kgdb: core
[sfrench/cifs-2.6.git] / kernel / kgdb.c
1 /*
2  * KGDB stub.
3  *
4  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9  * Copyright (C) 2004 Pavel Machek <pavel@suse.cz>
10  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2008 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( jason.wessel@windriver.com )
18  *  George Anzinger <george@mvista.com>
19  *  Anurekh Saxena (anurekh.saxena@timesys.com)
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <dave@gcom.com>,
24  * Tigran Aivazian <tigran@sco.com>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 #include <linux/pid_namespace.h>
31 #include <linux/interrupt.h>
32 #include <linux/spinlock.h>
33 #include <linux/console.h>
34 #include <linux/threads.h>
35 #include <linux/uaccess.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/ptrace.h>
39 #include <linux/reboot.h>
40 #include <linux/string.h>
41 #include <linux/delay.h>
42 #include <linux/sched.h>
43 #include <linux/sysrq.h>
44 #include <linux/init.h>
45 #include <linux/kgdb.h>
46 #include <linux/pid.h>
47 #include <linux/smp.h>
48 #include <linux/mm.h>
49
50 #include <asm/cacheflush.h>
51 #include <asm/byteorder.h>
52 #include <asm/atomic.h>
53 #include <asm/system.h>
54
55 static int kgdb_break_asap;
56
57 struct kgdb_state {
58         int                     ex_vector;
59         int                     signo;
60         int                     err_code;
61         int                     cpu;
62         int                     pass_exception;
63         long                    threadid;
64         long                    kgdb_usethreadid;
65         struct pt_regs          *linux_regs;
66 };
67
68 static struct debuggerinfo_struct {
69         void                    *debuggerinfo;
70         struct task_struct      *task;
71 } kgdb_info[NR_CPUS];
72
73 /**
74  * kgdb_connected - Is a host GDB connected to us?
75  */
76 int                             kgdb_connected;
77 EXPORT_SYMBOL_GPL(kgdb_connected);
78
79 /* All the KGDB handlers are installed */
80 static int                      kgdb_io_module_registered;
81
82 /* Guard for recursive entry */
83 static int                      exception_level;
84
85 static struct kgdb_io           *kgdb_io_ops;
86 static DEFINE_SPINLOCK(kgdb_registration_lock);
87
88 /* kgdb console driver is loaded */
89 static int kgdb_con_registered;
90 /* determine if kgdb console output should be used */
91 static int kgdb_use_con;
92
93 static int __init opt_kgdb_con(char *str)
94 {
95         kgdb_use_con = 1;
96         return 0;
97 }
98
99 early_param("kgdbcon", opt_kgdb_con);
100
101 module_param(kgdb_use_con, int, 0644);
102
103 /*
104  * Holds information about breakpoints in a kernel. These breakpoints are
105  * added and removed by gdb.
106  */
107 static struct kgdb_bkpt         kgdb_break[KGDB_MAX_BREAKPOINTS] = {
108         [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
109 };
110
111 /*
112  * The CPU# of the active CPU, or -1 if none:
113  */
114 atomic_t                        kgdb_active = ATOMIC_INIT(-1);
115
116 /*
117  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
118  * bootup code (which might not have percpu set up yet):
119  */
120 static atomic_t                 passive_cpu_wait[NR_CPUS];
121 static atomic_t                 cpu_in_kgdb[NR_CPUS];
122 atomic_t                        kgdb_setting_breakpoint;
123
124 struct task_struct              *kgdb_usethread;
125 struct task_struct              *kgdb_contthread;
126
127 int                             kgdb_single_step;
128
129 /* Our I/O buffers. */
130 static char                     remcom_in_buffer[BUFMAX];
131 static char                     remcom_out_buffer[BUFMAX];
132
133 /* Storage for the registers, in GDB format. */
134 static unsigned long            gdb_regs[(NUMREGBYTES +
135                                         sizeof(unsigned long) - 1) /
136                                         sizeof(unsigned long)];
137
138 /* to keep track of the CPU which is doing the single stepping*/
139 atomic_t                        kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
140
141 /*
142  * If you are debugging a problem where roundup (the collection of
143  * all other CPUs) is a problem [this should be extremely rare],
144  * then use the nokgdbroundup option to avoid roundup. In that case
145  * the other CPUs might interfere with your debugging context, so
146  * use this with care:
147  */
148 int                             kgdb_do_roundup = 1;
149
150 static int __init opt_nokgdbroundup(char *str)
151 {
152         kgdb_do_roundup = 0;
153
154         return 0;
155 }
156
157 early_param("nokgdbroundup", opt_nokgdbroundup);
158
159 /*
160  * Finally, some KGDB code :-)
161  */
162
163 /*
164  * Weak aliases for breakpoint management,
165  * can be overriden by architectures when needed:
166  */
167 int __weak kgdb_validate_break_address(unsigned long addr)
168 {
169         char tmp_variable[BREAK_INSTR_SIZE];
170
171         return probe_kernel_read(tmp_variable, (char *)addr, BREAK_INSTR_SIZE);
172 }
173
174 int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
175 {
176         int err;
177
178         err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE);
179         if (err)
180                 return err;
181
182         return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr,
183                                   BREAK_INSTR_SIZE);
184 }
185
186 int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
187 {
188         return probe_kernel_write((char *)addr,
189                                   (char *)bundle, BREAK_INSTR_SIZE);
190 }
191
192 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
193 {
194         return instruction_pointer(regs);
195 }
196
197 int __weak kgdb_arch_init(void)
198 {
199         return 0;
200 }
201
202 /**
203  *      kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
204  *      @regs: Current &struct pt_regs.
205  *
206  *      This function will be called if the particular architecture must
207  *      disable hardware debugging while it is processing gdb packets or
208  *      handling exception.
209  */
210 void __weak kgdb_disable_hw_debug(struct pt_regs *regs)
211 {
212 }
213
214 /*
215  * GDB remote protocol parser:
216  */
217
218 static const char       hexchars[] = "0123456789abcdef";
219
220 static int hex(char ch)
221 {
222         if ((ch >= 'a') && (ch <= 'f'))
223                 return ch - 'a' + 10;
224         if ((ch >= '0') && (ch <= '9'))
225                 return ch - '0';
226         if ((ch >= 'A') && (ch <= 'F'))
227                 return ch - 'A' + 10;
228         return -1;
229 }
230
231 /* scan for the sequence $<data>#<checksum> */
232 static void get_packet(char *buffer)
233 {
234         unsigned char checksum;
235         unsigned char xmitcsum;
236         int count;
237         char ch;
238
239         do {
240                 /*
241                  * Spin and wait around for the start character, ignore all
242                  * other characters:
243                  */
244                 while ((ch = (kgdb_io_ops->read_char())) != '$')
245                         /* nothing */;
246
247                 kgdb_connected = 1;
248                 checksum = 0;
249                 xmitcsum = -1;
250
251                 count = 0;
252
253                 /*
254                  * now, read until a # or end of buffer is found:
255                  */
256                 while (count < (BUFMAX - 1)) {
257                         ch = kgdb_io_ops->read_char();
258                         if (ch == '#')
259                                 break;
260                         checksum = checksum + ch;
261                         buffer[count] = ch;
262                         count = count + 1;
263                 }
264                 buffer[count] = 0;
265
266                 if (ch == '#') {
267                         xmitcsum = hex(kgdb_io_ops->read_char()) << 4;
268                         xmitcsum += hex(kgdb_io_ops->read_char());
269
270                         if (checksum != xmitcsum)
271                                 /* failed checksum */
272                                 kgdb_io_ops->write_char('-');
273                         else
274                                 /* successful transfer */
275                                 kgdb_io_ops->write_char('+');
276                         if (kgdb_io_ops->flush)
277                                 kgdb_io_ops->flush();
278                 }
279         } while (checksum != xmitcsum);
280 }
281
282 /*
283  * Send the packet in buffer.
284  * Check for gdb connection if asked for.
285  */
286 static void put_packet(char *buffer)
287 {
288         unsigned char checksum;
289         int count;
290         char ch;
291
292         /*
293          * $<packet info>#<checksum>.
294          */
295         while (1) {
296                 kgdb_io_ops->write_char('$');
297                 checksum = 0;
298                 count = 0;
299
300                 while ((ch = buffer[count])) {
301                         kgdb_io_ops->write_char(ch);
302                         checksum += ch;
303                         count++;
304                 }
305
306                 kgdb_io_ops->write_char('#');
307                 kgdb_io_ops->write_char(hexchars[checksum >> 4]);
308                 kgdb_io_ops->write_char(hexchars[checksum & 0xf]);
309                 if (kgdb_io_ops->flush)
310                         kgdb_io_ops->flush();
311
312                 /* Now see what we get in reply. */
313                 ch = kgdb_io_ops->read_char();
314
315                 if (ch == 3)
316                         ch = kgdb_io_ops->read_char();
317
318                 /* If we get an ACK, we are done. */
319                 if (ch == '+')
320                         return;
321
322                 /*
323                  * If we get the start of another packet, this means
324                  * that GDB is attempting to reconnect.  We will NAK
325                  * the packet being sent, and stop trying to send this
326                  * packet.
327                  */
328                 if (ch == '$') {
329                         kgdb_io_ops->write_char('-');
330                         if (kgdb_io_ops->flush)
331                                 kgdb_io_ops->flush();
332                         return;
333                 }
334         }
335 }
336
337 static char *pack_hex_byte(char *pkt, u8 byte)
338 {
339         *pkt++ = hexchars[byte >> 4];
340         *pkt++ = hexchars[byte & 0xf];
341
342         return pkt;
343 }
344
345 /*
346  * Convert the memory pointed to by mem into hex, placing result in buf.
347  * Return a pointer to the last char put in buf (null). May return an error.
348  */
349 int kgdb_mem2hex(char *mem, char *buf, int count)
350 {
351         char *tmp;
352         int err;
353
354         /*
355          * We use the upper half of buf as an intermediate buffer for the
356          * raw memory copy.  Hex conversion will work against this one.
357          */
358         tmp = buf + count;
359
360         err = probe_kernel_read(tmp, mem, count);
361         if (!err) {
362                 while (count > 0) {
363                         buf = pack_hex_byte(buf, *tmp);
364                         tmp++;
365                         count--;
366                 }
367
368                 *buf = 0;
369         }
370
371         return err;
372 }
373
374 /*
375  * Copy the binary array pointed to by buf into mem.  Fix $, #, and
376  * 0x7d escaped with 0x7d.  Return a pointer to the character after
377  * the last byte written.
378  */
379 static int kgdb_ebin2mem(char *buf, char *mem, int count)
380 {
381         int err = 0;
382         char c;
383
384         while (count-- > 0) {
385                 c = *buf++;
386                 if (c == 0x7d)
387                         c = *buf++ ^ 0x20;
388
389                 err = probe_kernel_write(mem, &c, 1);
390                 if (err)
391                         break;
392
393                 mem++;
394         }
395
396         return err;
397 }
398
399 /*
400  * Convert the hex array pointed to by buf into binary to be placed in mem.
401  * Return a pointer to the character AFTER the last byte written.
402  * May return an error.
403  */
404 int kgdb_hex2mem(char *buf, char *mem, int count)
405 {
406         char *tmp_raw;
407         char *tmp_hex;
408
409         /*
410          * We use the upper half of buf as an intermediate buffer for the
411          * raw memory that is converted from hex.
412          */
413         tmp_raw = buf + count * 2;
414
415         tmp_hex = tmp_raw - 1;
416         while (tmp_hex >= buf) {
417                 tmp_raw--;
418                 *tmp_raw = hex(*tmp_hex--);
419                 *tmp_raw |= hex(*tmp_hex--) << 4;
420         }
421
422         return probe_kernel_write(mem, tmp_raw, count);
423 }
424
425 /*
426  * While we find nice hex chars, build a long_val.
427  * Return number of chars processed.
428  */
429 int kgdb_hex2long(char **ptr, long *long_val)
430 {
431         int hex_val;
432         int num = 0;
433
434         *long_val = 0;
435
436         while (**ptr) {
437                 hex_val = hex(**ptr);
438                 if (hex_val < 0)
439                         break;
440
441                 *long_val = (*long_val << 4) | hex_val;
442                 num++;
443                 (*ptr)++;
444         }
445
446         return num;
447 }
448
449 /* Write memory due to an 'M' or 'X' packet. */
450 static int write_mem_msg(int binary)
451 {
452         char *ptr = &remcom_in_buffer[1];
453         unsigned long addr;
454         unsigned long length;
455         int err;
456
457         if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' &&
458             kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') {
459                 if (binary)
460                         err = kgdb_ebin2mem(ptr, (char *)addr, length);
461                 else
462                         err = kgdb_hex2mem(ptr, (char *)addr, length);
463                 if (err)
464                         return err;
465                 if (CACHE_FLUSH_IS_SAFE)
466                         flush_icache_range(addr, addr + length + 1);
467                 return 0;
468         }
469
470         return -EINVAL;
471 }
472
473 static void error_packet(char *pkt, int error)
474 {
475         error = -error;
476         pkt[0] = 'E';
477         pkt[1] = hexchars[(error / 10)];
478         pkt[2] = hexchars[(error % 10)];
479         pkt[3] = '\0';
480 }
481
482 /*
483  * Thread ID accessors. We represent a flat TID space to GDB, where
484  * the per CPU idle threads (which under Linux all have PID 0) are
485  * remapped to negative TIDs.
486  */
487
488 #define BUF_THREAD_ID_SIZE      16
489
490 static char *pack_threadid(char *pkt, unsigned char *id)
491 {
492         char *limit;
493
494         limit = pkt + BUF_THREAD_ID_SIZE;
495         while (pkt < limit)
496                 pkt = pack_hex_byte(pkt, *id++);
497
498         return pkt;
499 }
500
501 static void int_to_threadref(unsigned char *id, int value)
502 {
503         unsigned char *scan;
504         int i = 4;
505
506         scan = (unsigned char *)id;
507         while (i--)
508                 *scan++ = 0;
509         *scan++ = (value >> 24) & 0xff;
510         *scan++ = (value >> 16) & 0xff;
511         *scan++ = (value >> 8) & 0xff;
512         *scan++ = (value & 0xff);
513 }
514
515 static struct task_struct *getthread(struct pt_regs *regs, int tid)
516 {
517         /*
518          * Non-positive TIDs are remapped idle tasks:
519          */
520         if (tid <= 0)
521                 return idle_task(-tid);
522
523         /*
524          * find_task_by_pid_ns() does not take the tasklist lock anymore
525          * but is nicely RCU locked - hence is a pretty resilient
526          * thing to use:
527          */
528         return find_task_by_pid_ns(tid, &init_pid_ns);
529 }
530
531 /*
532  * CPU debug state control:
533  */
534
535 #ifdef CONFIG_SMP
536 static void kgdb_wait(struct pt_regs *regs)
537 {
538         unsigned long flags;
539         int cpu;
540
541         local_irq_save(flags);
542         cpu = raw_smp_processor_id();
543         kgdb_info[cpu].debuggerinfo = regs;
544         kgdb_info[cpu].task = current;
545         /*
546          * Make sure the above info reaches the primary CPU before
547          * our cpu_in_kgdb[] flag setting does:
548          */
549         smp_wmb();
550         atomic_set(&cpu_in_kgdb[cpu], 1);
551
552         /*
553          * The primary CPU must be active to enter here, but this is
554          * guard in case the primary CPU had not been selected if
555          * this was an entry via nmi.
556          */
557         while (atomic_read(&kgdb_active) == -1)
558                 cpu_relax();
559
560         /* Wait till primary CPU goes completely into the debugger. */
561         while (!atomic_read(&cpu_in_kgdb[atomic_read(&kgdb_active)]))
562                 cpu_relax();
563
564         /* Wait till primary CPU is done with debugging */
565         while (atomic_read(&passive_cpu_wait[cpu]))
566                 cpu_relax();
567
568         kgdb_info[cpu].debuggerinfo = NULL;
569         kgdb_info[cpu].task = NULL;
570
571         /* fix up hardware debug registers on local cpu */
572         if (arch_kgdb_ops.correct_hw_break)
573                 arch_kgdb_ops.correct_hw_break();
574
575         /* Signal the primary CPU that we are done: */
576         atomic_set(&cpu_in_kgdb[cpu], 0);
577         local_irq_restore(flags);
578 }
579 #endif
580
581 /*
582  * Some architectures need cache flushes when we set/clear a
583  * breakpoint:
584  */
585 static void kgdb_flush_swbreak_addr(unsigned long addr)
586 {
587         if (!CACHE_FLUSH_IS_SAFE)
588                 return;
589
590         if (current->mm) {
591                 flush_cache_range(current->mm->mmap_cache,
592                                   addr, addr + BREAK_INSTR_SIZE);
593         } else {
594                 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
595         }
596 }
597
598 /*
599  * SW breakpoint management:
600  */
601 static int kgdb_activate_sw_breakpoints(void)
602 {
603         unsigned long addr;
604         int error = 0;
605         int i;
606
607         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
608                 if (kgdb_break[i].state != BP_SET)
609                         continue;
610
611                 addr = kgdb_break[i].bpt_addr;
612                 error = kgdb_arch_set_breakpoint(addr,
613                                 kgdb_break[i].saved_instr);
614                 if (error)
615                         return error;
616
617                 kgdb_flush_swbreak_addr(addr);
618                 kgdb_break[i].state = BP_ACTIVE;
619         }
620         return 0;
621 }
622
623 static int kgdb_set_sw_break(unsigned long addr)
624 {
625         int err = kgdb_validate_break_address(addr);
626         int breakno = -1;
627         int i;
628
629         if (err)
630                 return err;
631
632         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
633                 if ((kgdb_break[i].state == BP_SET) &&
634                                         (kgdb_break[i].bpt_addr == addr))
635                         return -EEXIST;
636         }
637         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
638                 if (kgdb_break[i].state == BP_REMOVED &&
639                                         kgdb_break[i].bpt_addr == addr) {
640                         breakno = i;
641                         break;
642                 }
643         }
644
645         if (breakno == -1) {
646                 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
647                         if (kgdb_break[i].state == BP_UNDEFINED) {
648                                 breakno = i;
649                                 break;
650                         }
651                 }
652         }
653
654         if (breakno == -1)
655                 return -E2BIG;
656
657         kgdb_break[breakno].state = BP_SET;
658         kgdb_break[breakno].type = BP_BREAKPOINT;
659         kgdb_break[breakno].bpt_addr = addr;
660
661         return 0;
662 }
663
664 static int kgdb_deactivate_sw_breakpoints(void)
665 {
666         unsigned long addr;
667         int error = 0;
668         int i;
669
670         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
671                 if (kgdb_break[i].state != BP_ACTIVE)
672                         continue;
673                 addr = kgdb_break[i].bpt_addr;
674                 error = kgdb_arch_remove_breakpoint(addr,
675                                         kgdb_break[i].saved_instr);
676                 if (error)
677                         return error;
678
679                 kgdb_flush_swbreak_addr(addr);
680                 kgdb_break[i].state = BP_SET;
681         }
682         return 0;
683 }
684
685 static int kgdb_remove_sw_break(unsigned long addr)
686 {
687         int i;
688
689         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
690                 if ((kgdb_break[i].state == BP_SET) &&
691                                 (kgdb_break[i].bpt_addr == addr)) {
692                         kgdb_break[i].state = BP_REMOVED;
693                         return 0;
694                 }
695         }
696         return -ENOENT;
697 }
698
699 int kgdb_isremovedbreak(unsigned long addr)
700 {
701         int i;
702
703         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
704                 if ((kgdb_break[i].state == BP_REMOVED) &&
705                                         (kgdb_break[i].bpt_addr == addr))
706                         return 1;
707         }
708         return 0;
709 }
710
711 int remove_all_break(void)
712 {
713         unsigned long addr;
714         int error;
715         int i;
716
717         /* Clear memory breakpoints. */
718         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
719                 if (kgdb_break[i].state != BP_SET)
720                         continue;
721                 addr = kgdb_break[i].bpt_addr;
722                 error = kgdb_arch_remove_breakpoint(addr,
723                                 kgdb_break[i].saved_instr);
724                 if (error)
725                         return error;
726                 kgdb_break[i].state = BP_REMOVED;
727         }
728
729         /* Clear hardware breakpoints. */
730         if (arch_kgdb_ops.remove_all_hw_break)
731                 arch_kgdb_ops.remove_all_hw_break();
732
733         return 0;
734 }
735
736 /*
737  * Remap normal tasks to their real PID, idle tasks to -1 ... -NR_CPUs:
738  */
739 static inline int shadow_pid(int realpid)
740 {
741         if (realpid)
742                 return realpid;
743
744         return -1-raw_smp_processor_id();
745 }
746
747 static char gdbmsgbuf[BUFMAX + 1];
748
749 static void kgdb_msg_write(const char *s, int len)
750 {
751         char *bufptr;
752         int wcount;
753         int i;
754
755         /* 'O'utput */
756         gdbmsgbuf[0] = 'O';
757
758         /* Fill and send buffers... */
759         while (len > 0) {
760                 bufptr = gdbmsgbuf + 1;
761
762                 /* Calculate how many this time */
763                 if ((len << 1) > (BUFMAX - 2))
764                         wcount = (BUFMAX - 2) >> 1;
765                 else
766                         wcount = len;
767
768                 /* Pack in hex chars */
769                 for (i = 0; i < wcount; i++)
770                         bufptr = pack_hex_byte(bufptr, s[i]);
771                 *bufptr = '\0';
772
773                 /* Move up */
774                 s += wcount;
775                 len -= wcount;
776
777                 /* Write packet */
778                 put_packet(gdbmsgbuf);
779         }
780 }
781
782 /*
783  * Return true if there is a valid kgdb I/O module.  Also if no
784  * debugger is attached a message can be printed to the console about
785  * waiting for the debugger to attach.
786  *
787  * The print_wait argument is only to be true when called from inside
788  * the core kgdb_handle_exception, because it will wait for the
789  * debugger to attach.
790  */
791 static int kgdb_io_ready(int print_wait)
792 {
793         if (!kgdb_io_ops)
794                 return 0;
795         if (kgdb_connected)
796                 return 1;
797         if (atomic_read(&kgdb_setting_breakpoint))
798                 return 1;
799         if (print_wait)
800                 printk(KERN_CRIT "KGDB: Waiting for remote debugger\n");
801         return 1;
802 }
803
804 /*
805  * All the functions that start with gdb_cmd are the various
806  * operations to implement the handlers for the gdbserial protocol
807  * where KGDB is communicating with an external debugger
808  */
809
810 /* Handle the '?' status packets */
811 static void gdb_cmd_status(struct kgdb_state *ks)
812 {
813         /*
814          * We know that this packet is only sent
815          * during initial connect.  So to be safe,
816          * we clear out our breakpoints now in case
817          * GDB is reconnecting.
818          */
819         remove_all_break();
820
821         remcom_out_buffer[0] = 'S';
822         pack_hex_byte(&remcom_out_buffer[1], ks->signo);
823 }
824
825 /* Handle the 'g' get registers request */
826 static void gdb_cmd_getregs(struct kgdb_state *ks)
827 {
828         struct task_struct *thread;
829         void *local_debuggerinfo;
830         int i;
831
832         thread = kgdb_usethread;
833         if (!thread) {
834                 thread = kgdb_info[ks->cpu].task;
835                 local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo;
836         } else {
837                 local_debuggerinfo = NULL;
838                 for (i = 0; i < NR_CPUS; i++) {
839                         /*
840                          * Try to find the task on some other
841                          * or possibly this node if we do not
842                          * find the matching task then we try
843                          * to approximate the results.
844                          */
845                         if (thread == kgdb_info[i].task)
846                                 local_debuggerinfo = kgdb_info[i].debuggerinfo;
847                 }
848         }
849
850         /*
851          * All threads that don't have debuggerinfo should be
852          * in __schedule() sleeping, since all other CPUs
853          * are in kgdb_wait, and thus have debuggerinfo.
854          */
855         if (local_debuggerinfo) {
856                 pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo);
857         } else {
858                 /*
859                  * Pull stuff saved during switch_to; nothing
860                  * else is accessible (or even particularly
861                  * relevant).
862                  *
863                  * This should be enough for a stack trace.
864                  */
865                 sleeping_thread_to_gdb_regs(gdb_regs, thread);
866         }
867         kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES);
868 }
869
870 /* Handle the 'G' set registers request */
871 static void gdb_cmd_setregs(struct kgdb_state *ks)
872 {
873         kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES);
874
875         if (kgdb_usethread && kgdb_usethread != current) {
876                 error_packet(remcom_out_buffer, -EINVAL);
877         } else {
878                 gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs);
879                 strcpy(remcom_out_buffer, "OK");
880         }
881 }
882
883 /* Handle the 'm' memory read bytes */
884 static void gdb_cmd_memread(struct kgdb_state *ks)
885 {
886         char *ptr = &remcom_in_buffer[1];
887         unsigned long length;
888         unsigned long addr;
889         int err;
890
891         if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' &&
892                                         kgdb_hex2long(&ptr, &length) > 0) {
893                 err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length);
894                 if (err)
895                         error_packet(remcom_out_buffer, err);
896         } else {
897                 error_packet(remcom_out_buffer, -EINVAL);
898         }
899 }
900
901 /* Handle the 'M' memory write bytes */
902 static void gdb_cmd_memwrite(struct kgdb_state *ks)
903 {
904         int err = write_mem_msg(0);
905
906         if (err)
907                 error_packet(remcom_out_buffer, err);
908         else
909                 strcpy(remcom_out_buffer, "OK");
910 }
911
912 /* Handle the 'X' memory binary write bytes */
913 static void gdb_cmd_binwrite(struct kgdb_state *ks)
914 {
915         int err = write_mem_msg(1);
916
917         if (err)
918                 error_packet(remcom_out_buffer, err);
919         else
920                 strcpy(remcom_out_buffer, "OK");
921 }
922
923 /* Handle the 'D' or 'k', detach or kill packets */
924 static void gdb_cmd_detachkill(struct kgdb_state *ks)
925 {
926         int error;
927
928         /* The detach case */
929         if (remcom_in_buffer[0] == 'D') {
930                 error = remove_all_break();
931                 if (error < 0) {
932                         error_packet(remcom_out_buffer, error);
933                 } else {
934                         strcpy(remcom_out_buffer, "OK");
935                         kgdb_connected = 0;
936                 }
937                 put_packet(remcom_out_buffer);
938         } else {
939                 /*
940                  * Assume the kill case, with no exit code checking,
941                  * trying to force detach the debugger:
942                  */
943                 remove_all_break();
944                 kgdb_connected = 0;
945         }
946 }
947
948 /* Handle the 'R' reboot packets */
949 static int gdb_cmd_reboot(struct kgdb_state *ks)
950 {
951         /* For now, only honor R0 */
952         if (strcmp(remcom_in_buffer, "R0") == 0) {
953                 printk(KERN_CRIT "Executing emergency reboot\n");
954                 strcpy(remcom_out_buffer, "OK");
955                 put_packet(remcom_out_buffer);
956
957                 /*
958                  * Execution should not return from
959                  * machine_emergency_restart()
960                  */
961                 machine_emergency_restart();
962                 kgdb_connected = 0;
963
964                 return 1;
965         }
966         return 0;
967 }
968
969 /* Handle the 'q' query packets */
970 static void gdb_cmd_query(struct kgdb_state *ks)
971 {
972         struct task_struct *thread;
973         unsigned char thref[8];
974         char *ptr;
975         int i;
976
977         switch (remcom_in_buffer[1]) {
978         case 's':
979         case 'f':
980                 if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) {
981                         error_packet(remcom_out_buffer, -EINVAL);
982                         break;
983                 }
984
985                 if (remcom_in_buffer[1] == 'f')
986                         ks->threadid = 1;
987
988                 remcom_out_buffer[0] = 'm';
989                 ptr = remcom_out_buffer + 1;
990
991                 for (i = 0; i < 17; ks->threadid++) {
992                         thread = getthread(ks->linux_regs, ks->threadid);
993                         if (thread) {
994                                 int_to_threadref(thref, ks->threadid);
995                                 pack_threadid(ptr, thref);
996                                 ptr += BUF_THREAD_ID_SIZE;
997                                 *(ptr++) = ',';
998                                 i++;
999                         }
1000                 }
1001                 *(--ptr) = '\0';
1002                 break;
1003
1004         case 'C':
1005                 /* Current thread id */
1006                 strcpy(remcom_out_buffer, "QC");
1007                 ks->threadid = shadow_pid(current->pid);
1008                 int_to_threadref(thref, ks->threadid);
1009                 pack_threadid(remcom_out_buffer + 2, thref);
1010                 break;
1011         case 'T':
1012                 if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) {
1013                         error_packet(remcom_out_buffer, -EINVAL);
1014                         break;
1015                 }
1016                 ks->threadid = 0;
1017                 ptr = remcom_in_buffer + 17;
1018                 kgdb_hex2long(&ptr, &ks->threadid);
1019                 if (!getthread(ks->linux_regs, ks->threadid)) {
1020                         error_packet(remcom_out_buffer, -EINVAL);
1021                         break;
1022                 }
1023                 if (ks->threadid > 0) {
1024                         kgdb_mem2hex(getthread(ks->linux_regs,
1025                                         ks->threadid)->comm,
1026                                         remcom_out_buffer, 16);
1027                 } else {
1028                         static char tmpstr[23 + BUF_THREAD_ID_SIZE];
1029
1030                         sprintf(tmpstr, "Shadow task %d for pid 0",
1031                                         (int)(-ks->threadid-1));
1032                         kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr));
1033                 }
1034                 break;
1035         }
1036 }
1037
1038 /* Handle the 'H' task query packets */
1039 static void gdb_cmd_task(struct kgdb_state *ks)
1040 {
1041         struct task_struct *thread;
1042         char *ptr;
1043
1044         switch (remcom_in_buffer[1]) {
1045         case 'g':
1046                 ptr = &remcom_in_buffer[2];
1047                 kgdb_hex2long(&ptr, &ks->threadid);
1048                 thread = getthread(ks->linux_regs, ks->threadid);
1049                 if (!thread && ks->threadid > 0) {
1050                         error_packet(remcom_out_buffer, -EINVAL);
1051                         break;
1052                 }
1053                 kgdb_usethread = thread;
1054                 ks->kgdb_usethreadid = ks->threadid;
1055                 strcpy(remcom_out_buffer, "OK");
1056                 break;
1057         case 'c':
1058                 ptr = &remcom_in_buffer[2];
1059                 kgdb_hex2long(&ptr, &ks->threadid);
1060                 if (!ks->threadid) {
1061                         kgdb_contthread = NULL;
1062                 } else {
1063                         thread = getthread(ks->linux_regs, ks->threadid);
1064                         if (!thread && ks->threadid > 0) {
1065                                 error_packet(remcom_out_buffer, -EINVAL);
1066                                 break;
1067                         }
1068                         kgdb_contthread = thread;
1069                 }
1070                 strcpy(remcom_out_buffer, "OK");
1071                 break;
1072         }
1073 }
1074
1075 /* Handle the 'T' thread query packets */
1076 static void gdb_cmd_thread(struct kgdb_state *ks)
1077 {
1078         char *ptr = &remcom_in_buffer[1];
1079         struct task_struct *thread;
1080
1081         kgdb_hex2long(&ptr, &ks->threadid);
1082         thread = getthread(ks->linux_regs, ks->threadid);
1083         if (thread)
1084                 strcpy(remcom_out_buffer, "OK");
1085         else
1086                 error_packet(remcom_out_buffer, -EINVAL);
1087 }
1088
1089 /* Handle the 'z' or 'Z' breakpoint remove or set packets */
1090 static void gdb_cmd_break(struct kgdb_state *ks)
1091 {
1092         /*
1093          * Since GDB-5.3, it's been drafted that '0' is a software
1094          * breakpoint, '1' is a hardware breakpoint, so let's do that.
1095          */
1096         char *bpt_type = &remcom_in_buffer[1];
1097         char *ptr = &remcom_in_buffer[2];
1098         unsigned long addr;
1099         unsigned long length;
1100         int error = 0;
1101
1102         if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') {
1103                 /* Unsupported */
1104                 if (*bpt_type > '4')
1105                         return;
1106         } else {
1107                 if (*bpt_type != '0' && *bpt_type != '1')
1108                         /* Unsupported. */
1109                         return;
1110         }
1111
1112         /*
1113          * Test if this is a hardware breakpoint, and
1114          * if we support it:
1115          */
1116         if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT))
1117                 /* Unsupported. */
1118                 return;
1119
1120         if (*(ptr++) != ',') {
1121                 error_packet(remcom_out_buffer, -EINVAL);
1122                 return;
1123         }
1124         if (!kgdb_hex2long(&ptr, &addr)) {
1125                 error_packet(remcom_out_buffer, -EINVAL);
1126                 return;
1127         }
1128         if (*(ptr++) != ',' ||
1129                 !kgdb_hex2long(&ptr, &length)) {
1130                 error_packet(remcom_out_buffer, -EINVAL);
1131                 return;
1132         }
1133
1134         if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0')
1135                 error = kgdb_set_sw_break(addr);
1136         else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0')
1137                 error = kgdb_remove_sw_break(addr);
1138         else if (remcom_in_buffer[0] == 'Z')
1139                 error = arch_kgdb_ops.set_hw_breakpoint(addr,
1140                         (int)length, *bpt_type);
1141         else if (remcom_in_buffer[0] == 'z')
1142                 error = arch_kgdb_ops.remove_hw_breakpoint(addr,
1143                         (int) length, *bpt_type);
1144
1145         if (error == 0)
1146                 strcpy(remcom_out_buffer, "OK");
1147         else
1148                 error_packet(remcom_out_buffer, error);
1149 }
1150
1151 /* Handle the 'C' signal / exception passing packets */
1152 static int gdb_cmd_exception_pass(struct kgdb_state *ks)
1153 {
1154         /* C09 == pass exception
1155          * C15 == detach kgdb, pass exception
1156          */
1157         if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') {
1158
1159                 ks->pass_exception = 1;
1160                 remcom_in_buffer[0] = 'c';
1161
1162         } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') {
1163
1164                 ks->pass_exception = 1;
1165                 remcom_in_buffer[0] = 'D';
1166                 remove_all_break();
1167                 kgdb_connected = 0;
1168                 return 1;
1169
1170         } else {
1171                 error_packet(remcom_out_buffer, -EINVAL);
1172                 return 0;
1173         }
1174
1175         /* Indicate fall through */
1176         return -1;
1177 }
1178
1179 /*
1180  * This function performs all gdbserial command procesing
1181  */
1182 static int gdb_serial_stub(struct kgdb_state *ks)
1183 {
1184         int error = 0;
1185         int tmp;
1186
1187         /* Clear the out buffer. */
1188         memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1189
1190         if (kgdb_connected) {
1191                 unsigned char thref[8];
1192                 char *ptr;
1193
1194                 /* Reply to host that an exception has occurred */
1195                 ptr = remcom_out_buffer;
1196                 *ptr++ = 'T';
1197                 ptr = pack_hex_byte(ptr, ks->signo);
1198                 ptr += strlen(strcpy(ptr, "thread:"));
1199                 int_to_threadref(thref, shadow_pid(current->pid));
1200                 ptr = pack_threadid(ptr, thref);
1201                 *ptr++ = ';';
1202                 put_packet(remcom_out_buffer);
1203         }
1204
1205         kgdb_usethread = kgdb_info[ks->cpu].task;
1206         ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid);
1207         ks->pass_exception = 0;
1208
1209         while (1) {
1210                 error = 0;
1211
1212                 /* Clear the out buffer. */
1213                 memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1214
1215                 get_packet(remcom_in_buffer);
1216
1217                 switch (remcom_in_buffer[0]) {
1218                 case '?': /* gdbserial status */
1219                         gdb_cmd_status(ks);
1220                         break;
1221                 case 'g': /* return the value of the CPU registers */
1222                         gdb_cmd_getregs(ks);
1223                         break;
1224                 case 'G': /* set the value of the CPU registers - return OK */
1225                         gdb_cmd_setregs(ks);
1226                         break;
1227                 case 'm': /* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */
1228                         gdb_cmd_memread(ks);
1229                         break;
1230                 case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1231                         gdb_cmd_memwrite(ks);
1232                         break;
1233                 case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1234                         gdb_cmd_binwrite(ks);
1235                         break;
1236                         /* kill or detach. KGDB should treat this like a
1237                          * continue.
1238                          */
1239                 case 'D': /* Debugger detach */
1240                 case 'k': /* Debugger detach via kill */
1241                         gdb_cmd_detachkill(ks);
1242                         goto default_handle;
1243                 case 'R': /* Reboot */
1244                         if (gdb_cmd_reboot(ks))
1245                                 goto default_handle;
1246                         break;
1247                 case 'q': /* query command */
1248                         gdb_cmd_query(ks);
1249                         break;
1250                 case 'H': /* task related */
1251                         gdb_cmd_task(ks);
1252                         break;
1253                 case 'T': /* Query thread status */
1254                         gdb_cmd_thread(ks);
1255                         break;
1256                 case 'z': /* Break point remove */
1257                 case 'Z': /* Break point set */
1258                         gdb_cmd_break(ks);
1259                         break;
1260                 case 'C': /* Exception passing */
1261                         tmp = gdb_cmd_exception_pass(ks);
1262                         if (tmp > 0)
1263                                 goto default_handle;
1264                         if (tmp == 0)
1265                                 break;
1266                         /* Fall through on tmp < 0 */
1267                 case 'c': /* Continue packet */
1268                 case 's': /* Single step packet */
1269                         if (kgdb_contthread && kgdb_contthread != current) {
1270                                 /* Can't switch threads in kgdb */
1271                                 error_packet(remcom_out_buffer, -EINVAL);
1272                                 break;
1273                         }
1274                         kgdb_activate_sw_breakpoints();
1275                         /* Fall through to default processing */
1276                 default:
1277 default_handle:
1278                         error = kgdb_arch_handle_exception(ks->ex_vector,
1279                                                 ks->signo,
1280                                                 ks->err_code,
1281                                                 remcom_in_buffer,
1282                                                 remcom_out_buffer,
1283                                                 ks->linux_regs);
1284                         /*
1285                          * Leave cmd processing on error, detach,
1286                          * kill, continue, or single step.
1287                          */
1288                         if (error >= 0 || remcom_in_buffer[0] == 'D' ||
1289                             remcom_in_buffer[0] == 'k') {
1290                                 error = 0;
1291                                 goto kgdb_exit;
1292                         }
1293
1294                 }
1295
1296                 /* reply to the request */
1297                 put_packet(remcom_out_buffer);
1298         }
1299
1300 kgdb_exit:
1301         if (ks->pass_exception)
1302                 error = 1;
1303         return error;
1304 }
1305
1306 static int kgdb_reenter_check(struct kgdb_state *ks)
1307 {
1308         unsigned long addr;
1309
1310         if (atomic_read(&kgdb_active) != raw_smp_processor_id())
1311                 return 0;
1312
1313         /* Panic on recursive debugger calls: */
1314         exception_level++;
1315         addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
1316         kgdb_deactivate_sw_breakpoints();
1317
1318         /*
1319          * If the break point removed ok at the place exception
1320          * occurred, try to recover and print a warning to the end
1321          * user because the user planted a breakpoint in a place that
1322          * KGDB needs in order to function.
1323          */
1324         if (kgdb_remove_sw_break(addr) == 0) {
1325                 exception_level = 0;
1326                 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1327                 kgdb_activate_sw_breakpoints();
1328                 printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed\n");
1329                 WARN_ON_ONCE(1);
1330
1331                 return 1;
1332         }
1333         remove_all_break();
1334         kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1335
1336         if (exception_level > 1) {
1337                 dump_stack();
1338                 panic("Recursive entry to debugger");
1339         }
1340
1341         printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n");
1342         dump_stack();
1343         panic("Recursive entry to debugger");
1344
1345         return 1;
1346 }
1347
1348 /*
1349  * kgdb_handle_exception() - main entry point from a kernel exception
1350  *
1351  * Locking hierarchy:
1352  *      interface locks, if any (begin_session)
1353  *      kgdb lock (kgdb_active)
1354  */
1355 int
1356 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
1357 {
1358         struct kgdb_state kgdb_var;
1359         struct kgdb_state *ks = &kgdb_var;
1360         unsigned long flags;
1361         int error = 0;
1362         int i, cpu;
1363
1364         ks->cpu                 = raw_smp_processor_id();
1365         ks->ex_vector           = evector;
1366         ks->signo               = signo;
1367         ks->ex_vector           = evector;
1368         ks->err_code            = ecode;
1369         ks->kgdb_usethreadid    = 0;
1370         ks->linux_regs          = regs;
1371
1372         if (kgdb_reenter_check(ks))
1373                 return 0; /* Ouch, double exception ! */
1374
1375 acquirelock:
1376         /*
1377          * Interrupts will be restored by the 'trap return' code, except when
1378          * single stepping.
1379          */
1380         local_irq_save(flags);
1381
1382         cpu = raw_smp_processor_id();
1383
1384         /*
1385          * Acquire the kgdb_active lock:
1386          */
1387         while (atomic_cmpxchg(&kgdb_active, -1, cpu) != -1)
1388                 cpu_relax();
1389
1390         /*
1391          * Do not start the debugger connection on this CPU if the last
1392          * instance of the exception handler wanted to come into the
1393          * debugger on a different CPU via a single step
1394          */
1395         if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
1396             atomic_read(&kgdb_cpu_doing_single_step) != cpu) {
1397
1398                 atomic_set(&kgdb_active, -1);
1399                 local_irq_restore(flags);
1400
1401                 goto acquirelock;
1402         }
1403
1404         if (!kgdb_io_ready(1)) {
1405                 error = 1;
1406                 goto kgdb_restore; /* No I/O connection, so resume the system */
1407         }
1408
1409         /*
1410          * Don't enter if we have hit a removed breakpoint.
1411          */
1412         if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
1413                 goto kgdb_restore;
1414
1415         /* Call the I/O driver's pre_exception routine */
1416         if (kgdb_io_ops->pre_exception)
1417                 kgdb_io_ops->pre_exception();
1418
1419         kgdb_info[ks->cpu].debuggerinfo = ks->linux_regs;
1420         kgdb_info[ks->cpu].task = current;
1421
1422         kgdb_disable_hw_debug(ks->linux_regs);
1423
1424         /*
1425          * Get the passive CPU lock which will hold all the non-primary
1426          * CPU in a spin state while the debugger is active
1427          */
1428         if (!kgdb_single_step || !kgdb_contthread) {
1429                 for (i = 0; i < NR_CPUS; i++)
1430                         atomic_set(&passive_cpu_wait[i], 1);
1431         }
1432
1433 #ifdef CONFIG_SMP
1434         /* Signal the other CPUs to enter kgdb_wait() */
1435         if ((!kgdb_single_step || !kgdb_contthread) && kgdb_do_roundup)
1436                 kgdb_roundup_cpus(flags);
1437 #endif
1438
1439         /*
1440          * spin_lock code is good enough as a barrier so we don't
1441          * need one here:
1442          */
1443         atomic_set(&cpu_in_kgdb[ks->cpu], 1);
1444
1445         /*
1446          * Wait for the other CPUs to be notified and be waiting for us:
1447          */
1448         for_each_online_cpu(i) {
1449                 while (!atomic_read(&cpu_in_kgdb[i]))
1450                         cpu_relax();
1451         }
1452
1453         /*
1454          * At this point the primary processor is completely
1455          * in the debugger and all secondary CPUs are quiescent
1456          */
1457         kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code);
1458         kgdb_deactivate_sw_breakpoints();
1459         kgdb_single_step = 0;
1460         kgdb_contthread = NULL;
1461         exception_level = 0;
1462
1463         /* Talk to debugger with gdbserial protocol */
1464         error = gdb_serial_stub(ks);
1465
1466         /* Call the I/O driver's post_exception routine */
1467         if (kgdb_io_ops->post_exception)
1468                 kgdb_io_ops->post_exception();
1469
1470         kgdb_info[ks->cpu].debuggerinfo = NULL;
1471         kgdb_info[ks->cpu].task = NULL;
1472         atomic_set(&cpu_in_kgdb[ks->cpu], 0);
1473
1474         if (!kgdb_single_step || !kgdb_contthread) {
1475                 for (i = NR_CPUS-1; i >= 0; i--)
1476                         atomic_set(&passive_cpu_wait[i], 0);
1477                 /*
1478                  * Wait till all the CPUs have quit
1479                  * from the debugger.
1480                  */
1481                 for_each_online_cpu(i) {
1482                         while (atomic_read(&cpu_in_kgdb[i]))
1483                                 cpu_relax();
1484                 }
1485         }
1486
1487 kgdb_restore:
1488         /* Free kgdb_active */
1489         atomic_set(&kgdb_active, -1);
1490         local_irq_restore(flags);
1491
1492         return error;
1493 }
1494
1495 int kgdb_nmicallback(int cpu, void *regs)
1496 {
1497 #ifdef CONFIG_SMP
1498         if (!atomic_read(&cpu_in_kgdb[cpu]) &&
1499                         atomic_read(&kgdb_active) != cpu) {
1500                 kgdb_wait((struct pt_regs *)regs);
1501                 return 0;
1502         }
1503 #endif
1504         return 1;
1505 }
1506
1507 void kgdb_console_write(struct console *co, const char *s, unsigned count)
1508 {
1509         unsigned long flags;
1510
1511         /* If we're debugging, or KGDB has not connected, don't try
1512          * and print. */
1513         if (!kgdb_connected || atomic_read(&kgdb_active) != -1)
1514                 return;
1515
1516         local_irq_save(flags);
1517         kgdb_msg_write(s, count);
1518         local_irq_restore(flags);
1519 }
1520
1521 static struct console kgdbcons = {
1522         .name           = "kgdb",
1523         .write          = kgdb_console_write,
1524         .flags          = CON_PRINTBUFFER | CON_ENABLED,
1525         .index          = -1,
1526 };
1527
1528 #ifdef CONFIG_MAGIC_SYSRQ
1529 static void sysrq_handle_gdb(int key, struct tty_struct *tty)
1530 {
1531         if (!kgdb_io_ops) {
1532                 printk(KERN_CRIT "ERROR: No KGDB I/O module available\n");
1533                 return;
1534         }
1535         if (!kgdb_connected)
1536                 printk(KERN_CRIT "Entering KGDB\n");
1537
1538         kgdb_breakpoint();
1539 }
1540
1541 static struct sysrq_key_op sysrq_gdb_op = {
1542         .handler        = sysrq_handle_gdb,
1543         .help_msg       = "Gdb",
1544         .action_msg     = "GDB",
1545 };
1546 #endif
1547
1548 static void kgdb_register_callbacks(void)
1549 {
1550         if (!kgdb_io_module_registered) {
1551                 kgdb_io_module_registered = 1;
1552                 kgdb_arch_init();
1553 #ifdef CONFIG_MAGIC_SYSRQ
1554                 register_sysrq_key('g', &sysrq_gdb_op);
1555 #endif
1556                 if (kgdb_use_con && !kgdb_con_registered) {
1557                         register_console(&kgdbcons);
1558                         kgdb_con_registered = 1;
1559                 }
1560         }
1561 }
1562
1563 static void kgdb_unregister_callbacks(void)
1564 {
1565         /*
1566          * When this routine is called KGDB should unregister from the
1567          * panic handler and clean up, making sure it is not handling any
1568          * break exceptions at the time.
1569          */
1570         if (kgdb_io_module_registered) {
1571                 kgdb_io_module_registered = 0;
1572                 kgdb_arch_exit();
1573 #ifdef CONFIG_MAGIC_SYSRQ
1574                 unregister_sysrq_key('g', &sysrq_gdb_op);
1575 #endif
1576                 if (kgdb_con_registered) {
1577                         unregister_console(&kgdbcons);
1578                         kgdb_con_registered = 0;
1579                 }
1580         }
1581 }
1582
1583 static void kgdb_initial_breakpoint(void)
1584 {
1585         kgdb_break_asap = 0;
1586
1587         printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n");
1588         kgdb_breakpoint();
1589 }
1590
1591 /**
1592  *      kkgdb_register_io_module - register KGDB IO module
1593  *      @new_kgdb_io_ops: the io ops vector
1594  *
1595  *      Register it with the KGDB core.
1596  */
1597 int kgdb_register_io_module(struct kgdb_io *new_kgdb_io_ops)
1598 {
1599         int err;
1600
1601         spin_lock(&kgdb_registration_lock);
1602
1603         if (kgdb_io_ops) {
1604                 spin_unlock(&kgdb_registration_lock);
1605
1606                 printk(KERN_ERR "kgdb: Another I/O driver is already "
1607                                 "registered with KGDB.\n");
1608                 return -EBUSY;
1609         }
1610
1611         if (new_kgdb_io_ops->init) {
1612                 err = new_kgdb_io_ops->init();
1613                 if (err) {
1614                         spin_unlock(&kgdb_registration_lock);
1615                         return err;
1616                 }
1617         }
1618
1619         kgdb_io_ops = new_kgdb_io_ops;
1620
1621         spin_unlock(&kgdb_registration_lock);
1622
1623         printk(KERN_INFO "kgdb: Registered I/O driver %s.\n",
1624                new_kgdb_io_ops->name);
1625
1626         /* Arm KGDB now. */
1627         kgdb_register_callbacks();
1628
1629         if (kgdb_break_asap)
1630                 kgdb_initial_breakpoint();
1631
1632         return 0;
1633 }
1634 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1635
1636 /**
1637  *      kkgdb_unregister_io_module - unregister KGDB IO module
1638  *      @old_kgdb_io_ops: the io ops vector
1639  *
1640  *      Unregister it with the KGDB core.
1641  */
1642 void kgdb_unregister_io_module(struct kgdb_io *old_kgdb_io_ops)
1643 {
1644         BUG_ON(kgdb_connected);
1645
1646         /*
1647          * KGDB is no longer able to communicate out, so
1648          * unregister our callbacks and reset state.
1649          */
1650         kgdb_unregister_callbacks();
1651
1652         spin_lock(&kgdb_registration_lock);
1653
1654         WARN_ON_ONCE(kgdb_io_ops != old_kgdb_io_ops);
1655         kgdb_io_ops = NULL;
1656
1657         spin_unlock(&kgdb_registration_lock);
1658
1659         printk(KERN_INFO
1660                 "kgdb: Unregistered I/O driver %s, debugger disabled.\n",
1661                 old_kgdb_io_ops->name);
1662 }
1663 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1664
1665 /**
1666  * kgdb_breakpoint - generate breakpoint exception
1667  *
1668  * This function will generate a breakpoint exception.  It is used at the
1669  * beginning of a program to sync up with a debugger and can be used
1670  * otherwise as a quick means to stop program execution and "break" into
1671  * the debugger.
1672  */
1673 void kgdb_breakpoint(void)
1674 {
1675         atomic_set(&kgdb_setting_breakpoint, 1);
1676         wmb(); /* Sync point before breakpoint */
1677         arch_kgdb_breakpoint();
1678         wmb(); /* Sync point after breakpoint */
1679         atomic_set(&kgdb_setting_breakpoint, 0);
1680 }
1681 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1682
1683 static int __init opt_kgdb_wait(char *str)
1684 {
1685         kgdb_break_asap = 1;
1686
1687         if (kgdb_io_module_registered)
1688                 kgdb_initial_breakpoint();
1689
1690         return 0;
1691 }
1692
1693 early_param("kgdbwait", opt_kgdb_wait);