cpumask *new_mask, bool check)
1076 {
1077         const struct cpumask *cpu_valid_mask = cpu_active_mask;
1078         unsigned int dest_cpu;
1079         struct rq_flags rf;
1080         struct rq *rq;
1081         int ret = 0;
1082
1083         rq = task_rq_lock(p, &rf);
1084         update_rq_clock(rq);
1085
1086         if (p->flags & PF_KTHREAD) {
1087                 /*
1088                  * Kernel threads are allowed on online && !active CPUs
1089                  */
1090                 cpu_valid_mask = cpu_online_mask;
1091         }
1092
1093         /*
1094          * Must re-check here, to close a race against __kthread_bind(),
1095          * sched_setaffinity() is not guaranteed to observe the flag.
1096          */
1097         if (check && (p->flags & PF_NO_SETAFFINITY)) {
1098                 ret = -EINVAL;
1099                 goto out;
1100         }
1101
1102         if (cpumask_equal(&p->cpus_allowed, new_mask))
1103                 goto out;
1104
1105         if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1106                 ret = -EINVAL;
1107                 goto out;
1108         }
1109
1110         do_set_cpus_allowed(p, new_mask);
1111
1112         if (p->flags & PF_KTHREAD) {
1113                 /*
1114                  * For kernel threads that do indeed end up on online &&
1115                  * !active we want to ensure they are strict per-CPU threads.
1116                  */
1117                 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1118                         !cpumask_intersects(new_mask, cpu_active_mask) &&
1119                         p->nr_cpus_allowed != 1);
1120         }
1121
1122         /* Can the task run on the task's current CPU? If so, we're done */
1123         if (cpumask_test_cpu(task_cpu(p), new_mask))
1124                 goto out;
1125
1126         dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1127         if (task_running(rq, p) || p->state == TASK_WAKING) {
1128                 struct migration_arg arg = { p, dest_cpu };
1129                 /* Need help from migration thread: drop lock and wait. */
1130                 task_rq_unlock(rq, p, &rf);
1131                 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1132                 tlb_migrate_finish(p->mm);
1133                 return 0;
1134         } else if (task_on_rq_queued(p)) {
1135                 /*
1136                  * OK, since we're going to drop the lock immediately
1137                  * afterwards anyway.
1138                  */
1139                 rq = move_queued_task(rq, &rf, p, dest_cpu);
1140         }
1141 out:
1142         task_rq_unlock(rq, p, &rf);
1143
1144         return ret;
1145 }
1146
1147 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1148 {
1149         return __set_cpus_allowed_ptr(p, new_mask, false);
1150 }
1151 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1152
1153 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1154 {
1155 #ifdef CONFIG_SCHED_DEBUG
1156         /*
1157          * We should never call set_task_cpu() on a blocked task,
1158          * ttwu() will sort out the placement.
1159          */
1160         WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1161                         !p->on_rq);
1162
1163         /*
1164          * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1165          * because schedstat_wait_{start,end} rebase migrating task's wait_start
1166          * time relying on p->on_rq.
1167          */
1168         WARN_ON_ONCE(p->state == TASK_RUNNING &&
1169                      p->sched_class == &fair_sched_class &&
1170                      (p->on_rq && !task_on_rq_migrating(p)));
1171
1172 #ifdef CONFIG_LOCKDEP
1173         /*
1174          * The caller should hold either p->pi_lock or rq->lock, when changing
1175          * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1176          *
1177          * sched_move_task() holds both and thus holding either pins the cgroup,
1178          * see task_group().
1179          *
1180          * Furthermore, all task_rq users should acquire both locks, see
1181          * task_rq_lock().
1182          */
1183         WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1184                                       lockdep_is_held(&task_rq(p)->lock)));
1185 #endif
1186         /*
1187          * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1188          */
1189         WARN_ON_ONCE(!cpu_online(new_cpu));
1190 #endif
1191
1192         trace_sched_migrate_task(p, new_cpu);
1193
1194         if (task_cpu(p) != new_cpu) {
1195                 if (p->sched_class->migrate_task_rq)
1196                         p->sched_class->migrate_task_rq(p);
1197                 p->se.nr_migrations++;
1198                 perf_event_task_migrate(p);
1199         }
1200
1201         __set_task_cpu(p, new_cpu);
1202 }
1203
1204 static void __migrate_swap_task(struct task_struct *p, int cpu)
1205 {
1206         if (task_on_rq_queued(p)) {
1207                 struct rq *src_rq, *dst_rq;
1208                 struct rq_flags srf, drf;
1209
1210                 src_rq = task_rq(p);
1211                 dst_rq = cpu_rq(cpu);
1212
1213                 rq_pin_lock(src_rq, &srf);
1214                 rq_pin_lock(dst_rq, &drf);
1215
1216                 p->on_rq = TASK_ON_RQ_MIGRATING;
1217                 deactivate_task(src_rq, p, 0);
1218                 set_task_cpu(p, cpu);
1219                 activate_task(dst_rq, p, 0);
1220                 p->on_rq = TASK_ON_RQ_QUEUED;
1221                 check_preempt_curr(dst_rq, p, 0);
1222
1223                 rq_unpin_lock(dst_rq, &drf);
1224                 rq_unpin_lock(src_rq, &srf);
1225
1226         } else {
1227                 /*
1228                  * Task isn't running anymore; make it appear like we migrated
1229                  * it before it went to sleep. This means on wakeup we make the
1230                  * previous CPU our target instead of where it really is.
1231                  */
1232                 p->wake_cpu = cpu;
1233         }
1234 }
1235
1236 struct migration_swap_arg {
1237         struct task_struct *src_task, *dst_task;
1238         int src_cpu, dst_cpu;
1239 };
1240
1241 static int migrate_swap_stop(void *data)
1242 {
1243         struct migration_swap_arg *arg = data;
1244         struct rq *src_rq, *dst_rq;
1245         int ret = -EAGAIN;
1246
1247         if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1248                 return -EAGAIN;
1249
1250         src_rq = cpu_rq(arg->src_cpu);
1251         dst_rq = cpu_rq(arg->dst_cpu);
1252
1253         double_raw_lock(&arg->src_task->pi_lock,
1254                         &arg->dst_task->pi_lock);
1255         double_rq_lock(src_rq, dst_rq);
1256
1257         if (task_cpu(arg->dst_task) != arg->dst_cpu)
1258                 goto unlock;
1259
1260         if (task_cpu(arg->src_task) != arg->src_cpu)
1261                 goto unlock;
1262
1263         if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1264                 goto unlock;
1265
1266         if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1267                 goto unlock;
1268
1269         __migrate_swap_task(arg->src_task, arg->dst_cpu);
1270         __migrate_swap_task(arg->dst_task, arg->src_cpu);
1271
1272         ret = 0;
1273
1274 unlock:
1275         double_rq_unlock(src_rq, dst_rq);
1276         raw_spin_unlock(&arg->dst_task->pi_lock);
1277         raw_spin_unlock(&arg->src_task->pi_lock);
1278
1279         return ret;
1280 }
1281
1282 /*
1283  * Cross migrate two tasks
1284  */
1285 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1286 {
1287         struct migration_swap_arg arg;
1288         int ret = -EINVAL;
1289
1290         arg = (struct migration_swap_arg){
1291                 .src_task = cur,
1292                 .src_cpu = task_cpu(cur),
1293                 .dst_task = p,
1294                 .dst_cpu = task_cpu(p),
1295         };
1296
1297         if (arg.src_cpu == arg.dst_cpu)
1298                 goto out;
1299
1300         /*
1301          * These three tests are all lockless; this is OK since all of them
1302          * will be re-checked with proper locks held further down the line.
1303          */
1304         if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1305                 goto out;
1306
1307         if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1308                 goto out;
1309
1310         if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1311                 goto out;
1312
1313         trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1314         ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1315
1316 out:
1317         return ret;
1318 }
1319
1320 /*
1321  * wait_task_inactive - wait for a thread to unschedule.
1322  *
1323  * If @match_state is nonzero, it's the @p->state value just checked and
1324  * not expected to change.  If it changes, i.e. @p might have woken up,
1325  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1326  * we return a positive number (its total switch count).  If a second call
1327  * a short while later returns the same number, the caller can be sure that
1328  * @p has remained unscheduled the whole time.
1329  *
1330  * The caller must ensure that the task *will* unschedule sometime soon,
1331  * else this function might spin for a *long* time. This function can't
1332  * be called with interrupts off, or it may introduce deadlock with
1333  * smp_call_function() if an IPI is sent by the same process we are
1334  * waiting to become inactive.
1335  */
1336 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1337 {
1338         int running, queued;
1339         struct rq_flags rf;
1340         unsigned long ncsw;
1341         struct rq *rq;
1342
1343         for (;;) {
1344                 /*
1345                  * We do the initial early heuristics without holding
1346                  * any task-queue locks at all. We'll only try to get
1347                  * the runqueue lock when things look like they will
1348                  * work out!
1349                  */
1350                 rq = task_rq(p);
1351
1352                 /*
1353                  * If the task is actively running on another CPU
1354                  * still, just relax and busy-wait without holding
1355                  * any locks.
1356                  *
1357                  * NOTE! Since we don't hold any locks, it's not
1358                  * even sure that "rq" stays as the right runqueue!
1359                  * But we don't care, since "task_running()" will
1360                  * return false if the runqueue has changed and p
1361                  * is actually now running somewhere else!
1362                  */
1363                 while (task_running(rq, p)) {
1364                         if (match_state && unlikely(p->state != match_state))
1365                                 return 0;
1366                         cpu_relax();
1367                 }
1368
1369                 /*
1370                  * Ok, time to look more closely! We need the rq
1371                  * lock now, to be *sure*. If we're wrong, we'll
1372                  * just go back and repeat.
1373                  */
1374                 rq = task_rq_lock(p, &rf);
1375                 trace_sched_wait_task(p);
1376                 running = task_running(rq, p);
1377                 queued = task_on_rq_queued(p);
1378                 ncsw = 0;
1379                 if (!match_state || p->state == match_state)
1380                         ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1381                 task_rq_unlock(rq, p, &rf);
1382
1383                 /*
1384                  * If it changed from the expected state, bail out now.
1385                  */
1386                 if (unlikely(!ncsw))
1387                         break;
1388
1389                 /*
1390                  * Was it really running after all now that we
1391                  * checked with the proper locks actually held?
1392                  *
1393                  * Oops. Go back and try again..
1394                  */
1395                 if (unlikely(running)) {
1396                         cpu_relax();
1397                         continue;
1398                 }
1399
1400                 /*
1401                  * It's not enough that it's not actively running,
1402                  * it must be off the runqueue _entirely_, and not
1403                  * preempted!
1404                  *
1405                  * So if it was still runnable (but just not actively
1406                  * running right now), it's preempted, and we should
1407                  * yield - it could be a while.
1408                  */
1409                 if (unlikely(queued)) {
1410                         ktime_t to = NSEC_PER_SEC / HZ;
1411
1412                         set_current_state(TASK_UNINTERRUPTIBLE);
1413                         schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1414                         continue;
1415                 }
1416
1417                 /*
1418                  * Ahh, all good. It wasn't running, and it wasn't
1419                  * runnable, which means that it will never become
1420                  * running in the future either. We're all done!
1421                  */
1422                 break;
1423         }
1424
1425         return ncsw;
1426 }
1427
1428 /***
1429  * kick_process - kick a running thread to enter/exit the kernel
1430  * @p: the to-be-kicked thread
1431  *
1432  * Cause a process which is running on another CPU to enter
1433  * kernel-mode, without any delay. (to get signals handled.)
1434  *
1435  * NOTE: this function doesn't have to take the runqueue lock,
1436  * because all it wants to ensure is that the remote task enters
1437  * the kernel. If the IPI races and the task has been migrated
1438  * to another CPU then no harm is done and the purpose has been
1439  * achieved as well.
1440  */
1441 void kick_process(struct task_struct *p)
1442 {
1443         int cpu;
1444
1445         preempt_disable();
1446         cpu = task_cpu(p);
1447         if ((cpu != smp_processor_id()) && task_curr(p))
1448                 smp_send_reschedule(cpu);
1449         preempt_enable();
1450 }
1451 EXPORT_SYMBOL_GPL(kick_process);
1452
1453 /*
1454  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1455  *
1456  * A few notes on cpu_active vs cpu_online:
1457  *
1458  *  - cpu_active must be a subset of cpu_online
1459  *
1460  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1461  *    see __set_cpus_allowed_ptr(). At this point the newly online
1462  *    CPU isn't yet part of the sched domains, and balancing will not
1463  *    see it.
1464  *
1465  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1466  *    avoid the load balancer to place new tasks on the to be removed
1467  *    CPU. Existing tasks will remain running there and will be taken
1468  *    off.
1469  *
1470  * This means that fallback selection must not select !active CPUs.
1471  * And can assume that any active CPU must be online. Conversely
1472  * select_task_rq() below may allow selection of !active CPUs in order
1473  * to satisfy the above rules.
1474  */
1475 static int select_fallback_rq(int cpu, struct task_struct *p)
1476 {
1477         int nid = cpu_to_node(cpu);
1478         const struct cpumask *nodemask = NULL;
1479         enum { cpuset, possible, fail } state = cpuset;
1480         int dest_cpu;
1481
1482         /*
1483          * If the node that the CPU is on has been offlined, cpu_to_node()
1484          * will return -1. There is no CPU on the node, and we should
1485          * select the CPU on the other node.
1486          */
1487         if (nid != -1) {
1488                 nodemask = cpumask_of_node(nid);
1489
1490                 /* Look for allowed, online CPU in same node. */
1491                 for_each_cpu(dest_cpu, nodemask) {
1492                         if (!cpu_active(dest_cpu))
1493                                 continue;
1494                         if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1495                                 return dest_cpu;
1496                 }
1497         }
1498
1499         for (;;) {
1500                 /* Any allowed, online CPU? */
1501                 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1502                         if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1503                                 continue;
1504                         if (!cpu_online(dest_cpu))
1505                                 continue;
1506                         goto out;
1507                 }
1508
1509                 /* No more Mr. Nice Guy. */
1510                 switch (state) {
1511                 case cpuset:
1512                         if (IS_ENABLED(CONFIG_CPUSETS)) {
1513                                 cpuset_cpus_allowed_fallback(p);
1514                                 state = possible;
1515                                 break;
1516                         }
1517                         /* Fall-through */
1518                 case possible:
1519                         do_set_cpus_allowed(p, cpu_possible_mask);
1520                         state = fail;
1521                         break;
1522
1523                 case fail:
1524                         BUG();
1525                         break;
1526                 }
1527         }
1528
1529 out:
1530         if (state != cpuset) {
1531                 /*
1532                  * Don't tell them about moving exiting tasks or
1533                  * kernel threads (both mm NULL), since they never
1534                  * leave kernel.
1535                  */
1536                 if (p->mm && printk_ratelimit()) {
1537                         printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1538                                         task_pid_nr(p), p->comm, cpu);
1539                 }
1540         }
1541
1542         return dest_cpu;
1543 }
1544
1545 /*
1546  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1547  */
1548 static inline
1549 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1550 {
1551         lockdep_assert_held(&p->pi_lock);
1552
1553         if (p->nr_cpus_allowed > 1)
1554                 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1555         else
1556                 cpu = cpumask_any(&p->cpus_allowed);
1557
1558         /*
1559          * In order not to call set_task_cpu() on a blocking task we need
1560          * to rely on ttwu() to place the task on a valid ->cpus_allowed
1561          * CPU.
1562          *
1563          * Since this is common to all placement strategies, this lives here.
1564          *
1565          * [ this allows ->select_task() to simply return task_cpu(p) and
1566          *   not worry about this generic constraint ]
1567          */
1568         if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1569                      !cpu_online(cpu)))
1570                 cpu = select_fallback_rq(task_cpu(p), p);
1571
1572         return cpu;
1573 }
1574
1575 static void update_avg(u64 *avg, u64 sample)
1576 {
1577         s64 diff = sample - *avg;
1578         *avg += diff >> 3;
1579 }
1580
1581 void sched_set_stop_task(int cpu, struct task_struct *stop)
1582 {
1583         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1584         struct task_struct *old_stop = cpu_rq(cpu)->stop;
1585
1586         if (stop) {
1587                 /*
1588                  * Make it appear like a SCHED_FIFO task, its something
1589                  * userspace knows about and won't get confused about.
1590                  *
1591                  * Also, it will make PI more or less work without too
1592                  * much confusion -- but then, stop work should not
1593                  * rely on PI working anyway.
1594                  */
1595                 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1596
1597                 stop->sched_class = &stop_sched_class;
1598         }
1599
1600         cpu_rq(cpu)->stop = stop;
1601
1602         if (old_stop) {
1603                 /*
1604                  * Reset it back to a normal scheduling class so that
1605                  * it can die in pieces.
1606                  */
1607                 old_stop->sched_class = &rt_sched_class;
1608         }
1609 }
1610
1611 #else
1612
1613 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1614                                          const struct cpumask *new_mask, bool check)
1615 {
1616         return set_cpus_allowed_ptr(p, new_mask);
1617 }
1618
1619 #endif /* CONFIG_SMP */
1620
1621 static void
1622 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1623 {
1624         struct rq *rq;
1625
1626         if (!schedstat_enabled())
1627                 return;
1628
1629         rq = this_rq();
1630
1631 #ifdef CONFIG_SMP
1632         if (cpu == rq->cpu) {
1633                 schedstat_inc(rq->ttwu_local);
1634                 schedstat_inc(p->se.statistics.nr_wakeups_local);
1635         } else {
1636                 struct sched_domain *sd;
1637
1638                 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1639                 rcu_read_lock();
1640                 for_each_domain(rq->cpu, sd) {
1641                         if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1642                                 schedstat_inc(sd->ttwu_wake_remote);
1643                                 break;
1644                         }
1645                 }
1646                 rcu_read_unlock();
1647         }
1648
1649         if (wake_flags & WF_MIGRATED)
1650                 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1651 #endif /* CONFIG_SMP */
1652
1653         schedstat_inc(rq->ttwu_count);
1654         schedstat_inc(p->se.statistics.nr_wakeups);
1655
1656         if (wake_flags & WF_SYNC)
1657                 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1658 }
1659
1660 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1661 {
1662         activate_task(rq, p, en_flags);
1663         p->on_rq = TASK_ON_RQ_QUEUED;
1664
1665         /* If a worker is waking up, notify the workqueue: */
1666         if (p->flags & PF_WQ_WORKER)
1667                 wq_worker_waking_up(p, cpu_of(rq));
1668 }
1669
1670 /*
1671  * Mark the task runnable and perform wakeup-preemption.
1672  */
1673 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1674                            struct rq_flags *rf)
1675 {
1676         check_preempt_curr(rq, p, wake_flags);
1677         p->state = TASK_RUNNING;
1678         trace_sched_wakeup(p);
1679
1680 #ifdef CONFIG_SMP
1681         if (p->sched_class->task_woken) {
1682                 /*
1683                  * Our task @p is fully woken up and running; so its safe to
1684                  * drop the rq->lock, hereafter rq is only used for statistics.
1685                  */
1686                 rq_unpin_lock(rq, rf);
1687                 p->sched_class->task_woken(rq, p);
1688                 rq_repin_lock(rq, rf);
1689         }
1690
1691         if (rq->idle_stamp) {
1692                 u64 delta = rq_clock(rq) - rq->idle_stamp;
1693                 u64 max = 2*rq->max_idle_balance_cost;
1694
1695                 update_avg(&rq->avg_idle, delta);
1696
1697                 if (rq->avg_idle > max)
1698                         rq->avg_idle = max;
1699
1700                 rq->idle_stamp = 0;
1701         }
1702 #endif
1703 }
1704
1705 static void
1706 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1707                  struct rq_flags *rf)
1708 {
1709         int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1710
1711         lockdep_assert_held(&rq->lock);
1712
1713 #ifdef CONFIG_SMP
1714         if (p->sched_contributes_to_load)
1715                 rq->nr_uninterruptible--;
1716
1717         if (wake_flags & WF_MIGRATED)
1718                 en_flags |= ENQUEUE_MIGRATED;
1719 #endif
1720
1721         ttwu_activate(rq, p, en_flags);
1722         ttwu_do_wakeup(rq, p, wake_flags, rf);
1723 }
1724
1725 /*
1726  * Called in case the task @p isn't fully descheduled from its runqueue,
1727  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1728  * since all we need to do is flip p->state to TASK_RUNNING, since
1729  * the task is still ->on_rq.
1730  */
1731 static int ttwu_remote(struct task_struct *p, int wake_flags)
1732 {
1733         struct rq_flags rf;
1734         struct rq *rq;
1735         int ret = 0;
1736
1737         rq = __task_rq_lock(p, &rf);
1738         if (task_on_rq_queued(p)) {
1739                 /* check_preempt_curr() may use rq clock */
1740                 update_rq_clock(rq);
1741                 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1742                 ret = 1;
1743         }
1744         __task_rq_unlock(rq, &rf);
1745
1746         return ret;
1747 }
1748
1749 #ifdef CONFIG_SMP
1750 void sched_ttwu_pending(void)
1751 {
1752         struct rq *rq = this_rq();
1753         struct llist_node *llist = llist_del_all(&rq->wake_list);
1754         struct task_struct *p, *t;
1755         struct rq_flags rf;
1756
1757         if (!llist)
1758                 return;
1759
1760         rq_lock_irqsave(rq, &rf);
1761         update_rq_clock(rq);
1762
1763         llist_for_each_entry_safe(p, t, llist, wake_entry)
1764                 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1765
1766         rq_unlock_irqrestore(rq, &rf);
1767 }
1768
1769 void scheduler_ipi(void)
1770 {
1771         /*
1772          * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1773          * TIF_NEED_RESCHED remotely (for the first time) will also send
1774          * this IPI.
1775          */
1776         preempt_fold_need_resched();
1777
1778         if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1779                 return;
1780
1781         /*
1782          * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1783          * traditionally all their work was done from the interrupt return
1784          * path. Now that we actually do some work, we need to make sure
1785          * we do call them.
1786          *
1787          * Some archs already do call them, luckily irq_enter/exit nest
1788          * properly.
1789          *
1790          * Arguably we should visit all archs and update all handlers,
1791          * however a fair share of IPIs are still resched only so this would
1792          * somewhat pessimize the simple resched case.
1793          */
1794         irq_enter();
1795         sched_ttwu_pending();
1796
1797         /*
1798          * Check if someone kicked us for doing the nohz idle load balance.
1799          */
1800         if (unlikely(got_nohz_idle_kick())) {
1801                 this_rq()->idle_balance = 1;
1802                 raise_softirq_irqoff(SCHED_SOFTIRQ);
1803         }
1804         irq_exit();
1805 }
1806
1807 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1808 {
1809         struct rq *rq = cpu_rq(cpu);
1810
1811         p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1812
1813         if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1814                 if (!set_nr_if_polling(rq->idle))
1815                         smp_send_reschedule(cpu);
1816                 else
1817                         trace_sched_wake_idle_without_ipi(cpu);
1818         }
1819 }
1820
1821 void wake_up_if_idle(int cpu)
1822 {
1823         struct rq *rq = cpu_rq(cpu);
1824         struct rq_flags rf;
1825
1826         rcu_read_lock();
1827
1828         if (!is_idle_task(rcu_dereference(rq->curr)))
1829                 goto out;
1830
1831         if (set_nr_if_polling(rq->idle)) {
1832                 trace_sched_wake_idle_without_ipi(cpu);
1833         } else {
1834                 rq_lock_irqsave(rq, &rf);
1835                 if (is_idle_task(rq->curr))
1836                         smp_send_reschedule(cpu);
1837                 /* Else CPU is not idle, do nothing here: */
1838                 rq_unlock_irqrestore(rq, &rf);
1839         }
1840
1841 out:
1842         rcu_read_unlock();
1843 }
1844
1845 bool cpus_share_cache(int this_cpu, int that_cpu)
1846 {
1847         return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1848 }
1849 #endif /* CONFIG_SMP */
1850
1851 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1852 {
1853         struct rq *rq = cpu_rq(cpu);
1854         struct rq_flags rf;
1855
1856 #if defined(CONFIG_SMP)
1857         if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1858                 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1859                 ttwu_queue_remote(p, cpu, wake_flags);
1860                 return;
1861         }
1862 #endif
1863
1864         rq_lock(rq, &rf);
1865         update_rq_clock(rq);
1866         ttwu_do_activate(rq, p, wake_flags, &rf);
1867         rq_unlock(rq, &rf);
1868 }
1869
1870 /*
1871  * Notes on Program-Order guarantees on SMP systems.
1872  *
1873  *  MIGRATION
1874  *
1875  * The basic program-order guarantee on SMP systems is that when a task [t]
1876  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1877  * execution on its new CPU [c1].
1878  *
1879  * For migration (of runnable tasks) this is provided by the following means:
1880  *
1881  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1882  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1883  *     rq(c1)->lock (if not at the same time, then in that order).
1884  *  C) LOCK of the rq(c1)->lock scheduling in task
1885  *
1886  * Transitivity guarantees that B happens after A and C after B.
1887  * Note: we only require RCpc transitivity.
1888  * Note: the CPU doing B need not be c0 or c1
1889  *
1890  * Example:
1891  *
1892  *   CPU0            CPU1            CPU2
1893  *
1894  *   LOCK rq(0)->lock
1895  *   sched-out X
1896  *   sched-in Y
1897  *   UNLOCK rq(0)->lock
1898  *
1899  *                                   LOCK rq(0)->lock // orders against CPU0
1900  *                                   dequeue X
1901  *                                   UNLOCK rq(0)->lock
1902  *
1903  *                                   LOCK rq(1)->lock
1904  *                                   enqueue X
1905  *                                   UNLOCK rq(1)->lock
1906  *
1907  *                   LOCK rq(1)->lock // orders against CPU2
1908  *                   sched-out Z
1909  *                   sched-in X
1910  *                   UNLOCK rq(1)->lock
1911  *
1912  *
1913  *  BLOCKING -- aka. SLEEP + WAKEUP
1914  *
1915  * For blocking we (obviously) need to provide the same guarantee as for
1916  * migration. However the means are completely different as there is no lock
1917  * chain to provide order. Instead we do:
1918  *
1919  *   1) smp_store_release(X->on_cpu, 0)
1920  *   2) smp_cond_load_acquire(!X->on_cpu)
1921  *
1922  * Example:
1923  *
1924  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1925  *
1926  *   LOCK rq(0)->lock LOCK X->pi_lock
1927  *   dequeue X
1928  *   sched-out X
1929  *   smp_store_release(X->on_cpu, 0);
1930  *
1931  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1932  *                    X->state = WAKING
1933  *                    set_task_cpu(X,2)
1934  *
1935  *                    LOCK rq(2)->lock
1936  *                    enqueue X
1937  *                    X->state = RUNNING
1938  *                    UNLOCK rq(2)->lock
1939  *
1940  *                                          LOCK rq(2)->lock // orders against CPU1
1941  *                                          sched-out Z
1942  *                                          sched-in X
1943  *                                          UNLOCK rq(2)->lock
1944  *
1945  *                    UNLOCK X->pi_lock
1946  *   UNLOCK rq(0)->lock
1947  *
1948  *
1949  * However; for wakeups there is a second guarantee we must provide, namely we
1950  * must observe the state that lead to our wakeup. That is, not only must our
1951  * task observe its own prior state, it must also observe the stores prior to
1952  * its wakeup.
1953  *
1954  * This means that any means of doing remote wakeups must order the CPU doing
1955  * the wakeup against the CPU the task is going to end up running on. This,
1956  * however, is already required for the regular Program-Order guarantee above,
1957  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1958  *
1959  */
1960
1961 /**
1962  * try_to_wake_up - wake up a thread
1963  * @p: the thread to be awakened
1964  * @state: the mask of task states that can be woken
1965  * @wake_flags: wake modifier flags (WF_*)
1966  *
1967  * If (@state & @p->state) @p->state = TASK_RUNNING.
1968  *
1969  * If the task was not queued/runnable, also place it back on a runqueue.
1970  *
1971  * Atomic against schedule() which would dequeue a task, also see
1972  * set_current_state().
1973  *
1974  * Return: %true if @p->state changes (an actual wakeup was done),
1975  *         %false otherwise.
1976  */
1977 static int
1978 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1979 {
1980         unsigned long flags;
1981         int cpu, success = 0;
1982
1983         /*
1984          * If we are going to wake up a thread waiting for CONDITION we
1985          * need to ensure that CONDITION=1 done by the caller can not be
1986          * reordered with p->state check below. This pairs with mb() in
1987          * set_current_state() the waiting thread does.
1988          */
1989         raw_spin_lock_irqsave(&p->pi_lock, flags);
1990         smp_mb__after_spinlock();
1991         if (!(p->state & state))
1992                 goto out;
1993
1994         trace_sched_waking(p);
1995
1996         /* We're going to change ->state: */
1997         success = 1;
1998         cpu = task_cpu(p);
1999
2000         /*
2001          * Ensure we load p->on_rq _after_ p->state, otherwise it would
2002          * be possible to, falsely, observe p->on_rq == 0 and get stuck
2003          * in smp_cond_load_acquire() below.
2004          *
2005          * sched_ttwu_pending()                 try_to_wake_up()
2006          *   [S] p->on_rq = 1;                  [L] P->state
2007          *       UNLOCK rq->lock  -----.
2008          *                              \
2009          *                               +---   RMB
2010          * schedule()                   /
2011          *       LOCK rq->lock    -----'
2012          *       UNLOCK rq->lock
2013          *
2014          * [task p]
2015          *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2016          *
2017          * Pairs with the UNLOCK+LOCK on rq->lock from the
2018          * last wakeup of our task and the schedule that got our task
2019          * current.
2020          */
2021         smp_rmb();
2022         if (p->on_rq && ttwu_remote(p, wake_flags))
2023                 goto stat;
2024
2025 #ifdef CONFIG_SMP
2026         /*
2027          * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2028          * possible to, falsely, observe p->on_cpu == 0.
2029          *
2030          * One must be running (->on_cpu == 1) in order to remove oneself
2031          * from the runqueue.
2032          *
2033          *  [S] ->on_cpu = 1;   [L] ->on_rq
2034          *      UNLOCK rq->lock
2035          *                      RMB
2036          *      LOCK   rq->lock
2037          *  [S] ->on_rq = 0;    [L] ->on_cpu
2038          *
2039          * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2040          * from the consecutive calls to schedule(); the first switching to our
2041          * task, the second putting it to sleep.
2042          */
2043         smp_rmb();
2044
2045         /*
2046          * If the owning (remote) CPU is still in the middle of schedule() with
2047          * this task as prev, wait until its done referencing the task.
2048          *
2049          * Pairs with the smp_store_release() in finish_task().
2050          *
2051          * This ensures that tasks getting woken will be fully ordered against
2052          * their previous state and preserve Program Order.
2053          */
2054         smp_cond_load_acquire(&p->on_cpu, !VAL);
2055
2056         p->sched_contributes_to_load = !!task_contributes_to_load(p);
2057         p->state = TASK_WAKING;
2058
2059         if (p->in_iowait) {
2060                 delayacct_blkio_end(p);
2061                 atomic_dec(&task_rq(p)->nr_iowait);
2062         }
2063
2064         cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2065         if (task_cpu(p) != cpu) {
2066                 wake_flags |= WF_MIGRATED;
2067                 set_task_cpu(p, cpu);
2068         }
2069
2070 #else /* CONFIG_SMP */
2071
2072         if (p->in_iowait) {
2073                 delayacct_blkio_end(p);
2074                 atomic_dec(&task_rq(p)->nr_iowait);
2075         }
2076
2077 #endif /* CONFIG_SMP */
2078
2079         ttwu_queue(p, cpu, wake_flags);
2080 stat:
2081         ttwu_stat(p, cpu, wake_flags);
2082 out:
2083         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2084
2085         return success;
2086 }
2087
2088 /**
2089  * try_to_wake_up_local - try to wake up a local task with rq lock held
2090  * @p: the thread to be awakened
2091  * @rf: request-queue flags for pinning
2092  *
2093  * Put @p on the run-queue if it's not already there. The caller must
2094  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2095  * the current task.
2096  */
2097 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2098 {
2099         struct rq *rq = task_rq(p);
2100
2101         if (WARN_ON_ONCE(rq != this_rq()) ||
2102             WARN_ON_ONCE(p == current))
2103                 return;
2104
2105         lockdep_assert_held(&rq->lock);
2106
2107         if (!raw_spin_trylock(&p->pi_lock)) {
2108                 /*
2109                  * This is OK, because current is on_cpu, which avoids it being
2110                  * picked for load-balance and preemption/IRQs are still
2111                  * disabled avoiding further scheduler activity on it and we've
2112                  * not yet picked a replacement task.
2113                  */
2114                 rq_unlock(rq, rf);
2115                 raw_spin_lock(&p->pi_lock);
2116                 rq_relock(rq, rf);
2117         }
2118
2119         if (!(p->state & TASK_NORMAL))
2120                 goto out;
2121
2122         trace_sched_waking(p);
2123
2124         if (!task_on_rq_queued(p)) {
2125                 if (p->in_iowait) {
2126                         delayacct_blkio_end(p);
2127                         atomic_dec(&rq->nr_iowait);
2128                 }
2129                 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2130         }
2131
2132         ttwu_do_wakeup(rq, p, 0, rf);
2133         ttwu_stat(p, smp_processor_id(), 0);
2134 out:
2135         raw_spin_unlock(&p->pi_lock);
2136 }
2137
2138 /**
2139  * wake_up_process - Wake up a specific process
2140  * @p: The process to be woken up.
2141  *
2142  * Attempt to wake up the nominated process and move it to the set of runnable
2143  * processes.
2144  *
2145  * Return: 1 if the process was woken up, 0 if it was already running.
2146  *
2147  * It may be assumed that this function implies a write memory barrier before
2148  * changing the task state if and only if any tasks are woken up.
2149  */
2150 int wake_up_process(struct task_struct *p)
2151 {
2152         return try_to_wake_up(p, TASK_NORMAL, 0);
2153 }
2154 EXPORT_SYMBOL(wake_up_process);
2155
2156 int wake_up_state(struct task_struct *p, unsigned int state)
2157 {
2158         return try_to_wake_up(p, state, 0);
2159 }
2160
2161 /*
2162  * Perform scheduler related setup for a newly forked process p.
2163  * p is forked by current.
2164  *
2165  * __sched_fork() is basic setup used by init_idle() too:
2166  */
2167 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2168 {
2169         p->on_rq                        = 0;
2170
2171         p->se.on_rq                     = 0;
2172         p->se.exec_start                = 0;
2173         p->se.sum_exec_runtime          = 0;
2174         p->se.prev_sum_exec_runtime     = 0;
2175         p->se.nr_migrations             = 0;
2176         p->se.vruntime                  = 0;
2177         INIT_LIST_HEAD(&p->se.group_node);
2178
2179 #ifdef CONFIG_FAIR_GROUP_SCHED
2180         p->se.cfs_rq                    = NULL;
2181 #endif
2182
2183 #ifdef CONFIG_SCHEDSTATS
2184         /* Even if schedstat is disabled, there should not be garbage */
2185         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2186 #endif
2187
2188         RB_CLEAR_NODE(&p->dl.rb_node);
2189         init_dl_task_timer(&p->dl);
2190         init_dl_inactive_task_timer(&p->dl);
2191         __dl_clear_params(p);
2192
2193         INIT_LIST_HEAD(&p->rt.run_list);
2194         p->rt.timeout           = 0;
2195         p->rt.time_slice        = sched_rr_timeslice;
2196         p->rt.on_rq             = 0;
2197         p->rt.on_list           = 0;
2198
2199 #ifdef CONFIG_PREEMPT_NOTIFIERS
2200         INIT_HLIST_HEAD(&p->preempt_notifiers);
2201 #endif
2202
2203 #ifdef CONFIG_NUMA_BALANCING
2204         if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2205                 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2206                 p->mm->numa_scan_seq = 0;
2207         }
2208
2209         if (clone_flags & CLONE_VM)
2210                 p->numa_preferred_nid = current->numa_preferred_nid;
2211         else
2212                 p->numa_preferred_nid = -1;
2213
2214         p->node_stamp = 0ULL;
2215         p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2216         p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2217         p->numa_work.next = &p->numa_work;
2218         p->numa_faults = NULL;
2219         p->last_task_numa_placement = 0;
2220         p->last_sum_exec_runtime = 0;
2221
2222         p->numa_group = NULL;
2223 #endif /* CONFIG_NUMA_BALANCING */
2224 }
2225
2226 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2227
2228 #ifdef CONFIG_NUMA_BALANCING
2229
2230 void set_numabalancing_state(bool enabled)
2231 {
2232         if (enabled)
2233                 static_branch_enable(&sched_numa_balancing);
2234         else
2235                 static_branch_disable(&sched_numa_balancing);
2236 }
2237
2238 #ifdef CONFIG_PROC_SYSCTL
2239 int sysctl_numa_balancing(struct ctl_table *table, int write,
2240                          void __user *buffer, size_t *lenp, loff_t *ppos)
2241 {
2242         struct ctl_table t;
2243         int err;
2244         int state = static_branch_likely(&sched_numa_balancing);
2245
2246         if (write && !capable(CAP_SYS_ADMIN))
2247                 return -EPERM;
2248
2249         t = *table;
2250         t.data = &state;
2251         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2252         if (err < 0)
2253                 return err;
2254         if (write)
2255                 set_numabalancing_state(state);
2256         return err;
2257 }
2258 #endif
2259 #endif
2260
2261 #ifdef CONFIG_SCHEDSTATS
2262
2263 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2264 static bool __initdata __sched_schedstats = false;
2265
2266 static void set_schedstats(bool enabled)
2267 {
2268         if (enabled)
2269                 static_branch_enable(&sched_schedstats);
2270         else
2271                 static_branch_disable(&sched_schedstats);
2272 }
2273
2274 void force_schedstat_enabled(void)
2275 {
2276         if (!schedstat_enabled()) {
2277                 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2278                 static_branch_enable(&sched_schedstats);
2279         }
2280 }
2281
2282 static int __init setup_schedstats(char *str)
2283 {
2284         int ret = 0;
2285         if (!str)
2286                 goto out;
2287
2288         /*
2289          * This code is called before jump labels have been set up, so we can't
2290          * change the static branch directly just yet.  Instead set a temporary
2291          * variable so init_schedstats() can do it later.
2292          */
2293         if (!strcmp(str, "enable")) {
2294                 __sched_schedstats = true;
2295                 ret = 1;
2296         } else if (!strcmp(str, "disable")) {
2297                 __sched_schedstats = false;
2298                 ret = 1;
2299         }
2300 out:
2301         if (!ret)
2302                 pr_warn("Unable to parse schedstats=\n");
2303
2304         return ret;
2305 }
2306 __setup("schedstats=", setup_schedstats);
2307
2308 static void __init init_schedstats(void)
2309 {
2310         set_schedstats(__sched_schedstats);
2311 }
2312
2313 #ifdef CONFIG_PROC_SYSCTL
2314 int sysctl_schedstats(struct ctl_table *table, int write,
2315                          void __user *buffer, size_t *lenp, loff_t *ppos)
2316 {
2317         struct ctl_table t;
2318         int err;
2319         int state = static_branch_likely(&sched_schedstats);
2320
2321         if (write && !capable(CAP_SYS_ADMIN))
2322                 return -EPERM;
2323
2324         t = *table;
2325         t.data = &state;
2326         err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2327         if (err < 0)
2328                 return err;
2329         if (write)
2330                 set_schedstats(state);
2331         return err;
2332 }
2333 #endif /* CONFIG_PROC_SYSCTL */
2334 #else  /* !CONFIG_SCHEDSTATS */
2335 static inline void init_schedstats(void) {}
2336 #endif /* CONFIG_SCHEDSTATS */
2337
2338 /*
2339  * fork()/clone()-time setup:
2340  */
2341 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2342 {
2343         unsigned long flags;
2344         int cpu = get_cpu();
2345
2346         __sched_fork(clone_flags, p);
2347         /*
2348          * We mark the process as NEW here. This guarantees that
2349          * nobody will actually run it, and a signal or other external
2350          * event cannot wake it up and insert it on the runqueue either.
2351          */
2352         p->state = TASK_NEW;
2353
2354         /*
2355          * Make sure we do not leak PI boosting priority to the child.
2356          */
2357         p->prio = current->normal_prio;
2358
2359         /*
2360          * Revert to default priority/policy on fork if requested.
2361          */
2362         if (unlikely(p->sched_reset_on_fork)) {
2363                 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2364                         p->policy = SCHED_NORMAL;
2365                         p->static_prio = NICE_TO_PRIO(0);
2366                         p->rt_priority = 0;
2367                 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2368                         p->static_prio = NICE_TO_PRIO(0);
2369
2370                 p->prio = p->normal_prio = __normal_prio(p);
2371                 set_load_weight(p, false);
2372
2373                 /*
2374                  * We don't need the reset flag anymore after the fork. It has
2375                  * fulfilled its duty:
2376                  */
2377                 p->sched_reset_on_fork = 0;
2378         }
2379
2380         if (dl_prio(p->prio)) {
2381                 put_cpu();
2382                 return -EAGAIN;
2383         } else if (rt_prio(p->prio)) {
2384                 p->sched_class = &rt_sched_class;
2385         } else {
2386                 p->sched_class = &fair_sched_class;
2387         }
2388
2389         init_entity_runnable_average(&p->se);
2390
2391         /*
2392          * The child is not yet in the pid-hash so no cgroup attach races,
2393          * and the cgroup is pinned to this child due to cgroup_fork()
2394          * is ran before sched_fork().
2395          *
2396          * Silence PROVE_RCU.
2397          */
2398         raw_spin_lock_irqsave(&p->pi_lock, flags);
2399         /*
2400          * We're setting the CPU for the first time, we don't migrate,
2401          * so use __set_task_cpu().
2402          */
2403         __set_task_cpu(p, cpu);
2404         if (p->sched_class->task_fork)
2405                 p->sched_class->task_fork(p);
2406         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2407
2408 #ifdef CONFIG_SCHED_INFO
2409         if (likely(sched_info_on()))
2410                 memset(&p->sched_info, 0, sizeof(p->sched_info));
2411 #endif
2412 #if defined(CONFIG_SMP)
2413         p->on_cpu = 0;
2414 #endif
2415         init_task_preempt_count(p);
2416 #ifdef CONFIG_SMP
2417         plist_node_init(&p->pushable_tasks, MAX_PRIO);
2418         RB_CLEAR_NODE(&p->pushable_dl_tasks);
2419 #endif
2420
2421         put_cpu();
2422         return 0;
2423 }
2424
2425 unsigned long to_ratio(u64 period, u64 runtime)
2426 {
2427         if (runtime == RUNTIME_INF)
2428                 return BW_UNIT;
2429
2430         /*
2431          * Doing this here saves a lot of checks in all
2432          * the calling paths, and returning zero seems
2433          * safe for them anyway.
2434          */
2435         if (period == 0)
2436                 return 0;
2437
2438         return div64_u64(runtime << BW_SHIFT, period);
2439 }
2440
2441 /*
2442  * wake_up_new_task - wake up a newly created task for the first time.
2443  *
2444  * This function will do some initial scheduler statistics housekeeping
2445  * that must be done for every newly created context, then puts the task
2446  * on the runqueue and wakes it.
2447  */
2448 void wake_up_new_task(struct task_struct *p)
2449 {
2450         struct rq_flags rf;
2451         struct rq *rq;
2452
2453         raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2454         p->state = TASK_RUNNING;
2455 #ifdef CONFIG_SMP
2456         /*
2457          * Fork balancing, do it here and not earlier because:
2458          *  - cpus_allowed can change in the fork path
2459          *  - any previously selected CPU might disappear through hotplug
2460          *
2461          * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2462          * as we're not fully set-up yet.
2463          */
2464         __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2465 #endif
2466         rq = __task_rq_lock(p, &rf);
2467         update_rq_clock(rq);
2468         post_init_entity_util_avg(&p->se);
2469
2470         activate_task(rq, p, ENQUEUE_NOCLOCK);
2471         p->on_rq = TASK_ON_RQ_QUEUED;
2472         trace_sched_wakeup_new(p);
2473         check_preempt_curr(rq, p, WF_FORK);
2474 #ifdef CONFIG_SMP
2475         if (p->sched_class->task_woken) {
2476                 /*
2477                  * Nothing relies on rq->lock after this, so its fine to
2478                  * drop it.
2479                  */
2480                 rq_unpin_lock(rq, &rf);
2481                 p->sched_class->task_woken(rq, p);
2482                 rq_repin_lock(rq, &rf);
2483         }
2484 #endif
2485         task_rq_unlock(rq, p, &rf);
2486 }
2487
2488 #ifdef CONFIG_PREEMPT_NOTIFIERS
2489
2490 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2491
2492 void preempt_notifier_inc(void)
2493 {
2494         static_key_slow_inc(&preempt_notifier_key);
2495 }
2496 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2497
2498 void preempt_notifier_dec(void)
2499 {
2500         static_key_slow_dec(&preempt_notifier_key);
2501 }
2502 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2503
2504 /**
2505  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2506  * @notifier: notifier struct to register
2507  */
2508 void preempt_notifier_register(struct preempt_notifier *notifier)
2509 {
2510         if (!static_key_false(&preempt_notifier_key))
2511                 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2512
2513         hlist_add_head(&notifier->link, &current->preempt_notifiers);
2514 }
2515 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2516
2517 /**
2518  * preempt_notifier_unregister - no longer interested in preemption notifications
2519  * @notifier: notifier struct to unregister
2520  *
2521  * This is *not* safe to call from within a preemption notifier.
2522  */
2523 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2524 {
2525         hlist_del(&notifier->link);
2526 }
2527 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2528
2529 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2530 {
2531         struct preempt_notifier *notifier;
2532
2533         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2534                 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2535 }
2536
2537 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2538 {
2539         if (static_key_false(&preempt_notifier_key))
2540                 __fire_sched_in_preempt_notifiers(curr);
2541 }
2542
2543 static void
2544 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2545                                    struct task_struct *next)
2546 {
2547         struct preempt_notifier *notifier;
2548
2549         hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2550                 notifier->ops->sched_out(notifier, next);
2551 }
2552
2553 static __always_inline void
2554 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2555                                  struct task_struct *next)
2556 {
2557         if (static_key_false(&preempt_notifier_key))
2558                 __fire_sched_out_preempt_notifiers(curr, next);
2559 }
2560
2561 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2562
2563 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2564 {
2565 }
2566
2567 static inline void
2568 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2569                                  struct task_struct *next)
2570 {
2571 }
2572
2573 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2574
2575 static inline void prepare_task(struct task_struct *next)
2576 {
2577 #ifdef CONFIG_SMP
2578         /*
2579          * Claim the task as running, we do this before switching to it
2580          * such that any running task will have this set.
2581          */
2582         next->on_cpu = 1;
2583 #endif
2584 }
2585
2586 static inline void finish_task(struct task_struct *prev)
2587 {
2588 #ifdef CONFIG_SMP
2589         /*
2590          * After ->on_cpu is cleared, the task can be moved to a different CPU.
2591          * We must ensure this doesn't happen until the switch is completely
2592          * finished.
2593          *
2594          * In particular, the load of prev->state in finish_task_switch() must
2595          * happen before this.
2596          *
2597          * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2598          */
2599         smp_store_release(&prev->on_cpu, 0);
2600 #endif
2601 }
2602
2603 static inline void finish_lock_switch(struct rq *rq)
2604 {
2605 #ifdef CONFIG_DEBUG_SPINLOCK
2606         /* this is a valid case when another task releases the spinlock */
2607         rq->lock.owner = current;
2608 #endif
2609         /*
2610          * If we are tracking spinlock dependencies then we have to
2611          * fix up the runqueue lock - which gets 'carried over' from
2612          * prev into current:
2613          */
2614         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2615
2616         raw_spin_unlock_irq(&rq->lock);
2617 }
2618
2619 /**
2620  * prepare_task_switch - prepare to switch tasks
2621  * @rq: the runqueue preparing to switch
2622  * @prev: the current task that is being switched out
2623  * @next: the task we are going to switch to.
2624  *
2625  * This is called with the rq lock held and interrupts off. It must
2626  * be paired with a subsequent finish_task_switch after the context
2627  * switch.
2628  *
2629  * prepare_task_switch sets up locking and calls architecture specific
2630  * hooks.
2631  */
2632 static inline void
2633 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2634                     struct task_struct *next)
2635 {
2636         sched_info_switch(rq, prev, next);
2637         perf_event_task_sched_out(prev, next);
2638         fire_sched_out_preempt_notifiers(prev, next);
2639         prepare_task(next);
2640         prepare_arch_switch(next);
2641 }
2642
2643 /**
2644  * finish_task_switch - clean up after a task-switch
2645  * @prev: the thread we just switched away from.
2646  *
2647  * finish_task_switch must be called after the context switch, paired
2648  * with a prepare_task_switch call before the context switch.
2649  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2650  * and do any other architecture-specific cleanup actions.
2651  *
2652  * Note that we may have delayed dropping an mm in context_switch(). If
2653  * so, we finish that here outside of the runqueue lock. (Doing it
2654  * with the lock held can cause deadlocks; see schedule() for
2655  * details.)
2656  *
2657  * The context switch have flipped the stack from under us and restored the
2658  * local variables which were saved when this task called schedule() in the
2659  * past. prev == current is still correct but we need to recalculate this_rq
2660  * because prev may have moved to another CPU.
2661  */
2662 static struct rq *finish_task_switch(struct task_struct *prev)
2663         __releases(rq->lock)
2664 {
2665         struct rq *rq = this_rq();
2666         struct mm_struct *mm = rq->prev_mm;
2667         long prev_state;
2668
2669         /*
2670          * The previous task will have left us with a preempt_count of 2
2671          * because it left us after:
2672          *
2673          *      schedule()
2674          *        preempt_disable();                    // 1
2675          *        __schedule()
2676          *          raw_spin_lock_irq(&rq->lock)        // 2
2677          *
2678          * Also, see FORK_PREEMPT_COUNT.
2679          */
2680         if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2681                       "corrupted preempt_count: %s/%d/0x%x\n",
2682                       current->comm, current->pid, preempt_count()))
2683                 preempt_count_set(FORK_PREEMPT_COUNT);
2684
2685         rq->prev_mm = NULL;
2686
2687         /*
2688          * A task struct has one reference for the use as "current".
2689          * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2690          * schedule one last time. The schedule call will never return, and
2691          * the scheduled task must drop that reference.
2692          *
2693          * We must observe prev->state before clearing prev->on_cpu (in
2694          * finish_task), otherwise a concurrent wakeup can get prev
2695          * running on another CPU and we could rave with its RUNNING -> DEAD
2696          * transition, resulting in a double drop.
2697          */
2698         prev_state = prev->state;
2699         vtime_task_switch(prev);
2700         perf_event_task_sched_in(prev, current);
2701         /*
2702          * The membarrier system call requires a full memory barrier
2703          * after storing to rq->curr, before going back to user-space.
2704          *
2705          * TODO: This smp_mb__after_unlock_lock can go away if PPC end
2706          * up adding a full barrier to switch_mm(), or we should figure
2707          * out if a smp_mb__after_unlock_lock is really the proper API
2708          * to use.
2709          */
2710         smp_mb__after_unlock_lock();
2711         finish_task(prev);
2712         finish_lock_switch(rq);
2713         finish_arch_post_lock_switch();
2714
2715         fire_sched_in_preempt_notifiers(current);
2716         if (mm)
2717                 mmdrop(mm);
2718         if (unlikely(prev_state == TASK_DEAD)) {
2719                 if (prev->sched_class->task_dead)
2720                         prev->sched_class->task_dead(prev);
2721
2722                 /*
2723                  * Remove function-return probe instances associated with this
2724                  * task and put them back on the free list.
2725                  */
2726                 kprobe_flush_task(prev);
2727
2728                 /* Task is done with its stack. */
2729                 put_task_stack(prev);
2730
2731                 put_task_struct(prev);
2732         }
2733
2734         tick_nohz_task_switch();
2735         return rq;
2736 }
2737
2738 #ifdef CONFIG_SMP
2739
2740 /* rq->lock is NOT held, but preemption is disabled */
2741 static void __balance_callback(struct rq *rq)
2742 {
2743         struct callback_head *head, *next;
2744         void (*func)(struct rq *rq);
2745         unsigned long flags;
2746
2747         raw_spin_lock_irqsave(&rq->lock, flags);
2748         head = rq->balance_callback;
2749         rq->balance_callback = NULL;
2750         while (head) {
2751                 func = (void (*)(struct rq *))head->func;
2752                 next = head->next;
2753                 head->next = NULL;
2754                 head = next;
2755
2756                 func(rq);
2757         }
2758         raw_spin_unlock_irqrestore(&rq->lock, flags);
2759 }
2760
2761 static inline void balance_callback(struct rq *rq)
2762 {
2763         if (unlikely(rq->balance_callback))
2764                 __balance_callback(rq);
2765 }
2766
2767 #else
2768
2769 static inline void balance_callback(struct rq *rq)
2770 {
2771 }
2772
2773 #endif
2774
2775 /**
2776  * schedule_tail - first thing a freshly forked thread must call.
2777  * @prev: the thread we just switched away from.
2778  */
2779 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2780         __releases(rq->lock)
2781 {
2782         struct rq *rq;
2783
2784         /*
2785          * New tasks start with FORK_PREEMPT_COUNT, see there and
2786          * finish_task_switch() for details.
2787          *
2788          * finish_task_switch() will drop rq->lock() and lower preempt_count
2789          * and the preempt_enable() will end up enabling preemption (on
2790          * PREEMPT_COUNT kernels).
2791          */
2792
2793         rq = finish_task_switch(prev);
2794         balance_callback(rq);
2795         preempt_enable();
2796
2797         if (current->set_child_tid)
2798                 put_user(task_pid_vnr(current), current->set_child_tid);
2799 }
2800
2801 /*
2802  * context_switch - switch to the new MM and the new thread's register state.
2803  */
2804 static __always_inline struct rq *
2805 context_switch(struct rq *rq, struct task_struct *prev,
2806                struct task_struct *next, struct rq_flags *rf)
2807 {
2808         struct mm_struct *mm, *oldmm;
2809
2810         prepare_task_switch(rq, prev, next);
2811
2812         mm = next->mm;
2813         oldmm = prev->active_mm;
2814         /*
2815          * For paravirt, this is coupled with an exit in switch_to to
2816          * combine the page table reload and the switch backend into
2817          * one hypercall.
2818          */
2819         arch_start_context_switch(prev);
2820
2821         if (!mm) {
2822                 next->active_mm = oldmm;
2823                 mmgrab(oldmm);
2824                 enter_lazy_tlb(oldmm, next);
2825         } else
2826                 switch_mm_irqs_off(oldmm, mm, next);
2827
2828         if (!prev->mm) {
2829                 prev->active_mm = NULL;
2830                 rq->prev_mm = oldmm;
2831         }
2832
2833         rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2834
2835         /*
2836          * Since the runqueue lock will be released by the next
2837          * task (which is an invalid locking op but in the case
2838          * of the scheduler it's an obvious special-case), so we
2839          * do an early lockdep release here:
2840          */
2841         rq_unpin_lock(rq, rf);
2842         spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2843
2844         /* Here we just switch the register state and the stack. */
2845         switch_to(prev, next, prev);
2846         barrier();
2847
2848         return finish_task_switch(prev);
2849 }
2850
2851 /*
2852  * nr_running and nr_context_switches:
2853  *
2854  * externally visible scheduler statistics: current number of runnable
2855  * threads, total number of context switches performed since bootup.
2856  */
2857 unsigned long nr_running(void)
2858 {
2859         unsigned long i, sum = 0;
2860
2861         for_each_online_cpu(i)
2862                 sum += cpu_rq(i)->nr_running;
2863
2864         return sum;
2865 }
2866
2867 /*
2868  * Check if only the current task is running on the CPU.
2869  *
2870  * Caution: this function does not check that the caller has disabled
2871  * preemption, thus the result might have a time-of-check-to-time-of-use
2872  * race.  The caller is responsible to use it correctly, for example:
2873  *
2874  * - from a non-preemptable section (of course)
2875  *
2876  * - from a thread that is bound to a single CPU
2877  *
2878  * - in a loop with very short iterations (e.g. a polling loop)
2879  */
2880 bool single_task_running(void)
2881 {
2882         return raw_rq()->nr_running == 1;
2883 }
2884 EXPORT_SYMBOL(single_task_running);
2885
2886 unsigned long long nr_context_switches(void)
2887 {
2888         int i;
2889         unsigned long long sum = 0;
2890
2891         for_each_possible_cpu(i)
2892                 sum += cpu_rq(i)->nr_switches;
2893
2894         return sum;
2895 }
2896
2897 /*
2898  * IO-wait accounting, and how its mostly bollocks (on SMP).
2899  *
2900  * The idea behind IO-wait account is to account the idle time that we could
2901  * have spend running if it were not for IO. That is, if we were to improve the
2902  * storage performance, we'd have a proportional reduction in IO-wait time.
2903  *
2904  * This all works nicely on UP, where, when a task blocks on IO, we account
2905  * idle time as IO-wait, because if the storage were faster, it could've been
2906  * running and we'd not be idle.
2907  *
2908  * This has been extended to SMP, by doing the same for each CPU. This however
2909  * is broken.
2910  *
2911  * Imagine for instance the case where two tasks block on one CPU, only the one
2912  * CPU will have IO-wait accounted, while the other has regular idle. Even
2913  * though, if the storage were faster, both could've ran at the same time,
2914  * utilising both CPUs.
2915  *
2916  * This means, that when looking globally, the current IO-wait accounting on
2917  * SMP is a lower bound, by reason of under accounting.
2918  *
2919  * Worse, since the numbers are provided per CPU, they are sometimes
2920  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2921  * associated with any one particular CPU, it can wake to another CPU than it
2922  * blocked on. This means the per CPU IO-wait number is meaningless.
2923  *
2924  * Task CPU affinities can make all that even more 'interesting'.
2925  */
2926
2927 unsigned long nr_iowait(void)
2928 {
2929         unsigned long i, sum = 0;
2930
2931         for_each_possible_cpu(i)
2932                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2933
2934         return sum;
2935 }
2936
2937 /*
2938  * Consumers of these two interfaces, like for example the cpufreq menu
2939  * governor are using nonsensical data. Boosting frequency for a CPU that has
2940  * IO-wait which might not even end up running the task when it does become
2941  * runnable.
2942  */
2943
2944 unsigned long nr_iowait_cpu(int cpu)
2945 {
2946         struct rq *this = cpu_rq(cpu);
2947         return atomic_read(&this->nr_iowait);
2948 }
2949
2950 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2951 {
2952         struct rq *rq = this_rq();
2953         *nr_waiters = atomic_read(&rq->nr_iowait);
2954         *load = rq->load.weight;
2955 }
2956
2957 #ifdef CONFIG_SMP
2958
2959 /*
2960  * sched_exec - execve() is a valuable balancing opportunity, because at
2961  * this point the task has the smallest effective memory and cache footprint.
2962  */
2963 void sched_exec(void)
2964 {
2965         struct task_struct *p = current;
2966         unsigned long flags;
2967         int dest_cpu;
2968
2969         raw_spin_lock_irqsave(&p->pi_lock, flags);
2970         dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2971         if (dest_cpu == smp_processor_id())
2972                 goto unlock;
2973
2974         if (likely(cpu_active(dest_cpu))) {
2975                 struct migration_arg arg = { p, dest_cpu };
2976
2977                 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2978                 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2979                 return;
2980         }
2981 unlock:
2982         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2983 }
2984
2985 #endif
2986
2987 DEFINE_PER_CPU(struct kernel_stat, kstat);
2988 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2989
2990 EXPORT_PER_CPU_SYMBOL(kstat);
2991 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2992
2993 /*
2994  * The function fair_sched_class.update_curr accesses the struct curr
2995  * and its field curr->exec_start; when called from task_sched_runtime(),
2996  * we observe a high rate of cache misses in practice.
2997  * Prefetching this data results in improved performance.
2998  */
2999 static inline void prefetch_curr_exec_start(struct task_struct *p)
3000 {
3001 #ifdef CONFIG_FAIR_GROUP_SCHED
3002         struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3003 #else
3004         struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3005 #endif
3006         prefetch(curr);
3007         prefetch(&curr->exec_start);
3008 }
3009
3010 /*
3011  * Return accounted runtime for the task.
3012  * In case the task is currently running, return the runtime plus current's
3013  * pending runtime that have not been accounted yet.
3014  */
3015 unsigned long long task_sched_runtime(struct task_struct *p)
3016 {
3017         struct rq_flags rf;
3018         struct rq *rq;
3019         u64 ns;
3020
3021 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3022         /*
3023          * 64-bit doesn't need locks to atomically read a 64bit value.
3024          * So we have a optimization chance when the task's delta_exec is 0.
3025          * Reading ->on_cpu is racy, but this is ok.
3026          *
3027          * If we race with it leaving CPU, we'll take a lock. So we're correct.
3028          * If we race with it entering CPU, unaccounted time is 0. This is
3029          * indistinguishable from the read occurring a few cycles earlier.
3030          * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3031          * been accounted, so we're correct here as well.
3032          */
3033         if (!p->on_cpu || !task_on_rq_queued(p))
3034                 return p->se.sum_exec_runtime;
3035 #endif
3036
3037         rq = task_rq_lock(p, &rf);
3038         /*
3039          * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3040          * project cycles that may never be accounted to this
3041          * thread, breaking clock_gettime().
3042          */
3043         if (task_current(rq, p) && task_on_rq_queued(p)) {
3044                 prefetch_curr_exec_start(p);
3045                 update_rq_clock(rq);
3046                 p->sched_class->update_curr(rq);
3047         }
3048         ns = p->se.sum_exec_runtime;
3049         task_rq_unlock(rq, p, &rf);
3050
3051         return ns;
3052 }
3053
3054 /*
3055  * This function gets called by the timer code, with HZ frequency.
3056  * We call it with interrupts disabled.
3057  */
3058 void scheduler_tick(void)
3059 {
3060         int cpu = smp_processor_id();
3061         struct rq *rq = cpu_rq(cpu);
3062         struct task_struct *curr = rq->curr;
3063         struct rq_flags rf;
3064
3065         sched_clock_tick();
3066
3067         rq_lock(rq, &rf);
3068
3069         update_rq_clock(rq);
3070         curr->sched_class->task_tick(rq, curr, 0);
3071         cpu_load_update_active(rq);
3072         calc_global_load_tick(rq);
3073
3074         rq_unlock(rq, &rf);
3075
3076         perf_event_task_tick();
3077
3078 #ifdef CONFIG_SMP
3079         rq->idle_balance = idle_cpu(cpu);
3080         trigger_load_balance(rq);
3081 #endif
3082         rq_last_tick_reset(rq);
3083 }
3084
3085 #ifdef CONFIG_NO_HZ_FULL
3086 /**
3087  * scheduler_tick_max_deferment
3088  *
3089  * Keep at least one tick per second when a single
3090  * active task is running because the scheduler doesn't
3091  * yet completely support full dynticks environment.
3092  *
3093  * This makes sure that uptime, CFS vruntime, load
3094  * balancing, etc... continue to move forward, even
3095  * with a very low granularity.
3096  *
3097  * Return: Maximum deferment in nanoseconds.
3098  */
3099 u64 scheduler_tick_max_deferment(void)
3100 {
3101         struct rq *rq = this_rq();
3102         unsigned long next, now = READ_ONCE(jiffies);
3103
3104         next = rq->last_sched_tick + HZ;
3105
3106         if (time_before_eq(next, now))
3107                 return 0;
3108
3109         return jiffies_to_nsecs(next - now);
3110 }
3111 #endif
3112
3113 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3114                                 defined(CONFIG_PREEMPT_TRACER))
3115 /*
3116  * If the value passed in is equal to the current preempt count
3117  * then we just disabled preemption. Start timing the latency.
3118  */
3119 static inline void preempt_latency_start(int val)
3120 {
3121         if (preempt_count() == val) {
3122                 unsigned long ip = get_lock_parent_ip();
3123 #ifdef CONFIG_DEBUG_PREEMPT
3124                 current->preempt_disable_ip = ip;
3125 #endif
3126                 trace_preempt_off(CALLER_ADDR0, ip);
3127         }
3128 }
3129
3130 void preempt_count_add(int val)
3131 {
3132 #ifdef CONFIG_DEBUG_PREEMPT
3133         /*
3134          * Underflow?
3135          */
3136         if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3137                 return;
3138 #endif
3139         __preempt_count_add(val);
3140 #ifdef CONFIG_DEBUG_PREEMPT
3141         /*
3142          * Spinlock count overflowing soon?
3143          */
3144         DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3145                                 PREEMPT_MASK - 10);
3146 #endif
3147         preempt_latency_start(val);
3148 }
3149 EXPORT_SYMBOL(preempt_count_add);
3150 NOKPROBE_SYMBOL(preempt_count_add);
3151
3152 /*
3153  * If the value passed in equals to the current preempt count
3154  * then we just enabled preemption. Stop timing the latency.
3155  */
3156 static inline void preempt_latency_stop(int val)
3157 {
3158         if (preempt_count() == val)
3159                 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3160 }
3161
3162 void preempt_count_sub(int val)
3163 {
3164 #ifdef CONFIG_DEBUG_PREEMPT
3165         /*
3166          * Underflow?
3167          */
3168         if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3169                 return;
3170         /*
3171          * Is the spinlock portion underflowing?
3172          */
3173         if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3174                         !(preempt_count() & PREEMPT_MASK)))
3175                 return;
3176 #endif
3177
3178         preempt_latency_stop(val);
3179         __preempt_count_sub(val);
3180 }
3181 EXPORT_SYMBOL(preempt_count_sub);
3182 NOKPROBE_SYMBOL(preempt_count_sub);
3183
3184 #else
3185 static inline void preempt_latency_start(int val) { }
3186 static inline void preempt_latency_stop(int val) { }
3187 #endif
3188
3189 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3190 {
3191 #ifdef CONFIG_DEBUG_PREEMPT
3192         return p->preempt_disable_ip;
3193 #else
3194         return 0;
3195 #endif
3196 }
3197
3198 /*
3199  * Print scheduling while atomic bug:
3200  */
3201 static noinline void __schedule_bug(struct task_struct *prev)
3202 {
3203         /* Save this before calling printk(), since that will clobber it */
3204         unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3205
3206         if (oops_in_progress)
3207                 return;
3208
3209         printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3210                 prev->comm, prev->pid, preempt_count());
3211
3212         debug_show_held_locks(prev);
3213         print_modules();
3214         if (irqs_disabled())
3215                 print_irqtrace_events(prev);
3216         if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3217             && in_atomic_preempt_off()) {
3218                 pr_err("Preemption disabled at:");
3219                 print_ip_sym(preempt_disable_ip);
3220                 pr_cont("\n");
3221         }
3222         if (panic_on_warn)
3223                 panic("scheduling while atomic\n");
3224
3225         dump_stack();
3226         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3227 }
3228
3229 /*
3230  * Various schedule()-time debugging checks and statistics:
3231  */
3232 static inline void schedule_debug(struct task_struct *prev)
3233 {
3234 #ifdef CONFIG_SCHED_STACK_END_CHECK
3235         if (task_stack_end_corrupted(prev))
3236                 panic("corrupted stack end detected inside scheduler\n");
3237 #endif
3238
3239         if (unlikely(in_atomic_preempt_off())) {
3240                 __schedule_bug(prev);
3241                 preempt_count_set(PREEMPT_DISABLED);
3242         }
3243         rcu_sleep_check();
3244
3245         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3246
3247         schedstat_inc(this_rq()->sched_count);
3248 }
3249
3250 /*
3251  * Pick up the highest-prio task:
3252  */
3253 static inline struct task_struct *
3254 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3255 {
3256         const struct sched_class *class;
3257         struct task_struct *p;
3258
3259         /*
3260          * Optimization: we know that if all tasks are in the fair class we can
3261          * call that function directly, but only if the @prev task wasn't of a
3262          * higher scheduling class, because otherwise those loose the
3263          * opportunity to pull in more work from other CPUs.
3264          */
3265         if (likely((prev->sched_class == &idle_sched_class ||
3266                     prev->sched_class == &fair_sched_class) &&
3267                    rq->nr_running == rq->cfs.h_nr_running)) {
3268
3269                 p = fair_sched_class.pick_next_task(rq, prev, rf);
3270                 if (unlikely(p == RETRY_TASK))
3271                         goto again;
3272
3273                 /* Assumes fair_sched_class->next == idle_sched_class */
3274                 if (unlikely(!p))
3275                         p = idle_sched_class.pick_next_task(rq, prev, rf);
3276
3277                 return p;
3278         }
3279
3280 again:
3281         for_each_class(class) {
3282                 p = class->pick_next_task(rq, prev, rf);
3283                 if (p) {
3284                         if (unlikely(p == RETRY_TASK))
3285                                 goto again;
3286                         return p;
3287                 }
3288         }
3289
3290         /* The idle class should always have a runnable task: */
3291         BUG();
3292 }
3293
3294 /*
3295  * __schedule() is the main scheduler function.
3296  *
3297  * The main means of driving the scheduler and thus entering this function are:
3298  *
3299  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3300  *
3301  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3302  *      paths. For example, see arch/x86/entry_64.S.
3303  *
3304  *      To drive preemption between tasks, the scheduler sets the flag in timer
3305  *      interrupt handler scheduler_tick().
3306  *
3307  *   3. Wakeups don't really cause entry into schedule(). They add a
3308  *      task to the run-queue and that's it.
3309  *
3310  *      Now, if the new task added to the run-queue preempts the current
3311  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3312  *      called on the nearest possible occasion:
3313  *
3314  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3315  *
3316  *         - in syscall or exception context, at the next outmost
3317  *           preempt_enable(). (this might be as soon as the wake_up()'s
3318  *           spin_unlock()!)
3319  *
3320  *         - in IRQ context, return from interrupt-handler to
3321  *           preemptible context
3322  *
3323  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3324  *         then at the next:
3325  *
3326  *          - cond_resched() call
3327  *          - explicit schedule() call
3328  *          - return from syscall or exception to user-space
3329  *          - return from interrupt-handler to user-space
3330  *
3331  * WARNING: must be called with preemption disabled!
3332  */
3333 static void __sched notrace __schedule(bool preempt)
3334 {
3335         struct task_struct *prev, *next;
3336         unsigned long *switch_count;
3337         struct rq_flags rf;
3338         struct rq *rq;
3339         int cpu;
3340
3341         cpu = smp_processor_id();
3342         rq = cpu_rq(cpu);
3343         prev = rq->curr;
3344
3345         schedule_debug(prev);
3346
3347         if (sched_feat(HRTICK))
3348                 hrtick_clear(rq);
3349
3350         local_irq_disable();
3351         rcu_note_context_switch(preempt);
3352
3353         /*
3354          * Make sure that signal_pending_state()->signal_pending() below
3355          * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3356          * done by the caller to avoid the race with signal_wake_up().
3357          */
3358         rq_lock(rq, &rf);
3359         smp_mb__after_spinlock();
3360
3361         /* Promote REQ to ACT */
3362         rq->clock_update_flags <<= 1;
3363         update_rq_clock(rq);
3364
3365         switch_count = &prev->nivcsw;
3366         if (!preempt && prev->state) {
3367                 if (unlikely(signal_pending_state(prev->state, prev))) {
3368                         prev->state = TASK_RUNNING;
3369                 } else {
3370                         deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3371                         prev->on_rq = 0;
3372
3373                         if (prev->in_iowait) {
3374                                 atomic_inc(&rq->nr_iowait);
3375                                 delayacct_blkio_start();
3376                         }
3377
3378                         /*
3379                          * If a worker went to sleep, notify and ask workqueue
3380                          * whether it wants to wake up a task to maintain
3381                          * concurrency.
3382                          */
3383                         if (prev->flags & PF_WQ_WORKER) {
3384                                 struct task_struct *to_wakeup;
3385
3386                                 to_wakeup = wq_worker_sleeping(prev);
3387                                 if (to_wakeup)
3388                                         try_to_wake_up_local(to_wakeup, &rf);
3389                         }
3390                 }
3391                 switch_count = &prev->nvcsw;
3392         }
3393
3394         next = pick_next_task(rq, prev, &rf);
3395         clear_tsk_need_resched(prev);
3396         clear_preempt_need_resched();
3397
3398         if (likely(prev != next)) {
3399                 rq->nr_switches++;
3400                 rq->curr = next;
3401                 /*
3402                  * The membarrier system call requires each architecture
3403                  * to have a full memory barrier after updating
3404                  * rq->curr, before returning to user-space. For TSO
3405                  * (e.g. x86), the architecture must provide its own
3406                  * barrier in switch_mm(). For weakly ordered machines
3407                  * for which spin_unlock() acts as a full memory
3408                  * barrier, finish_lock_switch() in common code takes
3409                  * care of this barrier. For weakly ordered machines for
3410                  * which spin_unlock() acts as a RELEASE barrier (only
3411                  * arm64 and PowerPC), arm64 has a full barrier in
3412                  * switch_to(), and PowerPC has
3413                  * smp_mb__after_unlock_lock() before
3414                  * finish_lock_switch().
3415                  */
3416                 ++*switch_count;
3417
3418                 trace_sched_switch(preempt, prev, next);
3419
3420                 /* Also unlocks the rq: */
3421                 rq = context_switch(rq, prev, next, &rf);
3422         } else {
3423                 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3424                 rq_unlock_irq(rq, &rf);
3425         }
3426
3427         balance_callback(rq);
3428 }
3429
3430 void __noreturn do_task_dead(void)
3431 {
3432         /*
3433          * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3434          * when the following two conditions become true.
3435          *   - There is race condition of mmap_sem (It is acquired by
3436          *     exit_mm()), and
3437          *   - SMI occurs before setting TASK_RUNINNG.
3438          *     (or hypervisor of virtual machine switches to other guest)
3439          *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3440          *
3441          * To avoid it, we have to wait for releasing tsk->pi_lock which
3442          * is held by try_to_wake_up()
3443          */
3444         raw_spin_lock_irq(&current->pi_lock);
3445         raw_spin_unlock_irq(&current->pi_lock);
3446
3447         /* Causes final put_task_struct in finish_task_switch(): */