checkpatch: two spelling fixes
[sfrench/cifs-2.6.git] / kernel / relay.c
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  *      (mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35         struct rchan_buf *buf = vma->vm_private_data;
36         buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_fault *vmf)
43 {
44         struct page *page;
45         struct rchan_buf *buf = vmf->vma->vm_private_data;
46         pgoff_t pgoff = vmf->pgoff;
47
48         if (!buf)
49                 return VM_FAULT_OOM;
50
51         page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52         if (!page)
53                 return VM_FAULT_SIGBUS;
54         get_page(page);
55         vmf->page = page;
56
57         return 0;
58 }
59
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64         .fault = relay_buf_fault,
65         .close = relay_file_mmap_close,
66 };
67
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73         const size_t pa_size = n_pages * sizeof(struct page *);
74         if (pa_size > PAGE_SIZE)
75                 return vzalloc(pa_size);
76         return kzalloc(pa_size, GFP_KERNEL);
77 }
78
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84         kvfree(array);
85 }
86
87 /**
88  *      relay_mmap_buf: - mmap channel buffer to process address space
89  *      @buf: relay channel buffer
90  *      @vma: vm_area_struct describing memory to be mapped
91  *
92  *      Returns 0 if ok, negative on error
93  *
94  *      Caller should already have grabbed mmap_sem.
95  */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98         unsigned long length = vma->vm_end - vma->vm_start;
99         struct file *filp = vma->vm_file;
100
101         if (!buf)
102                 return -EBADF;
103
104         if (length != (unsigned long)buf->chan->alloc_size)
105                 return -EINVAL;
106
107         vma->vm_ops = &relay_file_mmap_ops;
108         vma->vm_flags |= VM_DONTEXPAND;
109         vma->vm_private_data = buf;
110         buf->chan->cb->buf_mapped(buf, filp);
111
112         return 0;
113 }
114
115 /**
116  *      relay_alloc_buf - allocate a channel buffer
117  *      @buf: the buffer struct
118  *      @size: total size of the buffer
119  *
120  *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121  *      passed in size will get page aligned, if it isn't already.
122  */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125         void *mem;
126         unsigned int i, j, n_pages;
127
128         *size = PAGE_ALIGN(*size);
129         n_pages = *size >> PAGE_SHIFT;
130
131         buf->page_array = relay_alloc_page_array(n_pages);
132         if (!buf->page_array)
133                 return NULL;
134
135         for (i = 0; i < n_pages; i++) {
136                 buf->page_array[i] = alloc_page(GFP_KERNEL);
137                 if (unlikely(!buf->page_array[i]))
138                         goto depopulate;
139                 set_page_private(buf->page_array[i], (unsigned long)buf);
140         }
141         mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142         if (!mem)
143                 goto depopulate;
144
145         memset(mem, 0, *size);
146         buf->page_count = n_pages;
147         return mem;
148
149 depopulate:
150         for (j = 0; j < i; j++)
151                 __free_page(buf->page_array[j]);
152         relay_free_page_array(buf->page_array);
153         return NULL;
154 }
155
156 /**
157  *      relay_create_buf - allocate and initialize a channel buffer
158  *      @chan: the relay channel
159  *
160  *      Returns channel buffer if successful, %NULL otherwise.
161  */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164         struct rchan_buf *buf;
165
166         if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
167                 return NULL;
168
169         buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170         if (!buf)
171                 return NULL;
172         buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
173         if (!buf->padding)
174                 goto free_buf;
175
176         buf->start = relay_alloc_buf(buf, &chan->alloc_size);
177         if (!buf->start)
178                 goto free_buf;
179
180         buf->chan = chan;
181         kref_get(&buf->chan->kref);
182         return buf;
183
184 free_buf:
185         kfree(buf->padding);
186         kfree(buf);
187         return NULL;
188 }
189
190 /**
191  *      relay_destroy_channel - free the channel struct
192  *      @kref: target kernel reference that contains the relay channel
193  *
194  *      Should only be called from kref_put().
195  */
196 static void relay_destroy_channel(struct kref *kref)
197 {
198         struct rchan *chan = container_of(kref, struct rchan, kref);
199         kfree(chan);
200 }
201
202 /**
203  *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204  *      @buf: the buffer struct
205  */
206 static void relay_destroy_buf(struct rchan_buf *buf)
207 {
208         struct rchan *chan = buf->chan;
209         unsigned int i;
210
211         if (likely(buf->start)) {
212                 vunmap(buf->start);
213                 for (i = 0; i < buf->page_count; i++)
214                         __free_page(buf->page_array[i]);
215                 relay_free_page_array(buf->page_array);
216         }
217         *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
218         kfree(buf->padding);
219         kfree(buf);
220         kref_put(&chan->kref, relay_destroy_channel);
221 }
222
223 /**
224  *      relay_remove_buf - remove a channel buffer
225  *      @kref: target kernel reference that contains the relay buffer
226  *
227  *      Removes the file from the filesystem, which also frees the
228  *      rchan_buf_struct and the channel buffer.  Should only be called from
229  *      kref_put().
230  */
231 static void relay_remove_buf(struct kref *kref)
232 {
233         struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
234         relay_destroy_buf(buf);
235 }
236
237 /**
238  *      relay_buf_empty - boolean, is the channel buffer empty?
239  *      @buf: channel buffer
240  *
241  *      Returns 1 if the buffer is empty, 0 otherwise.
242  */
243 static int relay_buf_empty(struct rchan_buf *buf)
244 {
245         return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246 }
247
248 /**
249  *      relay_buf_full - boolean, is the channel buffer full?
250  *      @buf: channel buffer
251  *
252  *      Returns 1 if the buffer is full, 0 otherwise.
253  */
254 int relay_buf_full(struct rchan_buf *buf)
255 {
256         size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257         return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258 }
259 EXPORT_SYMBOL_GPL(relay_buf_full);
260
261 /*
262  * High-level relay kernel API and associated functions.
263  */
264
265 /*
266  * rchan_callback implementations defining default channel behavior.  Used
267  * in place of corresponding NULL values in client callback struct.
268  */
269
270 /*
271  * subbuf_start() default callback.  Does nothing.
272  */
273 static int subbuf_start_default_callback (struct rchan_buf *buf,
274                                           void *subbuf,
275                                           void *prev_subbuf,
276                                           size_t prev_padding)
277 {
278         if (relay_buf_full(buf))
279                 return 0;
280
281         return 1;
282 }
283
284 /*
285  * buf_mapped() default callback.  Does nothing.
286  */
287 static void buf_mapped_default_callback(struct rchan_buf *buf,
288                                         struct file *filp)
289 {
290 }
291
292 /*
293  * buf_unmapped() default callback.  Does nothing.
294  */
295 static void buf_unmapped_default_callback(struct rchan_buf *buf,
296                                           struct file *filp)
297 {
298 }
299
300 /*
301  * create_buf_file_create() default callback.  Does nothing.
302  */
303 static struct dentry *create_buf_file_default_callback(const char *filename,
304                                                        struct dentry *parent,
305                                                        umode_t mode,
306                                                        struct rchan_buf *buf,
307                                                        int *is_global)
308 {
309         return NULL;
310 }
311
312 /*
313  * remove_buf_file() default callback.  Does nothing.
314  */
315 static int remove_buf_file_default_callback(struct dentry *dentry)
316 {
317         return -EINVAL;
318 }
319
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks = {
322         .subbuf_start = subbuf_start_default_callback,
323         .buf_mapped = buf_mapped_default_callback,
324         .buf_unmapped = buf_unmapped_default_callback,
325         .create_buf_file = create_buf_file_default_callback,
326         .remove_buf_file = remove_buf_file_default_callback,
327 };
328
329 /**
330  *      wakeup_readers - wake up readers waiting on a channel
331  *      @work: contains the channel buffer
332  *
333  *      This is the function used to defer reader waking
334  */
335 static void wakeup_readers(struct irq_work *work)
336 {
337         struct rchan_buf *buf;
338
339         buf = container_of(work, struct rchan_buf, wakeup_work);
340         wake_up_interruptible(&buf->read_wait);
341 }
342
343 /**
344  *      __relay_reset - reset a channel buffer
345  *      @buf: the channel buffer
346  *      @init: 1 if this is a first-time initialization
347  *
348  *      See relay_reset() for description of effect.
349  */
350 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
351 {
352         size_t i;
353
354         if (init) {
355                 init_waitqueue_head(&buf->read_wait);
356                 kref_init(&buf->kref);
357                 init_irq_work(&buf->wakeup_work, wakeup_readers);
358         } else {
359                 irq_work_sync(&buf->wakeup_work);
360         }
361
362         buf->subbufs_produced = 0;
363         buf->subbufs_consumed = 0;
364         buf->bytes_consumed = 0;
365         buf->finalized = 0;
366         buf->data = buf->start;
367         buf->offset = 0;
368
369         for (i = 0; i < buf->chan->n_subbufs; i++)
370                 buf->padding[i] = 0;
371
372         buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
373 }
374
375 /**
376  *      relay_reset - reset the channel
377  *      @chan: the channel
378  *
379  *      This has the effect of erasing all data from all channel buffers
380  *      and restarting the channel in its initial state.  The buffers
381  *      are not freed, so any mappings are still in effect.
382  *
383  *      NOTE. Care should be taken that the channel isn't actually
384  *      being used by anything when this call is made.
385  */
386 void relay_reset(struct rchan *chan)
387 {
388         struct rchan_buf *buf;
389         unsigned int i;
390
391         if (!chan)
392                 return;
393
394         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
395                 __relay_reset(buf, 0);
396                 return;
397         }
398
399         mutex_lock(&relay_channels_mutex);
400         for_each_possible_cpu(i)
401                 if ((buf = *per_cpu_ptr(chan->buf, i)))
402                         __relay_reset(buf, 0);
403         mutex_unlock(&relay_channels_mutex);
404 }
405 EXPORT_SYMBOL_GPL(relay_reset);
406
407 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
408                                         struct dentry *dentry)
409 {
410         buf->dentry = dentry;
411         d_inode(buf->dentry)->i_size = buf->early_bytes;
412 }
413
414 static struct dentry *relay_create_buf_file(struct rchan *chan,
415                                             struct rchan_buf *buf,
416                                             unsigned int cpu)
417 {
418         struct dentry *dentry;
419         char *tmpname;
420
421         tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
422         if (!tmpname)
423                 return NULL;
424         snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
425
426         /* Create file in fs */
427         dentry = chan->cb->create_buf_file(tmpname, chan->parent,
428                                            S_IRUSR, buf,
429                                            &chan->is_global);
430
431         kfree(tmpname);
432
433         return dentry;
434 }
435
436 /*
437  *      relay_open_buf - create a new relay channel buffer
438  *
439  *      used by relay_open() and CPU hotplug.
440  */
441 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
442 {
443         struct rchan_buf *buf = NULL;
444         struct dentry *dentry;
445
446         if (chan->is_global)
447                 return *per_cpu_ptr(chan->buf, 0);
448
449         buf = relay_create_buf(chan);
450         if (!buf)
451                 return NULL;
452
453         if (chan->has_base_filename) {
454                 dentry = relay_create_buf_file(chan, buf, cpu);
455                 if (!dentry)
456                         goto free_buf;
457                 relay_set_buf_dentry(buf, dentry);
458         } else {
459                 /* Only retrieve global info, nothing more, nothing less */
460                 dentry = chan->cb->create_buf_file(NULL, NULL,
461                                                    S_IRUSR, buf,
462                                                    &chan->is_global);
463                 if (WARN_ON(dentry))
464                         goto free_buf;
465         }
466
467         buf->cpu = cpu;
468         __relay_reset(buf, 1);
469
470         if(chan->is_global) {
471                 *per_cpu_ptr(chan->buf, 0) = buf;
472                 buf->cpu = 0;
473         }
474
475         return buf;
476
477 free_buf:
478         relay_destroy_buf(buf);
479         return NULL;
480 }
481
482 /**
483  *      relay_close_buf - close a channel buffer
484  *      @buf: channel buffer
485  *
486  *      Marks the buffer finalized and restores the default callbacks.
487  *      The channel buffer and channel buffer data structure are then freed
488  *      automatically when the last reference is given up.
489  */
490 static void relay_close_buf(struct rchan_buf *buf)
491 {
492         buf->finalized = 1;
493         irq_work_sync(&buf->wakeup_work);
494         buf->chan->cb->remove_buf_file(buf->dentry);
495         kref_put(&buf->kref, relay_remove_buf);
496 }
497
498 static void setup_callbacks(struct rchan *chan,
499                                    struct rchan_callbacks *cb)
500 {
501         if (!cb) {
502                 chan->cb = &default_channel_callbacks;
503                 return;
504         }
505
506         if (!cb->subbuf_start)
507                 cb->subbuf_start = subbuf_start_default_callback;
508         if (!cb->buf_mapped)
509                 cb->buf_mapped = buf_mapped_default_callback;
510         if (!cb->buf_unmapped)
511                 cb->buf_unmapped = buf_unmapped_default_callback;
512         if (!cb->create_buf_file)
513                 cb->create_buf_file = create_buf_file_default_callback;
514         if (!cb->remove_buf_file)
515                 cb->remove_buf_file = remove_buf_file_default_callback;
516         chan->cb = cb;
517 }
518
519 int relay_prepare_cpu(unsigned int cpu)
520 {
521         struct rchan *chan;
522         struct rchan_buf *buf;
523
524         mutex_lock(&relay_channels_mutex);
525         list_for_each_entry(chan, &relay_channels, list) {
526                 if ((buf = *per_cpu_ptr(chan->buf, cpu)))
527                         continue;
528                 buf = relay_open_buf(chan, cpu);
529                 if (!buf) {
530                         pr_err("relay: cpu %d buffer creation failed\n", cpu);
531                         mutex_unlock(&relay_channels_mutex);
532                         return -ENOMEM;
533                 }
534                 *per_cpu_ptr(chan->buf, cpu) = buf;
535         }
536         mutex_unlock(&relay_channels_mutex);
537         return 0;
538 }
539
540 /**
541  *      relay_open - create a new relay channel
542  *      @base_filename: base name of files to create, %NULL for buffering only
543  *      @parent: dentry of parent directory, %NULL for root directory or buffer
544  *      @subbuf_size: size of sub-buffers
545  *      @n_subbufs: number of sub-buffers
546  *      @cb: client callback functions
547  *      @private_data: user-defined data
548  *
549  *      Returns channel pointer if successful, %NULL otherwise.
550  *
551  *      Creates a channel buffer for each cpu using the sizes and
552  *      attributes specified.  The created channel buffer files
553  *      will be named base_filename0...base_filenameN-1.  File
554  *      permissions will be %S_IRUSR.
555  *
556  *      If opening a buffer (@parent = NULL) that you later wish to register
557  *      in a filesystem, call relay_late_setup_files() once the @parent dentry
558  *      is available.
559  */
560 struct rchan *relay_open(const char *base_filename,
561                          struct dentry *parent,
562                          size_t subbuf_size,
563                          size_t n_subbufs,
564                          struct rchan_callbacks *cb,
565                          void *private_data)
566 {
567         unsigned int i;
568         struct rchan *chan;
569         struct rchan_buf *buf;
570
571         if (!(subbuf_size && n_subbufs))
572                 return NULL;
573         if (subbuf_size > UINT_MAX / n_subbufs)
574                 return NULL;
575
576         chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
577         if (!chan)
578                 return NULL;
579
580         chan->buf = alloc_percpu(struct rchan_buf *);
581         chan->version = RELAYFS_CHANNEL_VERSION;
582         chan->n_subbufs = n_subbufs;
583         chan->subbuf_size = subbuf_size;
584         chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
585         chan->parent = parent;
586         chan->private_data = private_data;
587         if (base_filename) {
588                 chan->has_base_filename = 1;
589                 strlcpy(chan->base_filename, base_filename, NAME_MAX);
590         }
591         setup_callbacks(chan, cb);
592         kref_init(&chan->kref);
593
594         mutex_lock(&relay_channels_mutex);
595         for_each_online_cpu(i) {
596                 buf = relay_open_buf(chan, i);
597                 if (!buf)
598                         goto free_bufs;
599                 *per_cpu_ptr(chan->buf, i) = buf;
600         }
601         list_add(&chan->list, &relay_channels);
602         mutex_unlock(&relay_channels_mutex);
603
604         return chan;
605
606 free_bufs:
607         for_each_possible_cpu(i) {
608                 if ((buf = *per_cpu_ptr(chan->buf, i)))
609                         relay_close_buf(buf);
610         }
611
612         kref_put(&chan->kref, relay_destroy_channel);
613         mutex_unlock(&relay_channels_mutex);
614         return NULL;
615 }
616 EXPORT_SYMBOL_GPL(relay_open);
617
618 struct rchan_percpu_buf_dispatcher {
619         struct rchan_buf *buf;
620         struct dentry *dentry;
621 };
622
623 /* Called in atomic context. */
624 static void __relay_set_buf_dentry(void *info)
625 {
626         struct rchan_percpu_buf_dispatcher *p = info;
627
628         relay_set_buf_dentry(p->buf, p->dentry);
629 }
630
631 /**
632  *      relay_late_setup_files - triggers file creation
633  *      @chan: channel to operate on
634  *      @base_filename: base name of files to create
635  *      @parent: dentry of parent directory, %NULL for root directory
636  *
637  *      Returns 0 if successful, non-zero otherwise.
638  *
639  *      Use to setup files for a previously buffer-only channel created
640  *      by relay_open() with a NULL parent dentry.
641  *
642  *      For example, this is useful for perfomring early tracing in kernel,
643  *      before VFS is up and then exposing the early results once the dentry
644  *      is available.
645  */
646 int relay_late_setup_files(struct rchan *chan,
647                            const char *base_filename,
648                            struct dentry *parent)
649 {
650         int err = 0;
651         unsigned int i, curr_cpu;
652         unsigned long flags;
653         struct dentry *dentry;
654         struct rchan_buf *buf;
655         struct rchan_percpu_buf_dispatcher disp;
656
657         if (!chan || !base_filename)
658                 return -EINVAL;
659
660         strlcpy(chan->base_filename, base_filename, NAME_MAX);
661
662         mutex_lock(&relay_channels_mutex);
663         /* Is chan already set up? */
664         if (unlikely(chan->has_base_filename)) {
665                 mutex_unlock(&relay_channels_mutex);
666                 return -EEXIST;
667         }
668         chan->has_base_filename = 1;
669         chan->parent = parent;
670
671         if (chan->is_global) {
672                 err = -EINVAL;
673                 buf = *per_cpu_ptr(chan->buf, 0);
674                 if (!WARN_ON_ONCE(!buf)) {
675                         dentry = relay_create_buf_file(chan, buf, 0);
676                         if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
677                                 relay_set_buf_dentry(buf, dentry);
678                                 err = 0;
679                         }
680                 }
681                 mutex_unlock(&relay_channels_mutex);
682                 return err;
683         }
684
685         curr_cpu = get_cpu();
686         /*
687          * The CPU hotplug notifier ran before us and created buffers with
688          * no files associated. So it's safe to call relay_setup_buf_file()
689          * on all currently online CPUs.
690          */
691         for_each_online_cpu(i) {
692                 buf = *per_cpu_ptr(chan->buf, i);
693                 if (unlikely(!buf)) {
694                         WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
695                         err = -EINVAL;
696                         break;
697                 }
698
699                 dentry = relay_create_buf_file(chan, buf, i);
700                 if (unlikely(!dentry)) {
701                         err = -EINVAL;
702                         break;
703                 }
704
705                 if (curr_cpu == i) {
706                         local_irq_save(flags);
707                         relay_set_buf_dentry(buf, dentry);
708                         local_irq_restore(flags);
709                 } else {
710                         disp.buf = buf;
711                         disp.dentry = dentry;
712                         smp_mb();
713                         /* relay_channels_mutex must be held, so wait. */
714                         err = smp_call_function_single(i,
715                                                        __relay_set_buf_dentry,
716                                                        &disp, 1);
717                 }
718                 if (unlikely(err))
719                         break;
720         }
721         put_cpu();
722         mutex_unlock(&relay_channels_mutex);
723
724         return err;
725 }
726 EXPORT_SYMBOL_GPL(relay_late_setup_files);
727
728 /**
729  *      relay_switch_subbuf - switch to a new sub-buffer
730  *      @buf: channel buffer
731  *      @length: size of current event
732  *
733  *      Returns either the length passed in or 0 if full.
734  *
735  *      Performs sub-buffer-switch tasks such as invoking callbacks,
736  *      updating padding counts, waking up readers, etc.
737  */
738 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
739 {
740         void *old, *new;
741         size_t old_subbuf, new_subbuf;
742
743         if (unlikely(length > buf->chan->subbuf_size))
744                 goto toobig;
745
746         if (buf->offset != buf->chan->subbuf_size + 1) {
747                 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
748                 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
749                 buf->padding[old_subbuf] = buf->prev_padding;
750                 buf->subbufs_produced++;
751                 if (buf->dentry)
752                         d_inode(buf->dentry)->i_size +=
753                                 buf->chan->subbuf_size -
754                                 buf->padding[old_subbuf];
755                 else
756                         buf->early_bytes += buf->chan->subbuf_size -
757                                             buf->padding[old_subbuf];
758                 smp_mb();
759                 if (waitqueue_active(&buf->read_wait)) {
760                         /*
761                          * Calling wake_up_interruptible() from here
762                          * will deadlock if we happen to be logging
763                          * from the scheduler (trying to re-grab
764                          * rq->lock), so defer it.
765                          */
766                         irq_work_queue(&buf->wakeup_work);
767                 }
768         }
769
770         old = buf->data;
771         new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
772         new = buf->start + new_subbuf * buf->chan->subbuf_size;
773         buf->offset = 0;
774         if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
775                 buf->offset = buf->chan->subbuf_size + 1;
776                 return 0;
777         }
778         buf->data = new;
779         buf->padding[new_subbuf] = 0;
780
781         if (unlikely(length + buf->offset > buf->chan->subbuf_size))
782                 goto toobig;
783
784         return length;
785
786 toobig:
787         buf->chan->last_toobig = length;
788         return 0;
789 }
790 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
791
792 /**
793  *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
794  *      @chan: the channel
795  *      @cpu: the cpu associated with the channel buffer to update
796  *      @subbufs_consumed: number of sub-buffers to add to current buf's count
797  *
798  *      Adds to the channel buffer's consumed sub-buffer count.
799  *      subbufs_consumed should be the number of sub-buffers newly consumed,
800  *      not the total consumed.
801  *
802  *      NOTE. Kernel clients don't need to call this function if the channel
803  *      mode is 'overwrite'.
804  */
805 void relay_subbufs_consumed(struct rchan *chan,
806                             unsigned int cpu,
807                             size_t subbufs_consumed)
808 {
809         struct rchan_buf *buf;
810
811         if (!chan || cpu >= NR_CPUS)
812                 return;
813
814         buf = *per_cpu_ptr(chan->buf, cpu);
815         if (!buf || subbufs_consumed > chan->n_subbufs)
816                 return;
817
818         if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
819                 buf->subbufs_consumed = buf->subbufs_produced;
820         else
821                 buf->subbufs_consumed += subbufs_consumed;
822 }
823 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
824
825 /**
826  *      relay_close - close the channel
827  *      @chan: the channel
828  *
829  *      Closes all channel buffers and frees the channel.
830  */
831 void relay_close(struct rchan *chan)
832 {
833         struct rchan_buf *buf;
834         unsigned int i;
835
836         if (!chan)
837                 return;
838
839         mutex_lock(&relay_channels_mutex);
840         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
841                 relay_close_buf(buf);
842         else
843                 for_each_possible_cpu(i)
844                         if ((buf = *per_cpu_ptr(chan->buf, i)))
845                                 relay_close_buf(buf);
846
847         if (chan->last_toobig)
848                 printk(KERN_WARNING "relay: one or more items not logged "
849                        "[item size (%zd) > sub-buffer size (%zd)]\n",
850                        chan->last_toobig, chan->subbuf_size);
851
852         list_del(&chan->list);
853         kref_put(&chan->kref, relay_destroy_channel);
854         mutex_unlock(&relay_channels_mutex);
855 }
856 EXPORT_SYMBOL_GPL(relay_close);
857
858 /**
859  *      relay_flush - close the channel
860  *      @chan: the channel
861  *
862  *      Flushes all channel buffers, i.e. forces buffer switch.
863  */
864 void relay_flush(struct rchan *chan)
865 {
866         struct rchan_buf *buf;
867         unsigned int i;
868
869         if (!chan)
870                 return;
871
872         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
873                 relay_switch_subbuf(buf, 0);
874                 return;
875         }
876
877         mutex_lock(&relay_channels_mutex);
878         for_each_possible_cpu(i)
879                 if ((buf = *per_cpu_ptr(chan->buf, i)))
880                         relay_switch_subbuf(buf, 0);
881         mutex_unlock(&relay_channels_mutex);
882 }
883 EXPORT_SYMBOL_GPL(relay_flush);
884
885 /**
886  *      relay_file_open - open file op for relay files
887  *      @inode: the inode
888  *      @filp: the file
889  *
890  *      Increments the channel buffer refcount.
891  */
892 static int relay_file_open(struct inode *inode, struct file *filp)
893 {
894         struct rchan_buf *buf = inode->i_private;
895         kref_get(&buf->kref);
896         filp->private_data = buf;
897
898         return nonseekable_open(inode, filp);
899 }
900
901 /**
902  *      relay_file_mmap - mmap file op for relay files
903  *      @filp: the file
904  *      @vma: the vma describing what to map
905  *
906  *      Calls upon relay_mmap_buf() to map the file into user space.
907  */
908 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
909 {
910         struct rchan_buf *buf = filp->private_data;
911         return relay_mmap_buf(buf, vma);
912 }
913
914 /**
915  *      relay_file_poll - poll file op for relay files
916  *      @filp: the file
917  *      @wait: poll table
918  *
919  *      Poll implemention.
920  */
921 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
922 {
923         __poll_t mask = 0;
924         struct rchan_buf *buf = filp->private_data;
925
926         if (buf->finalized)
927                 return EPOLLERR;
928
929         if (filp->f_mode & FMODE_READ) {
930                 poll_wait(filp, &buf->read_wait, wait);
931                 if (!relay_buf_empty(buf))
932                         mask |= EPOLLIN | EPOLLRDNORM;
933         }
934
935         return mask;
936 }
937
938 /**
939  *      relay_file_release - release file op for relay files
940  *      @inode: the inode
941  *      @filp: the file
942  *
943  *      Decrements the channel refcount, as the filesystem is
944  *      no longer using it.
945  */
946 static int relay_file_release(struct inode *inode, struct file *filp)
947 {
948         struct rchan_buf *buf = filp->private_data;
949         kref_put(&buf->kref, relay_remove_buf);
950
951         return 0;
952 }
953
954 /*
955  *      relay_file_read_consume - update the consumed count for the buffer
956  */
957 static void relay_file_read_consume(struct rchan_buf *buf,
958                                     size_t read_pos,
959                                     size_t bytes_consumed)
960 {
961         size_t subbuf_size = buf->chan->subbuf_size;
962         size_t n_subbufs = buf->chan->n_subbufs;
963         size_t read_subbuf;
964
965         if (buf->subbufs_produced == buf->subbufs_consumed &&
966             buf->offset == buf->bytes_consumed)
967                 return;
968
969         if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
970                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
971                 buf->bytes_consumed = 0;
972         }
973
974         buf->bytes_consumed += bytes_consumed;
975         if (!read_pos)
976                 read_subbuf = buf->subbufs_consumed % n_subbufs;
977         else
978                 read_subbuf = read_pos / buf->chan->subbuf_size;
979         if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
980                 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
981                     (buf->offset == subbuf_size))
982                         return;
983                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
984                 buf->bytes_consumed = 0;
985         }
986 }
987
988 /*
989  *      relay_file_read_avail - boolean, are there unconsumed bytes available?
990  */
991 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
992 {
993         size_t subbuf_size = buf->chan->subbuf_size;
994         size_t n_subbufs = buf->chan->n_subbufs;
995         size_t produced = buf->subbufs_produced;
996         size_t consumed = buf->subbufs_consumed;
997
998         relay_file_read_consume(buf, read_pos, 0);
999
1000         consumed = buf->subbufs_consumed;
1001
1002         if (unlikely(buf->offset > subbuf_size)) {
1003                 if (produced == consumed)
1004                         return 0;
1005                 return 1;
1006         }
1007
1008         if (unlikely(produced - consumed >= n_subbufs)) {
1009                 consumed = produced - n_subbufs + 1;
1010                 buf->subbufs_consumed = consumed;
1011                 buf->bytes_consumed = 0;
1012         }
1013
1014         produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1015         consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1016
1017         if (consumed > produced)
1018                 produced += n_subbufs * subbuf_size;
1019
1020         if (consumed == produced) {
1021                 if (buf->offset == subbuf_size &&
1022                     buf->subbufs_produced > buf->subbufs_consumed)
1023                         return 1;
1024                 return 0;
1025         }
1026
1027         return 1;
1028 }
1029
1030 /**
1031  *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
1032  *      @read_pos: file read position
1033  *      @buf: relay channel buffer
1034  */
1035 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1036                                            struct rchan_buf *buf)
1037 {
1038         size_t padding, avail = 0;
1039         size_t read_subbuf, read_offset, write_subbuf, write_offset;
1040         size_t subbuf_size = buf->chan->subbuf_size;
1041
1042         write_subbuf = (buf->data - buf->start) / subbuf_size;
1043         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1044         read_subbuf = read_pos / subbuf_size;
1045         read_offset = read_pos % subbuf_size;
1046         padding = buf->padding[read_subbuf];
1047
1048         if (read_subbuf == write_subbuf) {
1049                 if (read_offset + padding < write_offset)
1050                         avail = write_offset - (read_offset + padding);
1051         } else
1052                 avail = (subbuf_size - padding) - read_offset;
1053
1054         return avail;
1055 }
1056
1057 /**
1058  *      relay_file_read_start_pos - find the first available byte to read
1059  *      @read_pos: file read position
1060  *      @buf: relay channel buffer
1061  *
1062  *      If the @read_pos is in the middle of padding, return the
1063  *      position of the first actually available byte, otherwise
1064  *      return the original value.
1065  */
1066 static size_t relay_file_read_start_pos(size_t read_pos,
1067                                         struct rchan_buf *buf)
1068 {
1069         size_t read_subbuf, padding, padding_start, padding_end;
1070         size_t subbuf_size = buf->chan->subbuf_size;
1071         size_t n_subbufs = buf->chan->n_subbufs;
1072         size_t consumed = buf->subbufs_consumed % n_subbufs;
1073
1074         if (!read_pos)
1075                 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1076         read_subbuf = read_pos / subbuf_size;
1077         padding = buf->padding[read_subbuf];
1078         padding_start = (read_subbuf + 1) * subbuf_size - padding;
1079         padding_end = (read_subbuf + 1) * subbuf_size;
1080         if (read_pos >= padding_start && read_pos < padding_end) {
1081                 read_subbuf = (read_subbuf + 1) % n_subbufs;
1082                 read_pos = read_subbuf * subbuf_size;
1083         }
1084
1085         return read_pos;
1086 }
1087
1088 /**
1089  *      relay_file_read_end_pos - return the new read position
1090  *      @read_pos: file read position
1091  *      @buf: relay channel buffer
1092  *      @count: number of bytes to be read
1093  */
1094 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1095                                       size_t read_pos,
1096                                       size_t count)
1097 {
1098         size_t read_subbuf, padding, end_pos;
1099         size_t subbuf_size = buf->chan->subbuf_size;
1100         size_t n_subbufs = buf->chan->n_subbufs;
1101
1102         read_subbuf = read_pos / subbuf_size;
1103         padding = buf->padding[read_subbuf];
1104         if (read_pos % subbuf_size + count + padding == subbuf_size)
1105                 end_pos = (read_subbuf + 1) * subbuf_size;
1106         else
1107                 end_pos = read_pos + count;
1108         if (end_pos >= subbuf_size * n_subbufs)
1109                 end_pos = 0;
1110
1111         return end_pos;
1112 }
1113
1114 static ssize_t relay_file_read(struct file *filp,
1115                                char __user *buffer,
1116                                size_t count,
1117                                loff_t *ppos)
1118 {
1119         struct rchan_buf *buf = filp->private_data;
1120         size_t read_start, avail;
1121         size_t written = 0;
1122         int ret;
1123
1124         if (!count)
1125                 return 0;
1126
1127         inode_lock(file_inode(filp));
1128         do {
1129                 void *from;
1130
1131                 if (!relay_file_read_avail(buf, *ppos))
1132                         break;
1133
1134                 read_start = relay_file_read_start_pos(*ppos, buf);
1135                 avail = relay_file_read_subbuf_avail(read_start, buf);
1136                 if (!avail)
1137                         break;
1138
1139                 avail = min(count, avail);
1140                 from = buf->start + read_start;
1141                 ret = avail;
1142                 if (copy_to_user(buffer, from, avail))
1143                         break;
1144
1145                 buffer += ret;
1146                 written += ret;
1147                 count -= ret;
1148
1149                 relay_file_read_consume(buf, read_start, ret);
1150                 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1151         } while (count);
1152         inode_unlock(file_inode(filp));
1153
1154         return written;
1155 }
1156
1157 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1158 {
1159         rbuf->bytes_consumed += bytes_consumed;
1160
1161         if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1162                 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1163                 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1164         }
1165 }
1166
1167 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1168                                    struct pipe_buffer *buf)
1169 {
1170         struct rchan_buf *rbuf;
1171
1172         rbuf = (struct rchan_buf *)page_private(buf->page);
1173         relay_consume_bytes(rbuf, buf->private);
1174 }
1175
1176 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1177         .can_merge = 0,
1178         .confirm = generic_pipe_buf_confirm,
1179         .release = relay_pipe_buf_release,
1180         .steal = generic_pipe_buf_steal,
1181         .get = generic_pipe_buf_get,
1182 };
1183
1184 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1185 {
1186 }
1187
1188 /*
1189  *      subbuf_splice_actor - splice up to one subbuf's worth of data
1190  */
1191 static ssize_t subbuf_splice_actor(struct file *in,
1192                                loff_t *ppos,
1193                                struct pipe_inode_info *pipe,
1194                                size_t len,
1195                                unsigned int flags,
1196                                int *nonpad_ret)
1197 {
1198         unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1199         struct rchan_buf *rbuf = in->private_data;
1200         unsigned int subbuf_size = rbuf->chan->subbuf_size;
1201         uint64_t pos = (uint64_t) *ppos;
1202         uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1203         size_t read_start = (size_t) do_div(pos, alloc_size);
1204         size_t read_subbuf = read_start / subbuf_size;
1205         size_t padding = rbuf->padding[read_subbuf];
1206         size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1207         struct page *pages[PIPE_DEF_BUFFERS];
1208         struct partial_page partial[PIPE_DEF_BUFFERS];
1209         struct splice_pipe_desc spd = {
1210                 .pages = pages,
1211                 .nr_pages = 0,
1212                 .nr_pages_max = PIPE_DEF_BUFFERS,
1213                 .partial = partial,
1214                 .ops = &relay_pipe_buf_ops,
1215                 .spd_release = relay_page_release,
1216         };
1217         ssize_t ret;
1218
1219         if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1220                 return 0;
1221         if (splice_grow_spd(pipe, &spd))
1222                 return -ENOMEM;
1223
1224         /*
1225          * Adjust read len, if longer than what is available
1226          */
1227         if (len > (subbuf_size - read_start % subbuf_size))
1228                 len = subbuf_size - read_start % subbuf_size;
1229
1230         subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1231         pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1232         poff = read_start & ~PAGE_MASK;
1233         nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1234
1235         for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1236                 unsigned int this_len, this_end, private;
1237                 unsigned int cur_pos = read_start + total_len;
1238
1239                 if (!len)
1240                         break;
1241
1242                 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1243                 private = this_len;
1244
1245                 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1246                 spd.partial[spd.nr_pages].offset = poff;
1247
1248                 this_end = cur_pos + this_len;
1249                 if (this_end >= nonpad_end) {
1250                         this_len = nonpad_end - cur_pos;
1251                         private = this_len + padding;
1252                 }
1253                 spd.partial[spd.nr_pages].len = this_len;
1254                 spd.partial[spd.nr_pages].private = private;
1255
1256                 len -= this_len;
1257                 total_len += this_len;
1258                 poff = 0;
1259                 pidx = (pidx + 1) % subbuf_pages;
1260
1261                 if (this_end >= nonpad_end) {
1262                         spd.nr_pages++;
1263                         break;
1264                 }
1265         }
1266
1267         ret = 0;
1268         if (!spd.nr_pages)
1269                 goto out;
1270
1271         ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1272         if (ret < 0 || ret < total_len)
1273                 goto out;
1274
1275         if (read_start + ret == nonpad_end)
1276                 ret += padding;
1277
1278 out:
1279         splice_shrink_spd(&spd);
1280         return ret;
1281 }
1282
1283 static ssize_t relay_file_splice_read(struct file *in,
1284                                       loff_t *ppos,
1285                                       struct pipe_inode_info *pipe,
1286                                       size_t len,
1287                                       unsigned int flags)
1288 {
1289         ssize_t spliced;
1290         int ret;
1291         int nonpad_ret = 0;
1292
1293         ret = 0;
1294         spliced = 0;
1295
1296         while (len && !spliced) {
1297                 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1298                 if (ret < 0)
1299                         break;
1300                 else if (!ret) {
1301                         if (flags & SPLICE_F_NONBLOCK)
1302                                 ret = -EAGAIN;
1303                         break;
1304                 }
1305
1306                 *ppos += ret;
1307                 if (ret > len)
1308                         len = 0;
1309                 else
1310                         len -= ret;
1311                 spliced += nonpad_ret;
1312                 nonpad_ret = 0;
1313         }
1314
1315         if (spliced)
1316                 return spliced;
1317
1318         return ret;
1319 }
1320
1321 const struct file_operations relay_file_operations = {
1322         .open           = relay_file_open,
1323         .poll           = relay_file_poll,
1324         .mmap           = relay_file_mmap,
1325         .read           = relay_file_read,
1326         .llseek         = no_llseek,
1327         .release        = relay_file_release,
1328         .splice_read    = relay_file_splice_read,
1329 };
1330 EXPORT_SYMBOL_GPL(relay_file_operations);