4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t *p)
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
180 * These are the runqueue data structures:
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
185 typedef struct runqueue runqueue_t;
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
194 * This is the main, per-CPU runqueue data structure.
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
207 unsigned long nr_running;
209 unsigned long cpu_load[3];
211 unsigned long long nr_switches;
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
219 unsigned long nr_uninterruptible;
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
230 struct sched_domain *sd;
232 /* For active balancing */
236 task_t *migration_thread;
237 struct list_head migration_queue;
240 #ifdef CONFIG_SCHEDSTATS
242 struct sched_info rq_sched_info;
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265 * See detach_destroy_domains: synchronize_sched for details.
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274 #define this_rq() (&__get_cpu_var(runqueues))
275 #define task_rq(p) cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next) do { } while (0)
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev) do { } while (0)
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
288 return rq->curr == p;
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 spin_unlock_irq(&rq->lock);
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
306 return rq->curr == p;
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
314 * We can optimise this out completely for !SMP, because the
315 * SMP rebalancing from interrupt is the only thing that cares
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321 spin_unlock_irq(&rq->lock);
323 spin_unlock(&rq->lock);
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
331 * After ->oncpu is cleared, the task can be moved to a different CPU.
332 * We must ensure this doesn't happen until the switch is completely
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
345 * task_rq_lock - lock the runqueue a given task resides on and disable
346 * interrupts. Note the ordering: we can safely lookup the task_rq without
347 * explicitly disabling preemption.
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355 local_irq_save(*flags);
357 spin_lock(&rq->lock);
358 if (unlikely(rq != task_rq(p))) {
359 spin_unlock_irqrestore(&rq->lock, *flags);
360 goto repeat_lock_task;
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
368 spin_unlock_irqrestore(&rq->lock, *flags);
371 #ifdef CONFIG_SCHEDSTATS
373 * bump this up when changing the output format or the meaning of an existing
374 * format, so that tools can adapt (or abort)
376 #define SCHEDSTAT_VERSION 12
378 static int show_schedstat(struct seq_file *seq, void *v)
382 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383 seq_printf(seq, "timestamp %lu\n", jiffies);
384 for_each_online_cpu(cpu) {
385 runqueue_t *rq = cpu_rq(cpu);
387 struct sched_domain *sd;
391 /* runqueue-specific stats */
393 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394 cpu, rq->yld_both_empty,
395 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397 rq->ttwu_cnt, rq->ttwu_local,
398 rq->rq_sched_info.cpu_time,
399 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
401 seq_printf(seq, "\n");
404 /* domain-specific stats */
406 for_each_domain(cpu, sd) {
407 enum idle_type itype;
408 char mask_str[NR_CPUS];
410 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
414 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
416 sd->lb_balanced[itype],
417 sd->lb_failed[itype],
418 sd->lb_imbalance[itype],
419 sd->lb_gained[itype],
420 sd->lb_hot_gained[itype],
421 sd->lb_nobusyq[itype],
422 sd->lb_nobusyg[itype]);
424 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
436 static int schedstat_open(struct inode *inode, struct file *file)
438 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439 char *buf = kmalloc(size, GFP_KERNEL);
445 res = single_open(file, show_schedstat, NULL);
447 m = file->private_data;
455 struct file_operations proc_schedstat_operations = {
456 .open = schedstat_open,
459 .release = single_release,
462 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field) do { } while (0)
466 # define schedstat_add(rq, field, amt) do { } while (0)
470 * rq_lock - lock a given runqueue and disable interrupts.
472 static inline runqueue_t *this_rq_lock(void)
479 spin_lock(&rq->lock);
484 #ifdef CONFIG_SCHEDSTATS
486 * Called when a process is dequeued from the active array and given
487 * the cpu. We should note that with the exception of interactive
488 * tasks, the expired queue will become the active queue after the active
489 * queue is empty, without explicitly dequeuing and requeuing tasks in the
490 * expired queue. (Interactive tasks may be requeued directly to the
491 * active queue, thus delaying tasks in the expired queue from running;
492 * see scheduler_tick()).
494 * This function is only called from sched_info_arrive(), rather than
495 * dequeue_task(). Even though a task may be queued and dequeued multiple
496 * times as it is shuffled about, we're really interested in knowing how
497 * long it was from the *first* time it was queued to the time that it
500 static inline void sched_info_dequeued(task_t *t)
502 t->sched_info.last_queued = 0;
506 * Called when a task finally hits the cpu. We can now calculate how
507 * long it was waiting to run. We also note when it began so that we
508 * can keep stats on how long its timeslice is.
510 static inline void sched_info_arrive(task_t *t)
512 unsigned long now = jiffies, diff = 0;
513 struct runqueue *rq = task_rq(t);
515 if (t->sched_info.last_queued)
516 diff = now - t->sched_info.last_queued;
517 sched_info_dequeued(t);
518 t->sched_info.run_delay += diff;
519 t->sched_info.last_arrival = now;
520 t->sched_info.pcnt++;
525 rq->rq_sched_info.run_delay += diff;
526 rq->rq_sched_info.pcnt++;
530 * Called when a process is queued into either the active or expired
531 * array. The time is noted and later used to determine how long we
532 * had to wait for us to reach the cpu. Since the expired queue will
533 * become the active queue after active queue is empty, without dequeuing
534 * and requeuing any tasks, we are interested in queuing to either. It
535 * is unusual but not impossible for tasks to be dequeued and immediately
536 * requeued in the same or another array: this can happen in sched_yield(),
537 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
540 * This function is only called from enqueue_task(), but also only updates
541 * the timestamp if it is already not set. It's assumed that
542 * sched_info_dequeued() will clear that stamp when appropriate.
544 static inline void sched_info_queued(task_t *t)
546 if (!t->sched_info.last_queued)
547 t->sched_info.last_queued = jiffies;
551 * Called when a process ceases being the active-running process, either
552 * voluntarily or involuntarily. Now we can calculate how long we ran.
554 static inline void sched_info_depart(task_t *t)
556 struct runqueue *rq = task_rq(t);
557 unsigned long diff = jiffies - t->sched_info.last_arrival;
559 t->sched_info.cpu_time += diff;
562 rq->rq_sched_info.cpu_time += diff;
566 * Called when tasks are switched involuntarily due, typically, to expiring
567 * their time slice. (This may also be called when switching to or from
568 * the idle task.) We are only called when prev != next.
570 static inline void sched_info_switch(task_t *prev, task_t *next)
572 struct runqueue *rq = task_rq(prev);
575 * prev now departs the cpu. It's not interesting to record
576 * stats about how efficient we were at scheduling the idle
579 if (prev != rq->idle)
580 sched_info_depart(prev);
582 if (next != rq->idle)
583 sched_info_arrive(next);
586 #define sched_info_queued(t) do { } while (0)
587 #define sched_info_switch(t, next) do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
591 * Adding/removing a task to/from a priority array:
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
596 list_del(&p->run_list);
597 if (list_empty(array->queue + p->prio))
598 __clear_bit(p->prio, array->bitmap);
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
603 sched_info_queued(p);
604 list_add_tail(&p->run_list, array->queue + p->prio);
605 __set_bit(p->prio, array->bitmap);
611 * Put task to the end of the run list without the overhead of dequeue
612 * followed by enqueue.
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
616 list_move_tail(&p->run_list, array->queue + p->prio);
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
621 list_add(&p->run_list, array->queue + p->prio);
622 __set_bit(p->prio, array->bitmap);
628 * effective_prio - return the priority that is based on the static
629 * priority but is modified by bonuses/penalties.
631 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632 * into the -5 ... 0 ... +5 bonus/penalty range.
634 * We use 25% of the full 0...39 priority range so that:
636 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
639 * Both properties are important to certain workloads.
641 static int effective_prio(task_t *p)
648 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
650 prio = p->static_prio - bonus;
651 if (prio < MAX_RT_PRIO)
653 if (prio > MAX_PRIO-1)
659 * __activate_task - move a task to the runqueue.
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
663 enqueue_task(p, rq->active);
668 * __activate_idle_task - move idle task to the _front_ of runqueue.
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
672 enqueue_task_head(p, rq->active);
676 static int recalc_task_prio(task_t *p, unsigned long long now)
678 /* Caller must always ensure 'now >= p->timestamp' */
679 unsigned long long __sleep_time = now - p->timestamp;
680 unsigned long sleep_time;
682 if (__sleep_time > NS_MAX_SLEEP_AVG)
683 sleep_time = NS_MAX_SLEEP_AVG;
685 sleep_time = (unsigned long)__sleep_time;
687 if (likely(sleep_time > 0)) {
689 * User tasks that sleep a long time are categorised as
690 * idle and will get just interactive status to stay active &
691 * prevent them suddenly becoming cpu hogs and starving
694 if (p->mm && p->activated != -1 &&
695 sleep_time > INTERACTIVE_SLEEP(p)) {
696 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
700 * The lower the sleep avg a task has the more
701 * rapidly it will rise with sleep time.
703 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
706 * Tasks waking from uninterruptible sleep are
707 * limited in their sleep_avg rise as they
708 * are likely to be waiting on I/O
710 if (p->activated == -1 && p->mm) {
711 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
713 else if (p->sleep_avg + sleep_time >=
714 INTERACTIVE_SLEEP(p)) {
715 p->sleep_avg = INTERACTIVE_SLEEP(p);
721 * This code gives a bonus to interactive tasks.
723 * The boost works by updating the 'average sleep time'
724 * value here, based on ->timestamp. The more time a
725 * task spends sleeping, the higher the average gets -
726 * and the higher the priority boost gets as well.
728 p->sleep_avg += sleep_time;
730 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731 p->sleep_avg = NS_MAX_SLEEP_AVG;
735 return effective_prio(p);
739 * activate_task - move a task to the runqueue and do priority recalculation
741 * Update all the scheduling statistics stuff. (sleep average
742 * calculation, priority modifiers, etc.)
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
746 unsigned long long now;
751 /* Compensate for drifting sched_clock */
752 runqueue_t *this_rq = this_rq();
753 now = (now - this_rq->timestamp_last_tick)
754 + rq->timestamp_last_tick;
758 p->prio = recalc_task_prio(p, now);
761 * This checks to make sure it's not an uninterruptible task
762 * that is now waking up.
766 * Tasks which were woken up by interrupts (ie. hw events)
767 * are most likely of interactive nature. So we give them
768 * the credit of extending their sleep time to the period
769 * of time they spend on the runqueue, waiting for execution
770 * on a CPU, first time around:
776 * Normal first-time wakeups get a credit too for
777 * on-runqueue time, but it will be weighted down:
784 __activate_task(p, rq);
788 * deactivate_task - remove a task from the runqueue.
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
793 dequeue_task(p, p->array);
798 * resched_task - mark a task 'to be rescheduled now'.
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
805 static void resched_task(task_t *p)
807 int need_resched, nrpolling;
809 assert_spin_locked(&task_rq(p)->lock);
811 /* minimise the chance of sending an interrupt to poll_idle() */
812 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
816 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817 smp_send_reschedule(task_cpu(p));
820 static inline void resched_task(task_t *p)
822 set_tsk_need_resched(p);
827 * task_curr - is this task currently executing on a CPU?
828 * @p: the task in question.
830 inline int task_curr(const task_t *p)
832 return cpu_curr(task_cpu(p)) == p;
837 struct list_head list;
842 struct completion done;
846 * The task's runqueue lock must be held.
847 * Returns true if you have to wait for migration thread.
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
851 runqueue_t *rq = task_rq(p);
854 * If the task is not on a runqueue (and not running), then
855 * it is sufficient to simply update the task's cpu field.
857 if (!p->array && !task_running(rq, p)) {
858 set_task_cpu(p, dest_cpu);
862 init_completion(&req->done);
864 req->dest_cpu = dest_cpu;
865 list_add(&req->list, &rq->migration_queue);
870 * wait_task_inactive - wait for a thread to unschedule.
872 * The caller must ensure that the task *will* unschedule sometime soon,
873 * else this function might spin for a *long* time. This function can't
874 * be called with interrupts off, or it may introduce deadlock with
875 * smp_call_function() if an IPI is sent by the same process we are
876 * waiting to become inactive.
878 void wait_task_inactive(task_t * p)
885 rq = task_rq_lock(p, &flags);
886 /* Must be off runqueue entirely, not preempted. */
887 if (unlikely(p->array || task_running(rq, p))) {
888 /* If it's preempted, we yield. It could be a while. */
889 preempted = !task_running(rq, p);
890 task_rq_unlock(rq, &flags);
896 task_rq_unlock(rq, &flags);
900 * kick_process - kick a running thread to enter/exit the kernel
901 * @p: the to-be-kicked thread
903 * Cause a process which is running on another CPU to enter
904 * kernel-mode, without any delay. (to get signals handled.)
906 * NOTE: this function doesnt have to take the runqueue lock,
907 * because all it wants to ensure is that the remote task enters
908 * the kernel. If the IPI races and the task has been migrated
909 * to another CPU then no harm is done and the purpose has been
912 void kick_process(task_t *p)
918 if ((cpu != smp_processor_id()) && task_curr(p))
919 smp_send_reschedule(cpu);
924 * Return a low guess at the load of a migration-source cpu.
926 * We want to under-estimate the load of migration sources, to
927 * balance conservatively.
929 static inline unsigned long source_load(int cpu, int type)
931 runqueue_t *rq = cpu_rq(cpu);
932 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
936 return min(rq->cpu_load[type-1], load_now);
940 * Return a high guess at the load of a migration-target cpu
942 static inline unsigned long target_load(int cpu, int type)
944 runqueue_t *rq = cpu_rq(cpu);
945 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
949 return max(rq->cpu_load[type-1], load_now);
953 * find_idlest_group finds and returns the least busy CPU group within the
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
959 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960 unsigned long min_load = ULONG_MAX, this_load = 0;
961 int load_idx = sd->forkexec_idx;
962 int imbalance = 100 + (sd->imbalance_pct-100)/2;
965 unsigned long load, avg_load;
969 local_group = cpu_isset(this_cpu, group->cpumask);
970 /* XXX: put a cpus allowed check */
972 /* Tally up the load of all CPUs in the group */
975 for_each_cpu_mask(i, group->cpumask) {
976 /* Bias balancing toward cpus of our domain */
978 load = source_load(i, load_idx);
980 load = target_load(i, load_idx);
985 /* Adjust by relative CPU power of the group */
986 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
989 this_load = avg_load;
991 } else if (avg_load < min_load) {
996 } while (group != sd->groups);
998 if (!idlest || 100*this_load < imbalance*min_load)
1004 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1006 static int find_idlest_cpu(struct sched_group *group, int this_cpu)
1008 unsigned long load, min_load = ULONG_MAX;
1012 for_each_cpu_mask(i, group->cpumask) {
1013 load = source_load(i, 0);
1015 if (load < min_load || (load == min_load && i == this_cpu)) {
1025 * sched_balance_self: balance the current task (running on cpu) in domains
1026 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1029 * Balance, ie. select the least loaded group.
1031 * Returns the target CPU number, or the same CPU if no balancing is needed.
1033 * preempt must be disabled.
1035 static int sched_balance_self(int cpu, int flag)
1037 struct task_struct *t = current;
1038 struct sched_domain *tmp, *sd = NULL;
1040 for_each_domain(cpu, tmp)
1041 if (tmp->flags & flag)
1046 struct sched_group *group;
1051 group = find_idlest_group(sd, t, cpu);
1055 new_cpu = find_idlest_cpu(group, cpu);
1056 if (new_cpu == -1 || new_cpu == cpu)
1059 /* Now try balancing at a lower domain level */
1063 weight = cpus_weight(span);
1064 for_each_domain(cpu, tmp) {
1065 if (weight <= cpus_weight(tmp->span))
1067 if (tmp->flags & flag)
1070 /* while loop will break here if sd == NULL */
1076 #endif /* CONFIG_SMP */
1079 * wake_idle() will wake a task on an idle cpu if task->cpu is
1080 * not idle and an idle cpu is available. The span of cpus to
1081 * search starts with cpus closest then further out as needed,
1082 * so we always favor a closer, idle cpu.
1084 * Returns the CPU we should wake onto.
1086 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1087 static int wake_idle(int cpu, task_t *p)
1090 struct sched_domain *sd;
1096 for_each_domain(cpu, sd) {
1097 if (sd->flags & SD_WAKE_IDLE) {
1098 cpus_and(tmp, sd->span, p->cpus_allowed);
1099 for_each_cpu_mask(i, tmp) {
1110 static inline int wake_idle(int cpu, task_t *p)
1117 * try_to_wake_up - wake up a thread
1118 * @p: the to-be-woken-up thread
1119 * @state: the mask of task states that can be woken
1120 * @sync: do a synchronous wakeup?
1122 * Put it on the run-queue if it's not already there. The "current"
1123 * thread is always on the run-queue (except when the actual
1124 * re-schedule is in progress), and as such you're allowed to do
1125 * the simpler "current->state = TASK_RUNNING" to mark yourself
1126 * runnable without the overhead of this.
1128 * returns failure only if the task is already active.
1130 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1132 int cpu, this_cpu, success = 0;
1133 unsigned long flags;
1137 unsigned long load, this_load;
1138 struct sched_domain *sd, *this_sd = NULL;
1142 rq = task_rq_lock(p, &flags);
1143 old_state = p->state;
1144 if (!(old_state & state))
1151 this_cpu = smp_processor_id();
1154 if (unlikely(task_running(rq, p)))
1159 schedstat_inc(rq, ttwu_cnt);
1160 if (cpu == this_cpu) {
1161 schedstat_inc(rq, ttwu_local);
1165 for_each_domain(this_cpu, sd) {
1166 if (cpu_isset(cpu, sd->span)) {
1167 schedstat_inc(sd, ttwu_wake_remote);
1173 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1177 * Check for affine wakeup and passive balancing possibilities.
1180 int idx = this_sd->wake_idx;
1181 unsigned int imbalance;
1183 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1185 load = source_load(cpu, idx);
1186 this_load = target_load(this_cpu, idx);
1188 new_cpu = this_cpu; /* Wake to this CPU if we can */
1190 if (this_sd->flags & SD_WAKE_AFFINE) {
1191 unsigned long tl = this_load;
1193 * If sync wakeup then subtract the (maximum possible)
1194 * effect of the currently running task from the load
1195 * of the current CPU:
1198 tl -= SCHED_LOAD_SCALE;
1201 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1202 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1204 * This domain has SD_WAKE_AFFINE and
1205 * p is cache cold in this domain, and
1206 * there is no bad imbalance.
1208 schedstat_inc(this_sd, ttwu_move_affine);
1214 * Start passive balancing when half the imbalance_pct
1217 if (this_sd->flags & SD_WAKE_BALANCE) {
1218 if (imbalance*this_load <= 100*load) {
1219 schedstat_inc(this_sd, ttwu_move_balance);
1225 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1227 new_cpu = wake_idle(new_cpu, p);
1228 if (new_cpu != cpu) {
1229 set_task_cpu(p, new_cpu);
1230 task_rq_unlock(rq, &flags);
1231 /* might preempt at this point */
1232 rq = task_rq_lock(p, &flags);
1233 old_state = p->state;
1234 if (!(old_state & state))
1239 this_cpu = smp_processor_id();
1244 #endif /* CONFIG_SMP */
1245 if (old_state == TASK_UNINTERRUPTIBLE) {
1246 rq->nr_uninterruptible--;
1248 * Tasks on involuntary sleep don't earn
1249 * sleep_avg beyond just interactive state.
1255 * Sync wakeups (i.e. those types of wakeups where the waker
1256 * has indicated that it will leave the CPU in short order)
1257 * don't trigger a preemption, if the woken up task will run on
1258 * this cpu. (in this case the 'I will reschedule' promise of
1259 * the waker guarantees that the freshly woken up task is going
1260 * to be considered on this CPU.)
1262 activate_task(p, rq, cpu == this_cpu);
1263 if (!sync || cpu != this_cpu) {
1264 if (TASK_PREEMPTS_CURR(p, rq))
1265 resched_task(rq->curr);
1270 p->state = TASK_RUNNING;
1272 task_rq_unlock(rq, &flags);
1277 int fastcall wake_up_process(task_t * p)
1279 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1280 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1283 EXPORT_SYMBOL(wake_up_process);
1285 int fastcall wake_up_state(task_t *p, unsigned int state)
1287 return try_to_wake_up(p, state, 0);
1291 * Perform scheduler related setup for a newly forked process p.
1292 * p is forked by current.
1294 void fastcall sched_fork(task_t *p, int clone_flags)
1296 int cpu = get_cpu();
1299 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1301 set_task_cpu(p, cpu);
1304 * We mark the process as running here, but have not actually
1305 * inserted it onto the runqueue yet. This guarantees that
1306 * nobody will actually run it, and a signal or other external
1307 * event cannot wake it up and insert it on the runqueue either.
1309 p->state = TASK_RUNNING;
1310 INIT_LIST_HEAD(&p->run_list);
1312 #ifdef CONFIG_SCHEDSTATS
1313 memset(&p->sched_info, 0, sizeof(p->sched_info));
1315 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1318 #ifdef CONFIG_PREEMPT
1319 /* Want to start with kernel preemption disabled. */
1320 p->thread_info->preempt_count = 1;
1323 * Share the timeslice between parent and child, thus the
1324 * total amount of pending timeslices in the system doesn't change,
1325 * resulting in more scheduling fairness.
1327 local_irq_disable();
1328 p->time_slice = (current->time_slice + 1) >> 1;
1330 * The remainder of the first timeslice might be recovered by
1331 * the parent if the child exits early enough.
1333 p->first_time_slice = 1;
1334 current->time_slice >>= 1;
1335 p->timestamp = sched_clock();
1336 if (unlikely(!current->time_slice)) {
1338 * This case is rare, it happens when the parent has only
1339 * a single jiffy left from its timeslice. Taking the
1340 * runqueue lock is not a problem.
1342 current->time_slice = 1;
1350 * wake_up_new_task - wake up a newly created task for the first time.
1352 * This function will do some initial scheduler statistics housekeeping
1353 * that must be done for every newly created context, then puts the task
1354 * on the runqueue and wakes it.
1356 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1358 unsigned long flags;
1360 runqueue_t *rq, *this_rq;
1362 rq = task_rq_lock(p, &flags);
1363 BUG_ON(p->state != TASK_RUNNING);
1364 this_cpu = smp_processor_id();
1368 * We decrease the sleep average of forking parents
1369 * and children as well, to keep max-interactive tasks
1370 * from forking tasks that are max-interactive. The parent
1371 * (current) is done further down, under its lock.
1373 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1374 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1376 p->prio = effective_prio(p);
1378 if (likely(cpu == this_cpu)) {
1379 if (!(clone_flags & CLONE_VM)) {
1381 * The VM isn't cloned, so we're in a good position to
1382 * do child-runs-first in anticipation of an exec. This
1383 * usually avoids a lot of COW overhead.
1385 if (unlikely(!current->array))
1386 __activate_task(p, rq);
1388 p->prio = current->prio;
1389 list_add_tail(&p->run_list, ¤t->run_list);
1390 p->array = current->array;
1391 p->array->nr_active++;
1396 /* Run child last */
1397 __activate_task(p, rq);
1399 * We skip the following code due to cpu == this_cpu
1401 * task_rq_unlock(rq, &flags);
1402 * this_rq = task_rq_lock(current, &flags);
1406 this_rq = cpu_rq(this_cpu);
1409 * Not the local CPU - must adjust timestamp. This should
1410 * get optimised away in the !CONFIG_SMP case.
1412 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1413 + rq->timestamp_last_tick;
1414 __activate_task(p, rq);
1415 if (TASK_PREEMPTS_CURR(p, rq))
1416 resched_task(rq->curr);
1419 * Parent and child are on different CPUs, now get the
1420 * parent runqueue to update the parent's ->sleep_avg:
1422 task_rq_unlock(rq, &flags);
1423 this_rq = task_rq_lock(current, &flags);
1425 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1426 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1427 task_rq_unlock(this_rq, &flags);
1431 * Potentially available exiting-child timeslices are
1432 * retrieved here - this way the parent does not get
1433 * penalized for creating too many threads.
1435 * (this cannot be used to 'generate' timeslices
1436 * artificially, because any timeslice recovered here
1437 * was given away by the parent in the first place.)
1439 void fastcall sched_exit(task_t * p)
1441 unsigned long flags;
1445 * If the child was a (relative-) CPU hog then decrease
1446 * the sleep_avg of the parent as well.
1448 rq = task_rq_lock(p->parent, &flags);
1449 if (p->first_time_slice) {
1450 p->parent->time_slice += p->time_slice;
1451 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1452 p->parent->time_slice = task_timeslice(p);
1454 if (p->sleep_avg < p->parent->sleep_avg)
1455 p->parent->sleep_avg = p->parent->sleep_avg /
1456 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1458 task_rq_unlock(rq, &flags);
1462 * prepare_task_switch - prepare to switch tasks
1463 * @rq: the runqueue preparing to switch
1464 * @next: the task we are going to switch to.
1466 * This is called with the rq lock held and interrupts off. It must
1467 * be paired with a subsequent finish_task_switch after the context
1470 * prepare_task_switch sets up locking and calls architecture specific
1473 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1475 prepare_lock_switch(rq, next);
1476 prepare_arch_switch(next);
1480 * finish_task_switch - clean up after a task-switch
1481 * @rq: runqueue associated with task-switch
1482 * @prev: the thread we just switched away from.
1484 * finish_task_switch must be called after the context switch, paired
1485 * with a prepare_task_switch call before the context switch.
1486 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1487 * and do any other architecture-specific cleanup actions.
1489 * Note that we may have delayed dropping an mm in context_switch(). If
1490 * so, we finish that here outside of the runqueue lock. (Doing it
1491 * with the lock held can cause deadlocks; see schedule() for
1494 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1495 __releases(rq->lock)
1497 struct mm_struct *mm = rq->prev_mm;
1498 unsigned long prev_task_flags;
1503 * A task struct has one reference for the use as "current".
1504 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1505 * calls schedule one last time. The schedule call will never return,
1506 * and the scheduled task must drop that reference.
1507 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1508 * still held, otherwise prev could be scheduled on another cpu, die
1509 * there before we look at prev->state, and then the reference would
1511 * Manfred Spraul <manfred@colorfullife.com>
1513 prev_task_flags = prev->flags;
1514 finish_arch_switch(prev);
1515 finish_lock_switch(rq, prev);
1518 if (unlikely(prev_task_flags & PF_DEAD))
1519 put_task_struct(prev);
1523 * schedule_tail - first thing a freshly forked thread must call.
1524 * @prev: the thread we just switched away from.
1526 asmlinkage void schedule_tail(task_t *prev)
1527 __releases(rq->lock)
1529 runqueue_t *rq = this_rq();
1530 finish_task_switch(rq, prev);
1531 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1532 /* In this case, finish_task_switch does not reenable preemption */
1535 if (current->set_child_tid)
1536 put_user(current->pid, current->set_child_tid);
1540 * context_switch - switch to the new MM and the new
1541 * thread's register state.
1544 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1546 struct mm_struct *mm = next->mm;
1547 struct mm_struct *oldmm = prev->active_mm;
1549 if (unlikely(!mm)) {
1550 next->active_mm = oldmm;
1551 atomic_inc(&oldmm->mm_count);
1552 enter_lazy_tlb(oldmm, next);
1554 switch_mm(oldmm, mm, next);
1556 if (unlikely(!prev->mm)) {
1557 prev->active_mm = NULL;
1558 WARN_ON(rq->prev_mm);
1559 rq->prev_mm = oldmm;
1562 /* Here we just switch the register state and the stack. */
1563 switch_to(prev, next, prev);
1569 * nr_running, nr_uninterruptible and nr_context_switches:
1571 * externally visible scheduler statistics: current number of runnable
1572 * threads, current number of uninterruptible-sleeping threads, total
1573 * number of context switches performed since bootup.
1575 unsigned long nr_running(void)
1577 unsigned long i, sum = 0;
1579 for_each_online_cpu(i)
1580 sum += cpu_rq(i)->nr_running;
1585 unsigned long nr_uninterruptible(void)
1587 unsigned long i, sum = 0;
1590 sum += cpu_rq(i)->nr_uninterruptible;
1593 * Since we read the counters lockless, it might be slightly
1594 * inaccurate. Do not allow it to go below zero though:
1596 if (unlikely((long)sum < 0))
1602 unsigned long long nr_context_switches(void)
1604 unsigned long long i, sum = 0;
1607 sum += cpu_rq(i)->nr_switches;
1612 unsigned long nr_iowait(void)
1614 unsigned long i, sum = 0;
1617 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1625 * double_rq_lock - safely lock two runqueues
1627 * Note this does not disable interrupts like task_rq_lock,
1628 * you need to do so manually before calling.
1630 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1631 __acquires(rq1->lock)
1632 __acquires(rq2->lock)
1635 spin_lock(&rq1->lock);
1636 __acquire(rq2->lock); /* Fake it out ;) */
1639 spin_lock(&rq1->lock);
1640 spin_lock(&rq2->lock);
1642 spin_lock(&rq2->lock);
1643 spin_lock(&rq1->lock);
1649 * double_rq_unlock - safely unlock two runqueues
1651 * Note this does not restore interrupts like task_rq_unlock,
1652 * you need to do so manually after calling.
1654 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1655 __releases(rq1->lock)
1656 __releases(rq2->lock)
1658 spin_unlock(&rq1->lock);
1660 spin_unlock(&rq2->lock);
1662 __release(rq2->lock);
1666 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1668 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1669 __releases(this_rq->lock)
1670 __acquires(busiest->lock)
1671 __acquires(this_rq->lock)
1673 if (unlikely(!spin_trylock(&busiest->lock))) {
1674 if (busiest < this_rq) {
1675 spin_unlock(&this_rq->lock);
1676 spin_lock(&busiest->lock);
1677 spin_lock(&this_rq->lock);
1679 spin_lock(&busiest->lock);
1684 * If dest_cpu is allowed for this process, migrate the task to it.
1685 * This is accomplished by forcing the cpu_allowed mask to only
1686 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1687 * the cpu_allowed mask is restored.
1689 static void sched_migrate_task(task_t *p, int dest_cpu)
1691 migration_req_t req;
1693 unsigned long flags;
1695 rq = task_rq_lock(p, &flags);
1696 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1697 || unlikely(cpu_is_offline(dest_cpu)))
1700 /* force the process onto the specified CPU */
1701 if (migrate_task(p, dest_cpu, &req)) {
1702 /* Need to wait for migration thread (might exit: take ref). */
1703 struct task_struct *mt = rq->migration_thread;
1704 get_task_struct(mt);
1705 task_rq_unlock(rq, &flags);
1706 wake_up_process(mt);
1707 put_task_struct(mt);
1708 wait_for_completion(&req.done);
1712 task_rq_unlock(rq, &flags);
1716 * sched_exec - execve() is a valuable balancing opportunity, because at
1717 * this point the task has the smallest effective memory and cache footprint.
1719 void sched_exec(void)
1721 int new_cpu, this_cpu = get_cpu();
1722 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1724 if (new_cpu != this_cpu)
1725 sched_migrate_task(current, new_cpu);
1729 * pull_task - move a task from a remote runqueue to the local runqueue.
1730 * Both runqueues must be locked.
1733 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1734 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1736 dequeue_task(p, src_array);
1737 src_rq->nr_running--;
1738 set_task_cpu(p, this_cpu);
1739 this_rq->nr_running++;
1740 enqueue_task(p, this_array);
1741 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1742 + this_rq->timestamp_last_tick;
1744 * Note that idle threads have a prio of MAX_PRIO, for this test
1745 * to be always true for them.
1747 if (TASK_PREEMPTS_CURR(p, this_rq))
1748 resched_task(this_rq->curr);
1752 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1755 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1756 struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1759 * We do not migrate tasks that are:
1760 * 1) running (obviously), or
1761 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1762 * 3) are cache-hot on their current CPU.
1764 if (!cpu_isset(this_cpu, p->cpus_allowed))
1768 if (task_running(rq, p))
1772 * Aggressive migration if:
1773 * 1) task is cache cold, or
1774 * 2) too many balance attempts have failed.
1777 if (sd->nr_balance_failed > sd->cache_nice_tries)
1780 if (task_hot(p, rq->timestamp_last_tick, sd))
1786 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1787 * as part of a balancing operation within "domain". Returns the number of
1790 * Called with both runqueues locked.
1792 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1793 unsigned long max_nr_move, struct sched_domain *sd,
1794 enum idle_type idle, int *all_pinned)
1796 prio_array_t *array, *dst_array;
1797 struct list_head *head, *curr;
1798 int idx, pulled = 0, pinned = 0;
1801 if (max_nr_move == 0)
1807 * We first consider expired tasks. Those will likely not be
1808 * executed in the near future, and they are most likely to
1809 * be cache-cold, thus switching CPUs has the least effect
1812 if (busiest->expired->nr_active) {
1813 array = busiest->expired;
1814 dst_array = this_rq->expired;
1816 array = busiest->active;
1817 dst_array = this_rq->active;
1821 /* Start searching at priority 0: */
1825 idx = sched_find_first_bit(array->bitmap);
1827 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1828 if (idx >= MAX_PRIO) {
1829 if (array == busiest->expired && busiest->active->nr_active) {
1830 array = busiest->active;
1831 dst_array = this_rq->active;
1837 head = array->queue + idx;
1840 tmp = list_entry(curr, task_t, run_list);
1844 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1851 #ifdef CONFIG_SCHEDSTATS
1852 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1853 schedstat_inc(sd, lb_hot_gained[idle]);
1856 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1859 /* We only want to steal up to the prescribed number of tasks. */
1860 if (pulled < max_nr_move) {
1868 * Right now, this is the only place pull_task() is called,
1869 * so we can safely collect pull_task() stats here rather than
1870 * inside pull_task().
1872 schedstat_add(sd, lb_gained[idle], pulled);
1875 *all_pinned = pinned;
1880 * find_busiest_group finds and returns the busiest CPU group within the
1881 * domain. It calculates and returns the number of tasks which should be
1882 * moved to restore balance via the imbalance parameter.
1884 static struct sched_group *
1885 find_busiest_group(struct sched_domain *sd, int this_cpu,
1886 unsigned long *imbalance, enum idle_type idle)
1888 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1889 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1892 max_load = this_load = total_load = total_pwr = 0;
1893 if (idle == NOT_IDLE)
1894 load_idx = sd->busy_idx;
1895 else if (idle == NEWLY_IDLE)
1896 load_idx = sd->newidle_idx;
1898 load_idx = sd->idle_idx;
1905 local_group = cpu_isset(this_cpu, group->cpumask);
1907 /* Tally up the load of all CPUs in the group */
1910 for_each_cpu_mask(i, group->cpumask) {
1911 /* Bias balancing toward cpus of our domain */
1913 load = target_load(i, load_idx);
1915 load = source_load(i, load_idx);
1920 total_load += avg_load;
1921 total_pwr += group->cpu_power;
1923 /* Adjust by relative CPU power of the group */
1924 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1927 this_load = avg_load;
1929 } else if (avg_load > max_load) {
1930 max_load = avg_load;
1933 group = group->next;
1934 } while (group != sd->groups);
1936 if (!busiest || this_load >= max_load)
1939 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1941 if (this_load >= avg_load ||
1942 100*max_load <= sd->imbalance_pct*this_load)
1946 * We're trying to get all the cpus to the average_load, so we don't
1947 * want to push ourselves above the average load, nor do we wish to
1948 * reduce the max loaded cpu below the average load, as either of these
1949 * actions would just result in more rebalancing later, and ping-pong
1950 * tasks around. Thus we look for the minimum possible imbalance.
1951 * Negative imbalances (*we* are more loaded than anyone else) will
1952 * be counted as no imbalance for these purposes -- we can't fix that
1953 * by pulling tasks to us. Be careful of negative numbers as they'll
1954 * appear as very large values with unsigned longs.
1956 /* How much load to actually move to equalise the imbalance */
1957 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1958 (avg_load - this_load) * this->cpu_power)
1961 if (*imbalance < SCHED_LOAD_SCALE) {
1962 unsigned long pwr_now = 0, pwr_move = 0;
1965 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1971 * OK, we don't have enough imbalance to justify moving tasks,
1972 * however we may be able to increase total CPU power used by
1976 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1977 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1978 pwr_now /= SCHED_LOAD_SCALE;
1980 /* Amount of load we'd subtract */
1981 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1983 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1986 /* Amount of load we'd add */
1987 if (max_load*busiest->cpu_power <
1988 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1989 tmp = max_load*busiest->cpu_power/this->cpu_power;
1991 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1992 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1993 pwr_move /= SCHED_LOAD_SCALE;
1995 /* Move if we gain throughput */
1996 if (pwr_move <= pwr_now)
2003 /* Get rid of the scaling factor, rounding down as we divide */
2004 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2014 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2016 static runqueue_t *find_busiest_queue(struct sched_group *group)
2018 unsigned long load, max_load = 0;
2019 runqueue_t *busiest = NULL;
2022 for_each_cpu_mask(i, group->cpumask) {
2023 load = source_load(i, 0);
2025 if (load > max_load) {
2027 busiest = cpu_rq(i);
2035 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2036 * so long as it is large enough.
2038 #define MAX_PINNED_INTERVAL 512
2041 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2042 * tasks if there is an imbalance.
2044 * Called with this_rq unlocked.
2046 static int load_balance(int this_cpu, runqueue_t *this_rq,
2047 struct sched_domain *sd, enum idle_type idle)
2049 struct sched_group *group;
2050 runqueue_t *busiest;
2051 unsigned long imbalance;
2052 int nr_moved, all_pinned = 0;
2053 int active_balance = 0;
2055 spin_lock(&this_rq->lock);
2056 schedstat_inc(sd, lb_cnt[idle]);
2058 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2060 schedstat_inc(sd, lb_nobusyg[idle]);
2064 busiest = find_busiest_queue(group);
2066 schedstat_inc(sd, lb_nobusyq[idle]);
2070 BUG_ON(busiest == this_rq);
2072 schedstat_add(sd, lb_imbalance[idle], imbalance);
2075 if (busiest->nr_running > 1) {
2077 * Attempt to move tasks. If find_busiest_group has found
2078 * an imbalance but busiest->nr_running <= 1, the group is
2079 * still unbalanced. nr_moved simply stays zero, so it is
2080 * correctly treated as an imbalance.
2082 double_lock_balance(this_rq, busiest);
2083 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2084 imbalance, sd, idle,
2086 spin_unlock(&busiest->lock);
2088 /* All tasks on this runqueue were pinned by CPU affinity */
2089 if (unlikely(all_pinned))
2093 spin_unlock(&this_rq->lock);
2096 schedstat_inc(sd, lb_failed[idle]);
2097 sd->nr_balance_failed++;
2099 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2101 spin_lock(&busiest->lock);
2102 if (!busiest->active_balance) {
2103 busiest->active_balance = 1;
2104 busiest->push_cpu = this_cpu;
2107 spin_unlock(&busiest->lock);
2109 wake_up_process(busiest->migration_thread);
2112 * We've kicked active balancing, reset the failure
2115 sd->nr_balance_failed = sd->cache_nice_tries+1;
2118 sd->nr_balance_failed = 0;
2120 if (likely(!active_balance)) {
2121 /* We were unbalanced, so reset the balancing interval */
2122 sd->balance_interval = sd->min_interval;
2125 * If we've begun active balancing, start to back off. This
2126 * case may not be covered by the all_pinned logic if there
2127 * is only 1 task on the busy runqueue (because we don't call
2130 if (sd->balance_interval < sd->max_interval)
2131 sd->balance_interval *= 2;
2137 spin_unlock(&this_rq->lock);
2139 schedstat_inc(sd, lb_balanced[idle]);
2141 sd->nr_balance_failed = 0;
2142 /* tune up the balancing interval */
2143 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2144 (sd->balance_interval < sd->max_interval))
2145 sd->balance_interval *= 2;
2151 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2152 * tasks if there is an imbalance.
2154 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2155 * this_rq is locked.
2157 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2158 struct sched_domain *sd)
2160 struct sched_group *group;
2161 runqueue_t *busiest = NULL;
2162 unsigned long imbalance;
2165 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2166 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2168 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2172 busiest = find_busiest_queue(group);
2174 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2178 BUG_ON(busiest == this_rq);
2180 /* Attempt to move tasks */
2181 double_lock_balance(this_rq, busiest);
2183 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2184 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2185 imbalance, sd, NEWLY_IDLE, NULL);
2187 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2189 sd->nr_balance_failed = 0;
2191 spin_unlock(&busiest->lock);
2195 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2196 sd->nr_balance_failed = 0;
2201 * idle_balance is called by schedule() if this_cpu is about to become
2202 * idle. Attempts to pull tasks from other CPUs.
2204 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2206 struct sched_domain *sd;
2208 for_each_domain(this_cpu, sd) {
2209 if (sd->flags & SD_BALANCE_NEWIDLE) {
2210 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2211 /* We've pulled tasks over so stop searching */
2219 * active_load_balance is run by migration threads. It pushes running tasks
2220 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2221 * running on each physical CPU where possible, and avoids physical /
2222 * logical imbalances.
2224 * Called with busiest_rq locked.
2226 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2228 struct sched_domain *sd;
2229 runqueue_t *target_rq;
2230 int target_cpu = busiest_rq->push_cpu;
2232 if (busiest_rq->nr_running <= 1)
2233 /* no task to move */
2236 target_rq = cpu_rq(target_cpu);
2239 * This condition is "impossible", if it occurs
2240 * we need to fix it. Originally reported by
2241 * Bjorn Helgaas on a 128-cpu setup.
2243 BUG_ON(busiest_rq == target_rq);
2245 /* move a task from busiest_rq to target_rq */
2246 double_lock_balance(busiest_rq, target_rq);
2248 /* Search for an sd spanning us and the target CPU. */
2249 for_each_domain(target_cpu, sd)
2250 if ((sd->flags & SD_LOAD_BALANCE) &&
2251 cpu_isset(busiest_cpu, sd->span))
2254 if (unlikely(sd == NULL))
2257 schedstat_inc(sd, alb_cnt);
2259 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2260 schedstat_inc(sd, alb_pushed);
2262 schedstat_inc(sd, alb_failed);
2264 spin_unlock(&target_rq->lock);
2268 * rebalance_tick will get called every timer tick, on every CPU.
2270 * It checks each scheduling domain to see if it is due to be balanced,
2271 * and initiates a balancing operation if so.
2273 * Balancing parameters are set up in arch_init_sched_domains.
2276 /* Don't have all balancing operations going off at once */
2277 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2279 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2280 enum idle_type idle)
2282 unsigned long old_load, this_load;
2283 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2284 struct sched_domain *sd;
2287 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2288 /* Update our load */
2289 for (i = 0; i < 3; i++) {
2290 unsigned long new_load = this_load;
2292 old_load = this_rq->cpu_load[i];
2294 * Round up the averaging division if load is increasing. This
2295 * prevents us from getting stuck on 9 if the load is 10, for
2298 if (new_load > old_load)
2299 new_load += scale-1;
2300 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2303 for_each_domain(this_cpu, sd) {
2304 unsigned long interval;
2306 if (!(sd->flags & SD_LOAD_BALANCE))
2309 interval = sd->balance_interval;
2310 if (idle != SCHED_IDLE)
2311 interval *= sd->busy_factor;
2313 /* scale ms to jiffies */
2314 interval = msecs_to_jiffies(interval);
2315 if (unlikely(!interval))
2318 if (j - sd->last_balance >= interval) {
2319 if (load_balance(this_cpu, this_rq, sd, idle)) {
2320 /* We've pulled tasks over so no longer idle */
2323 sd->last_balance += interval;
2329 * on UP we do not need to balance between CPUs:
2331 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2334 static inline void idle_balance(int cpu, runqueue_t *rq)
2339 static inline int wake_priority_sleeper(runqueue_t *rq)
2342 #ifdef CONFIG_SCHED_SMT
2343 spin_lock(&rq->lock);
2345 * If an SMT sibling task has been put to sleep for priority
2346 * reasons reschedule the idle task to see if it can now run.
2348 if (rq->nr_running) {
2349 resched_task(rq->idle);
2352 spin_unlock(&rq->lock);
2357 DEFINE_PER_CPU(struct kernel_stat, kstat);
2359 EXPORT_PER_CPU_SYMBOL(kstat);
2362 * This is called on clock ticks and on context switches.
2363 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2365 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2366 unsigned long long now)
2368 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2369 p->sched_time += now - last;
2373 * Return current->sched_time plus any more ns on the sched_clock
2374 * that have not yet been banked.
2376 unsigned long long current_sched_time(const task_t *tsk)
2378 unsigned long long ns;
2379 unsigned long flags;
2380 local_irq_save(flags);
2381 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2382 ns = tsk->sched_time + (sched_clock() - ns);
2383 local_irq_restore(flags);
2388 * We place interactive tasks back into the active array, if possible.
2390 * To guarantee that this does not starve expired tasks we ignore the
2391 * interactivity of a task if the first expired task had to wait more
2392 * than a 'reasonable' amount of time. This deadline timeout is
2393 * load-dependent, as the frequency of array switched decreases with
2394 * increasing number of running tasks. We also ignore the interactivity
2395 * if a better static_prio task has expired:
2397 #define EXPIRED_STARVING(rq) \
2398 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2399 (jiffies - (rq)->expired_timestamp >= \
2400 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2401 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2404 * Account user cpu time to a process.
2405 * @p: the process that the cpu time gets accounted to
2406 * @hardirq_offset: the offset to subtract from hardirq_count()
2407 * @cputime: the cpu time spent in user space since the last update
2409 void account_user_time(struct task_struct *p, cputime_t cputime)
2411 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2414 p->utime = cputime_add(p->utime, cputime);
2416 /* Add user time to cpustat. */
2417 tmp = cputime_to_cputime64(cputime);
2418 if (TASK_NICE(p) > 0)
2419 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2421 cpustat->user = cputime64_add(cpustat->user, tmp);
2425 * Account system cpu time to a process.
2426 * @p: the process that the cpu time gets accounted to
2427 * @hardirq_offset: the offset to subtract from hardirq_count()
2428 * @cputime: the cpu time spent in kernel space since the last update
2430 void account_system_time(struct task_struct *p, int hardirq_offset,
2433 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2434 runqueue_t *rq = this_rq();
2437 p->stime = cputime_add(p->stime, cputime);
2439 /* Add system time to cpustat. */
2440 tmp = cputime_to_cputime64(cputime);
2441 if (hardirq_count() - hardirq_offset)
2442 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2443 else if (softirq_count())
2444 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2445 else if (p != rq->idle)
2446 cpustat->system = cputime64_add(cpustat->system, tmp);
2447 else if (atomic_read(&rq->nr_iowait) > 0)
2448 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2450 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2451 /* Account for system time used */
2452 acct_update_integrals(p);
2453 /* Update rss highwater mark */
2454 update_mem_hiwater(p);
2458 * Account for involuntary wait time.
2459 * @p: the process from which the cpu time has been stolen
2460 * @steal: the cpu time spent in involuntary wait
2462 void account_steal_time(struct task_struct *p, cputime_t steal)
2464 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2465 cputime64_t tmp = cputime_to_cputime64(steal);
2466 runqueue_t *rq = this_rq();
2468 if (p == rq->idle) {
2469 p->stime = cputime_add(p->stime, steal);
2470 if (atomic_read(&rq->nr_iowait) > 0)
2471 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2473 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2475 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2479 * This function gets called by the timer code, with HZ frequency.
2480 * We call it with interrupts disabled.
2482 * It also gets called by the fork code, when changing the parent's
2485 void scheduler_tick(void)
2487 int cpu = smp_processor_id();
2488 runqueue_t *rq = this_rq();
2489 task_t *p = current;
2490 unsigned long long now = sched_clock();
2492 update_cpu_clock(p, rq, now);
2494 rq->timestamp_last_tick = now;
2496 if (p == rq->idle) {
2497 if (wake_priority_sleeper(rq))
2499 rebalance_tick(cpu, rq, SCHED_IDLE);
2503 /* Task might have expired already, but not scheduled off yet */
2504 if (p->array != rq->active) {
2505 set_tsk_need_resched(p);
2508 spin_lock(&rq->lock);
2510 * The task was running during this tick - update the
2511 * time slice counter. Note: we do not update a thread's
2512 * priority until it either goes to sleep or uses up its
2513 * timeslice. This makes it possible for interactive tasks
2514 * to use up their timeslices at their highest priority levels.
2518 * RR tasks need a special form of timeslice management.
2519 * FIFO tasks have no timeslices.
2521 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2522 p->time_slice = task_timeslice(p);
2523 p->first_time_slice = 0;
2524 set_tsk_need_resched(p);
2526 /* put it at the end of the queue: */
2527 requeue_task(p, rq->active);
2531 if (!--p->time_slice) {
2532 dequeue_task(p, rq->active);
2533 set_tsk_need_resched(p);
2534 p->prio = effective_prio(p);
2535 p->time_slice = task_timeslice(p);
2536 p->first_time_slice = 0;
2538 if (!rq->expired_timestamp)
2539 rq->expired_timestamp = jiffies;
2540 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2541 enqueue_task(p, rq->expired);
2542 if (p->static_prio < rq->best_expired_prio)
2543 rq->best_expired_prio = p->static_prio;
2545 enqueue_task(p, rq->active);
2548 * Prevent a too long timeslice allowing a task to monopolize
2549 * the CPU. We do this by splitting up the timeslice into
2552 * Note: this does not mean the task's timeslices expire or
2553 * get lost in any way, they just might be preempted by
2554 * another task of equal priority. (one with higher
2555 * priority would have preempted this task already.) We
2556 * requeue this task to the end of the list on this priority
2557 * level, which is in essence a round-robin of tasks with
2560 * This only applies to tasks in the interactive
2561 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2563 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2564 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2565 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2566 (p->array == rq->active)) {
2568 requeue_task(p, rq->active);
2569 set_tsk_need_resched(p);
2573 spin_unlock(&rq->lock);
2575 rebalance_tick(cpu, rq, NOT_IDLE);
2578 #ifdef CONFIG_SCHED_SMT
2579 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2581 struct sched_domain *tmp, *sd = NULL;
2582 cpumask_t sibling_map;
2585 for_each_domain(this_cpu, tmp)
2586 if (tmp->flags & SD_SHARE_CPUPOWER)
2593 * Unlock the current runqueue because we have to lock in
2594 * CPU order to avoid deadlocks. Caller knows that we might
2595 * unlock. We keep IRQs disabled.
2597 spin_unlock(&this_rq->lock);
2599 sibling_map = sd->span;
2601 for_each_cpu_mask(i, sibling_map)
2602 spin_lock(&cpu_rq(i)->lock);
2604 * We clear this CPU from the mask. This both simplifies the
2605 * inner loop and keps this_rq locked when we exit:
2607 cpu_clear(this_cpu, sibling_map);
2609 for_each_cpu_mask(i, sibling_map) {
2610 runqueue_t *smt_rq = cpu_rq(i);
2613 * If an SMT sibling task is sleeping due to priority
2614 * reasons wake it up now.
2616 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2617 resched_task(smt_rq->idle);
2620 for_each_cpu_mask(i, sibling_map)
2621 spin_unlock(&cpu_rq(i)->lock);
2623 * We exit with this_cpu's rq still held and IRQs
2628 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2630 struct sched_domain *tmp, *sd = NULL;
2631 cpumask_t sibling_map;
2632 prio_array_t *array;
2636 for_each_domain(this_cpu, tmp)
2637 if (tmp->flags & SD_SHARE_CPUPOWER)
2644 * The same locking rules and details apply as for
2645 * wake_sleeping_dependent():
2647 spin_unlock(&this_rq->lock);
2648 sibling_map = sd->span;
2649 for_each_cpu_mask(i, sibling_map)
2650 spin_lock(&cpu_rq(i)->lock);
2651 cpu_clear(this_cpu, sibling_map);
2654 * Establish next task to be run - it might have gone away because
2655 * we released the runqueue lock above:
2657 if (!this_rq->nr_running)
2659 array = this_rq->active;
2660 if (!array->nr_active)
2661 array = this_rq->expired;
2662 BUG_ON(!array->nr_active);
2664 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2667 for_each_cpu_mask(i, sibling_map) {
2668 runqueue_t *smt_rq = cpu_rq(i);
2669 task_t *smt_curr = smt_rq->curr;
2672 * If a user task with lower static priority than the
2673 * running task on the SMT sibling is trying to schedule,
2674 * delay it till there is proportionately less timeslice
2675 * left of the sibling task to prevent a lower priority
2676 * task from using an unfair proportion of the
2677 * physical cpu's resources. -ck
2679 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2680 task_timeslice(p) || rt_task(smt_curr)) &&
2681 p->mm && smt_curr->mm && !rt_task(p))
2685 * Reschedule a lower priority task on the SMT sibling,
2686 * or wake it up if it has been put to sleep for priority
2689 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2690 task_timeslice(smt_curr) || rt_task(p)) &&
2691 smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2692 (smt_curr == smt_rq->idle && smt_rq->nr_running))
2693 resched_task(smt_curr);
2696 for_each_cpu_mask(i, sibling_map)
2697 spin_unlock(&cpu_rq(i)->lock);
2701 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2705 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2711 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2713 void fastcall add_preempt_count(int val)
2718 BUG_ON((preempt_count() < 0));
2719 preempt_count() += val;
2721 * Spinlock count overflowing soon?
2723 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2725 EXPORT_SYMBOL(add_preempt_count);
2727 void fastcall sub_preempt_count(int val)
2732 BUG_ON(val > preempt_count());
2734 * Is the spinlock portion underflowing?
2736 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2737 preempt_count() -= val;
2739 EXPORT_SYMBOL(sub_preempt_count);
2744 * schedule() is the main scheduler function.
2746 asmlinkage void __sched schedule(void)
2749 task_t *prev, *next;
2751 prio_array_t *array;
2752 struct list_head *queue;
2753 unsigned long long now;
2754 unsigned long run_time;
2755 int cpu, idx, new_prio;
2758 * Test if we are atomic. Since do_exit() needs to call into
2759 * schedule() atomically, we ignore that path for now.
2760 * Otherwise, whine if we are scheduling when we should not be.
2762 if (likely(!current->exit_state)) {
2763 if (unlikely(in_atomic())) {
2764 printk(KERN_ERR "scheduling while atomic: "
2766 current->comm, preempt_count(), current->pid);
2770 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2775 release_kernel_lock(prev);
2776 need_resched_nonpreemptible:
2780 * The idle thread is not allowed to schedule!
2781 * Remove this check after it has been exercised a bit.
2783 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2784 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2788 schedstat_inc(rq, sched_cnt);
2789 now = sched_clock();
2790 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2791 run_time = now - prev->timestamp;
2792 if (unlikely((long long)(now - prev->timestamp) < 0))
2795 run_time = NS_MAX_SLEEP_AVG;
2798 * Tasks charged proportionately less run_time at high sleep_avg to
2799 * delay them losing their interactive status
2801 run_time /= (CURRENT_BONUS(prev) ? : 1);
2803 spin_lock_irq(&rq->lock);
2805 if (unlikely(prev->flags & PF_DEAD))
2806 prev->state = EXIT_DEAD;
2808 switch_count = &prev->nivcsw;
2809 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2810 switch_count = &prev->nvcsw;
2811 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2812 unlikely(signal_pending(prev))))
2813 prev->state = TASK_RUNNING;
2815 if (prev->state == TASK_UNINTERRUPTIBLE)
2816 rq->nr_uninterruptible++;
2817 deactivate_task(prev, rq);
2821 cpu = smp_processor_id();
2822 if (unlikely(!rq->nr_running)) {
2824 idle_balance(cpu, rq);
2825 if (!rq->nr_running) {
2827 rq->expired_timestamp = 0;
2828 wake_sleeping_dependent(cpu, rq);
2830 * wake_sleeping_dependent() might have released
2831 * the runqueue, so break out if we got new
2834 if (!rq->nr_running)
2838 if (dependent_sleeper(cpu, rq)) {
2843 * dependent_sleeper() releases and reacquires the runqueue
2844 * lock, hence go into the idle loop if the rq went
2847 if (unlikely(!rq->nr_running))
2852 if (unlikely(!array->nr_active)) {
2854 * Switch the active and expired arrays.
2856 schedstat_inc(rq, sched_switch);
2857 rq->active = rq->expired;
2858 rq->expired = array;
2860 rq->expired_timestamp = 0;
2861 rq->best_expired_prio = MAX_PRIO;
2864 idx = sched_find_first_bit(array->bitmap);
2865 queue = array->queue + idx;
2866 next = list_entry(queue->next, task_t, run_list);
2868 if (!rt_task(next) && next->activated > 0) {
2869 unsigned long long delta = now - next->timestamp;
2870 if (unlikely((long long)(now - next->timestamp) < 0))
2873 if (next->activated == 1)
2874 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2876 array = next->array;
2877 new_prio = recalc_task_prio(next, next->timestamp + delta);
2879 if (unlikely(next->prio != new_prio)) {
2880 dequeue_task(next, array);
2881 next->prio = new_prio;
2882 enqueue_task(next, array);
2884 requeue_task(next, array);
2886 next->activated = 0;
2888 if (next == rq->idle)
2889 schedstat_inc(rq, sched_goidle);
2891 clear_tsk_need_resched(prev);
2892 rcu_qsctr_inc(task_cpu(prev));
2894 update_cpu_clock(prev, rq, now);
2896 prev->sleep_avg -= run_time;
2897 if ((long)prev->sleep_avg <= 0)
2898 prev->sleep_avg = 0;
2899 prev->timestamp = prev->last_ran = now;
2901 sched_info_switch(prev, next);
2902 if (likely(prev != next)) {
2903 next->timestamp = now;
2908 prepare_task_switch(rq, next);
2909 prev = context_switch(rq, prev, next);
2912 * this_rq must be evaluated again because prev may have moved
2913 * CPUs since it called schedule(), thus the 'rq' on its stack
2914 * frame will be invalid.
2916 finish_task_switch(this_rq(), prev);
2918 spin_unlock_irq(&rq->lock);
2921 if (unlikely(reacquire_kernel_lock(prev) < 0))
2922 goto need_resched_nonpreemptible;
2923 preempt_enable_no_resched();
2924 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2928 EXPORT_SYMBOL(schedule);
2930 #ifdef CONFIG_PREEMPT
2932 * this is is the entry point to schedule() from in-kernel preemption
2933 * off of preempt_enable. Kernel preemptions off return from interrupt
2934 * occur there and call schedule directly.
2936 asmlinkage void __sched preempt_schedule(void)
2938 struct thread_info *ti = current_thread_info();
2939 #ifdef CONFIG_PREEMPT_BKL
2940 struct task_struct *task = current;
2941 int saved_lock_depth;
2944 * If there is a non-zero preempt_count or interrupts are disabled,
2945 * we do not want to preempt the current task. Just return..
2947 if (unlikely(ti->preempt_count || irqs_disabled()))
2951 add_preempt_count(PREEMPT_ACTIVE);
2953 * We keep the big kernel semaphore locked, but we
2954 * clear ->lock_depth so that schedule() doesnt
2955 * auto-release the semaphore:
2957 #ifdef CONFIG_PREEMPT_BKL
2958 saved_lock_depth = task->lock_depth;
2959 task->lock_depth = -1;
2962 #ifdef CONFIG_PREEMPT_BKL
2963 task->lock_depth = saved_lock_depth;
2965 sub_preempt_count(PREEMPT_ACTIVE);
2967 /* we could miss a preemption opportunity between schedule and now */
2969 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2973 EXPORT_SYMBOL(preempt_schedule);
2976 * this is is the entry point to schedule() from kernel preemption
2977 * off of irq context.
2978 * Note, that this is called and return with irqs disabled. This will
2979 * protect us against recursive calling from irq.
2981 asmlinkage void __sched preempt_schedule_irq(void)
2983 struct thread_info *ti = current_thread_info();
2984 #ifdef CONFIG_PREEMPT_BKL
2985 struct task_struct *task = current;
2986 int saved_lock_depth;
2988 /* Catch callers which need to be fixed*/
2989 BUG_ON(ti->preempt_count || !irqs_disabled());
2992 add_preempt_count(PREEMPT_ACTIVE);
2994 * We keep the big kernel semaphore locked, but we
2995 * clear ->lock_depth so that schedule() doesnt
2996 * auto-release the semaphore:
2998 #ifdef CONFIG_PREEMPT_BKL
2999 saved_lock_depth = task->lock_depth;
3000 task->lock_depth = -1;
3004 local_irq_disable();
3005 #ifdef CONFIG_PREEMPT_BKL
3006 task->lock_depth = saved_lock_depth;
3008 sub_preempt_count(PREEMPT_ACTIVE);
3010 /* we could miss a preemption opportunity between schedule and now */
3012 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3016 #endif /* CONFIG_PREEMPT */
3018 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3020 task_t *p = curr->private;
3021 return try_to_wake_up(p, mode, sync);
3024 EXPORT_SYMBOL(default_wake_function);
3027 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3028 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3029 * number) then we wake all the non-exclusive tasks and one exclusive task.
3031 * There are circumstances in which we can try to wake a task which has already
3032 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3033 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3035 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3036 int nr_exclusive, int sync, void *key)
3038 struct list_head *tmp, *next;
3040 list_for_each_safe(tmp, next, &q->task_list) {
3043 curr = list_entry(tmp, wait_queue_t, task_list);
3044 flags = curr->flags;
3045 if (curr->func(curr, mode, sync, key) &&
3046 (flags & WQ_FLAG_EXCLUSIVE) &&
3053 * __wake_up - wake up threads blocked on a waitqueue.
3055 * @mode: which threads
3056 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3057 * @key: is directly passed to the wakeup function
3059 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3060 int nr_exclusive, void *key)
3062 unsigned long flags;
3064 spin_lock_irqsave(&q->lock, flags);
3065 __wake_up_common(q, mode, nr_exclusive, 0, key);
3066 spin_unlock_irqrestore(&q->lock, flags);
3069 EXPORT_SYMBOL(__wake_up);
3072 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3074 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3076 __wake_up_common(q, mode, 1, 0, NULL);
3080 * __wake_up_sync - wake up threads blocked on a waitqueue.
3082 * @mode: which threads
3083 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3085 * The sync wakeup differs that the waker knows that it will schedule
3086 * away soon, so while the target thread will be woken up, it will not
3087 * be migrated to another CPU - ie. the two threads are 'synchronized'
3088 * with each other. This can prevent needless bouncing between CPUs.
3090 * On UP it can prevent extra preemption.
3092 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3094 unsigned long flags;
3100 if (unlikely(!nr_exclusive))
3103 spin_lock_irqsave(&q->lock, flags);
3104 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3105 spin_unlock_irqrestore(&q->lock, flags);
3107 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3109 void fastcall complete(struct completion *x)
3111 unsigned long flags;
3113 spin_lock_irqsave(&x->wait.lock, flags);
3115 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3117 spin_unlock_irqrestore(&x->wait.lock, flags);
3119 EXPORT_SYMBOL(complete);
3121 void fastcall complete_all(struct completion *x)
3123 unsigned long flags;
3125 spin_lock_irqsave(&x->wait.lock, flags);
3126 x->done += UINT_MAX/2;
3127 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3129 spin_unlock_irqrestore(&x->wait.lock, flags);
3131 EXPORT_SYMBOL(complete_all);
3133 void fastcall __sched wait_for_completion(struct completion *x)
3136 spin_lock_irq(&x->wait.lock);
3138 DECLARE_WAITQUEUE(wait, current);
3140 wait.flags |= WQ_FLAG_EXCLUSIVE;
3141 __add_wait_queue_tail(&x->wait, &wait);
3143 __set_current_state(TASK_UNINTERRUPTIBLE);
3144 spin_unlock_irq(&x->wait.lock);
3146 spin_lock_irq(&x->wait.lock);
3148 __remove_wait_queue(&x->wait, &wait);
3151 spin_unlock_irq(&x->wait.lock);
3153 EXPORT_SYMBOL(wait_for_completion);
3155 unsigned long fastcall __sched
3156 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3160 spin_lock_irq(&x->wait.lock);
3162 DECLARE_WAITQUEUE(wait, current);
3164 wait.flags |= WQ_FLAG_EXCLUSIVE;
3165 __add_wait_queue_tail(&x->wait, &wait);
3167 __set_current_state(TASK_UNINTERRUPTIBLE);
3168 spin_unlock_irq(&x->wait.lock);
3169 timeout = schedule_timeout(timeout);
3170 spin_lock_irq(&x->wait.lock);
3172 __remove_wait_queue(&x->wait, &wait);
3176 __remove_wait_queue(&x->wait, &wait);
3180 spin_unlock_irq(&x->wait.lock);
3183 EXPORT_SYMBOL(wait_for_completion_timeout);
3185 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3191 spin_lock_irq(&x->wait.lock);
3193 DECLARE_WAITQUEUE(wait, current);
3195 wait.flags |= WQ_FLAG_EXCLUSIVE;
3196 __add_wait_queue_tail(&x->wait, &wait);
3198 if (signal_pending(current)) {
3200 __remove_wait_queue(&x->wait, &wait);
3203 __set_current_state(TASK_INTERRUPTIBLE);
3204 spin_unlock_irq(&x->wait.lock);
3206 spin_lock_irq(&x->wait.lock);
3208 __remove_wait_queue(&x->wait, &wait);
3212 spin_unlock_irq(&x->wait.lock);
3216 EXPORT_SYMBOL(wait_for_completion_interruptible);
3218 unsigned long fastcall __sched
3219 wait_for_completion_interruptible_timeout(struct completion *x,
3220 unsigned long timeout)
3224 spin_lock_irq(&x->wait.lock);
3226 DECLARE_WAITQUEUE(wait, current);
3228 wait.flags |= WQ_FLAG_EXCLUSIVE;
3229 __add_wait_queue_tail(&x->wait, &wait);
3231 if (signal_pending(current)) {
3232 timeout = -ERESTARTSYS;
3233 __remove_wait_queue(&x->wait, &wait);
3236 __set_current_state(TASK_INTERRUPTIBLE);
3237 spin_unlock_irq(&x->wait.lock);
3238 timeout = schedule_timeout(timeout);
3239 spin_lock_irq(&x->wait.lock);
3241 __remove_wait_queue(&x->wait, &wait);
3245 __remove_wait_queue(&x->wait, &wait);
3249 spin_unlock_irq(&x->wait.lock);
3252 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3255 #define SLEEP_ON_VAR \
3256 unsigned long flags; \
3257 wait_queue_t wait; \
3258 init_waitqueue_entry(&wait, current);
3260 #define SLEEP_ON_HEAD \
3261 spin_lock_irqsave(&q->lock,flags); \
3262 __add_wait_queue(q, &wait); \
3263 spin_unlock(&q->lock);
3265 #define SLEEP_ON_TAIL \
3266 spin_lock_irq(&q->lock); \
3267 __remove_wait_queue(q, &wait); \
3268 spin_unlock_irqrestore(&q->lock, flags);
3270 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3274 current->state = TASK_INTERRUPTIBLE;
3281 EXPORT_SYMBOL(interruptible_sleep_on);
3283 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3287 current->state = TASK_INTERRUPTIBLE;
3290 timeout = schedule_timeout(timeout);
3296 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3298 void fastcall __sched sleep_on(wait_queue_head_t *q)
3302 current->state = TASK_UNINTERRUPTIBLE;
3309 EXPORT_SYMBOL(sleep_on);
3311 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3315 current->state = TASK_UNINTERRUPTIBLE;
3318 timeout = schedule_timeout(timeout);
3324 EXPORT_SYMBOL(sleep_on_timeout);
3326 void set_user_nice(task_t *p, long nice)
3328 unsigned long flags;
3329 prio_array_t *array;
3331 int old_prio, new_prio, delta;
3333 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3336 * We have to be careful, if called from sys_setpriority(),
3337 * the task might be in the middle of scheduling on another CPU.
3339 rq = task_rq_lock(p, &flags);
3341 * The RT priorities are set via sched_setscheduler(), but we still
3342 * allow the 'normal' nice value to be set - but as expected
3343 * it wont have any effect on scheduling until the task is
3347 p->static_prio = NICE_TO_PRIO(nice);
3352 dequeue_task(p, array);
3355 new_prio = NICE_TO_PRIO(nice);
3356 delta = new_prio - old_prio;
3357 p->static_prio = NICE_TO_PRIO(nice);
3361 enqueue_task(p, array);
3363 * If the task increased its priority or is running and
3364 * lowered its priority, then reschedule its CPU:
3366 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3367 resched_task(rq->curr);
3370 task_rq_unlock(rq, &flags);
3373 EXPORT_SYMBOL(set_user_nice);
3376 * can_nice - check if a task can reduce its nice value
3380 int can_nice(const task_t *p, const int nice)
3382 /* convert nice value [19,-20] to rlimit style value [1,40] */
3383 int nice_rlim = 20 - nice;
3384 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3385 capable(CAP_SYS_NICE));
3388 #ifdef __ARCH_WANT_SYS_NICE
3391 * sys_nice - change the priority of the current process.
3392 * @increment: priority increment
3394 * sys_setpriority is a more generic, but much slower function that
3395 * does similar things.
3397 asmlinkage long sys_nice(int increment)
3403 * Setpriority might change our priority at the same moment.
3404 * We don't have to worry. Conceptually one call occurs first
3405 * and we have a single winner.
3407 if (increment < -40)
3412 nice = PRIO_TO_NICE(current->static_prio) + increment;
3418 if (increment < 0 && !can_nice(current, nice))