4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
142 static inline int rt_policy(int policy)
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
149 static inline int task_has_rt_policy(struct task_struct *p)
151 return rt_policy(p->policy);
155 * This is the priority-queue data structure of the RT scheduling class:
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
167 struct hrtimer rt_period_timer;
170 static struct rt_bandwidth def_rt_bandwidth;
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
189 idle = do_sched_rt_period_timer(rt_b, overrun);
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
201 spin_lock_init(&rt_b->rt_runtime_lock);
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
209 static inline int rt_bandwidth_enabled(void)
211 return sysctl_sched_rt_runtime >= 0;
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
221 if (hrtimer_active(&rt_b->rt_period_timer))
224 spin_lock(&rt_b->rt_runtime_lock);
226 if (hrtimer_active(&rt_b->rt_period_timer))
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
234 spin_unlock(&rt_b->rt_runtime_lock);
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240 hrtimer_cancel(&rt_b->rt_period_timer);
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
248 static DEFINE_MUTEX(sched_domains_mutex);
250 #ifdef CONFIG_GROUP_SCHED
252 #include <linux/cgroup.h>
256 static LIST_HEAD(task_groups);
258 /* task group related information */
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
276 struct rt_bandwidth rt_bandwidth;
280 struct list_head list;
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
287 #ifdef CONFIG_USER_SCHED
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
294 struct task_group root_task_group;
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
314 static DEFINE_SPINLOCK(task_group_lock);
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
332 #define MAX_SHARES (1UL << 18)
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
340 struct task_group init_task_group;
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
345 struct task_group *tg;
347 #ifdef CONFIG_USER_SCHED
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
353 tg = &init_task_group;
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
380 #endif /* CONFIG_GROUP_SCHED */
382 /* CFS-related fields in a runqueue */
384 struct load_weight load;
385 unsigned long nr_running;
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
393 struct list_head tasks;
394 struct list_head *balance_iterator;
397 * 'curr' points to currently running entity on this cfs_rq.
398 * It is set to NULL otherwise (i.e when none are currently running).
400 struct sched_entity *curr, *next, *last;
402 unsigned int nr_spread_over;
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
420 * the part of load.weight contributed by tasks
422 unsigned long task_weight;
425 * h_load = weight * f(tg)
427 * Where f(tg) is the recursive weight fraction assigned to
430 unsigned long h_load;
433 * this cpu's part of tg->shares
435 unsigned long shares;
438 * load.weight at the time we set shares
440 unsigned long rq_weight;
445 /* Real-Time classes' related field in a runqueue: */
447 struct rt_prio_array active;
448 unsigned long rt_nr_running;
449 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
450 int highest_prio; /* highest queued rt task prio */
453 unsigned long rt_nr_migratory;
459 /* Nests inside the rq lock: */
460 spinlock_t rt_runtime_lock;
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
475 * We add the notion of a root-domain which will be used to define per-domain
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
478 * exclusive cpuset is created, we also create and attach a new root-domain
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
494 struct cpupri cpupri;
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
502 static struct root_domain def_root_domain;
507 * This is the main, per-CPU runqueue data structure.
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
521 unsigned long nr_running;
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524 unsigned char idle_at_tick;
526 unsigned long last_tick_seen;
527 unsigned char in_nohz_recently;
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
531 unsigned long nr_load_updates;
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
541 #ifdef CONFIG_RT_GROUP_SCHED
542 struct list_head leaf_rt_rq_list;
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
551 unsigned long nr_uninterruptible;
553 struct task_struct *curr, *idle;
554 unsigned long next_balance;
555 struct mm_struct *prev_mm;
562 struct root_domain *rd;
563 struct sched_domain *sd;
565 /* For active balancing */
568 /* cpu of this runqueue: */
572 unsigned long avg_load_per_task;
574 struct task_struct *migration_thread;
575 struct list_head migration_queue;
578 #ifdef CONFIG_SCHED_HRTICK
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
583 struct hrtimer hrtick_timer;
586 #ifdef CONFIG_SCHEDSTATS
588 struct sched_info rq_sched_info;
590 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
596 /* schedule() stats */
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
601 /* try_to_wake_up() stats */
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
606 unsigned int bkl_count;
610 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
612 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
617 static inline int cpu_of(struct rq *rq)
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628 * See detach_destroy_domains: synchronize_sched for details.
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
633 #define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
636 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637 #define this_rq() (&__get_cpu_var(runqueues))
638 #define task_rq(p) cpu_rq(task_cpu(p))
639 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
641 static inline void update_rq_clock(struct rq *rq)
643 rq->clock = sched_clock_cpu(cpu_of(rq));
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
649 #ifdef CONFIG_SCHED_DEBUG
650 # define const_debug __read_mostly
652 # define const_debug static const
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
662 int runqueue_is_locked(void)
665 struct rq *rq = cpu_rq(cpu);
668 ret = spin_is_locked(&rq->lock);
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
681 #include "sched_features.h"
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
706 static int sched_feat_open(struct inode *inode, struct file *filp)
708 filp->private_data = inode->i_private;
713 sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
726 buf = kmalloc(len + 2, GFP_KERNEL);
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
759 if (copy_from_user(&buf, ubuf, cnt))
764 if (strncmp(buf, "NO_", 3) == 0) {
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
774 sysctl_sched_features &= ~(1UL << i);
776 sysctl_sched_features |= (1UL << i);
781 if (!sched_feat_names[i])
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
795 static __init int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
802 late_initcall(sched_init_debug);
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815 * ratelimit for updating the group shares.
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
825 unsigned int sysctl_sched_shares_thresh = 4;
828 * period over which we measure -rt task cpu usage in us.
831 unsigned int sysctl_sched_rt_period = 1000000;
833 static __read_mostly int scheduler_running;
836 * part of the period that we allow rt tasks to run in us.
839 int sysctl_sched_rt_runtime = 950000;
841 static inline u64 global_rt_period(void)
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
846 static inline u64 global_rt_runtime(void)
848 if (sysctl_sched_rt_runtime < 0)
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
861 static inline int task_current(struct rq *rq, struct task_struct *p)
863 return rq->curr == p;
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
869 return task_current(rq, p);
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
889 spin_unlock_irq(&rq->lock);
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
898 return task_current(rq, p);
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
915 spin_unlock(&rq->lock);
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
948 spin_unlock(&rq->lock);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
963 local_irq_save(*flags);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
968 spin_unlock_irqrestore(&rq->lock, *flags);
972 void task_rq_unlock_wait(struct task_struct *p)
974 struct rq *rq = task_rq(p);
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 spin_unlock_wait(&rq->lock);
980 static void __task_rq_unlock(struct rq *rq)
983 spin_unlock(&rq->lock);
986 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
989 spin_unlock_irqrestore(&rq->lock, *flags);
993 * this_rq_lock - lock this runqueue and disable interrupts.
995 static struct rq *this_rq_lock(void)
1000 local_irq_disable();
1002 spin_lock(&rq->lock);
1007 #ifdef CONFIG_SCHED_HRTICK
1009 * Use HR-timers to deliver accurate preemption points.
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * - enabled by features
1022 * - hrtimer is actually high res
1024 static inline int hrtick_enabled(struct rq *rq)
1026 if (!sched_feat(HRTICK))
1028 if (!cpu_active(cpu_of(rq)))
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1033 static void hrtick_clear(struct rq *rq)
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1043 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1049 spin_lock(&rq->lock);
1050 update_rq_clock(rq);
1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052 spin_unlock(&rq->lock);
1054 return HRTIMER_NORESTART;
1059 * called from hardirq (IPI) context
1061 static void __hrtick_start(void *arg)
1063 struct rq *rq = arg;
1065 spin_lock(&rq->lock);
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
1068 spin_unlock(&rq->lock);
1072 * Called to set the hrtick timer state.
1074 * called with rq->lock held and irqs disabled
1076 static void hrtick_start(struct rq *rq, u64 delay)
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1081 hrtimer_set_expires(timer, time);
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1087 rq->hrtick_csd_pending = 1;
1092 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1094 int cpu = (int)(long)hcpu;
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1102 case CPU_DEAD_FROZEN:
1103 hrtick_clear(cpu_rq(cpu));
1110 static __init void init_hrtick(void)
1112 hotcpu_notifier(hotplug_hrtick, 0);
1116 * Called to set the hrtick timer state.
1118 * called with rq->lock held and irqs disabled
1120 static void hrtick_start(struct rq *rq, u64 delay)
1122 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1125 static inline void init_hrtick(void)
1128 #endif /* CONFIG_SMP */
1130 static void init_rq_hrtick(struct rq *rq)
1133 rq->hrtick_csd_pending = 0;
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
1142 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1144 #else /* CONFIG_SCHED_HRTICK */
1145 static inline void hrtick_clear(struct rq *rq)
1149 static inline void init_rq_hrtick(struct rq *rq)
1153 static inline void init_hrtick(void)
1156 #endif /* CONFIG_SCHED_HRTICK */
1159 * resched_task - mark a task 'to be rescheduled now'.
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1167 #ifndef tsk_is_polling
1168 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1171 static void resched_task(struct task_struct *p)
1175 assert_spin_locked(&task_rq(p)->lock);
1177 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1180 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1183 if (cpu == smp_processor_id())
1186 /* NEED_RESCHED must be visible before we test polling */
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1192 static void resched_cpu(int cpu)
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1197 if (!spin_trylock_irqsave(&rq->lock, flags))
1199 resched_task(cpu_curr(cpu));
1200 spin_unlock_irqrestore(&rq->lock, flags);
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1214 void wake_up_idle_cpu(int cpu)
1216 struct rq *rq = cpu_rq(cpu);
1218 if (cpu == smp_processor_id())
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1228 if (rq->curr != rq->idle)
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1236 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1238 /* NEED_RESCHED must be visible before we test polling */
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1243 #endif /* CONFIG_NO_HZ */
1245 #else /* !CONFIG_SMP */
1246 static void resched_task(struct task_struct *p)
1248 assert_spin_locked(&task_rq(p)->lock);
1249 set_tsk_need_resched(p);
1251 #endif /* CONFIG_SMP */
1253 #if BITS_PER_LONG == 32
1254 # define WMULT_CONST (~0UL)
1256 # define WMULT_CONST (1UL << 32)
1259 #define WMULT_SHIFT 32
1262 * Shift right and round:
1264 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1267 * delta *= weight / lw
1269 static unsigned long
1270 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1271 struct load_weight *lw)
1275 if (!lw->inv_weight) {
1276 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1279 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1283 tmp = (u64)delta_exec * weight;
1285 * Check whether we'd overflow the 64-bit multiplication:
1287 if (unlikely(tmp > WMULT_CONST))
1288 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1291 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1293 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1296 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1302 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1309 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1310 * of tasks with abnormal "nice" values across CPUs the contribution that
1311 * each task makes to its run queue's load is weighted according to its
1312 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1313 * scaled version of the new time slice allocation that they receive on time
1317 #define WEIGHT_IDLEPRIO 2
1318 #define WMULT_IDLEPRIO (1 << 31)
1321 * Nice levels are multiplicative, with a gentle 10% change for every
1322 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1323 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1324 * that remained on nice 0.
1326 * The "10% effect" is relative and cumulative: from _any_ nice level,
1327 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1328 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1329 * If a task goes up by ~10% and another task goes down by ~10% then
1330 * the relative distance between them is ~25%.)
1332 static const int prio_to_weight[40] = {
1333 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1334 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1335 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1336 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1337 /* 0 */ 1024, 820, 655, 526, 423,
1338 /* 5 */ 335, 272, 215, 172, 137,
1339 /* 10 */ 110, 87, 70, 56, 45,
1340 /* 15 */ 36, 29, 23, 18, 15,
1344 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1346 * In cases where the weight does not change often, we can use the
1347 * precalculated inverse to speed up arithmetics by turning divisions
1348 * into multiplications:
1350 static const u32 prio_to_wmult[40] = {
1351 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1352 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1353 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1354 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1355 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1356 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1357 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1358 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1361 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1364 * runqueue iterator, to support SMP load-balancing between different
1365 * scheduling classes, without having to expose their internal data
1366 * structures to the load-balancing proper:
1368 struct rq_iterator {
1370 struct task_struct *(*start)(void *);
1371 struct task_struct *(*next)(void *);
1375 static unsigned long
1376 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1377 unsigned long max_load_move, struct sched_domain *sd,
1378 enum cpu_idle_type idle, int *all_pinned,
1379 int *this_best_prio, struct rq_iterator *iterator);
1382 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 struct sched_domain *sd, enum cpu_idle_type idle,
1384 struct rq_iterator *iterator);
1387 #ifdef CONFIG_CGROUP_CPUACCT
1388 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1390 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1393 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1395 update_load_add(&rq->load, load);
1398 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1400 update_load_sub(&rq->load, load);
1403 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1404 typedef int (*tg_visitor)(struct task_group *, void *);
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1410 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1412 struct task_group *parent, *child;
1416 parent = &root_task_group;
1418 ret = (*down)(parent, data);
1421 list_for_each_entry_rcu(child, &parent->children, siblings) {
1428 ret = (*up)(parent, data);
1433 parent = parent->parent;
1442 static int tg_nop(struct task_group *tg, void *data)
1449 static unsigned long source_load(int cpu, int type);
1450 static unsigned long target_load(int cpu, int type);
1451 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1453 static unsigned long cpu_avg_load_per_task(int cpu)
1455 struct rq *rq = cpu_rq(cpu);
1456 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1459 rq->avg_load_per_task = rq->load.weight / nr_running;
1461 rq->avg_load_per_task = 0;
1463 return rq->avg_load_per_task;
1466 #ifdef CONFIG_FAIR_GROUP_SCHED
1468 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1471 * Calculate and set the cpu's group shares.
1474 update_group_shares_cpu(struct task_group *tg, int cpu,
1475 unsigned long sd_shares, unsigned long sd_rq_weight)
1478 unsigned long shares;
1479 unsigned long rq_weight;
1484 rq_weight = tg->cfs_rq[cpu]->load.weight;
1487 * If there are currently no tasks on the cpu pretend there is one of
1488 * average load so that when a new task gets to run here it will not
1489 * get delayed by group starvation.
1493 rq_weight = NICE_0_LOAD;
1496 if (unlikely(rq_weight > sd_rq_weight))
1497 rq_weight = sd_rq_weight;
1500 * \Sum shares * rq_weight
1501 * shares = -----------------------
1505 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1506 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1508 if (abs(shares - tg->se[cpu]->load.weight) >
1509 sysctl_sched_shares_thresh) {
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long flags;
1513 spin_lock_irqsave(&rq->lock, flags);
1515 * record the actual number of shares, not the boosted amount.
1517 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1518 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1520 __set_se_shares(tg->se[cpu], shares);
1521 spin_unlock_irqrestore(&rq->lock, flags);
1526 * Re-compute the task group their per cpu shares over the given domain.
1527 * This needs to be done in a bottom-up fashion because the rq weight of a
1528 * parent group depends on the shares of its child groups.
1530 static int tg_shares_up(struct task_group *tg, void *data)
1532 unsigned long rq_weight = 0;
1533 unsigned long shares = 0;
1534 struct sched_domain *sd = data;
1537 for_each_cpu_mask(i, sd->span) {
1538 rq_weight += tg->cfs_rq[i]->load.weight;
1539 shares += tg->cfs_rq[i]->shares;
1542 if ((!shares && rq_weight) || shares > tg->shares)
1543 shares = tg->shares;
1545 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1546 shares = tg->shares;
1549 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1551 for_each_cpu_mask(i, sd->span)
1552 update_group_shares_cpu(tg, i, shares, rq_weight);
1558 * Compute the cpu's hierarchical load factor for each task group.
1559 * This needs to be done in a top-down fashion because the load of a child
1560 * group is a fraction of its parents load.
1562 static int tg_load_down(struct task_group *tg, void *data)
1565 long cpu = (long)data;
1568 load = cpu_rq(cpu)->load.weight;
1570 load = tg->parent->cfs_rq[cpu]->h_load;
1571 load *= tg->cfs_rq[cpu]->shares;
1572 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1575 tg->cfs_rq[cpu]->h_load = load;
1580 static void update_shares(struct sched_domain *sd)
1582 u64 now = cpu_clock(raw_smp_processor_id());
1583 s64 elapsed = now - sd->last_update;
1585 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1586 sd->last_update = now;
1587 walk_tg_tree(tg_nop, tg_shares_up, sd);
1591 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1593 spin_unlock(&rq->lock);
1595 spin_lock(&rq->lock);
1598 static void update_h_load(long cpu)
1600 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1605 static inline void update_shares(struct sched_domain *sd)
1609 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1617 #ifdef CONFIG_FAIR_GROUP_SCHED
1618 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1621 cfs_rq->shares = shares;
1626 #include "sched_stats.h"
1627 #include "sched_idletask.c"
1628 #include "sched_fair.c"
1629 #include "sched_rt.c"
1630 #ifdef CONFIG_SCHED_DEBUG
1631 # include "sched_debug.c"
1634 #define sched_class_highest (&rt_sched_class)
1635 #define for_each_class(class) \
1636 for (class = sched_class_highest; class; class = class->next)
1638 static void inc_nr_running(struct rq *rq)
1643 static void dec_nr_running(struct rq *rq)
1648 static void set_load_weight(struct task_struct *p)
1650 if (task_has_rt_policy(p)) {
1651 p->se.load.weight = prio_to_weight[0] * 2;
1652 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1657 * SCHED_IDLE tasks get minimal weight:
1659 if (p->policy == SCHED_IDLE) {
1660 p->se.load.weight = WEIGHT_IDLEPRIO;
1661 p->se.load.inv_weight = WMULT_IDLEPRIO;
1665 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1666 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1669 static void update_avg(u64 *avg, u64 sample)
1671 s64 diff = sample - *avg;
1675 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1677 sched_info_queued(p);
1678 p->sched_class->enqueue_task(rq, p, wakeup);
1682 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1684 if (sleep && p->se.last_wakeup) {
1685 update_avg(&p->se.avg_overlap,
1686 p->se.sum_exec_runtime - p->se.last_wakeup);
1687 p->se.last_wakeup = 0;
1690 sched_info_dequeued(p);
1691 p->sched_class->dequeue_task(rq, p, sleep);
1696 * __normal_prio - return the priority that is based on the static prio
1698 static inline int __normal_prio(struct task_struct *p)
1700 return p->static_prio;
1704 * Calculate the expected normal priority: i.e. priority
1705 * without taking RT-inheritance into account. Might be
1706 * boosted by interactivity modifiers. Changes upon fork,
1707 * setprio syscalls, and whenever the interactivity
1708 * estimator recalculates.
1710 static inline int normal_prio(struct task_struct *p)
1714 if (task_has_rt_policy(p))
1715 prio = MAX_RT_PRIO-1 - p->rt_priority;
1717 prio = __normal_prio(p);
1722 * Calculate the current priority, i.e. the priority
1723 * taken into account by the scheduler. This value might
1724 * be boosted by RT tasks, or might be boosted by
1725 * interactivity modifiers. Will be RT if the task got
1726 * RT-boosted. If not then it returns p->normal_prio.
1728 static int effective_prio(struct task_struct *p)
1730 p->normal_prio = normal_prio(p);
1732 * If we are RT tasks or we were boosted to RT priority,
1733 * keep the priority unchanged. Otherwise, update priority
1734 * to the normal priority:
1736 if (!rt_prio(p->prio))
1737 return p->normal_prio;
1742 * activate_task - move a task to the runqueue.
1744 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1746 if (task_contributes_to_load(p))
1747 rq->nr_uninterruptible--;
1749 enqueue_task(rq, p, wakeup);
1754 * deactivate_task - remove a task from the runqueue.
1756 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1758 if (task_contributes_to_load(p))
1759 rq->nr_uninterruptible++;
1761 dequeue_task(rq, p, sleep);
1766 * task_curr - is this task currently executing on a CPU?
1767 * @p: the task in question.
1769 inline int task_curr(const struct task_struct *p)
1771 return cpu_curr(task_cpu(p)) == p;
1774 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1776 set_task_rq(p, cpu);
1779 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1780 * successfuly executed on another CPU. We must ensure that updates of
1781 * per-task data have been completed by this moment.
1784 task_thread_info(p)->cpu = cpu;
1788 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1789 const struct sched_class *prev_class,
1790 int oldprio, int running)
1792 if (prev_class != p->sched_class) {
1793 if (prev_class->switched_from)
1794 prev_class->switched_from(rq, p, running);
1795 p->sched_class->switched_to(rq, p, running);
1797 p->sched_class->prio_changed(rq, p, oldprio, running);
1802 /* Used instead of source_load when we know the type == 0 */
1803 static unsigned long weighted_cpuload(const int cpu)
1805 return cpu_rq(cpu)->load.weight;
1809 * Is this task likely cache-hot:
1812 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1817 * Buddy candidates are cache hot:
1819 if (sched_feat(CACHE_HOT_BUDDY) &&
1820 (&p->se == cfs_rq_of(&p->se)->next ||
1821 &p->se == cfs_rq_of(&p->se)->last))
1824 if (p->sched_class != &fair_sched_class)
1827 if (sysctl_sched_migration_cost == -1)
1829 if (sysctl_sched_migration_cost == 0)
1832 delta = now - p->se.exec_start;
1834 return delta < (s64)sysctl_sched_migration_cost;
1838 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1840 int old_cpu = task_cpu(p);
1841 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1842 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1843 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1846 clock_offset = old_rq->clock - new_rq->clock;
1848 #ifdef CONFIG_SCHEDSTATS
1849 if (p->se.wait_start)
1850 p->se.wait_start -= clock_offset;
1851 if (p->se.sleep_start)
1852 p->se.sleep_start -= clock_offset;
1853 if (p->se.block_start)
1854 p->se.block_start -= clock_offset;
1855 if (old_cpu != new_cpu) {
1856 schedstat_inc(p, se.nr_migrations);
1857 if (task_hot(p, old_rq->clock, NULL))
1858 schedstat_inc(p, se.nr_forced2_migrations);
1861 p->se.vruntime -= old_cfsrq->min_vruntime -
1862 new_cfsrq->min_vruntime;
1864 __set_task_cpu(p, new_cpu);
1867 struct migration_req {
1868 struct list_head list;
1870 struct task_struct *task;
1873 struct completion done;
1877 * The task's runqueue lock must be held.
1878 * Returns true if you have to wait for migration thread.
1881 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1883 struct rq *rq = task_rq(p);
1886 * If the task is not on a runqueue (and not running), then
1887 * it is sufficient to simply update the task's cpu field.
1889 if (!p->se.on_rq && !task_running(rq, p)) {
1890 set_task_cpu(p, dest_cpu);
1894 init_completion(&req->done);
1896 req->dest_cpu = dest_cpu;
1897 list_add(&req->list, &rq->migration_queue);
1903 * wait_task_inactive - wait for a thread to unschedule.
1905 * If @match_state is nonzero, it's the @p->state value just checked and
1906 * not expected to change. If it changes, i.e. @p might have woken up,
1907 * then return zero. When we succeed in waiting for @p to be off its CPU,
1908 * we return a positive number (its total switch count). If a second call
1909 * a short while later returns the same number, the caller can be sure that
1910 * @p has remained unscheduled the whole time.
1912 * The caller must ensure that the task *will* unschedule sometime soon,
1913 * else this function might spin for a *long* time. This function can't
1914 * be called with interrupts off, or it may introduce deadlock with
1915 * smp_call_function() if an IPI is sent by the same process we are
1916 * waiting to become inactive.
1918 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1920 unsigned long flags;
1927 * We do the initial early heuristics without holding
1928 * any task-queue locks at all. We'll only try to get
1929 * the runqueue lock when things look like they will
1935 * If the task is actively running on another CPU
1936 * still, just relax and busy-wait without holding
1939 * NOTE! Since we don't hold any locks, it's not
1940 * even sure that "rq" stays as the right runqueue!
1941 * But we don't care, since "task_running()" will
1942 * return false if the runqueue has changed and p
1943 * is actually now running somewhere else!
1945 while (task_running(rq, p)) {
1946 if (match_state && unlikely(p->state != match_state))
1952 * Ok, time to look more closely! We need the rq
1953 * lock now, to be *sure*. If we're wrong, we'll
1954 * just go back and repeat.
1956 rq = task_rq_lock(p, &flags);
1957 trace_sched_wait_task(rq, p);
1958 running = task_running(rq, p);
1959 on_rq = p->se.on_rq;
1961 if (!match_state || p->state == match_state)
1962 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1963 task_rq_unlock(rq, &flags);
1966 * If it changed from the expected state, bail out now.
1968 if (unlikely(!ncsw))
1972 * Was it really running after all now that we
1973 * checked with the proper locks actually held?
1975 * Oops. Go back and try again..
1977 if (unlikely(running)) {
1983 * It's not enough that it's not actively running,
1984 * it must be off the runqueue _entirely_, and not
1987 * So if it wa still runnable (but just not actively
1988 * running right now), it's preempted, and we should
1989 * yield - it could be a while.
1991 if (unlikely(on_rq)) {
1992 schedule_timeout_uninterruptible(1);
1997 * Ahh, all good. It wasn't running, and it wasn't
1998 * runnable, which means that it will never become
1999 * running in the future either. We're all done!
2008 * kick_process - kick a running thread to enter/exit the kernel
2009 * @p: the to-be-kicked thread
2011 * Cause a process which is running on another CPU to enter
2012 * kernel-mode, without any delay. (to get signals handled.)
2014 * NOTE: this function doesnt have to take the runqueue lock,
2015 * because all it wants to ensure is that the remote task enters
2016 * the kernel. If the IPI races and the task has been migrated
2017 * to another CPU then no harm is done and the purpose has been
2020 void kick_process(struct task_struct *p)
2026 if ((cpu != smp_processor_id()) && task_curr(p))
2027 smp_send_reschedule(cpu);
2032 * Return a low guess at the load of a migration-source cpu weighted
2033 * according to the scheduling class and "nice" value.
2035 * We want to under-estimate the load of migration sources, to
2036 * balance conservatively.
2038 static unsigned long source_load(int cpu, int type)
2040 struct rq *rq = cpu_rq(cpu);
2041 unsigned long total = weighted_cpuload(cpu);
2043 if (type == 0 || !sched_feat(LB_BIAS))
2046 return min(rq->cpu_load[type-1], total);
2050 * Return a high guess at the load of a migration-target cpu weighted
2051 * according to the scheduling class and "nice" value.
2053 static unsigned long target_load(int cpu, int type)
2055 struct rq *rq = cpu_rq(cpu);
2056 unsigned long total = weighted_cpuload(cpu);
2058 if (type == 0 || !sched_feat(LB_BIAS))
2061 return max(rq->cpu_load[type-1], total);
2065 * find_idlest_group finds and returns the least busy CPU group within the
2068 static struct sched_group *
2069 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2071 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2072 unsigned long min_load = ULONG_MAX, this_load = 0;
2073 int load_idx = sd->forkexec_idx;
2074 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2077 unsigned long load, avg_load;
2081 /* Skip over this group if it has no CPUs allowed */
2082 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2085 local_group = cpu_isset(this_cpu, group->cpumask);
2087 /* Tally up the load of all CPUs in the group */
2090 for_each_cpu_mask_nr(i, group->cpumask) {
2091 /* Bias balancing toward cpus of our domain */
2093 load = source_load(i, load_idx);
2095 load = target_load(i, load_idx);
2100 /* Adjust by relative CPU power of the group */
2101 avg_load = sg_div_cpu_power(group,
2102 avg_load * SCHED_LOAD_SCALE);
2105 this_load = avg_load;
2107 } else if (avg_load < min_load) {
2108 min_load = avg_load;
2111 } while (group = group->next, group != sd->groups);
2113 if (!idlest || 100*this_load < imbalance*min_load)
2119 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2122 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2125 unsigned long load, min_load = ULONG_MAX;
2129 /* Traverse only the allowed CPUs */
2130 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2132 for_each_cpu_mask_nr(i, *tmp) {
2133 load = weighted_cpuload(i);
2135 if (load < min_load || (load == min_load && i == this_cpu)) {
2145 * sched_balance_self: balance the current task (running on cpu) in domains
2146 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2149 * Balance, ie. select the least loaded group.
2151 * Returns the target CPU number, or the same CPU if no balancing is needed.
2153 * preempt must be disabled.
2155 static int sched_balance_self(int cpu, int flag)
2157 struct task_struct *t = current;
2158 struct sched_domain *tmp, *sd = NULL;
2160 for_each_domain(cpu, tmp) {
2162 * If power savings logic is enabled for a domain, stop there.
2164 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2166 if (tmp->flags & flag)
2174 cpumask_t span, tmpmask;
2175 struct sched_group *group;
2176 int new_cpu, weight;
2178 if (!(sd->flags & flag)) {
2184 group = find_idlest_group(sd, t, cpu);
2190 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2191 if (new_cpu == -1 || new_cpu == cpu) {
2192 /* Now try balancing at a lower domain level of cpu */
2197 /* Now try balancing at a lower domain level of new_cpu */
2200 weight = cpus_weight(span);
2201 for_each_domain(cpu, tmp) {
2202 if (weight <= cpus_weight(tmp->span))
2204 if (tmp->flags & flag)
2207 /* while loop will break here if sd == NULL */
2213 #endif /* CONFIG_SMP */
2216 * try_to_wake_up - wake up a thread
2217 * @p: the to-be-woken-up thread
2218 * @state: the mask of task states that can be woken
2219 * @sync: do a synchronous wakeup?
2221 * Put it on the run-queue if it's not already there. The "current"
2222 * thread is always on the run-queue (except when the actual
2223 * re-schedule is in progress), and as such you're allowed to do
2224 * the simpler "current->state = TASK_RUNNING" to mark yourself
2225 * runnable without the overhead of this.
2227 * returns failure only if the task is already active.
2229 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2231 int cpu, orig_cpu, this_cpu, success = 0;
2232 unsigned long flags;
2236 if (!sched_feat(SYNC_WAKEUPS))
2240 if (sched_feat(LB_WAKEUP_UPDATE)) {
2241 struct sched_domain *sd;
2243 this_cpu = raw_smp_processor_id();
2246 for_each_domain(this_cpu, sd) {
2247 if (cpu_isset(cpu, sd->span)) {
2256 rq = task_rq_lock(p, &flags);
2257 old_state = p->state;
2258 if (!(old_state & state))
2266 this_cpu = smp_processor_id();
2269 if (unlikely(task_running(rq, p)))
2272 cpu = p->sched_class->select_task_rq(p, sync);
2273 if (cpu != orig_cpu) {
2274 set_task_cpu(p, cpu);
2275 task_rq_unlock(rq, &flags);
2276 /* might preempt at this point */
2277 rq = task_rq_lock(p, &flags);
2278 old_state = p->state;
2279 if (!(old_state & state))
2284 this_cpu = smp_processor_id();
2288 #ifdef CONFIG_SCHEDSTATS
2289 schedstat_inc(rq, ttwu_count);
2290 if (cpu == this_cpu)
2291 schedstat_inc(rq, ttwu_local);
2293 struct sched_domain *sd;
2294 for_each_domain(this_cpu, sd) {
2295 if (cpu_isset(cpu, sd->span)) {
2296 schedstat_inc(sd, ttwu_wake_remote);
2301 #endif /* CONFIG_SCHEDSTATS */
2304 #endif /* CONFIG_SMP */
2305 schedstat_inc(p, se.nr_wakeups);
2307 schedstat_inc(p, se.nr_wakeups_sync);
2308 if (orig_cpu != cpu)
2309 schedstat_inc(p, se.nr_wakeups_migrate);
2310 if (cpu == this_cpu)
2311 schedstat_inc(p, se.nr_wakeups_local);
2313 schedstat_inc(p, se.nr_wakeups_remote);
2314 update_rq_clock(rq);
2315 activate_task(rq, p, 1);
2319 trace_sched_wakeup(rq, p);
2320 check_preempt_curr(rq, p, sync);
2322 p->state = TASK_RUNNING;
2324 if (p->sched_class->task_wake_up)
2325 p->sched_class->task_wake_up(rq, p);
2328 current->se.last_wakeup = current->se.sum_exec_runtime;
2330 task_rq_unlock(rq, &flags);
2335 int wake_up_process(struct task_struct *p)
2337 return try_to_wake_up(p, TASK_ALL, 0);
2339 EXPORT_SYMBOL(wake_up_process);
2341 int wake_up_state(struct task_struct *p, unsigned int state)
2343 return try_to_wake_up(p, state, 0);
2347 * Perform scheduler related setup for a newly forked process p.
2348 * p is forked by current.
2350 * __sched_fork() is basic setup used by init_idle() too:
2352 static void __sched_fork(struct task_struct *p)
2354 p->se.exec_start = 0;
2355 p->se.sum_exec_runtime = 0;
2356 p->se.prev_sum_exec_runtime = 0;
2357 p->se.last_wakeup = 0;
2358 p->se.avg_overlap = 0;
2360 #ifdef CONFIG_SCHEDSTATS
2361 p->se.wait_start = 0;
2362 p->se.sum_sleep_runtime = 0;
2363 p->se.sleep_start = 0;
2364 p->se.block_start = 0;
2365 p->se.sleep_max = 0;
2366 p->se.block_max = 0;
2368 p->se.slice_max = 0;
2372 INIT_LIST_HEAD(&p->rt.run_list);
2374 INIT_LIST_HEAD(&p->se.group_node);
2376 #ifdef CONFIG_PREEMPT_NOTIFIERS
2377 INIT_HLIST_HEAD(&p->preempt_notifiers);
2381 * We mark the process as running here, but have not actually
2382 * inserted it onto the runqueue yet. This guarantees that
2383 * nobody will actually run it, and a signal or other external
2384 * event cannot wake it up and insert it on the runqueue either.
2386 p->state = TASK_RUNNING;
2390 * fork()/clone()-time setup:
2392 void sched_fork(struct task_struct *p, int clone_flags)
2394 int cpu = get_cpu();
2399 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2401 set_task_cpu(p, cpu);
2404 * Make sure we do not leak PI boosting priority to the child:
2406 p->prio = current->normal_prio;
2407 if (!rt_prio(p->prio))
2408 p->sched_class = &fair_sched_class;
2410 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2411 if (likely(sched_info_on()))
2412 memset(&p->sched_info, 0, sizeof(p->sched_info));
2414 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2417 #ifdef CONFIG_PREEMPT
2418 /* Want to start with kernel preemption disabled. */
2419 task_thread_info(p)->preempt_count = 1;
2425 * wake_up_new_task - wake up a newly created task for the first time.
2427 * This function will do some initial scheduler statistics housekeeping
2428 * that must be done for every newly created context, then puts the task
2429 * on the runqueue and wakes it.
2431 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2433 unsigned long flags;
2436 rq = task_rq_lock(p, &flags);
2437 BUG_ON(p->state != TASK_RUNNING);
2438 update_rq_clock(rq);
2440 p->prio = effective_prio(p);
2442 if (!p->sched_class->task_new || !current->se.on_rq) {
2443 activate_task(rq, p, 0);
2446 * Let the scheduling class do new task startup
2447 * management (if any):
2449 p->sched_class->task_new(rq, p);
2452 trace_sched_wakeup_new(rq, p);
2453 check_preempt_curr(rq, p, 0);
2455 if (p->sched_class->task_wake_up)
2456 p->sched_class->task_wake_up(rq, p);
2458 task_rq_unlock(rq, &flags);
2461 #ifdef CONFIG_PREEMPT_NOTIFIERS
2464 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2465 * @notifier: notifier struct to register
2467 void preempt_notifier_register(struct preempt_notifier *notifier)
2469 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2471 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2474 * preempt_notifier_unregister - no longer interested in preemption notifications
2475 * @notifier: notifier struct to unregister
2477 * This is safe to call from within a preemption notifier.
2479 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2481 hlist_del(¬ifier->link);
2483 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2485 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2487 struct preempt_notifier *notifier;
2488 struct hlist_node *node;
2490 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2491 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2495 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2496 struct task_struct *next)
2498 struct preempt_notifier *notifier;
2499 struct hlist_node *node;
2501 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2502 notifier->ops->sched_out(notifier, next);
2505 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2507 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2512 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2513 struct task_struct *next)
2517 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2520 * prepare_task_switch - prepare to switch tasks
2521 * @rq: the runqueue preparing to switch
2522 * @prev: the current task that is being switched out
2523 * @next: the task we are going to switch to.
2525 * This is called with the rq lock held and interrupts off. It must
2526 * be paired with a subsequent finish_task_switch after the context
2529 * prepare_task_switch sets up locking and calls architecture specific
2533 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2534 struct task_struct *next)
2536 fire_sched_out_preempt_notifiers(prev, next);
2537 prepare_lock_switch(rq, next);
2538 prepare_arch_switch(next);
2542 * finish_task_switch - clean up after a task-switch
2543 * @rq: runqueue associated with task-switch
2544 * @prev: the thread we just switched away from.
2546 * finish_task_switch must be called after the context switch, paired
2547 * with a prepare_task_switch call before the context switch.
2548 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2549 * and do any other architecture-specific cleanup actions.
2551 * Note that we may have delayed dropping an mm in context_switch(). If
2552 * so, we finish that here outside of the runqueue lock. (Doing it
2553 * with the lock held can cause deadlocks; see schedule() for
2556 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2557 __releases(rq->lock)
2559 struct mm_struct *mm = rq->prev_mm;
2565 * A task struct has one reference for the use as "current".
2566 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2567 * schedule one last time. The schedule call will never return, and
2568 * the scheduled task must drop that reference.
2569 * The test for TASK_DEAD must occur while the runqueue locks are
2570 * still held, otherwise prev could be scheduled on another cpu, die
2571 * there before we look at prev->state, and then the reference would
2573 * Manfred Spraul <manfred@colorfullife.com>
2575 prev_state = prev->state;
2576 finish_arch_switch(prev);
2577 finish_lock_switch(rq, prev);
2579 if (current->sched_class->post_schedule)
2580 current->sched_class->post_schedule(rq);
2583 fire_sched_in_preempt_notifiers(current);
2586 if (unlikely(prev_state == TASK_DEAD)) {
2588 * Remove function-return probe instances associated with this
2589 * task and put them back on the free list.
2591 kprobe_flush_task(prev);
2592 put_task_struct(prev);
2597 * schedule_tail - first thing a freshly forked thread must call.
2598 * @prev: the thread we just switched away from.
2600 asmlinkage void schedule_tail(struct task_struct *prev)
2601 __releases(rq->lock)
2603 struct rq *rq = this_rq();
2605 finish_task_switch(rq, prev);
2606 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2607 /* In this case, finish_task_switch does not reenable preemption */
2610 if (current->set_child_tid)
2611 put_user(task_pid_vnr(current), current->set_child_tid);
2615 * context_switch - switch to the new MM and the new
2616 * thread's register state.
2619 context_switch(struct rq *rq, struct task_struct *prev,
2620 struct task_struct *next)
2622 struct mm_struct *mm, *oldmm;
2624 prepare_task_switch(rq, prev, next);
2625 trace_sched_switch(rq, prev, next);
2627 oldmm = prev->active_mm;
2629 * For paravirt, this is coupled with an exit in switch_to to
2630 * combine the page table reload and the switch backend into
2633 arch_enter_lazy_cpu_mode();
2635 if (unlikely(!mm)) {
2636 next->active_mm = oldmm;
2637 atomic_inc(&oldmm->mm_count);
2638 enter_lazy_tlb(oldmm, next);
2640 switch_mm(oldmm, mm, next);
2642 if (unlikely(!prev->mm)) {
2643 prev->active_mm = NULL;
2644 rq->prev_mm = oldmm;
2647 * Since the runqueue lock will be released by the next
2648 * task (which is an invalid locking op but in the case
2649 * of the scheduler it's an obvious special-case), so we
2650 * do an early lockdep release here:
2652 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2653 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2656 /* Here we just switch the register state and the stack. */
2657 switch_to(prev, next, prev);
2661 * this_rq must be evaluated again because prev may have moved
2662 * CPUs since it called schedule(), thus the 'rq' on its stack
2663 * frame will be invalid.
2665 finish_task_switch(this_rq(), prev);
2669 * nr_running, nr_uninterruptible and nr_context_switches:
2671 * externally visible scheduler statistics: current number of runnable
2672 * threads, current number of uninterruptible-sleeping threads, total
2673 * number of context switches performed since bootup.
2675 unsigned long nr_running(void)
2677 unsigned long i, sum = 0;
2679 for_each_online_cpu(i)
2680 sum += cpu_rq(i)->nr_running;
2685 unsigned long nr_uninterruptible(void)
2687 unsigned long i, sum = 0;
2689 for_each_possible_cpu(i)
2690 sum += cpu_rq(i)->nr_uninterruptible;
2693 * Since we read the counters lockless, it might be slightly
2694 * inaccurate. Do not allow it to go below zero though:
2696 if (unlikely((long)sum < 0))
2702 unsigned long long nr_context_switches(void)
2705 unsigned long long sum = 0;
2707 for_each_possible_cpu(i)
2708 sum += cpu_rq(i)->nr_switches;
2713 unsigned long nr_iowait(void)
2715 unsigned long i, sum = 0;
2717 for_each_possible_cpu(i)
2718 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2723 unsigned long nr_active(void)
2725 unsigned long i, running = 0, uninterruptible = 0;
2727 for_each_online_cpu(i) {
2728 running += cpu_rq(i)->nr_running;
2729 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2732 if (unlikely((long)uninterruptible < 0))
2733 uninterruptible = 0;
2735 return running + uninterruptible;
2739 * Update rq->cpu_load[] statistics. This function is usually called every
2740 * scheduler tick (TICK_NSEC).
2742 static void update_cpu_load(struct rq *this_rq)
2744 unsigned long this_load = this_rq->load.weight;
2747 this_rq->nr_load_updates++;
2749 /* Update our load: */
2750 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2751 unsigned long old_load, new_load;
2753 /* scale is effectively 1 << i now, and >> i divides by scale */
2755 old_load = this_rq->cpu_load[i];
2756 new_load = this_load;
2758 * Round up the averaging division if load is increasing. This
2759 * prevents us from getting stuck on 9 if the load is 10, for
2762 if (new_load > old_load)
2763 new_load += scale-1;
2764 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2771 * double_rq_lock - safely lock two runqueues
2773 * Note this does not disable interrupts like task_rq_lock,
2774 * you need to do so manually before calling.
2776 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2777 __acquires(rq1->lock)
2778 __acquires(rq2->lock)
2780 BUG_ON(!irqs_disabled());
2782 spin_lock(&rq1->lock);
2783 __acquire(rq2->lock); /* Fake it out ;) */
2786 spin_lock(&rq1->lock);
2787 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2789 spin_lock(&rq2->lock);
2790 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2793 update_rq_clock(rq1);
2794 update_rq_clock(rq2);
2798 * double_rq_unlock - safely unlock two runqueues
2800 * Note this does not restore interrupts like task_rq_unlock,
2801 * you need to do so manually after calling.
2803 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2804 __releases(rq1->lock)
2805 __releases(rq2->lock)
2807 spin_unlock(&rq1->lock);
2809 spin_unlock(&rq2->lock);
2811 __release(rq2->lock);
2815 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2817 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2818 __releases(this_rq->lock)
2819 __acquires(busiest->lock)
2820 __acquires(this_rq->lock)
2824 if (unlikely(!irqs_disabled())) {
2825 /* printk() doesn't work good under rq->lock */
2826 spin_unlock(&this_rq->lock);
2829 if (unlikely(!spin_trylock(&busiest->lock))) {
2830 if (busiest < this_rq) {
2831 spin_unlock(&this_rq->lock);
2832 spin_lock(&busiest->lock);
2833 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2836 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2841 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2842 __releases(busiest->lock)
2844 spin_unlock(&busiest->lock);
2845 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2849 * If dest_cpu is allowed for this process, migrate the task to it.
2850 * This is accomplished by forcing the cpu_allowed mask to only
2851 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2852 * the cpu_allowed mask is restored.
2854 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2856 struct migration_req req;
2857 unsigned long flags;
2860 rq = task_rq_lock(p, &flags);
2861 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2862 || unlikely(!cpu_active(dest_cpu)))
2865 trace_sched_migrate_task(rq, p, dest_cpu);
2866 /* force the process onto the specified CPU */
2867 if (migrate_task(p, dest_cpu, &req)) {
2868 /* Need to wait for migration thread (might exit: take ref). */
2869 struct task_struct *mt = rq->migration_thread;
2871 get_task_struct(mt);
2872 task_rq_unlock(rq, &flags);
2873 wake_up_process(mt);
2874 put_task_struct(mt);
2875 wait_for_completion(&req.done);
2880 task_rq_unlock(rq, &flags);
2884 * sched_exec - execve() is a valuable balancing opportunity, because at
2885 * this point the task has the smallest effective memory and cache footprint.
2887 void sched_exec(void)
2889 int new_cpu, this_cpu = get_cpu();
2890 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2892 if (new_cpu != this_cpu)
2893 sched_migrate_task(current, new_cpu);
2897 * pull_task - move a task from a remote runqueue to the local runqueue.
2898 * Both runqueues must be locked.
2900 static void pull_task(struct rq *src_rq, struct task_struct *p,
2901 struct rq *this_rq, int this_cpu)
2903 deactivate_task(src_rq, p, 0);
2904 set_task_cpu(p, this_cpu);
2905 activate_task(this_rq, p, 0);
2907 * Note that idle threads have a prio of MAX_PRIO, for this test
2908 * to be always true for them.
2910 check_preempt_curr(this_rq, p, 0);
2914 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2917 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2918 struct sched_domain *sd, enum cpu_idle_type idle,
2922 * We do not migrate tasks that are:
2923 * 1) running (obviously), or
2924 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2925 * 3) are cache-hot on their current CPU.
2927 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2928 schedstat_inc(p, se.nr_failed_migrations_affine);
2933 if (task_running(rq, p)) {
2934 schedstat_inc(p, se.nr_failed_migrations_running);
2939 * Aggressive migration if:
2940 * 1) task is cache cold, or
2941 * 2) too many balance attempts have failed.
2944 if (!task_hot(p, rq->clock, sd) ||
2945 sd->nr_balance_failed > sd->cache_nice_tries) {
2946 #ifdef CONFIG_SCHEDSTATS
2947 if (task_hot(p, rq->clock, sd)) {
2948 schedstat_inc(sd, lb_hot_gained[idle]);
2949 schedstat_inc(p, se.nr_forced_migrations);
2955 if (task_hot(p, rq->clock, sd)) {
2956 schedstat_inc(p, se.nr_failed_migrations_hot);
2962 static unsigned long
2963 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2964 unsigned long max_load_move, struct sched_domain *sd,
2965 enum cpu_idle_type idle, int *all_pinned,
2966 int *this_best_prio, struct rq_iterator *iterator)
2968 int loops = 0, pulled = 0, pinned = 0;
2969 struct task_struct *p;
2970 long rem_load_move = max_load_move;
2972 if (max_load_move == 0)
2978 * Start the load-balancing iterator:
2980 p = iterator->start(iterator->arg);
2982 if (!p || loops++ > sysctl_sched_nr_migrate)
2985 if ((p->se.load.weight >> 1) > rem_load_move ||
2986 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2987 p = iterator->next(iterator->arg);
2991 pull_task(busiest, p, this_rq, this_cpu);
2993 rem_load_move -= p->se.load.weight;
2996 * We only want to steal up to the prescribed amount of weighted load.
2998 if (rem_load_move > 0) {
2999 if (p->prio < *this_best_prio)
3000 *this_best_prio = p->prio;
3001 p = iterator->next(iterator->arg);
3006 * Right now, this is one of only two places pull_task() is called,
3007 * so we can safely collect pull_task() stats here rather than
3008 * inside pull_task().
3010 schedstat_add(sd, lb_gained[idle], pulled);
3013 *all_pinned = pinned;
3015 return max_load_move - rem_load_move;
3019 * move_tasks tries to move up to max_load_move weighted load from busiest to
3020 * this_rq, as part of a balancing operation within domain "sd".
3021 * Returns 1 if successful and 0 otherwise.
3023 * Called with both runqueues locked.
3025 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3026 unsigned long max_load_move,
3027 struct sched_domain *sd, enum cpu_idle_type idle,
3030 const struct sched_class *class = sched_class_highest;
3031 unsigned long total_load_moved = 0;
3032 int this_best_prio = this_rq->curr->prio;
3036 class->load_balance(this_rq, this_cpu, busiest,
3037 max_load_move - total_load_moved,
3038 sd, idle, all_pinned, &this_best_prio);
3039 class = class->next;
3041 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3044 } while (class && max_load_move > total_load_moved);
3046 return total_load_moved > 0;
3050 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3051 struct sched_domain *sd, enum cpu_idle_type idle,
3052 struct rq_iterator *iterator)
3054 struct task_struct *p = iterator->start(iterator->arg);
3058 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3059 pull_task(busiest, p, this_rq, this_cpu);
3061 * Right now, this is only the second place pull_task()
3062 * is called, so we can safely collect pull_task()
3063 * stats here rather than inside pull_task().
3065 schedstat_inc(sd, lb_gained[idle]);
3069 p = iterator->next(iterator->arg);
3076 * move_one_task tries to move exactly one task from busiest to this_rq, as
3077 * part of active balancing operations within "domain".
3078 * Returns 1 if successful and 0 otherwise.
3080 * Called with both runqueues locked.
3082 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3083 struct sched_domain *sd, enum cpu_idle_type idle)
3085 const struct sched_class *class;
3087 for (class = sched_class_highest; class; class = class->next)
3088 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3095 * find_busiest_group finds and returns the busiest CPU group within the
3096 * domain. It calculates and returns the amount of weighted load which
3097 * should be moved to restore balance via the imbalance parameter.
3099 static struct sched_group *
3100 find_busiest_group(struct sched_domain *sd, int this_cpu,
3101 unsigned long *imbalance, enum cpu_idle_type idle,
3102 int *sd_idle, const cpumask_t *cpus, int *balance)
3104 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3105 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3106 unsigned long max_pull;
3107 unsigned long busiest_load_per_task, busiest_nr_running;
3108 unsigned long this_load_per_task, this_nr_running;
3109 int load_idx, group_imb = 0;
3110 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3111 int power_savings_balance = 1;
3112 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3113 unsigned long min_nr_running = ULONG_MAX;
3114 struct sched_group *group_min = NULL, *group_leader = NULL;
3117 max_load = this_load = total_load = total_pwr = 0;
3118 busiest_load_per_task = busiest_nr_running = 0;
3119 this_load_per_task = this_nr_running = 0;
3121 if (idle == CPU_NOT_IDLE)
3122 load_idx = sd->busy_idx;
3123 else if (idle == CPU_NEWLY_IDLE)
3124 load_idx = sd->newidle_idx;
3126 load_idx = sd->idle_idx;
3129 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3132 int __group_imb = 0;
3133 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3134 unsigned long sum_nr_running, sum_weighted_load;
3135 unsigned long sum_avg_load_per_task;
3136 unsigned long avg_load_per_task;
3138 local_group = cpu_isset(this_cpu, group->cpumask);
3141 balance_cpu = first_cpu(group->cpumask);
3143 /* Tally up the load of all CPUs in the group */
3144 sum_weighted_load = sum_nr_running = avg_load = 0;
3145 sum_avg_load_per_task = avg_load_per_task = 0;
3148 min_cpu_load = ~0UL;
3150 for_each_cpu_mask_nr(i, group->cpumask) {
3153 if (!cpu_isset(i, *cpus))
3158 if (*sd_idle && rq->nr_running)
3161 /* Bias balancing toward cpus of our domain */
3163 if (idle_cpu(i) && !first_idle_cpu) {
3168 load = target_load(i, load_idx);
3170 load = source_load(i, load_idx);
3171 if (load > max_cpu_load)
3172 max_cpu_load = load;
3173 if (min_cpu_load > load)
3174 min_cpu_load = load;
3178 sum_nr_running += rq->nr_running;
3179 sum_weighted_load += weighted_cpuload(i);
3181 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3185 * First idle cpu or the first cpu(busiest) in this sched group
3186 * is eligible for doing load balancing at this and above
3187 * domains. In the newly idle case, we will allow all the cpu's
3188 * to do the newly idle load balance.
3190 if (idle != CPU_NEWLY_IDLE && local_group &&
3191 balance_cpu != this_cpu && balance) {
3196 total_load += avg_load;
3197 total_pwr += group->__cpu_power;
3199 /* Adjust by relative CPU power of the group */
3200 avg_load = sg_div_cpu_power(group,
3201 avg_load * SCHED_LOAD_SCALE);
3205 * Consider the group unbalanced when the imbalance is larger
3206 * than the average weight of two tasks.
3208 * APZ: with cgroup the avg task weight can vary wildly and
3209 * might not be a suitable number - should we keep a
3210 * normalized nr_running number somewhere that negates
3213 avg_load_per_task = sg_div_cpu_power(group,
3214 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3216 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3219 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3222 this_load = avg_load;
3224 this_nr_running = sum_nr_running;
3225 this_load_per_task = sum_weighted_load;
3226 } else if (avg_load > max_load &&
3227 (sum_nr_running > group_capacity || __group_imb)) {
3228 max_load = avg_load;
3230 busiest_nr_running = sum_nr_running;
3231 busiest_load_per_task = sum_weighted_load;
3232 group_imb = __group_imb;
3235 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3237 * Busy processors will not participate in power savings
3240 if (idle == CPU_NOT_IDLE ||
3241 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3245 * If the local group is idle or completely loaded
3246 * no need to do power savings balance at this domain
3248 if (local_group && (this_nr_running >= group_capacity ||
3250 power_savings_balance = 0;
3253 * If a group is already running at full capacity or idle,
3254 * don't include that group in power savings calculations
3256 if (!power_savings_balance || sum_nr_running >= group_capacity
3261 * Calculate the group which has the least non-idle load.
3262 * This is the group from where we need to pick up the load
3265 if ((sum_nr_running < min_nr_running) ||
3266 (sum_nr_running == min_nr_running &&
3267 first_cpu(group->cpumask) <
3268 first_cpu(group_min->cpumask))) {
3270 min_nr_running = sum_nr_running;
3271 min_load_per_task = sum_weighted_load /
3276 * Calculate the group which is almost near its
3277 * capacity but still has some space to pick up some load
3278 * from other group and save more power
3280 if (sum_nr_running <= group_capacity - 1) {
3281 if (sum_nr_running > leader_nr_running ||
3282 (sum_nr_running == leader_nr_running &&
3283 first_cpu(group->cpumask) >
3284 first_cpu(group_leader->cpumask))) {
3285 group_leader = group;
3286 leader_nr_running = sum_nr_running;
3291 group = group->next;
3292 } while (group != sd->groups);
3294 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3297 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3299 if (this_load >= avg_load ||
3300 100*max_load <= sd->imbalance_pct*this_load)
3303 busiest_load_per_task /= busiest_nr_running;
3305 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3308 * We're trying to get all the cpus to the average_load, so we don't
3309 * want to push ourselves above the average load, nor do we wish to
3310 * reduce the max loaded cpu below the average load, as either of these
3311 * actions would just result in more rebalancing later, and ping-pong
3312 * tasks around. Thus we look for the minimum possible imbalance.
3313 * Negative imbalances (*we* are more loaded than anyone else) will
3314 * be counted as no imbalance for these purposes -- we can't fix that
3315 * by pulling tasks to us. Be careful of negative numbers as they'll
3316 * appear as very large values with unsigned longs.
3318 if (max_load <= busiest_load_per_task)
3322 * In the presence of smp nice balancing, certain scenarios can have
3323 * max load less than avg load(as we skip the groups at or below
3324 * its cpu_power, while calculating max_load..)
3326 if (max_load < avg_load) {
3328 goto small_imbalance;
3331 /* Don't want to pull so many tasks that a group would go idle */
3332 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3334 /* How much load to actually move to equalise the imbalance */
3335 *imbalance = min(max_pull * busiest->__cpu_power,
3336 (avg_load - this_load) * this->__cpu_power)
3340 * if *imbalance is less than the average load per runnable task
3341 * there is no gaurantee that any tasks will be moved so we'll have
3342 * a think about bumping its value to force at least one task to be
3345 if (*imbalance < busiest_load_per_task) {
3346 unsigned long tmp, pwr_now, pwr_move;
3350 pwr_move = pwr_now = 0;
3352 if (this_nr_running) {
3353 this_load_per_task /= this_nr_running;
3354 if (busiest_load_per_task > this_load_per_task)
3357 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3359 if (max_load - this_load + busiest_load_per_task >=
3360 busiest_load_per_task * imbn) {
3361 *imbalance = busiest_load_per_task;
3366 * OK, we don't have enough imbalance to justify moving tasks,
3367 * however we may be able to increase total CPU power used by
3371 pwr_now += busiest->__cpu_power *
3372 min(busiest_load_per_task, max_load);
3373 pwr_now += this->__cpu_power *
3374 min(this_load_per_task, this_load);
3375 pwr_now /= SCHED_LOAD_SCALE;
3377 /* Amount of load we'd subtract */
3378 tmp = sg_div_cpu_power(busiest,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
3381 pwr_move += busiest->__cpu_power *
3382 min(busiest_load_per_task, max_load - tmp);
3384 /* Amount of load we'd add */
3385 if (max_load * busiest->__cpu_power <
3386 busiest_load_per_task * SCHED_LOAD_SCALE)
3387 tmp = sg_div_cpu_power(this,
3388 max_load * busiest->__cpu_power);
3390 tmp = sg_div_cpu_power(this,
3391 busiest_load_per_task * SCHED_LOAD_SCALE);
3392 pwr_move += this->__cpu_power *
3393 min(this_load_per_task, this_load + tmp);
3394 pwr_move /= SCHED_LOAD_SCALE;
3396 /* Move if we gain throughput */
3397 if (pwr_move > pwr_now)
3398 *imbalance = busiest_load_per_task;
3404 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3405 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3408 if (this == group_leader && group_leader != group_min) {
3409 *imbalance = min_load_per_task;
3419 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3422 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3423 unsigned long imbalance, const cpumask_t *cpus)
3425 struct rq *busiest = NULL, *rq;
3426 unsigned long max_load = 0;
3429 for_each_cpu_mask_nr(i, group->cpumask) {
3432 if (!cpu_isset(i, *cpus))
3436 wl = weighted_cpuload(i);
3438 if (rq->nr_running == 1 && wl > imbalance)
3441 if (wl > max_load) {
3451 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3452 * so long as it is large enough.
3454 #define MAX_PINNED_INTERVAL 512
3457 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3458 * tasks if there is an imbalance.
3460 static int load_balance(int this_cpu, struct rq *this_rq,
3461 struct sched_domain *sd, enum cpu_idle_type idle,
3462 int *balance, cpumask_t *cpus)
3464 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3465 struct sched_group *group;
3466 unsigned long imbalance;
3468 unsigned long flags;
3473 * When power savings policy is enabled for the parent domain, idle
3474 * sibling can pick up load irrespective of busy siblings. In this case,
3475 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3476 * portraying it as CPU_NOT_IDLE.
3478 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3479 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3482 schedstat_inc(sd, lb_count[idle]);
3486 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3493 schedstat_inc(sd, lb_nobusyg[idle]);
3497 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3499 schedstat_inc(sd, lb_nobusyq[idle]);
3503 BUG_ON(busiest == this_rq);
3505 schedstat_add(sd, lb_imbalance[idle], imbalance);
3508 if (busiest->nr_running > 1) {
3510 * Attempt to move tasks. If find_busiest_group has found
3511 * an imbalance but busiest->nr_running <= 1, the group is
3512 * still unbalanced. ld_moved simply stays zero, so it is
3513 * correctly treated as an imbalance.
3515 local_irq_save(flags);
3516 double_rq_lock(this_rq, busiest);
3517 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3518 imbalance, sd, idle, &all_pinned);
3519 double_rq_unlock(this_rq, busiest);
3520 local_irq_restore(flags);
3523 * some other cpu did the load balance for us.
3525 if (ld_moved && this_cpu != smp_processor_id())
3526 resched_cpu(this_cpu);
3528 /* All tasks on this runqueue were pinned by CPU affinity */
3529 if (unlikely(all_pinned)) {
3530 cpu_clear(cpu_of(busiest), *cpus);
3531 if (!cpus_empty(*cpus))