Merge tag 'davinci-for-v5.4/dt' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57
58 #include <asm/sections.h>
59
60 #include "lockdep_internals.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 /*
80  * lockdep_lock: protects the lockdep graph, the hashes and the
81  *               class/list/hash allocators.
82  *
83  * This is one of the rare exceptions where it's justified
84  * to use a raw spinlock - we really dont want the spinlock
85  * code to recurse back into the lockdep code...
86  */
87 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
88 static struct task_struct *lockdep_selftest_task_struct;
89
90 static int graph_lock(void)
91 {
92         arch_spin_lock(&lockdep_lock);
93         /*
94          * Make sure that if another CPU detected a bug while
95          * walking the graph we dont change it (while the other
96          * CPU is busy printing out stuff with the graph lock
97          * dropped already)
98          */
99         if (!debug_locks) {
100                 arch_spin_unlock(&lockdep_lock);
101                 return 0;
102         }
103         /* prevent any recursions within lockdep from causing deadlocks */
104         current->lockdep_recursion++;
105         return 1;
106 }
107
108 static inline int graph_unlock(void)
109 {
110         if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) {
111                 /*
112                  * The lockdep graph lock isn't locked while we expect it to
113                  * be, we're confused now, bye!
114                  */
115                 return DEBUG_LOCKS_WARN_ON(1);
116         }
117
118         current->lockdep_recursion--;
119         arch_spin_unlock(&lockdep_lock);
120         return 0;
121 }
122
123 /*
124  * Turn lock debugging off and return with 0 if it was off already,
125  * and also release the graph lock:
126  */
127 static inline int debug_locks_off_graph_unlock(void)
128 {
129         int ret = debug_locks_off();
130
131         arch_spin_unlock(&lockdep_lock);
132
133         return ret;
134 }
135
136 unsigned long nr_list_entries;
137 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
138 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
139
140 /*
141  * All data structures here are protected by the global debug_lock.
142  *
143  * nr_lock_classes is the number of elements of lock_classes[] that is
144  * in use.
145  */
146 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
147 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
148 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
149 unsigned long nr_lock_classes;
150 #ifndef CONFIG_DEBUG_LOCKDEP
151 static
152 #endif
153 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
154 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
155
156 static inline struct lock_class *hlock_class(struct held_lock *hlock)
157 {
158         unsigned int class_idx = hlock->class_idx;
159
160         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
161         barrier();
162
163         if (!test_bit(class_idx, lock_classes_in_use)) {
164                 /*
165                  * Someone passed in garbage, we give up.
166                  */
167                 DEBUG_LOCKS_WARN_ON(1);
168                 return NULL;
169         }
170
171         /*
172          * At this point, if the passed hlock->class_idx is still garbage,
173          * we just have to live with it
174          */
175         return lock_classes + class_idx;
176 }
177
178 #ifdef CONFIG_LOCK_STAT
179 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
180
181 static inline u64 lockstat_clock(void)
182 {
183         return local_clock();
184 }
185
186 static int lock_point(unsigned long points[], unsigned long ip)
187 {
188         int i;
189
190         for (i = 0; i < LOCKSTAT_POINTS; i++) {
191                 if (points[i] == 0) {
192                         points[i] = ip;
193                         break;
194                 }
195                 if (points[i] == ip)
196                         break;
197         }
198
199         return i;
200 }
201
202 static void lock_time_inc(struct lock_time *lt, u64 time)
203 {
204         if (time > lt->max)
205                 lt->max = time;
206
207         if (time < lt->min || !lt->nr)
208                 lt->min = time;
209
210         lt->total += time;
211         lt->nr++;
212 }
213
214 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
215 {
216         if (!src->nr)
217                 return;
218
219         if (src->max > dst->max)
220                 dst->max = src->max;
221
222         if (src->min < dst->min || !dst->nr)
223                 dst->min = src->min;
224
225         dst->total += src->total;
226         dst->nr += src->nr;
227 }
228
229 struct lock_class_stats lock_stats(struct lock_class *class)
230 {
231         struct lock_class_stats stats;
232         int cpu, i;
233
234         memset(&stats, 0, sizeof(struct lock_class_stats));
235         for_each_possible_cpu(cpu) {
236                 struct lock_class_stats *pcs =
237                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
238
239                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
240                         stats.contention_point[i] += pcs->contention_point[i];
241
242                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
243                         stats.contending_point[i] += pcs->contending_point[i];
244
245                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
246                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
247
248                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
249                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
250
251                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
252                         stats.bounces[i] += pcs->bounces[i];
253         }
254
255         return stats;
256 }
257
258 void clear_lock_stats(struct lock_class *class)
259 {
260         int cpu;
261
262         for_each_possible_cpu(cpu) {
263                 struct lock_class_stats *cpu_stats =
264                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
265
266                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
267         }
268         memset(class->contention_point, 0, sizeof(class->contention_point));
269         memset(class->contending_point, 0, sizeof(class->contending_point));
270 }
271
272 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
273 {
274         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
275 }
276
277 static void lock_release_holdtime(struct held_lock *hlock)
278 {
279         struct lock_class_stats *stats;
280         u64 holdtime;
281
282         if (!lock_stat)
283                 return;
284
285         holdtime = lockstat_clock() - hlock->holdtime_stamp;
286
287         stats = get_lock_stats(hlock_class(hlock));
288         if (hlock->read)
289                 lock_time_inc(&stats->read_holdtime, holdtime);
290         else
291                 lock_time_inc(&stats->write_holdtime, holdtime);
292 }
293 #else
294 static inline void lock_release_holdtime(struct held_lock *hlock)
295 {
296 }
297 #endif
298
299 /*
300  * We keep a global list of all lock classes. The list is only accessed with
301  * the lockdep spinlock lock held. free_lock_classes is a list with free
302  * elements. These elements are linked together by the lock_entry member in
303  * struct lock_class.
304  */
305 LIST_HEAD(all_lock_classes);
306 static LIST_HEAD(free_lock_classes);
307
308 /**
309  * struct pending_free - information about data structures about to be freed
310  * @zapped: Head of a list with struct lock_class elements.
311  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
312  *      are about to be freed.
313  */
314 struct pending_free {
315         struct list_head zapped;
316         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
317 };
318
319 /**
320  * struct delayed_free - data structures used for delayed freeing
321  *
322  * A data structure for delayed freeing of data structures that may be
323  * accessed by RCU readers at the time these were freed.
324  *
325  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
326  * @index:     Index of @pf to which freed data structures are added.
327  * @scheduled: Whether or not an RCU callback has been scheduled.
328  * @pf:        Array with information about data structures about to be freed.
329  */
330 static struct delayed_free {
331         struct rcu_head         rcu_head;
332         int                     index;
333         int                     scheduled;
334         struct pending_free     pf[2];
335 } delayed_free;
336
337 /*
338  * The lockdep classes are in a hash-table as well, for fast lookup:
339  */
340 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
341 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
342 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
343 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
344
345 static struct hlist_head classhash_table[CLASSHASH_SIZE];
346
347 /*
348  * We put the lock dependency chains into a hash-table as well, to cache
349  * their existence:
350  */
351 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
352 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
353 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
354 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
355
356 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
357
358 /*
359  * The hash key of the lock dependency chains is a hash itself too:
360  * it's a hash of all locks taken up to that lock, including that lock.
361  * It's a 64-bit hash, because it's important for the keys to be
362  * unique.
363  */
364 static inline u64 iterate_chain_key(u64 key, u32 idx)
365 {
366         u32 k0 = key, k1 = key >> 32;
367
368         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
369
370         return k0 | (u64)k1 << 32;
371 }
372
373 void lockdep_init_task(struct task_struct *task)
374 {
375         task->lockdep_depth = 0; /* no locks held yet */
376         task->curr_chain_key = INITIAL_CHAIN_KEY;
377         task->lockdep_recursion = 0;
378 }
379
380 void lockdep_off(void)
381 {
382         current->lockdep_recursion++;
383 }
384 EXPORT_SYMBOL(lockdep_off);
385
386 void lockdep_on(void)
387 {
388         current->lockdep_recursion--;
389 }
390 EXPORT_SYMBOL(lockdep_on);
391
392 void lockdep_set_selftest_task(struct task_struct *task)
393 {
394         lockdep_selftest_task_struct = task;
395 }
396
397 /*
398  * Debugging switches:
399  */
400
401 #define VERBOSE                 0
402 #define VERY_VERBOSE            0
403
404 #if VERBOSE
405 # define HARDIRQ_VERBOSE        1
406 # define SOFTIRQ_VERBOSE        1
407 #else
408 # define HARDIRQ_VERBOSE        0
409 # define SOFTIRQ_VERBOSE        0
410 #endif
411
412 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
413 /*
414  * Quick filtering for interesting events:
415  */
416 static int class_filter(struct lock_class *class)
417 {
418 #if 0
419         /* Example */
420         if (class->name_version == 1 &&
421                         !strcmp(class->name, "lockname"))
422                 return 1;
423         if (class->name_version == 1 &&
424                         !strcmp(class->name, "&struct->lockfield"))
425                 return 1;
426 #endif
427         /* Filter everything else. 1 would be to allow everything else */
428         return 0;
429 }
430 #endif
431
432 static int verbose(struct lock_class *class)
433 {
434 #if VERBOSE
435         return class_filter(class);
436 #endif
437         return 0;
438 }
439
440 static void print_lockdep_off(const char *bug_msg)
441 {
442         printk(KERN_DEBUG "%s\n", bug_msg);
443         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
444 #ifdef CONFIG_LOCK_STAT
445         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
446 #endif
447 }
448
449 unsigned long nr_stack_trace_entries;
450
451 #ifdef CONFIG_PROVE_LOCKING
452 /*
453  * Stack-trace: tightly packed array of stack backtrace
454  * addresses. Protected by the graph_lock.
455  */
456 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
457
458 static int save_trace(struct lock_trace *trace)
459 {
460         unsigned long *entries = stack_trace + nr_stack_trace_entries;
461         unsigned int max_entries;
462
463         trace->offset = nr_stack_trace_entries;
464         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries;
465         trace->nr_entries = stack_trace_save(entries, max_entries, 3);
466         nr_stack_trace_entries += trace->nr_entries;
467
468         if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
469                 if (!debug_locks_off_graph_unlock())
470                         return 0;
471
472                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
473                 dump_stack();
474
475                 return 0;
476         }
477
478         return 1;
479 }
480 #endif
481
482 unsigned int nr_hardirq_chains;
483 unsigned int nr_softirq_chains;
484 unsigned int nr_process_chains;
485 unsigned int max_lockdep_depth;
486
487 #ifdef CONFIG_DEBUG_LOCKDEP
488 /*
489  * Various lockdep statistics:
490  */
491 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
492 #endif
493
494 #ifdef CONFIG_PROVE_LOCKING
495 /*
496  * Locking printouts:
497  */
498
499 #define __USAGE(__STATE)                                                \
500         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
501         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
502         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
503         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
504
505 static const char *usage_str[] =
506 {
507 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
508 #include "lockdep_states.h"
509 #undef LOCKDEP_STATE
510         [LOCK_USED] = "INITIAL USE",
511 };
512 #endif
513
514 const char * __get_key_name(struct lockdep_subclass_key *key, char *str)
515 {
516         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
517 }
518
519 static inline unsigned long lock_flag(enum lock_usage_bit bit)
520 {
521         return 1UL << bit;
522 }
523
524 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
525 {
526         /*
527          * The usage character defaults to '.' (i.e., irqs disabled and not in
528          * irq context), which is the safest usage category.
529          */
530         char c = '.';
531
532         /*
533          * The order of the following usage checks matters, which will
534          * result in the outcome character as follows:
535          *
536          * - '+': irq is enabled and not in irq context
537          * - '-': in irq context and irq is disabled
538          * - '?': in irq context and irq is enabled
539          */
540         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
541                 c = '+';
542                 if (class->usage_mask & lock_flag(bit))
543                         c = '?';
544         } else if (class->usage_mask & lock_flag(bit))
545                 c = '-';
546
547         return c;
548 }
549
550 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
551 {
552         int i = 0;
553
554 #define LOCKDEP_STATE(__STATE)                                          \
555         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
556         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
557 #include "lockdep_states.h"
558 #undef LOCKDEP_STATE
559
560         usage[i] = '\0';
561 }
562
563 static void __print_lock_name(struct lock_class *class)
564 {
565         char str[KSYM_NAME_LEN];
566         const char *name;
567
568         name = class->name;
569         if (!name) {
570                 name = __get_key_name(class->key, str);
571                 printk(KERN_CONT "%s", name);
572         } else {
573                 printk(KERN_CONT "%s", name);
574                 if (class->name_version > 1)
575                         printk(KERN_CONT "#%d", class->name_version);
576                 if (class->subclass)
577                         printk(KERN_CONT "/%d", class->subclass);
578         }
579 }
580
581 static void print_lock_name(struct lock_class *class)
582 {
583         char usage[LOCK_USAGE_CHARS];
584
585         get_usage_chars(class, usage);
586
587         printk(KERN_CONT " (");
588         __print_lock_name(class);
589         printk(KERN_CONT "){%s}", usage);
590 }
591
592 static void print_lockdep_cache(struct lockdep_map *lock)
593 {
594         const char *name;
595         char str[KSYM_NAME_LEN];
596
597         name = lock->name;
598         if (!name)
599                 name = __get_key_name(lock->key->subkeys, str);
600
601         printk(KERN_CONT "%s", name);
602 }
603
604 static void print_lock(struct held_lock *hlock)
605 {
606         /*
607          * We can be called locklessly through debug_show_all_locks() so be
608          * extra careful, the hlock might have been released and cleared.
609          *
610          * If this indeed happens, lets pretend it does not hurt to continue
611          * to print the lock unless the hlock class_idx does not point to a
612          * registered class. The rationale here is: since we don't attempt
613          * to distinguish whether we are in this situation, if it just
614          * happened we can't count on class_idx to tell either.
615          */
616         struct lock_class *lock = hlock_class(hlock);
617
618         if (!lock) {
619                 printk(KERN_CONT "<RELEASED>\n");
620                 return;
621         }
622
623         printk(KERN_CONT "%p", hlock->instance);
624         print_lock_name(lock);
625         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
626 }
627
628 static void lockdep_print_held_locks(struct task_struct *p)
629 {
630         int i, depth = READ_ONCE(p->lockdep_depth);
631
632         if (!depth)
633                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
634         else
635                 printk("%d lock%s held by %s/%d:\n", depth,
636                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
637         /*
638          * It's not reliable to print a task's held locks if it's not sleeping
639          * and it's not the current task.
640          */
641         if (p->state == TASK_RUNNING && p != current)
642                 return;
643         for (i = 0; i < depth; i++) {
644                 printk(" #%d: ", i);
645                 print_lock(p->held_locks + i);
646         }
647 }
648
649 static void print_kernel_ident(void)
650 {
651         printk("%s %.*s %s\n", init_utsname()->release,
652                 (int)strcspn(init_utsname()->version, " "),
653                 init_utsname()->version,
654                 print_tainted());
655 }
656
657 static int very_verbose(struct lock_class *class)
658 {
659 #if VERY_VERBOSE
660         return class_filter(class);
661 #endif
662         return 0;
663 }
664
665 /*
666  * Is this the address of a static object:
667  */
668 #ifdef __KERNEL__
669 static int static_obj(const void *obj)
670 {
671         unsigned long start = (unsigned long) &_stext,
672                       end   = (unsigned long) &_end,
673                       addr  = (unsigned long) obj;
674
675         if (arch_is_kernel_initmem_freed(addr))
676                 return 0;
677
678         /*
679          * static variable?
680          */
681         if ((addr >= start) && (addr < end))
682                 return 1;
683
684         if (arch_is_kernel_data(addr))
685                 return 1;
686
687         /*
688          * in-kernel percpu var?
689          */
690         if (is_kernel_percpu_address(addr))
691                 return 1;
692
693         /*
694          * module static or percpu var?
695          */
696         return is_module_address(addr) || is_module_percpu_address(addr);
697 }
698 #endif
699
700 /*
701  * To make lock name printouts unique, we calculate a unique
702  * class->name_version generation counter. The caller must hold the graph
703  * lock.
704  */
705 static int count_matching_names(struct lock_class *new_class)
706 {
707         struct lock_class *class;
708         int count = 0;
709
710         if (!new_class->name)
711                 return 0;
712
713         list_for_each_entry(class, &all_lock_classes, lock_entry) {
714                 if (new_class->key - new_class->subclass == class->key)
715                         return class->name_version;
716                 if (class->name && !strcmp(class->name, new_class->name))
717                         count = max(count, class->name_version);
718         }
719
720         return count + 1;
721 }
722
723 static inline struct lock_class *
724 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
725 {
726         struct lockdep_subclass_key *key;
727         struct hlist_head *hash_head;
728         struct lock_class *class;
729
730         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
731                 debug_locks_off();
732                 printk(KERN_ERR
733                         "BUG: looking up invalid subclass: %u\n", subclass);
734                 printk(KERN_ERR
735                         "turning off the locking correctness validator.\n");
736                 dump_stack();
737                 return NULL;
738         }
739
740         /*
741          * If it is not initialised then it has never been locked,
742          * so it won't be present in the hash table.
743          */
744         if (unlikely(!lock->key))
745                 return NULL;
746
747         /*
748          * NOTE: the class-key must be unique. For dynamic locks, a static
749          * lock_class_key variable is passed in through the mutex_init()
750          * (or spin_lock_init()) call - which acts as the key. For static
751          * locks we use the lock object itself as the key.
752          */
753         BUILD_BUG_ON(sizeof(struct lock_class_key) >
754                         sizeof(struct lockdep_map));
755
756         key = lock->key->subkeys + subclass;
757
758         hash_head = classhashentry(key);
759
760         /*
761          * We do an RCU walk of the hash, see lockdep_free_key_range().
762          */
763         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
764                 return NULL;
765
766         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
767                 if (class->key == key) {
768                         /*
769                          * Huh! same key, different name? Did someone trample
770                          * on some memory? We're most confused.
771                          */
772                         WARN_ON_ONCE(class->name != lock->name &&
773                                      lock->key != &__lockdep_no_validate__);
774                         return class;
775                 }
776         }
777
778         return NULL;
779 }
780
781 /*
782  * Static locks do not have their class-keys yet - for them the key is
783  * the lock object itself. If the lock is in the per cpu area, the
784  * canonical address of the lock (per cpu offset removed) is used.
785  */
786 static bool assign_lock_key(struct lockdep_map *lock)
787 {
788         unsigned long can_addr, addr = (unsigned long)lock;
789
790 #ifdef __KERNEL__
791         /*
792          * lockdep_free_key_range() assumes that struct lock_class_key
793          * objects do not overlap. Since we use the address of lock
794          * objects as class key for static objects, check whether the
795          * size of lock_class_key objects does not exceed the size of
796          * the smallest lock object.
797          */
798         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
799 #endif
800
801         if (__is_kernel_percpu_address(addr, &can_addr))
802                 lock->key = (void *)can_addr;
803         else if (__is_module_percpu_address(addr, &can_addr))
804                 lock->key = (void *)can_addr;
805         else if (static_obj(lock))
806                 lock->key = (void *)lock;
807         else {
808                 /* Debug-check: all keys must be persistent! */
809                 debug_locks_off();
810                 pr_err("INFO: trying to register non-static key.\n");
811                 pr_err("the code is fine but needs lockdep annotation.\n");
812                 pr_err("turning off the locking correctness validator.\n");
813                 dump_stack();
814                 return false;
815         }
816
817         return true;
818 }
819
820 #ifdef CONFIG_DEBUG_LOCKDEP
821
822 /* Check whether element @e occurs in list @h */
823 static bool in_list(struct list_head *e, struct list_head *h)
824 {
825         struct list_head *f;
826
827         list_for_each(f, h) {
828                 if (e == f)
829                         return true;
830         }
831
832         return false;
833 }
834
835 /*
836  * Check whether entry @e occurs in any of the locks_after or locks_before
837  * lists.
838  */
839 static bool in_any_class_list(struct list_head *e)
840 {
841         struct lock_class *class;
842         int i;
843
844         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
845                 class = &lock_classes[i];
846                 if (in_list(e, &class->locks_after) ||
847                     in_list(e, &class->locks_before))
848                         return true;
849         }
850         return false;
851 }
852
853 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
854 {
855         struct lock_list *e;
856
857         list_for_each_entry(e, h, entry) {
858                 if (e->links_to != c) {
859                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
860                                c->name ? : "(?)",
861                                (unsigned long)(e - list_entries),
862                                e->links_to && e->links_to->name ?
863                                e->links_to->name : "(?)",
864                                e->class && e->class->name ? e->class->name :
865                                "(?)");
866                         return false;
867                 }
868         }
869         return true;
870 }
871
872 #ifdef CONFIG_PROVE_LOCKING
873 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
874 #endif
875
876 static bool check_lock_chain_key(struct lock_chain *chain)
877 {
878 #ifdef CONFIG_PROVE_LOCKING
879         u64 chain_key = INITIAL_CHAIN_KEY;
880         int i;
881
882         for (i = chain->base; i < chain->base + chain->depth; i++)
883                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
884         /*
885          * The 'unsigned long long' casts avoid that a compiler warning
886          * is reported when building tools/lib/lockdep.
887          */
888         if (chain->chain_key != chain_key) {
889                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
890                        (unsigned long long)(chain - lock_chains),
891                        (unsigned long long)chain->chain_key,
892                        (unsigned long long)chain_key);
893                 return false;
894         }
895 #endif
896         return true;
897 }
898
899 static bool in_any_zapped_class_list(struct lock_class *class)
900 {
901         struct pending_free *pf;
902         int i;
903
904         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
905                 if (in_list(&class->lock_entry, &pf->zapped))
906                         return true;
907         }
908
909         return false;
910 }
911
912 static bool __check_data_structures(void)
913 {
914         struct lock_class *class;
915         struct lock_chain *chain;
916         struct hlist_head *head;
917         struct lock_list *e;
918         int i;
919
920         /* Check whether all classes occur in a lock list. */
921         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
922                 class = &lock_classes[i];
923                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
924                     !in_list(&class->lock_entry, &free_lock_classes) &&
925                     !in_any_zapped_class_list(class)) {
926                         printk(KERN_INFO "class %px/%s is not in any class list\n",
927                                class, class->name ? : "(?)");
928                         return false;
929                 }
930         }
931
932         /* Check whether all classes have valid lock lists. */
933         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
934                 class = &lock_classes[i];
935                 if (!class_lock_list_valid(class, &class->locks_before))
936                         return false;
937                 if (!class_lock_list_valid(class, &class->locks_after))
938                         return false;
939         }
940
941         /* Check the chain_key of all lock chains. */
942         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
943                 head = chainhash_table + i;
944                 hlist_for_each_entry_rcu(chain, head, entry) {
945                         if (!check_lock_chain_key(chain))
946                                 return false;
947                 }
948         }
949
950         /*
951          * Check whether all list entries that are in use occur in a class
952          * lock list.
953          */
954         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
955                 e = list_entries + i;
956                 if (!in_any_class_list(&e->entry)) {
957                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
958                                (unsigned int)(e - list_entries),
959                                e->class->name ? : "(?)",
960                                e->links_to->name ? : "(?)");
961                         return false;
962                 }
963         }
964
965         /*
966          * Check whether all list entries that are not in use do not occur in
967          * a class lock list.
968          */
969         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
970                 e = list_entries + i;
971                 if (in_any_class_list(&e->entry)) {
972                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
973                                (unsigned int)(e - list_entries),
974                                e->class && e->class->name ? e->class->name :
975                                "(?)",
976                                e->links_to && e->links_to->name ?
977                                e->links_to->name : "(?)");
978                         return false;
979                 }
980         }
981
982         return true;
983 }
984
985 int check_consistency = 0;
986 module_param(check_consistency, int, 0644);
987
988 static void check_data_structures(void)
989 {
990         static bool once = false;
991
992         if (check_consistency && !once) {
993                 if (!__check_data_structures()) {
994                         once = true;
995                         WARN_ON(once);
996                 }
997         }
998 }
999
1000 #else /* CONFIG_DEBUG_LOCKDEP */
1001
1002 static inline void check_data_structures(void) { }
1003
1004 #endif /* CONFIG_DEBUG_LOCKDEP */
1005
1006 /*
1007  * Initialize the lock_classes[] array elements, the free_lock_classes list
1008  * and also the delayed_free structure.
1009  */
1010 static void init_data_structures_once(void)
1011 {
1012         static bool ds_initialized, rcu_head_initialized;
1013         int i;
1014
1015         if (likely(rcu_head_initialized))
1016                 return;
1017
1018         if (system_state >= SYSTEM_SCHEDULING) {
1019                 init_rcu_head(&delayed_free.rcu_head);
1020                 rcu_head_initialized = true;
1021         }
1022
1023         if (ds_initialized)
1024                 return;
1025
1026         ds_initialized = true;
1027
1028         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1029         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1030
1031         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1032                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1033                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1034                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1035         }
1036 }
1037
1038 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1039 {
1040         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1041
1042         return lock_keys_hash + hash;
1043 }
1044
1045 /* Register a dynamically allocated key. */
1046 void lockdep_register_key(struct lock_class_key *key)
1047 {
1048         struct hlist_head *hash_head;
1049         struct lock_class_key *k;
1050         unsigned long flags;
1051
1052         if (WARN_ON_ONCE(static_obj(key)))
1053                 return;
1054         hash_head = keyhashentry(key);
1055
1056         raw_local_irq_save(flags);
1057         if (!graph_lock())
1058                 goto restore_irqs;
1059         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1060                 if (WARN_ON_ONCE(k == key))
1061                         goto out_unlock;
1062         }
1063         hlist_add_head_rcu(&key->hash_entry, hash_head);
1064 out_unlock:
1065         graph_unlock();
1066 restore_irqs:
1067         raw_local_irq_restore(flags);
1068 }
1069 EXPORT_SYMBOL_GPL(lockdep_register_key);
1070
1071 /* Check whether a key has been registered as a dynamic key. */
1072 static bool is_dynamic_key(const struct lock_class_key *key)
1073 {
1074         struct hlist_head *hash_head;
1075         struct lock_class_key *k;
1076         bool found = false;
1077
1078         if (WARN_ON_ONCE(static_obj(key)))
1079                 return false;
1080
1081         /*
1082          * If lock debugging is disabled lock_keys_hash[] may contain
1083          * pointers to memory that has already been freed. Avoid triggering
1084          * a use-after-free in that case by returning early.
1085          */
1086         if (!debug_locks)
1087                 return true;
1088
1089         hash_head = keyhashentry(key);
1090
1091         rcu_read_lock();
1092         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1093                 if (k == key) {
1094                         found = true;
1095                         break;
1096                 }
1097         }
1098         rcu_read_unlock();
1099
1100         return found;
1101 }
1102
1103 /*
1104  * Register a lock's class in the hash-table, if the class is not present
1105  * yet. Otherwise we look it up. We cache the result in the lock object
1106  * itself, so actual lookup of the hash should be once per lock object.
1107  */
1108 static struct lock_class *
1109 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1110 {
1111         struct lockdep_subclass_key *key;
1112         struct hlist_head *hash_head;
1113         struct lock_class *class;
1114
1115         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1116
1117         class = look_up_lock_class(lock, subclass);
1118         if (likely(class))
1119                 goto out_set_class_cache;
1120
1121         if (!lock->key) {
1122                 if (!assign_lock_key(lock))
1123                         return NULL;
1124         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1125                 return NULL;
1126         }
1127
1128         key = lock->key->subkeys + subclass;
1129         hash_head = classhashentry(key);
1130
1131         if (!graph_lock()) {
1132                 return NULL;
1133         }
1134         /*
1135          * We have to do the hash-walk again, to avoid races
1136          * with another CPU:
1137          */
1138         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1139                 if (class->key == key)
1140                         goto out_unlock_set;
1141         }
1142
1143         init_data_structures_once();
1144
1145         /* Allocate a new lock class and add it to the hash. */
1146         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1147                                          lock_entry);
1148         if (!class) {
1149                 if (!debug_locks_off_graph_unlock()) {
1150                         return NULL;
1151                 }
1152
1153                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1154                 dump_stack();
1155                 return NULL;
1156         }
1157         nr_lock_classes++;
1158         __set_bit(class - lock_classes, lock_classes_in_use);
1159         debug_atomic_inc(nr_unused_locks);
1160         class->key = key;
1161         class->name = lock->name;
1162         class->subclass = subclass;
1163         WARN_ON_ONCE(!list_empty(&class->locks_before));
1164         WARN_ON_ONCE(!list_empty(&class->locks_after));
1165         class->name_version = count_matching_names(class);
1166         /*
1167          * We use RCU's safe list-add method to make
1168          * parallel walking of the hash-list safe:
1169          */
1170         hlist_add_head_rcu(&class->hash_entry, hash_head);
1171         /*
1172          * Remove the class from the free list and add it to the global list
1173          * of classes.
1174          */
1175         list_move_tail(&class->lock_entry, &all_lock_classes);
1176
1177         if (verbose(class)) {
1178                 graph_unlock();
1179
1180                 printk("\nnew class %px: %s", class->key, class->name);
1181                 if (class->name_version > 1)
1182                         printk(KERN_CONT "#%d", class->name_version);
1183                 printk(KERN_CONT "\n");
1184                 dump_stack();
1185
1186                 if (!graph_lock()) {
1187                         return NULL;
1188                 }
1189         }
1190 out_unlock_set:
1191         graph_unlock();
1192
1193 out_set_class_cache:
1194         if (!subclass || force)
1195                 lock->class_cache[0] = class;
1196         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1197                 lock->class_cache[subclass] = class;
1198
1199         /*
1200          * Hash collision, did we smoke some? We found a class with a matching
1201          * hash but the subclass -- which is hashed in -- didn't match.
1202          */
1203         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1204                 return NULL;
1205
1206         return class;
1207 }
1208
1209 #ifdef CONFIG_PROVE_LOCKING
1210 /*
1211  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1212  * with NULL on failure)
1213  */
1214 static struct lock_list *alloc_list_entry(void)
1215 {
1216         int idx = find_first_zero_bit(list_entries_in_use,
1217                                       ARRAY_SIZE(list_entries));
1218
1219         if (idx >= ARRAY_SIZE(list_entries)) {
1220                 if (!debug_locks_off_graph_unlock())
1221                         return NULL;
1222
1223                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1224                 dump_stack();
1225                 return NULL;
1226         }
1227         nr_list_entries++;
1228         __set_bit(idx, list_entries_in_use);
1229         return list_entries + idx;
1230 }
1231
1232 /*
1233  * Add a new dependency to the head of the list:
1234  */
1235 static int add_lock_to_list(struct lock_class *this,
1236                             struct lock_class *links_to, struct list_head *head,
1237                             unsigned long ip, int distance,
1238                             struct lock_trace *trace)
1239 {
1240         struct lock_list *entry;
1241         /*
1242          * Lock not present yet - get a new dependency struct and
1243          * add it to the list:
1244          */
1245         entry = alloc_list_entry();
1246         if (!entry)
1247                 return 0;
1248
1249         entry->class = this;
1250         entry->links_to = links_to;
1251         entry->distance = distance;
1252         entry->trace = *trace;
1253         /*
1254          * Both allocation and removal are done under the graph lock; but
1255          * iteration is under RCU-sched; see look_up_lock_class() and
1256          * lockdep_free_key_range().
1257          */
1258         list_add_tail_rcu(&entry->entry, head);
1259
1260         return 1;
1261 }
1262
1263 /*
1264  * For good efficiency of modular, we use power of 2
1265  */
1266 #define MAX_CIRCULAR_QUEUE_SIZE         4096UL
1267 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1268
1269 /*
1270  * The circular_queue and helpers are used to implement graph
1271  * breadth-first search (BFS) algorithm, by which we can determine
1272  * whether there is a path from a lock to another. In deadlock checks,
1273  * a path from the next lock to be acquired to a previous held lock
1274  * indicates that adding the <prev> -> <next> lock dependency will
1275  * produce a circle in the graph. Breadth-first search instead of
1276  * depth-first search is used in order to find the shortest (circular)
1277  * path.
1278  */
1279 struct circular_queue {
1280         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1281         unsigned int  front, rear;
1282 };
1283
1284 static struct circular_queue lock_cq;
1285
1286 unsigned int max_bfs_queue_depth;
1287
1288 static unsigned int lockdep_dependency_gen_id;
1289
1290 static inline void __cq_init(struct circular_queue *cq)
1291 {
1292         cq->front = cq->rear = 0;
1293         lockdep_dependency_gen_id++;
1294 }
1295
1296 static inline int __cq_empty(struct circular_queue *cq)
1297 {
1298         return (cq->front == cq->rear);
1299 }
1300
1301 static inline int __cq_full(struct circular_queue *cq)
1302 {
1303         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1304 }
1305
1306 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1307 {
1308         if (__cq_full(cq))
1309                 return -1;
1310
1311         cq->element[cq->rear] = elem;
1312         cq->rear = (cq->rear + 1) & CQ_MASK;
1313         return 0;
1314 }
1315
1316 /*
1317  * Dequeue an element from the circular_queue, return a lock_list if
1318  * the queue is not empty, or NULL if otherwise.
1319  */
1320 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1321 {
1322         struct lock_list * lock;
1323
1324         if (__cq_empty(cq))
1325                 return NULL;
1326
1327         lock = cq->element[cq->front];
1328         cq->front = (cq->front + 1) & CQ_MASK;
1329
1330         return lock;
1331 }
1332
1333 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1334 {
1335         return (cq->rear - cq->front) & CQ_MASK;
1336 }
1337
1338 static inline void mark_lock_accessed(struct lock_list *lock,
1339                                         struct lock_list *parent)
1340 {
1341         unsigned long nr;
1342
1343         nr = lock - list_entries;
1344         WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1345         lock->parent = parent;
1346         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1347 }
1348
1349 static inline unsigned long lock_accessed(struct lock_list *lock)
1350 {
1351         unsigned long nr;
1352
1353         nr = lock - list_entries;
1354         WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1355         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1356 }
1357
1358 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1359 {
1360         return child->parent;
1361 }
1362
1363 static inline int get_lock_depth(struct lock_list *child)
1364 {
1365         int depth = 0;
1366         struct lock_list *parent;
1367
1368         while ((parent = get_lock_parent(child))) {
1369                 child = parent;
1370                 depth++;
1371         }
1372         return depth;
1373 }
1374
1375 /*
1376  * Return the forward or backward dependency list.
1377  *
1378  * @lock:   the lock_list to get its class's dependency list
1379  * @offset: the offset to struct lock_class to determine whether it is
1380  *          locks_after or locks_before
1381  */
1382 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1383 {
1384         void *lock_class = lock->class;
1385
1386         return lock_class + offset;
1387 }
1388
1389 /*
1390  * Forward- or backward-dependency search, used for both circular dependency
1391  * checking and hardirq-unsafe/softirq-unsafe checking.
1392  */
1393 static int __bfs(struct lock_list *source_entry,
1394                  void *data,
1395                  int (*match)(struct lock_list *entry, void *data),
1396                  struct lock_list **target_entry,
1397                  int offset)
1398 {
1399         struct lock_list *entry;
1400         struct lock_list *lock;
1401         struct list_head *head;
1402         struct circular_queue *cq = &lock_cq;
1403         int ret = 1;
1404
1405         if (match(source_entry, data)) {
1406                 *target_entry = source_entry;
1407                 ret = 0;
1408                 goto exit;
1409         }
1410
1411         head = get_dep_list(source_entry, offset);
1412         if (list_empty(head))
1413                 goto exit;
1414
1415         __cq_init(cq);
1416         __cq_enqueue(cq, source_entry);
1417
1418         while ((lock = __cq_dequeue(cq))) {
1419
1420                 if (!lock->class) {
1421                         ret = -2;
1422                         goto exit;
1423                 }
1424
1425                 head = get_dep_list(lock, offset);
1426
1427                 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1428
1429                 list_for_each_entry_rcu(entry, head, entry) {
1430                         if (!lock_accessed(entry)) {
1431                                 unsigned int cq_depth;
1432                                 mark_lock_accessed(entry, lock);
1433                                 if (match(entry, data)) {
1434                                         *target_entry = entry;
1435                                         ret = 0;
1436                                         goto exit;
1437                                 }
1438
1439                                 if (__cq_enqueue(cq, entry)) {
1440                                         ret = -1;
1441                                         goto exit;
1442                                 }
1443                                 cq_depth = __cq_get_elem_count(cq);
1444                                 if (max_bfs_queue_depth < cq_depth)
1445                                         max_bfs_queue_depth = cq_depth;
1446                         }
1447                 }
1448         }
1449 exit:
1450         return ret;
1451 }
1452
1453 static inline int __bfs_forwards(struct lock_list *src_entry,
1454                         void *data,
1455                         int (*match)(struct lock_list *entry, void *data),
1456                         struct lock_list **target_entry)
1457 {
1458         return __bfs(src_entry, data, match, target_entry,
1459                      offsetof(struct lock_class, locks_after));
1460
1461 }
1462
1463 static inline int __bfs_backwards(struct lock_list *src_entry,
1464                         void *data,
1465                         int (*match)(struct lock_list *entry, void *data),
1466                         struct lock_list **target_entry)
1467 {
1468         return __bfs(src_entry, data, match, target_entry,
1469                      offsetof(struct lock_class, locks_before));
1470
1471 }
1472
1473 static void print_lock_trace(struct lock_trace *trace, unsigned int spaces)
1474 {
1475         unsigned long *entries = stack_trace + trace->offset;
1476
1477         stack_trace_print(entries, trace->nr_entries, spaces);
1478 }
1479
1480 /*
1481  * Print a dependency chain entry (this is only done when a deadlock
1482  * has been detected):
1483  */
1484 static noinline void
1485 print_circular_bug_entry(struct lock_list *target, int depth)
1486 {
1487         if (debug_locks_silent)
1488                 return;
1489         printk("\n-> #%u", depth);
1490         print_lock_name(target->class);
1491         printk(KERN_CONT ":\n");
1492         print_lock_trace(&target->trace, 6);
1493 }
1494
1495 static void
1496 print_circular_lock_scenario(struct held_lock *src,
1497                              struct held_lock *tgt,
1498                              struct lock_list *prt)
1499 {
1500         struct lock_class *source = hlock_class(src);
1501         struct lock_class *target = hlock_class(tgt);
1502         struct lock_class *parent = prt->class;
1503
1504         /*
1505          * A direct locking problem where unsafe_class lock is taken
1506          * directly by safe_class lock, then all we need to show
1507          * is the deadlock scenario, as it is obvious that the
1508          * unsafe lock is taken under the safe lock.
1509          *
1510          * But if there is a chain instead, where the safe lock takes
1511          * an intermediate lock (middle_class) where this lock is
1512          * not the same as the safe lock, then the lock chain is
1513          * used to describe the problem. Otherwise we would need
1514          * to show a different CPU case for each link in the chain
1515          * from the safe_class lock to the unsafe_class lock.
1516          */
1517         if (parent != source) {
1518                 printk("Chain exists of:\n  ");
1519                 __print_lock_name(source);
1520                 printk(KERN_CONT " --> ");
1521                 __print_lock_name(parent);
1522                 printk(KERN_CONT " --> ");
1523                 __print_lock_name(target);
1524                 printk(KERN_CONT "\n\n");
1525         }
1526
1527         printk(" Possible unsafe locking scenario:\n\n");
1528         printk("       CPU0                    CPU1\n");
1529         printk("       ----                    ----\n");
1530         printk("  lock(");
1531         __print_lock_name(target);
1532         printk(KERN_CONT ");\n");
1533         printk("                               lock(");
1534         __print_lock_name(parent);
1535         printk(KERN_CONT ");\n");
1536         printk("                               lock(");
1537         __print_lock_name(target);
1538         printk(KERN_CONT ");\n");
1539         printk("  lock(");
1540         __print_lock_name(source);
1541         printk(KERN_CONT ");\n");
1542         printk("\n *** DEADLOCK ***\n\n");
1543 }
1544
1545 /*
1546  * When a circular dependency is detected, print the
1547  * header first:
1548  */
1549 static noinline void
1550 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1551                         struct held_lock *check_src,
1552                         struct held_lock *check_tgt)
1553 {
1554         struct task_struct *curr = current;
1555
1556         if (debug_locks_silent)
1557                 return;
1558
1559         pr_warn("\n");
1560         pr_warn("======================================================\n");
1561         pr_warn("WARNING: possible circular locking dependency detected\n");
1562         print_kernel_ident();
1563         pr_warn("------------------------------------------------------\n");
1564         pr_warn("%s/%d is trying to acquire lock:\n",
1565                 curr->comm, task_pid_nr(curr));
1566         print_lock(check_src);
1567
1568         pr_warn("\nbut task is already holding lock:\n");
1569
1570         print_lock(check_tgt);
1571         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1572         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1573
1574         print_circular_bug_entry(entry, depth);
1575 }
1576
1577 static inline int class_equal(struct lock_list *entry, void *data)
1578 {
1579         return entry->class == data;
1580 }
1581
1582 static noinline void print_circular_bug(struct lock_list *this,
1583                                         struct lock_list *target,
1584                                         struct held_lock *check_src,
1585                                         struct held_lock *check_tgt)
1586 {
1587         struct task_struct *curr = current;
1588         struct lock_list *parent;
1589         struct lock_list *first_parent;
1590         int depth;
1591
1592         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1593                 return;
1594
1595         if (!save_trace(&this->trace))
1596                 return;
1597
1598         depth = get_lock_depth(target);
1599
1600         print_circular_bug_header(target, depth, check_src, check_tgt);
1601
1602         parent = get_lock_parent(target);
1603         first_parent = parent;
1604
1605         while (parent) {
1606                 print_circular_bug_entry(parent, --depth);
1607                 parent = get_lock_parent(parent);
1608         }
1609
1610         printk("\nother info that might help us debug this:\n\n");
1611         print_circular_lock_scenario(check_src, check_tgt,
1612                                      first_parent);
1613
1614         lockdep_print_held_locks(curr);
1615
1616         printk("\nstack backtrace:\n");
1617         dump_stack();
1618 }
1619
1620 static noinline void print_bfs_bug(int ret)
1621 {
1622         if (!debug_locks_off_graph_unlock())
1623                 return;
1624
1625         /*
1626          * Breadth-first-search failed, graph got corrupted?
1627          */
1628         WARN(1, "lockdep bfs error:%d\n", ret);
1629 }
1630
1631 static int noop_count(struct lock_list *entry, void *data)
1632 {
1633         (*(unsigned long *)data)++;
1634         return 0;
1635 }
1636
1637 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1638 {
1639         unsigned long  count = 0;
1640         struct lock_list *uninitialized_var(target_entry);
1641
1642         __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1643
1644         return count;
1645 }
1646 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1647 {
1648         unsigned long ret, flags;
1649         struct lock_list this;
1650
1651         this.parent = NULL;
1652         this.class = class;
1653
1654         raw_local_irq_save(flags);
1655         arch_spin_lock(&lockdep_lock);
1656         ret = __lockdep_count_forward_deps(&this);
1657         arch_spin_unlock(&lockdep_lock);
1658         raw_local_irq_restore(flags);
1659
1660         return ret;
1661 }
1662
1663 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1664 {
1665         unsigned long  count = 0;
1666         struct lock_list *uninitialized_var(target_entry);
1667
1668         __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1669
1670         return count;
1671 }
1672
1673 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1674 {
1675         unsigned long ret, flags;
1676         struct lock_list this;
1677
1678         this.parent = NULL;
1679         this.class = class;
1680
1681         raw_local_irq_save(flags);
1682         arch_spin_lock(&lockdep_lock);
1683         ret = __lockdep_count_backward_deps(&this);
1684         arch_spin_unlock(&lockdep_lock);
1685         raw_local_irq_restore(flags);
1686
1687         return ret;
1688 }
1689
1690 /*
1691  * Check that the dependency graph starting at <src> can lead to
1692  * <target> or not. Print an error and return 0 if it does.
1693  */
1694 static noinline int
1695 check_path(struct lock_class *target, struct lock_list *src_entry,
1696            struct lock_list **target_entry)
1697 {
1698         int ret;
1699
1700         ret = __bfs_forwards(src_entry, (void *)target, class_equal,
1701                              target_entry);
1702
1703         if (unlikely(ret < 0))
1704                 print_bfs_bug(ret);
1705
1706         return ret;
1707 }
1708
1709 /*
1710  * Prove that the dependency graph starting at <src> can not
1711  * lead to <target>. If it can, there is a circle when adding
1712  * <target> -> <src> dependency.
1713  *
1714  * Print an error and return 0 if it does.
1715  */
1716 static noinline int
1717 check_noncircular(struct held_lock *src, struct held_lock *target,
1718                   struct lock_trace *trace)
1719 {
1720         int ret;
1721         struct lock_list *uninitialized_var(target_entry);
1722         struct lock_list src_entry = {
1723                 .class = hlock_class(src),
1724                 .parent = NULL,
1725         };
1726
1727         debug_atomic_inc(nr_cyclic_checks);
1728
1729         ret = check_path(hlock_class(target), &src_entry, &target_entry);
1730
1731         if (unlikely(!ret)) {
1732                 if (!trace->nr_entries) {
1733                         /*
1734                          * If save_trace fails here, the printing might
1735                          * trigger a WARN but because of the !nr_entries it
1736                          * should not do bad things.
1737                          */
1738                         save_trace(trace);
1739                 }
1740
1741                 print_circular_bug(&src_entry, target_entry, src, target);
1742         }
1743
1744         return ret;
1745 }
1746
1747 #ifdef CONFIG_LOCKDEP_SMALL
1748 /*
1749  * Check that the dependency graph starting at <src> can lead to
1750  * <target> or not. If it can, <src> -> <target> dependency is already
1751  * in the graph.
1752  *
1753  * Print an error and return 2 if it does or 1 if it does not.
1754  */
1755 static noinline int
1756 check_redundant(struct held_lock *src, struct held_lock *target)
1757 {
1758         int ret;
1759         struct lock_list *uninitialized_var(target_entry);
1760         struct lock_list src_entry = {
1761                 .class = hlock_class(src),
1762                 .parent = NULL,
1763         };
1764
1765         debug_atomic_inc(nr_redundant_checks);
1766
1767         ret = check_path(hlock_class(target), &src_entry, &target_entry);
1768
1769         if (!ret) {
1770                 debug_atomic_inc(nr_redundant);
1771                 ret = 2;
1772         } else if (ret < 0)
1773                 ret = 0;
1774
1775         return ret;
1776 }
1777 #endif
1778
1779 #ifdef CONFIG_TRACE_IRQFLAGS
1780
1781 static inline int usage_accumulate(struct lock_list *entry, void *mask)
1782 {
1783         *(unsigned long *)mask |= entry->class->usage_mask;
1784
1785         return 0;
1786 }
1787
1788 /*
1789  * Forwards and backwards subgraph searching, for the purposes of
1790  * proving that two subgraphs can be connected by a new dependency
1791  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1792  */
1793
1794 static inline int usage_match(struct lock_list *entry, void *mask)
1795 {
1796         return entry->class->usage_mask & *(unsigned long *)mask;
1797 }
1798
1799 /*
1800  * Find a node in the forwards-direction dependency sub-graph starting
1801  * at @root->class that matches @bit.
1802  *
1803  * Return 0 if such a node exists in the subgraph, and put that node
1804  * into *@target_entry.
1805  *
1806  * Return 1 otherwise and keep *@target_entry unchanged.
1807  * Return <0 on error.
1808  */
1809 static int
1810 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
1811                         struct lock_list **target_entry)
1812 {
1813         int result;
1814
1815         debug_atomic_inc(nr_find_usage_forwards_checks);
1816
1817         result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
1818
1819         return result;
1820 }
1821
1822 /*
1823  * Find a node in the backwards-direction dependency sub-graph starting
1824  * at @root->class that matches @bit.
1825  *
1826  * Return 0 if such a node exists in the subgraph, and put that node
1827  * into *@target_entry.
1828  *
1829  * Return 1 otherwise and keep *@target_entry unchanged.
1830  * Return <0 on error.
1831  */
1832 static int
1833 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
1834                         struct lock_list **target_entry)
1835 {
1836         int result;
1837
1838         debug_atomic_inc(nr_find_usage_backwards_checks);
1839
1840         result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
1841
1842         return result;
1843 }
1844
1845 static void print_lock_class_header(struct lock_class *class, int depth)
1846 {
1847         int bit;
1848
1849         printk("%*s->", depth, "");
1850         print_lock_name(class);
1851 #ifdef CONFIG_DEBUG_LOCKDEP
1852         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
1853 #endif
1854         printk(KERN_CONT " {\n");
1855
1856         for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1857                 if (class->usage_mask & (1 << bit)) {
1858                         int len = depth;
1859
1860                         len += printk("%*s   %s", depth, "", usage_str[bit]);
1861                         len += printk(KERN_CONT " at:\n");
1862                         print_lock_trace(class->usage_traces + bit, len);
1863                 }
1864         }
1865         printk("%*s }\n", depth, "");
1866
1867         printk("%*s ... key      at: [<%px>] %pS\n",
1868                 depth, "", class->key, class->key);
1869 }
1870
1871 /*
1872  * printk the shortest lock dependencies from @start to @end in reverse order:
1873  */
1874 static void __used
1875 print_shortest_lock_dependencies(struct lock_list *leaf,
1876                                  struct lock_list *root)
1877 {
1878         struct lock_list *entry = leaf;
1879         int depth;
1880
1881         /*compute depth from generated tree by BFS*/
1882         depth = get_lock_depth(leaf);
1883
1884         do {
1885                 print_lock_class_header(entry->class, depth);
1886                 printk("%*s ... acquired at:\n", depth, "");
1887                 print_lock_trace(&entry->trace, 2);
1888                 printk("\n");
1889
1890                 if (depth == 0 && (entry != root)) {
1891                         printk("lockdep:%s bad path found in chain graph\n", __func__);
1892                         break;
1893                 }
1894
1895                 entry = get_lock_parent(entry);
1896                 depth--;
1897         } while (entry && (depth >= 0));
1898 }
1899
1900 static void
1901 print_irq_lock_scenario(struct lock_list *safe_entry,
1902                         struct lock_list *unsafe_entry,
1903                         struct lock_class *prev_class,
1904                         struct lock_class *next_class)
1905 {
1906         struct lock_class *safe_class = safe_entry->class;
1907         struct lock_class *unsafe_class = unsafe_entry->class;
1908         struct lock_class *middle_class = prev_class;
1909
1910         if (middle_class == safe_class)
1911                 middle_class = next_class;
1912
1913         /*
1914          * A direct locking problem where unsafe_class lock is taken
1915          * directly by safe_class lock, then all we need to show
1916          * is the deadlock scenario, as it is obvious that the
1917          * unsafe lock is taken under the safe lock.
1918          *
1919          * But if there is a chain instead, where the safe lock takes
1920          * an intermediate lock (middle_class) where this lock is
1921          * not the same as the safe lock, then the lock chain is
1922          * used to describe the problem. Otherwise we would need
1923          * to show a different CPU case for each link in the chain
1924          * from the safe_class lock to the unsafe_class lock.
1925          */
1926         if (middle_class != unsafe_class) {
1927                 printk("Chain exists of:\n  ");
1928                 __print_lock_name(safe_class);
1929                 printk(KERN_CONT " --> ");
1930                 __print_lock_name(middle_class);
1931                 printk(KERN_CONT " --> ");
1932                 __print_lock_name(unsafe_class);
1933                 printk(KERN_CONT "\n\n");
1934         }
1935
1936         printk(" Possible interrupt unsafe locking scenario:\n\n");
1937         printk("       CPU0                    CPU1\n");
1938         printk("       ----                    ----\n");
1939         printk("  lock(");
1940         __print_lock_name(unsafe_class);
1941         printk(KERN_CONT ");\n");
1942         printk("                               local_irq_disable();\n");
1943         printk("                               lock(");
1944         __print_lock_name(safe_class);
1945         printk(KERN_CONT ");\n");
1946         printk("                               lock(");
1947         __print_lock_name(middle_class);
1948         printk(KERN_CONT ");\n");
1949         printk("  <Interrupt>\n");
1950         printk("    lock(");
1951         __print_lock_name(safe_class);
1952         printk(KERN_CONT ");\n");
1953         printk("\n *** DEADLOCK ***\n\n");
1954 }
1955
1956 static void
1957 print_bad_irq_dependency(struct task_struct *curr,
1958                          struct lock_list *prev_root,
1959                          struct lock_list *next_root,
1960                          struct lock_list *backwards_entry,
1961                          struct lock_list *forwards_entry,
1962                          struct held_lock *prev,
1963                          struct held_lock *next,
1964                          enum lock_usage_bit bit1,
1965                          enum lock_usage_bit bit2,
1966                          const char *irqclass)
1967 {
1968         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1969                 return;
1970
1971         pr_warn("\n");
1972         pr_warn("=====================================================\n");
1973         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
1974                 irqclass, irqclass);
1975         print_kernel_ident();
1976         pr_warn("-----------------------------------------------------\n");
1977         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
1978                 curr->comm, task_pid_nr(curr),
1979                 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
1980                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
1981                 curr->hardirqs_enabled,
1982                 curr->softirqs_enabled);
1983         print_lock(next);
1984
1985         pr_warn("\nand this task is already holding:\n");
1986         print_lock(prev);
1987         pr_warn("which would create a new lock dependency:\n");
1988         print_lock_name(hlock_class(prev));
1989         pr_cont(" ->");
1990         print_lock_name(hlock_class(next));
1991         pr_cont("\n");
1992
1993         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
1994                 irqclass);
1995         print_lock_name(backwards_entry->class);
1996         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
1997
1998         print_lock_trace(backwards_entry->class->usage_traces + bit1, 1);
1999
2000         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2001         print_lock_name(forwards_entry->class);
2002         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2003         pr_warn("...");
2004
2005         print_lock_trace(forwards_entry->class->usage_traces + bit2, 1);
2006
2007         pr_warn("\nother info that might help us debug this:\n\n");
2008         print_irq_lock_scenario(backwards_entry, forwards_entry,
2009                                 hlock_class(prev), hlock_class(next));
2010
2011         lockdep_print_held_locks(curr);
2012
2013         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2014         if (!save_trace(&prev_root->trace))
2015                 return;
2016         print_shortest_lock_dependencies(backwards_entry, prev_root);
2017
2018         pr_warn("\nthe dependencies between the lock to be acquired");
2019         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2020         if (!save_trace(&next_root->trace))
2021                 return;
2022         print_shortest_lock_dependencies(forwards_entry, next_root);
2023
2024         pr_warn("\nstack backtrace:\n");
2025         dump_stack();
2026 }
2027
2028 static const char *state_names[] = {
2029 #define LOCKDEP_STATE(__STATE) \
2030         __stringify(__STATE),
2031 #include "lockdep_states.h"
2032 #undef LOCKDEP_STATE
2033 };
2034
2035 static const char *state_rnames[] = {
2036 #define LOCKDEP_STATE(__STATE) \
2037         __stringify(__STATE)"-READ",
2038 #include "lockdep_states.h"
2039 #undef LOCKDEP_STATE
2040 };
2041
2042 static inline const char *state_name(enum lock_usage_bit bit)
2043 {
2044         if (bit & LOCK_USAGE_READ_MASK)
2045                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2046         else
2047                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2048 }
2049
2050 /*
2051  * The bit number is encoded like:
2052  *
2053  *  bit0: 0 exclusive, 1 read lock
2054  *  bit1: 0 used in irq, 1 irq enabled
2055  *  bit2-n: state
2056  */
2057 static int exclusive_bit(int new_bit)
2058 {
2059         int state = new_bit & LOCK_USAGE_STATE_MASK;
2060         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2061
2062         /*
2063          * keep state, bit flip the direction and strip read.
2064          */
2065         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2066 }
2067
2068 /*
2069  * Observe that when given a bitmask where each bitnr is encoded as above, a
2070  * right shift of the mask transforms the individual bitnrs as -1 and
2071  * conversely, a left shift transforms into +1 for the individual bitnrs.
2072  *
2073  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2074  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2075  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2076  *
2077  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2078  *
2079  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2080  * all bits set) and recompose with bitnr1 flipped.
2081  */
2082 static unsigned long invert_dir_mask(unsigned long mask)
2083 {
2084         unsigned long excl = 0;
2085
2086         /* Invert dir */
2087         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2088         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2089
2090         return excl;
2091 }
2092
2093 /*
2094  * As above, we clear bitnr0 (LOCK_*_READ off) with bitmask ops. First, for all
2095  * bits with bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*).
2096  * And then mask out all bitnr0.
2097  */
2098 static unsigned long exclusive_mask(unsigned long mask)
2099 {
2100         unsigned long excl = invert_dir_mask(mask);
2101
2102         /* Strip read */
2103         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2104         excl &= ~LOCKF_IRQ_READ;
2105
2106         return excl;
2107 }
2108
2109 /*
2110  * Retrieve the _possible_ original mask to which @mask is
2111  * exclusive. Ie: this is the opposite of exclusive_mask().
2112  * Note that 2 possible original bits can match an exclusive
2113  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2114  * cleared. So both are returned for each exclusive bit.
2115  */
2116 static unsigned long original_mask(unsigned long mask)
2117 {
2118         unsigned long excl = invert_dir_mask(mask);
2119
2120         /* Include read in existing usages */
2121         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2122
2123         return excl;
2124 }
2125
2126 /*
2127  * Find the first pair of bit match between an original
2128  * usage mask and an exclusive usage mask.
2129  */
2130 static int find_exclusive_match(unsigned long mask,
2131                                 unsigned long excl_mask,
2132                                 enum lock_usage_bit *bitp,
2133                                 enum lock_usage_bit *excl_bitp)
2134 {
2135         int bit, excl;
2136
2137         for_each_set_bit(bit, &mask, LOCK_USED) {
2138                 excl = exclusive_bit(bit);
2139                 if (excl_mask & lock_flag(excl)) {
2140                         *bitp = bit;
2141                         *excl_bitp = excl;
2142                         return 0;
2143                 }
2144         }
2145         return -1;
2146 }
2147
2148 /*
2149  * Prove that the new dependency does not connect a hardirq-safe(-read)
2150  * lock with a hardirq-unsafe lock - to achieve this we search
2151  * the backwards-subgraph starting at <prev>, and the
2152  * forwards-subgraph starting at <next>:
2153  */
2154 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2155                            struct held_lock *next)
2156 {
2157         unsigned long usage_mask = 0, forward_mask, backward_mask;
2158         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2159         struct lock_list *uninitialized_var(target_entry1);
2160         struct lock_list *uninitialized_var(target_entry);
2161         struct lock_list this, that;
2162         int ret;
2163
2164         /*
2165          * Step 1: gather all hard/soft IRQs usages backward in an
2166          * accumulated usage mask.
2167          */
2168         this.parent = NULL;
2169         this.class = hlock_class(prev);
2170
2171         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2172         if (ret < 0) {
2173                 print_bfs_bug(ret);
2174                 return 0;
2175         }
2176
2177         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2178         if (!usage_mask)
2179                 return 1;
2180
2181         /*
2182          * Step 2: find exclusive uses forward that match the previous
2183          * backward accumulated mask.
2184          */
2185         forward_mask = exclusive_mask(usage_mask);
2186
2187         that.parent = NULL;
2188         that.class = hlock_class(next);
2189
2190         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2191         if (ret < 0) {
2192                 print_bfs_bug(ret);
2193                 return 0;
2194         }
2195         if (ret == 1)
2196                 return ret;
2197
2198         /*
2199          * Step 3: we found a bad match! Now retrieve a lock from the backward
2200          * list whose usage mask matches the exclusive usage mask from the
2201          * lock found on the forward list.
2202          */
2203         backward_mask = original_mask(target_entry1->class->usage_mask);
2204
2205         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2206         if (ret < 0) {
2207                 print_bfs_bug(ret);
2208                 return 0;
2209         }
2210         if (DEBUG_LOCKS_WARN_ON(ret == 1))
2211                 return 1;
2212
2213         /*
2214          * Step 4: narrow down to a pair of incompatible usage bits
2215          * and report it.
2216          */
2217         ret = find_exclusive_match(target_entry->class->usage_mask,
2218                                    target_entry1->class->usage_mask,
2219                                    &backward_bit, &forward_bit);
2220         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2221                 return 1;
2222
2223         print_bad_irq_dependency(curr, &this, &that,
2224                                  target_entry, target_entry1,
2225                                  prev, next,
2226                                  backward_bit, forward_bit,
2227                                  state_name(backward_bit));
2228
2229         return 0;
2230 }
2231
2232 static void inc_chains(void)
2233 {
2234         if (current->hardirq_context)
2235                 nr_hardirq_chains++;
2236         else {
2237                 if (current->softirq_context)
2238                         nr_softirq_chains++;
2239                 else
2240                         nr_process_chains++;
2241         }
2242 }
2243
2244 #else
2245
2246 static inline int check_irq_usage(struct task_struct *curr,
2247                                   struct held_lock *prev, struct held_lock *next)
2248 {
2249         return 1;
2250 }
2251
2252 static inline void inc_chains(void)
2253 {
2254         nr_process_chains++;
2255 }
2256
2257 #endif /* CONFIG_TRACE_IRQFLAGS */
2258
2259 static void
2260 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2261 {
2262         struct lock_class *next = hlock_class(nxt);
2263         struct lock_class *prev = hlock_class(prv);
2264
2265         printk(" Possible unsafe locking scenario:\n\n");
2266         printk("       CPU0\n");
2267         printk("       ----\n");
2268         printk("  lock(");
2269         __print_lock_name(prev);
2270         printk(KERN_CONT ");\n");
2271         printk("  lock(");
2272         __print_lock_name(next);
2273         printk(KERN_CONT ");\n");
2274         printk("\n *** DEADLOCK ***\n\n");
2275         printk(" May be due to missing lock nesting notation\n\n");
2276 }
2277
2278 static void
2279 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2280                    struct held_lock *next)
2281 {
2282         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2283                 return;
2284
2285         pr_warn("\n");
2286         pr_warn("============================================\n");
2287         pr_warn("WARNING: possible recursive locking detected\n");
2288         print_kernel_ident();
2289         pr_warn("--------------------------------------------\n");
2290         pr_warn("%s/%d is trying to acquire lock:\n",
2291                 curr->comm, task_pid_nr(curr));
2292         print_lock(next);
2293         pr_warn("\nbut task is already holding lock:\n");
2294         print_lock(prev);
2295
2296         pr_warn("\nother info that might help us debug this:\n");
2297         print_deadlock_scenario(next, prev);
2298         lockdep_print_held_locks(curr);
2299
2300         pr_warn("\nstack backtrace:\n");
2301         dump_stack();
2302 }
2303
2304 /*
2305  * Check whether we are holding such a class already.
2306  *
2307  * (Note that this has to be done separately, because the graph cannot
2308  * detect such classes of deadlocks.)
2309  *
2310  * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
2311  */
2312 static int
2313 check_deadlock(struct task_struct *curr, struct held_lock *next)
2314 {
2315         struct held_lock *prev;
2316         struct held_lock *nest = NULL;
2317         int i;
2318
2319         for (i = 0; i < curr->lockdep_depth; i++) {
2320                 prev = curr->held_locks + i;
2321
2322                 if (prev->instance == next->nest_lock)
2323                         nest = prev;
2324
2325                 if (hlock_class(prev) != hlock_class(next))
2326                         continue;
2327
2328                 /*
2329                  * Allow read-after-read recursion of the same
2330                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2331                  */
2332                 if ((next->read == 2) && prev->read)
2333                         return 2;
2334
2335                 /*
2336                  * We're holding the nest_lock, which serializes this lock's
2337                  * nesting behaviour.
2338                  */
2339                 if (nest)
2340                         return 2;
2341
2342                 print_deadlock_bug(curr, prev, next);
2343                 return 0;
2344         }
2345         return 1;
2346 }
2347
2348 /*
2349  * There was a chain-cache miss, and we are about to add a new dependency
2350  * to a previous lock. We validate the following rules:
2351  *
2352  *  - would the adding of the <prev> -> <next> dependency create a
2353  *    circular dependency in the graph? [== circular deadlock]
2354  *
2355  *  - does the new prev->next dependency connect any hardirq-safe lock
2356  *    (in the full backwards-subgraph starting at <prev>) with any
2357  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2358  *    <next>)? [== illegal lock inversion with hardirq contexts]
2359  *
2360  *  - does the new prev->next dependency connect any softirq-safe lock
2361  *    (in the full backwards-subgraph starting at <prev>) with any
2362  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2363  *    <next>)? [== illegal lock inversion with softirq contexts]
2364  *
2365  * any of these scenarios could lead to a deadlock.
2366  *
2367  * Then if all the validations pass, we add the forwards and backwards
2368  * dependency.
2369  */
2370 static int
2371 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2372                struct held_lock *next, int distance, struct lock_trace *trace)
2373 {
2374         struct lock_list *entry;
2375         int ret;
2376
2377         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2378                 /*
2379                  * The warning statements below may trigger a use-after-free
2380                  * of the class name. It is better to trigger a use-after free
2381                  * and to have the class name most of the time instead of not
2382                  * having the class name available.
2383                  */
2384                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2385                           "Detected use-after-free of lock class %px/%s\n",
2386                           hlock_class(prev),
2387                           hlock_class(prev)->name);
2388                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2389                           "Detected use-after-free of lock class %px/%s\n",
2390                           hlock_class(next),
2391                           hlock_class(next)->name);
2392                 return 2;
2393         }
2394
2395         /*
2396          * Prove that the new <prev> -> <next> dependency would not
2397          * create a circular dependency in the graph. (We do this by
2398          * a breadth-first search into the graph starting at <next>,
2399          * and check whether we can reach <prev>.)
2400          *
2401          * The search is limited by the size of the circular queue (i.e.,
2402          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2403          * in the graph whose neighbours are to be checked.
2404          */
2405         ret = check_noncircular(next, prev, trace);
2406         if (unlikely(ret <= 0))
2407                 return 0;
2408
2409         if (!check_irq_usage(curr, prev, next))
2410                 return 0;
2411
2412         /*
2413          * For recursive read-locks we do all the dependency checks,
2414          * but we dont store read-triggered dependencies (only
2415          * write-triggered dependencies). This ensures that only the
2416          * write-side dependencies matter, and that if for example a
2417          * write-lock never takes any other locks, then the reads are
2418          * equivalent to a NOP.
2419          */
2420         if (next->read == 2 || prev->read == 2)
2421                 return 1;
2422         /*
2423          * Is the <prev> -> <next> dependency already present?
2424          *
2425          * (this may occur even though this is a new chain: consider
2426          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2427          *  chains - the second one will be new, but L1 already has
2428          *  L2 added to its dependency list, due to the first chain.)
2429          */
2430         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2431                 if (entry->class == hlock_class(next)) {
2432                         if (distance == 1)
2433                                 entry->distance = 1;
2434                         return 1;
2435                 }
2436         }
2437
2438 #ifdef CONFIG_LOCKDEP_SMALL
2439         /*
2440          * Is the <prev> -> <next> link redundant?
2441          */
2442         ret = check_redundant(prev, next);
2443         if (ret != 1)
2444                 return ret;
2445 #endif
2446
2447         if (!trace->nr_entries && !save_trace(trace))
2448                 return 0;
2449
2450         /*
2451          * Ok, all validations passed, add the new lock
2452          * to the previous lock's dependency list:
2453          */
2454         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2455                                &hlock_class(prev)->locks_after,
2456                                next->acquire_ip, distance, trace);
2457
2458         if (!ret)
2459                 return 0;
2460
2461         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2462                                &hlock_class(next)->locks_before,
2463                                next->acquire_ip, distance, trace);
2464         if (!ret)
2465                 return 0;
2466
2467         return 2;
2468 }
2469
2470 /*
2471  * Add the dependency to all directly-previous locks that are 'relevant'.
2472  * The ones that are relevant are (in increasing distance from curr):
2473  * all consecutive trylock entries and the final non-trylock entry - or
2474  * the end of this context's lock-chain - whichever comes first.
2475  */
2476 static int
2477 check_prevs_add(struct task_struct *curr, struct held_lock *next)
2478 {
2479         struct lock_trace trace = { .nr_entries = 0 };
2480         int depth = curr->lockdep_depth;
2481         struct held_lock *hlock;
2482
2483         /*
2484          * Debugging checks.
2485          *
2486          * Depth must not be zero for a non-head lock:
2487          */
2488         if (!depth)
2489                 goto out_bug;
2490         /*
2491          * At least two relevant locks must exist for this
2492          * to be a head:
2493          */
2494         if (curr->held_locks[depth].irq_context !=
2495                         curr->held_locks[depth-1].irq_context)
2496                 goto out_bug;
2497
2498         for (;;) {
2499                 int distance = curr->lockdep_depth - depth + 1;
2500                 hlock = curr->held_locks + depth - 1;
2501
2502                 /*
2503                  * Only non-recursive-read entries get new dependencies
2504                  * added:
2505                  */
2506                 if (hlock->read != 2 && hlock->check) {
2507                         int ret = check_prev_add(curr, hlock, next, distance,
2508                                                  &trace);
2509                         if (!ret)
2510                                 return 0;
2511
2512                         /*
2513                          * Stop after the first non-trylock entry,
2514                          * as non-trylock entries have added their
2515                          * own direct dependencies already, so this
2516                          * lock is connected to them indirectly:
2517                          */
2518                         if (!hlock->trylock)
2519                                 break;
2520                 }
2521
2522                 depth--;
2523                 /*
2524                  * End of lock-stack?
2525                  */
2526                 if (!depth)
2527                         break;
2528                 /*
2529                  * Stop the search if we cross into another context:
2530                  */
2531                 if (curr->held_locks[depth].irq_context !=
2532                                 curr->held_locks[depth-1].irq_context)
2533                         break;
2534         }
2535         return 1;
2536 out_bug:
2537         if (!debug_locks_off_graph_unlock())
2538                 return 0;
2539
2540         /*
2541          * Clearly we all shouldn't be here, but since we made it we
2542          * can reliable say we messed up our state. See the above two
2543          * gotos for reasons why we could possibly end up here.
2544          */
2545         WARN_ON(1);
2546
2547         return 0;
2548 }
2549
2550 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
2551 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
2552 int nr_chain_hlocks;
2553 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
2554
2555 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
2556 {
2557         return lock_classes + chain_hlocks[chain->base + i];
2558 }
2559
2560 /*
2561  * Returns the index of the first held_lock of the current chain
2562  */
2563 static inline int get_first_held_lock(struct task_struct *curr,
2564                                         struct held_lock *hlock)
2565 {
2566         int i;
2567         struct held_lock *hlock_curr;
2568
2569         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2570                 hlock_curr = curr->held_locks + i;
2571                 if (hlock_curr->irq_context != hlock->irq_context)
2572                         break;
2573
2574         }
2575
2576         return ++i;
2577 }
2578
2579 #ifdef CONFIG_DEBUG_LOCKDEP
2580 /*
2581  * Returns the next chain_key iteration
2582  */
2583 static u64 print_chain_key_iteration(int class_idx, u64 chain_key)
2584 {
2585         u64 new_chain_key = iterate_chain_key(chain_key, class_idx);
2586
2587         printk(" class_idx:%d -> chain_key:%016Lx",
2588                 class_idx,
2589                 (unsigned long long)new_chain_key);
2590         return new_chain_key;
2591 }
2592
2593 static void
2594 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
2595 {
2596         struct held_lock *hlock;
2597         u64 chain_key = INITIAL_CHAIN_KEY;
2598         int depth = curr->lockdep_depth;
2599         int i = get_first_held_lock(curr, hlock_next);
2600
2601         printk("depth: %u (irq_context %u)\n", depth - i + 1,
2602                 hlock_next->irq_context);
2603         for (; i < depth; i++) {
2604                 hlock = curr->held_locks + i;
2605                 chain_key = print_chain_key_iteration(hlock->class_idx, chain_key);
2606
2607                 print_lock(hlock);
2608         }
2609
2610         print_chain_key_iteration(hlock_next->class_idx, chain_key);
2611         print_lock(hlock_next);
2612 }
2613
2614 static void print_chain_keys_chain(struct lock_chain *chain)
2615 {
2616         int i;
2617         u64 chain_key = INITIAL_CHAIN_KEY;
2618         int class_id;
2619
2620         printk("depth: %u\n", chain->depth);
2621         for (i = 0; i < chain->depth; i++) {
2622                 class_id = chain_hlocks[chain->base + i];
2623                 chain_key = print_chain_key_iteration(class_id, chain_key);
2624
2625                 print_lock_name(lock_classes + class_id);
2626                 printk("\n");
2627         }
2628 }
2629
2630 static void print_collision(struct task_struct *curr,
2631                         struct held_lock *hlock_next,
2632                         struct lock_chain *chain)
2633 {
2634         pr_warn("\n");
2635         pr_warn("============================\n");
2636         pr_warn("WARNING: chain_key collision\n");
2637         print_kernel_ident();
2638         pr_warn("----------------------------\n");
2639         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
2640         pr_warn("Hash chain already cached but the contents don't match!\n");
2641
2642         pr_warn("Held locks:");
2643         print_chain_keys_held_locks(curr, hlock_next);
2644
2645         pr_warn("Locks in cached chain:");
2646         print_chain_keys_chain(chain);
2647
2648         pr_warn("\nstack backtrace:\n");
2649         dump_stack();
2650 }
2651 #endif
2652
2653 /*
2654  * Checks whether the chain and the current held locks are consistent
2655  * in depth and also in content. If they are not it most likely means
2656  * that there was a collision during the calculation of the chain_key.
2657  * Returns: 0 not passed, 1 passed
2658  */
2659 static int check_no_collision(struct task_struct *curr,
2660                         struct held_lock *hlock,
2661                         struct lock_chain *chain)
2662 {
2663 #ifdef CONFIG_DEBUG_LOCKDEP
2664         int i, j, id;
2665
2666         i = get_first_held_lock(curr, hlock);
2667
2668         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
2669                 print_collision(curr, hlock, chain);
2670                 return 0;
2671         }
2672
2673         for (j = 0; j < chain->depth - 1; j++, i++) {
2674                 id = curr->held_locks[i].class_idx;
2675
2676                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
2677                         print_collision(curr, hlock, chain);
2678                         return 0;
2679                 }
2680         }
2681 #endif
2682         return 1;
2683 }
2684
2685 /*
2686  * Given an index that is >= -1, return the index of the next lock chain.
2687  * Return -2 if there is no next lock chain.
2688  */
2689 long lockdep_next_lockchain(long i)
2690 {
2691         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
2692         return i < ARRAY_SIZE(lock_chains) ? i : -2;
2693 }
2694
2695 unsigned long lock_chain_count(void)
2696 {
2697         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
2698 }
2699
2700 /* Must be called with the graph lock held. */
2701 static struct lock_chain *alloc_lock_chain(void)
2702 {
2703         int idx = find_first_zero_bit(lock_chains_in_use,
2704                                       ARRAY_SIZE(lock_chains));
2705
2706         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
2707                 return NULL;
2708         __set_bit(idx, lock_chains_in_use);
2709         return lock_chains + idx;
2710 }
2711
2712 /*
2713  * Adds a dependency chain into chain hashtable. And must be called with
2714  * graph_lock held.
2715  *
2716  * Return 0 if fail, and graph_lock is released.
2717  * Return 1 if succeed, with graph_lock held.
2718  */
2719 static inline int add_chain_cache(struct task_struct *curr,
2720                                   struct held_lock *hlock,
2721                                   u64 chain_key)
2722 {
2723         struct lock_class *class = hlock_class(hlock);
2724         struct hlist_head *hash_head = chainhashentry(chain_key);
2725         struct lock_chain *chain;
2726         int i, j;
2727
2728         /*
2729          * The caller must hold the graph lock, ensure we've got IRQs
2730          * disabled to make this an IRQ-safe lock.. for recursion reasons
2731          * lockdep won't complain about its own locking errors.
2732          */
2733         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2734                 return 0;
2735
2736         chain = alloc_lock_chain();
2737         if (!chain) {
2738                 if (!debug_locks_off_graph_unlock())
2739                         return 0;
2740
2741                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2742                 dump_stack();
2743                 return 0;
2744         }
2745         chain->chain_key = chain_key;
2746         chain->irq_context = hlock->irq_context;
2747         i = get_first_held_lock(curr, hlock);
2748         chain->depth = curr->lockdep_depth + 1 - i;
2749
2750         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
2751         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
2752         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
2753
2754         if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2755                 chain->base = nr_chain_hlocks;
2756                 for (j = 0; j < chain->depth - 1; j++, i++) {
2757                         int lock_id = curr->held_locks[i].class_idx;
2758                         chain_hlocks[chain->base + j] = lock_id;
2759                 }
2760                 chain_hlocks[chain->base + j] = class - lock_classes;
2761                 nr_chain_hlocks += chain->depth;
2762         } else {
2763                 if (!debug_locks_off_graph_unlock())
2764                         return 0;
2765
2766                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
2767                 dump_stack();
2768                 return 0;
2769         }
2770
2771         hlist_add_head_rcu(&chain->entry, hash_head);
2772         debug_atomic_inc(chain_lookup_misses);
2773         inc_chains();
2774
2775         return 1;
2776 }
2777
2778 /*
2779  * Look up a dependency chain. Must be called with either the graph lock or
2780  * the RCU read lock held.
2781  */
2782 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
2783 {
2784         struct hlist_head *hash_head = chainhashentry(chain_key);
2785         struct lock_chain *chain;
2786
2787         hlist_for_each_entry_rcu(chain, hash_head, entry) {
2788                 if (READ_ONCE(chain->chain_key) == chain_key) {
2789                         debug_atomic_inc(chain_lookup_hits);
2790                         return chain;
2791                 }
2792         }
2793         return NULL;
2794 }
2795
2796 /*
2797  * If the key is not present yet in dependency chain cache then
2798  * add it and return 1 - in this case the new dependency chain is
2799  * validated. If the key is already hashed, return 0.
2800  * (On return with 1 graph_lock is held.)
2801  */
2802 static inline int lookup_chain_cache_add(struct task_struct *curr,
2803                                          struct held_lock *hlock,
2804                                          u64 chain_key)
2805 {
2806         struct lock_class *class = hlock_class(hlock);
2807         struct lock_chain *chain = lookup_chain_cache(chain_key);
2808
2809         if (chain) {
2810 cache_hit:
2811                 if (!check_no_collision(curr, hlock, chain))
2812                         return 0;
2813
2814                 if (very_verbose(class)) {
2815                         printk("\nhash chain already cached, key: "
2816                                         "%016Lx tail class: [%px] %s\n",
2817                                         (unsigned long long)chain_key,
2818                                         class->key, class->name);
2819                 }
2820
2821                 return 0;
2822         }
2823
2824         if (very_verbose(class)) {
2825                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
2826                         (unsigned long long)chain_key, class->key, class->name);
2827         }
2828
2829         if (!graph_lock())
2830                 return 0;
2831
2832         /*
2833          * We have to walk the chain again locked - to avoid duplicates:
2834          */
2835         chain = lookup_chain_cache(chain_key);
2836         if (chain) {
2837                 graph_unlock();
2838                 goto cache_hit;
2839         }
2840
2841         if (!add_chain_cache(curr, hlock, chain_key))
2842                 return 0;
2843
2844         return 1;
2845 }
2846
2847 static int validate_chain(struct task_struct *curr,
2848                           struct held_lock *hlock,
2849                           int chain_head, u64 chain_key)
2850 {
2851         /*
2852          * Trylock needs to maintain the stack of held locks, but it
2853          * does not add new dependencies, because trylock can be done
2854          * in any order.
2855          *
2856          * We look up the chain_key and do the O(N^2) check and update of
2857          * the dependencies only if this is a new dependency chain.
2858          * (If lookup_chain_cache_add() return with 1 it acquires
2859          * graph_lock for us)
2860          */
2861         if (!hlock->trylock && hlock->check &&
2862             lookup_chain_cache_add(curr, hlock, chain_key)) {
2863                 /*
2864                  * Check whether last held lock:
2865                  *
2866                  * - is irq-safe, if this lock is irq-unsafe
2867                  * - is softirq-safe, if this lock is hardirq-unsafe
2868                  *
2869                  * And check whether the new lock's dependency graph
2870                  * could lead back to the previous lock:
2871                  *
2872                  * - within the current held-lock stack
2873                  * - across our accumulated lock dependency records
2874                  *
2875                  * any of these scenarios could lead to a deadlock.
2876                  */
2877                 /*
2878                  * The simple case: does the current hold the same lock
2879                  * already?
2880                  */
2881                 int ret = check_deadlock(curr, hlock);
2882
2883                 if (!ret)
2884                         return 0;
2885                 /*
2886                  * Mark recursive read, as we jump over it when
2887                  * building dependencies (just like we jump over
2888                  * trylock entries):
2889                  */
2890                 if (ret == 2)
2891                         hlock->read = 2;
2892                 /*
2893                  * Add dependency only if this lock is not the head
2894                  * of the chain, and if it's not a secondary read-lock:
2895                  */
2896                 if (!chain_head && ret != 2) {
2897                         if (!check_prevs_add(curr, hlock))
2898                                 return 0;
2899                 }
2900
2901                 graph_unlock();
2902         } else {
2903                 /* after lookup_chain_cache_add(): */
2904                 if (unlikely(!debug_locks))
2905                         return 0;
2906         }
2907
2908         return 1;
2909 }
2910 #else
2911 static inline int validate_chain(struct task_struct *curr,
2912                                  struct held_lock *hlock,
2913                                  int chain_head, u64 chain_key)
2914 {
2915         return 1;
2916 }
2917 #endif /* CONFIG_PROVE_LOCKING */
2918
2919 /*
2920  * We are building curr_chain_key incrementally, so double-check
2921  * it from scratch, to make sure that it's done correctly:
2922  */
2923 static void check_chain_key(struct task_struct *curr)
2924 {
2925 #ifdef CONFIG_DEBUG_LOCKDEP
2926         struct held_lock *hlock, *prev_hlock = NULL;
2927         unsigned int i;
2928         u64 chain_key = INITIAL_CHAIN_KEY;
2929
2930         for (i = 0; i < curr->lockdep_depth; i++) {
2931                 hlock = curr->held_locks + i;
2932                 if (chain_key != hlock->prev_chain_key) {
2933                         debug_locks_off();
2934                         /*
2935                          * We got mighty confused, our chain keys don't match
2936                          * with what we expect, someone trample on our task state?
2937                          */
2938                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
2939                                 curr->lockdep_depth, i,
2940                                 (unsigned long long)chain_key,
2941                                 (unsigned long long)hlock->prev_chain_key);
2942                         return;
2943                 }
2944
2945                 /*
2946                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
2947                  * it registered lock class index?
2948                  */
2949                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
2950                         return;
2951
2952                 if (prev_hlock && (prev_hlock->irq_context !=
2953                                                         hlock->irq_context))
2954                         chain_key = INITIAL_CHAIN_KEY;
2955                 chain_key = iterate_chain_key(chain_key, hlock->class_idx);
2956                 prev_hlock = hlock;
2957         }
2958         if (chain_key != curr->curr_chain_key) {
2959                 debug_locks_off();
2960                 /*
2961                  * More smoking hash instead of calculating it, damn see these
2962                  * numbers float.. I bet that a pink elephant stepped on my memory.
2963                  */
2964                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
2965                         curr->lockdep_depth, i,
2966                         (unsigned long long)chain_key,
2967                         (unsigned long long)curr->curr_chain_key);
2968         }
2969 #endif
2970 }
2971
2972 #ifdef CONFIG_PROVE_LOCKING
2973 static int mark_lock(struct task_struct *curr, struct held_lock *this,
2974                      enum lock_usage_bit new_bit);
2975
2976 static void print_usage_bug_scenario(struct held_lock *lock)
2977 {
2978         struct lock_class *class = hlock_class(lock);
2979
2980         printk(" Possible unsafe locking scenario:\n\n");
2981         printk("       CPU0\n");
2982         printk("       ----\n");
2983         printk("  lock(");
2984         __print_lock_name(class);
2985         printk(KERN_CONT ");\n");
2986         printk("  <Interrupt>\n");
2987         printk("    lock(");
2988         __print_lock_name(class);
2989         printk(KERN_CONT ");\n");
2990         printk("\n *** DEADLOCK ***\n\n");
2991 }
2992
2993 static void
2994 print_usage_bug(struct task_struct *curr, struct held_lock *this,
2995                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
2996 {
2997         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2998                 return;
2999
3000         pr_warn("\n");
3001         pr_warn("================================\n");
3002         pr_warn("WARNING: inconsistent lock state\n");
3003         print_kernel_ident();
3004         pr_warn("--------------------------------\n");
3005
3006         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3007                 usage_str[prev_bit], usage_str[new_bit]);
3008
3009         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3010                 curr->comm, task_pid_nr(curr),
3011                 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
3012                 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3013                 trace_hardirqs_enabled(curr),
3014                 trace_softirqs_enabled(curr));
3015         print_lock(this);
3016
3017         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3018         print_lock_trace(hlock_class(this)->usage_traces + prev_bit, 1);
3019
3020         print_irqtrace_events(curr);
3021         pr_warn("\nother info that might help us debug this:\n");
3022         print_usage_bug_scenario(this);
3023
3024         lockdep_print_held_locks(curr);
3025
3026         pr_warn("\nstack backtrace:\n");
3027         dump_stack();
3028 }
3029
3030 /*
3031  * Print out an error if an invalid bit is set:
3032  */
3033 static inline int
3034 valid_state(struct task_struct *curr, struct held_lock *this,
3035             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3036 {
3037         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3038                 print_usage_bug(curr, this, bad_bit, new_bit);
3039                 return 0;
3040         }
3041         return 1;
3042 }
3043
3044
3045 /*
3046  * print irq inversion bug:
3047  */
3048 static void
3049 print_irq_inversion_bug(struct task_struct *curr,
3050                         struct lock_list *root, struct lock_list *other,
3051                         struct held_lock *this, int forwards,
3052                         const char *irqclass)
3053 {
3054         struct lock_list *entry = other;
3055         struct lock_list *middle = NULL;
3056         int depth;
3057
3058         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3059                 return;
3060
3061         pr_warn("\n");
3062         pr_warn("========================================================\n");
3063         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3064         print_kernel_ident();
3065         pr_warn("--------------------------------------------------------\n");
3066         pr_warn("%s/%d just changed the state of lock:\n",
3067                 curr->comm, task_pid_nr(curr));
3068         print_lock(this);
3069         if (forwards)
3070                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3071         else
3072                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3073         print_lock_name(other->class);
3074         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3075
3076         pr_warn("\nother info that might help us debug this:\n");
3077
3078         /* Find a middle lock (if one exists) */
3079         depth = get_lock_depth(other);
3080         do {
3081                 if (depth == 0 && (entry != root)) {
3082                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3083                         break;
3084                 }
3085                 middle = entry;
3086                 entry = get_lock_parent(entry);
3087                 depth--;
3088         } while (entry && entry != root && (depth >= 0));
3089         if (forwards)
3090                 print_irq_lock_scenario(root, other,
3091                         middle ? middle->class : root->class, other->class);
3092         else
3093                 print_irq_lock_scenario(other, root,
3094                         middle ? middle->class : other->class, root->class);
3095
3096         lockdep_print_held_locks(curr);
3097
3098         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3099         if (!save_trace(&root->trace))
3100                 return;
3101         print_shortest_lock_dependencies(other, root);
3102
3103         pr_warn("\nstack backtrace:\n");
3104         dump_stack();
3105 }
3106
3107 /*
3108  * Prove that in the forwards-direction subgraph starting at <this>
3109  * there is no lock matching <mask>:
3110  */
3111 static int
3112 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3113                      enum lock_usage_bit bit, const char *irqclass)
3114 {
3115         int ret;
3116         struct lock_list root;
3117         struct lock_list *uninitialized_var(target_entry);
3118
3119         root.parent = NULL;
3120         root.class = hlock_class(this);
3121         ret = find_usage_forwards(&root, lock_flag(bit), &target_entry);
3122         if (ret < 0) {
3123                 print_bfs_bug(ret);
3124                 return 0;
3125         }
3126         if (ret == 1)
3127                 return ret;
3128
3129         print_irq_inversion_bug(curr, &root, target_entry,
3130                                 this, 1, irqclass);
3131         return 0;
3132 }
3133
3134 /*
3135  * Prove that in the backwards-direction subgraph starting at <this>
3136  * there is no lock matching <mask>:
3137  */
3138 static int
3139 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3140                       enum lock_usage_bit bit, const char *irqclass)
3141 {
3142         int ret;
3143         struct lock_list root;
3144         struct lock_list *uninitialized_var(target_entry);
3145
3146         root.parent = NULL;
3147         root.class = hlock_class(this);
3148         ret = find_usage_backwards(&root, lock_flag(bit), &target_entry);
3149         if (ret < 0) {
3150                 print_bfs_bug(ret);
3151                 return 0;
3152         }
3153         if (ret == 1)
3154                 return ret;
3155
3156         print_irq_inversion_bug(curr, &root, target_entry,
3157                                 this, 0, irqclass);
3158         return 0;
3159 }
3160
3161 void print_irqtrace_events(struct task_struct *curr)
3162 {
3163         printk("irq event stamp: %u\n", curr->irq_events);
3164         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3165                 curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip,
3166                 (void *)curr->hardirq_enable_ip);
3167         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3168                 curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip,
3169                 (void *)curr->hardirq_disable_ip);
3170         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3171                 curr->softirq_enable_event, (void *)curr->softirq_enable_ip,
3172                 (void *)curr->softirq_enable_ip);
3173         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3174                 curr->softirq_disable_event, (void *)curr->softirq_disable_ip,
3175                 (void *)curr->softirq_disable_ip);
3176 }
3177
3178 static int HARDIRQ_verbose(struct lock_class *class)
3179 {
3180 #if HARDIRQ_VERBOSE
3181         return class_filter(class);
3182 #endif
3183         return 0;
3184 }
3185
3186 static int SOFTIRQ_verbose(struct lock_class *class)
3187 {
3188 #if SOFTIRQ_VERBOSE
3189         return class_filter(class);
3190 #endif
3191         return 0;
3192 }
3193
3194 #define STRICT_READ_CHECKS      1
3195
3196 static int (*state_verbose_f[])(struct lock_class *class) = {
3197 #define LOCKDEP_STATE(__STATE) \
3198         __STATE##_verbose,
3199 #include "lockdep_states.h"
3200 #undef LOCKDEP_STATE
3201 };
3202
3203 static inline int state_verbose(enum lock_usage_bit bit,
3204                                 struct lock_class *class)
3205 {
3206         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3207 }
3208
3209 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3210                              enum lock_usage_bit bit, const char *name);
3211
3212 static int
3213 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3214                 enum lock_usage_bit new_bit)
3215 {
3216         int excl_bit = exclusive_bit(new_bit);
3217         int read = new_bit & LOCK_USAGE_READ_MASK;
3218         int dir = new_bit & LOCK_USAGE_DIR_MASK;
3219
3220         /*
3221          * mark USED_IN has to look forwards -- to ensure no dependency
3222          * has ENABLED state, which would allow recursion deadlocks.
3223          *
3224          * mark ENABLED has to look backwards -- to ensure no dependee
3225          * has USED_IN state, which, again, would allow  recursion deadlocks.
3226          */
3227         check_usage_f usage = dir ?
3228                 check_usage_backwards : check_usage_forwards;
3229
3230         /*
3231          * Validate that this particular lock does not have conflicting
3232          * usage states.
3233          */
3234         if (!valid_state(curr, this, new_bit, excl_bit))
3235                 return 0;
3236
3237         /*
3238          * Validate that the lock dependencies don't have conflicting usage
3239          * states.
3240          */
3241         if ((!read || STRICT_READ_CHECKS) &&
3242                         !usage(curr, this, excl_bit, state_name(new_bit & ~LOCK_USAGE_READ_MASK)))
3243                 return 0;
3244
3245         /*
3246          * Check for read in write conflicts
3247          */
3248         if (!read) {
3249                 if (!valid_state(curr, this, new_bit, excl_bit + LOCK_USAGE_READ_MASK))
3250                         return 0;
3251
3252                 if (STRICT_READ_CHECKS &&
3253                         !usage(curr, this, excl_bit + LOCK_USAGE_READ_MASK,
3254                                 state_name(new_bit + LOCK_USAGE_READ_MASK)))
3255                         return 0;
3256         }
3257
3258         if (state_verbose(new_bit, hlock_class(this)))
3259                 return 2;
3260
3261         return 1;
3262 }
3263
3264 /*
3265  * Mark all held locks with a usage bit:
3266  */
3267 static int
3268 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3269 {
3270         struct held_lock *hlock;
3271         int i;
3272
3273         for (i = 0; i < curr->lockdep_depth; i++) {
3274                 enum lock_usage_bit hlock_bit = base_bit;
3275                 hlock = curr->held_locks + i;
3276
3277                 if (hlock->read)
3278                         hlock_bit += LOCK_USAGE_READ_MASK;
3279
3280                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
3281
3282                 if (!hlock->check)
3283                         continue;
3284
3285                 if (!mark_lock(curr, hlock, hlock_bit))
3286                         return 0;
3287         }
3288
3289         return 1;
3290 }
3291
3292 /*
3293  * Hardirqs will be enabled:
3294  */
3295 static void __trace_hardirqs_on_caller(unsigned long ip)
3296 {
3297         struct task_struct *curr = current;
3298
3299         /* we'll do an OFF -> ON transition: */
3300         curr->hardirqs_enabled = 1;
3301
3302         /*
3303          * We are going to turn hardirqs on, so set the
3304          * usage bit for all held locks:
3305          */
3306         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
3307                 return;
3308         /*
3309          * If we have softirqs enabled, then set the usage
3310          * bit for all held locks. (disabled hardirqs prevented
3311          * this bit from being set before)
3312          */
3313         if (curr->softirqs_enabled)
3314                 if (!mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ))
3315                         return;
3316
3317         curr->hardirq_enable_ip = ip;
3318         curr->hardirq_enable_event = ++curr->irq_events;
3319         debug_atomic_inc(hardirqs_on_events);
3320 }
3321
3322 void lockdep_hardirqs_on(unsigned long ip)
3323 {
3324         if (unlikely(!debug_locks || current->lockdep_recursion))
3325                 return;
3326
3327         if (unlikely(current->hardirqs_enabled)) {
3328                 /*
3329                  * Neither irq nor preemption are disabled here
3330                  * so this is racy by nature but losing one hit
3331                  * in a stat is not a big deal.
3332                  */
3333                 __debug_atomic_inc(redundant_hardirqs_on);
3334                 return;
3335         }
3336
3337         /*
3338          * We're enabling irqs and according to our state above irqs weren't
3339          * already enabled, yet we find the hardware thinks they are in fact
3340          * enabled.. someone messed up their IRQ state tracing.
3341          */
3342         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3343                 return;
3344
3345         /*
3346          * See the fine text that goes along with this variable definition.
3347          */
3348         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
3349                 return;
3350
3351         /*
3352          * Can't allow enabling interrupts while in an interrupt handler,
3353          * that's general bad form and such. Recursion, limited stack etc..
3354          */
3355         if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
3356                 return;
3357
3358         current->lockdep_recursion = 1;
3359         __trace_hardirqs_on_caller(ip);
3360         current->lockdep_recursion = 0;
3361 }
3362 NOKPROBE_SYMBOL(lockdep_hardirqs_on);
3363
3364 /*
3365  * Hardirqs were disabled:
3366  */
3367 void lockdep_hardirqs_off(unsigned long ip)
3368 {
3369         struct task_struct *curr = current;
3370
3371         if (unlikely(!debug_locks || current->lockdep_recursion))
3372                 return;
3373
3374         /*
3375          * So we're supposed to get called after you mask local IRQs, but for
3376          * some reason the hardware doesn't quite think you did a proper job.
3377          */
3378         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3379                 return;
3380
3381         if (curr->hardirqs_enabled) {
3382                 /*
3383                  * We have done an ON -> OFF transition:
3384                  */
3385                 curr->hardirqs_enabled = 0;
3386                 curr->hardirq_disable_ip = ip;
3387                 curr->hardirq_disable_event = ++curr->irq_events;
3388                 debug_atomic_inc(hardirqs_off_events);
3389         } else
3390                 debug_atomic_inc(redundant_hardirqs_off);
3391 }
3392 NOKPROBE_SYMBOL(lockdep_hardirqs_off);
3393
3394 /*
3395  * Softirqs will be enabled:
3396  */
3397 void trace_softirqs_on(unsigned long ip)
3398 {
3399         struct task_struct *curr = current;
3400
3401         if (unlikely(!debug_locks || current->lockdep_recursion))
3402                 return;
3403
3404         /*
3405          * We fancy IRQs being disabled here, see softirq.c, avoids
3406          * funny state and nesting things.
3407          */
3408         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3409                 return;
3410
3411         if (curr->softirqs_enabled) {
3412                 debug_atomic_inc(redundant_softirqs_on);
3413                 return;
3414         }
3415
3416         current->lockdep_recursion = 1;
3417         /*
3418          * We'll do an OFF -> ON transition:
3419          */
3420         curr->softirqs_enabled = 1;
3421         curr->softirq_enable_ip = ip;
3422         curr->softirq_enable_event = ++curr->irq_events;
3423         debug_atomic_inc(softirqs_on_events);
3424         /*
3425          * We are going to turn softirqs on, so set the
3426          * usage bit for all held locks, if hardirqs are
3427          * enabled too:
3428          */
3429         if (curr->hardirqs_enabled)
3430                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
3431         current->lockdep_recursion = 0;
3432 }
3433
3434 /*
3435  * Softirqs were disabled:
3436  */
3437 void trace_softirqs_off(unsigned long ip)
3438 {
3439         struct task_struct *curr = current;
3440
3441         if (unlikely(!debug_locks || current->lockdep_recursion))
3442                 return;
3443
3444         /*
3445          * We fancy IRQs being disabled here, see softirq.c
3446          */
3447         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3448                 return;
3449
3450         if (curr->softirqs_enabled) {
3451                 /*
3452                  * We have done an ON -> OFF transition:
3453                  */
3454                 curr->softirqs_enabled = 0;
3455                 curr->softirq_disable_ip = ip;
3456                 curr->softirq_disable_event = ++curr->irq_events;
3457                 debug_atomic_inc(softirqs_off_events);
3458                 /*
3459                  * Whoops, we wanted softirqs off, so why aren't they?
3460                  */
3461                 DEBUG_LOCKS_WARN_ON(!softirq_count());
3462         } else
3463                 debug_atomic_inc(redundant_softirqs_off);
3464 }
3465
3466 static int
3467 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3468 {
3469         if (!check)
3470                 goto lock_used;
3471
3472         /*
3473          * If non-trylock use in a hardirq or softirq context, then
3474          * mark the lock as used in these contexts:
3475          */
3476         if (!hlock->trylock) {
3477                 if (hlock->read) {
3478                         if (curr->hardirq_context)
3479                                 if (!mark_lock(curr, hlock,
3480                                                 LOCK_USED_IN_HARDIRQ_READ))
3481                                         return 0;
3482                         if (curr->softirq_context)
3483                                 if (!mark_lock(curr, hlock,
3484                                                 LOCK_USED_IN_SOFTIRQ_READ))
3485                                         return 0;
3486                 } else {
3487                         if (curr->hardirq_context)
3488                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
3489                                         return 0;
3490                         if (curr->softirq_context)
3491                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
3492                                         return 0;
3493                 }
3494         }
3495         if (!hlock->hardirqs_off) {
3496                 if (hlock->read) {
3497                         if (!mark_lock(curr, hlock,
3498                                         LOCK_ENABLED_HARDIRQ_READ))
3499                                 return 0;
3500                         if (curr->softirqs_enabled)
3501                                 if (!mark_lock(curr, hlock,
3502                                                 LOCK_ENABLED_SOFTIRQ_READ))
3503                                         return 0;
3504                 } else {
3505                         if (!mark_lock(curr, hlock,
3506                                         LOCK_ENABLED_HARDIRQ))
3507                                 return 0;
3508                         if (curr->softirqs_enabled)
3509                                 if (!mark_lock(curr, hlock,
3510                                                 LOCK_ENABLED_SOFTIRQ))
3511                                         return 0;
3512                 }
3513         }
3514
3515 lock_used:
3516         /* mark it as used: */
3517         if (!mark_lock(curr, hlock, LOCK_USED))
3518                 return 0;
3519
3520         return 1;
3521 }
3522
3523 static inline unsigned int task_irq_context(struct task_struct *task)
3524 {
3525         return 2 * !!task->hardirq_context + !!task->softirq_context;
3526 }
3527
3528 static int separate_irq_context(struct task_struct *curr,
3529                 struct held_lock *hlock)
3530 {
3531         unsigned int depth = curr->lockdep_depth;
3532
3533         /*
3534          * Keep track of points where we cross into an interrupt context:
3535          */
3536         if (depth) {
3537                 struct held_lock *prev_hlock;
3538
3539                 prev_hlock = curr->held_locks + depth-1;
3540                 /*
3541                  * If we cross into another context, reset the
3542                  * hash key (this also prevents the checking and the
3543                  * adding of the dependency to 'prev'):
3544                  */
3545                 if (prev_hlock->irq_context != hlock->irq_context)
3546                         return 1;
3547         }
3548         return 0;
3549 }
3550
3551 /*
3552  * Mark a lock with a usage bit, and validate the state transition:
3553  */
3554 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3555                              enum lock_usage_bit new_bit)
3556 {
3557         unsigned int new_mask = 1 << new_bit, ret = 1;
3558
3559         if (new_bit >= LOCK_USAGE_STATES) {
3560                 DEBUG_LOCKS_WARN_ON(1);
3561                 return 0;
3562         }
3563
3564         /*
3565          * If already set then do not dirty the cacheline,
3566          * nor do any checks:
3567          */
3568         if (likely(hlock_class(this)->usage_mask & new_mask))
3569                 return 1;
3570
3571         if (!graph_lock())
3572                 return 0;
3573         /*
3574          * Make sure we didn't race:
3575          */
3576         if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
3577                 graph_unlock();
3578                 return 1;
3579         }
3580
3581         hlock_class(this)->usage_mask |= new_mask;
3582
3583         if (!save_trace(hlock_class(this)->usage_traces + new_bit))
3584                 return 0;
3585
3586         switch (new_bit) {
3587         case LOCK_USED:
3588                 debug_atomic_dec(nr_unused_locks);
3589                 break;
3590         default:
3591                 ret = mark_lock_irq(curr, this, new_bit);
3592                 if (!ret)
3593                         return 0;
3594         }
3595
3596         graph_unlock();
3597
3598         /*
3599          * We must printk outside of the graph_lock:
3600          */
3601         if (ret == 2) {
3602                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
3603                 print_lock(this);
3604                 print_irqtrace_events(curr);
3605                 dump_stack();
3606         }
3607
3608         return ret;
3609 }
3610
3611 #else /* CONFIG_PROVE_LOCKING */
3612
3613 static inline int
3614 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3615 {
3616         return 1;
3617 }
3618
3619 static inline unsigned int task_irq_context(struct task_struct *task)
3620 {
3621         return 0;
3622 }
3623
3624 static inline int separate_irq_context(struct task_struct *curr,
3625                 struct held_lock *hlock)
3626 {
3627         return 0;
3628 }
3629
3630 #endif /* CONFIG_PROVE_LOCKING */
3631
3632 /*
3633  * Initialize a lock instance's lock-class mapping info:
3634  */
3635 void lockdep_init_map(struct lockdep_map *lock, const char *name,
3636                       struct lock_class_key *key, int subclass)
3637 {
3638         int i;
3639
3640         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
3641                 lock->class_cache[i] = NULL;
3642
3643 #ifdef CONFIG_LOCK_STAT
3644         lock->cpu = raw_smp_processor_id();
3645 #endif
3646
3647         /*
3648          * Can't be having no nameless bastards around this place!
3649          */
3650         if (DEBUG_LOCKS_WARN_ON(!name)) {
3651                 lock->name = "NULL";
3652                 return;
3653         }
3654
3655         lock->name = name;
3656
3657         /*
3658          * No key, no joy, we need to hash something.
3659          */
3660         if (DEBUG_LOCKS_WARN_ON(!key))
3661                 return;
3662         /*
3663          * Sanity check, the lock-class key must either have been allocated
3664          * statically or must have been registered as a dynamic key.
3665          */
3666         if (!static_obj(key) && !is_dynamic_key(key)) {
3667                 if (debug_locks)
3668                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
3669                 DEBUG_LOCKS_WARN_ON(1);
3670                 return;
3671         }
3672         lock->key = key;
3673
3674         if (unlikely(!debug_locks))
3675                 return;
3676
3677         if (subclass) {
3678                 unsigned long flags;
3679
3680                 if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion))
3681                         return;
3682
3683                 raw_local_irq_save(flags);
3684                 current->lockdep_recursion = 1;
3685                 register_lock_class(lock, subclass, 1);
3686                 current->lockdep_recursion = 0;
3687                 raw_local_irq_restore(flags);
3688         }
3689 }
3690 EXPORT_SYMBOL_GPL(lockdep_init_map);
3691
3692 struct lock_class_key __lockdep_no_validate__;
3693 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
3694
3695 static void
3696 print_lock_nested_lock_not_held(struct task_struct *curr,
3697                                 struct held_lock *hlock,
3698                                 unsigned long ip)
3699 {
3700         if (!debug_locks_off())
3701                 return;
3702         if (debug_locks_silent)
3703                 return;
3704
3705         pr_warn("\n");
3706         pr_warn("==================================\n");
3707         pr_warn("WARNING: Nested lock was not taken\n");
3708         print_kernel_ident();
3709         pr_warn("----------------------------------\n");
3710
3711         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
3712         print_lock(hlock);
3713
3714         pr_warn("\nbut this task is not holding:\n");
3715         pr_warn("%s\n", hlock->nest_lock->name);
3716
3717         pr_warn("\nstack backtrace:\n");
3718         dump_stack();
3719
3720         pr_warn("\nother info that might help us debug this:\n");
3721         lockdep_print_held_locks(curr);
3722
3723         pr_warn("\nstack backtrace:\n");
3724         dump_stack();
3725 }
3726
3727 static int __lock_is_held(const struct lockdep_map *lock, int read);
3728
3729 /*
3730  * This gets called for every mutex_lock*()/spin_lock*() operation.
3731  * We maintain the dependency maps and validate the locking attempt:
3732  *
3733  * The callers must make sure that IRQs are disabled before calling it,
3734  * otherwise we could get an interrupt which would want to take locks,
3735  * which would end up in lockdep again.
3736  */
3737 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3738                           int trylock, int read, int check, int hardirqs_off,
3739                           struct lockdep_map *nest_lock, unsigned long ip,
3740                           int references, int pin_count)
3741 {
3742         struct task_struct *curr = current;
3743         struct lock_class *class = NULL;
3744         struct held_lock *hlock;
3745         unsigned int depth;
3746         int chain_head = 0;
3747         int class_idx;
3748         u64 chain_key;
3749
3750         if (unlikely(!debug_locks))
3751                 return 0;
3752
3753         if (!prove_locking || lock->key == &__lockdep_no_validate__)
3754                 check = 0;
3755
3756         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
3757                 class = lock->class_cache[subclass];
3758         /*
3759          * Not cached?
3760          */
3761         if (unlikely(!class)) {
3762                 class = register_lock_class(lock, subclass, 0);
3763                 if (!class)
3764                         return 0;
3765         }
3766
3767         debug_class_ops_inc(class);
3768
3769         if (very_verbose(class)) {
3770                 printk("\nacquire class [%px] %s", class->key, class->name);
3771                 if (class->name_version > 1)
3772                         printk(KERN_CONT "#%d", class->name_version);
3773                 printk(KERN_CONT "\n");
3774                 dump_stack();
3775         }
3776
3777         /*
3778          * Add the lock to the list of currently held locks.
3779          * (we dont increase the depth just yet, up until the
3780          * dependency checks are done)
3781          */
3782         depth = curr->lockdep_depth;
3783         /*
3784          * Ran out of static storage for our per-task lock stack again have we?
3785          */
3786         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
3787                 return 0;
3788
3789         class_idx = class - lock_classes;
3790
3791         if (depth) {
3792                 hlock = curr->held_locks + depth - 1;
3793                 if (hlock->class_idx == class_idx && nest_lock) {
3794                         if (!references)
3795                                 references++;
3796
3797                         if (!hlock->references)
3798                                 hlock->references++;
3799
3800                         hlock->references += references;
3801
3802                         /* Overflow */
3803                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
3804                                 return 0;
3805
3806                         return 2;
3807                 }
3808         }
3809
3810         hlock = curr->held_locks + depth;
3811         /*
3812          * Plain impossible, we just registered it and checked it weren't no
3813          * NULL like.. I bet this mushroom I ate was good!
3814          */
3815         if (DEBUG_LOCKS_WARN_ON(!class))
3816                 return 0;
3817         hlock->class_idx = class_idx;
3818         hlock->acquire_ip = ip;
3819         hlock->instance = lock;
3820         hlock->nest_lock = nest_lock;
3821         hlock->irq_context = task_irq_context(curr);
3822         hlock->trylock = trylock;
3823         hlock->read = read;
3824         hlock->check = check;
3825         hlock->hardirqs_off = !!hardirqs_off;
3826         hlock->references = references;
3827 #ifdef CONFIG_LOCK_STAT
3828         hlock->waittime_stamp = 0;
3829         hlock->holdtime_stamp = lockstat_clock();
3830 #endif
3831         hlock->pin_count = pin_count;
3832
3833         /* Initialize the lock usage bit */
3834         if (!mark_usage(curr, hlock, check))
3835                 return 0;
3836
3837         /*
3838          * Calculate the chain hash: it's the combined hash of all the
3839          * lock keys along the dependency chain. We save the hash value
3840          * at every step so that we can get the current hash easily
3841          * after unlock. The chain hash is then used to cache dependency
3842          * results.
3843          *
3844          * The 'key ID' is what is the most compact key value to drive
3845          * the hash, not class->key.
3846          */
3847         /*
3848          * Whoops, we did it again.. class_idx is invalid.
3849          */
3850         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
3851                 return 0;
3852
3853         chain_key = curr->curr_chain_key;
3854         if (!depth) {
3855                 /*
3856                  * How can we have a chain hash when we ain't got no keys?!
3857                  */
3858                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
3859                         return 0;
3860                 chain_head = 1;
3861         }
3862
3863         hlock->prev_chain_key = chain_key;
3864         if (separate_irq_context(curr, hlock)) {
3865                 chain_key = INITIAL_CHAIN_KEY;
3866                 chain_head = 1;
3867         }
3868         chain_key = iterate_chain_key(chain_key, class_idx);
3869
3870         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
3871                 print_lock_nested_lock_not_held(curr, hlock, ip);
3872                 return 0;
3873         }
3874
3875         if (!debug_locks_silent) {
3876                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
3877                 WARN_ON_ONCE(!hlock_class(hlock)->key);
3878         }
3879
3880         if (!validate_chain(curr, hlock, chain_head, chain_key))
3881                 return 0;
3882
3883         curr->curr_chain_key = chain_key;
3884         curr->lockdep_depth++;
3885         check_chain_key(curr);
3886 #ifdef CONFIG_DEBUG_LOCKDEP
3887         if (unlikely(!debug_locks))
3888                 return 0;
3889 #endif
3890         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
3891                 debug_locks_off();
3892                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
3893                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
3894                        curr->lockdep_depth, MAX_LOCK_DEPTH);
3895
3896                 lockdep_print_held_locks(current);
3897                 debug_show_all_locks();
3898                 dump_stack();
3899
3900                 return 0;
3901         }
3902
3903         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
3904                 max_lockdep_depth = curr->lockdep_depth;
3905
3906         return 1;
3907 }
3908
3909 static void print_unlock_imbalance_bug(struct task_struct *curr,
3910                                        struct lockdep_map *lock,
3911                                        unsigned long ip)
3912 {
3913         if (!debug_locks_off())
3914                 return;
3915         if (debug_locks_silent)
3916                 return;
3917
3918         pr_warn("\n");
3919         pr_warn("=====================================\n");
3920         pr_warn("WARNING: bad unlock balance detected!\n");
3921         print_kernel_ident();
3922         pr_warn("-------------------------------------\n");
3923         pr_warn("%s/%d is trying to release lock (",
3924                 curr->comm, task_pid_nr(curr));
3925         print_lockdep_cache(lock);
3926         pr_cont(") at:\n");
3927         print_ip_sym(ip);
3928         pr_warn("but there are no more locks to release!\n");
3929         pr_warn("\nother info that might help us debug this:\n");
3930         lockdep_print_held_locks(curr);
3931
3932         pr_warn("\nstack backtrace:\n");
3933         dump_stack();
3934 }
3935
3936 static int match_held_lock(const struct held_lock *hlock,
3937                                         const struct lockdep_map *lock)
3938 {
3939         if (hlock->instance == lock)
3940                 return 1;
3941
3942         if (hlock->references) {
3943                 const struct lock_class *class = lock->class_cache[0];
3944
3945                 if (!class)
3946                         class = look_up_lock_class(lock, 0);
3947
3948                 /*
3949                  * If look_up_lock_class() failed to find a class, we're trying
3950                  * to test if we hold a lock that has never yet been acquired.
3951                  * Clearly if the lock hasn't been acquired _ever_, we're not
3952                  * holding it either, so report failure.
3953                  */
3954                 if (!class)
3955                         return 0;
3956
3957                 /*
3958                  * References, but not a lock we're actually ref-counting?
3959                  * State got messed up, follow the sites that change ->references
3960                  * and try to make sense of it.
3961                  */
3962                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
3963                         return 0;
3964
3965                 if (hlock->class_idx == class - lock_classes)
3966                         return 1;
3967         }
3968
3969         return 0;
3970 }
3971
3972 /* @depth must not be zero */
3973 static struct held_lock *find_held_lock(struct task_struct *curr,
3974                                         struct lockdep_map *lock,
3975                                         unsigned int depth, int *idx)
3976 {
3977         struct held_lock *ret, *hlock, *prev_hlock;
3978         int i;
3979
3980         i = depth - 1;
3981         hlock = curr->held_locks + i;
3982         ret = hlock;
3983         if (match_held_lock(hlock, lock))
3984                 goto out;
3985
3986         ret = NULL;
3987         for (i--, prev_hlock = hlock--;
3988              i >= 0;
3989              i--, prev_hlock = hlock--) {
3990                 /*
3991                  * We must not cross into another context:
3992                  */
3993                 if (prev_hlock->irq_context != hlock->irq_context) {
3994                         ret = NULL;
3995                         break;
3996                 }
3997                 if (match_held_lock(hlock, lock)) {
3998                         ret = hlock;
3999                         break;
4000                 }
4001         }
4002
4003 out:
4004         *idx = i;
4005         return ret;
4006 }
4007
4008 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4009                                 int idx, unsigned int *merged)
4010 {
4011         struct held_lock *hlock;
4012         int first_idx = idx;
4013
4014         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4015                 return 0;
4016
4017         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4018                 switch (__lock_acquire(hlock->instance,
4019                                     hlock_class(hlock)->subclass,
4020                                     hlock->trylock,
4021                                     hlock->read, hlock->check,
4022                                     hlock->hardirqs_off,
4023                                     hlock->nest_lock, hlock->acquire_ip,
4024                                     hlock->references, hlock->pin_count)) {
4025                 case 0:
4026                         return 1;
4027                 case 1:
4028                         break;
4029                 case 2:
4030                         *merged += (idx == first_idx);
4031                         break;
4032                 default:
4033                         WARN_ON(1);
4034                         return 0;
4035                 }
4036         }
4037         return 0;
4038 }
4039
4040 static int
4041 __lock_set_class(struct lockdep_map *lock, const char *name,
4042                  struct lock_class_key *key, unsigned int subclass,
4043                  unsigned long ip)
4044 {
4045         struct task_struct *curr = current;
4046         unsigned int depth, merged = 0;
4047         struct held_lock *hlock;
4048         struct lock_class *class;
4049         int i;
4050
4051         if (unlikely(!debug_locks))
4052                 return 0;
4053
4054         depth = curr->lockdep_depth;
4055         /*
4056          * This function is about (re)setting the class of a held lock,
4057          * yet we're not actually holding any locks. Naughty user!
4058          */
4059         if (DEBUG_LOCKS_WARN_ON(!depth))
4060                 return 0;
4061
4062         hlock = find_held_lock(curr, lock, depth, &i);
4063         if (!hlock) {
4064                 print_unlock_imbalance_bug(curr, lock, ip);
4065                 return 0;
4066         }
4067
4068         lockdep_init_map(lock, name, key, 0);
4069         class = register_lock_class(lock, subclass, 0);
4070         hlock->class_idx = class - lock_classes;
4071
4072         curr->lockdep_depth = i;
4073         curr->curr_chain_key = hlock->prev_chain_key;
4074
4075         if (reacquire_held_locks(curr, depth, i, &merged))
4076                 return 0;
4077
4078         /*
4079          * I took it apart and put it back together again, except now I have
4080          * these 'spare' parts.. where shall I put them.
4081          */
4082         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
4083                 return 0;
4084         return 1;
4085 }
4086
4087 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4088 {
4089         struct task_struct *curr = current;
4090         unsigned int depth, merged = 0;
4091         struct held_lock *hlock;
4092         int i;
4093
4094         if (unlikely(!debug_locks))
4095                 return 0;
4096
4097         depth = curr->lockdep_depth;
4098         /*
4099          * This function is about (re)setting the class of a held lock,
4100          * yet we're not actually holding any locks. Naughty user!
4101          */
4102         if (DEBUG_LOCKS_WARN_ON(!depth))
4103                 return 0;
4104
4105         hlock = find_held_lock(curr, lock, depth, &i);
4106         if (!hlock) {
4107                 print_unlock_imbalance_bug(curr, lock, ip);
4108                 return 0;
4109         }
4110
4111         curr->lockdep_depth = i;
4112         curr->curr_chain_key = hlock->prev_chain_key;
4113
4114         WARN(hlock->read, "downgrading a read lock");
4115         hlock->read = 1;
4116         hlock->acquire_ip = ip;
4117
4118         if (reacquire_held_locks(curr, depth, i, &merged))
4119                 return 0;
4120
4121         /* Merging can't happen with unchanged classes.. */
4122         if (DEBUG_LOCKS_WARN_ON(merged))
4123                 return 0;
4124
4125         /*
4126          * I took it apart and put it back together again, except now I have
4127          * these 'spare' parts.. where shall I put them.
4128          */
4129         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
4130                 return 0;
4131
4132         return 1;
4133 }
4134
4135 /*
4136  * Remove the lock to the list of currently held locks - this gets
4137  * called on mutex_unlock()/spin_unlock*() (or on a failed
4138  * mutex_lock_interruptible()).
4139  *
4140  * @nested is an hysterical artifact, needs a tree wide cleanup.
4141  */
4142 static int
4143 __lock_release(struct lockdep_map *lock, unsigned long ip)
4144 {
4145         struct task_struct *curr = current;
4146         unsigned int depth, merged = 1;
4147         struct held_lock *hlock;
4148         int i;
4149
4150         if (unlikely(!debug_locks))
4151                 return 0;
4152
4153         depth = curr->lockdep_depth;
4154         /*
4155          * So we're all set to release this lock.. wait what lock? We don't
4156          * own any locks, you've been drinking again?
4157          */
4158         if (depth <= 0) {
4159                 print_unlock_imbalance_bug(curr, lock, ip);
4160                 return 0;
4161         }
4162
4163         /*
4164          * Check whether the lock exists in the current stack
4165          * of held locks:
4166          */
4167         hlock = find_held_lock(curr, lock, depth, &i);
4168         if (!hlock) {
4169                 print_unlock_imbalance_bug(curr, lock, ip);
4170                 return 0;
4171         }
4172
4173         if (hlock->instance == lock)
4174                 lock_release_holdtime(hlock);
4175
4176         WARN(hlock->pin_count, "releasing a pinned lock\n");
4177
4178         if (hlock->references) {
4179                 hlock->references--;
4180                 if (hlock->references) {
4181                         /*
4182                          * We had, and after removing one, still have
4183                          * references, the current lock stack is still
4184                          * valid. We're done!
4185                          */
4186                         return 1;
4187                 }
4188         }
4189
4190         /*
4191          * We have the right lock to unlock, 'hlock' points to it.
4192          * Now we remove it from the stack, and add back the other
4193          * entries (if any), recalculating the hash along the way:
4194          */
4195
4196         curr->lockdep_depth = i;
4197         curr->curr_chain_key = hlock->prev_chain_key;
4198
4199         /*
4200          * The most likely case is when the unlock is on the innermost
4201          * lock. In this case, we are done!
4202          */
4203         if (i == depth-1)
4204                 return 1;
4205
4206         if (reacquire_held_locks(curr, depth, i + 1, &merged))
4207                 return 0;
4208
4209         /*
4210          * We had N bottles of beer on the wall, we drank one, but now
4211          * there's not N-1 bottles of beer left on the wall...
4212          * Pouring two of the bottles together is acceptable.
4213          */
4214         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
4215
4216         /*
4217          * Since reacquire_held_locks() would have called check_chain_key()
4218          * indirectly via __lock_acquire(), we don't need to do it again
4219          * on return.
4220          */
4221         return 0;
4222 }
4223
4224 static nokprobe_inline
4225 int __lock_is_held(const struct lockdep_map *lock, int read)
4226 {
4227         struct task_struct *curr = current;
4228         int i;
4229
4230         for (i = 0; i < curr->lockdep_depth; i++) {
4231                 struct held_lock *hlock = curr->held_locks + i;
4232
4233                 if (match_held_lock(hlock, lock)) {
4234                         if (read == -1 || hlock->read == read)
4235                                 return 1;
4236
4237                         return 0;
4238                 }
4239         }
4240
4241         return 0;
4242 }
4243
4244 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
4245 {
4246         struct pin_cookie cookie = NIL_COOKIE;
4247         struct task_struct *curr = current;
4248         int i;
4249
4250         if (unlikely(!debug_locks))
4251                 return cookie;
4252
4253         for (i = 0; i < curr->lockdep_depth; i++) {
4254                 struct held_lock *hlock = curr->held_locks + i;
4255
4256                 if (match_held_lock(hlock, lock)) {
4257                         /*
4258                          * Grab 16bits of randomness; this is sufficient to not
4259                          * be guessable and still allows some pin nesting in
4260                          * our u32 pin_count.
4261                          */
4262                         cookie.val = 1 + (prandom_u32() >> 16);
4263                         hlock->pin_count += cookie.val;
4264                         return cookie;
4265                 }
4266         }
4267
4268         WARN(1, "pinning an unheld lock\n");
4269         return cookie;
4270 }
4271
4272 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4273 {
4274         struct task_struct *curr = current;
4275         int i;
4276
4277         if (unlikely(!debug_locks))
4278                 return;
4279
4280         for (i = 0; i < curr->lockdep_depth; i++) {
4281                 struct held_lock *hlock = curr->held_locks + i;
4282
4283                 if (match_held_lock(hlock, lock)) {
4284                         hlock->pin_count += cookie.val;
4285                         return;
4286                 }
4287         }
4288
4289         WARN(1, "pinning an unheld lock\n");
4290 }
4291
4292 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4293 {
4294         struct task_struct *curr = current;
4295         int i;
4296
4297         if (unlikely(!debug_locks))
4298                 return;
4299
4300         for (i = 0; i < curr->lockdep_depth; i++) {
4301                 struct held_lock *hlock = curr->held_locks + i;
4302
4303                 if (match_held_lock(hlock, lock)) {
4304                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
4305                                 return;
4306
4307                         hlock->pin_count -= cookie.val;
4308
4309                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
4310                                 hlock->pin_count = 0;
4311
4312                         return;
4313                 }
4314         }
4315
4316         WARN(1, "unpinning an unheld lock\n");
4317 }
4318
4319 /*
4320  * Check whether we follow the irq-flags state precisely:
4321  */
4322 static void check_flags(unsigned long flags)
4323 {
4324 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
4325         if (!debug_locks)
4326                 return;
4327
4328         if (irqs_disabled_flags(flags)) {
4329                 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
4330                         printk("possible reason: unannotated irqs-off.\n");
4331                 }
4332         } else {
4333                 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
4334                         printk("possible reason: unannotated irqs-on.\n");
4335                 }
4336         }
4337
4338         /*
4339          * We dont accurately track softirq state in e.g.
4340          * hardirq contexts (such as on 4KSTACKS), so only
4341          * check if not in hardirq contexts:
4342          */
4343         if (!hardirq_count()) {
4344                 if (softirq_count()) {
4345                         /* like the above, but with softirqs */
4346                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
4347                 } else {
4348                         /* lick the above, does it taste good? */
4349                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
4350                 }
4351         }
4352
4353         if (!debug_locks)
4354                 print_irqtrace_events(current);
4355 #endif
4356 }
4357
4358 void lock_set_class(struct lockdep_map *lock, const char *name,
4359                     struct lock_class_key *key, unsigned int subclass,
4360                     unsigned long ip)
4361 {
4362         unsigned long flags;
4363
4364         if (unlikely(current->lockdep_recursion))
4365                 return;
4366
4367         raw_local_irq_save(flags);
4368         current->lockdep_recursion = 1;
4369         check_flags(flags);
4370         if (__lock_set_class(lock, name, key, subclass, ip))
4371                 check_chain_key(current);
4372         current->lockdep_recursion = 0;
4373         raw_local_irq_restore(flags);
4374 }
4375 EXPORT_SYMBOL_GPL(lock_set_class);
4376
4377 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4378 {
4379         unsigned long flags;
4380
4381         if (unlikely(current->lockdep_recursion))
4382                 return;
4383
4384         raw_local_irq_save(flags);
4385         current->lockdep_recursion = 1;
4386         check_flags(flags);
4387         if (__lock_downgrade(lock, ip))
4388                 check_chain_key(current);
4389         current->lockdep_recursion = 0;
4390         raw_local_irq_restore(flags);
4391 }
4392 EXPORT_SYMBOL_GPL(lock_downgrade);
4393
4394 /*
4395  * We are not always called with irqs disabled - do that here,
4396  * and also avoid lockdep recursion:
4397  */
4398 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4399                           int trylock, int read, int check,
4400                           struct lockdep_map *nest_lock, unsigned long ip)
4401 {
4402         unsigned long flags;
4403
4404         if (unlikely(current->lockdep_recursion))
4405                 return;
4406
4407         raw_local_irq_save(flags);
4408         check_flags(flags);
4409
4410         current->lockdep_recursion = 1;
4411         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
4412         __lock_acquire(lock, subclass, trylock, read, check,
4413                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
4414         current->lockdep_recursion = 0;
4415         raw_local_irq_restore(flags);
4416 }
4417 EXPORT_SYMBOL_GPL(lock_acquire);
4418
4419 void lock_release(struct lockdep_map *lock, int nested,
4420                           unsigned long ip)
4421 {
4422         unsigned long flags;
4423
4424         if (unlikely(current->lockdep_recursion))
4425                 return;
4426
4427         raw_local_irq_save(flags);
4428         check_flags(flags);
4429         current->lockdep_recursion = 1;
4430         trace_lock_release(lock, ip);
4431         if (__lock_release(lock, ip))
4432                 check_chain_key(current);
4433         current->lockdep_recursion = 0;
4434         raw_local_irq_restore(flags);
4435 }
4436 EXPORT_SYMBOL_GPL(lock_release);
4437
4438 int lock_is_held_type(const struct lockdep_map *lock, int read)
4439 {
4440         unsigned long flags;
4441         int ret = 0;
4442
4443         if (unlikely(current->lockdep_recursion))
4444                 return 1; /* avoid false negative lockdep_assert_held() */
4445
4446         raw_local_irq_save(flags);
4447         check_flags(flags);
4448
4449         current->lockdep_recursion = 1;
4450         ret = __lock_is_held(lock, read);
4451         current->lockdep_recursion = 0;
4452         raw_local_irq_restore(flags);
4453
4454         return ret;
4455 }
4456 EXPORT_SYMBOL_GPL(lock_is_held_type);
4457 NOKPROBE_SYMBOL(lock_is_held_type);
4458
4459 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
4460 {
4461         struct pin_cookie cookie = NIL_COOKIE;
4462         unsigned long flags;
4463
4464         if (unlikely(current->lockdep_recursion))
4465                 return cookie;
4466
4467         raw_local_irq_save(flags);
4468         check_flags(flags);
4469
4470         current->lockdep_recursion = 1;
4471         cookie = __lock_pin_lock(lock);
4472         current->lockdep_recursion = 0;
4473         raw_local_irq_restore(flags);
4474
4475         return cookie;
4476 }
4477 EXPORT_SYMBOL_GPL(lock_pin_lock);
4478
4479 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4480 {
4481         unsigned long flags;
4482
4483         if (unlikely(current->lockdep_recursion))
4484                 return;
4485
4486         raw_local_irq_save(flags);
4487         check_flags(flags);
4488
4489         current->lockdep_recursion = 1;
4490         __lock_repin_lock(lock, cookie);
4491         current->lockdep_recursion = 0;
4492         raw_local_irq_restore(flags);
4493 }
4494 EXPORT_SYMBOL_GPL(lock_repin_lock);
4495
4496 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4497 {
4498         unsigned long flags;
4499
4500         if (unlikely(current->lockdep_recursion))
4501                 return;
4502
4503         raw_local_irq_save(flags);
4504         check_flags(flags);
4505
4506         current->lockdep_recursion = 1;
4507         __lock_unpin_lock(lock, cookie);
4508         current->lockdep_recursion = 0;
4509         raw_local_irq_restore(flags);
4510 }
4511 EXPORT_SYMBOL_GPL(lock_unpin_lock);
4512
4513 #ifdef CONFIG_LOCK_STAT
4514 static void print_lock_contention_bug(struct task_struct *curr,
4515                                       struct lockdep_map *lock,
4516                                       unsigned long ip)
4517 {
4518         if (!debug_locks_off())
4519                 return;
4520         if (debug_locks_silent)
4521                 return;
4522
4523         pr_warn("\n");
4524         pr_warn("=================================\n");
4525         pr_warn("WARNING: bad contention detected!\n");
4526         print_kernel_ident();
4527         pr_warn("---------------------------------\n");
4528         pr_warn("%s/%d is trying to contend lock (",
4529                 curr->comm, task_pid_nr(curr));
4530         print_lockdep_cache(lock);
4531         pr_cont(") at:\n");
4532         print_ip_sym(ip);
4533         pr_warn("but there are no locks held!\n");
4534         pr_warn("\nother info that might help us debug this:\n");
4535         lockdep_print_held_locks(curr);
4536
4537         pr_warn("\nstack backtrace:\n");
4538         dump_stack();
4539 }
4540
4541 static void
4542 __lock_contended(struct lockdep_map *lock, unsigned long ip)
4543 {
4544         struct task_struct *curr = current;
4545         struct held_lock *hlock;
4546         struct lock_class_stats *stats;
4547         unsigned int depth;
4548         int i, contention_point, contending_point;
4549
4550         depth = curr->lockdep_depth;
4551         /*
4552          * Whee, we contended on this lock, except it seems we're not
4553          * actually trying to acquire anything much at all..
4554          */
4555         if (DEBUG_LOCKS_WARN_ON(!depth))
4556                 return;
4557
4558         hlock = find_held_lock(curr, lock, depth, &i);
4559         if (!hlock) {
4560                 print_lock_contention_bug(curr, lock, ip);
4561                 return;
4562         }
4563
4564         if (hlock->instance != lock)
4565                 return;
4566
4567         hlock->waittime_stamp = lockstat_clock();
4568
4569         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
4570         contending_point = lock_point(hlock_class(hlock)->contending_point,
4571                                       lock->ip);
4572
4573         stats = get_lock_stats(hlock_class(hlock));
4574         if (contention_point < LOCKSTAT_POINTS)
4575                 stats->contention_point[contention_point]++;
4576         if (contending_point < LOCKSTAT_POINTS)
4577                 stats->contending_point[contending_point]++;
4578         if (lock->cpu != smp_processor_id())
4579                 stats->bounces[bounce_contended + !!hlock->read]++;
4580 }
4581
4582 static void
4583 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
4584 {
4585         struct task_struct *curr = current;
4586         struct held_lock *hlock;
4587         struct lock_class_stats *stats;
4588         unsigned int depth;
4589         u64 now, waittime = 0;
4590         int i, cpu;
4591
4592         depth = curr->lockdep_depth;
4593         /*
4594          * Yay, we acquired ownership of this lock we didn't try to
4595          * acquire, how the heck did that happen?
4596          */
4597         if (DEBUG_LOCKS_WARN_ON(!depth))
4598                 return;
4599
4600         hlock = find_held_lock(curr, lock, depth, &i);
4601         if (!hlock) {
4602                 print_lock_contention_bug(curr, lock, _RET_IP_);
4603                 return;
4604         }
4605
4606         if (hlock->instance != lock)
4607                 return;
4608
4609         cpu = smp_processor_id();
4610         if (hlock->waittime_stamp) {
4611                 now = lockstat_clock();
4612                 waittime = now - hlock->waittime_stamp;
4613                 hlock->holdtime_stamp = now;
4614         }
4615
4616         trace_lock_acquired(lock, ip);
4617
4618         stats = get_lock_stats(hlock_class(hlock));
4619         if (waittime) {
4620                 if (hlock->read)
4621                         lock_time_inc(&stats->read_waittime, waittime);
4622                 else
4623                         lock_time_inc(&stats->write_waittime, waittime);
4624         }
4625         if (lock->cpu != cpu)
4626                 stats->bounces[bounce_acquired + !!hlock->read]++;
4627
4628         lock->cpu = cpu;
4629         lock->ip = ip;
4630 }
4631
4632 void lock_contended(struct lockdep_map *lock, unsigned long ip)
4633 {
4634         unsigned long flags;
4635
4636         if (unlikely(!lock_stat || !debug_locks))
4637                 return;
4638
4639         if (unlikely(current->lockdep_recursion))
4640                 return;
4641
4642         raw_local_irq_save(flags);
4643         check_flags(flags);
4644         current->lockdep_recursion = 1;
4645         trace_lock_contended(lock, ip);
4646         __lock_contended(lock, ip);
4647         current->lockdep_recursion = 0;
4648         raw_local_irq_restore(flags);
4649 }
4650 EXPORT_SYMBOL_GPL(lock_contended);
4651
4652 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
4653 {
4654         unsigned long flags;
4655
4656         if (unlikely(!lock_stat || !debug_locks))
4657                 return;
4658
4659         if (unlikely(current->lockdep_recursion))
4660                 return;
4661
4662         raw_local_irq_save(flags);
4663         check_flags(flags);
4664         current->lockdep_recursion = 1;
4665         __lock_acquired(lock, ip);
4666         current->lockdep_recursion = 0;
4667         raw_local_irq_restore(flags);
4668 }
4669 EXPORT_SYMBOL_GPL(lock_acquired);
4670 #endif
4671
4672 /*
4673  * Used by the testsuite, sanitize the validator state
4674  * after a simulated failure:
4675  */
4676
4677 void lockdep_reset(void)
4678 {
4679         unsigned long flags;
4680         int i;
4681
4682         raw_local_irq_save(flags);
4683         lockdep_init_task(current);
4684         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
4685         nr_hardirq_chains = 0;
4686         nr_softirq_chains = 0;
4687         nr_process_chains = 0;
4688         debug_locks = 1;
4689         for (i = 0; i < CHAINHASH_SIZE; i++)
4690                 INIT_HLIST_HEAD(chainhash_table + i);
4691         raw_local_irq_restore(flags);
4692 }
4693
4694 /* Remove a class from a lock chain. Must be called with the graph lock held. */
4695 static void remove_class_from_lock_chain(struct pending_free *pf,
4696                                          struct lock_chain *chain,
4697                                          struct lock_class *class)
4698 {
4699 #ifdef CONFIG_PROVE_LOCKING
4700         struct lock_chain *new_chain;
4701         u64 chain_key;
4702         int i;
4703
4704         for (i = chain->base; i < chain->base + chain->depth; i++) {
4705                 if (chain_hlocks[i] != class - lock_classes)
4706                         continue;
4707                 /* The code below leaks one chain_hlock[] entry. */
4708                 if (--chain->depth > 0) {
4709                         memmove(&chain_hlocks[i], &chain_hlocks[i + 1],
4710                                 (chain->base + chain->depth - i) *
4711                                 sizeof(chain_hlocks[0]));
4712                 }
4713                 /*
4714                  * Each lock class occurs at most once in a lock chain so once
4715                  * we found a match we can break out of this loop.
4716                  */
4717                 goto recalc;
4718         }
4719         /* Since the chain has not been modified, return. */
4720         return;
4721
4722 recalc:
4723         chain_key = INITIAL_CHAIN_KEY;
4724         for (i = chain->base; i < chain->base + chain->depth; i++)
4725                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
4726         if (chain->depth && chain->chain_key == chain_key)
4727                 return;
4728         /* Overwrite the chain key for concurrent RCU readers. */
4729         WRITE_ONCE(chain->chain_key, chain_key);
4730         /*
4731          * Note: calling hlist_del_rcu() from inside a
4732          * hlist_for_each_entry_rcu() loop is safe.
4733          */
4734         hlist_del_rcu(&chain->entry);
4735         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
4736         if (chain->depth == 0)
4737                 return;
4738         /*
4739          * If the modified lock chain matches an existing lock chain, drop
4740          * the modified lock chain.
4741          */
4742         if (lookup_chain_cache(chain_key))
4743                 return;
4744         new_chain = alloc_lock_chain();
4745         if (WARN_ON_ONCE(!new_chain)) {
4746                 debug_locks_off();
4747                 return;
4748         }
4749         *new_chain = *chain;
4750         hlist_add_head_rcu(&new_chain->entry, chainhashentry(chain_key));
4751 #endif
4752 }
4753
4754 /* Must be called with the graph lock held. */
4755 static void remove_class_from_lock_chains(struct pending_free *pf,
4756                                           struct lock_class *class)
4757 {
4758         struct lock_chain *chain;
4759         struct hlist_head *head;
4760         int i;
4761
4762         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
4763                 head = chainhash_table + i;
4764                 hlist_for_each_entry_rcu(chain, head, entry) {
4765                         remove_class_from_lock_chain(pf, chain, class);
4766                 }
4767         }
4768 }
4769
4770 /*
4771  * Remove all references to a lock class. The caller must hold the graph lock.
4772  */
4773 static void zap_class(struct pending_free *pf, struct lock_class *class)
4774 {
4775         struct lock_list *entry;
4776         int i;
4777
4778         WARN_ON_ONCE(!class->key);
4779
4780         /*
4781          * Remove all dependencies this lock is
4782          * involved in:
4783          */
4784         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
4785                 entry = list_entries + i;
4786                 if (entry->class != class && entry->links_to != class)
4787                         continue;
4788                 __clear_bit(i, list_entries_in_use);
4789                 nr_list_entries--;
4790                 list_del_rcu(&entry->entry);
4791         }
4792         if (list_empty(&class->locks_after) &&
4793             list_empty(&class->locks_before)) {
4794                 list_move_tail(&class->lock_entry, &pf->zapped);
4795                 hlist_del_rcu(&class->hash_entry);
4796                 WRITE_ONCE(class->key, NULL);
4797                 WRITE_ONCE(class->name, NULL);
4798                 nr_lock_classes--;
4799                 __clear_bit(class - lock_classes, lock_classes_in_use);
4800         } else {
4801                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
4802                           class->name);
4803         }
4804
4805         remove_class_from_lock_chains(pf, class);
4806 }
4807
4808 static void reinit_class(struct lock_class *class)
4809 {
4810         void *const p = class;
4811         const unsigned int offset = offsetof(struct lock_class, key);
4812
4813         WARN_ON_ONCE(!class->lock_entry.next);
4814         WARN_ON_ONCE(!list_empty(&class->locks_after));
4815         WARN_ON_ONCE(!list_empty(&class->locks_before));
4816         memset(p + offset, 0, sizeof(*class) - offset);
4817         WARN_ON_ONCE(!class->lock_entry.next);
4818         WARN_ON_ONCE(!list_empty(&class->locks_after));
4819         WARN_ON_ONCE(!list_empty(&class->locks_before));
4820 }
4821
4822 static inline int within(const void *addr, void *start, unsigned long size)
4823 {
4824         return addr >= start && addr < start + size;
4825 }
4826
4827 static bool inside_selftest(void)
4828 {
4829         return current == lockdep_selftest_task_struct;
4830 }
4831
4832 /* The caller must hold the graph lock. */
4833 static struct pending_free *get_pending_free(void)
4834 {
4835         return delayed_free.pf + delayed_free.index;
4836 }
4837
4838 static void free_zapped_rcu(struct rcu_head *cb);
4839
4840 /*
4841  * Schedule an RCU callback if no RCU callback is pending. Must be called with
4842  * the graph lock held.
4843  */
4844 static void call_rcu_zapped(struct pending_free *pf)
4845 {
4846         WARN_ON_ONCE(inside_selftest());
4847
4848         if (list_empty(&pf->zapped))
4849                 return;
4850
4851         if (delayed_free.scheduled)
4852                 return;
4853
4854         delayed_free.scheduled = true;
4855
4856         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
4857         delayed_free.index ^= 1;
4858
4859         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
4860 }
4861
4862 /* The caller must hold the graph lock. May be called from RCU context. */
4863 static void __free_zapped_classes(struct pending_free *pf)
4864 {
4865         struct lock_class *class;
4866
4867         check_data_structures();
4868
4869         list_for_each_entry(class, &pf->zapped, lock_entry)
4870                 reinit_class(class);
4871
4872         list_splice_init(&pf->zapped, &free_lock_classes);
4873
4874 #ifdef CONFIG_PROVE_LOCKING
4875         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
4876                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
4877         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
4878 #endif
4879 }
4880
4881 static void free_zapped_rcu(struct rcu_head *ch)
4882 {
4883         struct pending_free *pf;
4884         unsigned long flags;
4885
4886         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
4887                 return;
4888
4889         raw_local_irq_save(flags);
4890         arch_spin_lock(&lockdep_lock);
4891         current->lockdep_recursion = 1;
4892
4893         /* closed head */
4894         pf = delayed_free.pf + (delayed_free.index ^ 1);
4895         __free_zapped_classes(pf);
4896         delayed_free.scheduled = false;
4897
4898         /*
4899          * If there's anything on the open list, close and start a new callback.
4900          */
4901         call_rcu_zapped(delayed_free.pf + delayed_free.index);
4902
4903         current->lockdep_recursion = 0;
4904         arch_spin_unlock(&lockdep_lock);
4905         raw_local_irq_restore(flags);
4906 }
4907
4908 /*
4909  * Remove all lock classes from the class hash table and from the
4910  * all_lock_classes list whose key or name is in the address range [start,
4911  * start + size). Move these lock classes to the zapped_classes list. Must
4912  * be called with the graph lock held.
4913  */
4914 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
4915                                      unsigned long size)
4916 {
4917         struct lock_class *class;
4918         struct hlist_head *head;
4919         int i;
4920
4921         /* Unhash all classes that were created by a module. */
4922         for (i = 0; i < CLASSHASH_SIZE; i++) {
4923                 head = classhash_table + i;
4924                 hlist_for_each_entry_rcu(class, head, hash_entry) {
4925                         if (!within(class->key, start, size) &&
4926                             !within(class->name, start, size))
4927                                 continue;
4928                         zap_class(pf, class);
4929                 }
4930         }
4931 }
4932
4933 /*
4934  * Used in module.c to remove lock classes from memory that is going to be
4935  * freed; and possibly re-used by other modules.
4936  *
4937  * We will have had one synchronize_rcu() before getting here, so we're
4938  * guaranteed nobody will look up these exact classes -- they're properly dead
4939  * but still allocated.
4940  */
4941 static void lockdep_free_key_range_reg(void *start, unsigned long size)
4942 {
4943         struct pending_free *pf;
4944         unsigned long flags;
4945
4946         init_data_structures_once();
4947
4948         raw_local_irq_save(flags);
4949         arch_spin_lock(&lockdep_lock);
4950         current->lockdep_recursion = 1;
4951         pf = get_pending_free();
4952         __lockdep_free_key_range(pf, start, size);
4953         call_rcu_zapped(pf);
4954         current->lockdep_recursion = 0;
4955         arch_spin_unlock(&lockdep_lock);
4956         raw_local_irq_restore(flags);
4957
4958         /*
4959          * Wait for any possible iterators from look_up_lock_class() to pass
4960          * before continuing to free the memory they refer to.
4961          */
4962         synchronize_rcu();
4963 }
4964
4965 /*
4966  * Free all lockdep keys in the range [start, start+size). Does not sleep.
4967  * Ignores debug_locks. Must only be used by the lockdep selftests.
4968  */
4969 static void lockdep_free_key_range_imm(void *start, unsigned long size)
4970 {
4971         struct pending_free *pf = delayed_free.pf;
4972         unsigned long flags;
4973
4974         init_data_structures_once();
4975
4976         raw_local_irq_save(flags);
4977         arch_spin_lock(&lockdep_lock);
4978         __lockdep_free_key_range(pf, start, size);
4979         __free_zapped_classes(pf);
4980         arch_spin_unlock(&lockdep_lock);
4981         raw_local_irq_restore(flags);
4982 }
4983
4984 void lockdep_free_key_range(void *start, unsigned long size)
4985 {
4986         init_data_structures_once();
4987
4988         if (inside_selftest())
4989                 lockdep_free_key_range_imm(start, size);
4990         else
4991                 lockdep_free_key_range_reg(start, size);
4992 }
4993
4994 /*
4995  * Check whether any element of the @lock->class_cache[] array refers to a
4996  * registered lock class. The caller must hold either the graph lock or the
4997  * RCU read lock.
4998  */
4999 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5000 {
5001         struct lock_class *class;
5002         struct hlist_head *head;
5003         int i, j;
5004
5005         for (i = 0; i < CLASSHASH_SIZE; i++) {
5006                 head = classhash_table + i;
5007                 hlist_for_each_entry_rcu(class, head, hash_entry) {
5008                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
5009                                 if (lock->class_cache[j] == class)
5010                                         return true;
5011                 }
5012         }
5013         return false;
5014 }
5015
5016 /* The caller must hold the graph lock. Does not sleep. */
5017 static void __lockdep_reset_lock(struct pending_free *pf,
5018                                  struct lockdep_map *lock)
5019 {
5020         struct lock_class *class;
5021         int j;
5022
5023         /*
5024          * Remove all classes this lock might have:
5025          */
5026         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
5027                 /*
5028                  * If the class exists we look it up and zap it:
5029                  */
5030                 class = look_up_lock_class(lock, j);
5031                 if (class)
5032                         zap_class(pf, class);
5033         }
5034         /*
5035          * Debug check: in the end all mapped classes should
5036          * be gone.
5037          */
5038         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
5039                 debug_locks_off();
5040 }
5041
5042 /*
5043  * Remove all information lockdep has about a lock if debug_locks == 1. Free
5044  * released data structures from RCU context.
5045  */
5046 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
5047 {
5048         struct pending_free *pf;
5049         unsigned long flags;
5050         int locked;
5051
5052         raw_local_irq_save(flags);
5053         locked = graph_lock();
5054         if (!locked)
5055                 goto out_irq;
5056
5057         pf = get_pending_free();
5058         __lockdep_reset_lock(pf, lock);
5059         call_rcu_zapped(pf);
5060
5061         graph_unlock();
5062 out_irq:
5063         raw_local_irq_restore(flags);
5064 }
5065
5066 /*
5067  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
5068  * lockdep selftests.
5069  */
5070 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
5071 {
5072         struct pending_free *pf = delayed_free.pf;
5073         unsigned long flags;
5074
5075         raw_local_irq_save(flags);
5076         arch_spin_lock(&lockdep_lock);
5077         __lockdep_reset_lock(pf, lock);
5078         __free_zapped_classes(pf);
5079         arch_spin_unlock(&lockdep_lock);
5080         raw_local_irq_restore(flags);
5081 }
5082
5083 void lockdep_reset_lock(struct lockdep_map *lock)
5084 {
5085         init_data_structures_once();
5086
5087         if (inside_selftest())
5088                 lockdep_reset_lock_imm(lock);
5089         else
5090                 lockdep_reset_lock_reg(lock);
5091 }
5092
5093 /* Unregister a dynamically allocated key. */
5094 void lockdep_unregister_key(struct lock_class_key *key)
5095 {
5096         struct hlist_head *hash_head = keyhashentry(key);
5097         struct lock_class_key *k;
5098         struct pending_free *pf;
5099         unsigned long flags;
5100         bool found = false;
5101
5102         might_sleep();
5103
5104         if (WARN_ON_ONCE(static_obj(key)))
5105                 return;
5106
5107         raw_local_irq_save(flags);
5108         if (!graph_lock())
5109                 goto out_irq;
5110
5111         pf = get_pending_free();
5112         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
5113                 if (k == key) {
5114                         hlist_del_rcu(&k->hash_entry);
5115                         found = true;
5116                         break;
5117                 }
5118         }
5119         WARN_ON_ONCE(!found);
5120         __lockdep_free_key_range(pf, key, 1);
5121         call_rcu_zapped(pf);
5122         graph_unlock();
5123 out_irq:
5124         raw_local_irq_restore(flags);
5125
5126         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
5127         synchronize_rcu();
5128 }
5129 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
5130
5131 void __init lockdep_init(void)
5132 {
5133         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
5134
5135         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
5136         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
5137         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
5138         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
5139         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
5140         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
5141         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
5142
5143         printk(" memory used by lock dependency info: %zu kB\n",
5144                (sizeof(lock_classes) +
5145                 sizeof(lock_classes_in_use) +
5146                 sizeof(classhash_table) +
5147                 sizeof(list_entries) +
5148                 sizeof(list_entries_in_use) +
5149                 sizeof(chainhash_table) +
5150                 sizeof(delayed_free)
5151 #ifdef CONFIG_PROVE_LOCKING
5152                 + sizeof(lock_cq)
5153                 + sizeof(lock_chains)
5154                 + sizeof(lock_chains_in_use)
5155                 + sizeof(chain_hlocks)
5156 #endif
5157                 ) / 1024
5158                 );
5159
5160         printk(" per task-struct memory footprint: %zu bytes\n",
5161                sizeof(((struct task_struct *)NULL)->held_locks));
5162 }
5163
5164 static void
5165 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
5166                      const void *mem_to, struct held_lock *hlock)
5167 {
5168         if (!debug_locks_off())
5169                 return;
5170         if (debug_locks_silent)
5171                 return;
5172
5173         pr_warn("\n");
5174         pr_warn("=========================\n");
5175         pr_warn("WARNING: held lock freed!\n");
5176         print_kernel_ident();
5177         pr_warn("-------------------------\n");
5178         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
5179                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
5180         print_lock(hlock);
5181         lockdep_print_held_locks(curr);
5182
5183         pr_warn("\nstack backtrace:\n");
5184         dump_stack();
5185 }
5186
5187 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
5188                                 const void* lock_from, unsigned long lock_len)
5189 {
5190         return lock_from + lock_len <= mem_from ||
5191                 mem_from + mem_len <= lock_from;
5192 }
5193
5194 /*
5195  * Called when kernel memory is freed (or unmapped), or if a lock
5196  * is destroyed or reinitialized - this code checks whether there is
5197  * any held lock in the memory range of <from> to <to>:
5198  */
5199 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
5200 {
5201         struct task_struct *curr = current;
5202         struct held_lock *hlock;
5203         unsigned long flags;
5204         int i;
5205
5206         if (unlikely(!debug_locks))
5207                 return;
5208
5209         raw_local_irq_save(flags);
5210         for (i = 0; i < curr->lockdep_depth; i++) {
5211                 hlock = curr->held_locks + i;
5212
5213                 if (not_in_range(mem_from, mem_len, hlock->instance,
5214                                         sizeof(*hlock->instance)))
5215                         continue;
5216
5217                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
5218                 break;
5219         }
5220         raw_local_irq_restore(flags);
5221 }
5222 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
5223
5224 static void print_held_locks_bug(void)
5225 {
5226         if (!debug_locks_off())
5227                 return;
5228         if (debug_locks_silent)
5229                 return;
5230
5231         pr_warn("\n");
5232         pr_warn("====================================\n");
5233         pr_warn("WARNING: %s/%d still has locks held!\n",
5234                current->comm, task_pid_nr(current));
5235         print_kernel_ident();
5236         pr_warn("------------------------------------\n");
5237         lockdep_print_held_locks(current);
5238         pr_warn("\nstack backtrace:\n");
5239         dump_stack();
5240 }
5241
5242 void debug_check_no_locks_held(void)
5243 {
5244         if (unlikely(current->lockdep_depth > 0))
5245                 print_held_locks_bug();
5246 }
5247 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
5248
5249 #ifdef __KERNEL__
5250 void debug_show_all_locks(void)
5251 {
5252         struct task_struct *g, *p;
5253
5254         if (unlikely(!debug_locks)) {
5255                 pr_warn("INFO: lockdep is turned off.\n");
5256                 return;
5257         }
5258         pr_warn("\nShowing all locks held in the system:\n");
5259
5260         rcu_read_lock();
5261         for_each_process_thread(g, p) {
5262                 if (!p->lockdep_depth)
5263                         continue;
5264                 lockdep_print_held_locks(p);
5265                 touch_nmi_watchdog();
5266                 touch_all_softlockup_watchdogs();
5267         }
5268         rcu_read_unlock();
5269
5270         pr_warn("\n");
5271         pr_warn("=============================================\n\n");
5272 }
5273 EXPORT_SYMBOL_GPL(debug_show_all_locks);
5274 #endif
5275
5276 /*
5277  * Careful: only use this function if you are sure that
5278  * the task cannot run in parallel!
5279  */
5280 void debug_show_held_locks(struct task_struct *task)
5281 {
5282         if (unlikely(!debug_locks)) {
5283                 printk("INFO: lockdep is turned off.\n");
5284                 return;
5285         }
5286         lockdep_print_held_locks(task);
5287 }
5288 EXPORT_SYMBOL_GPL(debug_show_held_locks);
5289
5290 asmlinkage __visible void lockdep_sys_exit(void)
5291 {
5292         struct task_struct *curr = current;
5293
5294         if (unlikely(curr->lockdep_depth)) {
5295                 if (!debug_locks_off())
5296                         return;
5297                 pr_warn("\n");
5298                 pr_warn("================================================\n");
5299                 pr_warn("WARNING: lock held when returning to user space!\n");
5300                 print_kernel_ident();
5301                 pr_warn("------------------------------------------------\n");
5302                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
5303                                 curr->comm, curr->pid);
5304                 lockdep_print_held_locks(curr);
5305         }
5306
5307         /*
5308          * The lock history for each syscall should be independent. So wipe the
5309          * slate clean on return to userspace.
5310          */
5311         lockdep_invariant_state(false);
5312 }
5313
5314 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
5315 {
5316         struct task_struct *curr = current;
5317
5318         /* Note: the following can be executed concurrently, so be careful. */
5319         pr_warn("\n");
5320         pr_warn("=============================\n");
5321         pr_warn("WARNING: suspicious RCU usage\n");
5322         print_kernel_ident();
5323         pr_warn("-----------------------------\n");
5324         pr_warn("%s:%d %s!\n", file, line, s);
5325         pr_warn("\nother info that might help us debug this:\n\n");
5326         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
5327                !rcu_lockdep_current_cpu_online()
5328                         ? "RCU used illegally from offline CPU!\n"
5329                         : !rcu_is_watching()
5330                                 ? "RCU used illegally from idle CPU!\n"
5331                                 : "",
5332                rcu_scheduler_active, debug_locks);
5333
5334         /*
5335          * If a CPU is in the RCU-free window in idle (ie: in the section
5336          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
5337          * considers that CPU to be in an "extended quiescent state",
5338          * which means that RCU will be completely ignoring that CPU.
5339          * Therefore, rcu_read_lock() and friends have absolutely no
5340          * effect on a CPU running in that state. In other words, even if
5341          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
5342          * delete data structures out from under it.  RCU really has no
5343          * choice here: we need to keep an RCU-free window in idle where
5344          * the CPU may possibly enter into low power mode. This way we can
5345          * notice an extended quiescent state to other CPUs that started a grace
5346          * period. Otherwise we would delay any grace period as long as we run
5347          * in the idle task.
5348          *
5349          * So complain bitterly if someone does call rcu_read_lock(),
5350          * rcu_read_lock_bh() and so on from extended quiescent states.
5351          */
5352         if (!rcu_is_watching())
5353                 pr_warn("RCU used illegally from extended quiescent state!\n");
5354
5355         lockdep_print_held_locks(curr);
5356         pr_warn("\nstack backtrace:\n");
5357         dump_stack();
5358 }
5359 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);