Revert "ASoC: rt5651: Enable jack detection on JD* pins"
[sfrench/cifs-2.6.git] / kernel / kexec_file.c
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/syscalls.h>
26 #include <linux/vmalloc.h>
27 #include "kexec_internal.h"
28
29 static int kexec_calculate_store_digests(struct kimage *image);
30
31 /* Architectures can provide this probe function */
32 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
33                                          unsigned long buf_len)
34 {
35         return -ENOEXEC;
36 }
37
38 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
39 {
40         return ERR_PTR(-ENOEXEC);
41 }
42
43 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
44 {
45         return -EINVAL;
46 }
47
48 #ifdef CONFIG_KEXEC_VERIFY_SIG
49 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
50                                         unsigned long buf_len)
51 {
52         return -EKEYREJECTED;
53 }
54 #endif
55
56 /* Apply relocations of type RELA */
57 int __weak
58 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
59                                  unsigned int relsec)
60 {
61         pr_err("RELA relocation unsupported.\n");
62         return -ENOEXEC;
63 }
64
65 /* Apply relocations of type REL */
66 int __weak
67 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
68                              unsigned int relsec)
69 {
70         pr_err("REL relocation unsupported.\n");
71         return -ENOEXEC;
72 }
73
74 /*
75  * Free up memory used by kernel, initrd, and command line. This is temporary
76  * memory allocation which is not needed any more after these buffers have
77  * been loaded into separate segments and have been copied elsewhere.
78  */
79 void kimage_file_post_load_cleanup(struct kimage *image)
80 {
81         struct purgatory_info *pi = &image->purgatory_info;
82
83         vfree(image->kernel_buf);
84         image->kernel_buf = NULL;
85
86         vfree(image->initrd_buf);
87         image->initrd_buf = NULL;
88
89         kfree(image->cmdline_buf);
90         image->cmdline_buf = NULL;
91
92         vfree(pi->purgatory_buf);
93         pi->purgatory_buf = NULL;
94
95         vfree(pi->sechdrs);
96         pi->sechdrs = NULL;
97
98         /* See if architecture has anything to cleanup post load */
99         arch_kimage_file_post_load_cleanup(image);
100
101         /*
102          * Above call should have called into bootloader to free up
103          * any data stored in kimage->image_loader_data. It should
104          * be ok now to free it up.
105          */
106         kfree(image->image_loader_data);
107         image->image_loader_data = NULL;
108 }
109
110 /*
111  * In file mode list of segments is prepared by kernel. Copy relevant
112  * data from user space, do error checking, prepare segment list
113  */
114 static int
115 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
116                              const char __user *cmdline_ptr,
117                              unsigned long cmdline_len, unsigned flags)
118 {
119         int ret = 0;
120         void *ldata;
121         loff_t size;
122
123         ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
124                                        &size, INT_MAX, READING_KEXEC_IMAGE);
125         if (ret)
126                 return ret;
127         image->kernel_buf_len = size;
128
129         /* IMA needs to pass the measurement list to the next kernel. */
130         ima_add_kexec_buffer(image);
131
132         /* Call arch image probe handlers */
133         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
134                                             image->kernel_buf_len);
135         if (ret)
136                 goto out;
137
138 #ifdef CONFIG_KEXEC_VERIFY_SIG
139         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
140                                            image->kernel_buf_len);
141         if (ret) {
142                 pr_debug("kernel signature verification failed.\n");
143                 goto out;
144         }
145         pr_debug("kernel signature verification successful.\n");
146 #endif
147         /* It is possible that there no initramfs is being loaded */
148         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
149                 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
150                                                &size, INT_MAX,
151                                                READING_KEXEC_INITRAMFS);
152                 if (ret)
153                         goto out;
154                 image->initrd_buf_len = size;
155         }
156
157         if (cmdline_len) {
158                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
159                 if (IS_ERR(image->cmdline_buf)) {
160                         ret = PTR_ERR(image->cmdline_buf);
161                         image->cmdline_buf = NULL;
162                         goto out;
163                 }
164
165                 image->cmdline_buf_len = cmdline_len;
166
167                 /* command line should be a string with last byte null */
168                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
169                         ret = -EINVAL;
170                         goto out;
171                 }
172         }
173
174         /* Call arch image load handlers */
175         ldata = arch_kexec_kernel_image_load(image);
176
177         if (IS_ERR(ldata)) {
178                 ret = PTR_ERR(ldata);
179                 goto out;
180         }
181
182         image->image_loader_data = ldata;
183 out:
184         /* In case of error, free up all allocated memory in this function */
185         if (ret)
186                 kimage_file_post_load_cleanup(image);
187         return ret;
188 }
189
190 static int
191 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
192                        int initrd_fd, const char __user *cmdline_ptr,
193                        unsigned long cmdline_len, unsigned long flags)
194 {
195         int ret;
196         struct kimage *image;
197         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
198
199         image = do_kimage_alloc_init();
200         if (!image)
201                 return -ENOMEM;
202
203         image->file_mode = 1;
204
205         if (kexec_on_panic) {
206                 /* Enable special crash kernel control page alloc policy. */
207                 image->control_page = crashk_res.start;
208                 image->type = KEXEC_TYPE_CRASH;
209         }
210
211         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
212                                            cmdline_ptr, cmdline_len, flags);
213         if (ret)
214                 goto out_free_image;
215
216         ret = sanity_check_segment_list(image);
217         if (ret)
218                 goto out_free_post_load_bufs;
219
220         ret = -ENOMEM;
221         image->control_code_page = kimage_alloc_control_pages(image,
222                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
223         if (!image->control_code_page) {
224                 pr_err("Could not allocate control_code_buffer\n");
225                 goto out_free_post_load_bufs;
226         }
227
228         if (!kexec_on_panic) {
229                 image->swap_page = kimage_alloc_control_pages(image, 0);
230                 if (!image->swap_page) {
231                         pr_err("Could not allocate swap buffer\n");
232                         goto out_free_control_pages;
233                 }
234         }
235
236         *rimage = image;
237         return 0;
238 out_free_control_pages:
239         kimage_free_page_list(&image->control_pages);
240 out_free_post_load_bufs:
241         kimage_file_post_load_cleanup(image);
242 out_free_image:
243         kfree(image);
244         return ret;
245 }
246
247 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
248                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
249                 unsigned long, flags)
250 {
251         int ret = 0, i;
252         struct kimage **dest_image, *image;
253
254         /* We only trust the superuser with rebooting the system. */
255         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
256                 return -EPERM;
257
258         /* Make sure we have a legal set of flags */
259         if (flags != (flags & KEXEC_FILE_FLAGS))
260                 return -EINVAL;
261
262         image = NULL;
263
264         if (!mutex_trylock(&kexec_mutex))
265                 return -EBUSY;
266
267         dest_image = &kexec_image;
268         if (flags & KEXEC_FILE_ON_CRASH) {
269                 dest_image = &kexec_crash_image;
270                 if (kexec_crash_image)
271                         arch_kexec_unprotect_crashkres();
272         }
273
274         if (flags & KEXEC_FILE_UNLOAD)
275                 goto exchange;
276
277         /*
278          * In case of crash, new kernel gets loaded in reserved region. It is
279          * same memory where old crash kernel might be loaded. Free any
280          * current crash dump kernel before we corrupt it.
281          */
282         if (flags & KEXEC_FILE_ON_CRASH)
283                 kimage_free(xchg(&kexec_crash_image, NULL));
284
285         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
286                                      cmdline_len, flags);
287         if (ret)
288                 goto out;
289
290         ret = machine_kexec_prepare(image);
291         if (ret)
292                 goto out;
293
294         /*
295          * Some architecture(like S390) may touch the crash memory before
296          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
297          */
298         ret = kimage_crash_copy_vmcoreinfo(image);
299         if (ret)
300                 goto out;
301
302         ret = kexec_calculate_store_digests(image);
303         if (ret)
304                 goto out;
305
306         for (i = 0; i < image->nr_segments; i++) {
307                 struct kexec_segment *ksegment;
308
309                 ksegment = &image->segment[i];
310                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
311                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
312                          ksegment->memsz);
313
314                 ret = kimage_load_segment(image, &image->segment[i]);
315                 if (ret)
316                         goto out;
317         }
318
319         kimage_terminate(image);
320
321         /*
322          * Free up any temporary buffers allocated which are not needed
323          * after image has been loaded
324          */
325         kimage_file_post_load_cleanup(image);
326 exchange:
327         image = xchg(dest_image, image);
328 out:
329         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
330                 arch_kexec_protect_crashkres();
331
332         mutex_unlock(&kexec_mutex);
333         kimage_free(image);
334         return ret;
335 }
336
337 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
338                                     struct kexec_buf *kbuf)
339 {
340         struct kimage *image = kbuf->image;
341         unsigned long temp_start, temp_end;
342
343         temp_end = min(end, kbuf->buf_max);
344         temp_start = temp_end - kbuf->memsz;
345
346         do {
347                 /* align down start */
348                 temp_start = temp_start & (~(kbuf->buf_align - 1));
349
350                 if (temp_start < start || temp_start < kbuf->buf_min)
351                         return 0;
352
353                 temp_end = temp_start + kbuf->memsz - 1;
354
355                 /*
356                  * Make sure this does not conflict with any of existing
357                  * segments
358                  */
359                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
360                         temp_start = temp_start - PAGE_SIZE;
361                         continue;
362                 }
363
364                 /* We found a suitable memory range */
365                 break;
366         } while (1);
367
368         /* If we are here, we found a suitable memory range */
369         kbuf->mem = temp_start;
370
371         /* Success, stop navigating through remaining System RAM ranges */
372         return 1;
373 }
374
375 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
376                                      struct kexec_buf *kbuf)
377 {
378         struct kimage *image = kbuf->image;
379         unsigned long temp_start, temp_end;
380
381         temp_start = max(start, kbuf->buf_min);
382
383         do {
384                 temp_start = ALIGN(temp_start, kbuf->buf_align);
385                 temp_end = temp_start + kbuf->memsz - 1;
386
387                 if (temp_end > end || temp_end > kbuf->buf_max)
388                         return 0;
389                 /*
390                  * Make sure this does not conflict with any of existing
391                  * segments
392                  */
393                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
394                         temp_start = temp_start + PAGE_SIZE;
395                         continue;
396                 }
397
398                 /* We found a suitable memory range */
399                 break;
400         } while (1);
401
402         /* If we are here, we found a suitable memory range */
403         kbuf->mem = temp_start;
404
405         /* Success, stop navigating through remaining System RAM ranges */
406         return 1;
407 }
408
409 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
410 {
411         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
412         unsigned long sz = end - start + 1;
413
414         /* Returning 0 will take to next memory range */
415         if (sz < kbuf->memsz)
416                 return 0;
417
418         if (end < kbuf->buf_min || start > kbuf->buf_max)
419                 return 0;
420
421         /*
422          * Allocate memory top down with-in ram range. Otherwise bottom up
423          * allocation.
424          */
425         if (kbuf->top_down)
426                 return locate_mem_hole_top_down(start, end, kbuf);
427         return locate_mem_hole_bottom_up(start, end, kbuf);
428 }
429
430 /**
431  * arch_kexec_walk_mem - call func(data) on free memory regions
432  * @kbuf:       Context info for the search. Also passed to @func.
433  * @func:       Function to call for each memory region.
434  *
435  * Return: The memory walk will stop when func returns a non-zero value
436  * and that value will be returned. If all free regions are visited without
437  * func returning non-zero, then zero will be returned.
438  */
439 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
440                                int (*func)(u64, u64, void *))
441 {
442         if (kbuf->image->type == KEXEC_TYPE_CRASH)
443                 return walk_iomem_res_desc(crashk_res.desc,
444                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
445                                            crashk_res.start, crashk_res.end,
446                                            kbuf, func);
447         else
448                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
449 }
450
451 /**
452  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
453  * @kbuf:       Parameters for the memory search.
454  *
455  * On success, kbuf->mem will have the start address of the memory region found.
456  *
457  * Return: 0 on success, negative errno on error.
458  */
459 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
460 {
461         int ret;
462
463         ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
464
465         return ret == 1 ? 0 : -EADDRNOTAVAIL;
466 }
467
468 /**
469  * kexec_add_buffer - place a buffer in a kexec segment
470  * @kbuf:       Buffer contents and memory parameters.
471  *
472  * This function assumes that kexec_mutex is held.
473  * On successful return, @kbuf->mem will have the physical address of
474  * the buffer in memory.
475  *
476  * Return: 0 on success, negative errno on error.
477  */
478 int kexec_add_buffer(struct kexec_buf *kbuf)
479 {
480
481         struct kexec_segment *ksegment;
482         int ret;
483
484         /* Currently adding segment this way is allowed only in file mode */
485         if (!kbuf->image->file_mode)
486                 return -EINVAL;
487
488         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
489                 return -EINVAL;
490
491         /*
492          * Make sure we are not trying to add buffer after allocating
493          * control pages. All segments need to be placed first before
494          * any control pages are allocated. As control page allocation
495          * logic goes through list of segments to make sure there are
496          * no destination overlaps.
497          */
498         if (!list_empty(&kbuf->image->control_pages)) {
499                 WARN_ON(1);
500                 return -EINVAL;
501         }
502
503         /* Ensure minimum alignment needed for segments. */
504         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
505         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
506
507         /* Walk the RAM ranges and allocate a suitable range for the buffer */
508         ret = kexec_locate_mem_hole(kbuf);
509         if (ret)
510                 return ret;
511
512         /* Found a suitable memory range */
513         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
514         ksegment->kbuf = kbuf->buffer;
515         ksegment->bufsz = kbuf->bufsz;
516         ksegment->mem = kbuf->mem;
517         ksegment->memsz = kbuf->memsz;
518         kbuf->image->nr_segments++;
519         return 0;
520 }
521
522 /* Calculate and store the digest of segments */
523 static int kexec_calculate_store_digests(struct kimage *image)
524 {
525         struct crypto_shash *tfm;
526         struct shash_desc *desc;
527         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
528         size_t desc_size, nullsz;
529         char *digest;
530         void *zero_buf;
531         struct kexec_sha_region *sha_regions;
532         struct purgatory_info *pi = &image->purgatory_info;
533
534         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
535         zero_buf_sz = PAGE_SIZE;
536
537         tfm = crypto_alloc_shash("sha256", 0, 0);
538         if (IS_ERR(tfm)) {
539                 ret = PTR_ERR(tfm);
540                 goto out;
541         }
542
543         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
544         desc = kzalloc(desc_size, GFP_KERNEL);
545         if (!desc) {
546                 ret = -ENOMEM;
547                 goto out_free_tfm;
548         }
549
550         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
551         sha_regions = vzalloc(sha_region_sz);
552         if (!sha_regions)
553                 goto out_free_desc;
554
555         desc->tfm   = tfm;
556         desc->flags = 0;
557
558         ret = crypto_shash_init(desc);
559         if (ret < 0)
560                 goto out_free_sha_regions;
561
562         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
563         if (!digest) {
564                 ret = -ENOMEM;
565                 goto out_free_sha_regions;
566         }
567
568         for (j = i = 0; i < image->nr_segments; i++) {
569                 struct kexec_segment *ksegment;
570
571                 ksegment = &image->segment[i];
572                 /*
573                  * Skip purgatory as it will be modified once we put digest
574                  * info in purgatory.
575                  */
576                 if (ksegment->kbuf == pi->purgatory_buf)
577                         continue;
578
579                 ret = crypto_shash_update(desc, ksegment->kbuf,
580                                           ksegment->bufsz);
581                 if (ret)
582                         break;
583
584                 /*
585                  * Assume rest of the buffer is filled with zero and
586                  * update digest accordingly.
587                  */
588                 nullsz = ksegment->memsz - ksegment->bufsz;
589                 while (nullsz) {
590                         unsigned long bytes = nullsz;
591
592                         if (bytes > zero_buf_sz)
593                                 bytes = zero_buf_sz;
594                         ret = crypto_shash_update(desc, zero_buf, bytes);
595                         if (ret)
596                                 break;
597                         nullsz -= bytes;
598                 }
599
600                 if (ret)
601                         break;
602
603                 sha_regions[j].start = ksegment->mem;
604                 sha_regions[j].len = ksegment->memsz;
605                 j++;
606         }
607
608         if (!ret) {
609                 ret = crypto_shash_final(desc, digest);
610                 if (ret)
611                         goto out_free_digest;
612                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
613                                                      sha_regions, sha_region_sz, 0);
614                 if (ret)
615                         goto out_free_digest;
616
617                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
618                                                      digest, SHA256_DIGEST_SIZE, 0);
619                 if (ret)
620                         goto out_free_digest;
621         }
622
623 out_free_digest:
624         kfree(digest);
625 out_free_sha_regions:
626         vfree(sha_regions);
627 out_free_desc:
628         kfree(desc);
629 out_free_tfm:
630         kfree(tfm);
631 out:
632         return ret;
633 }
634
635 /* Actually load purgatory. Lot of code taken from kexec-tools */
636 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
637                                   unsigned long max, int top_down)
638 {
639         struct purgatory_info *pi = &image->purgatory_info;
640         unsigned long align, bss_align, bss_sz, bss_pad;
641         unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
642         unsigned char *buf_addr, *src;
643         int i, ret = 0, entry_sidx = -1;
644         const Elf_Shdr *sechdrs_c;
645         Elf_Shdr *sechdrs = NULL;
646         struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
647                                   .buf_min = min, .buf_max = max,
648                                   .top_down = top_down };
649
650         /*
651          * sechdrs_c points to section headers in purgatory and are read
652          * only. No modifications allowed.
653          */
654         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
655
656         /*
657          * We can not modify sechdrs_c[] and its fields. It is read only.
658          * Copy it over to a local copy where one can store some temporary
659          * data and free it at the end. We need to modify ->sh_addr and
660          * ->sh_offset fields to keep track of permanent and temporary
661          * locations of sections.
662          */
663         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
664         if (!sechdrs)
665                 return -ENOMEM;
666
667         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
668
669         /*
670          * We seem to have multiple copies of sections. First copy is which
671          * is embedded in kernel in read only section. Some of these sections
672          * will be copied to a temporary buffer and relocated. And these
673          * sections will finally be copied to their final destination at
674          * segment load time.
675          *
676          * Use ->sh_offset to reflect section address in memory. It will
677          * point to original read only copy if section is not allocatable.
678          * Otherwise it will point to temporary copy which will be relocated.
679          *
680          * Use ->sh_addr to contain final address of the section where it
681          * will go during execution time.
682          */
683         for (i = 0; i < pi->ehdr->e_shnum; i++) {
684                 if (sechdrs[i].sh_type == SHT_NOBITS)
685                         continue;
686
687                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
688                                                 sechdrs[i].sh_offset;
689         }
690
691         /*
692          * Identify entry point section and make entry relative to section
693          * start.
694          */
695         entry = pi->ehdr->e_entry;
696         for (i = 0; i < pi->ehdr->e_shnum; i++) {
697                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
698                         continue;
699
700                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
701                         continue;
702
703                 /* Make entry section relative */
704                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
705                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
706                      pi->ehdr->e_entry)) {
707                         entry_sidx = i;
708                         entry -= sechdrs[i].sh_addr;
709                         break;
710                 }
711         }
712
713         /* Determine how much memory is needed to load relocatable object. */
714         bss_align = 1;
715         bss_sz = 0;
716
717         for (i = 0; i < pi->ehdr->e_shnum; i++) {
718                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
719                         continue;
720
721                 align = sechdrs[i].sh_addralign;
722                 if (sechdrs[i].sh_type != SHT_NOBITS) {
723                         if (kbuf.buf_align < align)
724                                 kbuf.buf_align = align;
725                         kbuf.bufsz = ALIGN(kbuf.bufsz, align);
726                         kbuf.bufsz += sechdrs[i].sh_size;
727                 } else {
728                         /* bss section */
729                         if (bss_align < align)
730                                 bss_align = align;
731                         bss_sz = ALIGN(bss_sz, align);
732                         bss_sz += sechdrs[i].sh_size;
733                 }
734         }
735
736         /* Determine the bss padding required to align bss properly */
737         bss_pad = 0;
738         if (kbuf.bufsz & (bss_align - 1))
739                 bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
740
741         kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
742
743         /* Allocate buffer for purgatory */
744         kbuf.buffer = vzalloc(kbuf.bufsz);
745         if (!kbuf.buffer) {
746                 ret = -ENOMEM;
747                 goto out;
748         }
749
750         if (kbuf.buf_align < bss_align)
751                 kbuf.buf_align = bss_align;
752
753         /* Add buffer to segment list */
754         ret = kexec_add_buffer(&kbuf);
755         if (ret)
756                 goto out;
757         pi->purgatory_load_addr = kbuf.mem;
758
759         /* Load SHF_ALLOC sections */
760         buf_addr = kbuf.buffer;
761         load_addr = curr_load_addr = pi->purgatory_load_addr;
762         bss_addr = load_addr + kbuf.bufsz + bss_pad;
763
764         for (i = 0; i < pi->ehdr->e_shnum; i++) {
765                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
766                         continue;
767
768                 align = sechdrs[i].sh_addralign;
769                 if (sechdrs[i].sh_type != SHT_NOBITS) {
770                         curr_load_addr = ALIGN(curr_load_addr, align);
771                         offset = curr_load_addr - load_addr;
772                         /* We already modifed ->sh_offset to keep src addr */
773                         src = (char *) sechdrs[i].sh_offset;
774                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
775
776                         /* Store load address and source address of section */
777                         sechdrs[i].sh_addr = curr_load_addr;
778
779                         /*
780                          * This section got copied to temporary buffer. Update
781                          * ->sh_offset accordingly.
782                          */
783                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
784
785                         /* Advance to the next address */
786                         curr_load_addr += sechdrs[i].sh_size;
787                 } else {
788                         bss_addr = ALIGN(bss_addr, align);
789                         sechdrs[i].sh_addr = bss_addr;
790                         bss_addr += sechdrs[i].sh_size;
791                 }
792         }
793
794         /* Update entry point based on load address of text section */
795         if (entry_sidx >= 0)
796                 entry += sechdrs[entry_sidx].sh_addr;
797
798         /* Make kernel jump to purgatory after shutdown */
799         image->start = entry;
800
801         /* Used later to get/set symbol values */
802         pi->sechdrs = sechdrs;
803
804         /*
805          * Used later to identify which section is purgatory and skip it
806          * from checksumming.
807          */
808         pi->purgatory_buf = kbuf.buffer;
809         return ret;
810 out:
811         vfree(sechdrs);
812         vfree(kbuf.buffer);
813         return ret;
814 }
815
816 static int kexec_apply_relocations(struct kimage *image)
817 {
818         int i, ret;
819         struct purgatory_info *pi = &image->purgatory_info;
820         Elf_Shdr *sechdrs = pi->sechdrs;
821
822         /* Apply relocations */
823         for (i = 0; i < pi->ehdr->e_shnum; i++) {
824                 Elf_Shdr *section, *symtab;
825
826                 if (sechdrs[i].sh_type != SHT_RELA &&
827                     sechdrs[i].sh_type != SHT_REL)
828                         continue;
829
830                 /*
831                  * For section of type SHT_RELA/SHT_REL,
832                  * ->sh_link contains section header index of associated
833                  * symbol table. And ->sh_info contains section header
834                  * index of section to which relocations apply.
835                  */
836                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
837                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
838                         return -ENOEXEC;
839
840                 section = &sechdrs[sechdrs[i].sh_info];
841                 symtab = &sechdrs[sechdrs[i].sh_link];
842
843                 if (!(section->sh_flags & SHF_ALLOC))
844                         continue;
845
846                 /*
847                  * symtab->sh_link contain section header index of associated
848                  * string table.
849                  */
850                 if (symtab->sh_link >= pi->ehdr->e_shnum)
851                         /* Invalid section number? */
852                         continue;
853
854                 /*
855                  * Respective architecture needs to provide support for applying
856                  * relocations of type SHT_RELA/SHT_REL.
857                  */
858                 if (sechdrs[i].sh_type == SHT_RELA)
859                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
860                                                                sechdrs, i);
861                 else if (sechdrs[i].sh_type == SHT_REL)
862                         ret = arch_kexec_apply_relocations(pi->ehdr,
863                                                            sechdrs, i);
864                 if (ret)
865                         return ret;
866         }
867
868         return 0;
869 }
870
871 /* Load relocatable purgatory object and relocate it appropriately */
872 int kexec_load_purgatory(struct kimage *image, unsigned long min,
873                          unsigned long max, int top_down,
874                          unsigned long *load_addr)
875 {
876         struct purgatory_info *pi = &image->purgatory_info;
877         int ret;
878
879         if (kexec_purgatory_size <= 0)
880                 return -EINVAL;
881
882         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
883                 return -ENOEXEC;
884
885         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
886
887         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
888             || pi->ehdr->e_type != ET_REL
889             || !elf_check_arch(pi->ehdr)
890             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
891                 return -ENOEXEC;
892
893         if (pi->ehdr->e_shoff >= kexec_purgatory_size
894             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
895             kexec_purgatory_size - pi->ehdr->e_shoff))
896                 return -ENOEXEC;
897
898         ret = __kexec_load_purgatory(image, min, max, top_down);
899         if (ret)
900                 return ret;
901
902         ret = kexec_apply_relocations(image);
903         if (ret)
904                 goto out;
905
906         *load_addr = pi->purgatory_load_addr;
907         return 0;
908 out:
909         vfree(pi->sechdrs);
910         pi->sechdrs = NULL;
911
912         vfree(pi->purgatory_buf);
913         pi->purgatory_buf = NULL;
914         return ret;
915 }
916
917 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
918                                             const char *name)
919 {
920         Elf_Sym *syms;
921         Elf_Shdr *sechdrs;
922         Elf_Ehdr *ehdr;
923         int i, k;
924         const char *strtab;
925
926         if (!pi->sechdrs || !pi->ehdr)
927                 return NULL;
928
929         sechdrs = pi->sechdrs;
930         ehdr = pi->ehdr;
931
932         for (i = 0; i < ehdr->e_shnum; i++) {
933                 if (sechdrs[i].sh_type != SHT_SYMTAB)
934                         continue;
935
936                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
937                         /* Invalid strtab section number */
938                         continue;
939                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
940                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
941
942                 /* Go through symbols for a match */
943                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
944                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
945                                 continue;
946
947                         if (strcmp(strtab + syms[k].st_name, name) != 0)
948                                 continue;
949
950                         if (syms[k].st_shndx == SHN_UNDEF ||
951                             syms[k].st_shndx >= ehdr->e_shnum) {
952                                 pr_debug("Symbol: %s has bad section index %d.\n",
953                                                 name, syms[k].st_shndx);
954                                 return NULL;
955                         }
956
957                         /* Found the symbol we are looking for */
958                         return &syms[k];
959                 }
960         }
961
962         return NULL;
963 }
964
965 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
966 {
967         struct purgatory_info *pi = &image->purgatory_info;
968         Elf_Sym *sym;
969         Elf_Shdr *sechdr;
970
971         sym = kexec_purgatory_find_symbol(pi, name);
972         if (!sym)
973                 return ERR_PTR(-EINVAL);
974
975         sechdr = &pi->sechdrs[sym->st_shndx];
976
977         /*
978          * Returns the address where symbol will finally be loaded after
979          * kexec_load_segment()
980          */
981         return (void *)(sechdr->sh_addr + sym->st_value);
982 }
983
984 /*
985  * Get or set value of a symbol. If "get_value" is true, symbol value is
986  * returned in buf otherwise symbol value is set based on value in buf.
987  */
988 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
989                                    void *buf, unsigned int size, bool get_value)
990 {
991         Elf_Sym *sym;
992         Elf_Shdr *sechdrs;
993         struct purgatory_info *pi = &image->purgatory_info;
994         char *sym_buf;
995
996         sym = kexec_purgatory_find_symbol(pi, name);
997         if (!sym)
998                 return -EINVAL;
999
1000         if (sym->st_size != size) {
1001                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1002                        name, (unsigned long)sym->st_size, size);
1003                 return -EINVAL;
1004         }
1005
1006         sechdrs = pi->sechdrs;
1007
1008         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1009                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1010                        get_value ? "get" : "set");
1011                 return -EINVAL;
1012         }
1013
1014         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1015                                         sym->st_value;
1016
1017         if (get_value)
1018                 memcpy((void *)buf, sym_buf, size);
1019         else
1020                 memcpy((void *)sym_buf, buf, size);
1021
1022         return 0;
1023 }