Merge tag 'at91-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nferre/linux...
[sfrench/cifs-2.6.git] / kernel / kexec.c
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/page.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/sections.h>
44
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47
48 /* Per cpu memory for storing cpu states in case of system crash. */
49 note_buf_t __percpu *crash_notes;
50
51 /* vmcoreinfo stuff */
52 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
53 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
54 size_t vmcoreinfo_size;
55 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
56
57 /* Flag to indicate we are going to kexec a new kernel */
58 bool kexec_in_progress = false;
59
60 /*
61  * Declare these symbols weak so that if architecture provides a purgatory,
62  * these will be overridden.
63  */
64 char __weak kexec_purgatory[0];
65 size_t __weak kexec_purgatory_size = 0;
66
67 #ifdef CONFIG_KEXEC_FILE
68 static int kexec_calculate_store_digests(struct kimage *image);
69 #endif
70
71 /* Location of the reserved area for the crash kernel */
72 struct resource crashk_res = {
73         .name  = "Crash kernel",
74         .start = 0,
75         .end   = 0,
76         .flags = IORESOURCE_BUSY | IORESOURCE_MEM
77 };
78 struct resource crashk_low_res = {
79         .name  = "Crash kernel",
80         .start = 0,
81         .end   = 0,
82         .flags = IORESOURCE_BUSY | IORESOURCE_MEM
83 };
84
85 int kexec_should_crash(struct task_struct *p)
86 {
87         if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88                 return 1;
89         return 0;
90 }
91
92 /*
93  * When kexec transitions to the new kernel there is a one-to-one
94  * mapping between physical and virtual addresses.  On processors
95  * where you can disable the MMU this is trivial, and easy.  For
96  * others it is still a simple predictable page table to setup.
97  *
98  * In that environment kexec copies the new kernel to its final
99  * resting place.  This means I can only support memory whose
100  * physical address can fit in an unsigned long.  In particular
101  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
102  * If the assembly stub has more restrictive requirements
103  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
104  * defined more restrictively in <asm/kexec.h>.
105  *
106  * The code for the transition from the current kernel to the
107  * the new kernel is placed in the control_code_buffer, whose size
108  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
109  * page of memory is necessary, but some architectures require more.
110  * Because this memory must be identity mapped in the transition from
111  * virtual to physical addresses it must live in the range
112  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
113  * modifiable.
114  *
115  * The assembly stub in the control code buffer is passed a linked list
116  * of descriptor pages detailing the source pages of the new kernel,
117  * and the destination addresses of those source pages.  As this data
118  * structure is not used in the context of the current OS, it must
119  * be self-contained.
120  *
121  * The code has been made to work with highmem pages and will use a
122  * destination page in its final resting place (if it happens
123  * to allocate it).  The end product of this is that most of the
124  * physical address space, and most of RAM can be used.
125  *
126  * Future directions include:
127  *  - allocating a page table with the control code buffer identity
128  *    mapped, to simplify machine_kexec and make kexec_on_panic more
129  *    reliable.
130  */
131
132 /*
133  * KIMAGE_NO_DEST is an impossible destination address..., for
134  * allocating pages whose destination address we do not care about.
135  */
136 #define KIMAGE_NO_DEST (-1UL)
137
138 static int kimage_is_destination_range(struct kimage *image,
139                                        unsigned long start, unsigned long end);
140 static struct page *kimage_alloc_page(struct kimage *image,
141                                        gfp_t gfp_mask,
142                                        unsigned long dest);
143
144 static int copy_user_segment_list(struct kimage *image,
145                                   unsigned long nr_segments,
146                                   struct kexec_segment __user *segments)
147 {
148         int ret;
149         size_t segment_bytes;
150
151         /* Read in the segments */
152         image->nr_segments = nr_segments;
153         segment_bytes = nr_segments * sizeof(*segments);
154         ret = copy_from_user(image->segment, segments, segment_bytes);
155         if (ret)
156                 ret = -EFAULT;
157
158         return ret;
159 }
160
161 static int sanity_check_segment_list(struct kimage *image)
162 {
163         int result, i;
164         unsigned long nr_segments = image->nr_segments;
165
166         /*
167          * Verify we have good destination addresses.  The caller is
168          * responsible for making certain we don't attempt to load
169          * the new image into invalid or reserved areas of RAM.  This
170          * just verifies it is an address we can use.
171          *
172          * Since the kernel does everything in page size chunks ensure
173          * the destination addresses are page aligned.  Too many
174          * special cases crop of when we don't do this.  The most
175          * insidious is getting overlapping destination addresses
176          * simply because addresses are changed to page size
177          * granularity.
178          */
179         result = -EADDRNOTAVAIL;
180         for (i = 0; i < nr_segments; i++) {
181                 unsigned long mstart, mend;
182
183                 mstart = image->segment[i].mem;
184                 mend   = mstart + image->segment[i].memsz;
185                 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
186                         return result;
187                 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
188                         return result;
189         }
190
191         /* Verify our destination addresses do not overlap.
192          * If we alloed overlapping destination addresses
193          * through very weird things can happen with no
194          * easy explanation as one segment stops on another.
195          */
196         result = -EINVAL;
197         for (i = 0; i < nr_segments; i++) {
198                 unsigned long mstart, mend;
199                 unsigned long j;
200
201                 mstart = image->segment[i].mem;
202                 mend   = mstart + image->segment[i].memsz;
203                 for (j = 0; j < i; j++) {
204                         unsigned long pstart, pend;
205                         pstart = image->segment[j].mem;
206                         pend   = pstart + image->segment[j].memsz;
207                         /* Do the segments overlap ? */
208                         if ((mend > pstart) && (mstart < pend))
209                                 return result;
210                 }
211         }
212
213         /* Ensure our buffer sizes are strictly less than
214          * our memory sizes.  This should always be the case,
215          * and it is easier to check up front than to be surprised
216          * later on.
217          */
218         result = -EINVAL;
219         for (i = 0; i < nr_segments; i++) {
220                 if (image->segment[i].bufsz > image->segment[i].memsz)
221                         return result;
222         }
223
224         /*
225          * Verify we have good destination addresses.  Normally
226          * the caller is responsible for making certain we don't
227          * attempt to load the new image into invalid or reserved
228          * areas of RAM.  But crash kernels are preloaded into a
229          * reserved area of ram.  We must ensure the addresses
230          * are in the reserved area otherwise preloading the
231          * kernel could corrupt things.
232          */
233
234         if (image->type == KEXEC_TYPE_CRASH) {
235                 result = -EADDRNOTAVAIL;
236                 for (i = 0; i < nr_segments; i++) {
237                         unsigned long mstart, mend;
238
239                         mstart = image->segment[i].mem;
240                         mend = mstart + image->segment[i].memsz - 1;
241                         /* Ensure we are within the crash kernel limits */
242                         if ((mstart < crashk_res.start) ||
243                             (mend > crashk_res.end))
244                                 return result;
245                 }
246         }
247
248         return 0;
249 }
250
251 static struct kimage *do_kimage_alloc_init(void)
252 {
253         struct kimage *image;
254
255         /* Allocate a controlling structure */
256         image = kzalloc(sizeof(*image), GFP_KERNEL);
257         if (!image)
258                 return NULL;
259
260         image->head = 0;
261         image->entry = &image->head;
262         image->last_entry = &image->head;
263         image->control_page = ~0; /* By default this does not apply */
264         image->type = KEXEC_TYPE_DEFAULT;
265
266         /* Initialize the list of control pages */
267         INIT_LIST_HEAD(&image->control_pages);
268
269         /* Initialize the list of destination pages */
270         INIT_LIST_HEAD(&image->dest_pages);
271
272         /* Initialize the list of unusable pages */
273         INIT_LIST_HEAD(&image->unusable_pages);
274
275         return image;
276 }
277
278 static void kimage_free_page_list(struct list_head *list);
279
280 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
281                              unsigned long nr_segments,
282                              struct kexec_segment __user *segments,
283                              unsigned long flags)
284 {
285         int ret;
286         struct kimage *image;
287         bool kexec_on_panic = flags & KEXEC_ON_CRASH;
288
289         if (kexec_on_panic) {
290                 /* Verify we have a valid entry point */
291                 if ((entry < crashk_res.start) || (entry > crashk_res.end))
292                         return -EADDRNOTAVAIL;
293         }
294
295         /* Allocate and initialize a controlling structure */
296         image = do_kimage_alloc_init();
297         if (!image)
298                 return -ENOMEM;
299
300         image->start = entry;
301
302         ret = copy_user_segment_list(image, nr_segments, segments);
303         if (ret)
304                 goto out_free_image;
305
306         ret = sanity_check_segment_list(image);
307         if (ret)
308                 goto out_free_image;
309
310          /* Enable the special crash kernel control page allocation policy. */
311         if (kexec_on_panic) {
312                 image->control_page = crashk_res.start;
313                 image->type = KEXEC_TYPE_CRASH;
314         }
315
316         /*
317          * Find a location for the control code buffer, and add it
318          * the vector of segments so that it's pages will also be
319          * counted as destination pages.
320          */
321         ret = -ENOMEM;
322         image->control_code_page = kimage_alloc_control_pages(image,
323                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
324         if (!image->control_code_page) {
325                 pr_err("Could not allocate control_code_buffer\n");
326                 goto out_free_image;
327         }
328
329         if (!kexec_on_panic) {
330                 image->swap_page = kimage_alloc_control_pages(image, 0);
331                 if (!image->swap_page) {
332                         pr_err("Could not allocate swap buffer\n");
333                         goto out_free_control_pages;
334                 }
335         }
336
337         *rimage = image;
338         return 0;
339 out_free_control_pages:
340         kimage_free_page_list(&image->control_pages);
341 out_free_image:
342         kfree(image);
343         return ret;
344 }
345
346 #ifdef CONFIG_KEXEC_FILE
347 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
348 {
349         struct fd f = fdget(fd);
350         int ret;
351         struct kstat stat;
352         loff_t pos;
353         ssize_t bytes = 0;
354
355         if (!f.file)
356                 return -EBADF;
357
358         ret = vfs_getattr(&f.file->f_path, &stat);
359         if (ret)
360                 goto out;
361
362         if (stat.size > INT_MAX) {
363                 ret = -EFBIG;
364                 goto out;
365         }
366
367         /* Don't hand 0 to vmalloc, it whines. */
368         if (stat.size == 0) {
369                 ret = -EINVAL;
370                 goto out;
371         }
372
373         *buf = vmalloc(stat.size);
374         if (!*buf) {
375                 ret = -ENOMEM;
376                 goto out;
377         }
378
379         pos = 0;
380         while (pos < stat.size) {
381                 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
382                                     stat.size - pos);
383                 if (bytes < 0) {
384                         vfree(*buf);
385                         ret = bytes;
386                         goto out;
387                 }
388
389                 if (bytes == 0)
390                         break;
391                 pos += bytes;
392         }
393
394         if (pos != stat.size) {
395                 ret = -EBADF;
396                 vfree(*buf);
397                 goto out;
398         }
399
400         *buf_len = pos;
401 out:
402         fdput(f);
403         return ret;
404 }
405
406 /* Architectures can provide this probe function */
407 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
408                                          unsigned long buf_len)
409 {
410         return -ENOEXEC;
411 }
412
413 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
414 {
415         return ERR_PTR(-ENOEXEC);
416 }
417
418 void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
419 {
420 }
421
422 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
423                                         unsigned long buf_len)
424 {
425         return -EKEYREJECTED;
426 }
427
428 /* Apply relocations of type RELA */
429 int __weak
430 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
431                                  unsigned int relsec)
432 {
433         pr_err("RELA relocation unsupported.\n");
434         return -ENOEXEC;
435 }
436
437 /* Apply relocations of type REL */
438 int __weak
439 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
440                              unsigned int relsec)
441 {
442         pr_err("REL relocation unsupported.\n");
443         return -ENOEXEC;
444 }
445
446 /*
447  * Free up memory used by kernel, initrd, and comand line. This is temporary
448  * memory allocation which is not needed any more after these buffers have
449  * been loaded into separate segments and have been copied elsewhere.
450  */
451 static void kimage_file_post_load_cleanup(struct kimage *image)
452 {
453         struct purgatory_info *pi = &image->purgatory_info;
454
455         vfree(image->kernel_buf);
456         image->kernel_buf = NULL;
457
458         vfree(image->initrd_buf);
459         image->initrd_buf = NULL;
460
461         kfree(image->cmdline_buf);
462         image->cmdline_buf = NULL;
463
464         vfree(pi->purgatory_buf);
465         pi->purgatory_buf = NULL;
466
467         vfree(pi->sechdrs);
468         pi->sechdrs = NULL;
469
470         /* See if architecture has anything to cleanup post load */
471         arch_kimage_file_post_load_cleanup(image);
472
473         /*
474          * Above call should have called into bootloader to free up
475          * any data stored in kimage->image_loader_data. It should
476          * be ok now to free it up.
477          */
478         kfree(image->image_loader_data);
479         image->image_loader_data = NULL;
480 }
481
482 /*
483  * In file mode list of segments is prepared by kernel. Copy relevant
484  * data from user space, do error checking, prepare segment list
485  */
486 static int
487 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
488                              const char __user *cmdline_ptr,
489                              unsigned long cmdline_len, unsigned flags)
490 {
491         int ret = 0;
492         void *ldata;
493
494         ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
495                                 &image->kernel_buf_len);
496         if (ret)
497                 return ret;
498
499         /* Call arch image probe handlers */
500         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
501                                             image->kernel_buf_len);
502
503         if (ret)
504                 goto out;
505
506 #ifdef CONFIG_KEXEC_VERIFY_SIG
507         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
508                                            image->kernel_buf_len);
509         if (ret) {
510                 pr_debug("kernel signature verification failed.\n");
511                 goto out;
512         }
513         pr_debug("kernel signature verification successful.\n");
514 #endif
515         /* It is possible that there no initramfs is being loaded */
516         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
517                 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
518                                         &image->initrd_buf_len);
519                 if (ret)
520                         goto out;
521         }
522
523         if (cmdline_len) {
524                 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
525                 if (!image->cmdline_buf) {
526                         ret = -ENOMEM;
527                         goto out;
528                 }
529
530                 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
531                                      cmdline_len);
532                 if (ret) {
533                         ret = -EFAULT;
534                         goto out;
535                 }
536
537                 image->cmdline_buf_len = cmdline_len;
538
539                 /* command line should be a string with last byte null */
540                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
541                         ret = -EINVAL;
542                         goto out;
543                 }
544         }
545
546         /* Call arch image load handlers */
547         ldata = arch_kexec_kernel_image_load(image);
548
549         if (IS_ERR(ldata)) {
550                 ret = PTR_ERR(ldata);
551                 goto out;
552         }
553
554         image->image_loader_data = ldata;
555 out:
556         /* In case of error, free up all allocated memory in this function */
557         if (ret)
558                 kimage_file_post_load_cleanup(image);
559         return ret;
560 }
561
562 static int
563 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
564                        int initrd_fd, const char __user *cmdline_ptr,
565                        unsigned long cmdline_len, unsigned long flags)
566 {
567         int ret;
568         struct kimage *image;
569         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
570
571         image = do_kimage_alloc_init();
572         if (!image)
573                 return -ENOMEM;
574
575         image->file_mode = 1;
576
577         if (kexec_on_panic) {
578                 /* Enable special crash kernel control page alloc policy. */
579                 image->control_page = crashk_res.start;
580                 image->type = KEXEC_TYPE_CRASH;
581         }
582
583         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
584                                            cmdline_ptr, cmdline_len, flags);
585         if (ret)
586                 goto out_free_image;
587
588         ret = sanity_check_segment_list(image);
589         if (ret)
590                 goto out_free_post_load_bufs;
591
592         ret = -ENOMEM;
593         image->control_code_page = kimage_alloc_control_pages(image,
594                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
595         if (!image->control_code_page) {
596                 pr_err("Could not allocate control_code_buffer\n");
597                 goto out_free_post_load_bufs;
598         }
599
600         if (!kexec_on_panic) {
601                 image->swap_page = kimage_alloc_control_pages(image, 0);
602                 if (!image->swap_page) {
603                         pr_err(KERN_ERR "Could not allocate swap buffer\n");
604                         goto out_free_control_pages;
605                 }
606         }
607
608         *rimage = image;
609         return 0;
610 out_free_control_pages:
611         kimage_free_page_list(&image->control_pages);
612 out_free_post_load_bufs:
613         kimage_file_post_load_cleanup(image);
614 out_free_image:
615         kfree(image);
616         return ret;
617 }
618 #else /* CONFIG_KEXEC_FILE */
619 static inline void kimage_file_post_load_cleanup(struct kimage *image) { }
620 #endif /* CONFIG_KEXEC_FILE */
621
622 static int kimage_is_destination_range(struct kimage *image,
623                                         unsigned long start,
624                                         unsigned long end)
625 {
626         unsigned long i;
627
628         for (i = 0; i < image->nr_segments; i++) {
629                 unsigned long mstart, mend;
630
631                 mstart = image->segment[i].mem;
632                 mend = mstart + image->segment[i].memsz;
633                 if ((end > mstart) && (start < mend))
634                         return 1;
635         }
636
637         return 0;
638 }
639
640 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
641 {
642         struct page *pages;
643
644         pages = alloc_pages(gfp_mask, order);
645         if (pages) {
646                 unsigned int count, i;
647                 pages->mapping = NULL;
648                 set_page_private(pages, order);
649                 count = 1 << order;
650                 for (i = 0; i < count; i++)
651                         SetPageReserved(pages + i);
652         }
653
654         return pages;
655 }
656
657 static void kimage_free_pages(struct page *page)
658 {
659         unsigned int order, count, i;
660
661         order = page_private(page);
662         count = 1 << order;
663         for (i = 0; i < count; i++)
664                 ClearPageReserved(page + i);
665         __free_pages(page, order);
666 }
667
668 static void kimage_free_page_list(struct list_head *list)
669 {
670         struct list_head *pos, *next;
671
672         list_for_each_safe(pos, next, list) {
673                 struct page *page;
674
675                 page = list_entry(pos, struct page, lru);
676                 list_del(&page->lru);
677                 kimage_free_pages(page);
678         }
679 }
680
681 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
682                                                         unsigned int order)
683 {
684         /* Control pages are special, they are the intermediaries
685          * that are needed while we copy the rest of the pages
686          * to their final resting place.  As such they must
687          * not conflict with either the destination addresses
688          * or memory the kernel is already using.
689          *
690          * The only case where we really need more than one of
691          * these are for architectures where we cannot disable
692          * the MMU and must instead generate an identity mapped
693          * page table for all of the memory.
694          *
695          * At worst this runs in O(N) of the image size.
696          */
697         struct list_head extra_pages;
698         struct page *pages;
699         unsigned int count;
700
701         count = 1 << order;
702         INIT_LIST_HEAD(&extra_pages);
703
704         /* Loop while I can allocate a page and the page allocated
705          * is a destination page.
706          */
707         do {
708                 unsigned long pfn, epfn, addr, eaddr;
709
710                 pages = kimage_alloc_pages(GFP_KERNEL, order);
711                 if (!pages)
712                         break;
713                 pfn   = page_to_pfn(pages);
714                 epfn  = pfn + count;
715                 addr  = pfn << PAGE_SHIFT;
716                 eaddr = epfn << PAGE_SHIFT;
717                 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
718                               kimage_is_destination_range(image, addr, eaddr)) {
719                         list_add(&pages->lru, &extra_pages);
720                         pages = NULL;
721                 }
722         } while (!pages);
723
724         if (pages) {
725                 /* Remember the allocated page... */
726                 list_add(&pages->lru, &image->control_pages);
727
728                 /* Because the page is already in it's destination
729                  * location we will never allocate another page at
730                  * that address.  Therefore kimage_alloc_pages
731                  * will not return it (again) and we don't need
732                  * to give it an entry in image->segment[].
733                  */
734         }
735         /* Deal with the destination pages I have inadvertently allocated.
736          *
737          * Ideally I would convert multi-page allocations into single
738          * page allocations, and add everything to image->dest_pages.
739          *
740          * For now it is simpler to just free the pages.
741          */
742         kimage_free_page_list(&extra_pages);
743
744         return pages;
745 }
746
747 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
748                                                       unsigned int order)
749 {
750         /* Control pages are special, they are the intermediaries
751          * that are needed while we copy the rest of the pages
752          * to their final resting place.  As such they must
753          * not conflict with either the destination addresses
754          * or memory the kernel is already using.
755          *
756          * Control pages are also the only pags we must allocate
757          * when loading a crash kernel.  All of the other pages
758          * are specified by the segments and we just memcpy
759          * into them directly.
760          *
761          * The only case where we really need more than one of
762          * these are for architectures where we cannot disable
763          * the MMU and must instead generate an identity mapped
764          * page table for all of the memory.
765          *
766          * Given the low demand this implements a very simple
767          * allocator that finds the first hole of the appropriate
768          * size in the reserved memory region, and allocates all
769          * of the memory up to and including the hole.
770          */
771         unsigned long hole_start, hole_end, size;
772         struct page *pages;
773
774         pages = NULL;
775         size = (1 << order) << PAGE_SHIFT;
776         hole_start = (image->control_page + (size - 1)) & ~(size - 1);
777         hole_end   = hole_start + size - 1;
778         while (hole_end <= crashk_res.end) {
779                 unsigned long i;
780
781                 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
782                         break;
783                 /* See if I overlap any of the segments */
784                 for (i = 0; i < image->nr_segments; i++) {
785                         unsigned long mstart, mend;
786
787                         mstart = image->segment[i].mem;
788                         mend   = mstart + image->segment[i].memsz - 1;
789                         if ((hole_end >= mstart) && (hole_start <= mend)) {
790                                 /* Advance the hole to the end of the segment */
791                                 hole_start = (mend + (size - 1)) & ~(size - 1);
792                                 hole_end   = hole_start + size - 1;
793                                 break;
794                         }
795                 }
796                 /* If I don't overlap any segments I have found my hole! */
797                 if (i == image->nr_segments) {
798                         pages = pfn_to_page(hole_start >> PAGE_SHIFT);
799                         break;
800                 }
801         }
802         if (pages)
803                 image->control_page = hole_end;
804
805         return pages;
806 }
807
808
809 struct page *kimage_alloc_control_pages(struct kimage *image,
810                                          unsigned int order)
811 {
812         struct page *pages = NULL;
813
814         switch (image->type) {
815         case KEXEC_TYPE_DEFAULT:
816                 pages = kimage_alloc_normal_control_pages(image, order);
817                 break;
818         case KEXEC_TYPE_CRASH:
819                 pages = kimage_alloc_crash_control_pages(image, order);
820                 break;
821         }
822
823         return pages;
824 }
825
826 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
827 {
828         if (*image->entry != 0)
829                 image->entry++;
830
831         if (image->entry == image->last_entry) {
832                 kimage_entry_t *ind_page;
833                 struct page *page;
834
835                 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
836                 if (!page)
837                         return -ENOMEM;
838
839                 ind_page = page_address(page);
840                 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
841                 image->entry = ind_page;
842                 image->last_entry = ind_page +
843                                       ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
844         }
845         *image->entry = entry;
846         image->entry++;
847         *image->entry = 0;
848
849         return 0;
850 }
851
852 static int kimage_set_destination(struct kimage *image,
853                                    unsigned long destination)
854 {
855         int result;
856
857         destination &= PAGE_MASK;
858         result = kimage_add_entry(image, destination | IND_DESTINATION);
859         if (result == 0)
860                 image->destination = destination;
861
862         return result;
863 }
864
865
866 static int kimage_add_page(struct kimage *image, unsigned long page)
867 {
868         int result;
869
870         page &= PAGE_MASK;
871         result = kimage_add_entry(image, page | IND_SOURCE);
872         if (result == 0)
873                 image->destination += PAGE_SIZE;
874
875         return result;
876 }
877
878
879 static void kimage_free_extra_pages(struct kimage *image)
880 {
881         /* Walk through and free any extra destination pages I may have */
882         kimage_free_page_list(&image->dest_pages);
883
884         /* Walk through and free any unusable pages I have cached */
885         kimage_free_page_list(&image->unusable_pages);
886
887 }
888 static void kimage_terminate(struct kimage *image)
889 {
890         if (*image->entry != 0)
891                 image->entry++;
892
893         *image->entry = IND_DONE;
894 }
895
896 #define for_each_kimage_entry(image, ptr, entry) \
897         for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
898                 ptr = (entry & IND_INDIRECTION) ? \
899                         phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
900
901 static void kimage_free_entry(kimage_entry_t entry)
902 {
903         struct page *page;
904
905         page = pfn_to_page(entry >> PAGE_SHIFT);
906         kimage_free_pages(page);
907 }
908
909 static void kimage_free(struct kimage *image)
910 {
911         kimage_entry_t *ptr, entry;
912         kimage_entry_t ind = 0;
913
914         if (!image)
915                 return;
916
917         kimage_free_extra_pages(image);
918         for_each_kimage_entry(image, ptr, entry) {
919                 if (entry & IND_INDIRECTION) {
920                         /* Free the previous indirection page */
921                         if (ind & IND_INDIRECTION)
922                                 kimage_free_entry(ind);
923                         /* Save this indirection page until we are
924                          * done with it.
925                          */
926                         ind = entry;
927                 } else if (entry & IND_SOURCE)
928                         kimage_free_entry(entry);
929         }
930         /* Free the final indirection page */
931         if (ind & IND_INDIRECTION)
932                 kimage_free_entry(ind);
933
934         /* Handle any machine specific cleanup */
935         machine_kexec_cleanup(image);
936
937         /* Free the kexec control pages... */
938         kimage_free_page_list(&image->control_pages);
939
940         /*
941          * Free up any temporary buffers allocated. This might hit if
942          * error occurred much later after buffer allocation.
943          */
944         if (image->file_mode)
945                 kimage_file_post_load_cleanup(image);
946
947         kfree(image);
948 }
949
950 static kimage_entry_t *kimage_dst_used(struct kimage *image,
951                                         unsigned long page)
952 {
953         kimage_entry_t *ptr, entry;
954         unsigned long destination = 0;
955
956         for_each_kimage_entry(image, ptr, entry) {
957                 if (entry & IND_DESTINATION)
958                         destination = entry & PAGE_MASK;
959                 else if (entry & IND_SOURCE) {
960                         if (page == destination)
961                                 return ptr;
962                         destination += PAGE_SIZE;
963                 }
964         }
965
966         return NULL;
967 }
968
969 static struct page *kimage_alloc_page(struct kimage *image,
970                                         gfp_t gfp_mask,
971                                         unsigned long destination)
972 {
973         /*
974          * Here we implement safeguards to ensure that a source page
975          * is not copied to its destination page before the data on
976          * the destination page is no longer useful.
977          *
978          * To do this we maintain the invariant that a source page is
979          * either its own destination page, or it is not a
980          * destination page at all.
981          *
982          * That is slightly stronger than required, but the proof
983          * that no problems will not occur is trivial, and the
984          * implementation is simply to verify.
985          *
986          * When allocating all pages normally this algorithm will run
987          * in O(N) time, but in the worst case it will run in O(N^2)
988          * time.   If the runtime is a problem the data structures can
989          * be fixed.
990          */
991         struct page *page;
992         unsigned long addr;
993
994         /*
995          * Walk through the list of destination pages, and see if I
996          * have a match.
997          */
998         list_for_each_entry(page, &image->dest_pages, lru) {
999                 addr = page_to_pfn(page) << PAGE_SHIFT;
1000                 if (addr == destination) {
1001                         list_del(&page->lru);
1002                         return page;
1003                 }
1004         }
1005         page = NULL;
1006         while (1) {
1007                 kimage_entry_t *old;
1008
1009                 /* Allocate a page, if we run out of memory give up */
1010                 page = kimage_alloc_pages(gfp_mask, 0);
1011                 if (!page)
1012                         return NULL;
1013                 /* If the page cannot be used file it away */
1014                 if (page_to_pfn(page) >
1015                                 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
1016                         list_add(&page->lru, &image->unusable_pages);
1017                         continue;
1018                 }
1019                 addr = page_to_pfn(page) << PAGE_SHIFT;
1020
1021                 /* If it is the destination page we want use it */
1022                 if (addr == destination)
1023                         break;
1024
1025                 /* If the page is not a destination page use it */
1026                 if (!kimage_is_destination_range(image, addr,
1027                                                   addr + PAGE_SIZE))
1028                         break;
1029
1030                 /*
1031                  * I know that the page is someones destination page.
1032                  * See if there is already a source page for this
1033                  * destination page.  And if so swap the source pages.
1034                  */
1035                 old = kimage_dst_used(image, addr);
1036                 if (old) {
1037                         /* If so move it */
1038                         unsigned long old_addr;
1039                         struct page *old_page;
1040
1041                         old_addr = *old & PAGE_MASK;
1042                         old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
1043                         copy_highpage(page, old_page);
1044                         *old = addr | (*old & ~PAGE_MASK);
1045
1046                         /* The old page I have found cannot be a
1047                          * destination page, so return it if it's
1048                          * gfp_flags honor the ones passed in.
1049                          */
1050                         if (!(gfp_mask & __GFP_HIGHMEM) &&
1051                             PageHighMem(old_page)) {
1052                                 kimage_free_pages(old_page);
1053                                 continue;
1054                         }
1055                         addr = old_addr;
1056                         page = old_page;
1057                         break;
1058                 } else {
1059                         /* Place the page on the destination list I
1060                          * will use it later.
1061                          */
1062                         list_add(&page->lru, &image->dest_pages);
1063                 }
1064         }
1065
1066         return page;
1067 }
1068
1069 static int kimage_load_normal_segment(struct kimage *image,
1070                                          struct kexec_segment *segment)
1071 {
1072         unsigned long maddr;
1073         size_t ubytes, mbytes;
1074         int result;
1075         unsigned char __user *buf = NULL;
1076         unsigned char *kbuf = NULL;
1077
1078         result = 0;
1079         if (image->file_mode)
1080                 kbuf = segment->kbuf;
1081         else
1082                 buf = segment->buf;
1083         ubytes = segment->bufsz;
1084         mbytes = segment->memsz;
1085         maddr = segment->mem;
1086
1087         result = kimage_set_destination(image, maddr);
1088         if (result < 0)
1089                 goto out;
1090
1091         while (mbytes) {
1092                 struct page *page;
1093                 char *ptr;
1094                 size_t uchunk, mchunk;
1095
1096                 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
1097                 if (!page) {
1098                         result  = -ENOMEM;
1099                         goto out;
1100                 }
1101                 result = kimage_add_page(image, page_to_pfn(page)
1102                                                                 << PAGE_SHIFT);
1103                 if (result < 0)
1104                         goto out;
1105
1106                 ptr = kmap(page);
1107                 /* Start with a clear page */
1108                 clear_page(ptr);
1109                 ptr += maddr & ~PAGE_MASK;
1110                 mchunk = min_t(size_t, mbytes,
1111                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
1112                 uchunk = min(ubytes, mchunk);
1113
1114                 /* For file based kexec, source pages are in kernel memory */
1115                 if (image->file_mode)
1116                         memcpy(ptr, kbuf, uchunk);
1117                 else
1118                         result = copy_from_user(ptr, buf, uchunk);
1119                 kunmap(page);
1120                 if (result) {
1121                         result = -EFAULT;
1122                         goto out;
1123                 }
1124                 ubytes -= uchunk;
1125                 maddr  += mchunk;
1126                 if (image->file_mode)
1127                         kbuf += mchunk;
1128                 else
1129                         buf += mchunk;
1130                 mbytes -= mchunk;
1131         }
1132 out:
1133         return result;
1134 }
1135
1136 static int kimage_load_crash_segment(struct kimage *image,
1137                                         struct kexec_segment *segment)
1138 {
1139         /* For crash dumps kernels we simply copy the data from
1140          * user space to it's destination.
1141          * We do things a page at a time for the sake of kmap.
1142          */
1143         unsigned long maddr;
1144         size_t ubytes, mbytes;
1145         int result;
1146         unsigned char __user *buf = NULL;
1147         unsigned char *kbuf = NULL;
1148
1149         result = 0;
1150         if (image->file_mode)
1151                 kbuf = segment->kbuf;
1152         else
1153                 buf = segment->buf;
1154         ubytes = segment->bufsz;
1155         mbytes = segment->memsz;
1156         maddr = segment->mem;
1157         while (mbytes) {
1158                 struct page *page;
1159                 char *ptr;
1160                 size_t uchunk, mchunk;
1161
1162                 page = pfn_to_page(maddr >> PAGE_SHIFT);
1163                 if (!page) {
1164                         result  = -ENOMEM;
1165                         goto out;
1166                 }
1167                 ptr = kmap(page);
1168                 ptr += maddr & ~PAGE_MASK;
1169                 mchunk = min_t(size_t, mbytes,
1170                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
1171                 uchunk = min(ubytes, mchunk);
1172                 if (mchunk > uchunk) {
1173                         /* Zero the trailing part of the page */
1174                         memset(ptr + uchunk, 0, mchunk - uchunk);
1175                 }
1176
1177                 /* For file based kexec, source pages are in kernel memory */
1178                 if (image->file_mode)
1179                         memcpy(ptr, kbuf, uchunk);
1180                 else
1181                         result = copy_from_user(ptr, buf, uchunk);
1182                 kexec_flush_icache_page(page);
1183                 kunmap(page);
1184                 if (result) {
1185                         result = -EFAULT;
1186                         goto out;
1187                 }
1188                 ubytes -= uchunk;
1189                 maddr  += mchunk;
1190                 if (image->file_mode)
1191                         kbuf += mchunk;
1192                 else
1193                         buf += mchunk;
1194                 mbytes -= mchunk;
1195         }
1196 out:
1197         return result;
1198 }
1199
1200 static int kimage_load_segment(struct kimage *image,
1201                                 struct kexec_segment *segment)
1202 {
1203         int result = -ENOMEM;
1204
1205         switch (image->type) {
1206         case KEXEC_TYPE_DEFAULT:
1207                 result = kimage_load_normal_segment(image, segment);
1208                 break;
1209         case KEXEC_TYPE_CRASH:
1210                 result = kimage_load_crash_segment(image, segment);
1211                 break;
1212         }
1213
1214         return result;
1215 }
1216
1217 /*
1218  * Exec Kernel system call: for obvious reasons only root may call it.
1219  *
1220  * This call breaks up into three pieces.
1221  * - A generic part which loads the new kernel from the current
1222  *   address space, and very carefully places the data in the
1223  *   allocated pages.
1224  *
1225  * - A generic part that interacts with the kernel and tells all of
1226  *   the devices to shut down.  Preventing on-going dmas, and placing
1227  *   the devices in a consistent state so a later kernel can
1228  *   reinitialize them.
1229  *
1230  * - A machine specific part that includes the syscall number
1231  *   and then copies the image to it's final destination.  And
1232  *   jumps into the image at entry.
1233  *
1234  * kexec does not sync, or unmount filesystems so if you need
1235  * that to happen you need to do that yourself.
1236  */
1237 struct kimage *kexec_image;
1238 struct kimage *kexec_crash_image;
1239 int kexec_load_disabled;
1240
1241 static DEFINE_MUTEX(kexec_mutex);
1242
1243 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
1244                 struct kexec_segment __user *, segments, unsigned long, flags)
1245 {
1246         struct kimage **dest_image, *image;
1247         int result;
1248
1249         /* We only trust the superuser with rebooting the system. */
1250         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1251                 return -EPERM;
1252
1253         /*
1254          * Verify we have a legal set of flags
1255          * This leaves us room for future extensions.
1256          */
1257         if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
1258                 return -EINVAL;
1259
1260         /* Verify we are on the appropriate architecture */
1261         if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
1262                 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
1263                 return -EINVAL;
1264
1265         /* Put an artificial cap on the number
1266          * of segments passed to kexec_load.
1267          */
1268         if (nr_segments > KEXEC_SEGMENT_MAX)
1269                 return -EINVAL;
1270
1271         image = NULL;
1272         result = 0;
1273
1274         /* Because we write directly to the reserved memory
1275          * region when loading crash kernels we need a mutex here to
1276          * prevent multiple crash  kernels from attempting to load
1277          * simultaneously, and to prevent a crash kernel from loading
1278          * over the top of a in use crash kernel.
1279          *
1280          * KISS: always take the mutex.
1281          */
1282         if (!mutex_trylock(&kexec_mutex))
1283                 return -EBUSY;
1284
1285         dest_image = &kexec_image;
1286         if (flags & KEXEC_ON_CRASH)
1287                 dest_image = &kexec_crash_image;
1288         if (nr_segments > 0) {
1289                 unsigned long i;
1290
1291                 /* Loading another kernel to reboot into */
1292                 if ((flags & KEXEC_ON_CRASH) == 0)
1293                         result = kimage_alloc_init(&image, entry, nr_segments,
1294                                                    segments, flags);
1295                 /* Loading another kernel to switch to if this one crashes */
1296                 else if (flags & KEXEC_ON_CRASH) {
1297                         /* Free any current crash dump kernel before
1298                          * we corrupt it.
1299                          */
1300                         kimage_free(xchg(&kexec_crash_image, NULL));
1301                         result = kimage_alloc_init(&image, entry, nr_segments,
1302                                                    segments, flags);
1303                         crash_map_reserved_pages();
1304                 }
1305                 if (result)
1306                         goto out;
1307
1308                 if (flags & KEXEC_PRESERVE_CONTEXT)
1309                         image->preserve_context = 1;
1310                 result = machine_kexec_prepare(image);
1311                 if (result)
1312                         goto out;
1313
1314                 for (i = 0; i < nr_segments; i++) {
1315                         result = kimage_load_segment(image, &image->segment[i]);
1316                         if (result)
1317                                 goto out;
1318                 }
1319                 kimage_terminate(image);
1320                 if (flags & KEXEC_ON_CRASH)
1321                         crash_unmap_reserved_pages();
1322         }
1323         /* Install the new kernel, and  Uninstall the old */
1324         image = xchg(dest_image, image);
1325
1326 out:
1327         mutex_unlock(&kexec_mutex);
1328         kimage_free(image);
1329
1330         return result;
1331 }
1332
1333 /*
1334  * Add and remove page tables for crashkernel memory
1335  *
1336  * Provide an empty default implementation here -- architecture
1337  * code may override this
1338  */
1339 void __weak crash_map_reserved_pages(void)
1340 {}
1341
1342 void __weak crash_unmap_reserved_pages(void)
1343 {}
1344
1345 #ifdef CONFIG_COMPAT
1346 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1347                        compat_ulong_t, nr_segments,
1348                        struct compat_kexec_segment __user *, segments,
1349                        compat_ulong_t, flags)
1350 {
1351         struct compat_kexec_segment in;
1352         struct kexec_segment out, __user *ksegments;
1353         unsigned long i, result;
1354
1355         /* Don't allow clients that don't understand the native
1356          * architecture to do anything.
1357          */
1358         if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1359                 return -EINVAL;
1360
1361         if (nr_segments > KEXEC_SEGMENT_MAX)
1362                 return -EINVAL;
1363
1364         ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1365         for (i = 0; i < nr_segments; i++) {
1366                 result = copy_from_user(&in, &segments[i], sizeof(in));
1367                 if (result)
1368                         return -EFAULT;
1369
1370                 out.buf   = compat_ptr(in.buf);
1371                 out.bufsz = in.bufsz;
1372                 out.mem   = in.mem;
1373                 out.memsz = in.memsz;
1374
1375                 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1376                 if (result)
1377                         return -EFAULT;
1378         }
1379
1380         return sys_kexec_load(entry, nr_segments, ksegments, flags);
1381 }
1382 #endif
1383
1384 #ifdef CONFIG_KEXEC_FILE
1385 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
1386                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
1387                 unsigned long, flags)
1388 {
1389         int ret = 0, i;
1390         struct kimage **dest_image, *image;
1391
1392         /* We only trust the superuser with rebooting the system. */
1393         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1394                 return -EPERM;
1395
1396         /* Make sure we have a legal set of flags */
1397         if (flags != (flags & KEXEC_FILE_FLAGS))
1398                 return -EINVAL;
1399
1400         image = NULL;
1401
1402         if (!mutex_trylock(&kexec_mutex))
1403                 return -EBUSY;
1404
1405         dest_image = &kexec_image;
1406         if (flags & KEXEC_FILE_ON_CRASH)
1407                 dest_image = &kexec_crash_image;
1408
1409         if (flags & KEXEC_FILE_UNLOAD)
1410                 goto exchange;
1411
1412         /*
1413          * In case of crash, new kernel gets loaded in reserved region. It is
1414          * same memory where old crash kernel might be loaded. Free any
1415          * current crash dump kernel before we corrupt it.
1416          */
1417         if (flags & KEXEC_FILE_ON_CRASH)
1418                 kimage_free(xchg(&kexec_crash_image, NULL));
1419
1420         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
1421                                      cmdline_len, flags);
1422         if (ret)
1423                 goto out;
1424
1425         ret = machine_kexec_prepare(image);
1426         if (ret)
1427                 goto out;
1428
1429         ret = kexec_calculate_store_digests(image);
1430         if (ret)
1431                 goto out;
1432
1433         for (i = 0; i < image->nr_segments; i++) {
1434                 struct kexec_segment *ksegment;
1435
1436                 ksegment = &image->segment[i];
1437                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1438                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
1439                          ksegment->memsz);
1440
1441                 ret = kimage_load_segment(image, &image->segment[i]);
1442                 if (ret)
1443                         goto out;
1444         }
1445
1446         kimage_terminate(image);
1447
1448         /*
1449          * Free up any temporary buffers allocated which are not needed
1450          * after image has been loaded
1451          */
1452         kimage_file_post_load_cleanup(image);
1453 exchange:
1454         image = xchg(dest_image, image);
1455 out:
1456         mutex_unlock(&kexec_mutex);
1457         kimage_free(image);
1458         return ret;
1459 }
1460
1461 #endif /* CONFIG_KEXEC_FILE */
1462
1463 void crash_kexec(struct pt_regs *regs)
1464 {
1465         /* Take the kexec_mutex here to prevent sys_kexec_load
1466          * running on one cpu from replacing the crash kernel
1467          * we are using after a panic on a different cpu.
1468          *
1469          * If the crash kernel was not located in a fixed area
1470          * of memory the xchg(&kexec_crash_image) would be
1471          * sufficient.  But since I reuse the memory...
1472          */
1473         if (mutex_trylock(&kexec_mutex)) {
1474                 if (kexec_crash_image) {
1475                         struct pt_regs fixed_regs;
1476
1477                         crash_setup_regs(&fixed_regs, regs);
1478                         crash_save_vmcoreinfo();
1479                         machine_crash_shutdown(&fixed_regs);
1480                         machine_kexec(kexec_crash_image);
1481                 }
1482                 mutex_unlock(&kexec_mutex);
1483         }
1484 }
1485
1486 size_t crash_get_memory_size(void)
1487 {
1488         size_t size = 0;
1489         mutex_lock(&kexec_mutex);
1490         if (crashk_res.end != crashk_res.start)
1491                 size = resource_size(&crashk_res);
1492         mutex_unlock(&kexec_mutex);
1493         return size;
1494 }
1495
1496 void __weak crash_free_reserved_phys_range(unsigned long begin,
1497                                            unsigned long end)
1498 {
1499         unsigned long addr;
1500
1501         for (addr = begin; addr < end; addr += PAGE_SIZE)
1502                 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1503 }
1504
1505 int crash_shrink_memory(unsigned long new_size)
1506 {
1507         int ret = 0;
1508         unsigned long start, end;
1509         unsigned long old_size;
1510         struct resource *ram_res;
1511
1512         mutex_lock(&kexec_mutex);
1513
1514         if (kexec_crash_image) {
1515                 ret = -ENOENT;
1516                 goto unlock;
1517         }
1518         start = crashk_res.start;
1519         end = crashk_res.end;
1520         old_size = (end == 0) ? 0 : end - start + 1;
1521         if (new_size >= old_size) {
1522                 ret = (new_size == old_size) ? 0 : -EINVAL;
1523                 goto unlock;
1524         }
1525
1526         ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1527         if (!ram_res) {
1528                 ret = -ENOMEM;
1529                 goto unlock;
1530         }
1531
1532         start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1533         end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1534
1535         crash_map_reserved_pages();
1536         crash_free_reserved_phys_range(end, crashk_res.end);
1537
1538         if ((start == end) && (crashk_res.parent != NULL))
1539                 release_resource(&crashk_res);
1540
1541         ram_res->start = end;
1542         ram_res->end = crashk_res.end;
1543         ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1544         ram_res->name = "System RAM";
1545
1546         crashk_res.end = end - 1;
1547
1548         insert_resource(&iomem_resource, ram_res);
1549         crash_unmap_reserved_pages();
1550
1551 unlock:
1552         mutex_unlock(&kexec_mutex);
1553         return ret;
1554 }
1555
1556 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1557                             size_t data_len)
1558 {
1559         struct elf_note note;
1560
1561         note.n_namesz = strlen(name) + 1;
1562         note.n_descsz = data_len;
1563         note.n_type   = type;
1564         memcpy(buf, &note, sizeof(note));
1565         buf += (sizeof(note) + 3)/4;
1566         memcpy(buf, name, note.n_namesz);
1567         buf += (note.n_namesz + 3)/4;
1568         memcpy(buf, data, note.n_descsz);
1569         buf += (note.n_descsz + 3)/4;
1570
1571         return buf;
1572 }
1573
1574 static void final_note(u32 *buf)
1575 {
1576         struct elf_note note;
1577
1578         note.n_namesz = 0;
1579         note.n_descsz = 0;
1580         note.n_type   = 0;
1581         memcpy(buf, &note, sizeof(note));
1582 }
1583
1584 void crash_save_cpu(struct pt_regs *regs, int cpu)
1585 {
1586         struct elf_prstatus prstatus;
1587         u32 *buf;
1588
1589         if ((cpu < 0) || (cpu >= nr_cpu_ids))
1590                 return;
1591
1592         /* Using ELF notes here is opportunistic.
1593          * I need a well defined structure format
1594          * for the data I pass, and I need tags
1595          * on the data to indicate what information I have
1596          * squirrelled away.  ELF notes happen to provide
1597          * all of that, so there is no need to invent something new.
1598          */
1599         buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1600         if (!buf)
1601                 return;
1602         memset(&prstatus, 0, sizeof(prstatus));
1603         prstatus.pr_pid = current->pid;
1604         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1605         buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1606                               &prstatus, sizeof(prstatus));
1607         final_note(buf);
1608 }
1609
1610 static int __init crash_notes_memory_init(void)
1611 {
1612         /* Allocate memory for saving cpu registers. */
1613         crash_notes = alloc_percpu(note_buf_t);
1614         if (!crash_notes) {
1615                 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1616                 return -ENOMEM;
1617         }
1618         return 0;
1619 }
1620 subsys_initcall(crash_notes_memory_init);
1621
1622
1623 /*
1624  * parsing the "crashkernel" commandline
1625  *
1626  * this code is intended to be called from architecture specific code
1627  */
1628
1629
1630 /*
1631  * This function parses command lines in the format
1632  *
1633  *   crashkernel=ramsize-range:size[,...][@offset]
1634  *
1635  * The function returns 0 on success and -EINVAL on failure.
1636  */
1637 static int __init parse_crashkernel_mem(char *cmdline,
1638                                         unsigned long long system_ram,
1639                                         unsigned long long *crash_size,
1640                                         unsigned long long *crash_base)
1641 {
1642         char *cur = cmdline, *tmp;
1643
1644         /* for each entry of the comma-separated list */
1645         do {
1646                 unsigned long long start, end = ULLONG_MAX, size;
1647
1648                 /* get the start of the range */
1649                 start = memparse(cur, &tmp);
1650                 if (cur == tmp) {
1651                         pr_warn("crashkernel: Memory value expected\n");
1652                         return -EINVAL;
1653                 }
1654                 cur = tmp;
1655                 if (*cur != '-') {
1656                         pr_warn("crashkernel: '-' expected\n");
1657                         return -EINVAL;
1658                 }
1659                 cur++;
1660
1661                 /* if no ':' is here, than we read the end */
1662                 if (*cur != ':') {
1663                         end = memparse(cur, &tmp);
1664                         if (cur == tmp) {
1665                                 pr_warn("crashkernel: Memory value expected\n");
1666                                 return -EINVAL;
1667                         }
1668                         cur = tmp;
1669                         if (end <= start) {
1670                                 pr_warn("crashkernel: end <= start\n");
1671                                 return -EINVAL;
1672                         }
1673                 }
1674
1675                 if (*cur != ':') {
1676                         pr_warn("crashkernel: ':' expected\n");
1677                         return -EINVAL;
1678                 }
1679                 cur++;
1680
1681                 size = memparse(cur, &tmp);
1682                 if (cur == tmp) {
1683                         pr_warn("Memory value expected\n");
1684                         return -EINVAL;
1685                 }
1686                 cur = tmp;
1687                 if (size >= system_ram) {
1688                         pr_warn("crashkernel: invalid size\n");
1689                         return -EINVAL;
1690                 }
1691
1692                 /* match ? */
1693                 if (system_ram >= start && system_ram < end) {
1694                         *crash_size = size;
1695                         break;
1696                 }
1697         } while (*cur++ == ',');
1698
1699         if (*crash_size > 0) {
1700                 while (*cur && *cur != ' ' && *cur != '@')
1701                         cur++;
1702                 if (*cur == '@') {
1703                         cur++;
1704                         *crash_base = memparse(cur, &tmp);
1705                         if (cur == tmp) {
1706                                 pr_warn("Memory value expected after '@'\n");
1707                                 return -EINVAL;
1708                         }
1709                 }
1710         }
1711
1712         return 0;
1713 }
1714
1715 /*
1716  * That function parses "simple" (old) crashkernel command lines like
1717  *
1718  *      crashkernel=size[@offset]
1719  *
1720  * It returns 0 on success and -EINVAL on failure.
1721  */
1722 static int __init parse_crashkernel_simple(char *cmdline,
1723                                            unsigned long long *crash_size,
1724                                            unsigned long long *crash_base)
1725 {
1726         char *cur = cmdline;
1727
1728         *crash_size = memparse(cmdline, &cur);
1729         if (cmdline == cur) {
1730                 pr_warn("crashkernel: memory value expected\n");
1731                 return -EINVAL;
1732         }
1733
1734         if (*cur == '@')
1735                 *crash_base = memparse(cur+1, &cur);
1736         else if (*cur != ' ' && *cur != '\0') {
1737                 pr_warn("crashkernel: unrecognized char\n");
1738                 return -EINVAL;
1739         }
1740
1741         return 0;
1742 }
1743
1744 #define SUFFIX_HIGH 0
1745 #define SUFFIX_LOW  1
1746 #define SUFFIX_NULL 2
1747 static __initdata char *suffix_tbl[] = {
1748         [SUFFIX_HIGH] = ",high",
1749         [SUFFIX_LOW]  = ",low",
1750         [SUFFIX_NULL] = NULL,
1751 };
1752
1753 /*
1754  * That function parses "suffix"  crashkernel command lines like
1755  *
1756  *      crashkernel=size,[high|low]
1757  *
1758  * It returns 0 on success and -EINVAL on failure.
1759  */
1760 static int __init parse_crashkernel_suffix(char *cmdline,
1761                                            unsigned long long   *crash_size,
1762                                            const char *suffix)
1763 {
1764         char *cur = cmdline;
1765
1766         *crash_size = memparse(cmdline, &cur);
1767         if (cmdline == cur) {
1768                 pr_warn("crashkernel: memory value expected\n");
1769                 return -EINVAL;
1770         }
1771
1772         /* check with suffix */
1773         if (strncmp(cur, suffix, strlen(suffix))) {
1774                 pr_warn("crashkernel: unrecognized char\n");
1775                 return -EINVAL;
1776         }
1777         cur += strlen(suffix);
1778         if (*cur != ' ' && *cur != '\0') {
1779                 pr_warn("crashkernel: unrecognized char\n");
1780                 return -EINVAL;
1781         }
1782
1783         return 0;
1784 }
1785
1786 static __init char *get_last_crashkernel(char *cmdline,
1787                              const char *name,
1788                              const char *suffix)
1789 {
1790         char *p = cmdline, *ck_cmdline = NULL;
1791
1792         /* find crashkernel and use the last one if there are more */
1793         p = strstr(p, name);
1794         while (p) {
1795                 char *end_p = strchr(p, ' ');
1796                 char *q;
1797
1798                 if (!end_p)
1799                         end_p = p + strlen(p);
1800
1801                 if (!suffix) {
1802                         int i;
1803
1804                         /* skip the one with any known suffix */
1805                         for (i = 0; suffix_tbl[i]; i++) {
1806                                 q = end_p - strlen(suffix_tbl[i]);
1807                                 if (!strncmp(q, suffix_tbl[i],
1808                                              strlen(suffix_tbl[i])))
1809                                         goto next;
1810                         }
1811                         ck_cmdline = p;
1812                 } else {
1813                         q = end_p - strlen(suffix);
1814                         if (!strncmp(q, suffix, strlen(suffix)))
1815                                 ck_cmdline = p;
1816                 }
1817 next:
1818                 p = strstr(p+1, name);
1819         }
1820
1821         if (!ck_cmdline)
1822                 return NULL;
1823
1824         return ck_cmdline;
1825 }
1826
1827 static int __init __parse_crashkernel(char *cmdline,
1828                              unsigned long long system_ram,
1829                              unsigned long long *crash_size,
1830                              unsigned long long *crash_base,
1831                              const char *name,
1832                              const char *suffix)
1833 {
1834         char    *first_colon, *first_space;
1835         char    *ck_cmdline;
1836
1837         BUG_ON(!crash_size || !crash_base);
1838         *crash_size = 0;
1839         *crash_base = 0;
1840
1841         ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1842
1843         if (!ck_cmdline)
1844                 return -EINVAL;
1845
1846         ck_cmdline += strlen(name);
1847
1848         if (suffix)
1849                 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1850                                 suffix);
1851         /*
1852          * if the commandline contains a ':', then that's the extended
1853          * syntax -- if not, it must be the classic syntax
1854          */
1855         first_colon = strchr(ck_cmdline, ':');
1856         first_space = strchr(ck_cmdline, ' ');
1857         if (first_colon && (!first_space || first_colon < first_space))
1858                 return parse_crashkernel_mem(ck_cmdline, system_ram,
1859                                 crash_size, crash_base);
1860
1861         return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1862 }
1863
1864 /*
1865  * That function is the entry point for command line parsing and should be
1866  * called from the arch-specific code.
1867  */
1868 int __init parse_crashkernel(char *cmdline,
1869                              unsigned long long system_ram,
1870                              unsigned long long *crash_size,
1871                              unsigned long long *crash_base)
1872 {
1873         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1874                                         "crashkernel=", NULL);
1875 }
1876
1877 int __init parse_crashkernel_high(char *cmdline,
1878                              unsigned long long system_ram,
1879                              unsigned long long *crash_size,
1880                              unsigned long long *crash_base)
1881 {
1882         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1883                                 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1884 }
1885
1886 int __init parse_crashkernel_low(char *cmdline,
1887                              unsigned long long system_ram,
1888                              unsigned long long *crash_size,
1889                              unsigned long long *crash_base)
1890 {
1891         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1892                                 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1893 }
1894
1895 static void update_vmcoreinfo_note(void)
1896 {
1897         u32 *buf = vmcoreinfo_note;
1898
1899         if (!vmcoreinfo_size)
1900                 return;
1901         buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1902                               vmcoreinfo_size);
1903         final_note(buf);
1904 }
1905
1906 void crash_save_vmcoreinfo(void)
1907 {
1908         vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1909         update_vmcoreinfo_note();
1910 }
1911
1912 void vmcoreinfo_append_str(const char *fmt, ...)
1913 {
1914         va_list args;
1915         char buf[0x50];
1916         size_t r;
1917
1918         va_start(args, fmt);
1919         r = vscnprintf(buf, sizeof(buf), fmt, args);
1920         va_end(args);
1921
1922         r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1923
1924         memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1925
1926         vmcoreinfo_size += r;
1927 }
1928
1929 /*
1930  * provide an empty default implementation here -- architecture
1931  * code may override this
1932  */
1933 void __weak arch_crash_save_vmcoreinfo(void)
1934 {}
1935
1936 unsigned long __weak paddr_vmcoreinfo_note(void)
1937 {
1938         return __pa((unsigned long)(char *)&vmcoreinfo_note);
1939 }
1940
1941 static int __init crash_save_vmcoreinfo_init(void)
1942 {
1943         VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1944         VMCOREINFO_PAGESIZE(PAGE_SIZE);
1945
1946         VMCOREINFO_SYMBOL(init_uts_ns);
1947         VMCOREINFO_SYMBOL(node_online_map);
1948 #ifdef CONFIG_MMU
1949         VMCOREINFO_SYMBOL(swapper_pg_dir);
1950 #endif
1951         VMCOREINFO_SYMBOL(_stext);
1952         VMCOREINFO_SYMBOL(vmap_area_list);
1953
1954 #ifndef CONFIG_NEED_MULTIPLE_NODES
1955         VMCOREINFO_SYMBOL(mem_map);
1956         VMCOREINFO_SYMBOL(contig_page_data);
1957 #endif
1958 #ifdef CONFIG_SPARSEMEM
1959         VMCOREINFO_SYMBOL(mem_section);
1960         VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1961         VMCOREINFO_STRUCT_SIZE(mem_section);
1962         VMCOREINFO_OFFSET(mem_section, section_mem_map);
1963 #endif
1964         VMCOREINFO_STRUCT_SIZE(page);
1965         VMCOREINFO_STRUCT_SIZE(pglist_data);
1966         VMCOREINFO_STRUCT_SIZE(zone);
1967         VMCOREINFO_STRUCT_SIZE(free_area);
1968         VMCOREINFO_STRUCT_SIZE(list_head);
1969         VMCOREINFO_SIZE(nodemask_t);
1970         VMCOREINFO_OFFSET(page, flags);
1971         VMCOREINFO_OFFSET(page, _count);
1972         VMCOREINFO_OFFSET(page, mapping);
1973         VMCOREINFO_OFFSET(page, lru);
1974         VMCOREINFO_OFFSET(page, _mapcount);
1975         VMCOREINFO_OFFSET(page, private);
1976         VMCOREINFO_OFFSET(pglist_data, node_zones);
1977         VMCOREINFO_OFFSET(pglist_data, nr_zones);
1978 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1979         VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1980 #endif
1981         VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1982         VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1983         VMCOREINFO_OFFSET(pglist_data, node_id);
1984         VMCOREINFO_OFFSET(zone, free_area);
1985         VMCOREINFO_OFFSET(zone, vm_stat);
1986         VMCOREINFO_OFFSET(zone, spanned_pages);
1987         VMCOREINFO_OFFSET(free_area, free_list);
1988         VMCOREINFO_OFFSET(list_head, next);
1989         VMCOREINFO_OFFSET(list_head, prev);
1990         VMCOREINFO_OFFSET(vmap_area, va_start);
1991         VMCOREINFO_OFFSET(vmap_area, list);
1992         VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1993         log_buf_kexec_setup();
1994         VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1995         VMCOREINFO_NUMBER(NR_FREE_PAGES);
1996         VMCOREINFO_NUMBER(PG_lru);
1997         VMCOREINFO_NUMBER(PG_private);
1998         VMCOREINFO_NUMBER(PG_swapcache);
1999         VMCOREINFO_NUMBER(PG_slab);
2000 #ifdef CONFIG_MEMORY_FAILURE
2001         VMCOREINFO_NUMBER(PG_hwpoison);
2002 #endif
2003         VMCOREINFO_NUMBER(PG_head_mask);
2004         VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
2005 #ifdef CONFIG_HUGETLBFS
2006         VMCOREINFO_SYMBOL(free_huge_page);
2007 #endif
2008
2009         arch_crash_save_vmcoreinfo();
2010         update_vmcoreinfo_note();
2011
2012         return 0;
2013 }
2014
2015 subsys_initcall(crash_save_vmcoreinfo_init);
2016
2017 #ifdef CONFIG_KEXEC_FILE
2018 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
2019                                     struct kexec_buf *kbuf)
2020 {
2021         struct kimage *image = kbuf->image;
2022         unsigned long temp_start, temp_end;
2023
2024         temp_end = min(end, kbuf->buf_max);
2025         temp_start = temp_end - kbuf->memsz;
2026
2027         do {
2028                 /* align down start */
2029                 temp_start = temp_start & (~(kbuf->buf_align - 1));
2030
2031                 if (temp_start < start || temp_start < kbuf->buf_min)
2032                         return 0;
2033
2034                 temp_end = temp_start + kbuf->memsz - 1;
2035
2036                 /*
2037                  * Make sure this does not conflict with any of existing
2038                  * segments
2039                  */
2040                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2041                         temp_start = temp_start - PAGE_SIZE;
2042                         continue;
2043                 }
2044
2045                 /* We found a suitable memory range */
2046                 break;
2047         } while (1);
2048
2049         /* If we are here, we found a suitable memory range */
2050         kbuf->mem = temp_start;
2051
2052         /* Success, stop navigating through remaining System RAM ranges */
2053         return 1;
2054 }
2055
2056 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
2057                                      struct kexec_buf *kbuf)
2058 {
2059         struct kimage *image = kbuf->image;
2060         unsigned long temp_start, temp_end;
2061
2062         temp_start = max(start, kbuf->buf_min);
2063
2064         do {
2065                 temp_start = ALIGN(temp_start, kbuf->buf_align);
2066                 temp_end = temp_start + kbuf->memsz - 1;
2067
2068                 if (temp_end > end || temp_end > kbuf->buf_max)
2069                         return 0;
2070                 /*
2071                  * Make sure this does not conflict with any of existing
2072                  * segments
2073                  */
2074                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2075                         temp_start = temp_start + PAGE_SIZE;
2076                         continue;
2077                 }
2078
2079                 /* We found a suitable memory range */
2080                 break;
2081         } while (1);
2082
2083         /* If we are here, we found a suitable memory range */
2084         kbuf->mem = temp_start;
2085
2086         /* Success, stop navigating through remaining System RAM ranges */
2087         return 1;
2088 }
2089
2090 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
2091 {
2092         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
2093         unsigned long sz = end - start + 1;
2094
2095         /* Returning 0 will take to next memory range */
2096         if (sz < kbuf->memsz)
2097                 return 0;
2098
2099         if (end < kbuf->buf_min || start > kbuf->buf_max)
2100                 return 0;
2101
2102         /*
2103          * Allocate memory top down with-in ram range. Otherwise bottom up
2104          * allocation.
2105          */
2106         if (kbuf->top_down)
2107                 return locate_mem_hole_top_down(start, end, kbuf);
2108         return locate_mem_hole_bottom_up(start, end, kbuf);
2109 }
2110
2111 /*
2112  * Helper function for placing a buffer in a kexec segment. This assumes
2113  * that kexec_mutex is held.
2114  */
2115 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
2116                      unsigned long memsz, unsigned long buf_align,
2117                      unsigned long buf_min, unsigned long buf_max,
2118                      bool top_down, unsigned long *load_addr)
2119 {
2120
2121         struct kexec_segment *ksegment;
2122         struct kexec_buf buf, *kbuf;
2123         int ret;
2124
2125         /* Currently adding segment this way is allowed only in file mode */
2126         if (!image->file_mode)
2127                 return -EINVAL;
2128
2129         if (image->nr_segments >= KEXEC_SEGMENT_MAX)
2130                 return -EINVAL;
2131
2132         /*
2133          * Make sure we are not trying to add buffer after allocating
2134          * control pages. All segments need to be placed first before
2135          * any control pages are allocated. As control page allocation
2136          * logic goes through list of segments to make sure there are
2137          * no destination overlaps.
2138          */
2139         if (!list_empty(&image->control_pages)) {
2140                 WARN_ON(1);
2141                 return -EINVAL;
2142         }
2143
2144         memset(&buf, 0, sizeof(struct kexec_buf));
2145         kbuf = &buf;
2146         kbuf->image = image;
2147         kbuf->buffer = buffer;
2148         kbuf->bufsz = bufsz;
2149
2150         kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
2151         kbuf->buf_align = max(buf_align, PAGE_SIZE);
2152         kbuf->buf_min = buf_min;
2153         kbuf->buf_max = buf_max;
2154         kbuf->top_down = top_down;
2155
2156         /* Walk the RAM ranges and allocate a suitable range for the buffer */
2157         if (image->type == KEXEC_TYPE_CRASH)
2158                 ret = walk_iomem_res("Crash kernel",
2159                                      IORESOURCE_MEM | IORESOURCE_BUSY,
2160                                      crashk_res.start, crashk_res.end, kbuf,
2161                                      locate_mem_hole_callback);
2162         else
2163                 ret = walk_system_ram_res(0, -1, kbuf,
2164                                           locate_mem_hole_callback);
2165         if (ret != 1) {
2166                 /* A suitable memory range could not be found for buffer */
2167                 return -EADDRNOTAVAIL;
2168         }
2169
2170         /* Found a suitable memory range */
2171         ksegment = &image->segment[image->nr_segments];
2172         ksegment->kbuf = kbuf->buffer;
2173         ksegment->bufsz = kbuf->bufsz;
2174         ksegment->mem = kbuf->mem;
2175         ksegment->memsz = kbuf->memsz;
2176         image->nr_segments++;
2177         *load_addr = ksegment->mem;
2178         return 0;
2179 }
2180
2181 /* Calculate and store the digest of segments */
2182 static int kexec_calculate_store_digests(struct kimage *image)
2183 {
2184         struct crypto_shash *tfm;
2185         struct shash_desc *desc;
2186         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
2187         size_t desc_size, nullsz;
2188         char *digest;
2189         void *zero_buf;
2190         struct kexec_sha_region *sha_regions;
2191         struct purgatory_info *pi = &image->purgatory_info;
2192
2193         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
2194         zero_buf_sz = PAGE_SIZE;
2195
2196         tfm = crypto_alloc_shash("sha256", 0, 0);
2197         if (IS_ERR(tfm)) {
2198                 ret = PTR_ERR(tfm);
2199                 goto out;
2200         }
2201
2202         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
2203         desc = kzalloc(desc_size, GFP_KERNEL);
2204         if (!desc) {
2205                 ret = -ENOMEM;
2206                 goto out_free_tfm;
2207         }
2208
2209         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
2210         sha_regions = vzalloc(sha_region_sz);
2211         if (!sha_regions)
2212                 goto out_free_desc;
2213
2214         desc->tfm   = tfm;
2215         desc->flags = 0;
2216
2217         ret = crypto_shash_init(desc);
2218         if (ret < 0)
2219                 goto out_free_sha_regions;
2220
2221         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
2222         if (!digest) {
2223                 ret = -ENOMEM;
2224                 goto out_free_sha_regions;
2225         }
2226
2227         for (j = i = 0; i < image->nr_segments; i++) {
2228                 struct kexec_segment *ksegment;
2229
2230                 ksegment = &image->segment[i];
2231                 /*
2232                  * Skip purgatory as it will be modified once we put digest
2233                  * info in purgatory.
2234                  */
2235                 if (ksegment->kbuf == pi->purgatory_buf)
2236                         continue;
2237
2238                 ret = crypto_shash_update(desc, ksegment->kbuf,
2239                                           ksegment->bufsz);
2240                 if (ret)
2241                         break;
2242
2243                 /*
2244                  * Assume rest of the buffer is filled with zero and
2245                  * update digest accordingly.
2246                  */
2247                 nullsz = ksegment->memsz - ksegment->bufsz;
2248                 while (nullsz) {
2249                         unsigned long bytes = nullsz;
2250
2251                         if (bytes > zero_buf_sz)
2252                                 bytes = zero_buf_sz;
2253                         ret = crypto_shash_update(desc, zero_buf, bytes);
2254                         if (ret)
2255                                 break;
2256                         nullsz -= bytes;
2257                 }
2258
2259                 if (ret)
2260                         break;
2261
2262                 sha_regions[j].start = ksegment->mem;
2263                 sha_regions[j].len = ksegment->memsz;
2264                 j++;
2265         }
2266
2267         if (!ret) {
2268                 ret = crypto_shash_final(desc, digest);
2269                 if (ret)
2270                         goto out_free_digest;
2271                 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
2272                                                 sha_regions, sha_region_sz, 0);
2273                 if (ret)
2274                         goto out_free_digest;
2275
2276                 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
2277                                                 digest, SHA256_DIGEST_SIZE, 0);
2278                 if (ret)
2279                         goto out_free_digest;
2280         }
2281
2282 out_free_digest:
2283         kfree(digest);
2284 out_free_sha_regions:
2285         vfree(sha_regions);
2286 out_free_desc:
2287         kfree(desc);
2288 out_free_tfm:
2289         kfree(tfm);
2290 out:
2291         return ret;
2292 }
2293
2294 /* Actually load purgatory. Lot of code taken from kexec-tools */
2295 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
2296                                   unsigned long max, int top_down)
2297 {
2298         struct purgatory_info *pi = &image->purgatory_info;
2299         unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
2300         unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
2301         unsigned char *buf_addr, *src;
2302         int i, ret = 0, entry_sidx = -1;
2303         const Elf_Shdr *sechdrs_c;
2304         Elf_Shdr *sechdrs = NULL;
2305         void *purgatory_buf = NULL;
2306
2307         /*
2308          * sechdrs_c points to section headers in purgatory and are read
2309          * only. No modifications allowed.
2310          */
2311         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
2312
2313         /*
2314          * We can not modify sechdrs_c[] and its fields. It is read only.
2315          * Copy it over to a local copy where one can store some temporary
2316          * data and free it at the end. We need to modify ->sh_addr and
2317          * ->sh_offset fields to keep track of permanent and temporary
2318          * locations of sections.
2319          */
2320         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2321         if (!sechdrs)
2322                 return -ENOMEM;
2323
2324         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2325
2326         /*
2327          * We seem to have multiple copies of sections. First copy is which
2328          * is embedded in kernel in read only section. Some of these sections
2329          * will be copied to a temporary buffer and relocated. And these
2330          * sections will finally be copied to their final destination at
2331          * segment load time.
2332          *
2333          * Use ->sh_offset to reflect section address in memory. It will
2334          * point to original read only copy if section is not allocatable.
2335          * Otherwise it will point to temporary copy which will be relocated.
2336          *
2337          * Use ->sh_addr to contain final address of the section where it
2338          * will go during execution time.
2339          */
2340         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2341                 if (sechdrs[i].sh_type == SHT_NOBITS)
2342                         continue;
2343
2344                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
2345                                                 sechdrs[i].sh_offset;
2346         }
2347
2348         /*
2349          * Identify entry point section and make entry relative to section
2350          * start.
2351          */
2352         entry = pi->ehdr->e_entry;
2353         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2354                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2355                         continue;
2356
2357                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
2358                         continue;
2359
2360                 /* Make entry section relative */
2361                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
2362                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
2363                      pi->ehdr->e_entry)) {
2364                         entry_sidx = i;
2365                         entry -= sechdrs[i].sh_addr;
2366                         break;
2367                 }
2368         }
2369
2370         /* Determine how much memory is needed to load relocatable object. */
2371         buf_align = 1;
2372         bss_align = 1;
2373         buf_sz = 0;
2374         bss_sz = 0;
2375
2376         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2377                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2378                         continue;
2379
2380                 align = sechdrs[i].sh_addralign;
2381                 if (sechdrs[i].sh_type != SHT_NOBITS) {
2382                         if (buf_align < align)
2383                                 buf_align = align;
2384                         buf_sz = ALIGN(buf_sz, align);
2385                         buf_sz += sechdrs[i].sh_size;
2386                 } else {
2387                         /* bss section */
2388                         if (bss_align < align)
2389                                 bss_align = align;
2390                         bss_sz = ALIGN(bss_sz, align);
2391                         bss_sz += sechdrs[i].sh_size;
2392                 }
2393         }
2394
2395         /* Determine the bss padding required to align bss properly */
2396         bss_pad = 0;
2397         if (buf_sz & (bss_align - 1))
2398                 bss_pad = bss_align - (buf_sz & (bss_align - 1));
2399
2400         memsz = buf_sz + bss_pad + bss_sz;
2401
2402         /* Allocate buffer for purgatory */
2403         purgatory_buf = vzalloc(buf_sz);
2404         if (!purgatory_buf) {
2405                 ret = -ENOMEM;
2406                 goto out;
2407         }
2408
2409         if (buf_align < bss_align)
2410                 buf_align = bss_align;
2411
2412         /* Add buffer to segment list */
2413         ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
2414                                 buf_align, min, max, top_down,
2415                                 &pi->purgatory_load_addr);
2416         if (ret)
2417                 goto out;
2418
2419         /* Load SHF_ALLOC sections */
2420         buf_addr = purgatory_buf;
2421         load_addr = curr_load_addr = pi->purgatory_load_addr;
2422         bss_addr = load_addr + buf_sz + bss_pad;
2423
2424         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2425                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2426                         continue;
2427
2428                 align = sechdrs[i].sh_addralign;
2429                 if (sechdrs[i].sh_type != SHT_NOBITS) {
2430                         curr_load_addr = ALIGN(curr_load_addr, align);
2431                         offset = curr_load_addr - load_addr;
2432                         /* We already modifed ->sh_offset to keep src addr */
2433                         src = (char *) sechdrs[i].sh_offset;
2434                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
2435
2436                         /* Store load address and source address of section */
2437                         sechdrs[i].sh_addr = curr_load_addr;
2438
2439                         /*
2440                          * This section got copied to temporary buffer. Update
2441                          * ->sh_offset accordingly.
2442                          */
2443                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
2444
2445                         /* Advance to the next address */
2446                         curr_load_addr += sechdrs[i].sh_size;
2447                 } else {
2448                         bss_addr = ALIGN(bss_addr, align);
2449                         sechdrs[i].sh_addr = bss_addr;
2450                         bss_addr += sechdrs[i].sh_size;
2451                 }
2452         }
2453
2454         /* Update entry point based on load address of text section */
2455         if (entry_sidx >= 0)
2456                 entry += sechdrs[entry_sidx].sh_addr;
2457
2458         /* Make kernel jump to purgatory after shutdown */
2459         image->start = entry;
2460
2461         /* Used later to get/set symbol values */
2462         pi->sechdrs = sechdrs;
2463
2464         /*
2465          * Used later to identify which section is purgatory and skip it
2466          * from checksumming.
2467          */
2468         pi->purgatory_buf = purgatory_buf;
2469         return ret;
2470 out:
2471         vfree(sechdrs);
2472         vfree(purgatory_buf);
2473         return ret;
2474 }
2475
2476 static int kexec_apply_relocations(struct kimage *image)
2477 {
2478         int i, ret;
2479         struct purgatory_info *pi = &image->purgatory_info;
2480         Elf_Shdr *sechdrs = pi->sechdrs;
2481
2482         /* Apply relocations */
2483         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2484                 Elf_Shdr *section, *symtab;
2485
2486                 if (sechdrs[i].sh_type != SHT_RELA &&
2487                     sechdrs[i].sh_type != SHT_REL)
2488                         continue;
2489
2490                 /*
2491                  * For section of type SHT_RELA/SHT_REL,
2492                  * ->sh_link contains section header index of associated
2493                  * symbol table. And ->sh_info contains section header
2494                  * index of section to which relocations apply.
2495                  */
2496                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
2497                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
2498                         return -ENOEXEC;
2499
2500                 section = &sechdrs[sechdrs[i].sh_info];
2501                 symtab = &sechdrs[sechdrs[i].sh_link];
2502
2503                 if (!(section->sh_flags & SHF_ALLOC))
2504                         continue;
2505
2506                 /*
2507                  * symtab->sh_link contain section header index of associated
2508                  * string table.
2509                  */
2510                 if (symtab->sh_link >= pi->ehdr->e_shnum)
2511                         /* Invalid section number? */
2512                         continue;
2513
2514                 /*
2515                  * Respective archicture needs to provide support for applying
2516                  * relocations of type SHT_RELA/SHT_REL.
2517                  */
2518                 if (sechdrs[i].sh_type == SHT_RELA)
2519                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
2520                                                                sechdrs, i);
2521                 else if (sechdrs[i].sh_type == SHT_REL)
2522                         ret = arch_kexec_apply_relocations(pi->ehdr,
2523                                                            sechdrs, i);
2524                 if (ret)
2525                         return ret;
2526         }
2527
2528         return 0;
2529 }
2530
2531 /* Load relocatable purgatory object and relocate it appropriately */
2532 int kexec_load_purgatory(struct kimage *image, unsigned long min,
2533                          unsigned long max, int top_down,
2534                          unsigned long *load_addr)
2535 {
2536         struct purgatory_info *pi = &image->purgatory_info;
2537         int ret;
2538
2539         if (kexec_purgatory_size <= 0)
2540                 return -EINVAL;
2541
2542         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
2543                 return -ENOEXEC;
2544
2545         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
2546
2547         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
2548             || pi->ehdr->e_type != ET_REL
2549             || !elf_check_arch(pi->ehdr)
2550             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
2551                 return -ENOEXEC;
2552
2553         if (pi->ehdr->e_shoff >= kexec_purgatory_size
2554             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
2555             kexec_purgatory_size - pi->ehdr->e_shoff))
2556                 return -ENOEXEC;
2557
2558         ret = __kexec_load_purgatory(image, min, max, top_down);
2559         if (ret)
2560                 return ret;
2561
2562         ret = kexec_apply_relocations(image);
2563         if (ret)
2564                 goto out;
2565
2566         *load_addr = pi->purgatory_load_addr;
2567         return 0;
2568 out:
2569         vfree(pi->sechdrs);
2570         vfree(pi->purgatory_buf);
2571         return ret;
2572 }
2573
2574 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
2575                                             const char *name)
2576 {
2577         Elf_Sym *syms;
2578         Elf_Shdr *sechdrs;
2579         Elf_Ehdr *ehdr;
2580         int i, k;
2581         const char *strtab;
2582
2583         if (!pi->sechdrs || !pi->ehdr)
2584                 return NULL;
2585
2586         sechdrs = pi->sechdrs;
2587         ehdr = pi->ehdr;
2588
2589         for (i = 0; i < ehdr->e_shnum; i++) {
2590                 if (sechdrs[i].sh_type != SHT_SYMTAB)
2591                         continue;
2592
2593                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
2594                         /* Invalid strtab section number */
2595                         continue;
2596                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
2597                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
2598
2599                 /* Go through symbols for a match */
2600                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
2601                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
2602                                 continue;
2603
2604                         if (strcmp(strtab + syms[k].st_name, name) != 0)
2605                                 continue;
2606
2607                         if (syms[k].st_shndx == SHN_UNDEF ||
2608                             syms[k].st_shndx >= ehdr->e_shnum) {
2609                                 pr_debug("Symbol: %s has bad section index %d.\n",
2610                                                 name, syms[k].st_shndx);
2611                                 return NULL;
2612                         }
2613
2614                         /* Found the symbol we are looking for */
2615                         return &syms[k];
2616                 }
2617         }
2618
2619         return NULL;
2620 }
2621
2622 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
2623 {
2624         struct purgatory_info *pi = &image->purgatory_info;
2625         Elf_Sym *sym;
2626         Elf_Shdr *sechdr;
2627
2628         sym = kexec_purgatory_find_symbol(pi, name);
2629         if (!sym)
2630                 return ERR_PTR(-EINVAL);
2631
2632         sechdr = &pi->sechdrs[sym->st_shndx];
2633
2634         /*
2635          * Returns the address where symbol will finally be loaded after
2636          * kexec_load_segment()
2637          */
2638         return (void *)(sechdr->sh_addr + sym->st_value);
2639 }
2640
2641 /*
2642  * Get or set value of a symbol. If "get_value" is true, symbol value is
2643  * returned in buf otherwise symbol value is set based on value in buf.
2644  */
2645 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
2646                                    void *buf, unsigned int size, bool get_value)
2647 {
2648         Elf_Sym *sym;
2649         Elf_Shdr *sechdrs;
2650         struct purgatory_info *pi = &image->purgatory_info;
2651         char *sym_buf;
2652
2653         sym = kexec_purgatory_find_symbol(pi, name);
2654         if (!sym)
2655                 return -EINVAL;
2656
2657         if (sym->st_size != size) {
2658                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2659                        name, (unsigned long)sym->st_size, size);
2660                 return -EINVAL;
2661         }
2662
2663         sechdrs = pi->sechdrs;
2664
2665         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2666                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
2667                        get_value ? "get" : "set");
2668                 return -EINVAL;
2669         }
2670
2671         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
2672                                         sym->st_value;
2673
2674         if (get_value)
2675                 memcpy((void *)buf, sym_buf, size);
2676         else
2677                 memcpy((void *)sym_buf, buf, size);
2678
2679         return 0;
2680 }
2681 #endif /* CONFIG_KEXEC_FILE */
2682
2683 /*
2684  * Move into place and start executing a preloaded standalone
2685  * executable.  If nothing was preloaded return an error.
2686  */
2687 int kernel_kexec(void)
2688 {
2689         int error = 0;
2690
2691         if (!mutex_trylock(&kexec_mutex))
2692                 return -EBUSY;
2693         if (!kexec_image) {
2694                 error = -EINVAL;
2695                 goto Unlock;
2696         }
2697
2698 #ifdef CONFIG_KEXEC_JUMP
2699         if (kexec_image->preserve_context) {
2700                 lock_system_sleep();
2701                 pm_prepare_console();
2702                 error = freeze_processes();
2703                 if (error) {
2704                         error = -EBUSY;
2705                         goto Restore_console;
2706                 }
2707                 suspend_console();
2708                 error = dpm_suspend_start(PMSG_FREEZE);
2709                 if (error)
2710                         goto Resume_console;
2711                 /* At this point, dpm_suspend_start() has been called,
2712                  * but *not* dpm_suspend_end(). We *must* call
2713                  * dpm_suspend_end() now.  Otherwise, drivers for
2714                  * some devices (e.g. interrupt controllers) become
2715                  * desynchronized with the actual state of the
2716                  * hardware at resume time, and evil weirdness ensues.
2717                  */
2718                 error = dpm_suspend_end(PMSG_FREEZE);
2719                 if (error)
2720                         goto Resume_devices;
2721                 error = disable_nonboot_cpus();
2722                 if (error)
2723                         goto Enable_cpus;
2724                 local_irq_disable();
2725                 error = syscore_suspend();
2726                 if (error)
2727                         goto Enable_irqs;
2728         } else
2729 #endif
2730         {
2731                 kexec_in_progress = true;
2732                 kernel_restart_prepare(NULL);
2733                 migrate_to_reboot_cpu();
2734
2735                 /*
2736                  * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2737                  * no further code needs to use CPU hotplug (which is true in
2738                  * the reboot case). However, the kexec path depends on using
2739                  * CPU hotplug again; so re-enable it here.
2740                  */
2741                 cpu_hotplug_enable();
2742                 pr_emerg("Starting new kernel\n");
2743                 machine_shutdown();
2744         }
2745
2746         machine_kexec(kexec_image);
2747
2748 #ifdef CONFIG_KEXEC_JUMP
2749         if (kexec_image->preserve_context) {
2750                 syscore_resume();
2751  Enable_irqs:
2752                 local_irq_enable();
2753  Enable_cpus:
2754                 enable_nonboot_cpus();
2755                 dpm_resume_start(PMSG_RESTORE);
2756  Resume_devices:
2757                 dpm_resume_end(PMSG_RESTORE);
2758  Resume_console:
2759                 resume_console();
2760                 thaw_processes();
2761  Restore_console:
2762                 pm_restore_console();
2763                 unlock_system_sleep();
2764         }
2765 #endif
2766
2767  Unlock:
2768         mutex_unlock(&kexec_mutex);
2769         return error;
2770 }