Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / kernel / rcu / tree.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *          Manfred Spraul <manfred@colorfullife.com>
9  *          Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *      Documentation/RCU
16  */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
54
55 #include "tree.h"
56 #include "rcu.h"
57
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "rcutree."
62
63 /* Data structures. */
64
65 /*
66  * Steal a bit from the bottom of ->dynticks for idle entry/exit
67  * control.  Initially this is for TLB flushing.
68  */
69 #define RCU_DYNTICK_CTRL_MASK 0x1
70 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
71 #ifndef rcu_eqs_special_exit
72 #define rcu_eqs_special_exit() do { } while (0)
73 #endif
74
75 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
76         .dynticks_nesting = 1,
77         .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
78         .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
79 };
80 struct rcu_state rcu_state = {
81         .level = { &rcu_state.node[0] },
82         .gp_state = RCU_GP_IDLE,
83         .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
84         .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
85         .name = RCU_NAME,
86         .abbr = RCU_ABBR,
87         .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
88         .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
89         .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
90 };
91
92 /* Dump rcu_node combining tree at boot to verify correct setup. */
93 static bool dump_tree;
94 module_param(dump_tree, bool, 0444);
95 /* Control rcu_node-tree auto-balancing at boot time. */
96 static bool rcu_fanout_exact;
97 module_param(rcu_fanout_exact, bool, 0444);
98 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
99 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
100 module_param(rcu_fanout_leaf, int, 0444);
101 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
102 /* Number of rcu_nodes at specified level. */
103 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
104 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
105
106 /*
107  * The rcu_scheduler_active variable is initialized to the value
108  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
109  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
110  * RCU can assume that there is but one task, allowing RCU to (for example)
111  * optimize synchronize_rcu() to a simple barrier().  When this variable
112  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
113  * to detect real grace periods.  This variable is also used to suppress
114  * boot-time false positives from lockdep-RCU error checking.  Finally, it
115  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
116  * is fully initialized, including all of its kthreads having been spawned.
117  */
118 int rcu_scheduler_active __read_mostly;
119 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
120
121 /*
122  * The rcu_scheduler_fully_active variable transitions from zero to one
123  * during the early_initcall() processing, which is after the scheduler
124  * is capable of creating new tasks.  So RCU processing (for example,
125  * creating tasks for RCU priority boosting) must be delayed until after
126  * rcu_scheduler_fully_active transitions from zero to one.  We also
127  * currently delay invocation of any RCU callbacks until after this point.
128  *
129  * It might later prove better for people registering RCU callbacks during
130  * early boot to take responsibility for these callbacks, but one step at
131  * a time.
132  */
133 static int rcu_scheduler_fully_active __read_mostly;
134
135 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
136                               unsigned long gps, unsigned long flags);
137 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
138 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
139 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
140 static void invoke_rcu_core(void);
141 static void invoke_rcu_callbacks(struct rcu_data *rdp);
142 static void rcu_report_exp_rdp(struct rcu_data *rdp);
143 static void sync_sched_exp_online_cleanup(int cpu);
144
145 /* rcuc/rcub kthread realtime priority */
146 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
147 module_param(kthread_prio, int, 0444);
148
149 /* Delay in jiffies for grace-period initialization delays, debug only. */
150
151 static int gp_preinit_delay;
152 module_param(gp_preinit_delay, int, 0444);
153 static int gp_init_delay;
154 module_param(gp_init_delay, int, 0444);
155 static int gp_cleanup_delay;
156 module_param(gp_cleanup_delay, int, 0444);
157
158 /* Retrieve RCU kthreads priority for rcutorture */
159 int rcu_get_gp_kthreads_prio(void)
160 {
161         return kthread_prio;
162 }
163 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
164
165 /*
166  * Number of grace periods between delays, normalized by the duration of
167  * the delay.  The longer the delay, the more the grace periods between
168  * each delay.  The reason for this normalization is that it means that,
169  * for non-zero delays, the overall slowdown of grace periods is constant
170  * regardless of the duration of the delay.  This arrangement balances
171  * the need for long delays to increase some race probabilities with the
172  * need for fast grace periods to increase other race probabilities.
173  */
174 #define PER_RCU_NODE_PERIOD 3   /* Number of grace periods between delays. */
175
176 /*
177  * Compute the mask of online CPUs for the specified rcu_node structure.
178  * This will not be stable unless the rcu_node structure's ->lock is
179  * held, but the bit corresponding to the current CPU will be stable
180  * in most contexts.
181  */
182 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
183 {
184         return READ_ONCE(rnp->qsmaskinitnext);
185 }
186
187 /*
188  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
189  * permit this function to be invoked without holding the root rcu_node
190  * structure's ->lock, but of course results can be subject to change.
191  */
192 static int rcu_gp_in_progress(void)
193 {
194         return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
195 }
196
197 /*
198  * Return the number of callbacks queued on the specified CPU.
199  * Handles both the nocbs and normal cases.
200  */
201 static long rcu_get_n_cbs_cpu(int cpu)
202 {
203         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
204
205         if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
206                 return rcu_segcblist_n_cbs(&rdp->cblist);
207         return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
208 }
209
210 void rcu_softirq_qs(void)
211 {
212         rcu_qs();
213         rcu_preempt_deferred_qs(current);
214 }
215
216 /*
217  * Record entry into an extended quiescent state.  This is only to be
218  * called when not already in an extended quiescent state.
219  */
220 static void rcu_dynticks_eqs_enter(void)
221 {
222         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
223         int seq;
224
225         /*
226          * CPUs seeing atomic_add_return() must see prior RCU read-side
227          * critical sections, and we also must force ordering with the
228          * next idle sojourn.
229          */
230         seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
231         /* Better be in an extended quiescent state! */
232         WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
233                      (seq & RCU_DYNTICK_CTRL_CTR));
234         /* Better not have special action (TLB flush) pending! */
235         WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
236                      (seq & RCU_DYNTICK_CTRL_MASK));
237 }
238
239 /*
240  * Record exit from an extended quiescent state.  This is only to be
241  * called from an extended quiescent state.
242  */
243 static void rcu_dynticks_eqs_exit(void)
244 {
245         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
246         int seq;
247
248         /*
249          * CPUs seeing atomic_add_return() must see prior idle sojourns,
250          * and we also must force ordering with the next RCU read-side
251          * critical section.
252          */
253         seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
254         WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
255                      !(seq & RCU_DYNTICK_CTRL_CTR));
256         if (seq & RCU_DYNTICK_CTRL_MASK) {
257                 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
258                 smp_mb__after_atomic(); /* _exit after clearing mask. */
259                 /* Prefer duplicate flushes to losing a flush. */
260                 rcu_eqs_special_exit();
261         }
262 }
263
264 /*
265  * Reset the current CPU's ->dynticks counter to indicate that the
266  * newly onlined CPU is no longer in an extended quiescent state.
267  * This will either leave the counter unchanged, or increment it
268  * to the next non-quiescent value.
269  *
270  * The non-atomic test/increment sequence works because the upper bits
271  * of the ->dynticks counter are manipulated only by the corresponding CPU,
272  * or when the corresponding CPU is offline.
273  */
274 static void rcu_dynticks_eqs_online(void)
275 {
276         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
277
278         if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
279                 return;
280         atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
281 }
282
283 /*
284  * Is the current CPU in an extended quiescent state?
285  *
286  * No ordering, as we are sampling CPU-local information.
287  */
288 bool rcu_dynticks_curr_cpu_in_eqs(void)
289 {
290         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
291
292         return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
293 }
294
295 /*
296  * Snapshot the ->dynticks counter with full ordering so as to allow
297  * stable comparison of this counter with past and future snapshots.
298  */
299 int rcu_dynticks_snap(struct rcu_data *rdp)
300 {
301         int snap = atomic_add_return(0, &rdp->dynticks);
302
303         return snap & ~RCU_DYNTICK_CTRL_MASK;
304 }
305
306 /*
307  * Return true if the snapshot returned from rcu_dynticks_snap()
308  * indicates that RCU is in an extended quiescent state.
309  */
310 static bool rcu_dynticks_in_eqs(int snap)
311 {
312         return !(snap & RCU_DYNTICK_CTRL_CTR);
313 }
314
315 /*
316  * Return true if the CPU corresponding to the specified rcu_data
317  * structure has spent some time in an extended quiescent state since
318  * rcu_dynticks_snap() returned the specified snapshot.
319  */
320 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
321 {
322         return snap != rcu_dynticks_snap(rdp);
323 }
324
325 /*
326  * Set the special (bottom) bit of the specified CPU so that it
327  * will take special action (such as flushing its TLB) on the
328  * next exit from an extended quiescent state.  Returns true if
329  * the bit was successfully set, or false if the CPU was not in
330  * an extended quiescent state.
331  */
332 bool rcu_eqs_special_set(int cpu)
333 {
334         int old;
335         int new;
336         struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
337
338         do {
339                 old = atomic_read(&rdp->dynticks);
340                 if (old & RCU_DYNTICK_CTRL_CTR)
341                         return false;
342                 new = old | RCU_DYNTICK_CTRL_MASK;
343         } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
344         return true;
345 }
346
347 /*
348  * Let the RCU core know that this CPU has gone through the scheduler,
349  * which is a quiescent state.  This is called when the need for a
350  * quiescent state is urgent, so we burn an atomic operation and full
351  * memory barriers to let the RCU core know about it, regardless of what
352  * this CPU might (or might not) do in the near future.
353  *
354  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
355  *
356  * The caller must have disabled interrupts and must not be idle.
357  */
358 static void __maybe_unused rcu_momentary_dyntick_idle(void)
359 {
360         int special;
361
362         raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
363         special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
364                                     &this_cpu_ptr(&rcu_data)->dynticks);
365         /* It is illegal to call this from idle state. */
366         WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
367         rcu_preempt_deferred_qs(current);
368 }
369
370 /**
371  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
372  *
373  * If the current CPU is idle or running at a first-level (not nested)
374  * interrupt from idle, return true.  The caller must have at least
375  * disabled preemption.
376  */
377 static int rcu_is_cpu_rrupt_from_idle(void)
378 {
379         return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
380                __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
381 }
382
383 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
384 static long blimit = DEFAULT_RCU_BLIMIT;
385 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
386 static long qhimark = DEFAULT_RCU_QHIMARK;
387 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
388 static long qlowmark = DEFAULT_RCU_QLOMARK;
389
390 module_param(blimit, long, 0444);
391 module_param(qhimark, long, 0444);
392 module_param(qlowmark, long, 0444);
393
394 static ulong jiffies_till_first_fqs = ULONG_MAX;
395 static ulong jiffies_till_next_fqs = ULONG_MAX;
396 static bool rcu_kick_kthreads;
397
398 /*
399  * How long the grace period must be before we start recruiting
400  * quiescent-state help from rcu_note_context_switch().
401  */
402 static ulong jiffies_till_sched_qs = ULONG_MAX;
403 module_param(jiffies_till_sched_qs, ulong, 0444);
404 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
405 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
406
407 /*
408  * Make sure that we give the grace-period kthread time to detect any
409  * idle CPUs before taking active measures to force quiescent states.
410  * However, don't go below 100 milliseconds, adjusted upwards for really
411  * large systems.
412  */
413 static void adjust_jiffies_till_sched_qs(void)
414 {
415         unsigned long j;
416
417         /* If jiffies_till_sched_qs was specified, respect the request. */
418         if (jiffies_till_sched_qs != ULONG_MAX) {
419                 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
420                 return;
421         }
422         /* Otherwise, set to third fqs scan, but bound below on large system. */
423         j = READ_ONCE(jiffies_till_first_fqs) +
424                       2 * READ_ONCE(jiffies_till_next_fqs);
425         if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
426                 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
427         pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
428         WRITE_ONCE(jiffies_to_sched_qs, j);
429 }
430
431 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
432 {
433         ulong j;
434         int ret = kstrtoul(val, 0, &j);
435
436         if (!ret) {
437                 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
438                 adjust_jiffies_till_sched_qs();
439         }
440         return ret;
441 }
442
443 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
444 {
445         ulong j;
446         int ret = kstrtoul(val, 0, &j);
447
448         if (!ret) {
449                 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
450                 adjust_jiffies_till_sched_qs();
451         }
452         return ret;
453 }
454
455 static struct kernel_param_ops first_fqs_jiffies_ops = {
456         .set = param_set_first_fqs_jiffies,
457         .get = param_get_ulong,
458 };
459
460 static struct kernel_param_ops next_fqs_jiffies_ops = {
461         .set = param_set_next_fqs_jiffies,
462         .get = param_get_ulong,
463 };
464
465 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
466 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
467 module_param(rcu_kick_kthreads, bool, 0644);
468
469 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
470 static int rcu_pending(void);
471
472 /*
473  * Return the number of RCU GPs completed thus far for debug & stats.
474  */
475 unsigned long rcu_get_gp_seq(void)
476 {
477         return READ_ONCE(rcu_state.gp_seq);
478 }
479 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
480
481 /*
482  * Return the number of RCU expedited batches completed thus far for
483  * debug & stats.  Odd numbers mean that a batch is in progress, even
484  * numbers mean idle.  The value returned will thus be roughly double
485  * the cumulative batches since boot.
486  */
487 unsigned long rcu_exp_batches_completed(void)
488 {
489         return rcu_state.expedited_sequence;
490 }
491 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
492
493 /*
494  * Return the root node of the rcu_state structure.
495  */
496 static struct rcu_node *rcu_get_root(void)
497 {
498         return &rcu_state.node[0];
499 }
500
501 /*
502  * Convert a ->gp_state value to a character string.
503  */
504 static const char *gp_state_getname(short gs)
505 {
506         if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
507                 return "???";
508         return gp_state_names[gs];
509 }
510
511 /*
512  * Send along grace-period-related data for rcutorture diagnostics.
513  */
514 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
515                             unsigned long *gp_seq)
516 {
517         switch (test_type) {
518         case RCU_FLAVOR:
519                 *flags = READ_ONCE(rcu_state.gp_flags);
520                 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
521                 break;
522         default:
523                 break;
524         }
525 }
526 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
527
528 /*
529  * Enter an RCU extended quiescent state, which can be either the
530  * idle loop or adaptive-tickless usermode execution.
531  *
532  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
533  * the possibility of usermode upcalls having messed up our count
534  * of interrupt nesting level during the prior busy period.
535  */
536 static void rcu_eqs_enter(bool user)
537 {
538         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
539
540         WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
541         WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
542         WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
543                      rdp->dynticks_nesting == 0);
544         if (rdp->dynticks_nesting != 1) {
545                 rdp->dynticks_nesting--;
546                 return;
547         }
548
549         lockdep_assert_irqs_disabled();
550         trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
551         WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
552         rdp = this_cpu_ptr(&rcu_data);
553         do_nocb_deferred_wakeup(rdp);
554         rcu_prepare_for_idle();
555         rcu_preempt_deferred_qs(current);
556         WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
557         rcu_dynticks_eqs_enter();
558         rcu_dynticks_task_enter();
559 }
560
561 /**
562  * rcu_idle_enter - inform RCU that current CPU is entering idle
563  *
564  * Enter idle mode, in other words, -leave- the mode in which RCU
565  * read-side critical sections can occur.  (Though RCU read-side
566  * critical sections can occur in irq handlers in idle, a possibility
567  * handled by irq_enter() and irq_exit().)
568  *
569  * If you add or remove a call to rcu_idle_enter(), be sure to test with
570  * CONFIG_RCU_EQS_DEBUG=y.
571  */
572 void rcu_idle_enter(void)
573 {
574         lockdep_assert_irqs_disabled();
575         rcu_eqs_enter(false);
576 }
577
578 #ifdef CONFIG_NO_HZ_FULL
579 /**
580  * rcu_user_enter - inform RCU that we are resuming userspace.
581  *
582  * Enter RCU idle mode right before resuming userspace.  No use of RCU
583  * is permitted between this call and rcu_user_exit(). This way the
584  * CPU doesn't need to maintain the tick for RCU maintenance purposes
585  * when the CPU runs in userspace.
586  *
587  * If you add or remove a call to rcu_user_enter(), be sure to test with
588  * CONFIG_RCU_EQS_DEBUG=y.
589  */
590 void rcu_user_enter(void)
591 {
592         lockdep_assert_irqs_disabled();
593         rcu_eqs_enter(true);
594 }
595 #endif /* CONFIG_NO_HZ_FULL */
596
597 /*
598  * If we are returning from the outermost NMI handler that interrupted an
599  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
600  * to let the RCU grace-period handling know that the CPU is back to
601  * being RCU-idle.
602  *
603  * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
604  * with CONFIG_RCU_EQS_DEBUG=y.
605  */
606 static __always_inline void rcu_nmi_exit_common(bool irq)
607 {
608         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
609
610         /*
611          * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
612          * (We are exiting an NMI handler, so RCU better be paying attention
613          * to us!)
614          */
615         WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
616         WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
617
618         /*
619          * If the nesting level is not 1, the CPU wasn't RCU-idle, so
620          * leave it in non-RCU-idle state.
621          */
622         if (rdp->dynticks_nmi_nesting != 1) {
623                 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
624                 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
625                            rdp->dynticks_nmi_nesting - 2);
626                 return;
627         }
628
629         /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
630         trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
631         WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
632
633         if (irq)
634                 rcu_prepare_for_idle();
635
636         rcu_dynticks_eqs_enter();
637
638         if (irq)
639                 rcu_dynticks_task_enter();
640 }
641
642 /**
643  * rcu_nmi_exit - inform RCU of exit from NMI context
644  *
645  * If you add or remove a call to rcu_nmi_exit(), be sure to test
646  * with CONFIG_RCU_EQS_DEBUG=y.
647  */
648 void rcu_nmi_exit(void)
649 {
650         rcu_nmi_exit_common(false);
651 }
652
653 /**
654  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
655  *
656  * Exit from an interrupt handler, which might possibly result in entering
657  * idle mode, in other words, leaving the mode in which read-side critical
658  * sections can occur.  The caller must have disabled interrupts.
659  *
660  * This code assumes that the idle loop never does anything that might
661  * result in unbalanced calls to irq_enter() and irq_exit().  If your
662  * architecture's idle loop violates this assumption, RCU will give you what
663  * you deserve, good and hard.  But very infrequently and irreproducibly.
664  *
665  * Use things like work queues to work around this limitation.
666  *
667  * You have been warned.
668  *
669  * If you add or remove a call to rcu_irq_exit(), be sure to test with
670  * CONFIG_RCU_EQS_DEBUG=y.
671  */
672 void rcu_irq_exit(void)
673 {
674         lockdep_assert_irqs_disabled();
675         rcu_nmi_exit_common(true);
676 }
677
678 /*
679  * Wrapper for rcu_irq_exit() where interrupts are enabled.
680  *
681  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
682  * with CONFIG_RCU_EQS_DEBUG=y.
683  */
684 void rcu_irq_exit_irqson(void)
685 {
686         unsigned long flags;
687
688         local_irq_save(flags);
689         rcu_irq_exit();
690         local_irq_restore(flags);
691 }
692
693 /*
694  * Exit an RCU extended quiescent state, which can be either the
695  * idle loop or adaptive-tickless usermode execution.
696  *
697  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
698  * allow for the possibility of usermode upcalls messing up our count of
699  * interrupt nesting level during the busy period that is just now starting.
700  */
701 static void rcu_eqs_exit(bool user)
702 {
703         struct rcu_data *rdp;
704         long oldval;
705
706         lockdep_assert_irqs_disabled();
707         rdp = this_cpu_ptr(&rcu_data);
708         oldval = rdp->dynticks_nesting;
709         WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
710         if (oldval) {
711                 rdp->dynticks_nesting++;
712                 return;
713         }
714         rcu_dynticks_task_exit();
715         rcu_dynticks_eqs_exit();
716         rcu_cleanup_after_idle();
717         trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
718         WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
719         WRITE_ONCE(rdp->dynticks_nesting, 1);
720         WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
721         WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
722 }
723
724 /**
725  * rcu_idle_exit - inform RCU that current CPU is leaving idle
726  *
727  * Exit idle mode, in other words, -enter- the mode in which RCU
728  * read-side critical sections can occur.
729  *
730  * If you add or remove a call to rcu_idle_exit(), be sure to test with
731  * CONFIG_RCU_EQS_DEBUG=y.
732  */
733 void rcu_idle_exit(void)
734 {
735         unsigned long flags;
736
737         local_irq_save(flags);
738         rcu_eqs_exit(false);
739         local_irq_restore(flags);
740 }
741
742 #ifdef CONFIG_NO_HZ_FULL
743 /**
744  * rcu_user_exit - inform RCU that we are exiting userspace.
745  *
746  * Exit RCU idle mode while entering the kernel because it can
747  * run a RCU read side critical section anytime.
748  *
749  * If you add or remove a call to rcu_user_exit(), be sure to test with
750  * CONFIG_RCU_EQS_DEBUG=y.
751  */
752 void rcu_user_exit(void)
753 {
754         rcu_eqs_exit(1);
755 }
756 #endif /* CONFIG_NO_HZ_FULL */
757
758 /**
759  * rcu_nmi_enter_common - inform RCU of entry to NMI context
760  * @irq: Is this call from rcu_irq_enter?
761  *
762  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
763  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
764  * that the CPU is active.  This implementation permits nested NMIs, as
765  * long as the nesting level does not overflow an int.  (You will probably
766  * run out of stack space first.)
767  *
768  * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
769  * with CONFIG_RCU_EQS_DEBUG=y.
770  */
771 static __always_inline void rcu_nmi_enter_common(bool irq)
772 {
773         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
774         long incby = 2;
775
776         /* Complain about underflow. */
777         WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
778
779         /*
780          * If idle from RCU viewpoint, atomically increment ->dynticks
781          * to mark non-idle and increment ->dynticks_nmi_nesting by one.
782          * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
783          * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
784          * to be in the outermost NMI handler that interrupted an RCU-idle
785          * period (observation due to Andy Lutomirski).
786          */
787         if (rcu_dynticks_curr_cpu_in_eqs()) {
788
789                 if (irq)
790                         rcu_dynticks_task_exit();
791
792                 rcu_dynticks_eqs_exit();
793
794                 if (irq)
795                         rcu_cleanup_after_idle();
796
797                 incby = 1;
798         }
799         trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
800                           rdp->dynticks_nmi_nesting,
801                           rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
802         WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
803                    rdp->dynticks_nmi_nesting + incby);
804         barrier();
805 }
806
807 /**
808  * rcu_nmi_enter - inform RCU of entry to NMI context
809  */
810 void rcu_nmi_enter(void)
811 {
812         rcu_nmi_enter_common(false);
813 }
814 NOKPROBE_SYMBOL(rcu_nmi_enter);
815
816 /**
817  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
818  *
819  * Enter an interrupt handler, which might possibly result in exiting
820  * idle mode, in other words, entering the mode in which read-side critical
821  * sections can occur.  The caller must have disabled interrupts.
822  *
823  * Note that the Linux kernel is fully capable of entering an interrupt
824  * handler that it never exits, for example when doing upcalls to user mode!
825  * This code assumes that the idle loop never does upcalls to user mode.
826  * If your architecture's idle loop does do upcalls to user mode (or does
827  * anything else that results in unbalanced calls to the irq_enter() and
828  * irq_exit() functions), RCU will give you what you deserve, good and hard.
829  * But very infrequently and irreproducibly.
830  *
831  * Use things like work queues to work around this limitation.
832  *
833  * You have been warned.
834  *
835  * If you add or remove a call to rcu_irq_enter(), be sure to test with
836  * CONFIG_RCU_EQS_DEBUG=y.
837  */
838 void rcu_irq_enter(void)
839 {
840         lockdep_assert_irqs_disabled();
841         rcu_nmi_enter_common(true);
842 }
843
844 /*
845  * Wrapper for rcu_irq_enter() where interrupts are enabled.
846  *
847  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
848  * with CONFIG_RCU_EQS_DEBUG=y.
849  */
850 void rcu_irq_enter_irqson(void)
851 {
852         unsigned long flags;
853
854         local_irq_save(flags);
855         rcu_irq_enter();
856         local_irq_restore(flags);
857 }
858
859 /**
860  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
861  *
862  * Return true if RCU is watching the running CPU, which means that this
863  * CPU can safely enter RCU read-side critical sections.  In other words,
864  * if the current CPU is not in its idle loop or is in an interrupt or
865  * NMI handler, return true.
866  */
867 bool notrace rcu_is_watching(void)
868 {
869         bool ret;
870
871         preempt_disable_notrace();
872         ret = !rcu_dynticks_curr_cpu_in_eqs();
873         preempt_enable_notrace();
874         return ret;
875 }
876 EXPORT_SYMBOL_GPL(rcu_is_watching);
877
878 /*
879  * If a holdout task is actually running, request an urgent quiescent
880  * state from its CPU.  This is unsynchronized, so migrations can cause
881  * the request to go to the wrong CPU.  Which is OK, all that will happen
882  * is that the CPU's next context switch will be a bit slower and next
883  * time around this task will generate another request.
884  */
885 void rcu_request_urgent_qs_task(struct task_struct *t)
886 {
887         int cpu;
888
889         barrier();
890         cpu = task_cpu(t);
891         if (!task_curr(t))
892                 return; /* This task is not running on that CPU. */
893         smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
894 }
895
896 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
897
898 /*
899  * Is the current CPU online as far as RCU is concerned?
900  *
901  * Disable preemption to avoid false positives that could otherwise
902  * happen due to the current CPU number being sampled, this task being
903  * preempted, its old CPU being taken offline, resuming on some other CPU,
904  * then determining that its old CPU is now offline.
905  *
906  * Disable checking if in an NMI handler because we cannot safely
907  * report errors from NMI handlers anyway.  In addition, it is OK to use
908  * RCU on an offline processor during initial boot, hence the check for
909  * rcu_scheduler_fully_active.
910  */
911 bool rcu_lockdep_current_cpu_online(void)
912 {
913         struct rcu_data *rdp;
914         struct rcu_node *rnp;
915         bool ret = false;
916
917         if (in_nmi() || !rcu_scheduler_fully_active)
918                 return true;
919         preempt_disable();
920         rdp = this_cpu_ptr(&rcu_data);
921         rnp = rdp->mynode;
922         if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
923                 ret = true;
924         preempt_enable();
925         return ret;
926 }
927 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
928
929 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
930
931 /*
932  * We are reporting a quiescent state on behalf of some other CPU, so
933  * it is our responsibility to check for and handle potential overflow
934  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
935  * After all, the CPU might be in deep idle state, and thus executing no
936  * code whatsoever.
937  */
938 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
939 {
940         raw_lockdep_assert_held_rcu_node(rnp);
941         if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
942                          rnp->gp_seq))
943                 WRITE_ONCE(rdp->gpwrap, true);
944         if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
945                 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
946 }
947
948 /*
949  * Snapshot the specified CPU's dynticks counter so that we can later
950  * credit them with an implicit quiescent state.  Return 1 if this CPU
951  * is in dynticks idle mode, which is an extended quiescent state.
952  */
953 static int dyntick_save_progress_counter(struct rcu_data *rdp)
954 {
955         rdp->dynticks_snap = rcu_dynticks_snap(rdp);
956         if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
957                 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
958                 rcu_gpnum_ovf(rdp->mynode, rdp);
959                 return 1;
960         }
961         return 0;
962 }
963
964 /*
965  * Return true if the specified CPU has passed through a quiescent
966  * state by virtue of being in or having passed through an dynticks
967  * idle state since the last call to dyntick_save_progress_counter()
968  * for this same CPU, or by virtue of having been offline.
969  */
970 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
971 {
972         unsigned long jtsq;
973         bool *rnhqp;
974         bool *ruqp;
975         struct rcu_node *rnp = rdp->mynode;
976
977         /*
978          * If the CPU passed through or entered a dynticks idle phase with
979          * no active irq/NMI handlers, then we can safely pretend that the CPU
980          * already acknowledged the request to pass through a quiescent
981          * state.  Either way, that CPU cannot possibly be in an RCU
982          * read-side critical section that started before the beginning
983          * of the current RCU grace period.
984          */
985         if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
986                 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
987                 rcu_gpnum_ovf(rnp, rdp);
988                 return 1;
989         }
990
991         /* If waiting too long on an offline CPU, complain. */
992         if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
993             time_after(jiffies, rcu_state.gp_start + HZ)) {
994                 bool onl;
995                 struct rcu_node *rnp1;
996
997                 WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
998                 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
999                         __func__, rnp->grplo, rnp->grphi, rnp->level,
1000                         (long)rnp->gp_seq, (long)rnp->completedqs);
1001                 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1002                         pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1003                                 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1004                 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1005                 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1006                         __func__, rdp->cpu, ".o"[onl],
1007                         (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1008                         (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1009                 return 1; /* Break things loose after complaining. */
1010         }
1011
1012         /*
1013          * A CPU running for an extended time within the kernel can
1014          * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1015          * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1016          * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1017          * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1018          * variable are safe because the assignments are repeated if this
1019          * CPU failed to pass through a quiescent state.  This code
1020          * also checks .jiffies_resched in case jiffies_to_sched_qs
1021          * is set way high.
1022          */
1023         jtsq = READ_ONCE(jiffies_to_sched_qs);
1024         ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1025         rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1026         if (!READ_ONCE(*rnhqp) &&
1027             (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1028              time_after(jiffies, rcu_state.jiffies_resched))) {
1029                 WRITE_ONCE(*rnhqp, true);
1030                 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1031                 smp_store_release(ruqp, true);
1032         } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1033                 WRITE_ONCE(*ruqp, true);
1034         }
1035
1036         /*
1037          * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1038          * The above code handles this, but only for straight cond_resched().
1039          * And some in-kernel loops check need_resched() before calling
1040          * cond_resched(), which defeats the above code for CPUs that are
1041          * running in-kernel with scheduling-clock interrupts disabled.
1042          * So hit them over the head with the resched_cpu() hammer!
1043          */
1044         if (tick_nohz_full_cpu(rdp->cpu) &&
1045                    time_after(jiffies,
1046                               READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1047                 resched_cpu(rdp->cpu);
1048                 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1049         }
1050
1051         /*
1052          * If more than halfway to RCU CPU stall-warning time, invoke
1053          * resched_cpu() more frequently to try to loosen things up a bit.
1054          * Also check to see if the CPU is getting hammered with interrupts,
1055          * but only once per grace period, just to keep the IPIs down to
1056          * a dull roar.
1057          */
1058         if (time_after(jiffies, rcu_state.jiffies_resched)) {
1059                 if (time_after(jiffies,
1060                                READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1061                         resched_cpu(rdp->cpu);
1062                         WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1063                 }
1064                 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1065                     !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1066                     (rnp->ffmask & rdp->grpmask)) {
1067                         init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1068                         rdp->rcu_iw_pending = true;
1069                         rdp->rcu_iw_gp_seq = rnp->gp_seq;
1070                         irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1071                 }
1072         }
1073
1074         return 0;
1075 }
1076
1077 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1078 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1079                               unsigned long gp_seq_req, const char *s)
1080 {
1081         trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1082                                       rnp->level, rnp->grplo, rnp->grphi, s);
1083 }
1084
1085 /*
1086  * rcu_start_this_gp - Request the start of a particular grace period
1087  * @rnp_start: The leaf node of the CPU from which to start.
1088  * @rdp: The rcu_data corresponding to the CPU from which to start.
1089  * @gp_seq_req: The gp_seq of the grace period to start.
1090  *
1091  * Start the specified grace period, as needed to handle newly arrived
1092  * callbacks.  The required future grace periods are recorded in each
1093  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1094  * is reason to awaken the grace-period kthread.
1095  *
1096  * The caller must hold the specified rcu_node structure's ->lock, which
1097  * is why the caller is responsible for waking the grace-period kthread.
1098  *
1099  * Returns true if the GP thread needs to be awakened else false.
1100  */
1101 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1102                               unsigned long gp_seq_req)
1103 {
1104         bool ret = false;
1105         struct rcu_node *rnp;
1106
1107         /*
1108          * Use funnel locking to either acquire the root rcu_node
1109          * structure's lock or bail out if the need for this grace period
1110          * has already been recorded -- or if that grace period has in
1111          * fact already started.  If there is already a grace period in
1112          * progress in a non-leaf node, no recording is needed because the
1113          * end of the grace period will scan the leaf rcu_node structures.
1114          * Note that rnp_start->lock must not be released.
1115          */
1116         raw_lockdep_assert_held_rcu_node(rnp_start);
1117         trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1118         for (rnp = rnp_start; 1; rnp = rnp->parent) {
1119                 if (rnp != rnp_start)
1120                         raw_spin_lock_rcu_node(rnp);
1121                 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1122                     rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1123                     (rnp != rnp_start &&
1124                      rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1125                         trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1126                                           TPS("Prestarted"));
1127                         goto unlock_out;
1128                 }
1129                 rnp->gp_seq_needed = gp_seq_req;
1130                 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1131                         /*
1132                          * We just marked the leaf or internal node, and a
1133                          * grace period is in progress, which means that
1134                          * rcu_gp_cleanup() will see the marking.  Bail to
1135                          * reduce contention.
1136                          */
1137                         trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1138                                           TPS("Startedleaf"));
1139                         goto unlock_out;
1140                 }
1141                 if (rnp != rnp_start && rnp->parent != NULL)
1142                         raw_spin_unlock_rcu_node(rnp);
1143                 if (!rnp->parent)
1144                         break;  /* At root, and perhaps also leaf. */
1145         }
1146
1147         /* If GP already in progress, just leave, otherwise start one. */
1148         if (rcu_gp_in_progress()) {
1149                 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1150                 goto unlock_out;
1151         }
1152         trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1153         WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1154         rcu_state.gp_req_activity = jiffies;
1155         if (!rcu_state.gp_kthread) {
1156                 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1157                 goto unlock_out;
1158         }
1159         trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1160         ret = true;  /* Caller must wake GP kthread. */
1161 unlock_out:
1162         /* Push furthest requested GP to leaf node and rcu_data structure. */
1163         if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1164                 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1165                 rdp->gp_seq_needed = rnp->gp_seq_needed;
1166         }
1167         if (rnp != rnp_start)
1168                 raw_spin_unlock_rcu_node(rnp);
1169         return ret;
1170 }
1171
1172 /*
1173  * Clean up any old requests for the just-ended grace period.  Also return
1174  * whether any additional grace periods have been requested.
1175  */
1176 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1177 {
1178         bool needmore;
1179         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1180
1181         needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1182         if (!needmore)
1183                 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1184         trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1185                           needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1186         return needmore;
1187 }
1188
1189 /*
1190  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1191  * an interrupt or softirq handler), and don't bother awakening when there
1192  * is nothing for the grace-period kthread to do (as in several CPUs raced
1193  * to awaken, and we lost), and finally don't try to awaken a kthread that
1194  * has not yet been created.  If all those checks are passed, track some
1195  * debug information and awaken.
1196  *
1197  * So why do the self-wakeup when in an interrupt or softirq handler
1198  * in the grace-period kthread's context?  Because the kthread might have
1199  * been interrupted just as it was going to sleep, and just after the final
1200  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1201  * is required, and is therefore supplied.
1202  */
1203 static void rcu_gp_kthread_wake(void)
1204 {
1205         if ((current == rcu_state.gp_kthread &&
1206              !in_irq() && !in_serving_softirq()) ||
1207             !READ_ONCE(rcu_state.gp_flags) ||
1208             !rcu_state.gp_kthread)
1209                 return;
1210         WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1211         WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1212         swake_up_one(&rcu_state.gp_wq);
1213 }
1214
1215 /*
1216  * If there is room, assign a ->gp_seq number to any callbacks on this
1217  * CPU that have not already been assigned.  Also accelerate any callbacks
1218  * that were previously assigned a ->gp_seq number that has since proven
1219  * to be too conservative, which can happen if callbacks get assigned a
1220  * ->gp_seq number while RCU is idle, but with reference to a non-root
1221  * rcu_node structure.  This function is idempotent, so it does not hurt
1222  * to call it repeatedly.  Returns an flag saying that we should awaken
1223  * the RCU grace-period kthread.
1224  *
1225  * The caller must hold rnp->lock with interrupts disabled.
1226  */
1227 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1228 {
1229         unsigned long gp_seq_req;
1230         bool ret = false;
1231
1232         raw_lockdep_assert_held_rcu_node(rnp);
1233
1234         /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1235         if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1236                 return false;
1237
1238         /*
1239          * Callbacks are often registered with incomplete grace-period
1240          * information.  Something about the fact that getting exact
1241          * information requires acquiring a global lock...  RCU therefore
1242          * makes a conservative estimate of the grace period number at which
1243          * a given callback will become ready to invoke.        The following
1244          * code checks this estimate and improves it when possible, thus
1245          * accelerating callback invocation to an earlier grace-period
1246          * number.
1247          */
1248         gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1249         if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1250                 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1251
1252         /* Trace depending on how much we were able to accelerate. */
1253         if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1254                 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1255         else
1256                 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1257         return ret;
1258 }
1259
1260 /*
1261  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1262  * rcu_node structure's ->lock be held.  It consults the cached value
1263  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1264  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1265  * while holding the leaf rcu_node structure's ->lock.
1266  */
1267 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1268                                         struct rcu_data *rdp)
1269 {
1270         unsigned long c;
1271         bool needwake;
1272
1273         lockdep_assert_irqs_disabled();
1274         c = rcu_seq_snap(&rcu_state.gp_seq);
1275         if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1276                 /* Old request still live, so mark recent callbacks. */
1277                 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1278                 return;
1279         }
1280         raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1281         needwake = rcu_accelerate_cbs(rnp, rdp);
1282         raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1283         if (needwake)
1284                 rcu_gp_kthread_wake();
1285 }
1286
1287 /*
1288  * Move any callbacks whose grace period has completed to the
1289  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1290  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1291  * sublist.  This function is idempotent, so it does not hurt to
1292  * invoke it repeatedly.  As long as it is not invoked -too- often...
1293  * Returns true if the RCU grace-period kthread needs to be awakened.
1294  *
1295  * The caller must hold rnp->lock with interrupts disabled.
1296  */
1297 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1298 {
1299         raw_lockdep_assert_held_rcu_node(rnp);
1300
1301         /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1302         if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1303                 return false;
1304
1305         /*
1306          * Find all callbacks whose ->gp_seq numbers indicate that they
1307          * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1308          */
1309         rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1310
1311         /* Classify any remaining callbacks. */
1312         return rcu_accelerate_cbs(rnp, rdp);
1313 }
1314
1315 /*
1316  * Update CPU-local rcu_data state to record the beginnings and ends of
1317  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1318  * structure corresponding to the current CPU, and must have irqs disabled.
1319  * Returns true if the grace-period kthread needs to be awakened.
1320  */
1321 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1322 {
1323         bool ret;
1324         bool need_gp;
1325
1326         raw_lockdep_assert_held_rcu_node(rnp);
1327
1328         if (rdp->gp_seq == rnp->gp_seq)
1329                 return false; /* Nothing to do. */
1330
1331         /* Handle the ends of any preceding grace periods first. */
1332         if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1333             unlikely(READ_ONCE(rdp->gpwrap))) {
1334                 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
1335                 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1336         } else {
1337                 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
1338         }
1339
1340         /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1341         if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1342             unlikely(READ_ONCE(rdp->gpwrap))) {
1343                 /*
1344                  * If the current grace period is waiting for this CPU,
1345                  * set up to detect a quiescent state, otherwise don't
1346                  * go looking for one.
1347                  */
1348                 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1349                 need_gp = !!(rnp->qsmask & rdp->grpmask);
1350                 rdp->cpu_no_qs.b.norm = need_gp;
1351                 rdp->core_needs_qs = need_gp;
1352                 zero_cpu_stall_ticks(rdp);
1353         }
1354         rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1355         if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1356                 rdp->gp_seq_needed = rnp->gp_seq_needed;
1357         WRITE_ONCE(rdp->gpwrap, false);
1358         rcu_gpnum_ovf(rnp, rdp);
1359         return ret;
1360 }
1361
1362 static void note_gp_changes(struct rcu_data *rdp)
1363 {
1364         unsigned long flags;
1365         bool needwake;
1366         struct rcu_node *rnp;
1367
1368         local_irq_save(flags);
1369         rnp = rdp->mynode;
1370         if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1371              !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1372             !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1373                 local_irq_restore(flags);
1374                 return;
1375         }
1376         needwake = __note_gp_changes(rnp, rdp);
1377         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1378         if (needwake)
1379                 rcu_gp_kthread_wake();
1380 }
1381
1382 static void rcu_gp_slow(int delay)
1383 {
1384         if (delay > 0 &&
1385             !(rcu_seq_ctr(rcu_state.gp_seq) %
1386               (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1387                 schedule_timeout_uninterruptible(delay);
1388 }
1389
1390 /*
1391  * Initialize a new grace period.  Return false if no grace period required.
1392  */
1393 static bool rcu_gp_init(void)
1394 {
1395         unsigned long flags;
1396         unsigned long oldmask;
1397         unsigned long mask;
1398         struct rcu_data *rdp;
1399         struct rcu_node *rnp = rcu_get_root();
1400
1401         WRITE_ONCE(rcu_state.gp_activity, jiffies);
1402         raw_spin_lock_irq_rcu_node(rnp);
1403         if (!READ_ONCE(rcu_state.gp_flags)) {
1404                 /* Spurious wakeup, tell caller to go back to sleep.  */
1405                 raw_spin_unlock_irq_rcu_node(rnp);
1406                 return false;
1407         }
1408         WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1409
1410         if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1411                 /*
1412                  * Grace period already in progress, don't start another.
1413                  * Not supposed to be able to happen.
1414                  */
1415                 raw_spin_unlock_irq_rcu_node(rnp);
1416                 return false;
1417         }
1418
1419         /* Advance to a new grace period and initialize state. */
1420         record_gp_stall_check_time();
1421         /* Record GP times before starting GP, hence rcu_seq_start(). */
1422         rcu_seq_start(&rcu_state.gp_seq);
1423         trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1424         raw_spin_unlock_irq_rcu_node(rnp);
1425
1426         /*
1427          * Apply per-leaf buffered online and offline operations to the
1428          * rcu_node tree.  Note that this new grace period need not wait
1429          * for subsequent online CPUs, and that quiescent-state forcing
1430          * will handle subsequent offline CPUs.
1431          */
1432         rcu_state.gp_state = RCU_GP_ONOFF;
1433         rcu_for_each_leaf_node(rnp) {
1434                 raw_spin_lock(&rcu_state.ofl_lock);
1435                 raw_spin_lock_irq_rcu_node(rnp);
1436                 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1437                     !rnp->wait_blkd_tasks) {
1438                         /* Nothing to do on this leaf rcu_node structure. */
1439                         raw_spin_unlock_irq_rcu_node(rnp);
1440                         raw_spin_unlock(&rcu_state.ofl_lock);
1441                         continue;
1442                 }
1443
1444                 /* Record old state, apply changes to ->qsmaskinit field. */
1445                 oldmask = rnp->qsmaskinit;
1446                 rnp->qsmaskinit = rnp->qsmaskinitnext;
1447
1448                 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1449                 if (!oldmask != !rnp->qsmaskinit) {
1450                         if (!oldmask) { /* First online CPU for rcu_node. */
1451                                 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1452                                         rcu_init_new_rnp(rnp);
1453                         } else if (rcu_preempt_has_tasks(rnp)) {
1454                                 rnp->wait_blkd_tasks = true; /* blocked tasks */
1455                         } else { /* Last offline CPU and can propagate. */
1456                                 rcu_cleanup_dead_rnp(rnp);
1457                         }
1458                 }
1459
1460                 /*
1461                  * If all waited-on tasks from prior grace period are
1462                  * done, and if all this rcu_node structure's CPUs are
1463                  * still offline, propagate up the rcu_node tree and
1464                  * clear ->wait_blkd_tasks.  Otherwise, if one of this
1465                  * rcu_node structure's CPUs has since come back online,
1466                  * simply clear ->wait_blkd_tasks.
1467                  */
1468                 if (rnp->wait_blkd_tasks &&
1469                     (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1470                         rnp->wait_blkd_tasks = false;
1471                         if (!rnp->qsmaskinit)
1472                                 rcu_cleanup_dead_rnp(rnp);
1473                 }
1474
1475                 raw_spin_unlock_irq_rcu_node(rnp);
1476                 raw_spin_unlock(&rcu_state.ofl_lock);
1477         }
1478         rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1479
1480         /*
1481          * Set the quiescent-state-needed bits in all the rcu_node
1482          * structures for all currently online CPUs in breadth-first
1483          * order, starting from the root rcu_node structure, relying on the
1484          * layout of the tree within the rcu_state.node[] array.  Note that
1485          * other CPUs will access only the leaves of the hierarchy, thus
1486          * seeing that no grace period is in progress, at least until the
1487          * corresponding leaf node has been initialized.
1488          *
1489          * The grace period cannot complete until the initialization
1490          * process finishes, because this kthread handles both.
1491          */
1492         rcu_state.gp_state = RCU_GP_INIT;
1493         rcu_for_each_node_breadth_first(rnp) {
1494                 rcu_gp_slow(gp_init_delay);
1495                 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1496                 rdp = this_cpu_ptr(&rcu_data);
1497                 rcu_preempt_check_blocked_tasks(rnp);
1498                 rnp->qsmask = rnp->qsmaskinit;
1499                 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1500                 if (rnp == rdp->mynode)
1501                         (void)__note_gp_changes(rnp, rdp);
1502                 rcu_preempt_boost_start_gp(rnp);
1503                 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1504                                             rnp->level, rnp->grplo,
1505                                             rnp->grphi, rnp->qsmask);
1506                 /* Quiescent states for tasks on any now-offline CPUs. */
1507                 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1508                 rnp->rcu_gp_init_mask = mask;
1509                 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1510                         rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1511                 else
1512                         raw_spin_unlock_irq_rcu_node(rnp);
1513                 cond_resched_tasks_rcu_qs();
1514                 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1515         }
1516
1517         return true;
1518 }
1519
1520 /*
1521  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1522  * time.
1523  */
1524 static bool rcu_gp_fqs_check_wake(int *gfp)
1525 {
1526         struct rcu_node *rnp = rcu_get_root();
1527
1528         /* Someone like call_rcu() requested a force-quiescent-state scan. */
1529         *gfp = READ_ONCE(rcu_state.gp_flags);
1530         if (*gfp & RCU_GP_FLAG_FQS)
1531                 return true;
1532
1533         /* The current grace period has completed. */
1534         if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1535                 return true;
1536
1537         return false;
1538 }
1539
1540 /*
1541  * Do one round of quiescent-state forcing.
1542  */
1543 static void rcu_gp_fqs(bool first_time)
1544 {
1545         struct rcu_node *rnp = rcu_get_root();
1546
1547         WRITE_ONCE(rcu_state.gp_activity, jiffies);
1548         rcu_state.n_force_qs++;
1549         if (first_time) {
1550                 /* Collect dyntick-idle snapshots. */
1551                 force_qs_rnp(dyntick_save_progress_counter);
1552         } else {
1553                 /* Handle dyntick-idle and offline CPUs. */
1554                 force_qs_rnp(rcu_implicit_dynticks_qs);
1555         }
1556         /* Clear flag to prevent immediate re-entry. */
1557         if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1558                 raw_spin_lock_irq_rcu_node(rnp);
1559                 WRITE_ONCE(rcu_state.gp_flags,
1560                            READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1561                 raw_spin_unlock_irq_rcu_node(rnp);
1562         }
1563 }
1564
1565 /*
1566  * Loop doing repeated quiescent-state forcing until the grace period ends.
1567  */
1568 static void rcu_gp_fqs_loop(void)
1569 {
1570         bool first_gp_fqs;
1571         int gf;
1572         unsigned long j;
1573         int ret;
1574         struct rcu_node *rnp = rcu_get_root();
1575
1576         first_gp_fqs = true;
1577         j = READ_ONCE(jiffies_till_first_fqs);
1578         ret = 0;
1579         for (;;) {
1580                 if (!ret) {
1581                         rcu_state.jiffies_force_qs = jiffies + j;
1582                         WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1583                                    jiffies + (j ? 3 * j : 2));
1584                 }
1585                 trace_rcu_grace_period(rcu_state.name,
1586                                        READ_ONCE(rcu_state.gp_seq),
1587                                        TPS("fqswait"));
1588                 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1589                 ret = swait_event_idle_timeout_exclusive(
1590                                 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1591                 rcu_state.gp_state = RCU_GP_DOING_FQS;
1592                 /* Locking provides needed memory barriers. */
1593                 /* If grace period done, leave loop. */
1594                 if (!READ_ONCE(rnp->qsmask) &&
1595                     !rcu_preempt_blocked_readers_cgp(rnp))
1596                         break;
1597                 /* If time for quiescent-state forcing, do it. */
1598                 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1599                     (gf & RCU_GP_FLAG_FQS)) {
1600                         trace_rcu_grace_period(rcu_state.name,
1601                                                READ_ONCE(rcu_state.gp_seq),
1602                                                TPS("fqsstart"));
1603                         rcu_gp_fqs(first_gp_fqs);
1604                         first_gp_fqs = false;
1605                         trace_rcu_grace_period(rcu_state.name,
1606                                                READ_ONCE(rcu_state.gp_seq),
1607                                                TPS("fqsend"));
1608                         cond_resched_tasks_rcu_qs();
1609                         WRITE_ONCE(rcu_state.gp_activity, jiffies);
1610                         ret = 0; /* Force full wait till next FQS. */
1611                         j = READ_ONCE(jiffies_till_next_fqs);
1612                 } else {
1613                         /* Deal with stray signal. */
1614                         cond_resched_tasks_rcu_qs();
1615                         WRITE_ONCE(rcu_state.gp_activity, jiffies);
1616                         WARN_ON(signal_pending(current));
1617                         trace_rcu_grace_period(rcu_state.name,
1618                                                READ_ONCE(rcu_state.gp_seq),
1619                                                TPS("fqswaitsig"));
1620                         ret = 1; /* Keep old FQS timing. */
1621                         j = jiffies;
1622                         if (time_after(jiffies, rcu_state.jiffies_force_qs))
1623                                 j = 1;
1624                         else
1625                                 j = rcu_state.jiffies_force_qs - j;
1626                 }
1627         }
1628 }
1629
1630 /*
1631  * Clean up after the old grace period.
1632  */
1633 static void rcu_gp_cleanup(void)
1634 {
1635         unsigned long gp_duration;
1636         bool needgp = false;
1637         unsigned long new_gp_seq;
1638         struct rcu_data *rdp;
1639         struct rcu_node *rnp = rcu_get_root();
1640         struct swait_queue_head *sq;
1641
1642         WRITE_ONCE(rcu_state.gp_activity, jiffies);
1643         raw_spin_lock_irq_rcu_node(rnp);
1644         rcu_state.gp_end = jiffies;
1645         gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1646         if (gp_duration > rcu_state.gp_max)
1647                 rcu_state.gp_max = gp_duration;
1648
1649         /*
1650          * We know the grace period is complete, but to everyone else
1651          * it appears to still be ongoing.  But it is also the case
1652          * that to everyone else it looks like there is nothing that
1653          * they can do to advance the grace period.  It is therefore
1654          * safe for us to drop the lock in order to mark the grace
1655          * period as completed in all of the rcu_node structures.
1656          */
1657         raw_spin_unlock_irq_rcu_node(rnp);
1658
1659         /*
1660          * Propagate new ->gp_seq value to rcu_node structures so that
1661          * other CPUs don't have to wait until the start of the next grace
1662          * period to process their callbacks.  This also avoids some nasty
1663          * RCU grace-period initialization races by forcing the end of
1664          * the current grace period to be completely recorded in all of
1665          * the rcu_node structures before the beginning of the next grace
1666          * period is recorded in any of the rcu_node structures.
1667          */
1668         new_gp_seq = rcu_state.gp_seq;
1669         rcu_seq_end(&new_gp_seq);
1670         rcu_for_each_node_breadth_first(rnp) {
1671                 raw_spin_lock_irq_rcu_node(rnp);
1672                 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1673                         dump_blkd_tasks(rnp, 10);
1674                 WARN_ON_ONCE(rnp->qsmask);
1675                 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1676                 rdp = this_cpu_ptr(&rcu_data);
1677                 if (rnp == rdp->mynode)
1678                         needgp = __note_gp_changes(rnp, rdp) || needgp;
1679                 /* smp_mb() provided by prior unlock-lock pair. */
1680                 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1681                 sq = rcu_nocb_gp_get(rnp);
1682                 raw_spin_unlock_irq_rcu_node(rnp);
1683                 rcu_nocb_gp_cleanup(sq);
1684                 cond_resched_tasks_rcu_qs();
1685                 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1686                 rcu_gp_slow(gp_cleanup_delay);
1687         }
1688         rnp = rcu_get_root();
1689         raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1690
1691         /* Declare grace period done, trace first to use old GP number. */
1692         trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1693         rcu_seq_end(&rcu_state.gp_seq);
1694         rcu_state.gp_state = RCU_GP_IDLE;
1695         /* Check for GP requests since above loop. */
1696         rdp = this_cpu_ptr(&rcu_data);
1697         if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1698                 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1699                                   TPS("CleanupMore"));
1700                 needgp = true;
1701         }
1702         /* Advance CBs to reduce false positives below. */
1703         if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
1704                 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1705                 rcu_state.gp_req_activity = jiffies;
1706                 trace_rcu_grace_period(rcu_state.name,
1707                                        READ_ONCE(rcu_state.gp_seq),
1708                                        TPS("newreq"));
1709         } else {
1710                 WRITE_ONCE(rcu_state.gp_flags,
1711                            rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1712         }
1713         raw_spin_unlock_irq_rcu_node(rnp);
1714 }
1715
1716 /*
1717  * Body of kthread that handles grace periods.
1718  */
1719 static int __noreturn rcu_gp_kthread(void *unused)
1720 {
1721         rcu_bind_gp_kthread();
1722         for (;;) {
1723
1724                 /* Handle grace-period start. */
1725                 for (;;) {
1726                         trace_rcu_grace_period(rcu_state.name,
1727                                                READ_ONCE(rcu_state.gp_seq),
1728                                                TPS("reqwait"));
1729                         rcu_state.gp_state = RCU_GP_WAIT_GPS;
1730                         swait_event_idle_exclusive(rcu_state.gp_wq,
1731                                          READ_ONCE(rcu_state.gp_flags) &
1732                                          RCU_GP_FLAG_INIT);
1733                         rcu_state.gp_state = RCU_GP_DONE_GPS;
1734                         /* Locking provides needed memory barrier. */
1735                         if (rcu_gp_init())
1736                                 break;
1737                         cond_resched_tasks_rcu_qs();
1738                         WRITE_ONCE(rcu_state.gp_activity, jiffies);
1739                         WARN_ON(signal_pending(current));
1740                         trace_rcu_grace_period(rcu_state.name,
1741                                                READ_ONCE(rcu_state.gp_seq),
1742                                                TPS("reqwaitsig"));
1743                 }
1744
1745                 /* Handle quiescent-state forcing. */
1746                 rcu_gp_fqs_loop();
1747
1748                 /* Handle grace-period end. */
1749                 rcu_state.gp_state = RCU_GP_CLEANUP;
1750                 rcu_gp_cleanup();
1751                 rcu_state.gp_state = RCU_GP_CLEANED;
1752         }
1753 }
1754
1755 /*
1756  * Report a full set of quiescent states to the rcu_state data structure.
1757  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1758  * another grace period is required.  Whether we wake the grace-period
1759  * kthread or it awakens itself for the next round of quiescent-state
1760  * forcing, that kthread will clean up after the just-completed grace
1761  * period.  Note that the caller must hold rnp->lock, which is released
1762  * before return.
1763  */
1764 static void rcu_report_qs_rsp(unsigned long flags)
1765         __releases(rcu_get_root()->lock)
1766 {
1767         raw_lockdep_assert_held_rcu_node(rcu_get_root());
1768         WARN_ON_ONCE(!rcu_gp_in_progress());
1769         WRITE_ONCE(rcu_state.gp_flags,
1770                    READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1771         raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1772         rcu_gp_kthread_wake();
1773 }
1774
1775 /*
1776  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1777  * Allows quiescent states for a group of CPUs to be reported at one go
1778  * to the specified rcu_node structure, though all the CPUs in the group
1779  * must be represented by the same rcu_node structure (which need not be a
1780  * leaf rcu_node structure, though it often will be).  The gps parameter
1781  * is the grace-period snapshot, which means that the quiescent states
1782  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1783  * must be held upon entry, and it is released before return.
1784  *
1785  * As a special case, if mask is zero, the bit-already-cleared check is
1786  * disabled.  This allows propagating quiescent state due to resumed tasks
1787  * during grace-period initialization.
1788  */
1789 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1790                               unsigned long gps, unsigned long flags)
1791         __releases(rnp->lock)
1792 {
1793         unsigned long oldmask = 0;
1794         struct rcu_node *rnp_c;
1795
1796         raw_lockdep_assert_held_rcu_node(rnp);
1797
1798         /* Walk up the rcu_node hierarchy. */
1799         for (;;) {
1800                 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1801
1802                         /*
1803                          * Our bit has already been cleared, or the
1804                          * relevant grace period is already over, so done.
1805                          */
1806                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1807                         return;
1808                 }
1809                 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1810                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1811                              rcu_preempt_blocked_readers_cgp(rnp));
1812                 rnp->qsmask &= ~mask;
1813                 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1814                                                  mask, rnp->qsmask, rnp->level,
1815                                                  rnp->grplo, rnp->grphi,
1816                                                  !!rnp->gp_tasks);
1817                 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1818
1819                         /* Other bits still set at this level, so done. */
1820                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1821                         return;
1822                 }
1823                 rnp->completedqs = rnp->gp_seq;
1824                 mask = rnp->grpmask;
1825                 if (rnp->parent == NULL) {
1826
1827                         /* No more levels.  Exit loop holding root lock. */
1828
1829                         break;
1830                 }
1831                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1832                 rnp_c = rnp;
1833                 rnp = rnp->parent;
1834                 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1835                 oldmask = rnp_c->qsmask;
1836         }
1837
1838         /*
1839          * Get here if we are the last CPU to pass through a quiescent
1840          * state for this grace period.  Invoke rcu_report_qs_rsp()
1841          * to clean up and start the next grace period if one is needed.
1842          */
1843         rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1844 }
1845
1846 /*
1847  * Record a quiescent state for all tasks that were previously queued
1848  * on the specified rcu_node structure and that were blocking the current
1849  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1850  * irqs disabled, and this lock is released upon return, but irqs remain
1851  * disabled.
1852  */
1853 static void __maybe_unused
1854 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1855         __releases(rnp->lock)
1856 {
1857         unsigned long gps;
1858         unsigned long mask;
1859         struct rcu_node *rnp_p;
1860
1861         raw_lockdep_assert_held_rcu_node(rnp);
1862         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
1863             WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1864             rnp->qsmask != 0) {
1865                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1866                 return;  /* Still need more quiescent states! */
1867         }
1868
1869         rnp->completedqs = rnp->gp_seq;
1870         rnp_p = rnp->parent;
1871         if (rnp_p == NULL) {
1872                 /*
1873                  * Only one rcu_node structure in the tree, so don't
1874                  * try to report up to its nonexistent parent!
1875                  */
1876                 rcu_report_qs_rsp(flags);
1877                 return;
1878         }
1879
1880         /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1881         gps = rnp->gp_seq;
1882         mask = rnp->grpmask;
1883         raw_spin_unlock_rcu_node(rnp);  /* irqs remain disabled. */
1884         raw_spin_lock_rcu_node(rnp_p);  /* irqs already disabled. */
1885         rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1886 }
1887
1888 /*
1889  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1890  * structure.  This must be called from the specified CPU.
1891  */
1892 static void
1893 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1894 {
1895         unsigned long flags;
1896         unsigned long mask;
1897         bool needwake;
1898         struct rcu_node *rnp;
1899
1900         rnp = rdp->mynode;
1901         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1902         if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1903             rdp->gpwrap) {
1904
1905                 /*
1906                  * The grace period in which this quiescent state was
1907                  * recorded has ended, so don't report it upwards.
1908                  * We will instead need a new quiescent state that lies
1909                  * within the current grace period.
1910                  */
1911                 rdp->cpu_no_qs.b.norm = true;   /* need qs for new gp. */
1912                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1913                 return;
1914         }
1915         mask = rdp->grpmask;
1916         rdp->core_needs_qs = false;
1917         if ((rnp->qsmask & mask) == 0) {
1918                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1919         } else {
1920                 /*
1921                  * This GP can't end until cpu checks in, so all of our
1922                  * callbacks can be processed during the next GP.
1923                  */
1924                 needwake = rcu_accelerate_cbs(rnp, rdp);
1925
1926                 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1927                 /* ^^^ Released rnp->lock */
1928                 if (needwake)
1929                         rcu_gp_kthread_wake();
1930         }
1931 }
1932
1933 /*
1934  * Check to see if there is a new grace period of which this CPU
1935  * is not yet aware, and if so, set up local rcu_data state for it.
1936  * Otherwise, see if this CPU has just passed through its first
1937  * quiescent state for this grace period, and record that fact if so.
1938  */
1939 static void
1940 rcu_check_quiescent_state(struct rcu_data *rdp)
1941 {
1942         /* Check for grace-period ends and beginnings. */
1943         note_gp_changes(rdp);
1944
1945         /*
1946          * Does this CPU still need to do its part for current grace period?
1947          * If no, return and let the other CPUs do their part as well.
1948          */
1949         if (!rdp->core_needs_qs)
1950                 return;
1951
1952         /*
1953          * Was there a quiescent state since the beginning of the grace
1954          * period? If no, then exit and wait for the next call.
1955          */
1956         if (rdp->cpu_no_qs.b.norm)
1957                 return;
1958
1959         /*
1960          * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1961          * judge of that).
1962          */
1963         rcu_report_qs_rdp(rdp->cpu, rdp);
1964 }
1965
1966 /*
1967  * Near the end of the offline process.  Trace the fact that this CPU
1968  * is going offline.
1969  */
1970 int rcutree_dying_cpu(unsigned int cpu)
1971 {
1972         RCU_TRACE(bool blkd;)
1973         RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);)
1974         RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
1975
1976         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
1977                 return 0;
1978
1979         RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
1980         trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
1981                                blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
1982         return 0;
1983 }
1984
1985 /*
1986  * All CPUs for the specified rcu_node structure have gone offline,
1987  * and all tasks that were preempted within an RCU read-side critical
1988  * section while running on one of those CPUs have since exited their RCU
1989  * read-side critical section.  Some other CPU is reporting this fact with
1990  * the specified rcu_node structure's ->lock held and interrupts disabled.
1991  * This function therefore goes up the tree of rcu_node structures,
1992  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
1993  * the leaf rcu_node structure's ->qsmaskinit field has already been
1994  * updated.
1995  *
1996  * This function does check that the specified rcu_node structure has
1997  * all CPUs offline and no blocked tasks, so it is OK to invoke it
1998  * prematurely.  That said, invoking it after the fact will cost you
1999  * a needless lock acquisition.  So once it has done its work, don't
2000  * invoke it again.
2001  */
2002 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2003 {
2004         long mask;
2005         struct rcu_node *rnp = rnp_leaf;
2006
2007         raw_lockdep_assert_held_rcu_node(rnp_leaf);
2008         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2009             WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2010             WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2011                 return;
2012         for (;;) {
2013                 mask = rnp->grpmask;
2014                 rnp = rnp->parent;
2015                 if (!rnp)
2016                         break;
2017                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2018                 rnp->qsmaskinit &= ~mask;
2019                 /* Between grace periods, so better already be zero! */
2020                 WARN_ON_ONCE(rnp->qsmask);
2021                 if (rnp->qsmaskinit) {
2022                         raw_spin_unlock_rcu_node(rnp);
2023                         /* irqs remain disabled. */
2024                         return;
2025                 }
2026                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2027         }
2028 }
2029
2030 /*
2031  * The CPU has been completely removed, and some other CPU is reporting
2032  * this fact from process context.  Do the remainder of the cleanup.
2033  * There can only be one CPU hotplug operation at a time, so no need for
2034  * explicit locking.
2035  */
2036 int rcutree_dead_cpu(unsigned int cpu)
2037 {
2038         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2039         struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2040
2041         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2042                 return 0;
2043
2044         /* Adjust any no-longer-needed kthreads. */
2045         rcu_boost_kthread_setaffinity(rnp, -1);
2046         /* Do any needed no-CB deferred wakeups from this CPU. */
2047         do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2048         return 0;
2049 }
2050
2051 /*
2052  * Invoke any RCU callbacks that have made it to the end of their grace
2053  * period.  Thottle as specified by rdp->blimit.
2054  */
2055 static void rcu_do_batch(struct rcu_data *rdp)
2056 {
2057         unsigned long flags;
2058         struct rcu_head *rhp;
2059         struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2060         long bl, count;
2061
2062         /* If no callbacks are ready, just return. */
2063         if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2064                 trace_rcu_batch_start(rcu_state.name,
2065                                       rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2066                                       rcu_segcblist_n_cbs(&rdp->cblist), 0);
2067                 trace_rcu_batch_end(rcu_state.name, 0,
2068                                     !rcu_segcblist_empty(&rdp->cblist),
2069                                     need_resched(), is_idle_task(current),
2070                                     rcu_is_callbacks_kthread());
2071                 return;
2072         }
2073
2074         /*
2075          * Extract the list of ready callbacks, disabling to prevent
2076          * races with call_rcu() from interrupt handlers.  Leave the
2077          * callback counts, as rcu_barrier() needs to be conservative.
2078          */
2079         local_irq_save(flags);
2080         WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2081         bl = rdp->blimit;
2082         trace_rcu_batch_start(rcu_state.name,
2083                               rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2084                               rcu_segcblist_n_cbs(&rdp->cblist), bl);
2085         rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2086         local_irq_restore(flags);
2087
2088         /* Invoke callbacks. */
2089         rhp = rcu_cblist_dequeue(&rcl);
2090         for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2091                 debug_rcu_head_unqueue(rhp);
2092                 if (__rcu_reclaim(rcu_state.name, rhp))
2093                         rcu_cblist_dequeued_lazy(&rcl);
2094                 /*
2095                  * Stop only if limit reached and CPU has something to do.
2096                  * Note: The rcl structure counts down from zero.
2097                  */
2098                 if (-rcl.len >= bl &&
2099                     (need_resched() ||
2100                      (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2101                         break;
2102         }
2103
2104         local_irq_save(flags);
2105         count = -rcl.len;
2106         trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2107                             is_idle_task(current), rcu_is_callbacks_kthread());
2108
2109         /* Update counts and requeue any remaining callbacks. */
2110         rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2111         smp_mb(); /* List handling before counting for rcu_barrier(). */
2112         rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2113
2114         /* Reinstate batch limit if we have worked down the excess. */
2115         count = rcu_segcblist_n_cbs(&rdp->cblist);
2116         if (rdp->blimit == LONG_MAX && count <= qlowmark)
2117                 rdp->blimit = blimit;
2118
2119         /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2120         if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2121                 rdp->qlen_last_fqs_check = 0;
2122                 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2123         } else if (count < rdp->qlen_last_fqs_check - qhimark)
2124                 rdp->qlen_last_fqs_check = count;
2125
2126         /*
2127          * The following usually indicates a double call_rcu().  To track
2128          * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2129          */
2130         WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2131
2132         local_irq_restore(flags);
2133
2134         /* Re-invoke RCU core processing if there are callbacks remaining. */
2135         if (rcu_segcblist_ready_cbs(&rdp->cblist))
2136                 invoke_rcu_core();
2137 }
2138
2139 /*
2140  * This function is invoked from each scheduling-clock interrupt,
2141  * and checks to see if this CPU is in a non-context-switch quiescent
2142  * state, for example, user mode or idle loop.  It also schedules RCU
2143  * core processing.  If the current grace period has gone on too long,
2144  * it will ask the scheduler to manufacture a context switch for the sole
2145  * purpose of providing a providing the needed quiescent state.
2146  */
2147 void rcu_sched_clock_irq(int user)
2148 {
2149         trace_rcu_utilization(TPS("Start scheduler-tick"));
2150         raw_cpu_inc(rcu_data.ticks_this_gp);
2151         /* The load-acquire pairs with the store-release setting to true. */
2152         if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2153                 /* Idle and userspace execution already are quiescent states. */
2154                 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2155                         set_tsk_need_resched(current);
2156                         set_preempt_need_resched();
2157                 }
2158                 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2159         }
2160         rcu_flavor_sched_clock_irq(user);
2161         if (rcu_pending())
2162                 invoke_rcu_core();
2163
2164         trace_rcu_utilization(TPS("End scheduler-tick"));
2165 }
2166
2167 /*
2168  * Scan the leaf rcu_node structures.  For each structure on which all
2169  * CPUs have reported a quiescent state and on which there are tasks
2170  * blocking the current grace period, initiate RCU priority boosting.
2171  * Otherwise, invoke the specified function to check dyntick state for
2172  * each CPU that has not yet reported a quiescent state.
2173  */
2174 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2175 {
2176         int cpu;
2177         unsigned long flags;
2178         unsigned long mask;
2179         struct rcu_node *rnp;
2180
2181         rcu_for_each_leaf_node(rnp) {
2182                 cond_resched_tasks_rcu_qs();
2183                 mask = 0;
2184                 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2185                 if (rnp->qsmask == 0) {
2186                         if (!IS_ENABLED(CONFIG_PREEMPT) ||
2187                             rcu_preempt_blocked_readers_cgp(rnp)) {
2188                                 /*
2189                                  * No point in scanning bits because they
2190                                  * are all zero.  But we might need to
2191                                  * priority-boost blocked readers.
2192                                  */
2193                                 rcu_initiate_boost(rnp, flags);
2194                                 /* rcu_initiate_boost() releases rnp->lock */
2195                                 continue;
2196                         }
2197                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2198                         continue;
2199                 }
2200                 for_each_leaf_node_possible_cpu(rnp, cpu) {
2201                         unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2202                         if ((rnp->qsmask & bit) != 0) {
2203                                 if (f(per_cpu_ptr(&rcu_data, cpu)))
2204                                         mask |= bit;
2205                         }
2206                 }
2207                 if (mask != 0) {
2208                         /* Idle/offline CPUs, report (releases rnp->lock). */
2209                         rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2210                 } else {
2211                         /* Nothing to do here, so just drop the lock. */
2212                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2213                 }
2214         }
2215 }
2216
2217 /*
2218  * Force quiescent states on reluctant CPUs, and also detect which
2219  * CPUs are in dyntick-idle mode.
2220  */
2221 void rcu_force_quiescent_state(void)
2222 {
2223         unsigned long flags;
2224         bool ret;
2225         struct rcu_node *rnp;
2226         struct rcu_node *rnp_old = NULL;
2227
2228         /* Funnel through hierarchy to reduce memory contention. */
2229         rnp = __this_cpu_read(rcu_data.mynode);
2230         for (; rnp != NULL; rnp = rnp->parent) {
2231                 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2232                       !raw_spin_trylock(&rnp->fqslock);
2233                 if (rnp_old != NULL)
2234                         raw_spin_unlock(&rnp_old->fqslock);
2235                 if (ret)
2236                         return;
2237                 rnp_old = rnp;
2238         }
2239         /* rnp_old == rcu_get_root(), rnp == NULL. */
2240
2241         /* Reached the root of the rcu_node tree, acquire lock. */
2242         raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2243         raw_spin_unlock(&rnp_old->fqslock);
2244         if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2245                 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2246                 return;  /* Someone beat us to it. */
2247         }
2248         WRITE_ONCE(rcu_state.gp_flags,
2249                    READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2250         raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2251         rcu_gp_kthread_wake();
2252 }
2253 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2254
2255 /* Perform RCU core processing work for the current CPU.  */
2256 static __latent_entropy void rcu_core(struct softirq_action *unused)
2257 {
2258         unsigned long flags;
2259         struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2260         struct rcu_node *rnp = rdp->mynode;
2261
2262         if (cpu_is_offline(smp_processor_id()))
2263                 return;
2264         trace_rcu_utilization(TPS("Start RCU core"));
2265         WARN_ON_ONCE(!rdp->beenonline);
2266
2267         /* Report any deferred quiescent states if preemption enabled. */
2268         if (!(preempt_count() & PREEMPT_MASK)) {
2269                 rcu_preempt_deferred_qs(current);
2270         } else if (rcu_preempt_need_deferred_qs(current)) {
2271                 set_tsk_need_resched(current);
2272                 set_preempt_need_resched();
2273         }
2274
2275         /* Update RCU state based on any recent quiescent states. */
2276         rcu_check_quiescent_state(rdp);
2277
2278         /* No grace period and unregistered callbacks? */
2279         if (!rcu_gp_in_progress() &&
2280             rcu_segcblist_is_enabled(&rdp->cblist)) {
2281                 local_irq_save(flags);
2282                 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2283                         rcu_accelerate_cbs_unlocked(rnp, rdp);
2284                 local_irq_restore(flags);
2285         }
2286
2287         rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2288
2289         /* If there are callbacks ready, invoke them. */
2290         if (rcu_segcblist_ready_cbs(&rdp->cblist))
2291                 invoke_rcu_callbacks(rdp);
2292
2293         /* Do any needed deferred wakeups of rcuo kthreads. */
2294         do_nocb_deferred_wakeup(rdp);
2295         trace_rcu_utilization(TPS("End RCU core"));
2296 }
2297
2298 /*
2299  * Schedule RCU callback invocation.  If the running implementation of RCU
2300  * does not support RCU priority boosting, just do a direct call, otherwise
2301  * wake up the per-CPU kernel kthread.  Note that because we are running
2302  * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2303  * cannot disappear out from under us.
2304  */
2305 static void invoke_rcu_callbacks(struct rcu_data *rdp)
2306 {
2307         if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2308                 return;
2309         if (likely(!rcu_state.boost)) {
2310                 rcu_do_batch(rdp);
2311                 return;
2312         }
2313         invoke_rcu_callbacks_kthread();
2314 }
2315
2316 static void invoke_rcu_core(void)
2317 {
2318         if (cpu_online(smp_processor_id()))
2319                 raise_softirq(RCU_SOFTIRQ);
2320 }
2321
2322 /*
2323  * Handle any core-RCU processing required by a call_rcu() invocation.
2324  */
2325 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2326                             unsigned long flags)
2327 {
2328         /*
2329          * If called from an extended quiescent state, invoke the RCU
2330          * core in order to force a re-evaluation of RCU's idleness.
2331          */
2332         if (!rcu_is_watching())
2333                 invoke_rcu_core();
2334
2335         /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2336         if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2337                 return;
2338
2339         /*
2340          * Force the grace period if too many callbacks or too long waiting.
2341          * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2342          * if some other CPU has recently done so.  Also, don't bother
2343          * invoking rcu_force_quiescent_state() if the newly enqueued callback
2344          * is the only one waiting for a grace period to complete.
2345          */
2346         if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2347                      rdp->qlen_last_fqs_check + qhimark)) {
2348
2349                 /* Are we ignoring a completed grace period? */
2350                 note_gp_changes(rdp);
2351
2352                 /* Start a new grace period if one not already started. */
2353                 if (!rcu_gp_in_progress()) {
2354                         rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2355                 } else {
2356                         /* Give the grace period a kick. */
2357                         rdp->blimit = LONG_MAX;
2358                         if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2359                             rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2360                                 rcu_force_quiescent_state();
2361                         rdp->n_force_qs_snap = rcu_state.n_force_qs;
2362                         rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2363                 }
2364         }
2365 }
2366
2367 /*
2368  * RCU callback function to leak a callback.
2369  */
2370 static void rcu_leak_callback(struct rcu_head *rhp)
2371 {
2372 }
2373
2374 /*
2375  * Helper function for call_rcu() and friends.  The cpu argument will
2376  * normally be -1, indicating "currently running CPU".  It may specify
2377  * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2378  * is expected to specify a CPU.
2379  */
2380 static void
2381 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
2382 {
2383         unsigned long flags;
2384         struct rcu_data *rdp;
2385
2386         /* Misaligned rcu_head! */
2387         WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2388
2389         if (debug_rcu_head_queue(head)) {
2390                 /*
2391                  * Probable double call_rcu(), so leak the callback.
2392                  * Use rcu:rcu_callback trace event to find the previous
2393                  * time callback was passed to __call_rcu().
2394                  */
2395                 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2396                           head, head->func);
2397                 WRITE_ONCE(head->func, rcu_leak_callback);
2398                 return;
2399         }
2400         head->func = func;
2401         head->next = NULL;
2402         local_irq_save(flags);
2403         rdp = this_cpu_ptr(&rcu_data);
2404
2405         /* Add the callback to our list. */
2406         if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2407                 int offline;
2408
2409                 if (cpu != -1)
2410                         rdp = per_cpu_ptr(&rcu_data, cpu);
2411                 if (likely(rdp->mynode)) {
2412                         /* Post-boot, so this should be for a no-CBs CPU. */
2413                         offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2414                         WARN_ON_ONCE(offline);
2415                         /* Offline CPU, _call_rcu() illegal, leak callback.  */
2416                         local_irq_restore(flags);
2417                         return;
2418                 }
2419                 /*
2420                  * Very early boot, before rcu_init().  Initialize if needed
2421                  * and then drop through to queue the callback.
2422                  */
2423                 WARN_ON_ONCE(cpu != -1);
2424                 WARN_ON_ONCE(!rcu_is_watching());
2425                 if (rcu_segcblist_empty(&rdp->cblist))
2426                         rcu_segcblist_init(&rdp->cblist);
2427         }
2428         rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2429         if (__is_kfree_rcu_offset((unsigned long)func))
2430                 trace_rcu_kfree_callback(rcu_state.name, head,
2431                                          (unsigned long)func,
2432                                          rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2433                                          rcu_segcblist_n_cbs(&rdp->cblist));
2434         else
2435                 trace_rcu_callback(rcu_state.name, head,
2436                                    rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2437                                    rcu_segcblist_n_cbs(&rdp->cblist));
2438
2439         /* Go handle any RCU core processing required. */
2440         __call_rcu_core(rdp, head, flags);
2441         local_irq_restore(flags);
2442 }
2443
2444 /**
2445  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2446  * @head: structure to be used for queueing the RCU updates.
2447  * @func: actual callback function to be invoked after the grace period
2448  *
2449  * The callback function will be invoked some time after a full grace
2450  * period elapses, in other words after all pre-existing RCU read-side
2451  * critical sections have completed.  However, the callback function
2452  * might well execute concurrently with RCU read-side critical sections
2453  * that started after call_rcu() was invoked.  RCU read-side critical
2454  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2455  * may be nested.  In addition, regions of code across which interrupts,
2456  * preemption, or softirqs have been disabled also serve as RCU read-side
2457  * critical sections.  This includes hardware interrupt handlers, softirq
2458  * handlers, and NMI handlers.
2459  *
2460  * Note that all CPUs must agree that the grace period extended beyond
2461  * all pre-existing RCU read-side critical section.  On systems with more
2462  * than one CPU, this means that when "func()" is invoked, each CPU is
2463  * guaranteed to have executed a full memory barrier since the end of its
2464  * last RCU read-side critical section whose beginning preceded the call
2465  * to call_rcu().  It also means that each CPU executing an RCU read-side
2466  * critical section that continues beyond the start of "func()" must have
2467  * executed a memory barrier after the call_rcu() but before the beginning
2468  * of that RCU read-side critical section.  Note that these guarantees
2469  * include CPUs that are offline, idle, or executing in user mode, as
2470  * well as CPUs that are executing in the kernel.
2471  *
2472  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2473  * resulting RCU callback function "func()", then both CPU A and CPU B are
2474  * guaranteed to execute a full memory barrier during the time interval
2475  * between the call to call_rcu() and the invocation of "func()" -- even
2476  * if CPU A and CPU B are the same CPU (but again only if the system has
2477  * more than one CPU).
2478  */
2479 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2480 {
2481         __call_rcu(head, func, -1, 0);
2482 }
2483 EXPORT_SYMBOL_GPL(call_rcu);
2484
2485 /*
2486  * Queue an RCU callback for lazy invocation after a grace period.
2487  * This will likely be later named something like "call_rcu_lazy()",
2488  * but this change will require some way of tagging the lazy RCU
2489  * callbacks in the list of pending callbacks. Until then, this
2490  * function may only be called from __kfree_rcu().
2491  */
2492 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2493 {
2494         __call_rcu(head, func, -1, 1);
2495 }
2496 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2497
2498 /*
2499  * During early boot, any blocking grace-period wait automatically
2500  * implies a grace period.  Later on, this is never the case for PREEMPT.
2501  *
2502  * Howevr, because a context switch is a grace period for !PREEMPT, any
2503  * blocking grace-period wait automatically implies a grace period if
2504  * there is only one CPU online at any point time during execution of
2505  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2506  * occasionally incorrectly indicate that there are multiple CPUs online
2507  * when there was in fact only one the whole time, as this just adds some
2508  * overhead: RCU still operates correctly.
2509  */
2510 static int rcu_blocking_is_gp(void)
2511 {
2512         int ret;
2513
2514         if (IS_ENABLED(CONFIG_PREEMPT))
2515                 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2516         might_sleep();  /* Check for RCU read-side critical section. */
2517         preempt_disable();
2518         ret = num_online_cpus() <= 1;
2519         preempt_enable();
2520         return ret;
2521 }
2522
2523 /**
2524  * synchronize_rcu - wait until a grace period has elapsed.
2525  *
2526  * Control will return to the caller some time after a full grace
2527  * period has elapsed, in other words after all currently executing RCU
2528  * read-side critical sections have completed.  Note, however, that
2529  * upon return from synchronize_rcu(), the caller might well be executing
2530  * concurrently with new RCU read-side critical sections that began while
2531  * synchronize_rcu() was waiting.  RCU read-side critical sections are
2532  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2533  * In addition, regions of code across which interrupts, preemption, or
2534  * softirqs have been disabled also serve as RCU read-side critical
2535  * sections.  This includes hardware interrupt handlers, softirq handlers,
2536  * and NMI handlers.
2537  *
2538  * Note that this guarantee implies further memory-ordering guarantees.
2539  * On systems with more than one CPU, when synchronize_rcu() returns,
2540  * each CPU is guaranteed to have executed a full memory barrier since
2541  * the end of its last RCU read-side critical section whose beginning
2542  * preceded the call to synchronize_rcu().  In addition, each CPU having
2543  * an RCU read-side critical section that extends beyond the return from
2544  * synchronize_rcu() is guaranteed to have executed a full memory barrier
2545  * after the beginning of synchronize_rcu() and before the beginning of
2546  * that RCU read-side critical section.  Note that these guarantees include
2547  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2548  * that are executing in the kernel.
2549  *
2550  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2551  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2552  * to have executed a full memory barrier during the execution of
2553  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2554  * again only if the system has more than one CPU).
2555  */
2556 void synchronize_rcu(void)
2557 {
2558         RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2559                          lock_is_held(&rcu_lock_map) ||
2560                          lock_is_held(&rcu_sched_lock_map),
2561                          "Illegal synchronize_rcu() in RCU read-side critical section");
2562         if (rcu_blocking_is_gp())
2563                 return;
2564         if (rcu_gp_is_expedited())
2565                 synchronize_rcu_expedited();
2566         else
2567                 wait_rcu_gp(call_rcu);
2568 }
2569 EXPORT_SYMBOL_GPL(synchronize_rcu);
2570
2571 /**
2572  * get_state_synchronize_rcu - Snapshot current RCU state
2573  *
2574  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2575  * to determine whether or not a full grace period has elapsed in the
2576  * meantime.
2577  */
2578 unsigned long get_state_synchronize_rcu(void)
2579 {
2580         /*
2581          * Any prior manipulation of RCU-protected data must happen
2582          * before the load from ->gp_seq.
2583          */
2584         smp_mb();  /* ^^^ */
2585         return rcu_seq_snap(&rcu_state.gp_seq);
2586 }
2587 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2588
2589 /**
2590  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2591  *
2592  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2593  *
2594  * If a full RCU grace period has elapsed since the earlier call to
2595  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2596  * synchronize_rcu() to wait for a full grace period.
2597  *
2598  * Yes, this function does not take counter wrap into account.  But
2599  * counter wrap is harmless.  If the counter wraps, we have waited for
2600  * more than 2 billion grace periods (and way more on a 64-bit system!),
2601  * so waiting for one additional grace period should be just fine.
2602  */
2603 void cond_synchronize_rcu(unsigned long oldstate)
2604 {
2605         if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2606                 synchronize_rcu();
2607         else
2608                 smp_mb(); /* Ensure GP ends before subsequent accesses. */
2609 }
2610 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2611
2612 /*
2613  * Check to see if there is any immediate RCU-related work to be done by
2614  * the current CPU, returning 1 if so and zero otherwise.  The checks are
2615  * in order of increasing expense: checks that can be carried out against
2616  * CPU-local state are performed first.  However, we must check for CPU
2617  * stalls first, else we might not get a chance.
2618  */
2619 static int rcu_pending(void)
2620 {
2621         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2622         struct rcu_node *rnp = rdp->mynode;
2623
2624         /* Check for CPU stalls, if enabled. */
2625         check_cpu_stall(rdp);
2626
2627         /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2628         if (rcu_nohz_full_cpu())
2629                 return 0;
2630
2631         /* Is the RCU core waiting for a quiescent state from this CPU? */
2632         if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2633                 return 1;
2634
2635         /* Does this CPU have callbacks ready to invoke? */
2636         if (rcu_segcblist_ready_cbs(&rdp->cblist))
2637                 return 1;
2638
2639         /* Has RCU gone idle with this CPU needing another grace period? */
2640         if (!rcu_gp_in_progress() &&
2641             rcu_segcblist_is_enabled(&rdp->cblist) &&
2642             !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2643                 return 1;
2644
2645         /* Have RCU grace period completed or started?  */
2646         if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2647             unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2648                 return 1;
2649
2650         /* Does this CPU need a deferred NOCB wakeup? */
2651         if (rcu_nocb_need_deferred_wakeup(rdp))
2652                 return 1;
2653
2654         /* nothing to do */
2655         return 0;
2656 }
2657
2658 /*
2659  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
2660  * the compiler is expected to optimize this away.
2661  */
2662 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2663 {
2664         trace_rcu_barrier(rcu_state.name, s, cpu,
2665                           atomic_read(&rcu_state.barrier_cpu_count), done);
2666 }
2667
2668 /*
2669  * RCU callback function for rcu_barrier().  If we are last, wake
2670  * up the task executing rcu_barrier().
2671  */
2672 static void rcu_barrier_callback(struct rcu_head *rhp)
2673 {
2674         if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2675                 rcu_barrier_trace(TPS("LastCB"), -1,
2676                                    rcu_state.barrier_sequence);
2677                 complete(&rcu_state.barrier_completion);
2678         } else {
2679                 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2680         }
2681 }
2682
2683 /*
2684  * Called with preemption disabled, and from cross-cpu IRQ context.
2685  */
2686 static void rcu_barrier_func(void *unused)
2687 {
2688         struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2689
2690         rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2691         rdp->barrier_head.func = rcu_barrier_callback;
2692         debug_rcu_head_queue(&rdp->barrier_head);
2693         if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
2694                 atomic_inc(&rcu_state.barrier_cpu_count);
2695         } else {
2696                 debug_rcu_head_unqueue(&rdp->barrier_head);
2697                 rcu_barrier_trace(TPS("IRQNQ"), -1,
2698                                    rcu_state.barrier_sequence);
2699         }
2700 }
2701
2702 /**
2703  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2704  *
2705  * Note that this primitive does not necessarily wait for an RCU grace period
2706  * to complete.  For example, if there are no RCU callbacks queued anywhere
2707  * in the system, then rcu_barrier() is within its rights to return
2708  * immediately, without waiting for anything, much less an RCU grace period.
2709  */
2710 void rcu_barrier(void)
2711 {
2712         int cpu;
2713         struct rcu_data *rdp;
2714         unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2715
2716         rcu_barrier_trace(TPS("Begin"), -1, s);
2717
2718         /* Take mutex to serialize concurrent rcu_barrier() requests. */
2719         mutex_lock(&rcu_state.barrier_mutex);
2720
2721         /* Did someone else do our work for us? */
2722         if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2723                 rcu_barrier_trace(TPS("EarlyExit"), -1,
2724                                    rcu_state.barrier_sequence);
2725                 smp_mb(); /* caller's subsequent code after above check. */
2726                 mutex_unlock(&rcu_state.barrier_mutex);
2727                 return;
2728         }
2729
2730         /* Mark the start of the barrier operation. */
2731         rcu_seq_start(&rcu_state.barrier_sequence);
2732         rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2733
2734         /*
2735          * Initialize the count to one rather than to zero in order to
2736          * avoid a too-soon return to zero in case of a short grace period
2737          * (or preemption of this task).  Exclude CPU-hotplug operations
2738          * to ensure that no offline CPU has callbacks queued.
2739          */
2740         init_completion(&rcu_state.barrier_completion);
2741         atomic_set(&rcu_state.barrier_cpu_count, 1);
2742         get_online_cpus();
2743
2744         /*
2745          * Force each CPU with callbacks to register a new callback.
2746          * When that callback is invoked, we will know that all of the
2747          * corresponding CPU's preceding callbacks have been invoked.
2748          */
2749         for_each_possible_cpu(cpu) {
2750                 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2751                         continue;
2752                 rdp = per_cpu_ptr(&rcu_data, cpu);
2753                 if (rcu_is_nocb_cpu(cpu)) {
2754                         if (!rcu_nocb_cpu_needs_barrier(cpu)) {
2755                                 rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
2756                                                    rcu_state.barrier_sequence);
2757                         } else {
2758                                 rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
2759                                                    rcu_state.barrier_sequence);
2760                                 smp_mb__before_atomic();
2761                                 atomic_inc(&rcu_state.barrier_cpu_count);
2762                                 __call_rcu(&rdp->barrier_head,
2763                                            rcu_barrier_callback, cpu, 0);
2764                         }
2765                 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2766                         rcu_barrier_trace(TPS("OnlineQ"), cpu,
2767                                            rcu_state.barrier_sequence);
2768                         smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2769                 } else {
2770                         rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2771                                            rcu_state.barrier_sequence);
2772                 }
2773         }
2774         put_online_cpus();
2775
2776         /*
2777          * Now that we have an rcu_barrier_callback() callback on each
2778          * CPU, and thus each counted, remove the initial count.
2779          */
2780         if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2781                 complete(&rcu_state.barrier_completion);
2782
2783         /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2784         wait_for_completion(&rcu_state.barrier_completion);
2785
2786         /* Mark the end of the barrier operation. */
2787         rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2788         rcu_seq_end(&rcu_state.barrier_sequence);
2789
2790         /* Other rcu_barrier() invocations can now safely proceed. */
2791         mutex_unlock(&rcu_state.barrier_mutex);
2792 }
2793 EXPORT_SYMBOL_GPL(rcu_barrier);
2794
2795 /*
2796  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2797  * first CPU in a given leaf rcu_node structure coming online.  The caller
2798  * must hold the corresponding leaf rcu_node ->lock with interrrupts
2799  * disabled.
2800  */
2801 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2802 {
2803         long mask;
2804         long oldmask;
2805         struct rcu_node *rnp = rnp_leaf;
2806
2807         raw_lockdep_assert_held_rcu_node(rnp_leaf);
2808         WARN_ON_ONCE(rnp->wait_blkd_tasks);
2809         for (;;) {
2810                 mask = rnp->grpmask;
2811                 rnp = rnp->parent;
2812                 if (rnp == NULL)
2813                         return;
2814                 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2815                 oldmask = rnp->qsmaskinit;
2816                 rnp->qsmaskinit |= mask;
2817                 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2818                 if (oldmask)
2819                         return;
2820         }
2821 }
2822
2823 /*
2824  * Do boot-time initialization of a CPU's per-CPU RCU data.
2825  */
2826 static void __init
2827 rcu_boot_init_percpu_data(int cpu)
2828 {
2829         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2830
2831         /* Set up local state, ensuring consistent view of global state. */
2832         rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
2833         WARN_ON_ONCE(rdp->dynticks_nesting != 1);
2834         WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
2835         rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
2836         rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
2837         rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
2838         rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
2839         rdp->cpu = cpu;
2840         rcu_boot_init_nocb_percpu_data(rdp);
2841 }
2842
2843 /*
2844  * Invoked early in the CPU-online process, when pretty much all services
2845  * are available.  The incoming CPU is not present.
2846  *
2847  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
2848  * offline event can be happening at a given time.  Note also that we can
2849  * accept some slop in the rsp->gp_seq access due to the fact that this
2850  * CPU cannot possibly have any RCU callbacks in flight yet.
2851  */
2852 int rcutree_prepare_cpu(unsigned int cpu)
2853 {
2854         unsigned long flags;
2855         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2856         struct rcu_node *rnp = rcu_get_root();
2857
2858         /* Set up local state, ensuring consistent view of global state. */
2859         raw_spin_lock_irqsave_rcu_node(rnp, flags);
2860         rdp->qlen_last_fqs_check = 0;
2861         rdp->n_force_qs_snap = rcu_state.n_force_qs;
2862         rdp->blimit = blimit;
2863         if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
2864             !init_nocb_callback_list(rdp))
2865                 rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
2866         rdp->dynticks_nesting = 1;      /* CPU not up, no tearing. */
2867         rcu_dynticks_eqs_online();
2868         raw_spin_unlock_rcu_node(rnp);          /* irqs remain disabled. */
2869
2870         /*
2871          * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
2872          * propagation up the rcu_node tree will happen at the beginning
2873          * of the next grace period.
2874          */
2875         rnp = rdp->mynode;
2876         raw_spin_lock_rcu_node(rnp);            /* irqs already disabled. */
2877         rdp->beenonline = true;  /* We have now been online. */
2878         rdp->gp_seq = rnp->gp_seq;
2879         rdp->gp_seq_needed = rnp->gp_seq;
2880         rdp->cpu_no_qs.b.norm = true;
2881         rdp->core_needs_qs = false;
2882         rdp->rcu_iw_pending = false;
2883         rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
2884         trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
2885         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2886         rcu_prepare_kthreads(cpu);
2887         rcu_spawn_cpu_nocb_kthread(cpu);
2888
2889         return 0;
2890 }
2891
2892 /*
2893  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
2894  */
2895 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
2896 {
2897         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2898
2899         rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
2900 }
2901
2902 /*
2903  * Near the end of the CPU-online process.  Pretty much all services
2904  * enabled, and the CPU is now very much alive.
2905  */
2906 int rcutree_online_cpu(unsigned int cpu)
2907 {
2908         unsigned long flags;
2909         struct rcu_data *rdp;
2910         struct rcu_node *rnp;
2911
2912         rdp = per_cpu_ptr(&rcu_data, cpu);
2913         rnp = rdp->mynode;
2914         raw_spin_lock_irqsave_rcu_node(rnp, flags);
2915         rnp->ffmask |= rdp->grpmask;
2916         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2917         if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
2918                 return 0; /* Too early in boot for scheduler work. */
2919         sync_sched_exp_online_cleanup(cpu);
2920         rcutree_affinity_setting(cpu, -1);
2921         return 0;
2922 }
2923
2924 /*
2925  * Near the beginning of the process.  The CPU is still very much alive
2926  * with pretty much all services enabled.
2927  */
2928 int rcutree_offline_cpu(unsigned int cpu)
2929 {
2930         unsigned long flags;
2931         struct rcu_data *rdp;
2932         struct rcu_node *rnp;
2933
2934         rdp = per_cpu_ptr(&rcu_data, cpu);
2935         rnp = rdp->mynode;
2936         raw_spin_lock_irqsave_rcu_node(rnp, flags);
2937         rnp->ffmask &= ~rdp->grpmask;
2938         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2939
2940         rcutree_affinity_setting(cpu, cpu);
2941         return 0;
2942 }
2943
2944 static DEFINE_PER_CPU(int, rcu_cpu_started);
2945
2946 /*
2947  * Mark the specified CPU as being online so that subsequent grace periods
2948  * (both expedited and normal) will wait on it.  Note that this means that
2949  * incoming CPUs are not allowed to use RCU read-side critical sections
2950  * until this function is called.  Failing to observe this restriction
2951  * will result in lockdep splats.
2952  *
2953  * Note that this function is special in that it is invoked directly
2954  * from the incoming CPU rather than from the cpuhp_step mechanism.
2955  * This is because this function must be invoked at a precise location.
2956  */
2957 void rcu_cpu_starting(unsigned int cpu)
2958 {
2959         unsigned long flags;
2960         unsigned long mask;
2961         int nbits;
2962         unsigned long oldmask;
2963         struct rcu_data *rdp;
2964         struct rcu_node *rnp;
2965
2966         if (per_cpu(rcu_cpu_started, cpu))
2967                 return;
2968
2969         per_cpu(rcu_cpu_started, cpu) = 1;
2970
2971         rdp = per_cpu_ptr(&rcu_data, cpu);
2972         rnp = rdp->mynode;
2973         mask = rdp->grpmask;
2974         raw_spin_lock_irqsave_rcu_node(rnp, flags);
2975         rnp->qsmaskinitnext |= mask;
2976         oldmask = rnp->expmaskinitnext;
2977         rnp->expmaskinitnext |= mask;
2978         oldmask ^= rnp->expmaskinitnext;
2979         nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
2980         /* Allow lockless access for expedited grace periods. */
2981         smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
2982         rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
2983         rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
2984         rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
2985         if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
2986                 /* Report QS -after- changing ->qsmaskinitnext! */
2987                 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2988         } else {
2989                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2990         }
2991         smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
2992 }
2993
2994 #ifdef CONFIG_HOTPLUG_CPU
2995 /*
2996  * The outgoing function has no further need of RCU, so remove it from
2997  * the rcu_node tree's ->qsmaskinitnext bit masks.
2998  *
2999  * Note that this function is special in that it is invoked directly
3000  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3001  * This is because this function must be invoked at a precise location.
3002  */
3003 void rcu_report_dead(unsigned int cpu)
3004 {
3005         unsigned long flags;
3006         unsigned long mask;
3007         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3008         struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3009
3010         /* QS for any half-done expedited grace period. */
3011         preempt_disable();
3012         rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3013         preempt_enable();
3014         rcu_preempt_deferred_qs(current);
3015
3016         /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3017         mask = rdp->grpmask;
3018         raw_spin_lock(&rcu_state.ofl_lock);
3019         raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3020         rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3021         rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3022         if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3023                 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3024                 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3025                 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3026         }
3027         rnp->qsmaskinitnext &= ~mask;
3028         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3029         raw_spin_unlock(&rcu_state.ofl_lock);
3030
3031         per_cpu(rcu_cpu_started, cpu) = 0;
3032 }
3033
3034 /*
3035  * The outgoing CPU has just passed through the dying-idle state, and we
3036  * are being invoked from the CPU that was IPIed to continue the offline
3037  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3038  */
3039 void rcutree_migrate_callbacks(int cpu)
3040 {
3041         unsigned long flags;
3042         struct rcu_data *my_rdp;
3043         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3044         struct rcu_node *rnp_root = rcu_get_root();
3045         bool needwake;
3046
3047         if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3048                 return;  /* No callbacks to migrate. */
3049
3050         local_irq_save(flags);
3051         my_rdp = this_cpu_ptr(&rcu_data);
3052         if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3053                 local_irq_restore(flags);
3054                 return;
3055         }
3056         raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3057         /* Leverage recent GPs and set GP for new callbacks. */
3058         needwake = rcu_advance_cbs(rnp_root, rdp) ||
3059                    rcu_advance_cbs(rnp_root, my_rdp);
3060         rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3061         WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3062                      !rcu_segcblist_n_cbs(&my_rdp->cblist));
3063         raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3064         if (needwake)
3065                 rcu_gp_kthread_wake();
3066         WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3067                   !rcu_segcblist_empty(&rdp->cblist),
3068                   "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3069                   cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3070                   rcu_segcblist_first_cb(&rdp->cblist));
3071 }
3072 #endif
3073
3074 /*
3075  * On non-huge systems, use expedited RCU grace periods to make suspend
3076  * and hibernation run faster.
3077  */
3078 static int rcu_pm_notify(struct notifier_block *self,
3079                          unsigned long action, void *hcpu)
3080 {
3081         switch (action) {
3082         case PM_HIBERNATION_PREPARE:
3083         case PM_SUSPEND_PREPARE:
3084                 rcu_expedite_gp();
3085                 break;
3086         case PM_POST_HIBERNATION:
3087         case PM_POST_SUSPEND:
3088                 rcu_unexpedite_gp();
3089                 break;
3090         default:
3091                 break;
3092         }
3093         return NOTIFY_OK;
3094 }
3095
3096 /*
3097  * Spawn the kthreads that handle RCU's grace periods.
3098  */
3099 static int __init rcu_spawn_gp_kthread(void)
3100 {
3101         unsigned long flags;
3102         int kthread_prio_in = kthread_prio;
3103         struct rcu_node *rnp;
3104         struct sched_param sp;
3105         struct task_struct *t;
3106
3107         /* Force priority into range. */
3108         if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3109             && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3110                 kthread_prio = 2;
3111         else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3112                 kthread_prio = 1;
3113         else if (kthread_prio < 0)
3114                 kthread_prio = 0;
3115         else if (kthread_prio > 99)
3116                 kthread_prio = 99;
3117
3118         if (kthread_prio != kthread_prio_in)
3119                 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3120                          kthread_prio, kthread_prio_in);
3121
3122         rcu_scheduler_fully_active = 1;
3123         t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3124         if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3125                 return 0;
3126         rnp = rcu_get_root();
3127         raw_spin_lock_irqsave_rcu_node(rnp, flags);
3128         rcu_state.gp_kthread = t;
3129         if (kthread_prio) {
3130                 sp.sched_priority = kthread_prio;
3131                 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3132         }
3133         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3134         wake_up_process(t);
3135         rcu_spawn_nocb_kthreads();
3136         rcu_spawn_boost_kthreads();
3137         return 0;
3138 }
3139 early_initcall(rcu_spawn_gp_kthread);
3140
3141 /*
3142  * This function is invoked towards the end of the scheduler's
3143  * initialization process.  Before this is called, the idle task might
3144  * contain synchronous grace-period primitives (during which time, this idle
3145  * task is booting the system, and such primitives are no-ops).  After this
3146  * function is called, any synchronous grace-period primitives are run as
3147  * expedited, with the requesting task driving the grace period forward.
3148  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3149  * runtime RCU functionality.
3150  */
3151 void rcu_scheduler_starting(void)
3152 {
3153         WARN_ON(num_online_cpus() != 1);
3154         WARN_ON(nr_context_switches() > 0);
3155         rcu_test_sync_prims();
3156         rcu_scheduler_active = RCU_SCHEDULER_INIT;
3157         rcu_test_sync_prims();
3158 }
3159
3160 /*
3161  * Helper function for rcu_init() that initializes the rcu_state structure.
3162  */
3163 static void __init rcu_init_one(void)
3164 {
3165         static const char * const buf[] = RCU_NODE_NAME_INIT;
3166         static const char * const fqs[] = RCU_FQS_NAME_INIT;
3167         static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3168         static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3169
3170         int levelspread[RCU_NUM_LVLS];          /* kids/node in each level. */
3171         int cpustride = 1;
3172         int i;
3173         int j;
3174         struct rcu_node *rnp;
3175
3176         BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3177
3178         /* Silence gcc 4.8 false positive about array index out of range. */
3179         if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3180                 panic("rcu_init_one: rcu_num_lvls out of range");
3181
3182         /* Initialize the level-tracking arrays. */
3183
3184         for (i = 1; i < rcu_num_lvls; i++)
3185                 rcu_state.level[i] =
3186                         rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3187         rcu_init_levelspread(levelspread, num_rcu_lvl);
3188
3189         /* Initialize the elements themselves, starting from the leaves. */
3190
3191         for (i = rcu_num_lvls - 1; i >= 0; i--) {
3192                 cpustride *= levelspread[i];
3193                 rnp = rcu_state.level[i];
3194                 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3195                         raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3196                         lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3197                                                    &rcu_node_class[i], buf[i]);
3198                         raw_spin_lock_init(&rnp->fqslock);
3199                         lockdep_set_class_and_name(&rnp->fqslock,
3200                                                    &rcu_fqs_class[i], fqs[i]);
3201                         rnp->gp_seq = rcu_state.gp_seq;
3202                         rnp->gp_seq_needed = rcu_state.gp_seq;
3203                         rnp->completedqs = rcu_state.gp_seq;
3204                         rnp->qsmask = 0;
3205                         rnp->qsmaskinit = 0;
3206                         rnp->grplo = j * cpustride;
3207                         rnp->grphi = (j + 1) * cpustride - 1;
3208                         if (rnp->grphi >= nr_cpu_ids)
3209                                 rnp->grphi = nr_cpu_ids - 1;
3210                         if (i == 0) {
3211                                 rnp->grpnum = 0;
3212                                 rnp->grpmask = 0;
3213                                 rnp->parent = NULL;
3214                         } else {
3215                                 rnp->grpnum = j % levelspread[i - 1];
3216                                 rnp->grpmask = BIT(rnp->grpnum);
3217                                 rnp->parent = rcu_state.level[i - 1] +
3218                                               j / levelspread[i - 1];
3219                         }
3220                         rnp->level = i;
3221                         INIT_LIST_HEAD(&rnp->blkd_tasks);
3222                         rcu_init_one_nocb(rnp);
3223                         init_waitqueue_head(&rnp->exp_wq[0]);
3224                         init_waitqueue_head(&rnp->exp_wq[1]);
3225                         init_waitqueue_head(&rnp->exp_wq[2]);
3226                         init_waitqueue_head(&rnp->exp_wq[3]);
3227                         spin_lock_init(&rnp->exp_lock);
3228                 }
3229         }
3230
3231         init_swait_queue_head(&rcu_state.gp_wq);
3232         init_swait_queue_head(&rcu_state.expedited_wq);
3233         rnp = rcu_first_leaf_node();
3234         for_each_possible_cpu(i) {
3235                 while (i > rnp->grphi)
3236                         rnp++;
3237                 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3238                 rcu_boot_init_percpu_data(i);
3239         }
3240 }
3241
3242 /*
3243  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3244  * replace the definitions in tree.h because those are needed to size
3245  * the ->node array in the rcu_state structure.
3246  */
3247 static void __init rcu_init_geometry(void)
3248 {
3249         ulong d;
3250         int i;
3251         int rcu_capacity[RCU_NUM_LVLS];
3252
3253         /*
3254          * Initialize any unspecified boot parameters.
3255          * The default values of jiffies_till_first_fqs and
3256          * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3257          * value, which is a function of HZ, then adding one for each
3258          * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3259          */
3260         d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3261         if (jiffies_till_first_fqs == ULONG_MAX)
3262                 jiffies_till_first_fqs = d;
3263         if (jiffies_till_next_fqs == ULONG_MAX)
3264                 jiffies_till_next_fqs = d;
3265         adjust_jiffies_till_sched_qs();
3266
3267         /* If the compile-time values are accurate, just leave. */
3268         if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3269             nr_cpu_ids == NR_CPUS)
3270                 return;
3271         pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3272                 rcu_fanout_leaf, nr_cpu_ids);
3273
3274         /*
3275          * The boot-time rcu_fanout_leaf parameter must be at least two
3276          * and cannot exceed the number of bits in the rcu_node masks.
3277          * Complain and fall back to the compile-time values if this
3278          * limit is exceeded.
3279          */
3280         if (rcu_fanout_leaf < 2 ||
3281             rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3282                 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3283                 WARN_ON(1);
3284                 return;
3285         }
3286
3287         /*
3288          * Compute number of nodes that can be handled an rcu_node tree
3289          * with the given number of levels.
3290          */
3291         rcu_capacity[0] = rcu_fanout_leaf;
3292         for (i = 1; i < RCU_NUM_LVLS; i++)
3293                 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3294
3295         /*
3296          * The tree must be able to accommodate the configured number of CPUs.
3297          * If this limit is exceeded, fall back to the compile-time values.
3298          */
3299         if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3300                 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3301                 WARN_ON(1);
3302                 return;
3303         }
3304
3305         /* Calculate the number of levels in the tree. */
3306         for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3307         }
3308         rcu_num_lvls = i + 1;
3309
3310         /* Calculate the number of rcu_nodes at each level of the tree. */
3311         for (i = 0; i < rcu_num_lvls; i++) {
3312                 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3313                 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3314         }
3315
3316         /* Calculate the total number of rcu_node structures. */
3317         rcu_num_nodes = 0;
3318         for (i = 0; i < rcu_num_lvls; i++)
3319                 rcu_num_nodes += num_rcu_lvl[i];
3320 }
3321
3322 /*
3323  * Dump out the structure of the rcu_node combining tree associated
3324  * with the rcu_state structure.
3325  */
3326 static void __init rcu_dump_rcu_node_tree(void)
3327 {
3328         int level = 0;
3329         struct rcu_node *rnp;
3330
3331         pr_info("rcu_node tree layout dump\n");
3332         pr_info(" ");
3333         rcu_for_each_node_breadth_first(rnp) {
3334                 if (rnp->level != level) {
3335                         pr_cont("\n");
3336                         pr_info(" ");
3337                         level = rnp->level;
3338                 }
3339                 pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3340         }
3341         pr_cont("\n");
3342 }
3343
3344 struct workqueue_struct *rcu_gp_wq;
3345 struct workqueue_struct *rcu_par_gp_wq;
3346
3347 void __init rcu_init(void)
3348 {
3349         int cpu;
3350
3351         rcu_early_boot_tests();
3352
3353         rcu_bootup_announce();
3354         rcu_init_geometry();
3355         rcu_init_one();
3356         if (dump_tree)
3357                 rcu_dump_rcu_node_tree();
3358         open_softirq(RCU_SOFTIRQ, rcu_core);
3359
3360         /*
3361          * We don't need protection against CPU-hotplug here because
3362          * this is called early in boot, before either interrupts
3363          * or the scheduler are operational.
3364          */
3365         pm_notifier(rcu_pm_notify, 0);
3366         for_each_online_cpu(cpu) {
3367                 rcutree_prepare_cpu(cpu);
3368                 rcu_cpu_starting(cpu);
3369                 rcutree_online_cpu(cpu);
3370         }
3371
3372         /* Create workqueue for expedited GPs and for Tree SRCU. */
3373         rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3374         WARN_ON(!rcu_gp_wq);
3375         rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3376         WARN_ON(!rcu_par_gp_wq);
3377         srcu_init();
3378 }
3379
3380 #include "tree_stall.h"
3381 #include "tree_exp.h"
3382 #include "tree_plugin.h"