4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak)) sched_clock(void)
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
138 static inline int rt_policy(int policy)
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
145 static inline int task_has_rt_policy(struct task_struct *p)
147 return rt_policy(p->policy);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
158 #ifdef CONFIG_GROUP_SCHED
160 #include <linux/cgroup.h>
164 static LIST_HEAD(task_groups);
166 /* task group related information */
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css;
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity **se;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq **cfs_rq;
177 unsigned long shares;
180 #ifdef CONFIG_RT_GROUP_SCHED
181 struct sched_rt_entity **rt_se;
182 struct rt_rq **rt_rq;
188 struct list_head list;
191 #ifdef CONFIG_FAIR_GROUP_SCHED
192 /* Default task group's sched entity on each cpu */
193 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
194 /* Default task group's cfs_rq on each cpu */
195 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
197 static struct sched_entity *init_sched_entity_p[NR_CPUS];
198 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
201 #ifdef CONFIG_RT_GROUP_SCHED
202 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
203 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
205 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
206 static struct rt_rq *init_rt_rq_p[NR_CPUS];
209 /* task_group_lock serializes add/remove of task groups and also changes to
210 * a task group's cpu shares.
212 static DEFINE_SPINLOCK(task_group_lock);
214 /* doms_cur_mutex serializes access to doms_cur[] array */
215 static DEFINE_MUTEX(doms_cur_mutex);
217 #ifdef CONFIG_FAIR_GROUP_SCHED
218 #ifdef CONFIG_USER_SCHED
219 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
221 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
224 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
227 /* Default task group.
228 * Every task in system belong to this group at bootup.
230 struct task_group init_task_group = {
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 .se = init_sched_entity_p,
233 .cfs_rq = init_cfs_rq_p,
236 #ifdef CONFIG_RT_GROUP_SCHED
237 .rt_se = init_sched_rt_entity_p,
238 .rt_rq = init_rt_rq_p,
242 /* return group to which a task belongs */
243 static inline struct task_group *task_group(struct task_struct *p)
245 struct task_group *tg;
247 #ifdef CONFIG_USER_SCHED
249 #elif defined(CONFIG_CGROUP_SCHED)
250 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
251 struct task_group, css);
253 tg = &init_task_group;
258 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
259 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
263 p->se.parent = task_group(p)->se[cpu];
266 #ifdef CONFIG_RT_GROUP_SCHED
267 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
268 p->rt.parent = task_group(p)->rt_se[cpu];
272 static inline void lock_doms_cur(void)
274 mutex_lock(&doms_cur_mutex);
277 static inline void unlock_doms_cur(void)
279 mutex_unlock(&doms_cur_mutex);
284 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
285 static inline void lock_doms_cur(void) { }
286 static inline void unlock_doms_cur(void) { }
288 #endif /* CONFIG_GROUP_SCHED */
290 /* CFS-related fields in a runqueue */
292 struct load_weight load;
293 unsigned long nr_running;
298 struct rb_root tasks_timeline;
299 struct rb_node *rb_leftmost;
300 struct rb_node *rb_load_balance_curr;
301 /* 'curr' points to currently running entity on this cfs_rq.
302 * It is set to NULL otherwise (i.e when none are currently running).
304 struct sched_entity *curr;
306 unsigned long nr_spread_over;
308 #ifdef CONFIG_FAIR_GROUP_SCHED
309 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
312 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
313 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
314 * (like users, containers etc.)
316 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
317 * list is used during load balance.
319 struct list_head leaf_cfs_rq_list;
320 struct task_group *tg; /* group that "owns" this runqueue */
324 /* Real-Time classes' related field in a runqueue: */
326 struct rt_prio_array active;
327 unsigned long rt_nr_running;
328 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
329 int highest_prio; /* highest queued rt task prio */
332 unsigned long rt_nr_migratory;
338 #ifdef CONFIG_RT_GROUP_SCHED
339 unsigned long rt_nr_boosted;
342 struct list_head leaf_rt_rq_list;
343 struct task_group *tg;
344 struct sched_rt_entity *rt_se;
351 * We add the notion of a root-domain which will be used to define per-domain
352 * variables. Each exclusive cpuset essentially defines an island domain by
353 * fully partitioning the member cpus from any other cpuset. Whenever a new
354 * exclusive cpuset is created, we also create and attach a new root-domain
364 * The "RT overload" flag: it gets set if a CPU has more than
365 * one runnable RT task.
372 * By default the system creates a single root-domain with all cpus as
373 * members (mimicking the global state we have today).
375 static struct root_domain def_root_domain;
380 * This is the main, per-CPU runqueue data structure.
382 * Locking rule: those places that want to lock multiple runqueues
383 * (such as the load balancing or the thread migration code), lock
384 * acquire operations must be ordered by ascending &runqueue.
391 * nr_running and cpu_load should be in the same cacheline because
392 * remote CPUs use both these fields when doing load calculation.
394 unsigned long nr_running;
395 #define CPU_LOAD_IDX_MAX 5
396 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
397 unsigned char idle_at_tick;
399 unsigned char in_nohz_recently;
401 /* capture load from *all* tasks on this cpu: */
402 struct load_weight load;
403 unsigned long nr_load_updates;
408 u64 rt_period_expire;
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 /* list of leaf cfs_rq on this cpu: */
413 struct list_head leaf_cfs_rq_list;
415 #ifdef CONFIG_RT_GROUP_SCHED
416 struct list_head leaf_rt_rq_list;
420 * This is part of a global counter where only the total sum
421 * over all CPUs matters. A task can increase this counter on
422 * one CPU and if it got migrated afterwards it may decrease
423 * it on another CPU. Always updated under the runqueue lock:
425 unsigned long nr_uninterruptible;
427 struct task_struct *curr, *idle;
428 unsigned long next_balance;
429 struct mm_struct *prev_mm;
431 u64 clock, prev_clock_raw;
434 unsigned int clock_warps, clock_overflows, clock_underflows;
436 unsigned int clock_deep_idle_events;
442 struct root_domain *rd;
443 struct sched_domain *sd;
445 /* For active balancing */
448 /* cpu of this runqueue: */
451 struct task_struct *migration_thread;
452 struct list_head migration_queue;
455 #ifdef CONFIG_SCHED_HRTICK
456 unsigned long hrtick_flags;
457 ktime_t hrtick_expire;
458 struct hrtimer hrtick_timer;
461 #ifdef CONFIG_SCHEDSTATS
463 struct sched_info rq_sched_info;
465 /* sys_sched_yield() stats */
466 unsigned int yld_exp_empty;
467 unsigned int yld_act_empty;
468 unsigned int yld_both_empty;
469 unsigned int yld_count;
471 /* schedule() stats */
472 unsigned int sched_switch;
473 unsigned int sched_count;
474 unsigned int sched_goidle;
476 /* try_to_wake_up() stats */
477 unsigned int ttwu_count;
478 unsigned int ttwu_local;
481 unsigned int bkl_count;
483 struct lock_class_key rq_lock_key;
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
488 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
490 rq->curr->sched_class->check_preempt_curr(rq, p);
493 static inline int cpu_of(struct rq *rq)
503 * Update the per-runqueue clock, as finegrained as the platform can give
504 * us, but without assuming monotonicity, etc.:
506 static void __update_rq_clock(struct rq *rq)
508 u64 prev_raw = rq->prev_clock_raw;
509 u64 now = sched_clock();
510 s64 delta = now - prev_raw;
511 u64 clock = rq->clock;
513 #ifdef CONFIG_SCHED_DEBUG
514 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
517 * Protect against sched_clock() occasionally going backwards:
519 if (unlikely(delta < 0)) {
524 * Catch too large forward jumps too:
526 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
527 if (clock < rq->tick_timestamp + TICK_NSEC)
528 clock = rq->tick_timestamp + TICK_NSEC;
531 rq->clock_overflows++;
533 if (unlikely(delta > rq->clock_max_delta))
534 rq->clock_max_delta = delta;
539 rq->prev_clock_raw = now;
543 static void update_rq_clock(struct rq *rq)
545 if (likely(smp_processor_id() == cpu_of(rq)))
546 __update_rq_clock(rq);
550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551 * See detach_destroy_domains: synchronize_sched for details.
553 * The domain tree of any CPU may only be accessed from within
554 * preempt-disabled sections.
556 #define for_each_domain(cpu, __sd) \
557 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
559 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
560 #define this_rq() (&__get_cpu_var(runqueues))
561 #define task_rq(p) cpu_rq(task_cpu(p))
562 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
564 unsigned long rt_needs_cpu(int cpu)
566 struct rq *rq = cpu_rq(cpu);
569 if (!rq->rt_throttled)
572 if (rq->clock > rq->rt_period_expire)
575 delta = rq->rt_period_expire - rq->clock;
576 do_div(delta, NSEC_PER_SEC / HZ);
578 return (unsigned long)delta;
582 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
584 #ifdef CONFIG_SCHED_DEBUG
585 # define const_debug __read_mostly
587 # define const_debug static const
591 * Debugging: various feature bits
594 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
595 SCHED_FEAT_WAKEUP_PREEMPT = 2,
596 SCHED_FEAT_START_DEBIT = 4,
597 SCHED_FEAT_TREE_AVG = 8,
598 SCHED_FEAT_APPROX_AVG = 16,
599 SCHED_FEAT_HRTICK = 32,
600 SCHED_FEAT_DOUBLE_TICK = 64,
603 const_debug unsigned int sysctl_sched_features =
604 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
605 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
606 SCHED_FEAT_START_DEBIT * 1 |
607 SCHED_FEAT_TREE_AVG * 0 |
608 SCHED_FEAT_APPROX_AVG * 0 |
609 SCHED_FEAT_HRTICK * 1 |
610 SCHED_FEAT_DOUBLE_TICK * 0;
612 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
615 * Number of tasks to iterate in a single balance run.
616 * Limited because this is done with IRQs disabled.
618 const_debug unsigned int sysctl_sched_nr_migrate = 32;
621 * period over which we measure -rt task cpu usage in us.
624 unsigned int sysctl_sched_rt_period = 1000000;
626 static __read_mostly int scheduler_running;
629 * part of the period that we allow rt tasks to run in us.
632 int sysctl_sched_rt_runtime = 950000;
635 * single value that denotes runtime == period, ie unlimited time.
637 #define RUNTIME_INF ((u64)~0ULL)
640 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
641 * clock constructed from sched_clock():
643 unsigned long long cpu_clock(int cpu)
645 unsigned long long now;
650 * Only call sched_clock() if the scheduler has already been
651 * initialized (some code might call cpu_clock() very early):
653 if (unlikely(!scheduler_running))
656 local_irq_save(flags);
660 local_irq_restore(flags);
664 EXPORT_SYMBOL_GPL(cpu_clock);
666 #ifndef prepare_arch_switch
667 # define prepare_arch_switch(next) do { } while (0)
669 #ifndef finish_arch_switch
670 # define finish_arch_switch(prev) do { } while (0)
673 static inline int task_current(struct rq *rq, struct task_struct *p)
675 return rq->curr == p;
678 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
679 static inline int task_running(struct rq *rq, struct task_struct *p)
681 return task_current(rq, p);
684 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
688 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
690 #ifdef CONFIG_DEBUG_SPINLOCK
691 /* this is a valid case when another task releases the spinlock */
692 rq->lock.owner = current;
695 * If we are tracking spinlock dependencies then we have to
696 * fix up the runqueue lock - which gets 'carried over' from
699 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
701 spin_unlock_irq(&rq->lock);
704 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
705 static inline int task_running(struct rq *rq, struct task_struct *p)
710 return task_current(rq, p);
714 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
718 * We can optimise this out completely for !SMP, because the
719 * SMP rebalancing from interrupt is the only thing that cares
724 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
725 spin_unlock_irq(&rq->lock);
727 spin_unlock(&rq->lock);
731 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
735 * After ->oncpu is cleared, the task can be moved to a different CPU.
736 * We must ensure this doesn't happen until the switch is completely
742 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
746 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
749 * __task_rq_lock - lock the runqueue a given task resides on.
750 * Must be called interrupts disabled.
752 static inline struct rq *__task_rq_lock(struct task_struct *p)
756 struct rq *rq = task_rq(p);
757 spin_lock(&rq->lock);
758 if (likely(rq == task_rq(p)))
760 spin_unlock(&rq->lock);
765 * task_rq_lock - lock the runqueue a given task resides on and disable
766 * interrupts. Note the ordering: we can safely lookup the task_rq without
767 * explicitly disabling preemption.
769 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
775 local_irq_save(*flags);
777 spin_lock(&rq->lock);
778 if (likely(rq == task_rq(p)))
780 spin_unlock_irqrestore(&rq->lock, *flags);
784 static void __task_rq_unlock(struct rq *rq)
787 spin_unlock(&rq->lock);
790 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
793 spin_unlock_irqrestore(&rq->lock, *flags);
797 * this_rq_lock - lock this runqueue and disable interrupts.
799 static struct rq *this_rq_lock(void)
806 spin_lock(&rq->lock);
812 * We are going deep-idle (irqs are disabled):
814 void sched_clock_idle_sleep_event(void)
816 struct rq *rq = cpu_rq(smp_processor_id());
818 spin_lock(&rq->lock);
819 __update_rq_clock(rq);
820 spin_unlock(&rq->lock);
821 rq->clock_deep_idle_events++;
823 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
826 * We just idled delta nanoseconds (called with irqs disabled):
828 void sched_clock_idle_wakeup_event(u64 delta_ns)
830 struct rq *rq = cpu_rq(smp_processor_id());
831 u64 now = sched_clock();
833 rq->idle_clock += delta_ns;
835 * Override the previous timestamp and ignore all
836 * sched_clock() deltas that occured while we idled,
837 * and use the PM-provided delta_ns to advance the
840 spin_lock(&rq->lock);
841 rq->prev_clock_raw = now;
842 rq->clock += delta_ns;
843 spin_unlock(&rq->lock);
844 touch_softlockup_watchdog();
846 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
848 static void __resched_task(struct task_struct *p, int tif_bit);
850 static inline void resched_task(struct task_struct *p)
852 __resched_task(p, TIF_NEED_RESCHED);
855 #ifdef CONFIG_SCHED_HRTICK
857 * Use HR-timers to deliver accurate preemption points.
859 * Its all a bit involved since we cannot program an hrt while holding the
860 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
863 * When we get rescheduled we reprogram the hrtick_timer outside of the
866 static inline void resched_hrt(struct task_struct *p)
868 __resched_task(p, TIF_HRTICK_RESCHED);
871 static inline void resched_rq(struct rq *rq)
875 spin_lock_irqsave(&rq->lock, flags);
876 resched_task(rq->curr);
877 spin_unlock_irqrestore(&rq->lock, flags);
881 HRTICK_SET, /* re-programm hrtick_timer */
882 HRTICK_RESET, /* not a new slice */
887 * - enabled by features
888 * - hrtimer is actually high res
890 static inline int hrtick_enabled(struct rq *rq)
892 if (!sched_feat(HRTICK))
894 return hrtimer_is_hres_active(&rq->hrtick_timer);
898 * Called to set the hrtick timer state.
900 * called with rq->lock held and irqs disabled
902 static void hrtick_start(struct rq *rq, u64 delay, int reset)
904 assert_spin_locked(&rq->lock);
907 * preempt at: now + delay
910 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
912 * indicate we need to program the timer
914 __set_bit(HRTICK_SET, &rq->hrtick_flags);
916 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
919 * New slices are called from the schedule path and don't need a
923 resched_hrt(rq->curr);
926 static void hrtick_clear(struct rq *rq)
928 if (hrtimer_active(&rq->hrtick_timer))
929 hrtimer_cancel(&rq->hrtick_timer);
933 * Update the timer from the possible pending state.
935 static void hrtick_set(struct rq *rq)
941 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
943 spin_lock_irqsave(&rq->lock, flags);
944 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
945 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
946 time = rq->hrtick_expire;
947 clear_thread_flag(TIF_HRTICK_RESCHED);
948 spin_unlock_irqrestore(&rq->lock, flags);
951 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
952 if (reset && !hrtimer_active(&rq->hrtick_timer))
959 * High-resolution timer tick.
960 * Runs from hardirq context with interrupts disabled.
962 static enum hrtimer_restart hrtick(struct hrtimer *timer)
964 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
966 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
968 spin_lock(&rq->lock);
969 __update_rq_clock(rq);
970 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
971 spin_unlock(&rq->lock);
973 return HRTIMER_NORESTART;
976 static inline void init_rq_hrtick(struct rq *rq)
978 rq->hrtick_flags = 0;
979 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
980 rq->hrtick_timer.function = hrtick;
981 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
984 void hrtick_resched(void)
989 if (!test_thread_flag(TIF_HRTICK_RESCHED))
992 local_irq_save(flags);
993 rq = cpu_rq(smp_processor_id());
995 local_irq_restore(flags);
998 static inline void hrtick_clear(struct rq *rq)
1002 static inline void hrtick_set(struct rq *rq)
1006 static inline void init_rq_hrtick(struct rq *rq)
1010 void hrtick_resched(void)
1016 * resched_task - mark a task 'to be rescheduled now'.
1018 * On UP this means the setting of the need_resched flag, on SMP it
1019 * might also involve a cross-CPU call to trigger the scheduler on
1024 #ifndef tsk_is_polling
1025 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1028 static void __resched_task(struct task_struct *p, int tif_bit)
1032 assert_spin_locked(&task_rq(p)->lock);
1034 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1037 set_tsk_thread_flag(p, tif_bit);
1040 if (cpu == smp_processor_id())
1043 /* NEED_RESCHED must be visible before we test polling */
1045 if (!tsk_is_polling(p))
1046 smp_send_reschedule(cpu);
1049 static void resched_cpu(int cpu)
1051 struct rq *rq = cpu_rq(cpu);
1052 unsigned long flags;
1054 if (!spin_trylock_irqsave(&rq->lock, flags))
1056 resched_task(cpu_curr(cpu));
1057 spin_unlock_irqrestore(&rq->lock, flags);
1060 static void __resched_task(struct task_struct *p, int tif_bit)
1062 assert_spin_locked(&task_rq(p)->lock);
1063 set_tsk_thread_flag(p, tif_bit);
1067 #if BITS_PER_LONG == 32
1068 # define WMULT_CONST (~0UL)
1070 # define WMULT_CONST (1UL << 32)
1073 #define WMULT_SHIFT 32
1076 * Shift right and round:
1078 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1080 static unsigned long
1081 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1082 struct load_weight *lw)
1086 if (unlikely(!lw->inv_weight))
1087 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1089 tmp = (u64)delta_exec * weight;
1091 * Check whether we'd overflow the 64-bit multiplication:
1093 if (unlikely(tmp > WMULT_CONST))
1094 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1097 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1099 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1102 static inline unsigned long
1103 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1105 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1108 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1113 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1119 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1120 * of tasks with abnormal "nice" values across CPUs the contribution that
1121 * each task makes to its run queue's load is weighted according to its
1122 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1123 * scaled version of the new time slice allocation that they receive on time
1127 #define WEIGHT_IDLEPRIO 2
1128 #define WMULT_IDLEPRIO (1 << 31)
1131 * Nice levels are multiplicative, with a gentle 10% change for every
1132 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1133 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1134 * that remained on nice 0.
1136 * The "10% effect" is relative and cumulative: from _any_ nice level,
1137 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1138 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1139 * If a task goes up by ~10% and another task goes down by ~10% then
1140 * the relative distance between them is ~25%.)
1142 static const int prio_to_weight[40] = {
1143 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1144 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1145 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1146 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1147 /* 0 */ 1024, 820, 655, 526, 423,
1148 /* 5 */ 335, 272, 215, 172, 137,
1149 /* 10 */ 110, 87, 70, 56, 45,
1150 /* 15 */ 36, 29, 23, 18, 15,
1154 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1156 * In cases where the weight does not change often, we can use the
1157 * precalculated inverse to speed up arithmetics by turning divisions
1158 * into multiplications:
1160 static const u32 prio_to_wmult[40] = {
1161 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1162 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1163 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1164 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1165 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1166 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1167 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1168 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1171 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1174 * runqueue iterator, to support SMP load-balancing between different
1175 * scheduling classes, without having to expose their internal data
1176 * structures to the load-balancing proper:
1178 struct rq_iterator {
1180 struct task_struct *(*start)(void *);
1181 struct task_struct *(*next)(void *);
1185 static unsigned long
1186 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1187 unsigned long max_load_move, struct sched_domain *sd,
1188 enum cpu_idle_type idle, int *all_pinned,
1189 int *this_best_prio, struct rq_iterator *iterator);
1192 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1193 struct sched_domain *sd, enum cpu_idle_type idle,
1194 struct rq_iterator *iterator);
1197 #ifdef CONFIG_CGROUP_CPUACCT
1198 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1200 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1204 static unsigned long source_load(int cpu, int type);
1205 static unsigned long target_load(int cpu, int type);
1206 static unsigned long cpu_avg_load_per_task(int cpu);
1207 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1208 #endif /* CONFIG_SMP */
1210 #include "sched_stats.h"
1211 #include "sched_idletask.c"
1212 #include "sched_fair.c"
1213 #include "sched_rt.c"
1214 #ifdef CONFIG_SCHED_DEBUG
1215 # include "sched_debug.c"
1218 #define sched_class_highest (&rt_sched_class)
1220 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1222 update_load_add(&rq->load, p->se.load.weight);
1225 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1227 update_load_sub(&rq->load, p->se.load.weight);
1230 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1236 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1242 static void set_load_weight(struct task_struct *p)
1244 if (task_has_rt_policy(p)) {
1245 p->se.load.weight = prio_to_weight[0] * 2;
1246 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1251 * SCHED_IDLE tasks get minimal weight:
1253 if (p->policy == SCHED_IDLE) {
1254 p->se.load.weight = WEIGHT_IDLEPRIO;
1255 p->se.load.inv_weight = WMULT_IDLEPRIO;
1259 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1260 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1263 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1265 sched_info_queued(p);
1266 p->sched_class->enqueue_task(rq, p, wakeup);
1270 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1272 p->sched_class->dequeue_task(rq, p, sleep);
1277 * __normal_prio - return the priority that is based on the static prio
1279 static inline int __normal_prio(struct task_struct *p)
1281 return p->static_prio;
1285 * Calculate the expected normal priority: i.e. priority
1286 * without taking RT-inheritance into account. Might be
1287 * boosted by interactivity modifiers. Changes upon fork,
1288 * setprio syscalls, and whenever the interactivity
1289 * estimator recalculates.
1291 static inline int normal_prio(struct task_struct *p)
1295 if (task_has_rt_policy(p))
1296 prio = MAX_RT_PRIO-1 - p->rt_priority;
1298 prio = __normal_prio(p);
1303 * Calculate the current priority, i.e. the priority
1304 * taken into account by the scheduler. This value might
1305 * be boosted by RT tasks, or might be boosted by
1306 * interactivity modifiers. Will be RT if the task got
1307 * RT-boosted. If not then it returns p->normal_prio.
1309 static int effective_prio(struct task_struct *p)
1311 p->normal_prio = normal_prio(p);
1313 * If we are RT tasks or we were boosted to RT priority,
1314 * keep the priority unchanged. Otherwise, update priority
1315 * to the normal priority:
1317 if (!rt_prio(p->prio))
1318 return p->normal_prio;
1323 * activate_task - move a task to the runqueue.
1325 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1327 if (task_contributes_to_load(p))
1328 rq->nr_uninterruptible--;
1330 enqueue_task(rq, p, wakeup);
1331 inc_nr_running(p, rq);
1335 * deactivate_task - remove a task from the runqueue.
1337 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1339 if (task_contributes_to_load(p))
1340 rq->nr_uninterruptible++;
1342 dequeue_task(rq, p, sleep);
1343 dec_nr_running(p, rq);
1347 * task_curr - is this task currently executing on a CPU?
1348 * @p: the task in question.
1350 inline int task_curr(const struct task_struct *p)
1352 return cpu_curr(task_cpu(p)) == p;
1355 /* Used instead of source_load when we know the type == 0 */
1356 unsigned long weighted_cpuload(const int cpu)
1358 return cpu_rq(cpu)->load.weight;
1361 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1363 set_task_rq(p, cpu);
1366 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1367 * successfuly executed on another CPU. We must ensure that updates of
1368 * per-task data have been completed by this moment.
1371 task_thread_info(p)->cpu = cpu;
1375 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1376 const struct sched_class *prev_class,
1377 int oldprio, int running)
1379 if (prev_class != p->sched_class) {
1380 if (prev_class->switched_from)
1381 prev_class->switched_from(rq, p, running);
1382 p->sched_class->switched_to(rq, p, running);
1384 p->sched_class->prio_changed(rq, p, oldprio, running);
1390 * Is this task likely cache-hot:
1393 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1397 if (p->sched_class != &fair_sched_class)
1400 if (sysctl_sched_migration_cost == -1)
1402 if (sysctl_sched_migration_cost == 0)
1405 delta = now - p->se.exec_start;
1407 return delta < (s64)sysctl_sched_migration_cost;
1411 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1413 int old_cpu = task_cpu(p);
1414 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1415 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1416 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1419 clock_offset = old_rq->clock - new_rq->clock;
1421 #ifdef CONFIG_SCHEDSTATS
1422 if (p->se.wait_start)
1423 p->se.wait_start -= clock_offset;
1424 if (p->se.sleep_start)
1425 p->se.sleep_start -= clock_offset;
1426 if (p->se.block_start)
1427 p->se.block_start -= clock_offset;
1428 if (old_cpu != new_cpu) {
1429 schedstat_inc(p, se.nr_migrations);
1430 if (task_hot(p, old_rq->clock, NULL))
1431 schedstat_inc(p, se.nr_forced2_migrations);
1434 p->se.vruntime -= old_cfsrq->min_vruntime -
1435 new_cfsrq->min_vruntime;
1437 __set_task_cpu(p, new_cpu);
1440 struct migration_req {
1441 struct list_head list;
1443 struct task_struct *task;
1446 struct completion done;
1450 * The task's runqueue lock must be held.
1451 * Returns true if you have to wait for migration thread.
1454 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1456 struct rq *rq = task_rq(p);
1459 * If the task is not on a runqueue (and not running), then
1460 * it is sufficient to simply update the task's cpu field.
1462 if (!p->se.on_rq && !task_running(rq, p)) {
1463 set_task_cpu(p, dest_cpu);
1467 init_completion(&req->done);
1469 req->dest_cpu = dest_cpu;
1470 list_add(&req->list, &rq->migration_queue);
1476 * wait_task_inactive - wait for a thread to unschedule.
1478 * The caller must ensure that the task *will* unschedule sometime soon,
1479 * else this function might spin for a *long* time. This function can't
1480 * be called with interrupts off, or it may introduce deadlock with
1481 * smp_call_function() if an IPI is sent by the same process we are
1482 * waiting to become inactive.
1484 void wait_task_inactive(struct task_struct *p)
1486 unsigned long flags;
1492 * We do the initial early heuristics without holding
1493 * any task-queue locks at all. We'll only try to get
1494 * the runqueue lock when things look like they will
1500 * If the task is actively running on another CPU
1501 * still, just relax and busy-wait without holding
1504 * NOTE! Since we don't hold any locks, it's not
1505 * even sure that "rq" stays as the right runqueue!
1506 * But we don't care, since "task_running()" will
1507 * return false if the runqueue has changed and p
1508 * is actually now running somewhere else!
1510 while (task_running(rq, p))
1514 * Ok, time to look more closely! We need the rq
1515 * lock now, to be *sure*. If we're wrong, we'll
1516 * just go back and repeat.
1518 rq = task_rq_lock(p, &flags);
1519 running = task_running(rq, p);
1520 on_rq = p->se.on_rq;
1521 task_rq_unlock(rq, &flags);
1524 * Was it really running after all now that we
1525 * checked with the proper locks actually held?
1527 * Oops. Go back and try again..
1529 if (unlikely(running)) {
1535 * It's not enough that it's not actively running,
1536 * it must be off the runqueue _entirely_, and not
1539 * So if it wa still runnable (but just not actively
1540 * running right now), it's preempted, and we should
1541 * yield - it could be a while.
1543 if (unlikely(on_rq)) {
1544 schedule_timeout_uninterruptible(1);
1549 * Ahh, all good. It wasn't running, and it wasn't
1550 * runnable, which means that it will never become
1551 * running in the future either. We're all done!
1558 * kick_process - kick a running thread to enter/exit the kernel
1559 * @p: the to-be-kicked thread
1561 * Cause a process which is running on another CPU to enter
1562 * kernel-mode, without any delay. (to get signals handled.)
1564 * NOTE: this function doesnt have to take the runqueue lock,
1565 * because all it wants to ensure is that the remote task enters
1566 * the kernel. If the IPI races and the task has been migrated
1567 * to another CPU then no harm is done and the purpose has been
1570 void kick_process(struct task_struct *p)
1576 if ((cpu != smp_processor_id()) && task_curr(p))
1577 smp_send_reschedule(cpu);
1582 * Return a low guess at the load of a migration-source cpu weighted
1583 * according to the scheduling class and "nice" value.
1585 * We want to under-estimate the load of migration sources, to
1586 * balance conservatively.
1588 static unsigned long source_load(int cpu, int type)
1590 struct rq *rq = cpu_rq(cpu);
1591 unsigned long total = weighted_cpuload(cpu);
1596 return min(rq->cpu_load[type-1], total);
1600 * Return a high guess at the load of a migration-target cpu weighted
1601 * according to the scheduling class and "nice" value.
1603 static unsigned long target_load(int cpu, int type)
1605 struct rq *rq = cpu_rq(cpu);
1606 unsigned long total = weighted_cpuload(cpu);
1611 return max(rq->cpu_load[type-1], total);
1615 * Return the average load per task on the cpu's run queue
1617 static unsigned long cpu_avg_load_per_task(int cpu)
1619 struct rq *rq = cpu_rq(cpu);
1620 unsigned long total = weighted_cpuload(cpu);
1621 unsigned long n = rq->nr_running;
1623 return n ? total / n : SCHED_LOAD_SCALE;
1627 * find_idlest_group finds and returns the least busy CPU group within the
1630 static struct sched_group *
1631 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1633 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1634 unsigned long min_load = ULONG_MAX, this_load = 0;
1635 int load_idx = sd->forkexec_idx;
1636 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1639 unsigned long load, avg_load;
1643 /* Skip over this group if it has no CPUs allowed */
1644 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1647 local_group = cpu_isset(this_cpu, group->cpumask);
1649 /* Tally up the load of all CPUs in the group */
1652 for_each_cpu_mask(i, group->cpumask) {
1653 /* Bias balancing toward cpus of our domain */
1655 load = source_load(i, load_idx);
1657 load = target_load(i, load_idx);
1662 /* Adjust by relative CPU power of the group */
1663 avg_load = sg_div_cpu_power(group,
1664 avg_load * SCHED_LOAD_SCALE);
1667 this_load = avg_load;
1669 } else if (avg_load < min_load) {
1670 min_load = avg_load;
1673 } while (group = group->next, group != sd->groups);
1675 if (!idlest || 100*this_load < imbalance*min_load)
1681 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1684 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1687 unsigned long load, min_load = ULONG_MAX;
1691 /* Traverse only the allowed CPUs */
1692 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1694 for_each_cpu_mask(i, tmp) {
1695 load = weighted_cpuload(i);
1697 if (load < min_load || (load == min_load && i == this_cpu)) {
1707 * sched_balance_self: balance the current task (running on cpu) in domains
1708 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1711 * Balance, ie. select the least loaded group.
1713 * Returns the target CPU number, or the same CPU if no balancing is needed.
1715 * preempt must be disabled.
1717 static int sched_balance_self(int cpu, int flag)
1719 struct task_struct *t = current;
1720 struct sched_domain *tmp, *sd = NULL;
1722 for_each_domain(cpu, tmp) {
1724 * If power savings logic is enabled for a domain, stop there.
1726 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1728 if (tmp->flags & flag)
1734 struct sched_group *group;
1735 int new_cpu, weight;
1737 if (!(sd->flags & flag)) {
1743 group = find_idlest_group(sd, t, cpu);
1749 new_cpu = find_idlest_cpu(group, t, cpu);
1750 if (new_cpu == -1 || new_cpu == cpu) {
1751 /* Now try balancing at a lower domain level of cpu */
1756 /* Now try balancing at a lower domain level of new_cpu */
1759 weight = cpus_weight(span);
1760 for_each_domain(cpu, tmp) {
1761 if (weight <= cpus_weight(tmp->span))
1763 if (tmp->flags & flag)
1766 /* while loop will break here if sd == NULL */
1772 #endif /* CONFIG_SMP */
1775 * try_to_wake_up - wake up a thread
1776 * @p: the to-be-woken-up thread
1777 * @state: the mask of task states that can be woken
1778 * @sync: do a synchronous wakeup?
1780 * Put it on the run-queue if it's not already there. The "current"
1781 * thread is always on the run-queue (except when the actual
1782 * re-schedule is in progress), and as such you're allowed to do
1783 * the simpler "current->state = TASK_RUNNING" to mark yourself
1784 * runnable without the overhead of this.
1786 * returns failure only if the task is already active.
1788 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1790 int cpu, orig_cpu, this_cpu, success = 0;
1791 unsigned long flags;
1796 rq = task_rq_lock(p, &flags);
1797 old_state = p->state;
1798 if (!(old_state & state))
1806 this_cpu = smp_processor_id();
1809 if (unlikely(task_running(rq, p)))
1812 cpu = p->sched_class->select_task_rq(p, sync);
1813 if (cpu != orig_cpu) {
1814 set_task_cpu(p, cpu);
1815 task_rq_unlock(rq, &flags);
1816 /* might preempt at this point */
1817 rq = task_rq_lock(p, &flags);
1818 old_state = p->state;
1819 if (!(old_state & state))
1824 this_cpu = smp_processor_id();
1828 #ifdef CONFIG_SCHEDSTATS
1829 schedstat_inc(rq, ttwu_count);
1830 if (cpu == this_cpu)
1831 schedstat_inc(rq, ttwu_local);
1833 struct sched_domain *sd;
1834 for_each_domain(this_cpu, sd) {
1835 if (cpu_isset(cpu, sd->span)) {
1836 schedstat_inc(sd, ttwu_wake_remote);
1844 #endif /* CONFIG_SMP */
1845 schedstat_inc(p, se.nr_wakeups);
1847 schedstat_inc(p, se.nr_wakeups_sync);
1848 if (orig_cpu != cpu)
1849 schedstat_inc(p, se.nr_wakeups_migrate);
1850 if (cpu == this_cpu)
1851 schedstat_inc(p, se.nr_wakeups_local);
1853 schedstat_inc(p, se.nr_wakeups_remote);
1854 update_rq_clock(rq);
1855 activate_task(rq, p, 1);
1856 check_preempt_curr(rq, p);
1860 p->state = TASK_RUNNING;
1862 if (p->sched_class->task_wake_up)
1863 p->sched_class->task_wake_up(rq, p);
1866 task_rq_unlock(rq, &flags);
1871 int wake_up_process(struct task_struct *p)
1873 return try_to_wake_up(p, TASK_ALL, 0);
1875 EXPORT_SYMBOL(wake_up_process);
1877 int wake_up_state(struct task_struct *p, unsigned int state)
1879 return try_to_wake_up(p, state, 0);
1883 * Perform scheduler related setup for a newly forked process p.
1884 * p is forked by current.
1886 * __sched_fork() is basic setup used by init_idle() too:
1888 static void __sched_fork(struct task_struct *p)
1890 p->se.exec_start = 0;
1891 p->se.sum_exec_runtime = 0;
1892 p->se.prev_sum_exec_runtime = 0;
1894 #ifdef CONFIG_SCHEDSTATS
1895 p->se.wait_start = 0;
1896 p->se.sum_sleep_runtime = 0;
1897 p->se.sleep_start = 0;
1898 p->se.block_start = 0;
1899 p->se.sleep_max = 0;
1900 p->se.block_max = 0;
1902 p->se.slice_max = 0;
1906 INIT_LIST_HEAD(&p->rt.run_list);
1909 #ifdef CONFIG_PREEMPT_NOTIFIERS
1910 INIT_HLIST_HEAD(&p->preempt_notifiers);
1914 * We mark the process as running here, but have not actually
1915 * inserted it onto the runqueue yet. This guarantees that
1916 * nobody will actually run it, and a signal or other external
1917 * event cannot wake it up and insert it on the runqueue either.
1919 p->state = TASK_RUNNING;
1923 * fork()/clone()-time setup:
1925 void sched_fork(struct task_struct *p, int clone_flags)
1927 int cpu = get_cpu();
1932 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1934 set_task_cpu(p, cpu);
1937 * Make sure we do not leak PI boosting priority to the child:
1939 p->prio = current->normal_prio;
1940 if (!rt_prio(p->prio))
1941 p->sched_class = &fair_sched_class;
1943 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1944 if (likely(sched_info_on()))
1945 memset(&p->sched_info, 0, sizeof(p->sched_info));
1947 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1950 #ifdef CONFIG_PREEMPT
1951 /* Want to start with kernel preemption disabled. */
1952 task_thread_info(p)->preempt_count = 1;
1958 * wake_up_new_task - wake up a newly created task for the first time.
1960 * This function will do some initial scheduler statistics housekeeping
1961 * that must be done for every newly created context, then puts the task
1962 * on the runqueue and wakes it.
1964 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1966 unsigned long flags;
1969 rq = task_rq_lock(p, &flags);
1970 BUG_ON(p->state != TASK_RUNNING);
1971 update_rq_clock(rq);
1973 p->prio = effective_prio(p);
1975 if (!p->sched_class->task_new || !current->se.on_rq) {
1976 activate_task(rq, p, 0);
1979 * Let the scheduling class do new task startup
1980 * management (if any):
1982 p->sched_class->task_new(rq, p);
1983 inc_nr_running(p, rq);
1985 check_preempt_curr(rq, p);
1987 if (p->sched_class->task_wake_up)
1988 p->sched_class->task_wake_up(rq, p);
1990 task_rq_unlock(rq, &flags);
1993 #ifdef CONFIG_PREEMPT_NOTIFIERS
1996 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1997 * @notifier: notifier struct to register
1999 void preempt_notifier_register(struct preempt_notifier *notifier)
2001 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2003 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2006 * preempt_notifier_unregister - no longer interested in preemption notifications
2007 * @notifier: notifier struct to unregister
2009 * This is safe to call from within a preemption notifier.
2011 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2013 hlist_del(¬ifier->link);
2015 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2017 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2019 struct preempt_notifier *notifier;
2020 struct hlist_node *node;
2022 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2023 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2027 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2028 struct task_struct *next)
2030 struct preempt_notifier *notifier;
2031 struct hlist_node *node;
2033 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2034 notifier->ops->sched_out(notifier, next);
2039 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2044 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2045 struct task_struct *next)
2052 * prepare_task_switch - prepare to switch tasks
2053 * @rq: the runqueue preparing to switch
2054 * @prev: the current task that is being switched out
2055 * @next: the task we are going to switch to.
2057 * This is called with the rq lock held and interrupts off. It must
2058 * be paired with a subsequent finish_task_switch after the context
2061 * prepare_task_switch sets up locking and calls architecture specific
2065 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2066 struct task_struct *next)
2068 fire_sched_out_preempt_notifiers(prev, next);
2069 prepare_lock_switch(rq, next);
2070 prepare_arch_switch(next);
2074 * finish_task_switch - clean up after a task-switch
2075 * @rq: runqueue associated with task-switch
2076 * @prev: the thread we just switched away from.
2078 * finish_task_switch must be called after the context switch, paired
2079 * with a prepare_task_switch call before the context switch.
2080 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2081 * and do any other architecture-specific cleanup actions.
2083 * Note that we may have delayed dropping an mm in context_switch(). If
2084 * so, we finish that here outside of the runqueue lock. (Doing it
2085 * with the lock held can cause deadlocks; see schedule() for
2088 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2089 __releases(rq->lock)
2091 struct mm_struct *mm = rq->prev_mm;
2097 * A task struct has one reference for the use as "current".
2098 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2099 * schedule one last time. The schedule call will never return, and
2100 * the scheduled task must drop that reference.
2101 * The test for TASK_DEAD must occur while the runqueue locks are
2102 * still held, otherwise prev could be scheduled on another cpu, die
2103 * there before we look at prev->state, and then the reference would
2105 * Manfred Spraul <manfred@colorfullife.com>
2107 prev_state = prev->state;
2108 finish_arch_switch(prev);
2109 finish_lock_switch(rq, prev);
2111 if (current->sched_class->post_schedule)
2112 current->sched_class->post_schedule(rq);
2115 fire_sched_in_preempt_notifiers(current);
2118 if (unlikely(prev_state == TASK_DEAD)) {
2120 * Remove function-return probe instances associated with this
2121 * task and put them back on the free list.
2123 kprobe_flush_task(prev);
2124 put_task_struct(prev);
2129 * schedule_tail - first thing a freshly forked thread must call.
2130 * @prev: the thread we just switched away from.
2132 asmlinkage void schedule_tail(struct task_struct *prev)
2133 __releases(rq->lock)
2135 struct rq *rq = this_rq();
2137 finish_task_switch(rq, prev);
2138 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2139 /* In this case, finish_task_switch does not reenable preemption */
2142 if (current->set_child_tid)
2143 put_user(task_pid_vnr(current), current->set_child_tid);
2147 * context_switch - switch to the new MM and the new
2148 * thread's register state.
2151 context_switch(struct rq *rq, struct task_struct *prev,
2152 struct task_struct *next)
2154 struct mm_struct *mm, *oldmm;
2156 prepare_task_switch(rq, prev, next);
2158 oldmm = prev->active_mm;
2160 * For paravirt, this is coupled with an exit in switch_to to
2161 * combine the page table reload and the switch backend into
2164 arch_enter_lazy_cpu_mode();
2166 if (unlikely(!mm)) {
2167 next->active_mm = oldmm;
2168 atomic_inc(&oldmm->mm_count);
2169 enter_lazy_tlb(oldmm, next);
2171 switch_mm(oldmm, mm, next);
2173 if (unlikely(!prev->mm)) {
2174 prev->active_mm = NULL;
2175 rq->prev_mm = oldmm;
2178 * Since the runqueue lock will be released by the next
2179 * task (which is an invalid locking op but in the case
2180 * of the scheduler it's an obvious special-case), so we
2181 * do an early lockdep release here:
2183 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2184 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2187 /* Here we just switch the register state and the stack. */
2188 switch_to(prev, next, prev);
2192 * this_rq must be evaluated again because prev may have moved
2193 * CPUs since it called schedule(), thus the 'rq' on its stack
2194 * frame will be invalid.
2196 finish_task_switch(this_rq(), prev);
2200 * nr_running, nr_uninterruptible and nr_context_switches:
2202 * externally visible scheduler statistics: current number of runnable
2203 * threads, current number of uninterruptible-sleeping threads, total
2204 * number of context switches performed since bootup.
2206 unsigned long nr_running(void)
2208 unsigned long i, sum = 0;
2210 for_each_online_cpu(i)
2211 sum += cpu_rq(i)->nr_running;
2216 unsigned long nr_uninterruptible(void)
2218 unsigned long i, sum = 0;
2220 for_each_possible_cpu(i)
2221 sum += cpu_rq(i)->nr_uninterruptible;
2224 * Since we read the counters lockless, it might be slightly
2225 * inaccurate. Do not allow it to go below zero though:
2227 if (unlikely((long)sum < 0))
2233 unsigned long long nr_context_switches(void)
2236 unsigned long long sum = 0;
2238 for_each_possible_cpu(i)
2239 sum += cpu_rq(i)->nr_switches;
2244 unsigned long nr_iowait(void)
2246 unsigned long i, sum = 0;
2248 for_each_possible_cpu(i)
2249 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2254 unsigned long nr_active(void)
2256 unsigned long i, running = 0, uninterruptible = 0;
2258 for_each_online_cpu(i) {
2259 running += cpu_rq(i)->nr_running;
2260 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2263 if (unlikely((long)uninterruptible < 0))
2264 uninterruptible = 0;
2266 return running + uninterruptible;
2270 * Update rq->cpu_load[] statistics. This function is usually called every
2271 * scheduler tick (TICK_NSEC).
2273 static void update_cpu_load(struct rq *this_rq)
2275 unsigned long this_load = this_rq->load.weight;
2278 this_rq->nr_load_updates++;
2280 /* Update our load: */
2281 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2282 unsigned long old_load, new_load;
2284 /* scale is effectively 1 << i now, and >> i divides by scale */
2286 old_load = this_rq->cpu_load[i];
2287 new_load = this_load;
2289 * Round up the averaging division if load is increasing. This
2290 * prevents us from getting stuck on 9 if the load is 10, for
2293 if (new_load > old_load)
2294 new_load += scale-1;
2295 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2302 * double_rq_lock - safely lock two runqueues
2304 * Note this does not disable interrupts like task_rq_lock,
2305 * you need to do so manually before calling.
2307 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2308 __acquires(rq1->lock)
2309 __acquires(rq2->lock)
2311 BUG_ON(!irqs_disabled());
2313 spin_lock(&rq1->lock);
2314 __acquire(rq2->lock); /* Fake it out ;) */
2317 spin_lock(&rq1->lock);
2318 spin_lock(&rq2->lock);
2320 spin_lock(&rq2->lock);
2321 spin_lock(&rq1->lock);
2324 update_rq_clock(rq1);
2325 update_rq_clock(rq2);
2329 * double_rq_unlock - safely unlock two runqueues
2331 * Note this does not restore interrupts like task_rq_unlock,
2332 * you need to do so manually after calling.
2334 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2335 __releases(rq1->lock)
2336 __releases(rq2->lock)
2338 spin_unlock(&rq1->lock);
2340 spin_unlock(&rq2->lock);
2342 __release(rq2->lock);
2346 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2348 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2349 __releases(this_rq->lock)
2350 __acquires(busiest->lock)
2351 __acquires(this_rq->lock)
2355 if (unlikely(!irqs_disabled())) {
2356 /* printk() doesn't work good under rq->lock */
2357 spin_unlock(&this_rq->lock);
2360 if (unlikely(!spin_trylock(&busiest->lock))) {
2361 if (busiest < this_rq) {
2362 spin_unlock(&this_rq->lock);
2363 spin_lock(&busiest->lock);
2364 spin_lock(&this_rq->lock);
2367 spin_lock(&busiest->lock);
2373 * If dest_cpu is allowed for this process, migrate the task to it.
2374 * This is accomplished by forcing the cpu_allowed mask to only
2375 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2376 * the cpu_allowed mask is restored.
2378 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2380 struct migration_req req;
2381 unsigned long flags;
2384 rq = task_rq_lock(p, &flags);
2385 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2386 || unlikely(cpu_is_offline(dest_cpu)))
2389 /* force the process onto the specified CPU */
2390 if (migrate_task(p, dest_cpu, &req)) {
2391 /* Need to wait for migration thread (might exit: take ref). */
2392 struct task_struct *mt = rq->migration_thread;
2394 get_task_struct(mt);
2395 task_rq_unlock(rq, &flags);
2396 wake_up_process(mt);
2397 put_task_struct(mt);
2398 wait_for_completion(&req.done);
2403 task_rq_unlock(rq, &flags);
2407 * sched_exec - execve() is a valuable balancing opportunity, because at
2408 * this point the task has the smallest effective memory and cache footprint.
2410 void sched_exec(void)
2412 int new_cpu, this_cpu = get_cpu();
2413 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2415 if (new_cpu != this_cpu)
2416 sched_migrate_task(current, new_cpu);
2420 * pull_task - move a task from a remote runqueue to the local runqueue.
2421 * Both runqueues must be locked.
2423 static void pull_task(struct rq *src_rq, struct task_struct *p,
2424 struct rq *this_rq, int this_cpu)
2426 deactivate_task(src_rq, p, 0);
2427 set_task_cpu(p, this_cpu);
2428 activate_task(this_rq, p, 0);
2430 * Note that idle threads have a prio of MAX_PRIO, for this test
2431 * to be always true for them.
2433 check_preempt_curr(this_rq, p);
2437 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2440 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2441 struct sched_domain *sd, enum cpu_idle_type idle,
2445 * We do not migrate tasks that are:
2446 * 1) running (obviously), or
2447 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2448 * 3) are cache-hot on their current CPU.
2450 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2451 schedstat_inc(p, se.nr_failed_migrations_affine);
2456 if (task_running(rq, p)) {
2457 schedstat_inc(p, se.nr_failed_migrations_running);
2462 * Aggressive migration if:
2463 * 1) task is cache cold, or
2464 * 2) too many balance attempts have failed.
2467 if (!task_hot(p, rq->clock, sd) ||
2468 sd->nr_balance_failed > sd->cache_nice_tries) {
2469 #ifdef CONFIG_SCHEDSTATS
2470 if (task_hot(p, rq->clock, sd)) {
2471 schedstat_inc(sd, lb_hot_gained[idle]);
2472 schedstat_inc(p, se.nr_forced_migrations);
2478 if (task_hot(p, rq->clock, sd)) {
2479 schedstat_inc(p, se.nr_failed_migrations_hot);
2485 static unsigned long
2486 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2487 unsigned long max_load_move, struct sched_domain *sd,
2488 enum cpu_idle_type idle, int *all_pinned,
2489 int *this_best_prio, struct rq_iterator *iterator)
2491 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2492 struct task_struct *p;
2493 long rem_load_move = max_load_move;
2495 if (max_load_move == 0)
2501 * Start the load-balancing iterator:
2503 p = iterator->start(iterator->arg);
2505 if (!p || loops++ > sysctl_sched_nr_migrate)
2508 * To help distribute high priority tasks across CPUs we don't
2509 * skip a task if it will be the highest priority task (i.e. smallest
2510 * prio value) on its new queue regardless of its load weight
2512 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2513 SCHED_LOAD_SCALE_FUZZ;
2514 if ((skip_for_load && p->prio >= *this_best_prio) ||
2515 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2516 p = iterator->next(iterator->arg);
2520 pull_task(busiest, p, this_rq, this_cpu);
2522 rem_load_move -= p->se.load.weight;
2525 * We only want to steal up to the prescribed amount of weighted load.
2527 if (rem_load_move > 0) {
2528 if (p->prio < *this_best_prio)
2529 *this_best_prio = p->prio;
2530 p = iterator->next(iterator->arg);
2535 * Right now, this is one of only two places pull_task() is called,
2536 * so we can safely collect pull_task() stats here rather than
2537 * inside pull_task().
2539 schedstat_add(sd, lb_gained[idle], pulled);
2542 *all_pinned = pinned;
2544 return max_load_move - rem_load_move;
2548 * move_tasks tries to move up to max_load_move weighted load from busiest to
2549 * this_rq, as part of a balancing operation within domain "sd".
2550 * Returns 1 if successful and 0 otherwise.
2552 * Called with both runqueues locked.
2554 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2555 unsigned long max_load_move,
2556 struct sched_domain *sd, enum cpu_idle_type idle,
2559 const struct sched_class *class = sched_class_highest;
2560 unsigned long total_load_moved = 0;
2561 int this_best_prio = this_rq->curr->prio;
2565 class->load_balance(this_rq, this_cpu, busiest,
2566 max_load_move - total_load_moved,
2567 sd, idle, all_pinned, &this_best_prio);
2568 class = class->next;
2569 } while (class && max_load_move > total_load_moved);
2571 return total_load_moved > 0;
2575 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2576 struct sched_domain *sd, enum cpu_idle_type idle,
2577 struct rq_iterator *iterator)
2579 struct task_struct *p = iterator->start(iterator->arg);
2583 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2584 pull_task(busiest, p, this_rq, this_cpu);
2586 * Right now, this is only the second place pull_task()
2587 * is called, so we can safely collect pull_task()
2588 * stats here rather than inside pull_task().
2590 schedstat_inc(sd, lb_gained[idle]);
2594 p = iterator->next(iterator->arg);
2601 * move_one_task tries to move exactly one task from busiest to this_rq, as
2602 * part of active balancing operations within "domain".
2603 * Returns 1 if successful and 0 otherwise.
2605 * Called with both runqueues locked.
2607 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2608 struct sched_domain *sd, enum cpu_idle_type idle)
2610 const struct sched_class *class;
2612 for (class = sched_class_highest; class; class = class->next)
2613 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2620 * find_busiest_group finds and returns the busiest CPU group within the
2621 * domain. It calculates and returns the amount of weighted load which
2622 * should be moved to restore balance via the imbalance parameter.
2624 static struct sched_group *
2625 find_busiest_group(struct sched_domain *sd, int this_cpu,
2626 unsigned long *imbalance, enum cpu_idle_type idle,
2627 int *sd_idle, cpumask_t *cpus, int *balance)
2629 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2630 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2631 unsigned long max_pull;
2632 unsigned long busiest_load_per_task, busiest_nr_running;
2633 unsigned long this_load_per_task, this_nr_running;
2634 int load_idx, group_imb = 0;
2635 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2636 int power_savings_balance = 1;
2637 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2638 unsigned long min_nr_running = ULONG_MAX;
2639 struct sched_group *group_min = NULL, *group_leader = NULL;
2642 max_load = this_load = total_load = total_pwr = 0;
2643 busiest_load_per_task = busiest_nr_running = 0;
2644 this_load_per_task = this_nr_running = 0;
2645 if (idle == CPU_NOT_IDLE)
2646 load_idx = sd->busy_idx;
2647 else if (idle == CPU_NEWLY_IDLE)
2648 load_idx = sd->newidle_idx;
2650 load_idx = sd->idle_idx;
2653 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2656 int __group_imb = 0;
2657 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2658 unsigned long sum_nr_running, sum_weighted_load;
2660 local_group = cpu_isset(this_cpu, group->cpumask);
2663 balance_cpu = first_cpu(group->cpumask);
2665 /* Tally up the load of all CPUs in the group */
2666 sum_weighted_load = sum_nr_running = avg_load = 0;
2668 min_cpu_load = ~0UL;
2670 for_each_cpu_mask(i, group->cpumask) {
2673 if (!cpu_isset(i, *cpus))
2678 if (*sd_idle && rq->nr_running)
2681 /* Bias balancing toward cpus of our domain */
2683 if (idle_cpu(i) && !first_idle_cpu) {
2688 load = target_load(i, load_idx);
2690 load = source_load(i, load_idx);
2691 if (load > max_cpu_load)
2692 max_cpu_load = load;
2693 if (min_cpu_load > load)
2694 min_cpu_load = load;
2698 sum_nr_running += rq->nr_running;
2699 sum_weighted_load += weighted_cpuload(i);
2703 * First idle cpu or the first cpu(busiest) in this sched group
2704 * is eligible for doing load balancing at this and above
2705 * domains. In the newly idle case, we will allow all the cpu's
2706 * to do the newly idle load balance.
2708 if (idle != CPU_NEWLY_IDLE && local_group &&
2709 balance_cpu != this_cpu && balance) {
2714 total_load += avg_load;
2715 total_pwr += group->__cpu_power;
2717 /* Adjust by relative CPU power of the group */
2718 avg_load = sg_div_cpu_power(group,
2719 avg_load * SCHED_LOAD_SCALE);
2721 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2724 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2727 this_load = avg_load;
2729 this_nr_running = sum_nr_running;
2730 this_load_per_task = sum_weighted_load;
2731 } else if (avg_load > max_load &&
2732 (sum_nr_running > group_capacity || __group_imb)) {
2733 max_load = avg_load;
2735 busiest_nr_running = sum_nr_running;
2736 busiest_load_per_task = sum_weighted_load;
2737 group_imb = __group_imb;
2740 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2742 * Busy processors will not participate in power savings
2745 if (idle == CPU_NOT_IDLE ||
2746 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2750 * If the local group is idle or completely loaded
2751 * no need to do power savings balance at this domain
2753 if (local_group && (this_nr_running >= group_capacity ||
2755 power_savings_balance = 0;
2758 * If a group is already running at full capacity or idle,
2759 * don't include that group in power savings calculations
2761 if (!power_savings_balance || sum_nr_running >= group_capacity
2766 * Calculate the group which has the least non-idle load.
2767 * This is the group from where we need to pick up the load
2770 if ((sum_nr_running < min_nr_running) ||
2771 (sum_nr_running == min_nr_running &&
2772 first_cpu(group->cpumask) <
2773 first_cpu(group_min->cpumask))) {
2775 min_nr_running = sum_nr_running;
2776 min_load_per_task = sum_weighted_load /
2781 * Calculate the group which is almost near its
2782 * capacity but still has some space to pick up some load
2783 * from other group and save more power
2785 if (sum_nr_running <= group_capacity - 1) {
2786 if (sum_nr_running > leader_nr_running ||
2787 (sum_nr_running == leader_nr_running &&
2788 first_cpu(group->cpumask) >
2789 first_cpu(group_leader->cpumask))) {
2790 group_leader = group;
2791 leader_nr_running = sum_nr_running;
2796 group = group->next;
2797 } while (group != sd->groups);
2799 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2802 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2804 if (this_load >= avg_load ||
2805 100*max_load <= sd->imbalance_pct*this_load)
2808 busiest_load_per_task /= busiest_nr_running;
2810 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2813 * We're trying to get all the cpus to the average_load, so we don't
2814 * want to push ourselves above the average load, nor do we wish to
2815 * reduce the max loaded cpu below the average load, as either of these
2816 * actions would just result in more rebalancing later, and ping-pong
2817 * tasks around. Thus we look for the minimum possible imbalance.
2818 * Negative imbalances (*we* are more loaded than anyone else) will
2819 * be counted as no imbalance for these purposes -- we can't fix that
2820 * by pulling tasks to us. Be careful of negative numbers as they'll
2821 * appear as very large values with unsigned longs.
2823 if (max_load <= busiest_load_per_task)
2827 * In the presence of smp nice balancing, certain scenarios can have
2828 * max load less than avg load(as we skip the groups at or below
2829 * its cpu_power, while calculating max_load..)
2831 if (max_load < avg_load) {
2833 goto small_imbalance;
2836 /* Don't want to pull so many tasks that a group would go idle */
2837 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2839 /* How much load to actually move to equalise the imbalance */
2840 *imbalance = min(max_pull * busiest->__cpu_power,
2841 (avg_load - this_load) * this->__cpu_power)
2845 * if *imbalance is less than the average load per runnable task
2846 * there is no gaurantee that any tasks will be moved so we'll have
2847 * a think about bumping its value to force at least one task to be
2850 if (*imbalance < busiest_load_per_task) {
2851 unsigned long tmp, pwr_now, pwr_move;
2855 pwr_move = pwr_now = 0;
2857 if (this_nr_running) {
2858 this_load_per_task /= this_nr_running;
2859 if (busiest_load_per_task > this_load_per_task)
2862 this_load_per_task = SCHED_LOAD_SCALE;
2864 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2865 busiest_load_per_task * imbn) {
2866 *imbalance = busiest_load_per_task;
2871 * OK, we don't have enough imbalance to justify moving tasks,
2872 * however we may be able to increase total CPU power used by
2876 pwr_now += busiest->__cpu_power *
2877 min(busiest_load_per_task, max_load);
2878 pwr_now += this->__cpu_power *
2879 min(this_load_per_task, this_load);
2880 pwr_now /= SCHED_LOAD_SCALE;
2882 /* Amount of load we'd subtract */
2883 tmp = sg_div_cpu_power(busiest,
2884 busiest_load_per_task * SCHED_LOAD_SCALE);
2886 pwr_move += busiest->__cpu_power *
2887 min(busiest_load_per_task, max_load - tmp);
2889 /* Amount of load we'd add */
2890 if (max_load * busiest->__cpu_power <
2891 busiest_load_per_task * SCHED_LOAD_SCALE)
2892 tmp = sg_div_cpu_power(this,
2893 max_load * busiest->__cpu_power);
2895 tmp = sg_div_cpu_power(this,
2896 busiest_load_per_task * SCHED_LOAD_SCALE);
2897 pwr_move += this->__cpu_power *
2898 min(this_load_per_task, this_load + tmp);
2899 pwr_move /= SCHED_LOAD_SCALE;
2901 /* Move if we gain throughput */
2902 if (pwr_move > pwr_now)
2903 *imbalance = busiest_load_per_task;
2909 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2910 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2913 if (this == group_leader && group_leader != group_min) {
2914 *imbalance = min_load_per_task;
2924 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2927 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2928 unsigned long imbalance, cpumask_t *cpus)
2930 struct rq *busiest = NULL, *rq;
2931 unsigned long max_load = 0;
2934 for_each_cpu_mask(i, group->cpumask) {
2937 if (!cpu_isset(i, *cpus))
2941 wl = weighted_cpuload(i);
2943 if (rq->nr_running == 1 && wl > imbalance)
2946 if (wl > max_load) {
2956 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2957 * so long as it is large enough.
2959 #define MAX_PINNED_INTERVAL 512
2962 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2963 * tasks if there is an imbalance.
2965 static int load_balance(int this_cpu, struct rq *this_rq,
2966 struct sched_domain *sd, enum cpu_idle_type idle,
2969 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2970 struct sched_group *group;
2971 unsigned long imbalance;
2973 cpumask_t cpus = CPU_MASK_ALL;
2974 unsigned long flags;
2977 * When power savings policy is enabled for the parent domain, idle
2978 * sibling can pick up load irrespective of busy siblings. In this case,
2979 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2980 * portraying it as CPU_NOT_IDLE.
2982 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2983 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2986 schedstat_inc(sd, lb_count[idle]);
2989 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2996 schedstat_inc(sd, lb_nobusyg[idle]);
3000 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3002 schedstat_inc(sd, lb_nobusyq[idle]);
3006 BUG_ON(busiest == this_rq);
3008 schedstat_add(sd, lb_imbalance[idle], imbalance);
3011 if (busiest->nr_running > 1) {
3013 * Attempt to move tasks. If find_busiest_group has found
3014 * an imbalance but busiest->nr_running <= 1, the group is
3015 * still unbalanced. ld_moved simply stays zero, so it is
3016 * correctly treated as an imbalance.
3018 local_irq_save(flags);
3019 double_rq_lock(this_rq, busiest);
3020 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3021 imbalance, sd, idle, &all_pinned);
3022 double_rq_unlock(this_rq, busiest);
3023 local_irq_restore(flags);
3026 * some other cpu did the load balance for us.
3028 if (ld_moved && this_cpu != smp_processor_id())
3029 resched_cpu(this_cpu);
3031 /* All tasks on this runqueue were pinned by CPU affinity */
3032 if (unlikely(all_pinned)) {
3033 cpu_clear(cpu_of(busiest), cpus);
3034 if (!cpus_empty(cpus))
3041 schedstat_inc(sd, lb_failed[idle]);
3042 sd->nr_balance_failed++;
3044 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3046 spin_lock_irqsave(&busiest->lock, flags);
3048 /* don't kick the migration_thread, if the curr
3049 * task on busiest cpu can't be moved to this_cpu
3051 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3052 spin_unlock_irqrestore(&busiest->lock, flags);
3054 goto out_one_pinned;
3057 if (!busiest->active_balance) {
3058 busiest->active_balance = 1;
3059 busiest->push_cpu = this_cpu;
3062 spin_unlock_irqrestore(&busiest->lock, flags);
3064 wake_up_process(busiest->migration_thread);
3067 * We've kicked active balancing, reset the failure
3070 sd->nr_balance_failed = sd->cache_nice_tries+1;
3073 sd->nr_balance_failed = 0;
3075 if (likely(!active_balance)) {
3076 /* We were unbalanced, so reset the balancing interval */
3077 sd->balance_interval = sd->min_interval;
3080 * If we've begun active balancing, start to back off. This
3081 * case may not be covered by the all_pinned logic if there
3082 * is only 1 task on the busy runqueue (because we don't call
3085 if (sd->balance_interval < sd->max_interval)
3086 sd->balance_interval *= 2;
3089 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3090 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3095 schedstat_inc(sd, lb_balanced[idle]);
3097 sd->nr_balance_failed = 0;
3100 /* tune up the balancing interval */
3101 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3102 (sd->balance_interval < sd->max_interval))
3103 sd->balance_interval *= 2;
3105 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3106 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3112 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3113 * tasks if there is an imbalance.
3115 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3116 * this_rq is locked.
3119 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3121 struct sched_group *group;
3122 struct rq *busiest = NULL;
3123 unsigned long imbalance;
3127 cpumask_t cpus = CPU_MASK_ALL;
3130 * When power savings policy is enabled for the parent domain, idle
3131 * sibling can pick up load irrespective of busy siblings. In this case,
3132 * let the state of idle sibling percolate up as IDLE, instead of
3133 * portraying it as CPU_NOT_IDLE.
3135 if (sd->flags & SD_SHARE_CPUPOWER &&
3136 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3139 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3141 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3142 &sd_idle, &cpus, NULL);
3144 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3148 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3151 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3155 BUG_ON(busiest == this_rq);
3157 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3160 if (busiest->nr_running > 1) {
3161 /* Attempt to move tasks */
3162 double_lock_balance(this_rq, busiest);
3163 /* this_rq->clock is already updated */
3164 update_rq_clock(busiest);
3165 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3166 imbalance, sd, CPU_NEWLY_IDLE,
3168 spin_unlock(&busiest->lock);
3170 if (unlikely(all_pinned)) {
3171 cpu_clear(cpu_of(busiest), cpus);
3172 if (!cpus_empty(cpus))
3178 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3179 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3180 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3183 sd->nr_balance_failed = 0;
3188 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3189 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3190 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3192 sd->nr_balance_failed = 0;
3198 * idle_balance is called by schedule() if this_cpu is about to become
3199 * idle. Attempts to pull tasks from other CPUs.
3201 static void idle_balance(int this_cpu, struct rq *this_rq)
3203 struct sched_domain *sd;
3204 int pulled_task = -1;
3205 unsigned long next_balance = jiffies + HZ;
3207 for_each_domain(this_cpu, sd) {
3208 unsigned long interval;
3210 if (!(sd->flags & SD_LOAD_BALANCE))
3213 if (sd->flags & SD_BALANCE_NEWIDLE)
3214 /* If we've pulled tasks over stop searching: */
3215 pulled_task = load_balance_newidle(this_cpu,
3218 interval = msecs_to_jiffies(sd->balance_interval);
3219 if (time_after(next_balance, sd->last_balance + interval))
3220 next_balance = sd->last_balance + interval;
3224 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3226 * We are going idle. next_balance may be set based on
3227 * a busy processor. So reset next_balance.
3229 this_rq->next_balance = next_balance;
3234 * active_load_balance is run by migration threads. It pushes running tasks
3235 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3236 * running on each physical CPU where possible, and avoids physical /
3237 * logical imbalances.
3239 * Called with busiest_rq locked.
3241 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3243 int target_cpu = busiest_rq->push_cpu;
3244 struct sched_domain *sd;
3245 struct rq *target_rq;
3247 /* Is there any task to move? */
3248 if (busiest_rq->nr_running <= 1)
3251 target_rq = cpu_rq(target_cpu);
3254 * This condition is "impossible", if it occurs
3255 * we need to fix it. Originally reported by
3256 * Bjorn Helgaas on a 128-cpu setup.
3258 BUG_ON(busiest_rq == target_rq);
3260 /* move a task from busiest_rq to target_rq */
3261 double_lock_balance(busiest_rq, target_rq);
3262 update_rq_clock(busiest_rq);
3263 update_rq_clock(target_rq);
3265 /* Search for an sd spanning us and the target CPU. */
3266 for_each_domain(target_cpu, sd) {
3267 if ((sd->flags & SD_LOAD_BALANCE) &&
3268 cpu_isset(busiest_cpu, sd->span))
3273 schedstat_inc(sd, alb_count);
3275 if (move_one_task(target_rq, target_cpu, busiest_rq,
3277 schedstat_inc(sd, alb_pushed);
3279 schedstat_inc(sd, alb_failed);
3281 spin_unlock(&target_rq->lock);
3286 atomic_t load_balancer;
3288 } nohz ____cacheline_aligned = {
3289 .load_balancer = ATOMIC_INIT(-1),
3290 .cpu_mask = CPU_MASK_NONE,
3294 * This routine will try to nominate the ilb (idle load balancing)
3295 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3296 * load balancing on behalf of all those cpus. If all the cpus in the system
3297 * go into this tickless mode, then there will be no ilb owner (as there is
3298 * no need for one) and all the cpus will sleep till the next wakeup event
3301 * For the ilb owner, tick is not stopped. And this tick will be used
3302 * for idle load balancing. ilb owner will still be part of
3305 * While stopping the tick, this cpu will become the ilb owner if there
3306 * is no other owner. And will be the owner till that cpu becomes busy
3307 * or if all cpus in the system stop their ticks at which point
3308 * there is no need for ilb owner.
3310 * When the ilb owner becomes busy, it nominates another owner, during the
3311 * next busy scheduler_tick()
3313 int select_nohz_load_balancer(int stop_tick)
3315 int cpu = smp_processor_id();
3318 cpu_set(cpu, nohz.cpu_mask);
3319 cpu_rq(cpu)->in_nohz_recently = 1;
3322 * If we are going offline and still the leader, give up!
3324 if (cpu_is_offline(cpu) &&
3325 atomic_read(&nohz.load_balancer) == cpu) {
3326 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3331 /* time for ilb owner also to sleep */
3332 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3333 if (atomic_read(&nohz.load_balancer) == cpu)
3334 atomic_set(&nohz.load_balancer, -1);
3338 if (atomic_read(&nohz.load_balancer) == -1) {
3339 /* make me the ilb owner */
3340 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3342 } else if (atomic_read(&nohz.load_balancer) == cpu)
3345 if (!cpu_isset(cpu, nohz.cpu_mask))
3348 cpu_clear(cpu, nohz.cpu_mask);
3350 if (atomic_read(&nohz.load_balancer) == cpu)
3351 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3358 static DEFINE_SPINLOCK(balancing);
3361 * It checks each scheduling domain to see if it is due to be balanced,
3362 * and initiates a balancing operation if so.
3364 * Balancing parameters are set up in arch_init_sched_domains.
3366 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3369 struct rq *rq = cpu_rq(cpu);
3370 unsigned long interval;
3371 struct sched_domain *sd;
3372 /* Earliest time when we have to do rebalance again */
3373 unsigned long next_balance = jiffies + 60*HZ;
3374 int update_next_balance = 0;
3376 for_each_domain(cpu, sd) {
3377 if (!(sd->flags & SD_LOAD_BALANCE))
3380 interval = sd->balance_interval;
3381 if (idle != CPU_IDLE)
3382 interval *= sd->busy_factor;
3384 /* scale ms to jiffies */
3385 interval = msecs_to_jiffies(interval);
3386 if (unlikely(!interval))
3388 if (interval > HZ*NR_CPUS/10)
3389 interval = HZ*NR_CPUS/10;
3392 if (sd->flags & SD_SERIALIZE) {
3393 if (!spin_trylock(&balancing))
3397 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3398 if (load_balance(cpu, rq, sd, idle, &balance)) {
3400 * We've pulled tasks over so either we're no
3401 * longer idle, or one of our SMT siblings is
3404 idle = CPU_NOT_IDLE;
3406 sd->last_balance = jiffies;
3408 if (sd->flags & SD_SERIALIZE)
3409 spin_unlock(&balancing);
3411 if (time_after(next_balance, sd->last_balance + interval)) {
3412 next_balance = sd->last_balance + interval;
3413 update_next_balance = 1;
3417 * Stop the load balance at this level. There is another
3418 * CPU in our sched group which is doing load balancing more
3426 * next_balance will be updated only when there is a need.
3427 * When the cpu is attached to null domain for ex, it will not be
3430 if (likely(update_next_balance))
3431 rq->next_balance = next_balance;
3435 * run_rebalance_domains is triggered when needed from the scheduler tick.
3436 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3437 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3439 static void run_rebalance_domains(struct softirq_action *h)
3441 int this_cpu = smp_processor_id();
3442 struct rq *this_rq = cpu_rq(this_cpu);
3443 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3444 CPU_IDLE : CPU_NOT_IDLE;
3446 rebalance_domains(this_cpu, idle);
3450 * If this cpu is the owner for idle load balancing, then do the
3451 * balancing on behalf of the other idle cpus whose ticks are
3454 if (this_rq->idle_at_tick &&
3455 atomic_read(&nohz.load_balancer) == this_cpu) {
3456 cpumask_t cpus = nohz.cpu_mask;
3460 cpu_clear(this_cpu, cpus);
3461 for_each_cpu_mask(balance_cpu, cpus) {
3463 * If this cpu gets work to do, stop the load balancing
3464 * work being done for other cpus. Next load
3465 * balancing owner will pick it up.
3470 rebalance_domains(balance_cpu, CPU_IDLE);
3472 rq = cpu_rq(balance_cpu);
3473 if (time_after(this_rq->next_balance, rq->next_balance))
3474 this_rq->next_balance = rq->next_balance;