Merge branch 'for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[sfrench/cifs-2.6.git] / kernel / kexec_file.c
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/syscalls.h>
26 #include <linux/vmalloc.h>
27 #include "kexec_internal.h"
28
29 static int kexec_calculate_store_digests(struct kimage *image);
30
31 /* Architectures can provide this probe function */
32 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
33                                          unsigned long buf_len)
34 {
35         return -ENOEXEC;
36 }
37
38 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
39 {
40         return ERR_PTR(-ENOEXEC);
41 }
42
43 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
44 {
45         return -EINVAL;
46 }
47
48 #ifdef CONFIG_KEXEC_VERIFY_SIG
49 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
50                                         unsigned long buf_len)
51 {
52         return -EKEYREJECTED;
53 }
54 #endif
55
56 /* Apply relocations of type RELA */
57 int __weak
58 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
59                                  unsigned int relsec)
60 {
61         pr_err("RELA relocation unsupported.\n");
62         return -ENOEXEC;
63 }
64
65 /* Apply relocations of type REL */
66 int __weak
67 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
68                              unsigned int relsec)
69 {
70         pr_err("REL relocation unsupported.\n");
71         return -ENOEXEC;
72 }
73
74 /*
75  * Free up memory used by kernel, initrd, and command line. This is temporary
76  * memory allocation which is not needed any more after these buffers have
77  * been loaded into separate segments and have been copied elsewhere.
78  */
79 void kimage_file_post_load_cleanup(struct kimage *image)
80 {
81         struct purgatory_info *pi = &image->purgatory_info;
82
83         vfree(image->kernel_buf);
84         image->kernel_buf = NULL;
85
86         vfree(image->initrd_buf);
87         image->initrd_buf = NULL;
88
89         kfree(image->cmdline_buf);
90         image->cmdline_buf = NULL;
91
92         vfree(pi->purgatory_buf);
93         pi->purgatory_buf = NULL;
94
95         vfree(pi->sechdrs);
96         pi->sechdrs = NULL;
97
98         /* See if architecture has anything to cleanup post load */
99         arch_kimage_file_post_load_cleanup(image);
100
101         /*
102          * Above call should have called into bootloader to free up
103          * any data stored in kimage->image_loader_data. It should
104          * be ok now to free it up.
105          */
106         kfree(image->image_loader_data);
107         image->image_loader_data = NULL;
108 }
109
110 /*
111  * In file mode list of segments is prepared by kernel. Copy relevant
112  * data from user space, do error checking, prepare segment list
113  */
114 static int
115 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
116                              const char __user *cmdline_ptr,
117                              unsigned long cmdline_len, unsigned flags)
118 {
119         int ret = 0;
120         void *ldata;
121         loff_t size;
122
123         ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
124                                        &size, INT_MAX, READING_KEXEC_IMAGE);
125         if (ret)
126                 return ret;
127         image->kernel_buf_len = size;
128
129         /* IMA needs to pass the measurement list to the next kernel. */
130         ima_add_kexec_buffer(image);
131
132         /* Call arch image probe handlers */
133         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
134                                             image->kernel_buf_len);
135         if (ret)
136                 goto out;
137
138 #ifdef CONFIG_KEXEC_VERIFY_SIG
139         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
140                                            image->kernel_buf_len);
141         if (ret) {
142                 pr_debug("kernel signature verification failed.\n");
143                 goto out;
144         }
145         pr_debug("kernel signature verification successful.\n");
146 #endif
147         /* It is possible that there no initramfs is being loaded */
148         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
149                 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
150                                                &size, INT_MAX,
151                                                READING_KEXEC_INITRAMFS);
152                 if (ret)
153                         goto out;
154                 image->initrd_buf_len = size;
155         }
156
157         if (cmdline_len) {
158                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
159                 if (IS_ERR(image->cmdline_buf)) {
160                         ret = PTR_ERR(image->cmdline_buf);
161                         image->cmdline_buf = NULL;
162                         goto out;
163                 }
164
165                 image->cmdline_buf_len = cmdline_len;
166
167                 /* command line should be a string with last byte null */
168                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
169                         ret = -EINVAL;
170                         goto out;
171                 }
172         }
173
174         /* Call arch image load handlers */
175         ldata = arch_kexec_kernel_image_load(image);
176
177         if (IS_ERR(ldata)) {
178                 ret = PTR_ERR(ldata);
179                 goto out;
180         }
181
182         image->image_loader_data = ldata;
183 out:
184         /* In case of error, free up all allocated memory in this function */
185         if (ret)
186                 kimage_file_post_load_cleanup(image);
187         return ret;
188 }
189
190 static int
191 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
192                        int initrd_fd, const char __user *cmdline_ptr,
193                        unsigned long cmdline_len, unsigned long flags)
194 {
195         int ret;
196         struct kimage *image;
197         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
198
199         image = do_kimage_alloc_init();
200         if (!image)
201                 return -ENOMEM;
202
203         image->file_mode = 1;
204
205         if (kexec_on_panic) {
206                 /* Enable special crash kernel control page alloc policy. */
207                 image->control_page = crashk_res.start;
208                 image->type = KEXEC_TYPE_CRASH;
209         }
210
211         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
212                                            cmdline_ptr, cmdline_len, flags);
213         if (ret)
214                 goto out_free_image;
215
216         ret = sanity_check_segment_list(image);
217         if (ret)
218                 goto out_free_post_load_bufs;
219
220         ret = -ENOMEM;
221         image->control_code_page = kimage_alloc_control_pages(image,
222                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
223         if (!image->control_code_page) {
224                 pr_err("Could not allocate control_code_buffer\n");
225                 goto out_free_post_load_bufs;
226         }
227
228         if (!kexec_on_panic) {
229                 image->swap_page = kimage_alloc_control_pages(image, 0);
230                 if (!image->swap_page) {
231                         pr_err("Could not allocate swap buffer\n");
232                         goto out_free_control_pages;
233                 }
234         }
235
236         *rimage = image;
237         return 0;
238 out_free_control_pages:
239         kimage_free_page_list(&image->control_pages);
240 out_free_post_load_bufs:
241         kimage_file_post_load_cleanup(image);
242 out_free_image:
243         kfree(image);
244         return ret;
245 }
246
247 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
248                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
249                 unsigned long, flags)
250 {
251         int ret = 0, i;
252         struct kimage **dest_image, *image;
253
254         /* We only trust the superuser with rebooting the system. */
255         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
256                 return -EPERM;
257
258         /* Make sure we have a legal set of flags */
259         if (flags != (flags & KEXEC_FILE_FLAGS))
260                 return -EINVAL;
261
262         image = NULL;
263
264         if (!mutex_trylock(&kexec_mutex))
265                 return -EBUSY;
266
267         dest_image = &kexec_image;
268         if (flags & KEXEC_FILE_ON_CRASH) {
269                 dest_image = &kexec_crash_image;
270                 if (kexec_crash_image)
271                         arch_kexec_unprotect_crashkres();
272         }
273
274         if (flags & KEXEC_FILE_UNLOAD)
275                 goto exchange;
276
277         /*
278          * In case of crash, new kernel gets loaded in reserved region. It is
279          * same memory where old crash kernel might be loaded. Free any
280          * current crash dump kernel before we corrupt it.
281          */
282         if (flags & KEXEC_FILE_ON_CRASH)
283                 kimage_free(xchg(&kexec_crash_image, NULL));
284
285         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
286                                      cmdline_len, flags);
287         if (ret)
288                 goto out;
289
290         ret = machine_kexec_prepare(image);
291         if (ret)
292                 goto out;
293
294         /*
295          * Some architecture(like S390) may touch the crash memory before
296          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
297          */
298         ret = kimage_crash_copy_vmcoreinfo(image);
299         if (ret)
300                 goto out;
301
302         ret = kexec_calculate_store_digests(image);
303         if (ret)
304                 goto out;
305
306         for (i = 0; i < image->nr_segments; i++) {
307                 struct kexec_segment *ksegment;
308
309                 ksegment = &image->segment[i];
310                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
311                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
312                          ksegment->memsz);
313
314                 ret = kimage_load_segment(image, &image->segment[i]);
315                 if (ret)
316                         goto out;
317         }
318
319         kimage_terminate(image);
320
321         /*
322          * Free up any temporary buffers allocated which are not needed
323          * after image has been loaded
324          */
325         kimage_file_post_load_cleanup(image);
326 exchange:
327         image = xchg(dest_image, image);
328 out:
329         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
330                 arch_kexec_protect_crashkres();
331
332         mutex_unlock(&kexec_mutex);
333         kimage_free(image);
334         return ret;
335 }
336
337 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
338                                     struct kexec_buf *kbuf)
339 {
340         struct kimage *image = kbuf->image;
341         unsigned long temp_start, temp_end;
342
343         temp_end = min(end, kbuf->buf_max);
344         temp_start = temp_end - kbuf->memsz;
345
346         do {
347                 /* align down start */
348                 temp_start = temp_start & (~(kbuf->buf_align - 1));
349
350                 if (temp_start < start || temp_start < kbuf->buf_min)
351                         return 0;
352
353                 temp_end = temp_start + kbuf->memsz - 1;
354
355                 /*
356                  * Make sure this does not conflict with any of existing
357                  * segments
358                  */
359                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
360                         temp_start = temp_start - PAGE_SIZE;
361                         continue;
362                 }
363
364                 /* We found a suitable memory range */
365                 break;
366         } while (1);
367
368         /* If we are here, we found a suitable memory range */
369         kbuf->mem = temp_start;
370
371         /* Success, stop navigating through remaining System RAM ranges */
372         return 1;
373 }
374
375 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
376                                      struct kexec_buf *kbuf)
377 {
378         struct kimage *image = kbuf->image;
379         unsigned long temp_start, temp_end;
380
381         temp_start = max(start, kbuf->buf_min);
382
383         do {
384                 temp_start = ALIGN(temp_start, kbuf->buf_align);
385                 temp_end = temp_start + kbuf->memsz - 1;
386
387                 if (temp_end > end || temp_end > kbuf->buf_max)
388                         return 0;
389                 /*
390                  * Make sure this does not conflict with any of existing
391                  * segments
392                  */
393                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
394                         temp_start = temp_start + PAGE_SIZE;
395                         continue;
396                 }
397
398                 /* We found a suitable memory range */
399                 break;
400         } while (1);
401
402         /* If we are here, we found a suitable memory range */
403         kbuf->mem = temp_start;
404
405         /* Success, stop navigating through remaining System RAM ranges */
406         return 1;
407 }
408
409 static int locate_mem_hole_callback(struct resource *res, void *arg)
410 {
411         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
412         u64 start = res->start, end = res->end;
413         unsigned long sz = end - start + 1;
414
415         /* Returning 0 will take to next memory range */
416         if (sz < kbuf->memsz)
417                 return 0;
418
419         if (end < kbuf->buf_min || start > kbuf->buf_max)
420                 return 0;
421
422         /*
423          * Allocate memory top down with-in ram range. Otherwise bottom up
424          * allocation.
425          */
426         if (kbuf->top_down)
427                 return locate_mem_hole_top_down(start, end, kbuf);
428         return locate_mem_hole_bottom_up(start, end, kbuf);
429 }
430
431 /**
432  * arch_kexec_walk_mem - call func(data) on free memory regions
433  * @kbuf:       Context info for the search. Also passed to @func.
434  * @func:       Function to call for each memory region.
435  *
436  * Return: The memory walk will stop when func returns a non-zero value
437  * and that value will be returned. If all free regions are visited without
438  * func returning non-zero, then zero will be returned.
439  */
440 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
441                                int (*func)(struct resource *, void *))
442 {
443         if (kbuf->image->type == KEXEC_TYPE_CRASH)
444                 return walk_iomem_res_desc(crashk_res.desc,
445                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
446                                            crashk_res.start, crashk_res.end,
447                                            kbuf, func);
448         else
449                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
450 }
451
452 /**
453  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
454  * @kbuf:       Parameters for the memory search.
455  *
456  * On success, kbuf->mem will have the start address of the memory region found.
457  *
458  * Return: 0 on success, negative errno on error.
459  */
460 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
461 {
462         int ret;
463
464         ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
465
466         return ret == 1 ? 0 : -EADDRNOTAVAIL;
467 }
468
469 /**
470  * kexec_add_buffer - place a buffer in a kexec segment
471  * @kbuf:       Buffer contents and memory parameters.
472  *
473  * This function assumes that kexec_mutex is held.
474  * On successful return, @kbuf->mem will have the physical address of
475  * the buffer in memory.
476  *
477  * Return: 0 on success, negative errno on error.
478  */
479 int kexec_add_buffer(struct kexec_buf *kbuf)
480 {
481
482         struct kexec_segment *ksegment;
483         int ret;
484
485         /* Currently adding segment this way is allowed only in file mode */
486         if (!kbuf->image->file_mode)
487                 return -EINVAL;
488
489         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
490                 return -EINVAL;
491
492         /*
493          * Make sure we are not trying to add buffer after allocating
494          * control pages. All segments need to be placed first before
495          * any control pages are allocated. As control page allocation
496          * logic goes through list of segments to make sure there are
497          * no destination overlaps.
498          */
499         if (!list_empty(&kbuf->image->control_pages)) {
500                 WARN_ON(1);
501                 return -EINVAL;
502         }
503
504         /* Ensure minimum alignment needed for segments. */
505         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
506         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
507
508         /* Walk the RAM ranges and allocate a suitable range for the buffer */
509         ret = kexec_locate_mem_hole(kbuf);
510         if (ret)
511                 return ret;
512
513         /* Found a suitable memory range */
514         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
515         ksegment->kbuf = kbuf->buffer;
516         ksegment->bufsz = kbuf->bufsz;
517         ksegment->mem = kbuf->mem;
518         ksegment->memsz = kbuf->memsz;
519         kbuf->image->nr_segments++;
520         return 0;
521 }
522
523 /* Calculate and store the digest of segments */
524 static int kexec_calculate_store_digests(struct kimage *image)
525 {
526         struct crypto_shash *tfm;
527         struct shash_desc *desc;
528         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
529         size_t desc_size, nullsz;
530         char *digest;
531         void *zero_buf;
532         struct kexec_sha_region *sha_regions;
533         struct purgatory_info *pi = &image->purgatory_info;
534
535         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
536         zero_buf_sz = PAGE_SIZE;
537
538         tfm = crypto_alloc_shash("sha256", 0, 0);
539         if (IS_ERR(tfm)) {
540                 ret = PTR_ERR(tfm);
541                 goto out;
542         }
543
544         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
545         desc = kzalloc(desc_size, GFP_KERNEL);
546         if (!desc) {
547                 ret = -ENOMEM;
548                 goto out_free_tfm;
549         }
550
551         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
552         sha_regions = vzalloc(sha_region_sz);
553         if (!sha_regions)
554                 goto out_free_desc;
555
556         desc->tfm   = tfm;
557         desc->flags = 0;
558
559         ret = crypto_shash_init(desc);
560         if (ret < 0)
561                 goto out_free_sha_regions;
562
563         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
564         if (!digest) {
565                 ret = -ENOMEM;
566                 goto out_free_sha_regions;
567         }
568
569         for (j = i = 0; i < image->nr_segments; i++) {
570                 struct kexec_segment *ksegment;
571
572                 ksegment = &image->segment[i];
573                 /*
574                  * Skip purgatory as it will be modified once we put digest
575                  * info in purgatory.
576                  */
577                 if (ksegment->kbuf == pi->purgatory_buf)
578                         continue;
579
580                 ret = crypto_shash_update(desc, ksegment->kbuf,
581                                           ksegment->bufsz);
582                 if (ret)
583                         break;
584
585                 /*
586                  * Assume rest of the buffer is filled with zero and
587                  * update digest accordingly.
588                  */
589                 nullsz = ksegment->memsz - ksegment->bufsz;
590                 while (nullsz) {
591                         unsigned long bytes = nullsz;
592
593                         if (bytes > zero_buf_sz)
594                                 bytes = zero_buf_sz;
595                         ret = crypto_shash_update(desc, zero_buf, bytes);
596                         if (ret)
597                                 break;
598                         nullsz -= bytes;
599                 }
600
601                 if (ret)
602                         break;
603
604                 sha_regions[j].start = ksegment->mem;
605                 sha_regions[j].len = ksegment->memsz;
606                 j++;
607         }
608
609         if (!ret) {
610                 ret = crypto_shash_final(desc, digest);
611                 if (ret)
612                         goto out_free_digest;
613                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
614                                                      sha_regions, sha_region_sz, 0);
615                 if (ret)
616                         goto out_free_digest;
617
618                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
619                                                      digest, SHA256_DIGEST_SIZE, 0);
620                 if (ret)
621                         goto out_free_digest;
622         }
623
624 out_free_digest:
625         kfree(digest);
626 out_free_sha_regions:
627         vfree(sha_regions);
628 out_free_desc:
629         kfree(desc);
630 out_free_tfm:
631         kfree(tfm);
632 out:
633         return ret;
634 }
635
636 /* Actually load purgatory. Lot of code taken from kexec-tools */
637 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
638                                   unsigned long max, int top_down)
639 {
640         struct purgatory_info *pi = &image->purgatory_info;
641         unsigned long align, bss_align, bss_sz, bss_pad;
642         unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
643         unsigned char *buf_addr, *src;
644         int i, ret = 0, entry_sidx = -1;
645         const Elf_Shdr *sechdrs_c;
646         Elf_Shdr *sechdrs = NULL;
647         struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
648                                   .buf_min = min, .buf_max = max,
649                                   .top_down = top_down };
650
651         /*
652          * sechdrs_c points to section headers in purgatory and are read
653          * only. No modifications allowed.
654          */
655         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
656
657         /*
658          * We can not modify sechdrs_c[] and its fields. It is read only.
659          * Copy it over to a local copy where one can store some temporary
660          * data and free it at the end. We need to modify ->sh_addr and
661          * ->sh_offset fields to keep track of permanent and temporary
662          * locations of sections.
663          */
664         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
665         if (!sechdrs)
666                 return -ENOMEM;
667
668         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
669
670         /*
671          * We seem to have multiple copies of sections. First copy is which
672          * is embedded in kernel in read only section. Some of these sections
673          * will be copied to a temporary buffer and relocated. And these
674          * sections will finally be copied to their final destination at
675          * segment load time.
676          *
677          * Use ->sh_offset to reflect section address in memory. It will
678          * point to original read only copy if section is not allocatable.
679          * Otherwise it will point to temporary copy which will be relocated.
680          *
681          * Use ->sh_addr to contain final address of the section where it
682          * will go during execution time.
683          */
684         for (i = 0; i < pi->ehdr->e_shnum; i++) {
685                 if (sechdrs[i].sh_type == SHT_NOBITS)
686                         continue;
687
688                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
689                                                 sechdrs[i].sh_offset;
690         }
691
692         /*
693          * Identify entry point section and make entry relative to section
694          * start.
695          */
696         entry = pi->ehdr->e_entry;
697         for (i = 0; i < pi->ehdr->e_shnum; i++) {
698                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
699                         continue;
700
701                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
702                         continue;
703
704                 /* Make entry section relative */
705                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
706                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
707                      pi->ehdr->e_entry)) {
708                         entry_sidx = i;
709                         entry -= sechdrs[i].sh_addr;
710                         break;
711                 }
712         }
713
714         /* Determine how much memory is needed to load relocatable object. */
715         bss_align = 1;
716         bss_sz = 0;
717
718         for (i = 0; i < pi->ehdr->e_shnum; i++) {
719                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
720                         continue;
721
722                 align = sechdrs[i].sh_addralign;
723                 if (sechdrs[i].sh_type != SHT_NOBITS) {
724                         if (kbuf.buf_align < align)
725                                 kbuf.buf_align = align;
726                         kbuf.bufsz = ALIGN(kbuf.bufsz, align);
727                         kbuf.bufsz += sechdrs[i].sh_size;
728                 } else {
729                         /* bss section */
730                         if (bss_align < align)
731                                 bss_align = align;
732                         bss_sz = ALIGN(bss_sz, align);
733                         bss_sz += sechdrs[i].sh_size;
734                 }
735         }
736
737         /* Determine the bss padding required to align bss properly */
738         bss_pad = 0;
739         if (kbuf.bufsz & (bss_align - 1))
740                 bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
741
742         kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
743
744         /* Allocate buffer for purgatory */
745         kbuf.buffer = vzalloc(kbuf.bufsz);
746         if (!kbuf.buffer) {
747                 ret = -ENOMEM;
748                 goto out;
749         }
750
751         if (kbuf.buf_align < bss_align)
752                 kbuf.buf_align = bss_align;
753
754         /* Add buffer to segment list */
755         ret = kexec_add_buffer(&kbuf);
756         if (ret)
757                 goto out;
758         pi->purgatory_load_addr = kbuf.mem;
759
760         /* Load SHF_ALLOC sections */
761         buf_addr = kbuf.buffer;
762         load_addr = curr_load_addr = pi->purgatory_load_addr;
763         bss_addr = load_addr + kbuf.bufsz + bss_pad;
764
765         for (i = 0; i < pi->ehdr->e_shnum; i++) {
766                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
767                         continue;
768
769                 align = sechdrs[i].sh_addralign;
770                 if (sechdrs[i].sh_type != SHT_NOBITS) {
771                         curr_load_addr = ALIGN(curr_load_addr, align);
772                         offset = curr_load_addr - load_addr;
773                         /* We already modifed ->sh_offset to keep src addr */
774                         src = (char *) sechdrs[i].sh_offset;
775                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
776
777                         /* Store load address and source address of section */
778                         sechdrs[i].sh_addr = curr_load_addr;
779
780                         /*
781                          * This section got copied to temporary buffer. Update
782                          * ->sh_offset accordingly.
783                          */
784                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
785
786                         /* Advance to the next address */
787                         curr_load_addr += sechdrs[i].sh_size;
788                 } else {
789                         bss_addr = ALIGN(bss_addr, align);
790                         sechdrs[i].sh_addr = bss_addr;
791                         bss_addr += sechdrs[i].sh_size;
792                 }
793         }
794
795         /* Update entry point based on load address of text section */
796         if (entry_sidx >= 0)
797                 entry += sechdrs[entry_sidx].sh_addr;
798
799         /* Make kernel jump to purgatory after shutdown */
800         image->start = entry;
801
802         /* Used later to get/set symbol values */
803         pi->sechdrs = sechdrs;
804
805         /*
806          * Used later to identify which section is purgatory and skip it
807          * from checksumming.
808          */
809         pi->purgatory_buf = kbuf.buffer;
810         return ret;
811 out:
812         vfree(sechdrs);
813         vfree(kbuf.buffer);
814         return ret;
815 }
816
817 static int kexec_apply_relocations(struct kimage *image)
818 {
819         int i, ret;
820         struct purgatory_info *pi = &image->purgatory_info;
821         Elf_Shdr *sechdrs = pi->sechdrs;
822
823         /* Apply relocations */
824         for (i = 0; i < pi->ehdr->e_shnum; i++) {
825                 Elf_Shdr *section, *symtab;
826
827                 if (sechdrs[i].sh_type != SHT_RELA &&
828                     sechdrs[i].sh_type != SHT_REL)
829                         continue;
830
831                 /*
832                  * For section of type SHT_RELA/SHT_REL,
833                  * ->sh_link contains section header index of associated
834                  * symbol table. And ->sh_info contains section header
835                  * index of section to which relocations apply.
836                  */
837                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
838                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
839                         return -ENOEXEC;
840
841                 section = &sechdrs[sechdrs[i].sh_info];
842                 symtab = &sechdrs[sechdrs[i].sh_link];
843
844                 if (!(section->sh_flags & SHF_ALLOC))
845                         continue;
846
847                 /*
848                  * symtab->sh_link contain section header index of associated
849                  * string table.
850                  */
851                 if (symtab->sh_link >= pi->ehdr->e_shnum)
852                         /* Invalid section number? */
853                         continue;
854
855                 /*
856                  * Respective architecture needs to provide support for applying
857                  * relocations of type SHT_RELA/SHT_REL.
858                  */
859                 if (sechdrs[i].sh_type == SHT_RELA)
860                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
861                                                                sechdrs, i);
862                 else if (sechdrs[i].sh_type == SHT_REL)
863                         ret = arch_kexec_apply_relocations(pi->ehdr,
864                                                            sechdrs, i);
865                 if (ret)
866                         return ret;
867         }
868
869         return 0;
870 }
871
872 /* Load relocatable purgatory object and relocate it appropriately */
873 int kexec_load_purgatory(struct kimage *image, unsigned long min,
874                          unsigned long max, int top_down,
875                          unsigned long *load_addr)
876 {
877         struct purgatory_info *pi = &image->purgatory_info;
878         int ret;
879
880         if (kexec_purgatory_size <= 0)
881                 return -EINVAL;
882
883         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
884                 return -ENOEXEC;
885
886         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
887
888         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
889             || pi->ehdr->e_type != ET_REL
890             || !elf_check_arch(pi->ehdr)
891             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
892                 return -ENOEXEC;
893
894         if (pi->ehdr->e_shoff >= kexec_purgatory_size
895             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
896             kexec_purgatory_size - pi->ehdr->e_shoff))
897                 return -ENOEXEC;
898
899         ret = __kexec_load_purgatory(image, min, max, top_down);
900         if (ret)
901                 return ret;
902
903         ret = kexec_apply_relocations(image);
904         if (ret)
905                 goto out;
906
907         *load_addr = pi->purgatory_load_addr;
908         return 0;
909 out:
910         vfree(pi->sechdrs);
911         pi->sechdrs = NULL;
912
913         vfree(pi->purgatory_buf);
914         pi->purgatory_buf = NULL;
915         return ret;
916 }
917
918 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
919                                             const char *name)
920 {
921         Elf_Sym *syms;
922         Elf_Shdr *sechdrs;
923         Elf_Ehdr *ehdr;
924         int i, k;
925         const char *strtab;
926
927         if (!pi->sechdrs || !pi->ehdr)
928                 return NULL;
929
930         sechdrs = pi->sechdrs;
931         ehdr = pi->ehdr;
932
933         for (i = 0; i < ehdr->e_shnum; i++) {
934                 if (sechdrs[i].sh_type != SHT_SYMTAB)
935                         continue;
936
937                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
938                         /* Invalid strtab section number */
939                         continue;
940                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
941                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
942
943                 /* Go through symbols for a match */
944                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
945                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
946                                 continue;
947
948                         if (strcmp(strtab + syms[k].st_name, name) != 0)
949                                 continue;
950
951                         if (syms[k].st_shndx == SHN_UNDEF ||
952                             syms[k].st_shndx >= ehdr->e_shnum) {
953                                 pr_debug("Symbol: %s has bad section index %d.\n",
954                                                 name, syms[k].st_shndx);
955                                 return NULL;
956                         }
957
958                         /* Found the symbol we are looking for */
959                         return &syms[k];
960                 }
961         }
962
963         return NULL;
964 }
965
966 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
967 {
968         struct purgatory_info *pi = &image->purgatory_info;
969         Elf_Sym *sym;
970         Elf_Shdr *sechdr;
971
972         sym = kexec_purgatory_find_symbol(pi, name);
973         if (!sym)
974                 return ERR_PTR(-EINVAL);
975
976         sechdr = &pi->sechdrs[sym->st_shndx];
977
978         /*
979          * Returns the address where symbol will finally be loaded after
980          * kexec_load_segment()
981          */
982         return (void *)(sechdr->sh_addr + sym->st_value);
983 }
984
985 /*
986  * Get or set value of a symbol. If "get_value" is true, symbol value is
987  * returned in buf otherwise symbol value is set based on value in buf.
988  */
989 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
990                                    void *buf, unsigned int size, bool get_value)
991 {
992         Elf_Sym *sym;
993         Elf_Shdr *sechdrs;
994         struct purgatory_info *pi = &image->purgatory_info;
995         char *sym_buf;
996
997         sym = kexec_purgatory_find_symbol(pi, name);
998         if (!sym)
999                 return -EINVAL;
1000
1001         if (sym->st_size != size) {
1002                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1003                        name, (unsigned long)sym->st_size, size);
1004                 return -EINVAL;
1005         }
1006
1007         sechdrs = pi->sechdrs;
1008
1009         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1010                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1011                        get_value ? "get" : "set");
1012                 return -EINVAL;
1013         }
1014
1015         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1016                                         sym->st_value;
1017
1018         if (get_value)
1019                 memcpy((void *)buf, sym_buf, size);
1020         else
1021                 memcpy((void *)sym_buf, buf, size);
1022
1023         return 0;
1024 }