Merge tag 'upstream-4.8-rc1' of git://git.infradead.org/linux-ubifs
[sfrench/cifs-2.6.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
31 #include <linux/ktime.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <asm/io.h>
38
39 #include "power.h"
40
41 #ifdef CONFIG_DEBUG_RODATA
42 static bool hibernate_restore_protection;
43 static bool hibernate_restore_protection_active;
44
45 void enable_restore_image_protection(void)
46 {
47         hibernate_restore_protection = true;
48 }
49
50 static inline void hibernate_restore_protection_begin(void)
51 {
52         hibernate_restore_protection_active = hibernate_restore_protection;
53 }
54
55 static inline void hibernate_restore_protection_end(void)
56 {
57         hibernate_restore_protection_active = false;
58 }
59
60 static inline void hibernate_restore_protect_page(void *page_address)
61 {
62         if (hibernate_restore_protection_active)
63                 set_memory_ro((unsigned long)page_address, 1);
64 }
65
66 static inline void hibernate_restore_unprotect_page(void *page_address)
67 {
68         if (hibernate_restore_protection_active)
69                 set_memory_rw((unsigned long)page_address, 1);
70 }
71 #else
72 static inline void hibernate_restore_protection_begin(void) {}
73 static inline void hibernate_restore_protection_end(void) {}
74 static inline void hibernate_restore_protect_page(void *page_address) {}
75 static inline void hibernate_restore_unprotect_page(void *page_address) {}
76 #endif /* CONFIG_DEBUG_RODATA */
77
78 static int swsusp_page_is_free(struct page *);
79 static void swsusp_set_page_forbidden(struct page *);
80 static void swsusp_unset_page_forbidden(struct page *);
81
82 /*
83  * Number of bytes to reserve for memory allocations made by device drivers
84  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
85  * cause image creation to fail (tunable via /sys/power/reserved_size).
86  */
87 unsigned long reserved_size;
88
89 void __init hibernate_reserved_size_init(void)
90 {
91         reserved_size = SPARE_PAGES * PAGE_SIZE;
92 }
93
94 /*
95  * Preferred image size in bytes (tunable via /sys/power/image_size).
96  * When it is set to N, swsusp will do its best to ensure the image
97  * size will not exceed N bytes, but if that is impossible, it will
98  * try to create the smallest image possible.
99  */
100 unsigned long image_size;
101
102 void __init hibernate_image_size_init(void)
103 {
104         image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
105 }
106
107 /*
108  * List of PBEs needed for restoring the pages that were allocated before
109  * the suspend and included in the suspend image, but have also been
110  * allocated by the "resume" kernel, so their contents cannot be written
111  * directly to their "original" page frames.
112  */
113 struct pbe *restore_pblist;
114
115 /* struct linked_page is used to build chains of pages */
116
117 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
118
119 struct linked_page {
120         struct linked_page *next;
121         char data[LINKED_PAGE_DATA_SIZE];
122 } __packed;
123
124 /*
125  * List of "safe" pages (ie. pages that were not used by the image kernel
126  * before hibernation) that may be used as temporary storage for image kernel
127  * memory contents.
128  */
129 static struct linked_page *safe_pages_list;
130
131 /* Pointer to an auxiliary buffer (1 page) */
132 static void *buffer;
133
134 #define PG_ANY          0
135 #define PG_SAFE         1
136 #define PG_UNSAFE_CLEAR 1
137 #define PG_UNSAFE_KEEP  0
138
139 static unsigned int allocated_unsafe_pages;
140
141 /**
142  * get_image_page - Allocate a page for a hibernation image.
143  * @gfp_mask: GFP mask for the allocation.
144  * @safe_needed: Get pages that were not used before hibernation (restore only)
145  *
146  * During image restoration, for storing the PBE list and the image data, we can
147  * only use memory pages that do not conflict with the pages used before
148  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
149  * using allocated_unsafe_pages.
150  *
151  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
152  * swsusp_free() can release it.
153  */
154 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
155 {
156         void *res;
157
158         res = (void *)get_zeroed_page(gfp_mask);
159         if (safe_needed)
160                 while (res && swsusp_page_is_free(virt_to_page(res))) {
161                         /* The page is unsafe, mark it for swsusp_free() */
162                         swsusp_set_page_forbidden(virt_to_page(res));
163                         allocated_unsafe_pages++;
164                         res = (void *)get_zeroed_page(gfp_mask);
165                 }
166         if (res) {
167                 swsusp_set_page_forbidden(virt_to_page(res));
168                 swsusp_set_page_free(virt_to_page(res));
169         }
170         return res;
171 }
172
173 static void *__get_safe_page(gfp_t gfp_mask)
174 {
175         if (safe_pages_list) {
176                 void *ret = safe_pages_list;
177
178                 safe_pages_list = safe_pages_list->next;
179                 memset(ret, 0, PAGE_SIZE);
180                 return ret;
181         }
182         return get_image_page(gfp_mask, PG_SAFE);
183 }
184
185 unsigned long get_safe_page(gfp_t gfp_mask)
186 {
187         return (unsigned long)__get_safe_page(gfp_mask);
188 }
189
190 static struct page *alloc_image_page(gfp_t gfp_mask)
191 {
192         struct page *page;
193
194         page = alloc_page(gfp_mask);
195         if (page) {
196                 swsusp_set_page_forbidden(page);
197                 swsusp_set_page_free(page);
198         }
199         return page;
200 }
201
202 static void recycle_safe_page(void *page_address)
203 {
204         struct linked_page *lp = page_address;
205
206         lp->next = safe_pages_list;
207         safe_pages_list = lp;
208 }
209
210 /**
211  * free_image_page - Free a page allocated for hibernation image.
212  * @addr: Address of the page to free.
213  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
214  *
215  * The page to free should have been allocated by get_image_page() (page flags
216  * set by it are affected).
217  */
218 static inline void free_image_page(void *addr, int clear_nosave_free)
219 {
220         struct page *page;
221
222         BUG_ON(!virt_addr_valid(addr));
223
224         page = virt_to_page(addr);
225
226         swsusp_unset_page_forbidden(page);
227         if (clear_nosave_free)
228                 swsusp_unset_page_free(page);
229
230         __free_page(page);
231 }
232
233 static inline void free_list_of_pages(struct linked_page *list,
234                                       int clear_page_nosave)
235 {
236         while (list) {
237                 struct linked_page *lp = list->next;
238
239                 free_image_page(list, clear_page_nosave);
240                 list = lp;
241         }
242 }
243
244 /*
245  * struct chain_allocator is used for allocating small objects out of
246  * a linked list of pages called 'the chain'.
247  *
248  * The chain grows each time when there is no room for a new object in
249  * the current page.  The allocated objects cannot be freed individually.
250  * It is only possible to free them all at once, by freeing the entire
251  * chain.
252  *
253  * NOTE: The chain allocator may be inefficient if the allocated objects
254  * are not much smaller than PAGE_SIZE.
255  */
256 struct chain_allocator {
257         struct linked_page *chain;      /* the chain */
258         unsigned int used_space;        /* total size of objects allocated out
259                                            of the current page */
260         gfp_t gfp_mask;         /* mask for allocating pages */
261         int safe_needed;        /* if set, only "safe" pages are allocated */
262 };
263
264 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
265                        int safe_needed)
266 {
267         ca->chain = NULL;
268         ca->used_space = LINKED_PAGE_DATA_SIZE;
269         ca->gfp_mask = gfp_mask;
270         ca->safe_needed = safe_needed;
271 }
272
273 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
274 {
275         void *ret;
276
277         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
278                 struct linked_page *lp;
279
280                 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
281                                         get_image_page(ca->gfp_mask, PG_ANY);
282                 if (!lp)
283                         return NULL;
284
285                 lp->next = ca->chain;
286                 ca->chain = lp;
287                 ca->used_space = 0;
288         }
289         ret = ca->chain->data + ca->used_space;
290         ca->used_space += size;
291         return ret;
292 }
293
294 /**
295  * Data types related to memory bitmaps.
296  *
297  * Memory bitmap is a structure consiting of many linked lists of
298  * objects.  The main list's elements are of type struct zone_bitmap
299  * and each of them corresonds to one zone.  For each zone bitmap
300  * object there is a list of objects of type struct bm_block that
301  * represent each blocks of bitmap in which information is stored.
302  *
303  * struct memory_bitmap contains a pointer to the main list of zone
304  * bitmap objects, a struct bm_position used for browsing the bitmap,
305  * and a pointer to the list of pages used for allocating all of the
306  * zone bitmap objects and bitmap block objects.
307  *
308  * NOTE: It has to be possible to lay out the bitmap in memory
309  * using only allocations of order 0.  Additionally, the bitmap is
310  * designed to work with arbitrary number of zones (this is over the
311  * top for now, but let's avoid making unnecessary assumptions ;-).
312  *
313  * struct zone_bitmap contains a pointer to a list of bitmap block
314  * objects and a pointer to the bitmap block object that has been
315  * most recently used for setting bits.  Additionally, it contains the
316  * PFNs that correspond to the start and end of the represented zone.
317  *
318  * struct bm_block contains a pointer to the memory page in which
319  * information is stored (in the form of a block of bitmap)
320  * It also contains the pfns that correspond to the start and end of
321  * the represented memory area.
322  *
323  * The memory bitmap is organized as a radix tree to guarantee fast random
324  * access to the bits. There is one radix tree for each zone (as returned
325  * from create_mem_extents).
326  *
327  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
328  * two linked lists for the nodes of the tree, one for the inner nodes and
329  * one for the leave nodes. The linked leave nodes are used for fast linear
330  * access of the memory bitmap.
331  *
332  * The struct rtree_node represents one node of the radix tree.
333  */
334
335 #define BM_END_OF_MAP   (~0UL)
336
337 #define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
338 #define BM_BLOCK_SHIFT          (PAGE_SHIFT + 3)
339 #define BM_BLOCK_MASK           ((1UL << BM_BLOCK_SHIFT) - 1)
340
341 /*
342  * struct rtree_node is a wrapper struct to link the nodes
343  * of the rtree together for easy linear iteration over
344  * bits and easy freeing
345  */
346 struct rtree_node {
347         struct list_head list;
348         unsigned long *data;
349 };
350
351 /*
352  * struct mem_zone_bm_rtree represents a bitmap used for one
353  * populated memory zone.
354  */
355 struct mem_zone_bm_rtree {
356         struct list_head list;          /* Link Zones together         */
357         struct list_head nodes;         /* Radix Tree inner nodes      */
358         struct list_head leaves;        /* Radix Tree leaves           */
359         unsigned long start_pfn;        /* Zone start page frame       */
360         unsigned long end_pfn;          /* Zone end page frame + 1     */
361         struct rtree_node *rtree;       /* Radix Tree Root             */
362         int levels;                     /* Number of Radix Tree Levels */
363         unsigned int blocks;            /* Number of Bitmap Blocks     */
364 };
365
366 /* strcut bm_position is used for browsing memory bitmaps */
367
368 struct bm_position {
369         struct mem_zone_bm_rtree *zone;
370         struct rtree_node *node;
371         unsigned long node_pfn;
372         int node_bit;
373 };
374
375 struct memory_bitmap {
376         struct list_head zones;
377         struct linked_page *p_list;     /* list of pages used to store zone
378                                            bitmap objects and bitmap block
379                                            objects */
380         struct bm_position cur; /* most recently used bit position */
381 };
382
383 /* Functions that operate on memory bitmaps */
384
385 #define BM_ENTRIES_PER_LEVEL    (PAGE_SIZE / sizeof(unsigned long))
386 #if BITS_PER_LONG == 32
387 #define BM_RTREE_LEVEL_SHIFT    (PAGE_SHIFT - 2)
388 #else
389 #define BM_RTREE_LEVEL_SHIFT    (PAGE_SHIFT - 3)
390 #endif
391 #define BM_RTREE_LEVEL_MASK     ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
392
393 /**
394  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
395  *
396  * This function is used to allocate inner nodes as well as the
397  * leave nodes of the radix tree. It also adds the node to the
398  * corresponding linked list passed in by the *list parameter.
399  */
400 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
401                                            struct chain_allocator *ca,
402                                            struct list_head *list)
403 {
404         struct rtree_node *node;
405
406         node = chain_alloc(ca, sizeof(struct rtree_node));
407         if (!node)
408                 return NULL;
409
410         node->data = get_image_page(gfp_mask, safe_needed);
411         if (!node->data)
412                 return NULL;
413
414         list_add_tail(&node->list, list);
415
416         return node;
417 }
418
419 /**
420  * add_rtree_block - Add a new leave node to the radix tree.
421  *
422  * The leave nodes need to be allocated in order to keep the leaves
423  * linked list in order. This is guaranteed by the zone->blocks
424  * counter.
425  */
426 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
427                            int safe_needed, struct chain_allocator *ca)
428 {
429         struct rtree_node *node, *block, **dst;
430         unsigned int levels_needed, block_nr;
431         int i;
432
433         block_nr = zone->blocks;
434         levels_needed = 0;
435
436         /* How many levels do we need for this block nr? */
437         while (block_nr) {
438                 levels_needed += 1;
439                 block_nr >>= BM_RTREE_LEVEL_SHIFT;
440         }
441
442         /* Make sure the rtree has enough levels */
443         for (i = zone->levels; i < levels_needed; i++) {
444                 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
445                                         &zone->nodes);
446                 if (!node)
447                         return -ENOMEM;
448
449                 node->data[0] = (unsigned long)zone->rtree;
450                 zone->rtree = node;
451                 zone->levels += 1;
452         }
453
454         /* Allocate new block */
455         block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
456         if (!block)
457                 return -ENOMEM;
458
459         /* Now walk the rtree to insert the block */
460         node = zone->rtree;
461         dst = &zone->rtree;
462         block_nr = zone->blocks;
463         for (i = zone->levels; i > 0; i--) {
464                 int index;
465
466                 if (!node) {
467                         node = alloc_rtree_node(gfp_mask, safe_needed, ca,
468                                                 &zone->nodes);
469                         if (!node)
470                                 return -ENOMEM;
471                         *dst = node;
472                 }
473
474                 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
475                 index &= BM_RTREE_LEVEL_MASK;
476                 dst = (struct rtree_node **)&((*dst)->data[index]);
477                 node = *dst;
478         }
479
480         zone->blocks += 1;
481         *dst = block;
482
483         return 0;
484 }
485
486 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
487                                int clear_nosave_free);
488
489 /**
490  * create_zone_bm_rtree - Create a radix tree for one zone.
491  *
492  * Allocated the mem_zone_bm_rtree structure and initializes it.
493  * This function also allocated and builds the radix tree for the
494  * zone.
495  */
496 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
497                                                       int safe_needed,
498                                                       struct chain_allocator *ca,
499                                                       unsigned long start,
500                                                       unsigned long end)
501 {
502         struct mem_zone_bm_rtree *zone;
503         unsigned int i, nr_blocks;
504         unsigned long pages;
505
506         pages = end - start;
507         zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
508         if (!zone)
509                 return NULL;
510
511         INIT_LIST_HEAD(&zone->nodes);
512         INIT_LIST_HEAD(&zone->leaves);
513         zone->start_pfn = start;
514         zone->end_pfn = end;
515         nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
516
517         for (i = 0; i < nr_blocks; i++) {
518                 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
519                         free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
520                         return NULL;
521                 }
522         }
523
524         return zone;
525 }
526
527 /**
528  * free_zone_bm_rtree - Free the memory of the radix tree.
529  *
530  * Free all node pages of the radix tree. The mem_zone_bm_rtree
531  * structure itself is not freed here nor are the rtree_node
532  * structs.
533  */
534 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
535                                int clear_nosave_free)
536 {
537         struct rtree_node *node;
538
539         list_for_each_entry(node, &zone->nodes, list)
540                 free_image_page(node->data, clear_nosave_free);
541
542         list_for_each_entry(node, &zone->leaves, list)
543                 free_image_page(node->data, clear_nosave_free);
544 }
545
546 static void memory_bm_position_reset(struct memory_bitmap *bm)
547 {
548         bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
549                                   list);
550         bm->cur.node = list_entry(bm->cur.zone->leaves.next,
551                                   struct rtree_node, list);
552         bm->cur.node_pfn = 0;
553         bm->cur.node_bit = 0;
554 }
555
556 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
557
558 struct mem_extent {
559         struct list_head hook;
560         unsigned long start;
561         unsigned long end;
562 };
563
564 /**
565  * free_mem_extents - Free a list of memory extents.
566  * @list: List of extents to free.
567  */
568 static void free_mem_extents(struct list_head *list)
569 {
570         struct mem_extent *ext, *aux;
571
572         list_for_each_entry_safe(ext, aux, list, hook) {
573                 list_del(&ext->hook);
574                 kfree(ext);
575         }
576 }
577
578 /**
579  * create_mem_extents - Create a list of memory extents.
580  * @list: List to put the extents into.
581  * @gfp_mask: Mask to use for memory allocations.
582  *
583  * The extents represent contiguous ranges of PFNs.
584  */
585 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
586 {
587         struct zone *zone;
588
589         INIT_LIST_HEAD(list);
590
591         for_each_populated_zone(zone) {
592                 unsigned long zone_start, zone_end;
593                 struct mem_extent *ext, *cur, *aux;
594
595                 zone_start = zone->zone_start_pfn;
596                 zone_end = zone_end_pfn(zone);
597
598                 list_for_each_entry(ext, list, hook)
599                         if (zone_start <= ext->end)
600                                 break;
601
602                 if (&ext->hook == list || zone_end < ext->start) {
603                         /* New extent is necessary */
604                         struct mem_extent *new_ext;
605
606                         new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
607                         if (!new_ext) {
608                                 free_mem_extents(list);
609                                 return -ENOMEM;
610                         }
611                         new_ext->start = zone_start;
612                         new_ext->end = zone_end;
613                         list_add_tail(&new_ext->hook, &ext->hook);
614                         continue;
615                 }
616
617                 /* Merge this zone's range of PFNs with the existing one */
618                 if (zone_start < ext->start)
619                         ext->start = zone_start;
620                 if (zone_end > ext->end)
621                         ext->end = zone_end;
622
623                 /* More merging may be possible */
624                 cur = ext;
625                 list_for_each_entry_safe_continue(cur, aux, list, hook) {
626                         if (zone_end < cur->start)
627                                 break;
628                         if (zone_end < cur->end)
629                                 ext->end = cur->end;
630                         list_del(&cur->hook);
631                         kfree(cur);
632                 }
633         }
634
635         return 0;
636 }
637
638 /**
639  * memory_bm_create - Allocate memory for a memory bitmap.
640  */
641 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
642                             int safe_needed)
643 {
644         struct chain_allocator ca;
645         struct list_head mem_extents;
646         struct mem_extent *ext;
647         int error;
648
649         chain_init(&ca, gfp_mask, safe_needed);
650         INIT_LIST_HEAD(&bm->zones);
651
652         error = create_mem_extents(&mem_extents, gfp_mask);
653         if (error)
654                 return error;
655
656         list_for_each_entry(ext, &mem_extents, hook) {
657                 struct mem_zone_bm_rtree *zone;
658
659                 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
660                                             ext->start, ext->end);
661                 if (!zone) {
662                         error = -ENOMEM;
663                         goto Error;
664                 }
665                 list_add_tail(&zone->list, &bm->zones);
666         }
667
668         bm->p_list = ca.chain;
669         memory_bm_position_reset(bm);
670  Exit:
671         free_mem_extents(&mem_extents);
672         return error;
673
674  Error:
675         bm->p_list = ca.chain;
676         memory_bm_free(bm, PG_UNSAFE_CLEAR);
677         goto Exit;
678 }
679
680 /**
681  * memory_bm_free - Free memory occupied by the memory bitmap.
682  * @bm: Memory bitmap.
683  */
684 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
685 {
686         struct mem_zone_bm_rtree *zone;
687
688         list_for_each_entry(zone, &bm->zones, list)
689                 free_zone_bm_rtree(zone, clear_nosave_free);
690
691         free_list_of_pages(bm->p_list, clear_nosave_free);
692
693         INIT_LIST_HEAD(&bm->zones);
694 }
695
696 /**
697  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
698  *
699  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
700  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
701  *
702  * Walk the radix tree to find the page containing the bit that represents @pfn
703  * and return the position of the bit in @addr and @bit_nr.
704  */
705 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
706                               void **addr, unsigned int *bit_nr)
707 {
708         struct mem_zone_bm_rtree *curr, *zone;
709         struct rtree_node *node;
710         int i, block_nr;
711
712         zone = bm->cur.zone;
713
714         if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
715                 goto zone_found;
716
717         zone = NULL;
718
719         /* Find the right zone */
720         list_for_each_entry(curr, &bm->zones, list) {
721                 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
722                         zone = curr;
723                         break;
724                 }
725         }
726
727         if (!zone)
728                 return -EFAULT;
729
730 zone_found:
731         /*
732          * We have found the zone. Now walk the radix tree to find the leaf node
733          * for our PFN.
734          */
735         node = bm->cur.node;
736         if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
737                 goto node_found;
738
739         node      = zone->rtree;
740         block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
741
742         for (i = zone->levels; i > 0; i--) {
743                 int index;
744
745                 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
746                 index &= BM_RTREE_LEVEL_MASK;
747                 BUG_ON(node->data[index] == 0);
748                 node = (struct rtree_node *)node->data[index];
749         }
750
751 node_found:
752         /* Update last position */
753         bm->cur.zone = zone;
754         bm->cur.node = node;
755         bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
756
757         /* Set return values */
758         *addr = node->data;
759         *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
760
761         return 0;
762 }
763
764 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
765 {
766         void *addr;
767         unsigned int bit;
768         int error;
769
770         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
771         BUG_ON(error);
772         set_bit(bit, addr);
773 }
774
775 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
776 {
777         void *addr;
778         unsigned int bit;
779         int error;
780
781         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
782         if (!error)
783                 set_bit(bit, addr);
784
785         return error;
786 }
787
788 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
789 {
790         void *addr;
791         unsigned int bit;
792         int error;
793
794         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
795         BUG_ON(error);
796         clear_bit(bit, addr);
797 }
798
799 static void memory_bm_clear_current(struct memory_bitmap *bm)
800 {
801         int bit;
802
803         bit = max(bm->cur.node_bit - 1, 0);
804         clear_bit(bit, bm->cur.node->data);
805 }
806
807 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
808 {
809         void *addr;
810         unsigned int bit;
811         int error;
812
813         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
814         BUG_ON(error);
815         return test_bit(bit, addr);
816 }
817
818 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
819 {
820         void *addr;
821         unsigned int bit;
822
823         return !memory_bm_find_bit(bm, pfn, &addr, &bit);
824 }
825
826 /*
827  * rtree_next_node - Jump to the next leaf node.
828  *
829  * Set the position to the beginning of the next node in the
830  * memory bitmap. This is either the next node in the current
831  * zone's radix tree or the first node in the radix tree of the
832  * next zone.
833  *
834  * Return true if there is a next node, false otherwise.
835  */
836 static bool rtree_next_node(struct memory_bitmap *bm)
837 {
838         bm->cur.node = list_entry(bm->cur.node->list.next,
839                                   struct rtree_node, list);
840         if (&bm->cur.node->list != &bm->cur.zone->leaves) {
841                 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
842                 bm->cur.node_bit  = 0;
843                 touch_softlockup_watchdog();
844                 return true;
845         }
846
847         /* No more nodes, goto next zone */
848         bm->cur.zone = list_entry(bm->cur.zone->list.next,
849                                   struct mem_zone_bm_rtree, list);
850         if (&bm->cur.zone->list != &bm->zones) {
851                 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
852                                           struct rtree_node, list);
853                 bm->cur.node_pfn = 0;
854                 bm->cur.node_bit = 0;
855                 return true;
856         }
857
858         /* No more zones */
859         return false;
860 }
861
862 /**
863  * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
864  * @bm: Memory bitmap.
865  *
866  * Starting from the last returned position this function searches for the next
867  * set bit in @bm and returns the PFN represented by it.  If no more bits are
868  * set, BM_END_OF_MAP is returned.
869  *
870  * It is required to run memory_bm_position_reset() before the first call to
871  * this function for the given memory bitmap.
872  */
873 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
874 {
875         unsigned long bits, pfn, pages;
876         int bit;
877
878         do {
879                 pages     = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
880                 bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
881                 bit       = find_next_bit(bm->cur.node->data, bits,
882                                           bm->cur.node_bit);
883                 if (bit < bits) {
884                         pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
885                         bm->cur.node_bit = bit + 1;
886                         return pfn;
887                 }
888         } while (rtree_next_node(bm));
889
890         return BM_END_OF_MAP;
891 }
892
893 /*
894  * This structure represents a range of page frames the contents of which
895  * should not be saved during hibernation.
896  */
897 struct nosave_region {
898         struct list_head list;
899         unsigned long start_pfn;
900         unsigned long end_pfn;
901 };
902
903 static LIST_HEAD(nosave_regions);
904
905 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
906 {
907         struct rtree_node *node;
908
909         list_for_each_entry(node, &zone->nodes, list)
910                 recycle_safe_page(node->data);
911
912         list_for_each_entry(node, &zone->leaves, list)
913                 recycle_safe_page(node->data);
914 }
915
916 static void memory_bm_recycle(struct memory_bitmap *bm)
917 {
918         struct mem_zone_bm_rtree *zone;
919         struct linked_page *p_list;
920
921         list_for_each_entry(zone, &bm->zones, list)
922                 recycle_zone_bm_rtree(zone);
923
924         p_list = bm->p_list;
925         while (p_list) {
926                 struct linked_page *lp = p_list;
927
928                 p_list = lp->next;
929                 recycle_safe_page(lp);
930         }
931 }
932
933 /**
934  * register_nosave_region - Register a region of unsaveable memory.
935  *
936  * Register a range of page frames the contents of which should not be saved
937  * during hibernation (to be used in the early initialization code).
938  */
939 void __init __register_nosave_region(unsigned long start_pfn,
940                                      unsigned long end_pfn, int use_kmalloc)
941 {
942         struct nosave_region *region;
943
944         if (start_pfn >= end_pfn)
945                 return;
946
947         if (!list_empty(&nosave_regions)) {
948                 /* Try to extend the previous region (they should be sorted) */
949                 region = list_entry(nosave_regions.prev,
950                                         struct nosave_region, list);
951                 if (region->end_pfn == start_pfn) {
952                         region->end_pfn = end_pfn;
953                         goto Report;
954                 }
955         }
956         if (use_kmalloc) {
957                 /* During init, this shouldn't fail */
958                 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
959                 BUG_ON(!region);
960         } else {
961                 /* This allocation cannot fail */
962                 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
963         }
964         region->start_pfn = start_pfn;
965         region->end_pfn = end_pfn;
966         list_add_tail(&region->list, &nosave_regions);
967  Report:
968         printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
969                 (unsigned long long) start_pfn << PAGE_SHIFT,
970                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
971 }
972
973 /*
974  * Set bits in this map correspond to the page frames the contents of which
975  * should not be saved during the suspend.
976  */
977 static struct memory_bitmap *forbidden_pages_map;
978
979 /* Set bits in this map correspond to free page frames. */
980 static struct memory_bitmap *free_pages_map;
981
982 /*
983  * Each page frame allocated for creating the image is marked by setting the
984  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
985  */
986
987 void swsusp_set_page_free(struct page *page)
988 {
989         if (free_pages_map)
990                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
991 }
992
993 static int swsusp_page_is_free(struct page *page)
994 {
995         return free_pages_map ?
996                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
997 }
998
999 void swsusp_unset_page_free(struct page *page)
1000 {
1001         if (free_pages_map)
1002                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1003 }
1004
1005 static void swsusp_set_page_forbidden(struct page *page)
1006 {
1007         if (forbidden_pages_map)
1008                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1009 }
1010
1011 int swsusp_page_is_forbidden(struct page *page)
1012 {
1013         return forbidden_pages_map ?
1014                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1015 }
1016
1017 static void swsusp_unset_page_forbidden(struct page *page)
1018 {
1019         if (forbidden_pages_map)
1020                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1021 }
1022
1023 /**
1024  * mark_nosave_pages - Mark pages that should not be saved.
1025  * @bm: Memory bitmap.
1026  *
1027  * Set the bits in @bm that correspond to the page frames the contents of which
1028  * should not be saved.
1029  */
1030 static void mark_nosave_pages(struct memory_bitmap *bm)
1031 {
1032         struct nosave_region *region;
1033
1034         if (list_empty(&nosave_regions))
1035                 return;
1036
1037         list_for_each_entry(region, &nosave_regions, list) {
1038                 unsigned long pfn;
1039
1040                 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
1041                          (unsigned long long) region->start_pfn << PAGE_SHIFT,
1042                          ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1043                                 - 1);
1044
1045                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1046                         if (pfn_valid(pfn)) {
1047                                 /*
1048                                  * It is safe to ignore the result of
1049                                  * mem_bm_set_bit_check() here, since we won't
1050                                  * touch the PFNs for which the error is
1051                                  * returned anyway.
1052                                  */
1053                                 mem_bm_set_bit_check(bm, pfn);
1054                         }
1055         }
1056 }
1057
1058 /**
1059  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1060  *
1061  * Create bitmaps needed for marking page frames that should not be saved and
1062  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1063  * only modified if everything goes well, because we don't want the bits to be
1064  * touched before both bitmaps are set up.
1065  */
1066 int create_basic_memory_bitmaps(void)
1067 {
1068         struct memory_bitmap *bm1, *bm2;
1069         int error = 0;
1070
1071         if (forbidden_pages_map && free_pages_map)
1072                 return 0;
1073         else
1074                 BUG_ON(forbidden_pages_map || free_pages_map);
1075
1076         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1077         if (!bm1)
1078                 return -ENOMEM;
1079
1080         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1081         if (error)
1082                 goto Free_first_object;
1083
1084         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1085         if (!bm2)
1086                 goto Free_first_bitmap;
1087
1088         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1089         if (error)
1090                 goto Free_second_object;
1091
1092         forbidden_pages_map = bm1;
1093         free_pages_map = bm2;
1094         mark_nosave_pages(forbidden_pages_map);
1095
1096         pr_debug("PM: Basic memory bitmaps created\n");
1097
1098         return 0;
1099
1100  Free_second_object:
1101         kfree(bm2);
1102  Free_first_bitmap:
1103         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1104  Free_first_object:
1105         kfree(bm1);
1106         return -ENOMEM;
1107 }
1108
1109 /**
1110  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1111  *
1112  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1113  * auxiliary pointers are necessary so that the bitmaps themselves are not
1114  * referred to while they are being freed.
1115  */
1116 void free_basic_memory_bitmaps(void)
1117 {
1118         struct memory_bitmap *bm1, *bm2;
1119
1120         if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1121                 return;
1122
1123         bm1 = forbidden_pages_map;
1124         bm2 = free_pages_map;
1125         forbidden_pages_map = NULL;
1126         free_pages_map = NULL;
1127         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1128         kfree(bm1);
1129         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1130         kfree(bm2);
1131
1132         pr_debug("PM: Basic memory bitmaps freed\n");
1133 }
1134
1135 /**
1136  * snapshot_additional_pages - Estimate the number of extra pages needed.
1137  * @zone: Memory zone to carry out the computation for.
1138  *
1139  * Estimate the number of additional pages needed for setting up a hibernation
1140  * image data structures for @zone (usually, the returned value is greater than
1141  * the exact number).
1142  */
1143 unsigned int snapshot_additional_pages(struct zone *zone)
1144 {
1145         unsigned int rtree, nodes;
1146
1147         rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1148         rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1149                               LINKED_PAGE_DATA_SIZE);
1150         while (nodes > 1) {
1151                 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1152                 rtree += nodes;
1153         }
1154
1155         return 2 * rtree;
1156 }
1157
1158 #ifdef CONFIG_HIGHMEM
1159 /**
1160  * count_free_highmem_pages - Compute the total number of free highmem pages.
1161  *
1162  * The returned number is system-wide.
1163  */
1164 static unsigned int count_free_highmem_pages(void)
1165 {
1166         struct zone *zone;
1167         unsigned int cnt = 0;
1168
1169         for_each_populated_zone(zone)
1170                 if (is_highmem(zone))
1171                         cnt += zone_page_state(zone, NR_FREE_PAGES);
1172
1173         return cnt;
1174 }
1175
1176 /**
1177  * saveable_highmem_page - Check if a highmem page is saveable.
1178  *
1179  * Determine whether a highmem page should be included in a hibernation image.
1180  *
1181  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1182  * and it isn't part of a free chunk of pages.
1183  */
1184 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1185 {
1186         struct page *page;
1187
1188         if (!pfn_valid(pfn))
1189                 return NULL;
1190
1191         page = pfn_to_page(pfn);
1192         if (page_zone(page) != zone)
1193                 return NULL;
1194
1195         BUG_ON(!PageHighMem(page));
1196
1197         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1198             PageReserved(page))
1199                 return NULL;
1200
1201         if (page_is_guard(page))
1202                 return NULL;
1203
1204         return page;
1205 }
1206
1207 /**
1208  * count_highmem_pages - Compute the total number of saveable highmem pages.
1209  */
1210 static unsigned int count_highmem_pages(void)
1211 {
1212         struct zone *zone;
1213         unsigned int n = 0;
1214
1215         for_each_populated_zone(zone) {
1216                 unsigned long pfn, max_zone_pfn;
1217
1218                 if (!is_highmem(zone))
1219                         continue;
1220
1221                 mark_free_pages(zone);
1222                 max_zone_pfn = zone_end_pfn(zone);
1223                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1224                         if (saveable_highmem_page(zone, pfn))
1225                                 n++;
1226         }
1227         return n;
1228 }
1229 #else
1230 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1231 {
1232         return NULL;
1233 }
1234 #endif /* CONFIG_HIGHMEM */
1235
1236 /**
1237  * saveable_page - Check if the given page is saveable.
1238  *
1239  * Determine whether a non-highmem page should be included in a hibernation
1240  * image.
1241  *
1242  * We should save the page if it isn't Nosave, and is not in the range
1243  * of pages statically defined as 'unsaveable', and it isn't part of
1244  * a free chunk of pages.
1245  */
1246 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1247 {
1248         struct page *page;
1249
1250         if (!pfn_valid(pfn))
1251                 return NULL;
1252
1253         page = pfn_to_page(pfn);
1254         if (page_zone(page) != zone)
1255                 return NULL;
1256
1257         BUG_ON(PageHighMem(page));
1258
1259         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1260                 return NULL;
1261
1262         if (PageReserved(page)
1263             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1264                 return NULL;
1265
1266         if (page_is_guard(page))
1267                 return NULL;
1268
1269         return page;
1270 }
1271
1272 /**
1273  * count_data_pages - Compute the total number of saveable non-highmem pages.
1274  */
1275 static unsigned int count_data_pages(void)
1276 {
1277         struct zone *zone;
1278         unsigned long pfn, max_zone_pfn;
1279         unsigned int n = 0;
1280
1281         for_each_populated_zone(zone) {
1282                 if (is_highmem(zone))
1283                         continue;
1284
1285                 mark_free_pages(zone);
1286                 max_zone_pfn = zone_end_pfn(zone);
1287                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1288                         if (saveable_page(zone, pfn))
1289                                 n++;
1290         }
1291         return n;
1292 }
1293
1294 /*
1295  * This is needed, because copy_page and memcpy are not usable for copying
1296  * task structs.
1297  */
1298 static inline void do_copy_page(long *dst, long *src)
1299 {
1300         int n;
1301
1302         for (n = PAGE_SIZE / sizeof(long); n; n--)
1303                 *dst++ = *src++;
1304 }
1305
1306 /**
1307  * safe_copy_page - Copy a page in a safe way.
1308  *
1309  * Check if the page we are going to copy is marked as present in the kernel
1310  * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1311  * and in that case kernel_page_present() always returns 'true').
1312  */
1313 static void safe_copy_page(void *dst, struct page *s_page)
1314 {
1315         if (kernel_page_present(s_page)) {
1316                 do_copy_page(dst, page_address(s_page));
1317         } else {
1318                 kernel_map_pages(s_page, 1, 1);
1319                 do_copy_page(dst, page_address(s_page));
1320                 kernel_map_pages(s_page, 1, 0);
1321         }
1322 }
1323
1324 #ifdef CONFIG_HIGHMEM
1325 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1326 {
1327         return is_highmem(zone) ?
1328                 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1329 }
1330
1331 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1332 {
1333         struct page *s_page, *d_page;
1334         void *src, *dst;
1335
1336         s_page = pfn_to_page(src_pfn);
1337         d_page = pfn_to_page(dst_pfn);
1338         if (PageHighMem(s_page)) {
1339                 src = kmap_atomic(s_page);
1340                 dst = kmap_atomic(d_page);
1341                 do_copy_page(dst, src);
1342                 kunmap_atomic(dst);
1343                 kunmap_atomic(src);
1344         } else {
1345                 if (PageHighMem(d_page)) {
1346                         /*
1347                          * The page pointed to by src may contain some kernel
1348                          * data modified by kmap_atomic()
1349                          */
1350                         safe_copy_page(buffer, s_page);
1351                         dst = kmap_atomic(d_page);
1352                         copy_page(dst, buffer);
1353                         kunmap_atomic(dst);
1354                 } else {
1355                         safe_copy_page(page_address(d_page), s_page);
1356                 }
1357         }
1358 }
1359 #else
1360 #define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1361
1362 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1363 {
1364         safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1365                                 pfn_to_page(src_pfn));
1366 }
1367 #endif /* CONFIG_HIGHMEM */
1368
1369 static void copy_data_pages(struct memory_bitmap *copy_bm,
1370                             struct memory_bitmap *orig_bm)
1371 {
1372         struct zone *zone;
1373         unsigned long pfn;
1374
1375         for_each_populated_zone(zone) {
1376                 unsigned long max_zone_pfn;
1377
1378                 mark_free_pages(zone);
1379                 max_zone_pfn = zone_end_pfn(zone);
1380                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1381                         if (page_is_saveable(zone, pfn))
1382                                 memory_bm_set_bit(orig_bm, pfn);
1383         }
1384         memory_bm_position_reset(orig_bm);
1385         memory_bm_position_reset(copy_bm);
1386         for(;;) {
1387                 pfn = memory_bm_next_pfn(orig_bm);
1388                 if (unlikely(pfn == BM_END_OF_MAP))
1389                         break;
1390                 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1391         }
1392 }
1393
1394 /* Total number of image pages */
1395 static unsigned int nr_copy_pages;
1396 /* Number of pages needed for saving the original pfns of the image pages */
1397 static unsigned int nr_meta_pages;
1398 /*
1399  * Numbers of normal and highmem page frames allocated for hibernation image
1400  * before suspending devices.
1401  */
1402 unsigned int alloc_normal, alloc_highmem;
1403 /*
1404  * Memory bitmap used for marking saveable pages (during hibernation) or
1405  * hibernation image pages (during restore)
1406  */
1407 static struct memory_bitmap orig_bm;
1408 /*
1409  * Memory bitmap used during hibernation for marking allocated page frames that
1410  * will contain copies of saveable pages.  During restore it is initially used
1411  * for marking hibernation image pages, but then the set bits from it are
1412  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1413  * used for marking "safe" highmem pages, but it has to be reinitialized for
1414  * this purpose.
1415  */
1416 static struct memory_bitmap copy_bm;
1417
1418 /**
1419  * swsusp_free - Free pages allocated for hibernation image.
1420  *
1421  * Image pages are alocated before snapshot creation, so they need to be
1422  * released after resume.
1423  */
1424 void swsusp_free(void)
1425 {
1426         unsigned long fb_pfn, fr_pfn;
1427
1428         if (!forbidden_pages_map || !free_pages_map)
1429                 goto out;
1430
1431         memory_bm_position_reset(forbidden_pages_map);
1432         memory_bm_position_reset(free_pages_map);
1433
1434 loop:
1435         fr_pfn = memory_bm_next_pfn(free_pages_map);
1436         fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1437
1438         /*
1439          * Find the next bit set in both bitmaps. This is guaranteed to
1440          * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1441          */
1442         do {
1443                 if (fb_pfn < fr_pfn)
1444                         fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1445                 if (fr_pfn < fb_pfn)
1446                         fr_pfn = memory_bm_next_pfn(free_pages_map);
1447         } while (fb_pfn != fr_pfn);
1448
1449         if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1450                 struct page *page = pfn_to_page(fr_pfn);
1451
1452                 memory_bm_clear_current(forbidden_pages_map);
1453                 memory_bm_clear_current(free_pages_map);
1454                 hibernate_restore_unprotect_page(page_address(page));
1455                 __free_page(page);
1456                 goto loop;
1457         }
1458
1459 out:
1460         nr_copy_pages = 0;
1461         nr_meta_pages = 0;
1462         restore_pblist = NULL;
1463         buffer = NULL;
1464         alloc_normal = 0;
1465         alloc_highmem = 0;
1466         hibernate_restore_protection_end();
1467 }
1468
1469 /* Helper functions used for the shrinking of memory. */
1470
1471 #define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1472
1473 /**
1474  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1475  * @nr_pages: Number of page frames to allocate.
1476  * @mask: GFP flags to use for the allocation.
1477  *
1478  * Return value: Number of page frames actually allocated
1479  */
1480 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1481 {
1482         unsigned long nr_alloc = 0;
1483
1484         while (nr_pages > 0) {
1485                 struct page *page;
1486
1487                 page = alloc_image_page(mask);
1488                 if (!page)
1489                         break;
1490                 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1491                 if (PageHighMem(page))
1492                         alloc_highmem++;
1493                 else
1494                         alloc_normal++;
1495                 nr_pages--;
1496                 nr_alloc++;
1497         }
1498
1499         return nr_alloc;
1500 }
1501
1502 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1503                                               unsigned long avail_normal)
1504 {
1505         unsigned long alloc;
1506
1507         if (avail_normal <= alloc_normal)
1508                 return 0;
1509
1510         alloc = avail_normal - alloc_normal;
1511         if (nr_pages < alloc)
1512                 alloc = nr_pages;
1513
1514         return preallocate_image_pages(alloc, GFP_IMAGE);
1515 }
1516
1517 #ifdef CONFIG_HIGHMEM
1518 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1519 {
1520         return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1521 }
1522
1523 /**
1524  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1525  */
1526 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1527 {
1528         x *= multiplier;
1529         do_div(x, base);
1530         return (unsigned long)x;
1531 }
1532
1533 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1534                                                   unsigned long highmem,
1535                                                   unsigned long total)
1536 {
1537         unsigned long alloc = __fraction(nr_pages, highmem, total);
1538
1539         return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1540 }
1541 #else /* CONFIG_HIGHMEM */
1542 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1543 {
1544         return 0;
1545 }
1546
1547 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1548                                                          unsigned long highmem,
1549                                                          unsigned long total)
1550 {
1551         return 0;
1552 }
1553 #endif /* CONFIG_HIGHMEM */
1554
1555 /**
1556  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1557  */
1558 static unsigned long free_unnecessary_pages(void)
1559 {
1560         unsigned long save, to_free_normal, to_free_highmem, free;
1561
1562         save = count_data_pages();
1563         if (alloc_normal >= save) {
1564                 to_free_normal = alloc_normal - save;
1565                 save = 0;
1566         } else {
1567                 to_free_normal = 0;
1568                 save -= alloc_normal;
1569         }
1570         save += count_highmem_pages();
1571         if (alloc_highmem >= save) {
1572                 to_free_highmem = alloc_highmem - save;
1573         } else {
1574                 to_free_highmem = 0;
1575                 save -= alloc_highmem;
1576                 if (to_free_normal > save)
1577                         to_free_normal -= save;
1578                 else
1579                         to_free_normal = 0;
1580         }
1581         free = to_free_normal + to_free_highmem;
1582
1583         memory_bm_position_reset(&copy_bm);
1584
1585         while (to_free_normal > 0 || to_free_highmem > 0) {
1586                 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1587                 struct page *page = pfn_to_page(pfn);
1588
1589                 if (PageHighMem(page)) {
1590                         if (!to_free_highmem)
1591                                 continue;
1592                         to_free_highmem--;
1593                         alloc_highmem--;
1594                 } else {
1595                         if (!to_free_normal)
1596                                 continue;
1597                         to_free_normal--;
1598                         alloc_normal--;
1599                 }
1600                 memory_bm_clear_bit(&copy_bm, pfn);
1601                 swsusp_unset_page_forbidden(page);
1602                 swsusp_unset_page_free(page);
1603                 __free_page(page);
1604         }
1605
1606         return free;
1607 }
1608
1609 /**
1610  * minimum_image_size - Estimate the minimum acceptable size of an image.
1611  * @saveable: Number of saveable pages in the system.
1612  *
1613  * We want to avoid attempting to free too much memory too hard, so estimate the
1614  * minimum acceptable size of a hibernation image to use as the lower limit for
1615  * preallocating memory.
1616  *
1617  * We assume that the minimum image size should be proportional to
1618  *
1619  * [number of saveable pages] - [number of pages that can be freed in theory]
1620  *
1621  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1622  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1623  * minus mapped file pages.
1624  */
1625 static unsigned long minimum_image_size(unsigned long saveable)
1626 {
1627         unsigned long size;
1628
1629         size = global_page_state(NR_SLAB_RECLAIMABLE)
1630                 + global_node_page_state(NR_ACTIVE_ANON)
1631                 + global_node_page_state(NR_INACTIVE_ANON)
1632                 + global_node_page_state(NR_ACTIVE_FILE)
1633                 + global_node_page_state(NR_INACTIVE_FILE)
1634                 - global_node_page_state(NR_FILE_MAPPED);
1635
1636         return saveable <= size ? 0 : saveable - size;
1637 }
1638
1639 /**
1640  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1641  *
1642  * To create a hibernation image it is necessary to make a copy of every page
1643  * frame in use.  We also need a number of page frames to be free during
1644  * hibernation for allocations made while saving the image and for device
1645  * drivers, in case they need to allocate memory from their hibernation
1646  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1647  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1648  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1649  * total number of available page frames and allocate at least
1650  *
1651  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1652  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1653  *
1654  * of them, which corresponds to the maximum size of a hibernation image.
1655  *
1656  * If image_size is set below the number following from the above formula,
1657  * the preallocation of memory is continued until the total number of saveable
1658  * pages in the system is below the requested image size or the minimum
1659  * acceptable image size returned by minimum_image_size(), whichever is greater.
1660  */
1661 int hibernate_preallocate_memory(void)
1662 {
1663         struct zone *zone;
1664         unsigned long saveable, size, max_size, count, highmem, pages = 0;
1665         unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1666         ktime_t start, stop;
1667         int error;
1668
1669         printk(KERN_INFO "PM: Preallocating image memory... ");
1670         start = ktime_get();
1671
1672         error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1673         if (error)
1674                 goto err_out;
1675
1676         error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1677         if (error)
1678                 goto err_out;
1679
1680         alloc_normal = 0;
1681         alloc_highmem = 0;
1682
1683         /* Count the number of saveable data pages. */
1684         save_highmem = count_highmem_pages();
1685         saveable = count_data_pages();
1686
1687         /*
1688          * Compute the total number of page frames we can use (count) and the
1689          * number of pages needed for image metadata (size).
1690          */
1691         count = saveable;
1692         saveable += save_highmem;
1693         highmem = save_highmem;
1694         size = 0;
1695         for_each_populated_zone(zone) {
1696                 size += snapshot_additional_pages(zone);
1697                 if (is_highmem(zone))
1698                         highmem += zone_page_state(zone, NR_FREE_PAGES);
1699                 else
1700                         count += zone_page_state(zone, NR_FREE_PAGES);
1701         }
1702         avail_normal = count;
1703         count += highmem;
1704         count -= totalreserve_pages;
1705
1706         /* Add number of pages required for page keys (s390 only). */
1707         size += page_key_additional_pages(saveable);
1708
1709         /* Compute the maximum number of saveable pages to leave in memory. */
1710         max_size = (count - (size + PAGES_FOR_IO)) / 2
1711                         - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1712         /* Compute the desired number of image pages specified by image_size. */
1713         size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1714         if (size > max_size)
1715                 size = max_size;
1716         /*
1717          * If the desired number of image pages is at least as large as the
1718          * current number of saveable pages in memory, allocate page frames for
1719          * the image and we're done.
1720          */
1721         if (size >= saveable) {
1722                 pages = preallocate_image_highmem(save_highmem);
1723                 pages += preallocate_image_memory(saveable - pages, avail_normal);
1724                 goto out;
1725         }
1726
1727         /* Estimate the minimum size of the image. */
1728         pages = minimum_image_size(saveable);
1729         /*
1730          * To avoid excessive pressure on the normal zone, leave room in it to
1731          * accommodate an image of the minimum size (unless it's already too
1732          * small, in which case don't preallocate pages from it at all).
1733          */
1734         if (avail_normal > pages)
1735                 avail_normal -= pages;
1736         else
1737                 avail_normal = 0;
1738         if (size < pages)
1739                 size = min_t(unsigned long, pages, max_size);
1740
1741         /*
1742          * Let the memory management subsystem know that we're going to need a
1743          * large number of page frames to allocate and make it free some memory.
1744          * NOTE: If this is not done, performance will be hurt badly in some
1745          * test cases.
1746          */
1747         shrink_all_memory(saveable - size);
1748
1749         /*
1750          * The number of saveable pages in memory was too high, so apply some
1751          * pressure to decrease it.  First, make room for the largest possible
1752          * image and fail if that doesn't work.  Next, try to decrease the size
1753          * of the image as much as indicated by 'size' using allocations from
1754          * highmem and non-highmem zones separately.
1755          */
1756         pages_highmem = preallocate_image_highmem(highmem / 2);
1757         alloc = count - max_size;
1758         if (alloc > pages_highmem)
1759                 alloc -= pages_highmem;
1760         else
1761                 alloc = 0;
1762         pages = preallocate_image_memory(alloc, avail_normal);
1763         if (pages < alloc) {
1764                 /* We have exhausted non-highmem pages, try highmem. */
1765                 alloc -= pages;
1766                 pages += pages_highmem;
1767                 pages_highmem = preallocate_image_highmem(alloc);
1768                 if (pages_highmem < alloc)
1769                         goto err_out;
1770                 pages += pages_highmem;
1771                 /*
1772                  * size is the desired number of saveable pages to leave in
1773                  * memory, so try to preallocate (all memory - size) pages.
1774                  */
1775                 alloc = (count - pages) - size;
1776                 pages += preallocate_image_highmem(alloc);
1777         } else {
1778                 /*
1779                  * There are approximately max_size saveable pages at this point
1780                  * and we want to reduce this number down to size.
1781                  */
1782                 alloc = max_size - size;
1783                 size = preallocate_highmem_fraction(alloc, highmem, count);
1784                 pages_highmem += size;
1785                 alloc -= size;
1786                 size = preallocate_image_memory(alloc, avail_normal);
1787                 pages_highmem += preallocate_image_highmem(alloc - size);
1788                 pages += pages_highmem + size;
1789         }
1790
1791         /*
1792          * We only need as many page frames for the image as there are saveable
1793          * pages in memory, but we have allocated more.  Release the excessive
1794          * ones now.
1795          */
1796         pages -= free_unnecessary_pages();
1797
1798  out:
1799         stop = ktime_get();
1800         printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1801         swsusp_show_speed(start, stop, pages, "Allocated");
1802
1803         return 0;
1804
1805  err_out:
1806         printk(KERN_CONT "\n");
1807         swsusp_free();
1808         return -ENOMEM;
1809 }
1810
1811 #ifdef CONFIG_HIGHMEM
1812 /**
1813  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1814  *
1815  * Compute the number of non-highmem pages that will be necessary for creating
1816  * copies of highmem pages.
1817  */
1818 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1819 {
1820         unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1821
1822         if (free_highmem >= nr_highmem)
1823                 nr_highmem = 0;
1824         else
1825                 nr_highmem -= free_highmem;
1826
1827         return nr_highmem;
1828 }
1829 #else
1830 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1831 #endif /* CONFIG_HIGHMEM */
1832
1833 /**
1834  * enough_free_mem - Check if there is enough free memory for the image.
1835  */
1836 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1837 {
1838         struct zone *zone;
1839         unsigned int free = alloc_normal;
1840
1841         for_each_populated_zone(zone)
1842                 if (!is_highmem(zone))
1843                         free += zone_page_state(zone, NR_FREE_PAGES);
1844
1845         nr_pages += count_pages_for_highmem(nr_highmem);
1846         pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1847                 nr_pages, PAGES_FOR_IO, free);
1848
1849         return free > nr_pages + PAGES_FOR_IO;
1850 }
1851
1852 #ifdef CONFIG_HIGHMEM
1853 /**
1854  * get_highmem_buffer - Allocate a buffer for highmem pages.
1855  *
1856  * If there are some highmem pages in the hibernation image, we may need a
1857  * buffer to copy them and/or load their data.
1858  */
1859 static inline int get_highmem_buffer(int safe_needed)
1860 {
1861         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1862         return buffer ? 0 : -ENOMEM;
1863 }
1864
1865 /**
1866  * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1867  *
1868  * Try to allocate as many pages as needed, but if the number of free highmem
1869  * pages is less than that, allocate them all.
1870  */
1871 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1872                                                unsigned int nr_highmem)
1873 {
1874         unsigned int to_alloc = count_free_highmem_pages();
1875
1876         if (to_alloc > nr_highmem)
1877                 to_alloc = nr_highmem;
1878
1879         nr_highmem -= to_alloc;
1880         while (to_alloc-- > 0) {
1881                 struct page *page;
1882
1883                 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1884                 memory_bm_set_bit(bm, page_to_pfn(page));
1885         }
1886         return nr_highmem;
1887 }
1888 #else
1889 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1890
1891 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1892                                                unsigned int n) { return 0; }
1893 #endif /* CONFIG_HIGHMEM */
1894
1895 /**
1896  * swsusp_alloc - Allocate memory for hibernation image.
1897  *
1898  * We first try to allocate as many highmem pages as there are
1899  * saveable highmem pages in the system.  If that fails, we allocate
1900  * non-highmem pages for the copies of the remaining highmem ones.
1901  *
1902  * In this approach it is likely that the copies of highmem pages will
1903  * also be located in the high memory, because of the way in which
1904  * copy_data_pages() works.
1905  */
1906 static int swsusp_alloc(struct memory_bitmap *orig_bm,
1907                         struct memory_bitmap *copy_bm,
1908                         unsigned int nr_pages, unsigned int nr_highmem)
1909 {
1910         if (nr_highmem > 0) {
1911                 if (get_highmem_buffer(PG_ANY))
1912                         goto err_out;
1913                 if (nr_highmem > alloc_highmem) {
1914                         nr_highmem -= alloc_highmem;
1915                         nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1916                 }
1917         }
1918         if (nr_pages > alloc_normal) {
1919                 nr_pages -= alloc_normal;
1920                 while (nr_pages-- > 0) {
1921                         struct page *page;
1922
1923                         page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1924                         if (!page)
1925                                 goto err_out;
1926                         memory_bm_set_bit(copy_bm, page_to_pfn(page));
1927                 }
1928         }
1929
1930         return 0;
1931
1932  err_out:
1933         swsusp_free();
1934         return -ENOMEM;
1935 }
1936
1937 asmlinkage __visible int swsusp_save(void)
1938 {
1939         unsigned int nr_pages, nr_highmem;
1940
1941         printk(KERN_INFO "PM: Creating hibernation image:\n");
1942
1943         drain_local_pages(NULL);
1944         nr_pages = count_data_pages();
1945         nr_highmem = count_highmem_pages();
1946         printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1947
1948         if (!enough_free_mem(nr_pages, nr_highmem)) {
1949                 printk(KERN_ERR "PM: Not enough free memory\n");
1950                 return -ENOMEM;
1951         }
1952
1953         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1954                 printk(KERN_ERR "PM: Memory allocation failed\n");
1955                 return -ENOMEM;
1956         }
1957
1958         /*
1959          * During allocating of suspend pagedir, new cold pages may appear.
1960          * Kill them.
1961          */
1962         drain_local_pages(NULL);
1963         copy_data_pages(&copy_bm, &orig_bm);
1964
1965         /*
1966          * End of critical section. From now on, we can write to memory,
1967          * but we should not touch disk. This specially means we must _not_
1968          * touch swap space! Except we must write out our image of course.
1969          */
1970
1971         nr_pages += nr_highmem;
1972         nr_copy_pages = nr_pages;
1973         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1974
1975         printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1976                 nr_pages);
1977
1978         return 0;
1979 }
1980
1981 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1982 static int init_header_complete(struct swsusp_info *info)
1983 {
1984         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1985         info->version_code = LINUX_VERSION_CODE;
1986         return 0;
1987 }
1988
1989 static char *check_image_kernel(struct swsusp_info *info)
1990 {
1991         if (info->version_code != LINUX_VERSION_CODE)
1992                 return "kernel version";
1993         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1994                 return "system type";
1995         if (strcmp(info->uts.release,init_utsname()->release))
1996                 return "kernel release";
1997         if (strcmp(info->uts.version,init_utsname()->version))
1998                 return "version";
1999         if (strcmp(info->uts.machine,init_utsname()->machine))
2000                 return "machine";
2001         return NULL;
2002 }
2003 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2004
2005 unsigned long snapshot_get_image_size(void)
2006 {
2007         return nr_copy_pages + nr_meta_pages + 1;
2008 }
2009
2010 static int init_header(struct swsusp_info *info)
2011 {
2012         memset(info, 0, sizeof(struct swsusp_info));
2013         info->num_physpages = get_num_physpages();
2014         info->image_pages = nr_copy_pages;
2015         info->pages = snapshot_get_image_size();
2016         info->size = info->pages;
2017         info->size <<= PAGE_SHIFT;
2018         return init_header_complete(info);
2019 }
2020
2021 /**
2022  * pack_pfns - Prepare PFNs for saving.
2023  * @bm: Memory bitmap.
2024  * @buf: Memory buffer to store the PFNs in.
2025  *
2026  * PFNs corresponding to set bits in @bm are stored in the area of memory
2027  * pointed to by @buf (1 page at a time).
2028  */
2029 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2030 {
2031         int j;
2032
2033         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2034                 buf[j] = memory_bm_next_pfn(bm);
2035                 if (unlikely(buf[j] == BM_END_OF_MAP))
2036                         break;
2037                 /* Save page key for data page (s390 only). */
2038                 page_key_read(buf + j);
2039         }
2040 }
2041
2042 /**
2043  * snapshot_read_next - Get the address to read the next image page from.
2044  * @handle: Snapshot handle to be used for the reading.
2045  *
2046  * On the first call, @handle should point to a zeroed snapshot_handle
2047  * structure.  The structure gets populated then and a pointer to it should be
2048  * passed to this function every next time.
2049  *
2050  * On success, the function returns a positive number.  Then, the caller
2051  * is allowed to read up to the returned number of bytes from the memory
2052  * location computed by the data_of() macro.
2053  *
2054  * The function returns 0 to indicate the end of the data stream condition,
2055  * and negative numbers are returned on errors.  If that happens, the structure
2056  * pointed to by @handle is not updated and should not be used any more.
2057  */
2058 int snapshot_read_next(struct snapshot_handle *handle)
2059 {
2060         if (handle->cur > nr_meta_pages + nr_copy_pages)
2061                 return 0;
2062
2063         if (!buffer) {
2064                 /* This makes the buffer be freed by swsusp_free() */
2065                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2066                 if (!buffer)
2067                         return -ENOMEM;
2068         }
2069         if (!handle->cur) {
2070                 int error;
2071
2072                 error = init_header((struct swsusp_info *)buffer);
2073                 if (error)
2074                         return error;
2075                 handle->buffer = buffer;
2076                 memory_bm_position_reset(&orig_bm);
2077                 memory_bm_position_reset(&copy_bm);
2078         } else if (handle->cur <= nr_meta_pages) {
2079                 clear_page(buffer);
2080                 pack_pfns(buffer, &orig_bm);
2081         } else {
2082                 struct page *page;
2083
2084                 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2085                 if (PageHighMem(page)) {
2086                         /*
2087                          * Highmem pages are copied to the buffer,
2088                          * because we can't return with a kmapped
2089                          * highmem page (we may not be called again).
2090                          */
2091                         void *kaddr;
2092
2093                         kaddr = kmap_atomic(page);
2094                         copy_page(buffer, kaddr);
2095                         kunmap_atomic(kaddr);
2096                         handle->buffer = buffer;
2097                 } else {
2098                         handle->buffer = page_address(page);
2099                 }
2100         }
2101         handle->cur++;
2102         return PAGE_SIZE;
2103 }
2104
2105 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2106                                     struct memory_bitmap *src)
2107 {
2108         unsigned long pfn;
2109
2110         memory_bm_position_reset(src);
2111         pfn = memory_bm_next_pfn(src);
2112         while (pfn != BM_END_OF_MAP) {
2113                 memory_bm_set_bit(dst, pfn);
2114                 pfn = memory_bm_next_pfn(src);
2115         }
2116 }
2117
2118 /**
2119  * mark_unsafe_pages - Mark pages that were used before hibernation.
2120  *
2121  * Mark the pages that cannot be used for storing the image during restoration,
2122  * because they conflict with the pages that had been used before hibernation.
2123  */
2124 static void mark_unsafe_pages(struct memory_bitmap *bm)
2125 {
2126         unsigned long pfn;
2127
2128         /* Clear the "free"/"unsafe" bit for all PFNs */
2129         memory_bm_position_reset(free_pages_map);
2130         pfn = memory_bm_next_pfn(free_pages_map);
2131         while (pfn != BM_END_OF_MAP) {
2132                 memory_bm_clear_current(free_pages_map);
2133                 pfn = memory_bm_next_pfn(free_pages_map);
2134         }
2135
2136         /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2137         duplicate_memory_bitmap(free_pages_map, bm);
2138
2139         allocated_unsafe_pages = 0;
2140 }
2141
2142 static int check_header(struct swsusp_info *info)
2143 {
2144         char *reason;
2145
2146         reason = check_image_kernel(info);
2147         if (!reason && info->num_physpages != get_num_physpages())
2148                 reason = "memory size";
2149         if (reason) {
2150                 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2151                 return -EPERM;
2152         }
2153         return 0;
2154 }
2155
2156 /**
2157  * load header - Check the image header and copy the data from it.
2158  */
2159 static int load_header(struct swsusp_info *info)
2160 {
2161         int error;
2162
2163         restore_pblist = NULL;
2164         error = check_header(info);
2165         if (!error) {
2166                 nr_copy_pages = info->image_pages;
2167                 nr_meta_pages = info->pages - info->image_pages - 1;
2168         }
2169         return error;
2170 }
2171
2172 /**
2173  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2174  * @bm: Memory bitmap.
2175  * @buf: Area of memory containing the PFNs.
2176  *
2177  * For each element of the array pointed to by @buf (1 page at a time), set the
2178  * corresponding bit in @bm.
2179  */
2180 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2181 {
2182         int j;
2183
2184         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2185                 if (unlikely(buf[j] == BM_END_OF_MAP))
2186                         break;
2187
2188                 /* Extract and buffer page key for data page (s390 only). */
2189                 page_key_memorize(buf + j);
2190
2191                 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2192                         memory_bm_set_bit(bm, buf[j]);
2193                 else
2194                         return -EFAULT;
2195         }
2196
2197         return 0;
2198 }
2199
2200 #ifdef CONFIG_HIGHMEM
2201 /*
2202  * struct highmem_pbe is used for creating the list of highmem pages that
2203  * should be restored atomically during the resume from disk, because the page
2204  * frames they have occupied before the suspend are in use.
2205  */
2206 struct highmem_pbe {
2207         struct page *copy_page; /* data is here now */
2208         struct page *orig_page; /* data was here before the suspend */
2209         struct highmem_pbe *next;
2210 };
2211
2212 /*
2213  * List of highmem PBEs needed for restoring the highmem pages that were
2214  * allocated before the suspend and included in the suspend image, but have
2215  * also been allocated by the "resume" kernel, so their contents cannot be
2216  * written directly to their "original" page frames.
2217  */
2218 static struct highmem_pbe *highmem_pblist;
2219
2220 /**
2221  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2222  * @bm: Memory bitmap.
2223  *
2224  * The bits in @bm that correspond to image pages are assumed to be set.
2225  */
2226 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2227 {
2228         unsigned long pfn;
2229         unsigned int cnt = 0;
2230
2231         memory_bm_position_reset(bm);
2232         pfn = memory_bm_next_pfn(bm);
2233         while (pfn != BM_END_OF_MAP) {
2234                 if (PageHighMem(pfn_to_page(pfn)))
2235                         cnt++;
2236
2237                 pfn = memory_bm_next_pfn(bm);
2238         }
2239         return cnt;
2240 }
2241
2242 static unsigned int safe_highmem_pages;
2243
2244 static struct memory_bitmap *safe_highmem_bm;
2245
2246 /**
2247  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2248  * @bm: Pointer to an uninitialized memory bitmap structure.
2249  * @nr_highmem_p: Pointer to the number of highmem image pages.
2250  *
2251  * Try to allocate as many highmem pages as there are highmem image pages
2252  * (@nr_highmem_p points to the variable containing the number of highmem image
2253  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2254  * hibernation image is restored entirely) have the corresponding bits set in
2255  * @bm (it must be unitialized).
2256  *
2257  * NOTE: This function should not be called if there are no highmem image pages.
2258  */
2259 static int prepare_highmem_image(struct memory_bitmap *bm,
2260                                  unsigned int *nr_highmem_p)
2261 {
2262         unsigned int to_alloc;
2263
2264         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2265                 return -ENOMEM;
2266
2267         if (get_highmem_buffer(PG_SAFE))
2268                 return -ENOMEM;
2269
2270         to_alloc = count_free_highmem_pages();
2271         if (to_alloc > *nr_highmem_p)
2272                 to_alloc = *nr_highmem_p;
2273         else
2274                 *nr_highmem_p = to_alloc;
2275
2276         safe_highmem_pages = 0;
2277         while (to_alloc-- > 0) {
2278                 struct page *page;
2279
2280                 page = alloc_page(__GFP_HIGHMEM);
2281                 if (!swsusp_page_is_free(page)) {
2282                         /* The page is "safe", set its bit the bitmap */
2283                         memory_bm_set_bit(bm, page_to_pfn(page));
2284                         safe_highmem_pages++;
2285                 }
2286                 /* Mark the page as allocated */
2287                 swsusp_set_page_forbidden(page);
2288                 swsusp_set_page_free(page);
2289         }
2290         memory_bm_position_reset(bm);
2291         safe_highmem_bm = bm;
2292         return 0;
2293 }
2294
2295 static struct page *last_highmem_page;
2296
2297 /**
2298  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2299  *
2300  * For a given highmem image page get a buffer that suspend_write_next() should
2301  * return to its caller to write to.
2302  *
2303  * If the page is to be saved to its "original" page frame or a copy of
2304  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2305  * the copy of the page is to be made in normal memory, so the address of
2306  * the copy is returned.
2307  *
2308  * If @buffer is returned, the caller of suspend_write_next() will write
2309  * the page's contents to @buffer, so they will have to be copied to the
2310  * right location on the next call to suspend_write_next() and it is done
2311  * with the help of copy_last_highmem_page().  For this purpose, if
2312  * @buffer is returned, @last_highmem_page is set to the page to which
2313  * the data will have to be copied from @buffer.
2314  */
2315 static void *get_highmem_page_buffer(struct page *page,
2316                                      struct chain_allocator *ca)
2317 {
2318         struct highmem_pbe *pbe;
2319         void *kaddr;
2320
2321         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2322                 /*
2323                  * We have allocated the "original" page frame and we can
2324                  * use it directly to store the loaded page.
2325                  */
2326                 last_highmem_page = page;
2327                 return buffer;
2328         }
2329         /*
2330          * The "original" page frame has not been allocated and we have to
2331          * use a "safe" page frame to store the loaded page.
2332          */
2333         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2334         if (!pbe) {
2335                 swsusp_free();
2336                 return ERR_PTR(-ENOMEM);
2337         }
2338         pbe->orig_page = page;
2339         if (safe_highmem_pages > 0) {
2340                 struct page *tmp;
2341
2342                 /* Copy of the page will be stored in high memory */
2343                 kaddr = buffer;
2344                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2345                 safe_highmem_pages--;
2346                 last_highmem_page = tmp;
2347                 pbe->copy_page = tmp;
2348         } else {
2349                 /* Copy of the page will be stored in normal memory */
2350                 kaddr = safe_pages_list;
2351                 safe_pages_list = safe_pages_list->next;
2352                 pbe->copy_page = virt_to_page(kaddr);
2353         }
2354         pbe->next = highmem_pblist;
2355         highmem_pblist = pbe;
2356         return kaddr;
2357 }
2358
2359 /**
2360  * copy_last_highmem_page - Copy most the most recent highmem image page.
2361  *
2362  * Copy the contents of a highmem image from @buffer, where the caller of
2363  * snapshot_write_next() has stored them, to the right location represented by
2364  * @last_highmem_page .
2365  */
2366 static void copy_last_highmem_page(void)
2367 {
2368         if (last_highmem_page) {
2369                 void *dst;
2370
2371                 dst = kmap_atomic(last_highmem_page);
2372                 copy_page(dst, buffer);
2373                 kunmap_atomic(dst);
2374                 last_highmem_page = NULL;
2375         }
2376 }
2377
2378 static inline int last_highmem_page_copied(void)
2379 {
2380         return !last_highmem_page;
2381 }
2382
2383 static inline void free_highmem_data(void)
2384 {
2385         if (safe_highmem_bm)
2386                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2387
2388         if (buffer)
2389                 free_image_page(buffer, PG_UNSAFE_CLEAR);
2390 }
2391 #else
2392 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2393
2394 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2395                                         unsigned int *nr_highmem_p) { return 0; }
2396
2397 static inline void *get_highmem_page_buffer(struct page *page,
2398                                             struct chain_allocator *ca)
2399 {
2400         return ERR_PTR(-EINVAL);
2401 }
2402
2403 static inline void copy_last_highmem_page(void) {}
2404 static inline int last_highmem_page_copied(void) { return 1; }
2405 static inline void free_highmem_data(void) {}
2406 #endif /* CONFIG_HIGHMEM */
2407
2408 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2409
2410 /**
2411  * prepare_image - Make room for loading hibernation image.
2412  * @new_bm: Unitialized memory bitmap structure.
2413  * @bm: Memory bitmap with unsafe pages marked.
2414  *
2415  * Use @bm to mark the pages that will be overwritten in the process of
2416  * restoring the system memory state from the suspend image ("unsafe" pages)
2417  * and allocate memory for the image.
2418  *
2419  * The idea is to allocate a new memory bitmap first and then allocate
2420  * as many pages as needed for image data, but without specifying what those
2421  * pages will be used for just yet.  Instead, we mark them all as allocated and
2422  * create a lists of "safe" pages to be used later.  On systems with high
2423  * memory a list of "safe" highmem pages is created too.
2424  */
2425 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2426 {
2427         unsigned int nr_pages, nr_highmem;
2428         struct linked_page *lp;
2429         int error;
2430
2431         /* If there is no highmem, the buffer will not be necessary */
2432         free_image_page(buffer, PG_UNSAFE_CLEAR);
2433         buffer = NULL;
2434
2435         nr_highmem = count_highmem_image_pages(bm);
2436         mark_unsafe_pages(bm);
2437
2438         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2439         if (error)
2440                 goto Free;
2441
2442         duplicate_memory_bitmap(new_bm, bm);
2443         memory_bm_free(bm, PG_UNSAFE_KEEP);
2444         if (nr_highmem > 0) {
2445                 error = prepare_highmem_image(bm, &nr_highmem);
2446                 if (error)
2447                         goto Free;
2448         }
2449         /*
2450          * Reserve some safe pages for potential later use.
2451          *
2452          * NOTE: This way we make sure there will be enough safe pages for the
2453          * chain_alloc() in get_buffer().  It is a bit wasteful, but
2454          * nr_copy_pages cannot be greater than 50% of the memory anyway.
2455          *
2456          * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2457          */
2458         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2459         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2460         while (nr_pages > 0) {
2461                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2462                 if (!lp) {
2463                         error = -ENOMEM;
2464                         goto Free;
2465                 }
2466                 lp->next = safe_pages_list;
2467                 safe_pages_list = lp;
2468                 nr_pages--;
2469         }
2470         /* Preallocate memory for the image */
2471         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2472         while (nr_pages > 0) {
2473                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2474                 if (!lp) {
2475                         error = -ENOMEM;
2476                         goto Free;
2477                 }
2478                 if (!swsusp_page_is_free(virt_to_page(lp))) {
2479                         /* The page is "safe", add it to the list */
2480                         lp->next = safe_pages_list;
2481                         safe_pages_list = lp;
2482                 }
2483                 /* Mark the page as allocated */
2484                 swsusp_set_page_forbidden(virt_to_page(lp));
2485                 swsusp_set_page_free(virt_to_page(lp));
2486                 nr_pages--;
2487         }
2488         return 0;
2489
2490  Free:
2491         swsusp_free();
2492         return error;
2493 }
2494
2495 /**
2496  * get_buffer - Get the address to store the next image data page.
2497  *
2498  * Get the address that snapshot_write_next() should return to its caller to
2499  * write to.
2500  */
2501 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2502 {
2503         struct pbe *pbe;
2504         struct page *page;
2505         unsigned long pfn = memory_bm_next_pfn(bm);
2506
2507         if (pfn == BM_END_OF_MAP)
2508                 return ERR_PTR(-EFAULT);
2509
2510         page = pfn_to_page(pfn);
2511         if (PageHighMem(page))
2512                 return get_highmem_page_buffer(page, ca);
2513
2514         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2515                 /*
2516                  * We have allocated the "original" page frame and we can
2517                  * use it directly to store the loaded page.
2518                  */
2519                 return page_address(page);
2520
2521         /*
2522          * The "original" page frame has not been allocated and we have to
2523          * use a "safe" page frame to store the loaded page.
2524          */
2525         pbe = chain_alloc(ca, sizeof(struct pbe));
2526         if (!pbe) {
2527                 swsusp_free();
2528                 return ERR_PTR(-ENOMEM);
2529         }
2530         pbe->orig_address = page_address(page);
2531         pbe->address = safe_pages_list;
2532         safe_pages_list = safe_pages_list->next;
2533         pbe->next = restore_pblist;
2534         restore_pblist = pbe;
2535         return pbe->address;
2536 }
2537
2538 /**
2539  * snapshot_write_next - Get the address to store the next image page.
2540  * @handle: Snapshot handle structure to guide the writing.
2541  *
2542  * On the first call, @handle should point to a zeroed snapshot_handle
2543  * structure.  The structure gets populated then and a pointer to it should be
2544  * passed to this function every next time.
2545  *
2546  * On success, the function returns a positive number.  Then, the caller
2547  * is allowed to write up to the returned number of bytes to the memory
2548  * location computed by the data_of() macro.
2549  *
2550  * The function returns 0 to indicate the "end of file" condition.  Negative
2551  * numbers are returned on errors, in which cases the structure pointed to by
2552  * @handle is not updated and should not be used any more.
2553  */
2554 int snapshot_write_next(struct snapshot_handle *handle)
2555 {
2556         static struct chain_allocator ca;
2557         int error = 0;
2558
2559         /* Check if we have already loaded the entire image */
2560         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2561                 return 0;
2562
2563         handle->sync_read = 1;
2564
2565         if (!handle->cur) {
2566                 if (!buffer)
2567                         /* This makes the buffer be freed by swsusp_free() */
2568                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2569
2570                 if (!buffer)
2571                         return -ENOMEM;
2572
2573                 handle->buffer = buffer;
2574         } else if (handle->cur == 1) {
2575                 error = load_header(buffer);
2576                 if (error)
2577                         return error;
2578
2579                 safe_pages_list = NULL;
2580
2581                 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2582                 if (error)
2583                         return error;
2584
2585                 /* Allocate buffer for page keys. */
2586                 error = page_key_alloc(nr_copy_pages);
2587                 if (error)
2588                         return error;
2589
2590                 hibernate_restore_protection_begin();
2591         } else if (handle->cur <= nr_meta_pages + 1) {
2592                 error = unpack_orig_pfns(buffer, &copy_bm);
2593                 if (error)
2594                         return error;
2595
2596                 if (handle->cur == nr_meta_pages + 1) {
2597                         error = prepare_image(&orig_bm, &copy_bm);
2598                         if (error)
2599                                 return error;
2600
2601                         chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2602                         memory_bm_position_reset(&orig_bm);
2603                         restore_pblist = NULL;
2604                         handle->buffer = get_buffer(&orig_bm, &ca);
2605                         handle->sync_read = 0;
2606                         if (IS_ERR(handle->buffer))
2607                                 return PTR_ERR(handle->buffer);
2608                 }
2609         } else {
2610                 copy_last_highmem_page();
2611                 /* Restore page key for data page (s390 only). */
2612                 page_key_write(handle->buffer);
2613                 hibernate_restore_protect_page(handle->buffer);
2614                 handle->buffer = get_buffer(&orig_bm, &ca);
2615                 if (IS_ERR(handle->buffer))
2616                         return PTR_ERR(handle->buffer);
2617                 if (handle->buffer != buffer)
2618                         handle->sync_read = 0;
2619         }
2620         handle->cur++;
2621         return PAGE_SIZE;
2622 }
2623
2624 /**
2625  * snapshot_write_finalize - Complete the loading of a hibernation image.
2626  *
2627  * Must be called after the last call to snapshot_write_next() in case the last
2628  * page in the image happens to be a highmem page and its contents should be
2629  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2630  * necessary any more.
2631  */
2632 void snapshot_write_finalize(struct snapshot_handle *handle)
2633 {
2634         copy_last_highmem_page();
2635         /* Restore page key for data page (s390 only). */
2636         page_key_write(handle->buffer);
2637         page_key_free();
2638         hibernate_restore_protect_page(handle->buffer);
2639         /* Do that only if we have loaded the image entirely */
2640         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2641                 memory_bm_recycle(&orig_bm);
2642                 free_highmem_data();
2643         }
2644 }
2645
2646 int snapshot_image_loaded(struct snapshot_handle *handle)
2647 {
2648         return !(!nr_copy_pages || !last_highmem_page_copied() ||
2649                         handle->cur <= nr_meta_pages + nr_copy_pages);
2650 }
2651
2652 #ifdef CONFIG_HIGHMEM
2653 /* Assumes that @buf is ready and points to a "safe" page */
2654 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2655                                        void *buf)
2656 {
2657         void *kaddr1, *kaddr2;
2658
2659         kaddr1 = kmap_atomic(p1);
2660         kaddr2 = kmap_atomic(p2);
2661         copy_page(buf, kaddr1);
2662         copy_page(kaddr1, kaddr2);
2663         copy_page(kaddr2, buf);
2664         kunmap_atomic(kaddr2);
2665         kunmap_atomic(kaddr1);
2666 }
2667
2668 /**
2669  * restore_highmem - Put highmem image pages into their original locations.
2670  *
2671  * For each highmem page that was in use before hibernation and is included in
2672  * the image, and also has been allocated by the "restore" kernel, swap its
2673  * current contents with the previous (ie. "before hibernation") ones.
2674  *
2675  * If the restore eventually fails, we can call this function once again and
2676  * restore the highmem state as seen by the restore kernel.
2677  */
2678 int restore_highmem(void)
2679 {
2680         struct highmem_pbe *pbe = highmem_pblist;
2681         void *buf;
2682
2683         if (!pbe)
2684                 return 0;
2685
2686         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2687         if (!buf)
2688                 return -ENOMEM;
2689
2690         while (pbe) {
2691                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2692                 pbe = pbe->next;
2693         }
2694         free_image_page(buf, PG_UNSAFE_CLEAR);
2695         return 0;
2696 }
2697 #endif /* CONFIG_HIGHMEM */