Merge remote-tracking branch 'asoc/fix/rt286' into asoc-linus
[sfrench/cifs-2.6.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72         raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76                                         unsigned int __unused)
77 {
78         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83         return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97         struct list_head list;
98         kprobe_opcode_t *insns;         /* Page of instruction slots */
99         struct kprobe_insn_cache *cache;
100         int nused;
101         int ngarbage;
102         char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
106         (offsetof(struct kprobe_insn_page, slot_used) + \
107          (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115         SLOT_CLEAN = 0,
116         SLOT_DIRTY = 1,
117         SLOT_USED = 2,
118 };
119
120 static void *alloc_insn_page(void)
121 {
122         return module_alloc(PAGE_SIZE);
123 }
124
125 static void free_insn_page(void *page)
126 {
127         module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132         .alloc = alloc_insn_page,
133         .free = free_insn_page,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156                         for (i = 0; i < slots_per_page(c); i++) {
157                                 if (kip->slot_used[i] == SLOT_CLEAN) {
158                                         kip->slot_used[i] = SLOT_USED;
159                                         kip->nused++;
160                                         slot = kip->insns + (i * c->insn_size);
161                                         rcu_read_unlock();
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170         rcu_read_unlock();
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 goto out;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = c->alloc();
187         if (!kip->insns) {
188                 kfree(kip);
189                 goto out;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         kip->cache = c;
197         list_add_rcu(&kip->list, &c->pages);
198         slot = kip->insns;
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         list_del_rcu(&kip->list);
218                         synchronize_rcu();
219                         kip->cache->free(kip->insns);
220                         kfree(kip);
221                 }
222                 return 1;
223         }
224         return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229         struct kprobe_insn_page *kip, *next;
230
231         /* Ensure no-one is interrupted on the garbages */
232         synchronize_sched();
233
234         list_for_each_entry_safe(kip, next, &c->pages, list) {
235                 int i;
236                 if (kip->ngarbage == 0)
237                         continue;
238                 kip->ngarbage = 0;      /* we will collect all garbages */
239                 for (i = 0; i < slots_per_page(c); i++) {
240                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241                                 break;
242                 }
243         }
244         c->nr_garbage = 0;
245         return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249                       kprobe_opcode_t *slot, int dirty)
250 {
251         struct kprobe_insn_page *kip;
252         long idx;
253
254         mutex_lock(&c->mutex);
255         rcu_read_lock();
256         list_for_each_entry_rcu(kip, &c->pages, list) {
257                 idx = ((long)slot - (long)kip->insns) /
258                         (c->insn_size * sizeof(kprobe_opcode_t));
259                 if (idx >= 0 && idx < slots_per_page(c))
260                         goto out;
261         }
262         /* Could not find this slot. */
263         WARN_ON(1);
264         kip = NULL;
265 out:
266         rcu_read_unlock();
267         /* Mark and sweep: this may sleep */
268         if (kip) {
269                 /* Check double free */
270                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271                 if (dirty) {
272                         kip->slot_used[idx] = SLOT_DIRTY;
273                         kip->ngarbage++;
274                         if (++c->nr_garbage > slots_per_page(c))
275                                 collect_garbage_slots(c);
276                 } else {
277                         collect_one_slot(kip, idx);
278                 }
279         }
280         mutex_unlock(&c->mutex);
281 }
282
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290         struct kprobe_insn_page *kip;
291         bool ret = false;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(kip, &c->pages, list) {
295                 if (addr >= (unsigned long)kip->insns &&
296                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
297                         ret = true;
298                         break;
299                 }
300         }
301         rcu_read_unlock();
302
303         return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310         .alloc = alloc_insn_page,
311         .free = free_insn_page,
312         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313         /* .insn_size is initialized later */
314         .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322         __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327         __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331  * This routine is called either:
332  *      - under the kprobe_mutex - during kprobe_[un]register()
333  *                              OR
334  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338         struct hlist_head *head;
339         struct kprobe *p;
340
341         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342         hlist_for_each_entry_rcu(p, head, hlist) {
343                 if (p->addr == addr)
344                         return p;
345         }
346
347         return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356         return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363                list_empty(&p->list);
364 }
365
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385         struct kprobe *kp;
386
387         list_for_each_entry_rcu(kp, &p->list, list) {
388                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389                         set_kprobe_instance(kp);
390                         kp->pre_handler(kp, regs);
391                 }
392                 reset_kprobe_instance();
393         }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400         struct optimized_kprobe *op;
401
402         op = container_of(p, struct optimized_kprobe, kp);
403         arch_remove_optimized_kprobe(op);
404         arch_remove_kprobe(p);
405         kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         if (kprobe_aggrprobe(p)) {
414                 op = container_of(p, struct optimized_kprobe, kp);
415                 return arch_prepared_optinsn(&op->optinsn);
416         }
417
418         return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424         struct optimized_kprobe *op;
425
426         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427         if (!kprobe_aggrprobe(p))
428                 return kprobe_disabled(p);
429
430         op = container_of(p, struct optimized_kprobe, kp);
431
432         return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438         struct optimized_kprobe *op;
439
440         if (kprobe_aggrprobe(p)) {
441                 op = container_of(p, struct optimized_kprobe, kp);
442                 if (!list_empty(&op->list))
443                         return 1;
444         }
445         return 0;
446 }
447
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454         int i;
455         struct kprobe *p = NULL;
456         struct optimized_kprobe *op;
457
458         /* Don't check i == 0, since that is a breakpoint case. */
459         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460                 p = get_kprobe((void *)(addr - i));
461
462         if (p && kprobe_optready(p)) {
463                 op = container_of(p, struct optimized_kprobe, kp);
464                 if (arch_within_optimized_kprobe(op, addr))
465                         return p;
466         }
467
468         return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486         /* Optimization never be done when disarmed */
487         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488             list_empty(&optimizing_list))
489                 return;
490
491         /*
492          * The optimization/unoptimization refers online_cpus via
493          * stop_machine() and cpu-hotplug modifies online_cpus.
494          * And same time, text_mutex will be held in cpu-hotplug and here.
495          * This combination can cause a deadlock (cpu-hotplug try to lock
496          * text_mutex but stop_machine can not be done because online_cpus
497          * has been changed)
498          * To avoid this deadlock, we need to call get_online_cpus()
499          * for preventing cpu-hotplug outside of text_mutex locking.
500          */
501         get_online_cpus();
502         mutex_lock(&text_mutex);
503         arch_optimize_kprobes(&optimizing_list);
504         mutex_unlock(&text_mutex);
505         put_online_cpus();
506 }
507
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514         struct optimized_kprobe *op, *tmp;
515
516         /* Unoptimization must be done anytime */
517         if (list_empty(&unoptimizing_list))
518                 return;
519
520         /* Ditto to do_optimize_kprobes */
521         get_online_cpus();
522         mutex_lock(&text_mutex);
523         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524         /* Loop free_list for disarming */
525         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526                 /* Disarm probes if marked disabled */
527                 if (kprobe_disabled(&op->kp))
528                         arch_disarm_kprobe(&op->kp);
529                 if (kprobe_unused(&op->kp)) {
530                         /*
531                          * Remove unused probes from hash list. After waiting
532                          * for synchronization, these probes are reclaimed.
533                          * (reclaiming is done by do_free_cleaned_kprobes.)
534                          */
535                         hlist_del_rcu(&op->kp.hlist);
536                 } else
537                         list_del_init(&op->list);
538         }
539         mutex_unlock(&text_mutex);
540         put_online_cpus();
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546         struct optimized_kprobe *op, *tmp;
547
548         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549                 BUG_ON(!kprobe_unused(&op->kp));
550                 list_del_init(&op->list);
551                 free_aggr_kprobe(&op->kp);
552         }
553 }
554
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564         mutex_lock(&kprobe_mutex);
565         /* Lock modules while optimizing kprobes */
566         mutex_lock(&module_mutex);
567
568         /*
569          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570          * kprobes before waiting for quiesence period.
571          */
572         do_unoptimize_kprobes();
573
574         /*
575          * Step 2: Wait for quiesence period to ensure all running interrupts
576          * are done. Because optprobe may modify multiple instructions
577          * there is a chance that Nth instruction is interrupted. In that
578          * case, running interrupt can return to 2nd-Nth byte of jump
579          * instruction. This wait is for avoiding it.
580          */
581         synchronize_sched();
582
583         /* Step 3: Optimize kprobes after quiesence period */
584         do_optimize_kprobes();
585
586         /* Step 4: Free cleaned kprobes after quiesence period */
587         do_free_cleaned_kprobes();
588
589         mutex_unlock(&module_mutex);
590         mutex_unlock(&kprobe_mutex);
591
592         /* Step 5: Kick optimizer again if needed */
593         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594                 kick_kprobe_optimizer();
595 }
596
597 /* Wait for completing optimization and unoptimization */
598 void wait_for_kprobe_optimizer(void)
599 {
600         mutex_lock(&kprobe_mutex);
601
602         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
603                 mutex_unlock(&kprobe_mutex);
604
605                 /* this will also make optimizing_work execute immmediately */
606                 flush_delayed_work(&optimizing_work);
607                 /* @optimizing_work might not have been queued yet, relax */
608                 cpu_relax();
609
610                 mutex_lock(&kprobe_mutex);
611         }
612
613         mutex_unlock(&kprobe_mutex);
614 }
615
616 /* Optimize kprobe if p is ready to be optimized */
617 static void optimize_kprobe(struct kprobe *p)
618 {
619         struct optimized_kprobe *op;
620
621         /* Check if the kprobe is disabled or not ready for optimization. */
622         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
623             (kprobe_disabled(p) || kprobes_all_disarmed))
624                 return;
625
626         /* Both of break_handler and post_handler are not supported. */
627         if (p->break_handler || p->post_handler)
628                 return;
629
630         op = container_of(p, struct optimized_kprobe, kp);
631
632         /* Check there is no other kprobes at the optimized instructions */
633         if (arch_check_optimized_kprobe(op) < 0)
634                 return;
635
636         /* Check if it is already optimized. */
637         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
638                 return;
639         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
640
641         if (!list_empty(&op->list))
642                 /* This is under unoptimizing. Just dequeue the probe */
643                 list_del_init(&op->list);
644         else {
645                 list_add(&op->list, &optimizing_list);
646                 kick_kprobe_optimizer();
647         }
648 }
649
650 /* Short cut to direct unoptimizing */
651 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
652 {
653         get_online_cpus();
654         arch_unoptimize_kprobe(op);
655         put_online_cpus();
656         if (kprobe_disabled(&op->kp))
657                 arch_disarm_kprobe(&op->kp);
658 }
659
660 /* Unoptimize a kprobe if p is optimized */
661 static void unoptimize_kprobe(struct kprobe *p, bool force)
662 {
663         struct optimized_kprobe *op;
664
665         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
666                 return; /* This is not an optprobe nor optimized */
667
668         op = container_of(p, struct optimized_kprobe, kp);
669         if (!kprobe_optimized(p)) {
670                 /* Unoptimized or unoptimizing case */
671                 if (force && !list_empty(&op->list)) {
672                         /*
673                          * Only if this is unoptimizing kprobe and forced,
674                          * forcibly unoptimize it. (No need to unoptimize
675                          * unoptimized kprobe again :)
676                          */
677                         list_del_init(&op->list);
678                         force_unoptimize_kprobe(op);
679                 }
680                 return;
681         }
682
683         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
684         if (!list_empty(&op->list)) {
685                 /* Dequeue from the optimization queue */
686                 list_del_init(&op->list);
687                 return;
688         }
689         /* Optimized kprobe case */
690         if (force)
691                 /* Forcibly update the code: this is a special case */
692                 force_unoptimize_kprobe(op);
693         else {
694                 list_add(&op->list, &unoptimizing_list);
695                 kick_kprobe_optimizer();
696         }
697 }
698
699 /* Cancel unoptimizing for reusing */
700 static void reuse_unused_kprobe(struct kprobe *ap)
701 {
702         struct optimized_kprobe *op;
703
704         BUG_ON(!kprobe_unused(ap));
705         /*
706          * Unused kprobe MUST be on the way of delayed unoptimizing (means
707          * there is still a relative jump) and disabled.
708          */
709         op = container_of(ap, struct optimized_kprobe, kp);
710         if (unlikely(list_empty(&op->list)))
711                 printk(KERN_WARNING "Warning: found a stray unused "
712                         "aggrprobe@%p\n", ap->addr);
713         /* Enable the probe again */
714         ap->flags &= ~KPROBE_FLAG_DISABLED;
715         /* Optimize it again (remove from op->list) */
716         BUG_ON(!kprobe_optready(ap));
717         optimize_kprobe(ap);
718 }
719
720 /* Remove optimized instructions */
721 static void kill_optimized_kprobe(struct kprobe *p)
722 {
723         struct optimized_kprobe *op;
724
725         op = container_of(p, struct optimized_kprobe, kp);
726         if (!list_empty(&op->list))
727                 /* Dequeue from the (un)optimization queue */
728                 list_del_init(&op->list);
729         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
730
731         if (kprobe_unused(p)) {
732                 /* Enqueue if it is unused */
733                 list_add(&op->list, &freeing_list);
734                 /*
735                  * Remove unused probes from the hash list. After waiting
736                  * for synchronization, this probe is reclaimed.
737                  * (reclaiming is done by do_free_cleaned_kprobes().)
738                  */
739                 hlist_del_rcu(&op->kp.hlist);
740         }
741
742         /* Don't touch the code, because it is already freed. */
743         arch_remove_optimized_kprobe(op);
744 }
745
746 static inline
747 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
748 {
749         if (!kprobe_ftrace(p))
750                 arch_prepare_optimized_kprobe(op, p);
751 }
752
753 /* Try to prepare optimized instructions */
754 static void prepare_optimized_kprobe(struct kprobe *p)
755 {
756         struct optimized_kprobe *op;
757
758         op = container_of(p, struct optimized_kprobe, kp);
759         __prepare_optimized_kprobe(op, p);
760 }
761
762 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
763 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
764 {
765         struct optimized_kprobe *op;
766
767         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
768         if (!op)
769                 return NULL;
770
771         INIT_LIST_HEAD(&op->list);
772         op->kp.addr = p->addr;
773         __prepare_optimized_kprobe(op, p);
774
775         return &op->kp;
776 }
777
778 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
779
780 /*
781  * Prepare an optimized_kprobe and optimize it
782  * NOTE: p must be a normal registered kprobe
783  */
784 static void try_to_optimize_kprobe(struct kprobe *p)
785 {
786         struct kprobe *ap;
787         struct optimized_kprobe *op;
788
789         /* Impossible to optimize ftrace-based kprobe */
790         if (kprobe_ftrace(p))
791                 return;
792
793         /* For preparing optimization, jump_label_text_reserved() is called */
794         jump_label_lock();
795         mutex_lock(&text_mutex);
796
797         ap = alloc_aggr_kprobe(p);
798         if (!ap)
799                 goto out;
800
801         op = container_of(ap, struct optimized_kprobe, kp);
802         if (!arch_prepared_optinsn(&op->optinsn)) {
803                 /* If failed to setup optimizing, fallback to kprobe */
804                 arch_remove_optimized_kprobe(op);
805                 kfree(op);
806                 goto out;
807         }
808
809         init_aggr_kprobe(ap, p);
810         optimize_kprobe(ap);    /* This just kicks optimizer thread */
811
812 out:
813         mutex_unlock(&text_mutex);
814         jump_label_unlock();
815 }
816
817 #ifdef CONFIG_SYSCTL
818 static void optimize_all_kprobes(void)
819 {
820         struct hlist_head *head;
821         struct kprobe *p;
822         unsigned int i;
823
824         mutex_lock(&kprobe_mutex);
825         /* If optimization is already allowed, just return */
826         if (kprobes_allow_optimization)
827                 goto out;
828
829         kprobes_allow_optimization = true;
830         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
831                 head = &kprobe_table[i];
832                 hlist_for_each_entry_rcu(p, head, hlist)
833                         if (!kprobe_disabled(p))
834                                 optimize_kprobe(p);
835         }
836         printk(KERN_INFO "Kprobes globally optimized\n");
837 out:
838         mutex_unlock(&kprobe_mutex);
839 }
840
841 static void unoptimize_all_kprobes(void)
842 {
843         struct hlist_head *head;
844         struct kprobe *p;
845         unsigned int i;
846
847         mutex_lock(&kprobe_mutex);
848         /* If optimization is already prohibited, just return */
849         if (!kprobes_allow_optimization) {
850                 mutex_unlock(&kprobe_mutex);
851                 return;
852         }
853
854         kprobes_allow_optimization = false;
855         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
856                 head = &kprobe_table[i];
857                 hlist_for_each_entry_rcu(p, head, hlist) {
858                         if (!kprobe_disabled(p))
859                                 unoptimize_kprobe(p, false);
860                 }
861         }
862         mutex_unlock(&kprobe_mutex);
863
864         /* Wait for unoptimizing completion */
865         wait_for_kprobe_optimizer();
866         printk(KERN_INFO "Kprobes globally unoptimized\n");
867 }
868
869 static DEFINE_MUTEX(kprobe_sysctl_mutex);
870 int sysctl_kprobes_optimization;
871 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
872                                       void __user *buffer, size_t *length,
873                                       loff_t *ppos)
874 {
875         int ret;
876
877         mutex_lock(&kprobe_sysctl_mutex);
878         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
879         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
880
881         if (sysctl_kprobes_optimization)
882                 optimize_all_kprobes();
883         else
884                 unoptimize_all_kprobes();
885         mutex_unlock(&kprobe_sysctl_mutex);
886
887         return ret;
888 }
889 #endif /* CONFIG_SYSCTL */
890
891 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
892 static void __arm_kprobe(struct kprobe *p)
893 {
894         struct kprobe *_p;
895
896         /* Check collision with other optimized kprobes */
897         _p = get_optimized_kprobe((unsigned long)p->addr);
898         if (unlikely(_p))
899                 /* Fallback to unoptimized kprobe */
900                 unoptimize_kprobe(_p, true);
901
902         arch_arm_kprobe(p);
903         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
904 }
905
906 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
907 static void __disarm_kprobe(struct kprobe *p, bool reopt)
908 {
909         struct kprobe *_p;
910
911         /* Try to unoptimize */
912         unoptimize_kprobe(p, kprobes_all_disarmed);
913
914         if (!kprobe_queued(p)) {
915                 arch_disarm_kprobe(p);
916                 /* If another kprobe was blocked, optimize it. */
917                 _p = get_optimized_kprobe((unsigned long)p->addr);
918                 if (unlikely(_p) && reopt)
919                         optimize_kprobe(_p);
920         }
921         /* TODO: reoptimize others after unoptimized this probe */
922 }
923
924 #else /* !CONFIG_OPTPROBES */
925
926 #define optimize_kprobe(p)                      do {} while (0)
927 #define unoptimize_kprobe(p, f)                 do {} while (0)
928 #define kill_optimized_kprobe(p)                do {} while (0)
929 #define prepare_optimized_kprobe(p)             do {} while (0)
930 #define try_to_optimize_kprobe(p)               do {} while (0)
931 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
932 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
933 #define kprobe_disarmed(p)                      kprobe_disabled(p)
934 #define wait_for_kprobe_optimizer()             do {} while (0)
935
936 /* There should be no unused kprobes can be reused without optimization */
937 static void reuse_unused_kprobe(struct kprobe *ap)
938 {
939         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
940         BUG_ON(kprobe_unused(ap));
941 }
942
943 static void free_aggr_kprobe(struct kprobe *p)
944 {
945         arch_remove_kprobe(p);
946         kfree(p);
947 }
948
949 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
950 {
951         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
952 }
953 #endif /* CONFIG_OPTPROBES */
954
955 #ifdef CONFIG_KPROBES_ON_FTRACE
956 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
957         .func = kprobe_ftrace_handler,
958         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
959 };
960 static int kprobe_ftrace_enabled;
961
962 /* Must ensure p->addr is really on ftrace */
963 static int prepare_kprobe(struct kprobe *p)
964 {
965         if (!kprobe_ftrace(p))
966                 return arch_prepare_kprobe(p);
967
968         return arch_prepare_kprobe_ftrace(p);
969 }
970
971 /* Caller must lock kprobe_mutex */
972 static void arm_kprobe_ftrace(struct kprobe *p)
973 {
974         int ret;
975
976         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
977                                    (unsigned long)p->addr, 0, 0);
978         WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
979         kprobe_ftrace_enabled++;
980         if (kprobe_ftrace_enabled == 1) {
981                 ret = register_ftrace_function(&kprobe_ftrace_ops);
982                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
983         }
984 }
985
986 /* Caller must lock kprobe_mutex */
987 static void disarm_kprobe_ftrace(struct kprobe *p)
988 {
989         int ret;
990
991         kprobe_ftrace_enabled--;
992         if (kprobe_ftrace_enabled == 0) {
993                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
994                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
995         }
996         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
997                            (unsigned long)p->addr, 1, 0);
998         WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
999 }
1000 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1001 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1002 #define arm_kprobe_ftrace(p)    do {} while (0)
1003 #define disarm_kprobe_ftrace(p) do {} while (0)
1004 #endif
1005
1006 /* Arm a kprobe with text_mutex */
1007 static void arm_kprobe(struct kprobe *kp)
1008 {
1009         if (unlikely(kprobe_ftrace(kp))) {
1010                 arm_kprobe_ftrace(kp);
1011                 return;
1012         }
1013         /*
1014          * Here, since __arm_kprobe() doesn't use stop_machine(),
1015          * this doesn't cause deadlock on text_mutex. So, we don't
1016          * need get_online_cpus().
1017          */
1018         mutex_lock(&text_mutex);
1019         __arm_kprobe(kp);
1020         mutex_unlock(&text_mutex);
1021 }
1022
1023 /* Disarm a kprobe with text_mutex */
1024 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1025 {
1026         if (unlikely(kprobe_ftrace(kp))) {
1027                 disarm_kprobe_ftrace(kp);
1028                 return;
1029         }
1030         /* Ditto */
1031         mutex_lock(&text_mutex);
1032         __disarm_kprobe(kp, reopt);
1033         mutex_unlock(&text_mutex);
1034 }
1035
1036 /*
1037  * Aggregate handlers for multiple kprobes support - these handlers
1038  * take care of invoking the individual kprobe handlers on p->list
1039  */
1040 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1041 {
1042         struct kprobe *kp;
1043
1044         list_for_each_entry_rcu(kp, &p->list, list) {
1045                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1046                         set_kprobe_instance(kp);
1047                         if (kp->pre_handler(kp, regs))
1048                                 return 1;
1049                 }
1050                 reset_kprobe_instance();
1051         }
1052         return 0;
1053 }
1054 NOKPROBE_SYMBOL(aggr_pre_handler);
1055
1056 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1057                               unsigned long flags)
1058 {
1059         struct kprobe *kp;
1060
1061         list_for_each_entry_rcu(kp, &p->list, list) {
1062                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1063                         set_kprobe_instance(kp);
1064                         kp->post_handler(kp, regs, flags);
1065                         reset_kprobe_instance();
1066                 }
1067         }
1068 }
1069 NOKPROBE_SYMBOL(aggr_post_handler);
1070
1071 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1072                               int trapnr)
1073 {
1074         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1075
1076         /*
1077          * if we faulted "during" the execution of a user specified
1078          * probe handler, invoke just that probe's fault handler
1079          */
1080         if (cur && cur->fault_handler) {
1081                 if (cur->fault_handler(cur, regs, trapnr))
1082                         return 1;
1083         }
1084         return 0;
1085 }
1086 NOKPROBE_SYMBOL(aggr_fault_handler);
1087
1088 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1089 {
1090         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1091         int ret = 0;
1092
1093         if (cur && cur->break_handler) {
1094                 if (cur->break_handler(cur, regs))
1095                         ret = 1;
1096         }
1097         reset_kprobe_instance();
1098         return ret;
1099 }
1100 NOKPROBE_SYMBOL(aggr_break_handler);
1101
1102 /* Walks the list and increments nmissed count for multiprobe case */
1103 void kprobes_inc_nmissed_count(struct kprobe *p)
1104 {
1105         struct kprobe *kp;
1106         if (!kprobe_aggrprobe(p)) {
1107                 p->nmissed++;
1108         } else {
1109                 list_for_each_entry_rcu(kp, &p->list, list)
1110                         kp->nmissed++;
1111         }
1112         return;
1113 }
1114 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1115
1116 void recycle_rp_inst(struct kretprobe_instance *ri,
1117                      struct hlist_head *head)
1118 {
1119         struct kretprobe *rp = ri->rp;
1120
1121         /* remove rp inst off the rprobe_inst_table */
1122         hlist_del(&ri->hlist);
1123         INIT_HLIST_NODE(&ri->hlist);
1124         if (likely(rp)) {
1125                 raw_spin_lock(&rp->lock);
1126                 hlist_add_head(&ri->hlist, &rp->free_instances);
1127                 raw_spin_unlock(&rp->lock);
1128         } else
1129                 /* Unregistering */
1130                 hlist_add_head(&ri->hlist, head);
1131 }
1132 NOKPROBE_SYMBOL(recycle_rp_inst);
1133
1134 void kretprobe_hash_lock(struct task_struct *tsk,
1135                          struct hlist_head **head, unsigned long *flags)
1136 __acquires(hlist_lock)
1137 {
1138         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1139         raw_spinlock_t *hlist_lock;
1140
1141         *head = &kretprobe_inst_table[hash];
1142         hlist_lock = kretprobe_table_lock_ptr(hash);
1143         raw_spin_lock_irqsave(hlist_lock, *flags);
1144 }
1145 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1146
1147 static void kretprobe_table_lock(unsigned long hash,
1148                                  unsigned long *flags)
1149 __acquires(hlist_lock)
1150 {
1151         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1152         raw_spin_lock_irqsave(hlist_lock, *flags);
1153 }
1154 NOKPROBE_SYMBOL(kretprobe_table_lock);
1155
1156 void kretprobe_hash_unlock(struct task_struct *tsk,
1157                            unsigned long *flags)
1158 __releases(hlist_lock)
1159 {
1160         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1161         raw_spinlock_t *hlist_lock;
1162
1163         hlist_lock = kretprobe_table_lock_ptr(hash);
1164         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1165 }
1166 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1167
1168 static void kretprobe_table_unlock(unsigned long hash,
1169                                    unsigned long *flags)
1170 __releases(hlist_lock)
1171 {
1172         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1173         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1174 }
1175 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1176
1177 /*
1178  * This function is called from finish_task_switch when task tk becomes dead,
1179  * so that we can recycle any function-return probe instances associated
1180  * with this task. These left over instances represent probed functions
1181  * that have been called but will never return.
1182  */
1183 void kprobe_flush_task(struct task_struct *tk)
1184 {
1185         struct kretprobe_instance *ri;
1186         struct hlist_head *head, empty_rp;
1187         struct hlist_node *tmp;
1188         unsigned long hash, flags = 0;
1189
1190         if (unlikely(!kprobes_initialized))
1191                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1192                 return;
1193
1194         INIT_HLIST_HEAD(&empty_rp);
1195         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1196         head = &kretprobe_inst_table[hash];
1197         kretprobe_table_lock(hash, &flags);
1198         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1199                 if (ri->task == tk)
1200                         recycle_rp_inst(ri, &empty_rp);
1201         }
1202         kretprobe_table_unlock(hash, &flags);
1203         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1204                 hlist_del(&ri->hlist);
1205                 kfree(ri);
1206         }
1207 }
1208 NOKPROBE_SYMBOL(kprobe_flush_task);
1209
1210 static inline void free_rp_inst(struct kretprobe *rp)
1211 {
1212         struct kretprobe_instance *ri;
1213         struct hlist_node *next;
1214
1215         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1216                 hlist_del(&ri->hlist);
1217                 kfree(ri);
1218         }
1219 }
1220
1221 static void cleanup_rp_inst(struct kretprobe *rp)
1222 {
1223         unsigned long flags, hash;
1224         struct kretprobe_instance *ri;
1225         struct hlist_node *next;
1226         struct hlist_head *head;
1227
1228         /* No race here */
1229         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1230                 kretprobe_table_lock(hash, &flags);
1231                 head = &kretprobe_inst_table[hash];
1232                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1233                         if (ri->rp == rp)
1234                                 ri->rp = NULL;
1235                 }
1236                 kretprobe_table_unlock(hash, &flags);
1237         }
1238         free_rp_inst(rp);
1239 }
1240 NOKPROBE_SYMBOL(cleanup_rp_inst);
1241
1242 /*
1243 * Add the new probe to ap->list. Fail if this is the
1244 * second jprobe at the address - two jprobes can't coexist
1245 */
1246 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1247 {
1248         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1249
1250         if (p->break_handler || p->post_handler)
1251                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1252
1253         if (p->break_handler) {
1254                 if (ap->break_handler)
1255                         return -EEXIST;
1256                 list_add_tail_rcu(&p->list, &ap->list);
1257                 ap->break_handler = aggr_break_handler;
1258         } else
1259                 list_add_rcu(&p->list, &ap->list);
1260         if (p->post_handler && !ap->post_handler)
1261                 ap->post_handler = aggr_post_handler;
1262
1263         return 0;
1264 }
1265
1266 /*
1267  * Fill in the required fields of the "manager kprobe". Replace the
1268  * earlier kprobe in the hlist with the manager kprobe
1269  */
1270 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1271 {
1272         /* Copy p's insn slot to ap */
1273         copy_kprobe(p, ap);
1274         flush_insn_slot(ap);
1275         ap->addr = p->addr;
1276         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1277         ap->pre_handler = aggr_pre_handler;
1278         ap->fault_handler = aggr_fault_handler;
1279         /* We don't care the kprobe which has gone. */
1280         if (p->post_handler && !kprobe_gone(p))
1281                 ap->post_handler = aggr_post_handler;
1282         if (p->break_handler && !kprobe_gone(p))
1283                 ap->break_handler = aggr_break_handler;
1284
1285         INIT_LIST_HEAD(&ap->list);
1286         INIT_HLIST_NODE(&ap->hlist);
1287
1288         list_add_rcu(&p->list, &ap->list);
1289         hlist_replace_rcu(&p->hlist, &ap->hlist);
1290 }
1291
1292 /*
1293  * This is the second or subsequent kprobe at the address - handle
1294  * the intricacies
1295  */
1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297 {
1298         int ret = 0;
1299         struct kprobe *ap = orig_p;
1300
1301         /* For preparing optimization, jump_label_text_reserved() is called */
1302         jump_label_lock();
1303         /*
1304          * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1305          * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1306          */
1307         get_online_cpus();
1308         mutex_lock(&text_mutex);
1309
1310         if (!kprobe_aggrprobe(orig_p)) {
1311                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1312                 ap = alloc_aggr_kprobe(orig_p);
1313                 if (!ap) {
1314                         ret = -ENOMEM;
1315                         goto out;
1316                 }
1317                 init_aggr_kprobe(ap, orig_p);
1318         } else if (kprobe_unused(ap))
1319                 /* This probe is going to die. Rescue it */
1320                 reuse_unused_kprobe(ap);
1321
1322         if (kprobe_gone(ap)) {
1323                 /*
1324                  * Attempting to insert new probe at the same location that
1325                  * had a probe in the module vaddr area which already
1326                  * freed. So, the instruction slot has already been
1327                  * released. We need a new slot for the new probe.
1328                  */
1329                 ret = arch_prepare_kprobe(ap);
1330                 if (ret)
1331                         /*
1332                          * Even if fail to allocate new slot, don't need to
1333                          * free aggr_probe. It will be used next time, or
1334                          * freed by unregister_kprobe.
1335                          */
1336                         goto out;
1337
1338                 /* Prepare optimized instructions if possible. */
1339                 prepare_optimized_kprobe(ap);
1340
1341                 /*
1342                  * Clear gone flag to prevent allocating new slot again, and
1343                  * set disabled flag because it is not armed yet.
1344                  */
1345                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1346                             | KPROBE_FLAG_DISABLED;
1347         }
1348
1349         /* Copy ap's insn slot to p */
1350         copy_kprobe(ap, p);
1351         ret = add_new_kprobe(ap, p);
1352
1353 out:
1354         mutex_unlock(&text_mutex);
1355         put_online_cpus();
1356         jump_label_unlock();
1357
1358         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1359                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1360                 if (!kprobes_all_disarmed)
1361                         /* Arm the breakpoint again. */
1362                         arm_kprobe(ap);
1363         }
1364         return ret;
1365 }
1366
1367 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1368 {
1369         /* The __kprobes marked functions and entry code must not be probed */
1370         return addr >= (unsigned long)__kprobes_text_start &&
1371                addr < (unsigned long)__kprobes_text_end;
1372 }
1373
1374 bool within_kprobe_blacklist(unsigned long addr)
1375 {
1376         struct kprobe_blacklist_entry *ent;
1377
1378         if (arch_within_kprobe_blacklist(addr))
1379                 return true;
1380         /*
1381          * If there exists a kprobe_blacklist, verify and
1382          * fail any probe registration in the prohibited area
1383          */
1384         list_for_each_entry(ent, &kprobe_blacklist, list) {
1385                 if (addr >= ent->start_addr && addr < ent->end_addr)
1386                         return true;
1387         }
1388
1389         return false;
1390 }
1391
1392 /*
1393  * If we have a symbol_name argument, look it up and add the offset field
1394  * to it. This way, we can specify a relative address to a symbol.
1395  * This returns encoded errors if it fails to look up symbol or invalid
1396  * combination of parameters.
1397  */
1398 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1399                         const char *symbol_name, unsigned int offset)
1400 {
1401         if ((symbol_name && addr) || (!symbol_name && !addr))
1402                 goto invalid;
1403
1404         if (symbol_name) {
1405                 addr = kprobe_lookup_name(symbol_name, offset);
1406                 if (!addr)
1407                         return ERR_PTR(-ENOENT);
1408         }
1409
1410         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1411         if (addr)
1412                 return addr;
1413
1414 invalid:
1415         return ERR_PTR(-EINVAL);
1416 }
1417
1418 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1419 {
1420         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1421 }
1422
1423 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1424 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1425 {
1426         struct kprobe *ap, *list_p;
1427
1428         ap = get_kprobe(p->addr);
1429         if (unlikely(!ap))
1430                 return NULL;
1431
1432         if (p != ap) {
1433                 list_for_each_entry_rcu(list_p, &ap->list, list)
1434                         if (list_p == p)
1435                         /* kprobe p is a valid probe */
1436                                 goto valid;
1437                 return NULL;
1438         }
1439 valid:
1440         return ap;
1441 }
1442
1443 /* Return error if the kprobe is being re-registered */
1444 static inline int check_kprobe_rereg(struct kprobe *p)
1445 {
1446         int ret = 0;
1447
1448         mutex_lock(&kprobe_mutex);
1449         if (__get_valid_kprobe(p))
1450                 ret = -EINVAL;
1451         mutex_unlock(&kprobe_mutex);
1452
1453         return ret;
1454 }
1455
1456 int __weak arch_check_ftrace_location(struct kprobe *p)
1457 {
1458         unsigned long ftrace_addr;
1459
1460         ftrace_addr = ftrace_location((unsigned long)p->addr);
1461         if (ftrace_addr) {
1462 #ifdef CONFIG_KPROBES_ON_FTRACE
1463                 /* Given address is not on the instruction boundary */
1464                 if ((unsigned long)p->addr != ftrace_addr)
1465                         return -EILSEQ;
1466                 p->flags |= KPROBE_FLAG_FTRACE;
1467 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1468                 return -EINVAL;
1469 #endif
1470         }
1471         return 0;
1472 }
1473
1474 static int check_kprobe_address_safe(struct kprobe *p,
1475                                      struct module **probed_mod)
1476 {
1477         int ret;
1478
1479         ret = arch_check_ftrace_location(p);
1480         if (ret)
1481                 return ret;
1482         jump_label_lock();
1483         preempt_disable();
1484
1485         /* Ensure it is not in reserved area nor out of text */
1486         if (!kernel_text_address((unsigned long) p->addr) ||
1487             within_kprobe_blacklist((unsigned long) p->addr) ||
1488             jump_label_text_reserved(p->addr, p->addr)) {
1489                 ret = -EINVAL;
1490                 goto out;
1491         }
1492
1493         /* Check if are we probing a module */
1494         *probed_mod = __module_text_address((unsigned long) p->addr);
1495         if (*probed_mod) {
1496                 /*
1497                  * We must hold a refcount of the probed module while updating
1498                  * its code to prohibit unexpected unloading.
1499                  */
1500                 if (unlikely(!try_module_get(*probed_mod))) {
1501                         ret = -ENOENT;
1502                         goto out;
1503                 }
1504
1505                 /*
1506                  * If the module freed .init.text, we couldn't insert
1507                  * kprobes in there.
1508                  */
1509                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1510                     (*probed_mod)->state != MODULE_STATE_COMING) {
1511                         module_put(*probed_mod);
1512                         *probed_mod = NULL;
1513                         ret = -ENOENT;
1514                 }
1515         }
1516 out:
1517         preempt_enable();
1518         jump_label_unlock();
1519
1520         return ret;
1521 }
1522
1523 int register_kprobe(struct kprobe *p)
1524 {
1525         int ret;
1526         struct kprobe *old_p;
1527         struct module *probed_mod;
1528         kprobe_opcode_t *addr;
1529
1530         /* Adjust probe address from symbol */
1531         addr = kprobe_addr(p);
1532         if (IS_ERR(addr))
1533                 return PTR_ERR(addr);
1534         p->addr = addr;
1535
1536         ret = check_kprobe_rereg(p);
1537         if (ret)
1538                 return ret;
1539
1540         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1541         p->flags &= KPROBE_FLAG_DISABLED;
1542         p->nmissed = 0;
1543         INIT_LIST_HEAD(&p->list);
1544
1545         ret = check_kprobe_address_safe(p, &probed_mod);
1546         if (ret)
1547                 return ret;
1548
1549         mutex_lock(&kprobe_mutex);
1550
1551         old_p = get_kprobe(p->addr);
1552         if (old_p) {
1553                 /* Since this may unoptimize old_p, locking text_mutex. */
1554                 ret = register_aggr_kprobe(old_p, p);
1555                 goto out;
1556         }
1557
1558         mutex_lock(&text_mutex);        /* Avoiding text modification */
1559         ret = prepare_kprobe(p);
1560         mutex_unlock(&text_mutex);
1561         if (ret)
1562                 goto out;
1563
1564         INIT_HLIST_NODE(&p->hlist);
1565         hlist_add_head_rcu(&p->hlist,
1566                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1567
1568         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1569                 arm_kprobe(p);
1570
1571         /* Try to optimize kprobe */
1572         try_to_optimize_kprobe(p);
1573
1574 out:
1575         mutex_unlock(&kprobe_mutex);
1576
1577         if (probed_mod)
1578                 module_put(probed_mod);
1579
1580         return ret;
1581 }
1582 EXPORT_SYMBOL_GPL(register_kprobe);
1583
1584 /* Check if all probes on the aggrprobe are disabled */
1585 static int aggr_kprobe_disabled(struct kprobe *ap)
1586 {
1587         struct kprobe *kp;
1588
1589         list_for_each_entry_rcu(kp, &ap->list, list)
1590                 if (!kprobe_disabled(kp))
1591                         /*
1592                          * There is an active probe on the list.
1593                          * We can't disable this ap.
1594                          */
1595                         return 0;
1596
1597         return 1;
1598 }
1599
1600 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1601 static struct kprobe *__disable_kprobe(struct kprobe *p)
1602 {
1603         struct kprobe *orig_p;
1604
1605         /* Get an original kprobe for return */
1606         orig_p = __get_valid_kprobe(p);
1607         if (unlikely(orig_p == NULL))
1608                 return NULL;
1609
1610         if (!kprobe_disabled(p)) {
1611                 /* Disable probe if it is a child probe */
1612                 if (p != orig_p)
1613                         p->flags |= KPROBE_FLAG_DISABLED;
1614
1615                 /* Try to disarm and disable this/parent probe */
1616                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1617                         /*
1618                          * If kprobes_all_disarmed is set, orig_p
1619                          * should have already been disarmed, so
1620                          * skip unneed disarming process.
1621                          */
1622                         if (!kprobes_all_disarmed)
1623                                 disarm_kprobe(orig_p, true);
1624                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1625                 }
1626         }
1627
1628         return orig_p;
1629 }
1630
1631 /*
1632  * Unregister a kprobe without a scheduler synchronization.
1633  */
1634 static int __unregister_kprobe_top(struct kprobe *p)
1635 {
1636         struct kprobe *ap, *list_p;
1637
1638         /* Disable kprobe. This will disarm it if needed. */
1639         ap = __disable_kprobe(p);
1640         if (ap == NULL)
1641                 return -EINVAL;
1642
1643         if (ap == p)
1644                 /*
1645                  * This probe is an independent(and non-optimized) kprobe
1646                  * (not an aggrprobe). Remove from the hash list.
1647                  */
1648                 goto disarmed;
1649
1650         /* Following process expects this probe is an aggrprobe */
1651         WARN_ON(!kprobe_aggrprobe(ap));
1652
1653         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1654                 /*
1655                  * !disarmed could be happen if the probe is under delayed
1656                  * unoptimizing.
1657                  */
1658                 goto disarmed;
1659         else {
1660                 /* If disabling probe has special handlers, update aggrprobe */
1661                 if (p->break_handler && !kprobe_gone(p))
1662                         ap->break_handler = NULL;
1663                 if (p->post_handler && !kprobe_gone(p)) {
1664                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1665                                 if ((list_p != p) && (list_p->post_handler))
1666                                         goto noclean;
1667                         }
1668                         ap->post_handler = NULL;
1669                 }
1670 noclean:
1671                 /*
1672                  * Remove from the aggrprobe: this path will do nothing in
1673                  * __unregister_kprobe_bottom().
1674                  */
1675                 list_del_rcu(&p->list);
1676                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1677                         /*
1678                          * Try to optimize this probe again, because post
1679                          * handler may have been changed.
1680                          */
1681                         optimize_kprobe(ap);
1682         }
1683         return 0;
1684
1685 disarmed:
1686         BUG_ON(!kprobe_disarmed(ap));
1687         hlist_del_rcu(&ap->hlist);
1688         return 0;
1689 }
1690
1691 static void __unregister_kprobe_bottom(struct kprobe *p)
1692 {
1693         struct kprobe *ap;
1694
1695         if (list_empty(&p->list))
1696                 /* This is an independent kprobe */
1697                 arch_remove_kprobe(p);
1698         else if (list_is_singular(&p->list)) {
1699                 /* This is the last child of an aggrprobe */
1700                 ap = list_entry(p->list.next, struct kprobe, list);
1701                 list_del(&p->list);
1702                 free_aggr_kprobe(ap);
1703         }
1704         /* Otherwise, do nothing. */
1705 }
1706
1707 int register_kprobes(struct kprobe **kps, int num)
1708 {
1709         int i, ret = 0;
1710
1711         if (num <= 0)
1712                 return -EINVAL;
1713         for (i = 0; i < num; i++) {
1714                 ret = register_kprobe(kps[i]);
1715                 if (ret < 0) {
1716                         if (i > 0)
1717                                 unregister_kprobes(kps, i);
1718                         break;
1719                 }
1720         }
1721         return ret;
1722 }
1723 EXPORT_SYMBOL_GPL(register_kprobes);
1724
1725 void unregister_kprobe(struct kprobe *p)
1726 {
1727         unregister_kprobes(&p, 1);
1728 }
1729 EXPORT_SYMBOL_GPL(unregister_kprobe);
1730
1731 void unregister_kprobes(struct kprobe **kps, int num)
1732 {
1733         int i;
1734
1735         if (num <= 0)
1736                 return;
1737         mutex_lock(&kprobe_mutex);
1738         for (i = 0; i < num; i++)
1739                 if (__unregister_kprobe_top(kps[i]) < 0)
1740                         kps[i]->addr = NULL;
1741         mutex_unlock(&kprobe_mutex);
1742
1743         synchronize_sched();
1744         for (i = 0; i < num; i++)
1745                 if (kps[i]->addr)
1746                         __unregister_kprobe_bottom(kps[i]);
1747 }
1748 EXPORT_SYMBOL_GPL(unregister_kprobes);
1749
1750 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1751                                         unsigned long val, void *data)
1752 {
1753         return NOTIFY_DONE;
1754 }
1755 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1756
1757 static struct notifier_block kprobe_exceptions_nb = {
1758         .notifier_call = kprobe_exceptions_notify,
1759         .priority = 0x7fffffff /* we need to be notified first */
1760 };
1761
1762 unsigned long __weak arch_deref_entry_point(void *entry)
1763 {
1764         return (unsigned long)entry;
1765 }
1766
1767 int register_jprobes(struct jprobe **jps, int num)
1768 {
1769         struct jprobe *jp;
1770         int ret = 0, i;
1771
1772         if (num <= 0)
1773                 return -EINVAL;
1774         for (i = 0; i < num; i++) {
1775                 unsigned long addr, offset;
1776                 jp = jps[i];
1777                 addr = arch_deref_entry_point(jp->entry);
1778
1779                 /* Verify probepoint is a function entry point */
1780                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1781                     offset == 0) {
1782                         jp->kp.pre_handler = setjmp_pre_handler;
1783                         jp->kp.break_handler = longjmp_break_handler;
1784                         ret = register_kprobe(&jp->kp);
1785                 } else
1786                         ret = -EINVAL;
1787
1788                 if (ret < 0) {
1789                         if (i > 0)
1790                                 unregister_jprobes(jps, i);
1791                         break;
1792                 }
1793         }
1794         return ret;
1795 }
1796 EXPORT_SYMBOL_GPL(register_jprobes);
1797
1798 int register_jprobe(struct jprobe *jp)
1799 {
1800         return register_jprobes(&jp, 1);
1801 }
1802 EXPORT_SYMBOL_GPL(register_jprobe);
1803
1804 void unregister_jprobe(struct jprobe *jp)
1805 {
1806         unregister_jprobes(&jp, 1);
1807 }
1808 EXPORT_SYMBOL_GPL(unregister_jprobe);
1809
1810 void unregister_jprobes(struct jprobe **jps, int num)
1811 {
1812         int i;
1813
1814         if (num <= 0)
1815                 return;
1816         mutex_lock(&kprobe_mutex);
1817         for (i = 0; i < num; i++)
1818                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1819                         jps[i]->kp.addr = NULL;
1820         mutex_unlock(&kprobe_mutex);
1821
1822         synchronize_sched();
1823         for (i = 0; i < num; i++) {
1824                 if (jps[i]->kp.addr)
1825                         __unregister_kprobe_bottom(&jps[i]->kp);
1826         }
1827 }
1828 EXPORT_SYMBOL_GPL(unregister_jprobes);
1829
1830 #ifdef CONFIG_KRETPROBES
1831 /*
1832  * This kprobe pre_handler is registered with every kretprobe. When probe
1833  * hits it will set up the return probe.
1834  */
1835 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1836 {
1837         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1838         unsigned long hash, flags = 0;
1839         struct kretprobe_instance *ri;
1840
1841         /*
1842          * To avoid deadlocks, prohibit return probing in NMI contexts,
1843          * just skip the probe and increase the (inexact) 'nmissed'
1844          * statistical counter, so that the user is informed that
1845          * something happened:
1846          */
1847         if (unlikely(in_nmi())) {
1848                 rp->nmissed++;
1849                 return 0;
1850         }
1851
1852         /* TODO: consider to only swap the RA after the last pre_handler fired */
1853         hash = hash_ptr(current, KPROBE_HASH_BITS);
1854         raw_spin_lock_irqsave(&rp->lock, flags);
1855         if (!hlist_empty(&rp->free_instances)) {
1856                 ri = hlist_entry(rp->free_instances.first,
1857                                 struct kretprobe_instance, hlist);
1858                 hlist_del(&ri->hlist);
1859                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1860
1861                 ri->rp = rp;
1862                 ri->task = current;
1863
1864                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1865                         raw_spin_lock_irqsave(&rp->lock, flags);
1866                         hlist_add_head(&ri->hlist, &rp->free_instances);
1867                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1868                         return 0;
1869                 }
1870
1871                 arch_prepare_kretprobe(ri, regs);
1872
1873                 /* XXX(hch): why is there no hlist_move_head? */
1874                 INIT_HLIST_NODE(&ri->hlist);
1875                 kretprobe_table_lock(hash, &flags);
1876                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1877                 kretprobe_table_unlock(hash, &flags);
1878         } else {
1879                 rp->nmissed++;
1880                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1881         }
1882         return 0;
1883 }
1884 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1885
1886 bool __weak arch_function_offset_within_entry(unsigned long offset)
1887 {
1888         return !offset;
1889 }
1890
1891 bool function_offset_within_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1892 {
1893         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1894
1895         if (IS_ERR(kp_addr))
1896                 return false;
1897
1898         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1899                                                 !arch_function_offset_within_entry(offset))
1900                 return false;
1901
1902         return true;
1903 }
1904
1905 int register_kretprobe(struct kretprobe *rp)
1906 {
1907         int ret = 0;
1908         struct kretprobe_instance *inst;
1909         int i;
1910         void *addr;
1911
1912         if (!function_offset_within_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1913                 return -EINVAL;
1914
1915         if (kretprobe_blacklist_size) {
1916                 addr = kprobe_addr(&rp->kp);
1917                 if (IS_ERR(addr))
1918                         return PTR_ERR(addr);
1919
1920                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1921                         if (kretprobe_blacklist[i].addr == addr)
1922                                 return -EINVAL;
1923                 }
1924         }
1925
1926         rp->kp.pre_handler = pre_handler_kretprobe;
1927         rp->kp.post_handler = NULL;
1928         rp->kp.fault_handler = NULL;
1929         rp->kp.break_handler = NULL;
1930
1931         /* Pre-allocate memory for max kretprobe instances */
1932         if (rp->maxactive <= 0) {
1933 #ifdef CONFIG_PREEMPT
1934                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1935 #else
1936                 rp->maxactive = num_possible_cpus();
1937 #endif
1938         }
1939         raw_spin_lock_init(&rp->lock);
1940         INIT_HLIST_HEAD(&rp->free_instances);
1941         for (i = 0; i < rp->maxactive; i++) {
1942                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1943                                rp->data_size, GFP_KERNEL);
1944                 if (inst == NULL) {
1945                         free_rp_inst(rp);
1946                         return -ENOMEM;
1947                 }
1948                 INIT_HLIST_NODE(&inst->hlist);
1949                 hlist_add_head(&inst->hlist, &rp->free_instances);
1950         }
1951
1952         rp->nmissed = 0;
1953         /* Establish function entry probe point */
1954         ret = register_kprobe(&rp->kp);
1955         if (ret != 0)
1956                 free_rp_inst(rp);
1957         return ret;
1958 }
1959 EXPORT_SYMBOL_GPL(register_kretprobe);
1960
1961 int register_kretprobes(struct kretprobe **rps, int num)
1962 {
1963         int ret = 0, i;
1964
1965         if (num <= 0)
1966                 return -EINVAL;
1967         for (i = 0; i < num; i++) {
1968                 ret = register_kretprobe(rps[i]);
1969                 if (ret < 0) {
1970                         if (i > 0)
1971                                 unregister_kretprobes(rps, i);
1972                         break;
1973                 }
1974         }
1975         return ret;
1976 }
1977 EXPORT_SYMBOL_GPL(register_kretprobes);
1978
1979 void unregister_kretprobe(struct kretprobe *rp)
1980 {
1981         unregister_kretprobes(&rp, 1);
1982 }
1983 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1984
1985 void unregister_kretprobes(struct kretprobe **rps, int num)
1986 {
1987         int i;
1988
1989         if (num <= 0)
1990                 return;
1991         mutex_lock(&kprobe_mutex);
1992         for (i = 0; i < num; i++)
1993                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1994                         rps[i]->kp.addr = NULL;
1995         mutex_unlock(&kprobe_mutex);
1996
1997         synchronize_sched();
1998         for (i = 0; i < num; i++) {
1999                 if (rps[i]->kp.addr) {
2000                         __unregister_kprobe_bottom(&rps[i]->kp);
2001                         cleanup_rp_inst(rps[i]);
2002                 }
2003         }
2004 }
2005 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2006
2007 #else /* CONFIG_KRETPROBES */
2008 int register_kretprobe(struct kretprobe *rp)
2009 {
2010         return -ENOSYS;
2011 }
2012 EXPORT_SYMBOL_GPL(register_kretprobe);
2013
2014 int register_kretprobes(struct kretprobe **rps, int num)
2015 {
2016         return -ENOSYS;
2017 }
2018 EXPORT_SYMBOL_GPL(register_kretprobes);
2019
2020 void unregister_kretprobe(struct kretprobe *rp)
2021 {
2022 }
2023 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2024
2025 void unregister_kretprobes(struct kretprobe **rps, int num)
2026 {
2027 }
2028 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2029
2030 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2031 {
2032         return 0;
2033 }
2034 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2035
2036 #endif /* CONFIG_KRETPROBES */
2037
2038 /* Set the kprobe gone and remove its instruction buffer. */
2039 static void kill_kprobe(struct kprobe *p)
2040 {
2041         struct kprobe *kp;
2042
2043         p->flags |= KPROBE_FLAG_GONE;
2044         if (kprobe_aggrprobe(p)) {
2045                 /*
2046                  * If this is an aggr_kprobe, we have to list all the
2047                  * chained probes and mark them GONE.
2048                  */
2049                 list_for_each_entry_rcu(kp, &p->list, list)
2050                         kp->flags |= KPROBE_FLAG_GONE;
2051                 p->post_handler = NULL;
2052                 p->break_handler = NULL;
2053                 kill_optimized_kprobe(p);
2054         }
2055         /*
2056          * Here, we can remove insn_slot safely, because no thread calls
2057          * the original probed function (which will be freed soon) any more.
2058          */
2059         arch_remove_kprobe(p);
2060 }
2061
2062 /* Disable one kprobe */
2063 int disable_kprobe(struct kprobe *kp)
2064 {
2065         int ret = 0;
2066
2067         mutex_lock(&kprobe_mutex);
2068
2069         /* Disable this kprobe */
2070         if (__disable_kprobe(kp) == NULL)
2071                 ret = -EINVAL;
2072
2073         mutex_unlock(&kprobe_mutex);
2074         return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(disable_kprobe);
2077
2078 /* Enable one kprobe */
2079 int enable_kprobe(struct kprobe *kp)
2080 {
2081         int ret = 0;
2082         struct kprobe *p;
2083
2084         mutex_lock(&kprobe_mutex);
2085
2086         /* Check whether specified probe is valid. */
2087         p = __get_valid_kprobe(kp);
2088         if (unlikely(p == NULL)) {
2089                 ret = -EINVAL;
2090                 goto out;
2091         }
2092
2093         if (kprobe_gone(kp)) {
2094                 /* This kprobe has gone, we couldn't enable it. */
2095                 ret = -EINVAL;
2096                 goto out;
2097         }
2098
2099         if (p != kp)
2100                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2101
2102         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2103                 p->flags &= ~KPROBE_FLAG_DISABLED;
2104                 arm_kprobe(p);
2105         }
2106 out:
2107         mutex_unlock(&kprobe_mutex);
2108         return ret;
2109 }
2110 EXPORT_SYMBOL_GPL(enable_kprobe);
2111
2112 void dump_kprobe(struct kprobe *kp)
2113 {
2114         printk(KERN_WARNING "Dumping kprobe:\n");
2115         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2116                kp->symbol_name, kp->addr, kp->offset);
2117 }
2118 NOKPROBE_SYMBOL(dump_kprobe);
2119
2120 /*
2121  * Lookup and populate the kprobe_blacklist.
2122  *
2123  * Unlike the kretprobe blacklist, we'll need to determine
2124  * the range of addresses that belong to the said functions,
2125  * since a kprobe need not necessarily be at the beginning
2126  * of a function.
2127  */
2128 static int __init populate_kprobe_blacklist(unsigned long *start,
2129                                              unsigned long *end)
2130 {
2131         unsigned long *iter;
2132         struct kprobe_blacklist_entry *ent;
2133         unsigned long entry, offset = 0, size = 0;
2134
2135         for (iter = start; iter < end; iter++) {
2136                 entry = arch_deref_entry_point((void *)*iter);
2137
2138                 if (!kernel_text_address(entry) ||
2139                     !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2140                         pr_err("Failed to find blacklist at %p\n",
2141                                 (void *)entry);
2142                         continue;
2143                 }
2144
2145                 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2146                 if (!ent)
2147                         return -ENOMEM;
2148                 ent->start_addr = entry;
2149                 ent->end_addr = entry + size;
2150                 INIT_LIST_HEAD(&ent->list);
2151                 list_add_tail(&ent->list, &kprobe_blacklist);
2152         }
2153         return 0;
2154 }
2155
2156 /* Module notifier call back, checking kprobes on the module */
2157 static int kprobes_module_callback(struct notifier_block *nb,
2158                                    unsigned long val, void *data)
2159 {
2160         struct module *mod = data;
2161         struct hlist_head *head;
2162         struct kprobe *p;
2163         unsigned int i;
2164         int checkcore = (val == MODULE_STATE_GOING);
2165
2166         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2167                 return NOTIFY_DONE;
2168
2169         /*
2170          * When MODULE_STATE_GOING was notified, both of module .text and
2171          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2172          * notified, only .init.text section would be freed. We need to
2173          * disable kprobes which have been inserted in the sections.
2174          */
2175         mutex_lock(&kprobe_mutex);
2176         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2177                 head = &kprobe_table[i];
2178                 hlist_for_each_entry_rcu(p, head, hlist)
2179                         if (within_module_init((unsigned long)p->addr, mod) ||
2180                             (checkcore &&
2181                              within_module_core((unsigned long)p->addr, mod))) {
2182                                 /*
2183                                  * The vaddr this probe is installed will soon
2184                                  * be vfreed buy not synced to disk. Hence,
2185                                  * disarming the breakpoint isn't needed.
2186                                  *
2187                                  * Note, this will also move any optimized probes
2188                                  * that are pending to be removed from their
2189                                  * corresponding lists to the freeing_list and
2190                                  * will not be touched by the delayed
2191                                  * kprobe_optimizer work handler.
2192                                  */
2193                                 kill_kprobe(p);
2194                         }
2195         }
2196         mutex_unlock(&kprobe_mutex);
2197         return NOTIFY_DONE;
2198 }
2199
2200 static struct notifier_block kprobe_module_nb = {
2201         .notifier_call = kprobes_module_callback,
2202         .priority = 0
2203 };
2204
2205 /* Markers of _kprobe_blacklist section */
2206 extern unsigned long __start_kprobe_blacklist[];
2207 extern unsigned long __stop_kprobe_blacklist[];
2208
2209 static int __init init_kprobes(void)
2210 {
2211         int i, err = 0;
2212
2213         /* FIXME allocate the probe table, currently defined statically */
2214         /* initialize all list heads */
2215         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2216                 INIT_HLIST_HEAD(&kprobe_table[i]);
2217                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2218                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2219         }
2220
2221         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2222                                         __stop_kprobe_blacklist);
2223         if (err) {
2224                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2225                 pr_err("Please take care of using kprobes.\n");
2226         }
2227
2228         if (kretprobe_blacklist_size) {
2229                 /* lookup the function address from its name */
2230                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2231                         kretprobe_blacklist[i].addr =
2232                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2233                         if (!kretprobe_blacklist[i].addr)
2234                                 printk("kretprobe: lookup failed: %s\n",
2235                                        kretprobe_blacklist[i].name);
2236                 }
2237         }
2238
2239 #if defined(CONFIG_OPTPROBES)
2240 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2241         /* Init kprobe_optinsn_slots */
2242         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2243 #endif
2244         /* By default, kprobes can be optimized */
2245         kprobes_allow_optimization = true;
2246 #endif
2247
2248         /* By default, kprobes are armed */
2249         kprobes_all_disarmed = false;
2250
2251         err = arch_init_kprobes();
2252         if (!err)
2253                 err = register_die_notifier(&kprobe_exceptions_nb);
2254         if (!err)
2255                 err = register_module_notifier(&kprobe_module_nb);
2256
2257         kprobes_initialized = (err == 0);
2258
2259         if (!err)
2260                 init_test_probes();
2261         return err;
2262 }
2263
2264 #ifdef CONFIG_DEBUG_FS
2265 static void report_probe(struct seq_file *pi, struct kprobe *p,
2266                 const char *sym, int offset, char *modname, struct kprobe *pp)
2267 {
2268         char *kprobe_type;
2269
2270         if (p->pre_handler == pre_handler_kretprobe)
2271                 kprobe_type = "r";
2272         else if (p->pre_handler == setjmp_pre_handler)
2273                 kprobe_type = "j";
2274         else
2275                 kprobe_type = "k";
2276
2277         if (sym)
2278                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2279                         p->addr, kprobe_type, sym, offset,
2280                         (modname ? modname : " "));
2281         else
2282                 seq_printf(pi, "%p  %s  %p ",
2283                         p->addr, kprobe_type, p->addr);
2284
2285         if (!pp)
2286                 pp = p;
2287         seq_printf(pi, "%s%s%s%s\n",
2288                 (kprobe_gone(p) ? "[GONE]" : ""),
2289                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2290                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2291                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2292 }
2293
2294 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2295 {
2296         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2297 }
2298
2299 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2300 {
2301         (*pos)++;
2302         if (*pos >= KPROBE_TABLE_SIZE)
2303                 return NULL;
2304         return pos;
2305 }
2306
2307 static void kprobe_seq_stop(struct seq_file *f, void *v)
2308 {
2309         /* Nothing to do */
2310 }
2311
2312 static int show_kprobe_addr(struct seq_file *pi, void *v)
2313 {
2314         struct hlist_head *head;
2315         struct kprobe *p, *kp;
2316         const char *sym = NULL;
2317         unsigned int i = *(loff_t *) v;
2318         unsigned long offset = 0;
2319         char *modname, namebuf[KSYM_NAME_LEN];
2320
2321         head = &kprobe_table[i];
2322         preempt_disable();
2323         hlist_for_each_entry_rcu(p, head, hlist) {
2324                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2325                                         &offset, &modname, namebuf);
2326                 if (kprobe_aggrprobe(p)) {
2327                         list_for_each_entry_rcu(kp, &p->list, list)
2328                                 report_probe(pi, kp, sym, offset, modname, p);
2329                 } else
2330                         report_probe(pi, p, sym, offset, modname, NULL);
2331         }
2332         preempt_enable();
2333         return 0;
2334 }
2335
2336 static const struct seq_operations kprobes_seq_ops = {
2337         .start = kprobe_seq_start,
2338         .next  = kprobe_seq_next,
2339         .stop  = kprobe_seq_stop,
2340         .show  = show_kprobe_addr
2341 };
2342
2343 static int kprobes_open(struct inode *inode, struct file *filp)
2344 {
2345         return seq_open(filp, &kprobes_seq_ops);
2346 }
2347
2348 static const struct file_operations debugfs_kprobes_operations = {
2349         .open           = kprobes_open,
2350         .read           = seq_read,
2351         .llseek         = seq_lseek,
2352         .release        = seq_release,
2353 };
2354
2355 /* kprobes/blacklist -- shows which functions can not be probed */
2356 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2357 {
2358         return seq_list_start(&kprobe_blacklist, *pos);
2359 }
2360
2361 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2362 {
2363         return seq_list_next(v, &kprobe_blacklist, pos);
2364 }
2365
2366 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2367 {
2368         struct kprobe_blacklist_entry *ent =
2369                 list_entry(v, struct kprobe_blacklist_entry, list);
2370
2371         seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2372                    (void *)ent->end_addr, (void *)ent->start_addr);
2373         return 0;
2374 }
2375
2376 static const struct seq_operations kprobe_blacklist_seq_ops = {
2377         .start = kprobe_blacklist_seq_start,
2378         .next  = kprobe_blacklist_seq_next,
2379         .stop  = kprobe_seq_stop,       /* Reuse void function */
2380         .show  = kprobe_blacklist_seq_show,
2381 };
2382
2383 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2384 {
2385         return seq_open(filp, &kprobe_blacklist_seq_ops);
2386 }
2387
2388 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2389         .open           = kprobe_blacklist_open,
2390         .read           = seq_read,
2391         .llseek         = seq_lseek,
2392         .release        = seq_release,
2393 };
2394
2395 static void arm_all_kprobes(void)
2396 {
2397         struct hlist_head *head;
2398         struct kprobe *p;
2399         unsigned int i;
2400
2401         mutex_lock(&kprobe_mutex);
2402
2403         /* If kprobes are armed, just return */
2404         if (!kprobes_all_disarmed)
2405                 goto already_enabled;
2406
2407         /*
2408          * optimize_kprobe() called by arm_kprobe() checks
2409          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2410          * arm_kprobe.
2411          */
2412         kprobes_all_disarmed = false;
2413         /* Arming kprobes doesn't optimize kprobe itself */
2414         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2415                 head = &kprobe_table[i];
2416                 hlist_for_each_entry_rcu(p, head, hlist)
2417                         if (!kprobe_disabled(p))
2418                                 arm_kprobe(p);
2419         }
2420
2421         printk(KERN_INFO "Kprobes globally enabled\n");
2422
2423 already_enabled:
2424         mutex_unlock(&kprobe_mutex);
2425         return;
2426 }
2427
2428 static void disarm_all_kprobes(void)
2429 {
2430         struct hlist_head *head;
2431         struct kprobe *p;
2432         unsigned int i;
2433
2434         mutex_lock(&kprobe_mutex);
2435
2436         /* If kprobes are already disarmed, just return */
2437         if (kprobes_all_disarmed) {
2438                 mutex_unlock(&kprobe_mutex);
2439                 return;
2440         }
2441
2442         kprobes_all_disarmed = true;
2443         printk(KERN_INFO "Kprobes globally disabled\n");
2444
2445         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2446                 head = &kprobe_table[i];
2447                 hlist_for_each_entry_rcu(p, head, hlist) {
2448                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2449                                 disarm_kprobe(p, false);
2450                 }
2451         }
2452         mutex_unlock(&kprobe_mutex);
2453
2454         /* Wait for disarming all kprobes by optimizer */
2455         wait_for_kprobe_optimizer();
2456 }
2457
2458 /*
2459  * XXX: The debugfs bool file interface doesn't allow for callbacks
2460  * when the bool state is switched. We can reuse that facility when
2461  * available
2462  */
2463 static ssize_t read_enabled_file_bool(struct file *file,
2464                char __user *user_buf, size_t count, loff_t *ppos)
2465 {
2466         char buf[3];
2467
2468         if (!kprobes_all_disarmed)
2469                 buf[0] = '1';
2470         else
2471                 buf[0] = '0';
2472         buf[1] = '\n';
2473         buf[2] = 0x00;
2474         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2475 }
2476
2477 static ssize_t write_enabled_file_bool(struct file *file,
2478                const char __user *user_buf, size_t count, loff_t *ppos)
2479 {
2480         char buf[32];
2481         size_t buf_size;
2482
2483         buf_size = min(count, (sizeof(buf)-1));
2484         if (copy_from_user(buf, user_buf, buf_size))
2485                 return -EFAULT;
2486
2487         buf[buf_size] = '\0';
2488         switch (buf[0]) {
2489         case 'y':
2490         case 'Y':
2491         case '1':
2492                 arm_all_kprobes();
2493                 break;
2494         case 'n':
2495         case 'N':
2496         case '0':
2497                 disarm_all_kprobes();
2498                 break;
2499         default:
2500                 return -EINVAL;
2501         }
2502
2503         return count;
2504 }
2505
2506 static const struct file_operations fops_kp = {
2507         .read =         read_enabled_file_bool,
2508         .write =        write_enabled_file_bool,
2509         .llseek =       default_llseek,
2510 };
2511
2512 static int __init debugfs_kprobe_init(void)
2513 {
2514         struct dentry *dir, *file;
2515         unsigned int value = 1;
2516
2517         dir = debugfs_create_dir("kprobes", NULL);
2518         if (!dir)
2519                 return -ENOMEM;
2520
2521         file = debugfs_create_file("list", 0444, dir, NULL,
2522                                 &debugfs_kprobes_operations);
2523         if (!file)
2524                 goto error;
2525
2526         file = debugfs_create_file("enabled", 0600, dir,
2527                                         &value, &fops_kp);
2528         if (!file)
2529                 goto error;
2530
2531         file = debugfs_create_file("blacklist", 0444, dir, NULL,
2532                                 &debugfs_kprobe_blacklist_ops);
2533         if (!file)
2534                 goto error;
2535
2536         return 0;
2537
2538 error:
2539         debugfs_remove(dir);
2540         return -ENOMEM;
2541 }
2542
2543 late_initcall(debugfs_kprobe_init);
2544 #endif /* CONFIG_DEBUG_FS */
2545
2546 module_init(init_kprobes);
2547
2548 /* defined in arch/.../kernel/kprobes.c */
2549 EXPORT_SYMBOL_GPL(jprobe_return);