Merge tag 'sound-5.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22
23 #include "internals.h"
24
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31         force_irqthreads = true;
32         return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39         bool inprogress;
40
41         do {
42                 unsigned long flags;
43
44                 /*
45                  * Wait until we're out of the critical section.  This might
46                  * give the wrong answer due to the lack of memory barriers.
47                  */
48                 while (irqd_irq_inprogress(&desc->irq_data))
49                         cpu_relax();
50
51                 /* Ok, that indicated we're done: double-check carefully. */
52                 raw_spin_lock_irqsave(&desc->lock, flags);
53                 inprogress = irqd_irq_inprogress(&desc->irq_data);
54                 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56                 /* Oops, that failed? */
57         } while (inprogress);
58 }
59
60 /**
61  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *      @irq: interrupt number to wait for
63  *
64  *      This function waits for any pending hard IRQ handlers for this
65  *      interrupt to complete before returning. If you use this
66  *      function while holding a resource the IRQ handler may need you
67  *      will deadlock. It does not take associated threaded handlers
68  *      into account.
69  *
70  *      Do not use this for shutdown scenarios where you must be sure
71  *      that all parts (hardirq and threaded handler) have completed.
72  *
73  *      Returns: false if a threaded handler is active.
74  *
75  *      This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79         struct irq_desc *desc = irq_to_desc(irq);
80
81         if (desc) {
82                 __synchronize_hardirq(desc);
83                 return !atomic_read(&desc->threads_active);
84         }
85
86         return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *      @irq: interrupt number to wait for
93  *
94  *      This function waits for any pending IRQ handlers for this interrupt
95  *      to complete before returning. If you use this function while
96  *      holding a resource the IRQ handler may need you will deadlock.
97  *
98  *      This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102         struct irq_desc *desc = irq_to_desc(irq);
103
104         if (desc) {
105                 __synchronize_hardirq(desc);
106                 /*
107                  * We made sure that no hardirq handler is
108                  * running. Now verify that no threaded handlers are
109                  * active.
110                  */
111                 wait_event(desc->wait_for_threads,
112                            !atomic_read(&desc->threads_active));
113         }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122         if (!desc || !irqd_can_balance(&desc->irq_data) ||
123             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124                 return false;
125         return true;
126 }
127
128 /**
129  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *      @irq:           Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135         return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:        Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147         struct irq_desc *desc = irq_to_desc(irq);
148
149         return __irq_can_set_affinity(desc) &&
150                 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *      @desc:          irq descriptor which has affitnity changed
156  *
157  *      We just set IRQTF_AFFINITY and delegate the affinity setting
158  *      to the interrupt thread itself. We can not call
159  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *      code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164         struct irqaction *action;
165
166         for_each_action_of_desc(desc, action)
167                 if (action->thread)
168                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175         struct irq_chip *chip = irq_data_get_irq_chip(data);
176
177         if (!cpumask_empty(m))
178                 return;
179         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180                      chip->name, data->irq);
181 #endif
182 }
183
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185                         bool force)
186 {
187         struct irq_desc *desc = irq_data_to_desc(data);
188         struct irq_chip *chip = irq_data_get_irq_chip(data);
189         int ret;
190
191         if (!chip || !chip->irq_set_affinity)
192                 return -EINVAL;
193
194         ret = chip->irq_set_affinity(data, mask, force);
195         switch (ret) {
196         case IRQ_SET_MASK_OK:
197         case IRQ_SET_MASK_OK_DONE:
198                 cpumask_copy(desc->irq_common_data.affinity, mask);
199         case IRQ_SET_MASK_OK_NOCOPY:
200                 irq_validate_effective_affinity(data);
201                 irq_set_thread_affinity(desc);
202                 ret = 0;
203         }
204
205         return ret;
206 }
207
208 #ifdef CONFIG_GENERIC_PENDING_IRQ
209 static inline int irq_set_affinity_pending(struct irq_data *data,
210                                            const struct cpumask *dest)
211 {
212         struct irq_desc *desc = irq_data_to_desc(data);
213
214         irqd_set_move_pending(data);
215         irq_copy_pending(desc, dest);
216         return 0;
217 }
218 #else
219 static inline int irq_set_affinity_pending(struct irq_data *data,
220                                            const struct cpumask *dest)
221 {
222         return -EBUSY;
223 }
224 #endif
225
226 static int irq_try_set_affinity(struct irq_data *data,
227                                 const struct cpumask *dest, bool force)
228 {
229         int ret = irq_do_set_affinity(data, dest, force);
230
231         /*
232          * In case that the underlying vector management is busy and the
233          * architecture supports the generic pending mechanism then utilize
234          * this to avoid returning an error to user space.
235          */
236         if (ret == -EBUSY && !force)
237                 ret = irq_set_affinity_pending(data, dest);
238         return ret;
239 }
240
241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
242                             bool force)
243 {
244         struct irq_chip *chip = irq_data_get_irq_chip(data);
245         struct irq_desc *desc = irq_data_to_desc(data);
246         int ret = 0;
247
248         if (!chip || !chip->irq_set_affinity)
249                 return -EINVAL;
250
251         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
252                 ret = irq_try_set_affinity(data, mask, force);
253         } else {
254                 irqd_set_move_pending(data);
255                 irq_copy_pending(desc, mask);
256         }
257
258         if (desc->affinity_notify) {
259                 kref_get(&desc->affinity_notify->kref);
260                 schedule_work(&desc->affinity_notify->work);
261         }
262         irqd_set(data, IRQD_AFFINITY_SET);
263
264         return ret;
265 }
266
267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
268 {
269         struct irq_desc *desc = irq_to_desc(irq);
270         unsigned long flags;
271         int ret;
272
273         if (!desc)
274                 return -EINVAL;
275
276         raw_spin_lock_irqsave(&desc->lock, flags);
277         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
278         raw_spin_unlock_irqrestore(&desc->lock, flags);
279         return ret;
280 }
281
282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
283 {
284         unsigned long flags;
285         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
286
287         if (!desc)
288                 return -EINVAL;
289         desc->affinity_hint = m;
290         irq_put_desc_unlock(desc, flags);
291         /* set the initial affinity to prevent every interrupt being on CPU0 */
292         if (m)
293                 __irq_set_affinity(irq, m, false);
294         return 0;
295 }
296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
297
298 static void irq_affinity_notify(struct work_struct *work)
299 {
300         struct irq_affinity_notify *notify =
301                 container_of(work, struct irq_affinity_notify, work);
302         struct irq_desc *desc = irq_to_desc(notify->irq);
303         cpumask_var_t cpumask;
304         unsigned long flags;
305
306         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
307                 goto out;
308
309         raw_spin_lock_irqsave(&desc->lock, flags);
310         if (irq_move_pending(&desc->irq_data))
311                 irq_get_pending(cpumask, desc);
312         else
313                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
314         raw_spin_unlock_irqrestore(&desc->lock, flags);
315
316         notify->notify(notify, cpumask);
317
318         free_cpumask_var(cpumask);
319 out:
320         kref_put(&notify->kref, notify->release);
321 }
322
323 /**
324  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
325  *      @irq:           Interrupt for which to enable/disable notification
326  *      @notify:        Context for notification, or %NULL to disable
327  *                      notification.  Function pointers must be initialised;
328  *                      the other fields will be initialised by this function.
329  *
330  *      Must be called in process context.  Notification may only be enabled
331  *      after the IRQ is allocated and must be disabled before the IRQ is
332  *      freed using free_irq().
333  */
334 int
335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
336 {
337         struct irq_desc *desc = irq_to_desc(irq);
338         struct irq_affinity_notify *old_notify;
339         unsigned long flags;
340
341         /* The release function is promised process context */
342         might_sleep();
343
344         if (!desc)
345                 return -EINVAL;
346
347         /* Complete initialisation of *notify */
348         if (notify) {
349                 notify->irq = irq;
350                 kref_init(&notify->kref);
351                 INIT_WORK(&notify->work, irq_affinity_notify);
352         }
353
354         raw_spin_lock_irqsave(&desc->lock, flags);
355         old_notify = desc->affinity_notify;
356         desc->affinity_notify = notify;
357         raw_spin_unlock_irqrestore(&desc->lock, flags);
358
359         if (old_notify)
360                 kref_put(&old_notify->kref, old_notify->release);
361
362         return 0;
363 }
364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
365
366 #ifndef CONFIG_AUTO_IRQ_AFFINITY
367 /*
368  * Generic version of the affinity autoselector.
369  */
370 int irq_setup_affinity(struct irq_desc *desc)
371 {
372         struct cpumask *set = irq_default_affinity;
373         int ret, node = irq_desc_get_node(desc);
374         static DEFINE_RAW_SPINLOCK(mask_lock);
375         static struct cpumask mask;
376
377         /* Excludes PER_CPU and NO_BALANCE interrupts */
378         if (!__irq_can_set_affinity(desc))
379                 return 0;
380
381         raw_spin_lock(&mask_lock);
382         /*
383          * Preserve the managed affinity setting and a userspace affinity
384          * setup, but make sure that one of the targets is online.
385          */
386         if (irqd_affinity_is_managed(&desc->irq_data) ||
387             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
388                 if (cpumask_intersects(desc->irq_common_data.affinity,
389                                        cpu_online_mask))
390                         set = desc->irq_common_data.affinity;
391                 else
392                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
393         }
394
395         cpumask_and(&mask, cpu_online_mask, set);
396         if (cpumask_empty(&mask))
397                 cpumask_copy(&mask, cpu_online_mask);
398
399         if (node != NUMA_NO_NODE) {
400                 const struct cpumask *nodemask = cpumask_of_node(node);
401
402                 /* make sure at least one of the cpus in nodemask is online */
403                 if (cpumask_intersects(&mask, nodemask))
404                         cpumask_and(&mask, &mask, nodemask);
405         }
406         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
407         raw_spin_unlock(&mask_lock);
408         return ret;
409 }
410 #else
411 /* Wrapper for ALPHA specific affinity selector magic */
412 int irq_setup_affinity(struct irq_desc *desc)
413 {
414         return irq_select_affinity(irq_desc_get_irq(desc));
415 }
416 #endif
417
418 /*
419  * Called when a bogus affinity is set via /proc/irq
420  */
421 int irq_select_affinity_usr(unsigned int irq)
422 {
423         struct irq_desc *desc = irq_to_desc(irq);
424         unsigned long flags;
425         int ret;
426
427         raw_spin_lock_irqsave(&desc->lock, flags);
428         ret = irq_setup_affinity(desc);
429         raw_spin_unlock_irqrestore(&desc->lock, flags);
430         return ret;
431 }
432 #endif
433
434 /**
435  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
436  *      @irq: interrupt number to set affinity
437  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
438  *                  specific data for percpu_devid interrupts
439  *
440  *      This function uses the vCPU specific data to set the vCPU
441  *      affinity for an irq. The vCPU specific data is passed from
442  *      outside, such as KVM. One example code path is as below:
443  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
444  */
445 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
446 {
447         unsigned long flags;
448         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
449         struct irq_data *data;
450         struct irq_chip *chip;
451         int ret = -ENOSYS;
452
453         if (!desc)
454                 return -EINVAL;
455
456         data = irq_desc_get_irq_data(desc);
457         do {
458                 chip = irq_data_get_irq_chip(data);
459                 if (chip && chip->irq_set_vcpu_affinity)
460                         break;
461 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
462                 data = data->parent_data;
463 #else
464                 data = NULL;
465 #endif
466         } while (data);
467
468         if (data)
469                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
470         irq_put_desc_unlock(desc, flags);
471
472         return ret;
473 }
474 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
475
476 void __disable_irq(struct irq_desc *desc)
477 {
478         if (!desc->depth++)
479                 irq_disable(desc);
480 }
481
482 static int __disable_irq_nosync(unsigned int irq)
483 {
484         unsigned long flags;
485         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
486
487         if (!desc)
488                 return -EINVAL;
489         __disable_irq(desc);
490         irq_put_desc_busunlock(desc, flags);
491         return 0;
492 }
493
494 /**
495  *      disable_irq_nosync - disable an irq without waiting
496  *      @irq: Interrupt to disable
497  *
498  *      Disable the selected interrupt line.  Disables and Enables are
499  *      nested.
500  *      Unlike disable_irq(), this function does not ensure existing
501  *      instances of the IRQ handler have completed before returning.
502  *
503  *      This function may be called from IRQ context.
504  */
505 void disable_irq_nosync(unsigned int irq)
506 {
507         __disable_irq_nosync(irq);
508 }
509 EXPORT_SYMBOL(disable_irq_nosync);
510
511 /**
512  *      disable_irq - disable an irq and wait for completion
513  *      @irq: Interrupt to disable
514  *
515  *      Disable the selected interrupt line.  Enables and Disables are
516  *      nested.
517  *      This function waits for any pending IRQ handlers for this interrupt
518  *      to complete before returning. If you use this function while
519  *      holding a resource the IRQ handler may need you will deadlock.
520  *
521  *      This function may be called - with care - from IRQ context.
522  */
523 void disable_irq(unsigned int irq)
524 {
525         if (!__disable_irq_nosync(irq))
526                 synchronize_irq(irq);
527 }
528 EXPORT_SYMBOL(disable_irq);
529
530 /**
531  *      disable_hardirq - disables an irq and waits for hardirq completion
532  *      @irq: Interrupt to disable
533  *
534  *      Disable the selected interrupt line.  Enables and Disables are
535  *      nested.
536  *      This function waits for any pending hard IRQ handlers for this
537  *      interrupt to complete before returning. If you use this function while
538  *      holding a resource the hard IRQ handler may need you will deadlock.
539  *
540  *      When used to optimistically disable an interrupt from atomic context
541  *      the return value must be checked.
542  *
543  *      Returns: false if a threaded handler is active.
544  *
545  *      This function may be called - with care - from IRQ context.
546  */
547 bool disable_hardirq(unsigned int irq)
548 {
549         if (!__disable_irq_nosync(irq))
550                 return synchronize_hardirq(irq);
551
552         return false;
553 }
554 EXPORT_SYMBOL_GPL(disable_hardirq);
555
556 void __enable_irq(struct irq_desc *desc)
557 {
558         switch (desc->depth) {
559         case 0:
560  err_out:
561                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
562                      irq_desc_get_irq(desc));
563                 break;
564         case 1: {
565                 if (desc->istate & IRQS_SUSPENDED)
566                         goto err_out;
567                 /* Prevent probing on this irq: */
568                 irq_settings_set_noprobe(desc);
569                 /*
570                  * Call irq_startup() not irq_enable() here because the
571                  * interrupt might be marked NOAUTOEN. So irq_startup()
572                  * needs to be invoked when it gets enabled the first
573                  * time. If it was already started up, then irq_startup()
574                  * will invoke irq_enable() under the hood.
575                  */
576                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
577                 break;
578         }
579         default:
580                 desc->depth--;
581         }
582 }
583
584 /**
585  *      enable_irq - enable handling of an irq
586  *      @irq: Interrupt to enable
587  *
588  *      Undoes the effect of one call to disable_irq().  If this
589  *      matches the last disable, processing of interrupts on this
590  *      IRQ line is re-enabled.
591  *
592  *      This function may be called from IRQ context only when
593  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
594  */
595 void enable_irq(unsigned int irq)
596 {
597         unsigned long flags;
598         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
599
600         if (!desc)
601                 return;
602         if (WARN(!desc->irq_data.chip,
603                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
604                 goto out;
605
606         __enable_irq(desc);
607 out:
608         irq_put_desc_busunlock(desc, flags);
609 }
610 EXPORT_SYMBOL(enable_irq);
611
612 static int set_irq_wake_real(unsigned int irq, unsigned int on)
613 {
614         struct irq_desc *desc = irq_to_desc(irq);
615         int ret = -ENXIO;
616
617         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
618                 return 0;
619
620         if (desc->irq_data.chip->irq_set_wake)
621                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
622
623         return ret;
624 }
625
626 /**
627  *      irq_set_irq_wake - control irq power management wakeup
628  *      @irq:   interrupt to control
629  *      @on:    enable/disable power management wakeup
630  *
631  *      Enable/disable power management wakeup mode, which is
632  *      disabled by default.  Enables and disables must match,
633  *      just as they match for non-wakeup mode support.
634  *
635  *      Wakeup mode lets this IRQ wake the system from sleep
636  *      states like "suspend to RAM".
637  */
638 int irq_set_irq_wake(unsigned int irq, unsigned int on)
639 {
640         unsigned long flags;
641         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
642         int ret = 0;
643
644         if (!desc)
645                 return -EINVAL;
646
647         /* wakeup-capable irqs can be shared between drivers that
648          * don't need to have the same sleep mode behaviors.
649          */
650         if (on) {
651                 if (desc->wake_depth++ == 0) {
652                         ret = set_irq_wake_real(irq, on);
653                         if (ret)
654                                 desc->wake_depth = 0;
655                         else
656                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
657                 }
658         } else {
659                 if (desc->wake_depth == 0) {
660                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
661                 } else if (--desc->wake_depth == 0) {
662                         ret = set_irq_wake_real(irq, on);
663                         if (ret)
664                                 desc->wake_depth = 1;
665                         else
666                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
667                 }
668         }
669         irq_put_desc_busunlock(desc, flags);
670         return ret;
671 }
672 EXPORT_SYMBOL(irq_set_irq_wake);
673
674 /*
675  * Internal function that tells the architecture code whether a
676  * particular irq has been exclusively allocated or is available
677  * for driver use.
678  */
679 int can_request_irq(unsigned int irq, unsigned long irqflags)
680 {
681         unsigned long flags;
682         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
683         int canrequest = 0;
684
685         if (!desc)
686                 return 0;
687
688         if (irq_settings_can_request(desc)) {
689                 if (!desc->action ||
690                     irqflags & desc->action->flags & IRQF_SHARED)
691                         canrequest = 1;
692         }
693         irq_put_desc_unlock(desc, flags);
694         return canrequest;
695 }
696
697 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
698 {
699         struct irq_chip *chip = desc->irq_data.chip;
700         int ret, unmask = 0;
701
702         if (!chip || !chip->irq_set_type) {
703                 /*
704                  * IRQF_TRIGGER_* but the PIC does not support multiple
705                  * flow-types?
706                  */
707                 pr_debug("No set_type function for IRQ %d (%s)\n",
708                          irq_desc_get_irq(desc),
709                          chip ? (chip->name ? : "unknown") : "unknown");
710                 return 0;
711         }
712
713         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
714                 if (!irqd_irq_masked(&desc->irq_data))
715                         mask_irq(desc);
716                 if (!irqd_irq_disabled(&desc->irq_data))
717                         unmask = 1;
718         }
719
720         /* Mask all flags except trigger mode */
721         flags &= IRQ_TYPE_SENSE_MASK;
722         ret = chip->irq_set_type(&desc->irq_data, flags);
723
724         switch (ret) {
725         case IRQ_SET_MASK_OK:
726         case IRQ_SET_MASK_OK_DONE:
727                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
728                 irqd_set(&desc->irq_data, flags);
729
730         case IRQ_SET_MASK_OK_NOCOPY:
731                 flags = irqd_get_trigger_type(&desc->irq_data);
732                 irq_settings_set_trigger_mask(desc, flags);
733                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
734                 irq_settings_clr_level(desc);
735                 if (flags & IRQ_TYPE_LEVEL_MASK) {
736                         irq_settings_set_level(desc);
737                         irqd_set(&desc->irq_data, IRQD_LEVEL);
738                 }
739
740                 ret = 0;
741                 break;
742         default:
743                 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
744                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
745         }
746         if (unmask)
747                 unmask_irq(desc);
748         return ret;
749 }
750
751 #ifdef CONFIG_HARDIRQS_SW_RESEND
752 int irq_set_parent(int irq, int parent_irq)
753 {
754         unsigned long flags;
755         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
756
757         if (!desc)
758                 return -EINVAL;
759
760         desc->parent_irq = parent_irq;
761
762         irq_put_desc_unlock(desc, flags);
763         return 0;
764 }
765 EXPORT_SYMBOL_GPL(irq_set_parent);
766 #endif
767
768 /*
769  * Default primary interrupt handler for threaded interrupts. Is
770  * assigned as primary handler when request_threaded_irq is called
771  * with handler == NULL. Useful for oneshot interrupts.
772  */
773 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
774 {
775         return IRQ_WAKE_THREAD;
776 }
777
778 /*
779  * Primary handler for nested threaded interrupts. Should never be
780  * called.
781  */
782 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
783 {
784         WARN(1, "Primary handler called for nested irq %d\n", irq);
785         return IRQ_NONE;
786 }
787
788 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
789 {
790         WARN(1, "Secondary action handler called for irq %d\n", irq);
791         return IRQ_NONE;
792 }
793
794 static int irq_wait_for_interrupt(struct irqaction *action)
795 {
796         for (;;) {
797                 set_current_state(TASK_INTERRUPTIBLE);
798
799                 if (kthread_should_stop()) {
800                         /* may need to run one last time */
801                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
802                                                &action->thread_flags)) {
803                                 __set_current_state(TASK_RUNNING);
804                                 return 0;
805                         }
806                         __set_current_state(TASK_RUNNING);
807                         return -1;
808                 }
809
810                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
811                                        &action->thread_flags)) {
812                         __set_current_state(TASK_RUNNING);
813                         return 0;
814                 }
815                 schedule();
816         }
817 }
818
819 /*
820  * Oneshot interrupts keep the irq line masked until the threaded
821  * handler finished. unmask if the interrupt has not been disabled and
822  * is marked MASKED.
823  */
824 static void irq_finalize_oneshot(struct irq_desc *desc,
825                                  struct irqaction *action)
826 {
827         if (!(desc->istate & IRQS_ONESHOT) ||
828             action->handler == irq_forced_secondary_handler)
829                 return;
830 again:
831         chip_bus_lock(desc);
832         raw_spin_lock_irq(&desc->lock);
833
834         /*
835          * Implausible though it may be we need to protect us against
836          * the following scenario:
837          *
838          * The thread is faster done than the hard interrupt handler
839          * on the other CPU. If we unmask the irq line then the
840          * interrupt can come in again and masks the line, leaves due
841          * to IRQS_INPROGRESS and the irq line is masked forever.
842          *
843          * This also serializes the state of shared oneshot handlers
844          * versus "desc->threads_onehsot |= action->thread_mask;" in
845          * irq_wake_thread(). See the comment there which explains the
846          * serialization.
847          */
848         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
849                 raw_spin_unlock_irq(&desc->lock);
850                 chip_bus_sync_unlock(desc);
851                 cpu_relax();
852                 goto again;
853         }
854
855         /*
856          * Now check again, whether the thread should run. Otherwise
857          * we would clear the threads_oneshot bit of this thread which
858          * was just set.
859          */
860         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
861                 goto out_unlock;
862
863         desc->threads_oneshot &= ~action->thread_mask;
864
865         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
866             irqd_irq_masked(&desc->irq_data))
867                 unmask_threaded_irq(desc);
868
869 out_unlock:
870         raw_spin_unlock_irq(&desc->lock);
871         chip_bus_sync_unlock(desc);
872 }
873
874 #ifdef CONFIG_SMP
875 /*
876  * Check whether we need to change the affinity of the interrupt thread.
877  */
878 static void
879 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
880 {
881         cpumask_var_t mask;
882         bool valid = true;
883
884         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
885                 return;
886
887         /*
888          * In case we are out of memory we set IRQTF_AFFINITY again and
889          * try again next time
890          */
891         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
892                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
893                 return;
894         }
895
896         raw_spin_lock_irq(&desc->lock);
897         /*
898          * This code is triggered unconditionally. Check the affinity
899          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
900          */
901         if (cpumask_available(desc->irq_common_data.affinity)) {
902                 const struct cpumask *m;
903
904                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
905                 cpumask_copy(mask, m);
906         } else {
907                 valid = false;
908         }
909         raw_spin_unlock_irq(&desc->lock);
910
911         if (valid)
912                 set_cpus_allowed_ptr(current, mask);
913         free_cpumask_var(mask);
914 }
915 #else
916 static inline void
917 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
918 #endif
919
920 /*
921  * Interrupts which are not explicitly requested as threaded
922  * interrupts rely on the implicit bh/preempt disable of the hard irq
923  * context. So we need to disable bh here to avoid deadlocks and other
924  * side effects.
925  */
926 static irqreturn_t
927 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
928 {
929         irqreturn_t ret;
930
931         local_bh_disable();
932         ret = action->thread_fn(action->irq, action->dev_id);
933         if (ret == IRQ_HANDLED)
934                 atomic_inc(&desc->threads_handled);
935
936         irq_finalize_oneshot(desc, action);
937         local_bh_enable();
938         return ret;
939 }
940
941 /*
942  * Interrupts explicitly requested as threaded interrupts want to be
943  * preemtible - many of them need to sleep and wait for slow busses to
944  * complete.
945  */
946 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
947                 struct irqaction *action)
948 {
949         irqreturn_t ret;
950
951         ret = action->thread_fn(action->irq, action->dev_id);
952         if (ret == IRQ_HANDLED)
953                 atomic_inc(&desc->threads_handled);
954
955         irq_finalize_oneshot(desc, action);
956         return ret;
957 }
958
959 static void wake_threads_waitq(struct irq_desc *desc)
960 {
961         if (atomic_dec_and_test(&desc->threads_active))
962                 wake_up(&desc->wait_for_threads);
963 }
964
965 static void irq_thread_dtor(struct callback_head *unused)
966 {
967         struct task_struct *tsk = current;
968         struct irq_desc *desc;
969         struct irqaction *action;
970
971         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
972                 return;
973
974         action = kthread_data(tsk);
975
976         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
977                tsk->comm, tsk->pid, action->irq);
978
979
980         desc = irq_to_desc(action->irq);
981         /*
982          * If IRQTF_RUNTHREAD is set, we need to decrement
983          * desc->threads_active and wake possible waiters.
984          */
985         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
986                 wake_threads_waitq(desc);
987
988         /* Prevent a stale desc->threads_oneshot */
989         irq_finalize_oneshot(desc, action);
990 }
991
992 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
993 {
994         struct irqaction *secondary = action->secondary;
995
996         if (WARN_ON_ONCE(!secondary))
997                 return;
998
999         raw_spin_lock_irq(&desc->lock);
1000         __irq_wake_thread(desc, secondary);
1001         raw_spin_unlock_irq(&desc->lock);
1002 }
1003
1004 /*
1005  * Interrupt handler thread
1006  */
1007 static int irq_thread(void *data)
1008 {
1009         struct callback_head on_exit_work;
1010         struct irqaction *action = data;
1011         struct irq_desc *desc = irq_to_desc(action->irq);
1012         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1013                         struct irqaction *action);
1014
1015         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1016                                         &action->thread_flags))
1017                 handler_fn = irq_forced_thread_fn;
1018         else
1019                 handler_fn = irq_thread_fn;
1020
1021         init_task_work(&on_exit_work, irq_thread_dtor);
1022         task_work_add(current, &on_exit_work, false);
1023
1024         irq_thread_check_affinity(desc, action);
1025
1026         while (!irq_wait_for_interrupt(action)) {
1027                 irqreturn_t action_ret;
1028
1029                 irq_thread_check_affinity(desc, action);
1030
1031                 action_ret = handler_fn(desc, action);
1032                 if (action_ret == IRQ_WAKE_THREAD)
1033                         irq_wake_secondary(desc, action);
1034
1035                 wake_threads_waitq(desc);
1036         }
1037
1038         /*
1039          * This is the regular exit path. __free_irq() is stopping the
1040          * thread via kthread_stop() after calling
1041          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1042          * oneshot mask bit can be set.
1043          */
1044         task_work_cancel(current, irq_thread_dtor);
1045         return 0;
1046 }
1047
1048 /**
1049  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1050  *      @irq:           Interrupt line
1051  *      @dev_id:        Device identity for which the thread should be woken
1052  *
1053  */
1054 void irq_wake_thread(unsigned int irq, void *dev_id)
1055 {
1056         struct irq_desc *desc = irq_to_desc(irq);
1057         struct irqaction *action;
1058         unsigned long flags;
1059
1060         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1061                 return;
1062
1063         raw_spin_lock_irqsave(&desc->lock, flags);
1064         for_each_action_of_desc(desc, action) {
1065                 if (action->dev_id == dev_id) {
1066                         if (action->thread)
1067                                 __irq_wake_thread(desc, action);
1068                         break;
1069                 }
1070         }
1071         raw_spin_unlock_irqrestore(&desc->lock, flags);
1072 }
1073 EXPORT_SYMBOL_GPL(irq_wake_thread);
1074
1075 static int irq_setup_forced_threading(struct irqaction *new)
1076 {
1077         if (!force_irqthreads)
1078                 return 0;
1079         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1080                 return 0;
1081
1082         /*
1083          * No further action required for interrupts which are requested as
1084          * threaded interrupts already
1085          */
1086         if (new->handler == irq_default_primary_handler)
1087                 return 0;
1088
1089         new->flags |= IRQF_ONESHOT;
1090
1091         /*
1092          * Handle the case where we have a real primary handler and a
1093          * thread handler. We force thread them as well by creating a
1094          * secondary action.
1095          */
1096         if (new->handler && new->thread_fn) {
1097                 /* Allocate the secondary action */
1098                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1099                 if (!new->secondary)
1100                         return -ENOMEM;
1101                 new->secondary->handler = irq_forced_secondary_handler;
1102                 new->secondary->thread_fn = new->thread_fn;
1103                 new->secondary->dev_id = new->dev_id;
1104                 new->secondary->irq = new->irq;
1105                 new->secondary->name = new->name;
1106         }
1107         /* Deal with the primary handler */
1108         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1109         new->thread_fn = new->handler;
1110         new->handler = irq_default_primary_handler;
1111         return 0;
1112 }
1113
1114 static int irq_request_resources(struct irq_desc *desc)
1115 {
1116         struct irq_data *d = &desc->irq_data;
1117         struct irq_chip *c = d->chip;
1118
1119         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1120 }
1121
1122 static void irq_release_resources(struct irq_desc *desc)
1123 {
1124         struct irq_data *d = &desc->irq_data;
1125         struct irq_chip *c = d->chip;
1126
1127         if (c->irq_release_resources)
1128                 c->irq_release_resources(d);
1129 }
1130
1131 static int
1132 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1133 {
1134         struct task_struct *t;
1135         struct sched_param param = {
1136                 .sched_priority = MAX_USER_RT_PRIO/2,
1137         };
1138
1139         if (!secondary) {
1140                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1141                                    new->name);
1142         } else {
1143                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1144                                    new->name);
1145                 param.sched_priority -= 1;
1146         }
1147
1148         if (IS_ERR(t))
1149                 return PTR_ERR(t);
1150
1151         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1152
1153         /*
1154          * We keep the reference to the task struct even if
1155          * the thread dies to avoid that the interrupt code
1156          * references an already freed task_struct.
1157          */
1158         get_task_struct(t);
1159         new->thread = t;
1160         /*
1161          * Tell the thread to set its affinity. This is
1162          * important for shared interrupt handlers as we do
1163          * not invoke setup_affinity() for the secondary
1164          * handlers as everything is already set up. Even for
1165          * interrupts marked with IRQF_NO_BALANCE this is
1166          * correct as we want the thread to move to the cpu(s)
1167          * on which the requesting code placed the interrupt.
1168          */
1169         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1170         return 0;
1171 }
1172
1173 /*
1174  * Internal function to register an irqaction - typically used to
1175  * allocate special interrupts that are part of the architecture.
1176  *
1177  * Locking rules:
1178  *
1179  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1180  *   chip_bus_lock      Provides serialization for slow bus operations
1181  *     desc->lock       Provides serialization against hard interrupts
1182  *
1183  * chip_bus_lock and desc->lock are sufficient for all other management and
1184  * interrupt related functions. desc->request_mutex solely serializes
1185  * request/free_irq().
1186  */
1187 static int
1188 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1189 {
1190         struct irqaction *old, **old_ptr;
1191         unsigned long flags, thread_mask = 0;
1192         int ret, nested, shared = 0;
1193
1194         if (!desc)
1195                 return -EINVAL;
1196
1197         if (desc->irq_data.chip == &no_irq_chip)
1198                 return -ENOSYS;
1199         if (!try_module_get(desc->owner))
1200                 return -ENODEV;
1201
1202         new->irq = irq;
1203
1204         /*
1205          * If the trigger type is not specified by the caller,
1206          * then use the default for this interrupt.
1207          */
1208         if (!(new->flags & IRQF_TRIGGER_MASK))
1209                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1210
1211         /*
1212          * Check whether the interrupt nests into another interrupt
1213          * thread.
1214          */
1215         nested = irq_settings_is_nested_thread(desc);
1216         if (nested) {
1217                 if (!new->thread_fn) {
1218                         ret = -EINVAL;
1219                         goto out_mput;
1220                 }
1221                 /*
1222                  * Replace the primary handler which was provided from
1223                  * the driver for non nested interrupt handling by the
1224                  * dummy function which warns when called.
1225                  */
1226                 new->handler = irq_nested_primary_handler;
1227         } else {
1228                 if (irq_settings_can_thread(desc)) {
1229                         ret = irq_setup_forced_threading(new);
1230                         if (ret)
1231                                 goto out_mput;
1232                 }
1233         }
1234
1235         /*
1236          * Create a handler thread when a thread function is supplied
1237          * and the interrupt does not nest into another interrupt
1238          * thread.
1239          */
1240         if (new->thread_fn && !nested) {
1241                 ret = setup_irq_thread(new, irq, false);
1242                 if (ret)
1243                         goto out_mput;
1244                 if (new->secondary) {
1245                         ret = setup_irq_thread(new->secondary, irq, true);
1246                         if (ret)
1247                                 goto out_thread;
1248                 }
1249         }
1250
1251         /*
1252          * Drivers are often written to work w/o knowledge about the
1253          * underlying irq chip implementation, so a request for a
1254          * threaded irq without a primary hard irq context handler
1255          * requires the ONESHOT flag to be set. Some irq chips like
1256          * MSI based interrupts are per se one shot safe. Check the
1257          * chip flags, so we can avoid the unmask dance at the end of
1258          * the threaded handler for those.
1259          */
1260         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1261                 new->flags &= ~IRQF_ONESHOT;
1262
1263         /*
1264          * Protects against a concurrent __free_irq() call which might wait
1265          * for synchronize_hardirq() to complete without holding the optional
1266          * chip bus lock and desc->lock. Also protects against handing out
1267          * a recycled oneshot thread_mask bit while it's still in use by
1268          * its previous owner.
1269          */
1270         mutex_lock(&desc->request_mutex);
1271
1272         /*
1273          * Acquire bus lock as the irq_request_resources() callback below
1274          * might rely on the serialization or the magic power management
1275          * functions which are abusing the irq_bus_lock() callback,
1276          */
1277         chip_bus_lock(desc);
1278
1279         /* First installed action requests resources. */
1280         if (!desc->action) {
1281                 ret = irq_request_resources(desc);
1282                 if (ret) {
1283                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1284                                new->name, irq, desc->irq_data.chip->name);
1285                         goto out_bus_unlock;
1286                 }
1287         }
1288
1289         /*
1290          * The following block of code has to be executed atomically
1291          * protected against a concurrent interrupt and any of the other
1292          * management calls which are not serialized via
1293          * desc->request_mutex or the optional bus lock.
1294          */
1295         raw_spin_lock_irqsave(&desc->lock, flags);
1296         old_ptr = &desc->action;
1297         old = *old_ptr;
1298         if (old) {
1299                 /*
1300                  * Can't share interrupts unless both agree to and are
1301                  * the same type (level, edge, polarity). So both flag
1302                  * fields must have IRQF_SHARED set and the bits which
1303                  * set the trigger type must match. Also all must
1304                  * agree on ONESHOT.
1305                  */
1306                 unsigned int oldtype;
1307
1308                 /*
1309                  * If nobody did set the configuration before, inherit
1310                  * the one provided by the requester.
1311                  */
1312                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1313                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1314                 } else {
1315                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1316                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1317                 }
1318
1319                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1320                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1321                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1322                         goto mismatch;
1323
1324                 /* All handlers must agree on per-cpuness */
1325                 if ((old->flags & IRQF_PERCPU) !=
1326                     (new->flags & IRQF_PERCPU))
1327                         goto mismatch;
1328
1329                 /* add new interrupt at end of irq queue */
1330                 do {
1331                         /*
1332                          * Or all existing action->thread_mask bits,
1333                          * so we can find the next zero bit for this
1334                          * new action.
1335                          */
1336                         thread_mask |= old->thread_mask;
1337                         old_ptr = &old->next;
1338                         old = *old_ptr;
1339                 } while (old);
1340                 shared = 1;
1341         }
1342
1343         /*
1344          * Setup the thread mask for this irqaction for ONESHOT. For
1345          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1346          * conditional in irq_wake_thread().
1347          */
1348         if (new->flags & IRQF_ONESHOT) {
1349                 /*
1350                  * Unlikely to have 32 resp 64 irqs sharing one line,
1351                  * but who knows.
1352                  */
1353                 if (thread_mask == ~0UL) {
1354                         ret = -EBUSY;
1355                         goto out_unlock;
1356                 }
1357                 /*
1358                  * The thread_mask for the action is or'ed to
1359                  * desc->thread_active to indicate that the
1360                  * IRQF_ONESHOT thread handler has been woken, but not
1361                  * yet finished. The bit is cleared when a thread
1362                  * completes. When all threads of a shared interrupt
1363                  * line have completed desc->threads_active becomes
1364                  * zero and the interrupt line is unmasked. See
1365                  * handle.c:irq_wake_thread() for further information.
1366                  *
1367                  * If no thread is woken by primary (hard irq context)
1368                  * interrupt handlers, then desc->threads_active is
1369                  * also checked for zero to unmask the irq line in the
1370                  * affected hard irq flow handlers
1371                  * (handle_[fasteoi|level]_irq).
1372                  *
1373                  * The new action gets the first zero bit of
1374                  * thread_mask assigned. See the loop above which or's
1375                  * all existing action->thread_mask bits.
1376                  */
1377                 new->thread_mask = 1UL << ffz(thread_mask);
1378
1379         } else if (new->handler == irq_default_primary_handler &&
1380                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1381                 /*
1382                  * The interrupt was requested with handler = NULL, so
1383                  * we use the default primary handler for it. But it
1384                  * does not have the oneshot flag set. In combination
1385                  * with level interrupts this is deadly, because the
1386                  * default primary handler just wakes the thread, then
1387                  * the irq lines is reenabled, but the device still
1388                  * has the level irq asserted. Rinse and repeat....
1389                  *
1390                  * While this works for edge type interrupts, we play
1391                  * it safe and reject unconditionally because we can't
1392                  * say for sure which type this interrupt really
1393                  * has. The type flags are unreliable as the
1394                  * underlying chip implementation can override them.
1395                  */
1396                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1397                        irq);
1398                 ret = -EINVAL;
1399                 goto out_unlock;
1400         }
1401
1402         if (!shared) {
1403                 init_waitqueue_head(&desc->wait_for_threads);
1404
1405                 /* Setup the type (level, edge polarity) if configured: */
1406                 if (new->flags & IRQF_TRIGGER_MASK) {
1407                         ret = __irq_set_trigger(desc,
1408                                                 new->flags & IRQF_TRIGGER_MASK);
1409
1410                         if (ret)
1411                                 goto out_unlock;
1412                 }
1413
1414                 /*
1415                  * Activate the interrupt. That activation must happen
1416                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1417                  * and the callers are supposed to handle
1418                  * that. enable_irq() of an interrupt requested with
1419                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1420                  * keeps it in shutdown mode, it merily associates
1421                  * resources if necessary and if that's not possible it
1422                  * fails. Interrupts which are in managed shutdown mode
1423                  * will simply ignore that activation request.
1424                  */
1425                 ret = irq_activate(desc);
1426                 if (ret)
1427                         goto out_unlock;
1428
1429                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1430                                   IRQS_ONESHOT | IRQS_WAITING);
1431                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1432
1433                 if (new->flags & IRQF_PERCPU) {
1434                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1435                         irq_settings_set_per_cpu(desc);
1436                 }
1437
1438                 if (new->flags & IRQF_ONESHOT)
1439                         desc->istate |= IRQS_ONESHOT;
1440
1441                 /* Exclude IRQ from balancing if requested */
1442                 if (new->flags & IRQF_NOBALANCING) {
1443                         irq_settings_set_no_balancing(desc);
1444                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1445                 }
1446
1447                 if (irq_settings_can_autoenable(desc)) {
1448                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1449                 } else {
1450                         /*
1451                          * Shared interrupts do not go well with disabling
1452                          * auto enable. The sharing interrupt might request
1453                          * it while it's still disabled and then wait for
1454                          * interrupts forever.
1455                          */
1456                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1457                         /* Undo nested disables: */
1458                         desc->depth = 1;
1459                 }
1460
1461         } else if (new->flags & IRQF_TRIGGER_MASK) {
1462                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1463                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1464
1465                 if (nmsk != omsk)
1466                         /* hope the handler works with current  trigger mode */
1467                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1468                                 irq, omsk, nmsk);
1469         }
1470
1471         *old_ptr = new;
1472
1473         irq_pm_install_action(desc, new);
1474
1475         /* Reset broken irq detection when installing new handler */
1476         desc->irq_count = 0;
1477         desc->irqs_unhandled = 0;
1478
1479         /*
1480          * Check whether we disabled the irq via the spurious handler
1481          * before. Reenable it and give it another chance.
1482          */
1483         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1484                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1485                 __enable_irq(desc);
1486         }
1487
1488         raw_spin_unlock_irqrestore(&desc->lock, flags);
1489         chip_bus_sync_unlock(desc);
1490         mutex_unlock(&desc->request_mutex);
1491
1492         irq_setup_timings(desc, new);
1493
1494         /*
1495          * Strictly no need to wake it up, but hung_task complains
1496          * when no hard interrupt wakes the thread up.
1497          */
1498         if (new->thread)
1499                 wake_up_process(new->thread);
1500         if (new->secondary)
1501                 wake_up_process(new->secondary->thread);
1502
1503         register_irq_proc(irq, desc);
1504         new->dir = NULL;
1505         register_handler_proc(irq, new);
1506         return 0;
1507
1508 mismatch:
1509         if (!(new->flags & IRQF_PROBE_SHARED)) {
1510                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1511                        irq, new->flags, new->name, old->flags, old->name);
1512 #ifdef CONFIG_DEBUG_SHIRQ
1513                 dump_stack();
1514 #endif
1515         }
1516         ret = -EBUSY;
1517
1518 out_unlock:
1519         raw_spin_unlock_irqrestore(&desc->lock, flags);
1520
1521         if (!desc->action)
1522                 irq_release_resources(desc);
1523 out_bus_unlock:
1524         chip_bus_sync_unlock(desc);
1525         mutex_unlock(&desc->request_mutex);
1526
1527 out_thread:
1528         if (new->thread) {
1529                 struct task_struct *t = new->thread;
1530
1531                 new->thread = NULL;
1532                 kthread_stop(t);
1533                 put_task_struct(t);
1534         }
1535         if (new->secondary && new->secondary->thread) {
1536                 struct task_struct *t = new->secondary->thread;
1537
1538                 new->secondary->thread = NULL;
1539                 kthread_stop(t);
1540                 put_task_struct(t);
1541         }
1542 out_mput:
1543         module_put(desc->owner);
1544         return ret;
1545 }
1546
1547 /**
1548  *      setup_irq - setup an interrupt
1549  *      @irq: Interrupt line to setup
1550  *      @act: irqaction for the interrupt
1551  *
1552  * Used to statically setup interrupts in the early boot process.
1553  */
1554 int setup_irq(unsigned int irq, struct irqaction *act)
1555 {
1556         int retval;
1557         struct irq_desc *desc = irq_to_desc(irq);
1558
1559         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1560                 return -EINVAL;
1561
1562         retval = irq_chip_pm_get(&desc->irq_data);
1563         if (retval < 0)
1564                 return retval;
1565
1566         retval = __setup_irq(irq, desc, act);
1567
1568         if (retval)
1569                 irq_chip_pm_put(&desc->irq_data);
1570
1571         return retval;
1572 }
1573 EXPORT_SYMBOL_GPL(setup_irq);
1574
1575 /*
1576  * Internal function to unregister an irqaction - used to free
1577  * regular and special interrupts that are part of the architecture.
1578  */
1579 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1580 {
1581         unsigned irq = desc->irq_data.irq;
1582         struct irqaction *action, **action_ptr;
1583         unsigned long flags;
1584
1585         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1586
1587         mutex_lock(&desc->request_mutex);
1588         chip_bus_lock(desc);
1589         raw_spin_lock_irqsave(&desc->lock, flags);
1590
1591         /*
1592          * There can be multiple actions per IRQ descriptor, find the right
1593          * one based on the dev_id:
1594          */
1595         action_ptr = &desc->action;
1596         for (;;) {
1597                 action = *action_ptr;
1598
1599                 if (!action) {
1600                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1601                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1602                         chip_bus_sync_unlock(desc);
1603                         mutex_unlock(&desc->request_mutex);
1604                         return NULL;
1605                 }
1606
1607                 if (action->dev_id == dev_id)
1608                         break;
1609                 action_ptr = &action->next;
1610         }
1611
1612         /* Found it - now remove it from the list of entries: */
1613         *action_ptr = action->next;
1614
1615         irq_pm_remove_action(desc, action);
1616
1617         /* If this was the last handler, shut down the IRQ line: */
1618         if (!desc->action) {
1619                 irq_settings_clr_disable_unlazy(desc);
1620                 irq_shutdown(desc);
1621         }
1622
1623 #ifdef CONFIG_SMP
1624         /* make sure affinity_hint is cleaned up */
1625         if (WARN_ON_ONCE(desc->affinity_hint))
1626                 desc->affinity_hint = NULL;
1627 #endif
1628
1629         raw_spin_unlock_irqrestore(&desc->lock, flags);
1630         /*
1631          * Drop bus_lock here so the changes which were done in the chip
1632          * callbacks above are synced out to the irq chips which hang
1633          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1634          *
1635          * Aside of that the bus_lock can also be taken from the threaded
1636          * handler in irq_finalize_oneshot() which results in a deadlock
1637          * because kthread_stop() would wait forever for the thread to
1638          * complete, which is blocked on the bus lock.
1639          *
1640          * The still held desc->request_mutex() protects against a
1641          * concurrent request_irq() of this irq so the release of resources
1642          * and timing data is properly serialized.
1643          */
1644         chip_bus_sync_unlock(desc);
1645
1646         unregister_handler_proc(irq, action);
1647
1648         /* Make sure it's not being used on another CPU: */
1649         synchronize_hardirq(irq);
1650
1651 #ifdef CONFIG_DEBUG_SHIRQ
1652         /*
1653          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1654          * event to happen even now it's being freed, so let's make sure that
1655          * is so by doing an extra call to the handler ....
1656          *
1657          * ( We do this after actually deregistering it, to make sure that a
1658          *   'real' IRQ doesn't run in parallel with our fake. )
1659          */
1660         if (action->flags & IRQF_SHARED) {
1661                 local_irq_save(flags);
1662                 action->handler(irq, dev_id);
1663                 local_irq_restore(flags);
1664         }
1665 #endif
1666
1667         /*
1668          * The action has already been removed above, but the thread writes
1669          * its oneshot mask bit when it completes. Though request_mutex is
1670          * held across this which prevents __setup_irq() from handing out
1671          * the same bit to a newly requested action.
1672          */
1673         if (action->thread) {
1674                 kthread_stop(action->thread);
1675                 put_task_struct(action->thread);
1676                 if (action->secondary && action->secondary->thread) {
1677                         kthread_stop(action->secondary->thread);
1678                         put_task_struct(action->secondary->thread);
1679                 }
1680         }
1681
1682         /* Last action releases resources */
1683         if (!desc->action) {
1684                 /*
1685                  * Reaquire bus lock as irq_release_resources() might
1686                  * require it to deallocate resources over the slow bus.
1687                  */
1688                 chip_bus_lock(desc);
1689                 irq_release_resources(desc);
1690                 chip_bus_sync_unlock(desc);
1691                 irq_remove_timings(desc);
1692         }
1693
1694         mutex_unlock(&desc->request_mutex);
1695
1696         irq_chip_pm_put(&desc->irq_data);
1697         module_put(desc->owner);
1698         kfree(action->secondary);
1699         return action;
1700 }
1701
1702 /**
1703  *      remove_irq - free an interrupt
1704  *      @irq: Interrupt line to free
1705  *      @act: irqaction for the interrupt
1706  *
1707  * Used to remove interrupts statically setup by the early boot process.
1708  */
1709 void remove_irq(unsigned int irq, struct irqaction *act)
1710 {
1711         struct irq_desc *desc = irq_to_desc(irq);
1712
1713         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1714                 __free_irq(desc, act->dev_id);
1715 }
1716 EXPORT_SYMBOL_GPL(remove_irq);
1717
1718 /**
1719  *      free_irq - free an interrupt allocated with request_irq
1720  *      @irq: Interrupt line to free
1721  *      @dev_id: Device identity to free
1722  *
1723  *      Remove an interrupt handler. The handler is removed and if the
1724  *      interrupt line is no longer in use by any driver it is disabled.
1725  *      On a shared IRQ the caller must ensure the interrupt is disabled
1726  *      on the card it drives before calling this function. The function
1727  *      does not return until any executing interrupts for this IRQ
1728  *      have completed.
1729  *
1730  *      This function must not be called from interrupt context.
1731  *
1732  *      Returns the devname argument passed to request_irq.
1733  */
1734 const void *free_irq(unsigned int irq, void *dev_id)
1735 {
1736         struct irq_desc *desc = irq_to_desc(irq);
1737         struct irqaction *action;
1738         const char *devname;
1739
1740         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1741                 return NULL;
1742
1743 #ifdef CONFIG_SMP
1744         if (WARN_ON(desc->affinity_notify))
1745                 desc->affinity_notify = NULL;
1746 #endif
1747
1748         action = __free_irq(desc, dev_id);
1749
1750         if (!action)
1751                 return NULL;
1752
1753         devname = action->name;
1754         kfree(action);
1755         return devname;
1756 }
1757 EXPORT_SYMBOL(free_irq);
1758
1759 /**
1760  *      request_threaded_irq - allocate an interrupt line
1761  *      @irq: Interrupt line to allocate
1762  *      @handler: Function to be called when the IRQ occurs.
1763  *                Primary handler for threaded interrupts
1764  *                If NULL and thread_fn != NULL the default
1765  *                primary handler is installed
1766  *      @thread_fn: Function called from the irq handler thread
1767  *                  If NULL, no irq thread is created
1768  *      @irqflags: Interrupt type flags
1769  *      @devname: An ascii name for the claiming device
1770  *      @dev_id: A cookie passed back to the handler function
1771  *
1772  *      This call allocates interrupt resources and enables the
1773  *      interrupt line and IRQ handling. From the point this
1774  *      call is made your handler function may be invoked. Since
1775  *      your handler function must clear any interrupt the board
1776  *      raises, you must take care both to initialise your hardware
1777  *      and to set up the interrupt handler in the right order.
1778  *
1779  *      If you want to set up a threaded irq handler for your device
1780  *      then you need to supply @handler and @thread_fn. @handler is
1781  *      still called in hard interrupt context and has to check
1782  *      whether the interrupt originates from the device. If yes it
1783  *      needs to disable the interrupt on the device and return
1784  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1785  *      @thread_fn. This split handler design is necessary to support
1786  *      shared interrupts.
1787  *
1788  *      Dev_id must be globally unique. Normally the address of the
1789  *      device data structure is used as the cookie. Since the handler
1790  *      receives this value it makes sense to use it.
1791  *
1792  *      If your interrupt is shared you must pass a non NULL dev_id
1793  *      as this is required when freeing the interrupt.
1794  *
1795  *      Flags:
1796  *
1797  *      IRQF_SHARED             Interrupt is shared
1798  *      IRQF_TRIGGER_*          Specify active edge(s) or level
1799  *
1800  */
1801 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1802                          irq_handler_t thread_fn, unsigned long irqflags,
1803                          const char *devname, void *dev_id)
1804 {
1805         struct irqaction *action;
1806         struct irq_desc *desc;
1807         int retval;
1808
1809         if (irq == IRQ_NOTCONNECTED)
1810                 return -ENOTCONN;
1811
1812         /*
1813          * Sanity-check: shared interrupts must pass in a real dev-ID,
1814          * otherwise we'll have trouble later trying to figure out
1815          * which interrupt is which (messes up the interrupt freeing
1816          * logic etc).
1817          *
1818          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1819          * it cannot be set along with IRQF_NO_SUSPEND.
1820          */
1821         if (((irqflags & IRQF_SHARED) && !dev_id) ||
1822             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1823             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1824                 return -EINVAL;
1825
1826         desc = irq_to_desc(irq);
1827         if (!desc)
1828                 return -EINVAL;
1829
1830         if (!irq_settings_can_request(desc) ||
1831             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1832                 return -EINVAL;
1833
1834         if (!handler) {
1835                 if (!thread_fn)
1836                         return -EINVAL;
1837                 handler = irq_default_primary_handler;
1838         }
1839
1840         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1841         if (!action)
1842                 return -ENOMEM;
1843
1844         action->handler = handler;
1845         action->thread_fn = thread_fn;
1846         action->flags = irqflags;
1847         action->name = devname;
1848         action->dev_id = dev_id;
1849
1850         retval = irq_chip_pm_get(&desc->irq_data);
1851         if (retval < 0) {
1852                 kfree(action);
1853                 return retval;
1854         }
1855
1856         retval = __setup_irq(irq, desc, action);
1857
1858         if (retval) {
1859                 irq_chip_pm_put(&desc->irq_data);
1860                 kfree(action->secondary);
1861                 kfree(action);
1862         }
1863
1864 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1865         if (!retval && (irqflags & IRQF_SHARED)) {
1866                 /*
1867                  * It's a shared IRQ -- the driver ought to be prepared for it
1868                  * to happen immediately, so let's make sure....
1869                  * We disable the irq to make sure that a 'real' IRQ doesn't
1870                  * run in parallel with our fake.
1871                  */
1872                 unsigned long flags;
1873
1874                 disable_irq(irq);
1875                 local_irq_save(flags);
1876
1877                 handler(irq, dev_id);
1878
1879                 local_irq_restore(flags);
1880                 enable_irq(irq);
1881         }
1882 #endif
1883         return retval;
1884 }
1885 EXPORT_SYMBOL(request_threaded_irq);
1886
1887 /**
1888  *      request_any_context_irq - allocate an interrupt line
1889  *      @irq: Interrupt line to allocate
1890  *      @handler: Function to be called when the IRQ occurs.
1891  *                Threaded handler for threaded interrupts.
1892  *      @flags: Interrupt type flags
1893  *      @name: An ascii name for the claiming device
1894  *      @dev_id: A cookie passed back to the handler function
1895  *
1896  *      This call allocates interrupt resources and enables the
1897  *      interrupt line and IRQ handling. It selects either a
1898  *      hardirq or threaded handling method depending on the
1899  *      context.
1900  *
1901  *      On failure, it returns a negative value. On success,
1902  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1903  */
1904 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1905                             unsigned long flags, const char *name, void *dev_id)
1906 {
1907         struct irq_desc *desc;
1908         int ret;
1909
1910         if (irq == IRQ_NOTCONNECTED)
1911                 return -ENOTCONN;
1912
1913         desc = irq_to_desc(irq);
1914         if (!desc)
1915                 return -EINVAL;
1916
1917         if (irq_settings_is_nested_thread(desc)) {
1918                 ret = request_threaded_irq(irq, NULL, handler,
1919                                            flags, name, dev_id);
1920                 return !ret ? IRQC_IS_NESTED : ret;
1921         }
1922
1923         ret = request_irq(irq, handler, flags, name, dev_id);
1924         return !ret ? IRQC_IS_HARDIRQ : ret;
1925 }
1926 EXPORT_SYMBOL_GPL(request_any_context_irq);
1927
1928 void enable_percpu_irq(unsigned int irq, unsigned int type)
1929 {
1930         unsigned int cpu = smp_processor_id();
1931         unsigned long flags;
1932         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1933
1934         if (!desc)
1935                 return;
1936
1937         /*
1938          * If the trigger type is not specified by the caller, then
1939          * use the default for this interrupt.
1940          */
1941         type &= IRQ_TYPE_SENSE_MASK;
1942         if (type == IRQ_TYPE_NONE)
1943                 type = irqd_get_trigger_type(&desc->irq_data);
1944
1945         if (type != IRQ_TYPE_NONE) {
1946                 int ret;
1947
1948                 ret = __irq_set_trigger(desc, type);
1949
1950                 if (ret) {
1951                         WARN(1, "failed to set type for IRQ%d\n", irq);
1952                         goto out;
1953                 }
1954         }
1955
1956         irq_percpu_enable(desc, cpu);
1957 out:
1958         irq_put_desc_unlock(desc, flags);
1959 }
1960 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1961
1962 /**
1963  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1964  * @irq:        Linux irq number to check for
1965  *
1966  * Must be called from a non migratable context. Returns the enable
1967  * state of a per cpu interrupt on the current cpu.
1968  */
1969 bool irq_percpu_is_enabled(unsigned int irq)
1970 {
1971         unsigned int cpu = smp_processor_id();
1972         struct irq_desc *desc;
1973         unsigned long flags;
1974         bool is_enabled;
1975
1976         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1977         if (!desc)
1978                 return false;
1979
1980         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1981         irq_put_desc_unlock(desc, flags);
1982
1983         return is_enabled;
1984 }
1985 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1986
1987 void disable_percpu_irq(unsigned int irq)
1988 {
1989         unsigned int cpu = smp_processor_id();
1990         unsigned long flags;
1991         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1992
1993         if (!desc)
1994                 return;
1995
1996         irq_percpu_disable(desc, cpu);
1997         irq_put_desc_unlock(desc, flags);
1998 }
1999 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2000
2001 /*
2002  * Internal function to unregister a percpu irqaction.
2003  */
2004 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2005 {
2006         struct irq_desc *desc = irq_to_desc(irq);
2007         struct irqaction *action;
2008         unsigned long flags;
2009
2010         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2011
2012         if (!desc)
2013                 return NULL;
2014
2015         raw_spin_lock_irqsave(&desc->lock, flags);
2016
2017         action = desc->action;
2018         if (!action || action->percpu_dev_id != dev_id) {
2019                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2020                 goto bad;
2021         }
2022
2023         if (!cpumask_empty(desc->percpu_enabled)) {
2024                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2025                      irq, cpumask_first(desc->percpu_enabled));
2026                 goto bad;
2027         }
2028
2029         /* Found it - now remove it from the list of entries: */
2030         desc->action = NULL;
2031
2032         raw_spin_unlock_irqrestore(&desc->lock, flags);
2033
2034         unregister_handler_proc(irq, action);
2035
2036         irq_chip_pm_put(&desc->irq_data);
2037         module_put(desc->owner);
2038         return action;
2039
2040 bad:
2041         raw_spin_unlock_irqrestore(&desc->lock, flags);
2042         return NULL;
2043 }
2044
2045 /**
2046  *      remove_percpu_irq - free a per-cpu interrupt
2047  *      @irq: Interrupt line to free
2048  *      @act: irqaction for the interrupt
2049  *
2050  * Used to remove interrupts statically setup by the early boot process.
2051  */
2052 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2053 {
2054         struct irq_desc *desc = irq_to_desc(irq);
2055
2056         if (desc && irq_settings_is_per_cpu_devid(desc))
2057             __free_percpu_irq(irq, act->percpu_dev_id);
2058 }
2059
2060 /**
2061  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2062  *      @irq: Interrupt line to free
2063  *      @dev_id: Device identity to free
2064  *
2065  *      Remove a percpu interrupt handler. The handler is removed, but
2066  *      the interrupt line is not disabled. This must be done on each
2067  *      CPU before calling this function. The function does not return
2068  *      until any executing interrupts for this IRQ have completed.
2069  *
2070  *      This function must not be called from interrupt context.
2071  */
2072 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2073 {
2074         struct irq_desc *desc = irq_to_desc(irq);
2075
2076         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2077                 return;
2078
2079         chip_bus_lock(desc);
2080         kfree(__free_percpu_irq(irq, dev_id));
2081         chip_bus_sync_unlock(desc);
2082 }
2083 EXPORT_SYMBOL_GPL(free_percpu_irq);
2084
2085 /**
2086  *      setup_percpu_irq - setup a per-cpu interrupt
2087  *      @irq: Interrupt line to setup
2088  *      @act: irqaction for the interrupt
2089  *
2090  * Used to statically setup per-cpu interrupts in the early boot process.
2091  */
2092 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2093 {
2094         struct irq_desc *desc = irq_to_desc(irq);
2095         int retval;
2096
2097         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2098                 return -EINVAL;
2099
2100         retval = irq_chip_pm_get(&desc->irq_data);
2101         if (retval < 0)
2102                 return retval;
2103
2104         retval = __setup_irq(irq, desc, act);
2105
2106         if (retval)
2107                 irq_chip_pm_put(&desc->irq_data);
2108
2109         return retval;
2110 }
2111
2112 /**
2113  *      __request_percpu_irq - allocate a percpu interrupt line
2114  *      @irq: Interrupt line to allocate
2115  *      @handler: Function to be called when the IRQ occurs.
2116  *      @flags: Interrupt type flags (IRQF_TIMER only)
2117  *      @devname: An ascii name for the claiming device
2118  *      @dev_id: A percpu cookie passed back to the handler function
2119  *
2120  *      This call allocates interrupt resources and enables the
2121  *      interrupt on the local CPU. If the interrupt is supposed to be
2122  *      enabled on other CPUs, it has to be done on each CPU using
2123  *      enable_percpu_irq().
2124  *
2125  *      Dev_id must be globally unique. It is a per-cpu variable, and
2126  *      the handler gets called with the interrupted CPU's instance of
2127  *      that variable.
2128  */
2129 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2130                          unsigned long flags, const char *devname,
2131                          void __percpu *dev_id)
2132 {
2133         struct irqaction *action;
2134         struct irq_desc *desc;
2135         int retval;
2136
2137         if (!dev_id)
2138                 return -EINVAL;
2139
2140         desc = irq_to_desc(irq);
2141         if (!desc || !irq_settings_can_request(desc) ||
2142             !irq_settings_is_per_cpu_devid(desc))
2143                 return -EINVAL;
2144
2145         if (flags && flags != IRQF_TIMER)
2146                 return -EINVAL;
2147
2148         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2149         if (!action)
2150                 return -ENOMEM;
2151
2152         action->handler = handler;
2153         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2154         action->name = devname;
2155         action->percpu_dev_id = dev_id;
2156
2157         retval = irq_chip_pm_get(&desc->irq_data);
2158         if (retval < 0) {
2159                 kfree(action);
2160                 return retval;
2161         }
2162
2163         retval = __setup_irq(irq, desc, action);
2164
2165         if (retval) {
2166                 irq_chip_pm_put(&desc->irq_data);
2167                 kfree(action);
2168         }
2169
2170         return retval;
2171 }
2172 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2173
2174 /**
2175  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2176  *      @irq: Interrupt line that is forwarded to a VM
2177  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2178  *      @state: a pointer to a boolean where the state is to be storeed
2179  *
2180  *      This call snapshots the internal irqchip state of an
2181  *      interrupt, returning into @state the bit corresponding to
2182  *      stage @which
2183  *
2184  *      This function should be called with preemption disabled if the
2185  *      interrupt controller has per-cpu registers.
2186  */
2187 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2188                           bool *state)
2189 {
2190         struct irq_desc *desc;
2191         struct irq_data *data;
2192         struct irq_chip *chip;
2193         unsigned long flags;
2194         int err = -EINVAL;
2195
2196         desc = irq_get_desc_buslock(irq, &flags, 0);
2197         if (!desc)
2198                 return err;
2199
2200         data = irq_desc_get_irq_data(desc);
2201
2202         do {
2203                 chip = irq_data_get_irq_chip(data);
2204                 if (chip->irq_get_irqchip_state)
2205                         break;
2206 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2207                 data = data->parent_data;
2208 #else
2209                 data = NULL;
2210 #endif
2211         } while (data);
2212
2213         if (data)
2214                 err = chip->irq_get_irqchip_state(data, which, state);
2215
2216         irq_put_desc_busunlock(desc, flags);
2217         return err;
2218 }
2219 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2220
2221 /**
2222  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2223  *      @irq: Interrupt line that is forwarded to a VM
2224  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2225  *      @val: Value corresponding to @which
2226  *
2227  *      This call sets the internal irqchip state of an interrupt,
2228  *      depending on the value of @which.
2229  *
2230  *      This function should be called with preemption disabled if the
2231  *      interrupt controller has per-cpu registers.
2232  */
2233 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2234                           bool val)
2235 {
2236         struct irq_desc *desc;
2237         struct irq_data *data;
2238         struct irq_chip *chip;
2239         unsigned long flags;
2240         int err = -EINVAL;
2241
2242         desc = irq_get_desc_buslock(irq, &flags, 0);
2243         if (!desc)
2244                 return err;
2245
2246         data = irq_desc_get_irq_data(desc);
2247
2248         do {
2249                 chip = irq_data_get_irq_chip(data);
2250                 if (chip->irq_set_irqchip_state)
2251                         break;
2252 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2253                 data = data->parent_data;
2254 #else
2255                 data = NULL;
2256 #endif
2257         } while (data);
2258
2259         if (data)
2260                 err = chip->irq_set_irqchip_state(data, which, val);
2261
2262         irq_put_desc_busunlock(desc, flags);
2263         return err;
2264 }
2265 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);