Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/wake_q.h>
66 #include <linux/sched/mm.h>
67 #include <linux/hugetlb.h>
68 #include <linux/freezer.h>
69 #include <linux/memblock.h>
70 #include <linux/fault-inject.h>
71
72 #include <asm/futex.h>
73
74 #include "locking/rtmutex_common.h"
75
76 /*
77  * READ this before attempting to hack on futexes!
78  *
79  * Basic futex operation and ordering guarantees
80  * =============================================
81  *
82  * The waiter reads the futex value in user space and calls
83  * futex_wait(). This function computes the hash bucket and acquires
84  * the hash bucket lock. After that it reads the futex user space value
85  * again and verifies that the data has not changed. If it has not changed
86  * it enqueues itself into the hash bucket, releases the hash bucket lock
87  * and schedules.
88  *
89  * The waker side modifies the user space value of the futex and calls
90  * futex_wake(). This function computes the hash bucket and acquires the
91  * hash bucket lock. Then it looks for waiters on that futex in the hash
92  * bucket and wakes them.
93  *
94  * In futex wake up scenarios where no tasks are blocked on a futex, taking
95  * the hb spinlock can be avoided and simply return. In order for this
96  * optimization to work, ordering guarantees must exist so that the waiter
97  * being added to the list is acknowledged when the list is concurrently being
98  * checked by the waker, avoiding scenarios like the following:
99  *
100  * CPU 0                               CPU 1
101  * val = *futex;
102  * sys_futex(WAIT, futex, val);
103  *   futex_wait(futex, val);
104  *   uval = *futex;
105  *                                     *futex = newval;
106  *                                     sys_futex(WAKE, futex);
107  *                                       futex_wake(futex);
108  *                                       if (queue_empty())
109  *                                         return;
110  *   if (uval == val)
111  *      lock(hash_bucket(futex));
112  *      queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();
115  *
116  * This would cause the waiter on CPU 0 to wait forever because it
117  * missed the transition of the user space value from val to newval
118  * and the waker did not find the waiter in the hash bucket queue.
119  *
120  * The correct serialization ensures that a waiter either observes
121  * the changed user space value before blocking or is woken by a
122  * concurrent waker:
123  *
124  * CPU 0                                 CPU 1
125  * val = *futex;
126  * sys_futex(WAIT, futex, val);
127  *   futex_wait(futex, val);
128  *
129  *   waiters++; (a)
130  *   smp_mb(); (A) <-- paired with -.
131  *                                  |
132  *   lock(hash_bucket(futex));      |
133  *                                  |
134  *   uval = *futex;                 |
135  *                                  |        *futex = newval;
136  *                                  |        sys_futex(WAKE, futex);
137  *                                  |          futex_wake(futex);
138  *                                  |
139  *                                  `--------> smp_mb(); (B)
140  *   if (uval == val)
141  *     queue();
142  *     unlock(hash_bucket(futex));
143  *     schedule();                         if (waiters)
144  *                                           lock(hash_bucket(futex));
145  *   else                                    wake_waiters(futex);
146  *     waiters--; (b)                        unlock(hash_bucket(futex));
147  *
148  * Where (A) orders the waiters increment and the futex value read through
149  * atomic operations (see hb_waiters_inc) and where (B) orders the write
150  * to futex and the waiters read -- this is done by the barriers for both
151  * shared and private futexes in get_futex_key_refs().
152  *
153  * This yields the following case (where X:=waiters, Y:=futex):
154  *
155  *      X = Y = 0
156  *
157  *      w[X]=1          w[Y]=1
158  *      MB              MB
159  *      r[Y]=y          r[X]=x
160  *
161  * Which guarantees that x==0 && y==0 is impossible; which translates back into
162  * the guarantee that we cannot both miss the futex variable change and the
163  * enqueue.
164  *
165  * Note that a new waiter is accounted for in (a) even when it is possible that
166  * the wait call can return error, in which case we backtrack from it in (b).
167  * Refer to the comment in queue_lock().
168  *
169  * Similarly, in order to account for waiters being requeued on another
170  * address we always increment the waiters for the destination bucket before
171  * acquiring the lock. It then decrements them again  after releasing it -
172  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173  * will do the additional required waiter count housekeeping. This is done for
174  * double_lock_hb() and double_unlock_hb(), respectively.
175  */
176
177 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178 #define futex_cmpxchg_enabled 1
179 #else
180 static int  __read_mostly futex_cmpxchg_enabled;
181 #endif
182
183 /*
184  * Futex flags used to encode options to functions and preserve them across
185  * restarts.
186  */
187 #ifdef CONFIG_MMU
188 # define FLAGS_SHARED           0x01
189 #else
190 /*
191  * NOMMU does not have per process address space. Let the compiler optimize
192  * code away.
193  */
194 # define FLAGS_SHARED           0x00
195 #endif
196 #define FLAGS_CLOCKRT           0x02
197 #define FLAGS_HAS_TIMEOUT       0x04
198
199 /*
200  * Priority Inheritance state:
201  */
202 struct futex_pi_state {
203         /*
204          * list of 'owned' pi_state instances - these have to be
205          * cleaned up in do_exit() if the task exits prematurely:
206          */
207         struct list_head list;
208
209         /*
210          * The PI object:
211          */
212         struct rt_mutex pi_mutex;
213
214         struct task_struct *owner;
215         atomic_t refcount;
216
217         union futex_key key;
218 } __randomize_layout;
219
220 /**
221  * struct futex_q - The hashed futex queue entry, one per waiting task
222  * @list:               priority-sorted list of tasks waiting on this futex
223  * @task:               the task waiting on the futex
224  * @lock_ptr:           the hash bucket lock
225  * @key:                the key the futex is hashed on
226  * @pi_state:           optional priority inheritance state
227  * @rt_waiter:          rt_waiter storage for use with requeue_pi
228  * @requeue_pi_key:     the requeue_pi target futex key
229  * @bitset:             bitset for the optional bitmasked wakeup
230  *
231  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
232  * we can wake only the relevant ones (hashed queues may be shared).
233  *
234  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
235  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
236  * The order of wakeup is always to make the first condition true, then
237  * the second.
238  *
239  * PI futexes are typically woken before they are removed from the hash list via
240  * the rt_mutex code. See unqueue_me_pi().
241  */
242 struct futex_q {
243         struct plist_node list;
244
245         struct task_struct *task;
246         spinlock_t *lock_ptr;
247         union futex_key key;
248         struct futex_pi_state *pi_state;
249         struct rt_mutex_waiter *rt_waiter;
250         union futex_key *requeue_pi_key;
251         u32 bitset;
252 } __randomize_layout;
253
254 static const struct futex_q futex_q_init = {
255         /* list gets initialized in queue_me()*/
256         .key = FUTEX_KEY_INIT,
257         .bitset = FUTEX_BITSET_MATCH_ANY
258 };
259
260 /*
261  * Hash buckets are shared by all the futex_keys that hash to the same
262  * location.  Each key may have multiple futex_q structures, one for each task
263  * waiting on a futex.
264  */
265 struct futex_hash_bucket {
266         atomic_t waiters;
267         spinlock_t lock;
268         struct plist_head chain;
269 } ____cacheline_aligned_in_smp;
270
271 /*
272  * The base of the bucket array and its size are always used together
273  * (after initialization only in hash_futex()), so ensure that they
274  * reside in the same cacheline.
275  */
276 static struct {
277         struct futex_hash_bucket *queues;
278         unsigned long            hashsize;
279 } __futex_data __read_mostly __aligned(2*sizeof(long));
280 #define futex_queues   (__futex_data.queues)
281 #define futex_hashsize (__futex_data.hashsize)
282
283
284 /*
285  * Fault injections for futexes.
286  */
287 #ifdef CONFIG_FAIL_FUTEX
288
289 static struct {
290         struct fault_attr attr;
291
292         bool ignore_private;
293 } fail_futex = {
294         .attr = FAULT_ATTR_INITIALIZER,
295         .ignore_private = false,
296 };
297
298 static int __init setup_fail_futex(char *str)
299 {
300         return setup_fault_attr(&fail_futex.attr, str);
301 }
302 __setup("fail_futex=", setup_fail_futex);
303
304 static bool should_fail_futex(bool fshared)
305 {
306         if (fail_futex.ignore_private && !fshared)
307                 return false;
308
309         return should_fail(&fail_futex.attr, 1);
310 }
311
312 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314 static int __init fail_futex_debugfs(void)
315 {
316         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317         struct dentry *dir;
318
319         dir = fault_create_debugfs_attr("fail_futex", NULL,
320                                         &fail_futex.attr);
321         if (IS_ERR(dir))
322                 return PTR_ERR(dir);
323
324         if (!debugfs_create_bool("ignore-private", mode, dir,
325                                  &fail_futex.ignore_private)) {
326                 debugfs_remove_recursive(dir);
327                 return -ENOMEM;
328         }
329
330         return 0;
331 }
332
333 late_initcall(fail_futex_debugfs);
334
335 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337 #else
338 static inline bool should_fail_futex(bool fshared)
339 {
340         return false;
341 }
342 #endif /* CONFIG_FAIL_FUTEX */
343
344 static inline void futex_get_mm(union futex_key *key)
345 {
346         mmgrab(key->private.mm);
347         /*
348          * Ensure futex_get_mm() implies a full barrier such that
349          * get_futex_key() implies a full barrier. This is relied upon
350          * as smp_mb(); (B), see the ordering comment above.
351          */
352         smp_mb__after_atomic();
353 }
354
355 /*
356  * Reflects a new waiter being added to the waitqueue.
357  */
358 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
359 {
360 #ifdef CONFIG_SMP
361         atomic_inc(&hb->waiters);
362         /*
363          * Full barrier (A), see the ordering comment above.
364          */
365         smp_mb__after_atomic();
366 #endif
367 }
368
369 /*
370  * Reflects a waiter being removed from the waitqueue by wakeup
371  * paths.
372  */
373 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
374 {
375 #ifdef CONFIG_SMP
376         atomic_dec(&hb->waiters);
377 #endif
378 }
379
380 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
381 {
382 #ifdef CONFIG_SMP
383         return atomic_read(&hb->waiters);
384 #else
385         return 1;
386 #endif
387 }
388
389 /**
390  * hash_futex - Return the hash bucket in the global hash
391  * @key:        Pointer to the futex key for which the hash is calculated
392  *
393  * We hash on the keys returned from get_futex_key (see below) and return the
394  * corresponding hash bucket in the global hash.
395  */
396 static struct futex_hash_bucket *hash_futex(union futex_key *key)
397 {
398         u32 hash = jhash2((u32*)&key->both.word,
399                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
400                           key->both.offset);
401         return &futex_queues[hash & (futex_hashsize - 1)];
402 }
403
404
405 /**
406  * match_futex - Check whether two futex keys are equal
407  * @key1:       Pointer to key1
408  * @key2:       Pointer to key2
409  *
410  * Return 1 if two futex_keys are equal, 0 otherwise.
411  */
412 static inline int match_futex(union futex_key *key1, union futex_key *key2)
413 {
414         return (key1 && key2
415                 && key1->both.word == key2->both.word
416                 && key1->both.ptr == key2->both.ptr
417                 && key1->both.offset == key2->both.offset);
418 }
419
420 /*
421  * Take a reference to the resource addressed by a key.
422  * Can be called while holding spinlocks.
423  *
424  */
425 static void get_futex_key_refs(union futex_key *key)
426 {
427         if (!key->both.ptr)
428                 return;
429
430         /*
431          * On MMU less systems futexes are always "private" as there is no per
432          * process address space. We need the smp wmb nevertheless - yes,
433          * arch/blackfin has MMU less SMP ...
434          */
435         if (!IS_ENABLED(CONFIG_MMU)) {
436                 smp_mb(); /* explicit smp_mb(); (B) */
437                 return;
438         }
439
440         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
441         case FUT_OFF_INODE:
442                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
443                 break;
444         case FUT_OFF_MMSHARED:
445                 futex_get_mm(key); /* implies smp_mb(); (B) */
446                 break;
447         default:
448                 /*
449                  * Private futexes do not hold reference on an inode or
450                  * mm, therefore the only purpose of calling get_futex_key_refs
451                  * is because we need the barrier for the lockless waiter check.
452                  */
453                 smp_mb(); /* explicit smp_mb(); (B) */
454         }
455 }
456
457 /*
458  * Drop a reference to the resource addressed by a key.
459  * The hash bucket spinlock must not be held. This is
460  * a no-op for private futexes, see comment in the get
461  * counterpart.
462  */
463 static void drop_futex_key_refs(union futex_key *key)
464 {
465         if (!key->both.ptr) {
466                 /* If we're here then we tried to put a key we failed to get */
467                 WARN_ON_ONCE(1);
468                 return;
469         }
470
471         if (!IS_ENABLED(CONFIG_MMU))
472                 return;
473
474         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
475         case FUT_OFF_INODE:
476                 iput(key->shared.inode);
477                 break;
478         case FUT_OFF_MMSHARED:
479                 mmdrop(key->private.mm);
480                 break;
481         }
482 }
483
484 enum futex_access {
485         FUTEX_READ,
486         FUTEX_WRITE
487 };
488
489 /**
490  * get_futex_key() - Get parameters which are the keys for a futex
491  * @uaddr:      virtual address of the futex
492  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
493  * @key:        address where result is stored.
494  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
495  *              FUTEX_WRITE)
496  *
497  * Return: a negative error code or 0
498  *
499  * The key words are stored in @key on success.
500  *
501  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
502  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
503  * We can usually work out the index without swapping in the page.
504  *
505  * lock_page() might sleep, the caller should not hold a spinlock.
506  */
507 static int
508 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
509 {
510         unsigned long address = (unsigned long)uaddr;
511         struct mm_struct *mm = current->mm;
512         struct page *page, *tail;
513         struct address_space *mapping;
514         int err, ro = 0;
515
516         /*
517          * The futex address must be "naturally" aligned.
518          */
519         key->both.offset = address % PAGE_SIZE;
520         if (unlikely((address % sizeof(u32)) != 0))
521                 return -EINVAL;
522         address -= key->both.offset;
523
524         if (unlikely(!access_ok(uaddr, sizeof(u32))))
525                 return -EFAULT;
526
527         if (unlikely(should_fail_futex(fshared)))
528                 return -EFAULT;
529
530         /*
531          * PROCESS_PRIVATE futexes are fast.
532          * As the mm cannot disappear under us and the 'key' only needs
533          * virtual address, we dont even have to find the underlying vma.
534          * Note : We do have to check 'uaddr' is a valid user address,
535          *        but access_ok() should be faster than find_vma()
536          */
537         if (!fshared) {
538                 key->private.mm = mm;
539                 key->private.address = address;
540                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
541                 return 0;
542         }
543
544 again:
545         /* Ignore any VERIFY_READ mapping (futex common case) */
546         if (unlikely(should_fail_futex(fshared)))
547                 return -EFAULT;
548
549         err = get_user_pages_fast(address, 1, 1, &page);
550         /*
551          * If write access is not required (eg. FUTEX_WAIT), try
552          * and get read-only access.
553          */
554         if (err == -EFAULT && rw == FUTEX_READ) {
555                 err = get_user_pages_fast(address, 1, 0, &page);
556                 ro = 1;
557         }
558         if (err < 0)
559                 return err;
560         else
561                 err = 0;
562
563         /*
564          * The treatment of mapping from this point on is critical. The page
565          * lock protects many things but in this context the page lock
566          * stabilizes mapping, prevents inode freeing in the shared
567          * file-backed region case and guards against movement to swap cache.
568          *
569          * Strictly speaking the page lock is not needed in all cases being
570          * considered here and page lock forces unnecessarily serialization
571          * From this point on, mapping will be re-verified if necessary and
572          * page lock will be acquired only if it is unavoidable
573          *
574          * Mapping checks require the head page for any compound page so the
575          * head page and mapping is looked up now. For anonymous pages, it
576          * does not matter if the page splits in the future as the key is
577          * based on the address. For filesystem-backed pages, the tail is
578          * required as the index of the page determines the key. For
579          * base pages, there is no tail page and tail == page.
580          */
581         tail = page;
582         page = compound_head(page);
583         mapping = READ_ONCE(page->mapping);
584
585         /*
586          * If page->mapping is NULL, then it cannot be a PageAnon
587          * page; but it might be the ZERO_PAGE or in the gate area or
588          * in a special mapping (all cases which we are happy to fail);
589          * or it may have been a good file page when get_user_pages_fast
590          * found it, but truncated or holepunched or subjected to
591          * invalidate_complete_page2 before we got the page lock (also
592          * cases which we are happy to fail).  And we hold a reference,
593          * so refcount care in invalidate_complete_page's remove_mapping
594          * prevents drop_caches from setting mapping to NULL beneath us.
595          *
596          * The case we do have to guard against is when memory pressure made
597          * shmem_writepage move it from filecache to swapcache beneath us:
598          * an unlikely race, but we do need to retry for page->mapping.
599          */
600         if (unlikely(!mapping)) {
601                 int shmem_swizzled;
602
603                 /*
604                  * Page lock is required to identify which special case above
605                  * applies. If this is really a shmem page then the page lock
606                  * will prevent unexpected transitions.
607                  */
608                 lock_page(page);
609                 shmem_swizzled = PageSwapCache(page) || page->mapping;
610                 unlock_page(page);
611                 put_page(page);
612
613                 if (shmem_swizzled)
614                         goto again;
615
616                 return -EFAULT;
617         }
618
619         /*
620          * Private mappings are handled in a simple way.
621          *
622          * If the futex key is stored on an anonymous page, then the associated
623          * object is the mm which is implicitly pinned by the calling process.
624          *
625          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
626          * it's a read-only handle, it's expected that futexes attach to
627          * the object not the particular process.
628          */
629         if (PageAnon(page)) {
630                 /*
631                  * A RO anonymous page will never change and thus doesn't make
632                  * sense for futex operations.
633                  */
634                 if (unlikely(should_fail_futex(fshared)) || ro) {
635                         err = -EFAULT;
636                         goto out;
637                 }
638
639                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
640                 key->private.mm = mm;
641                 key->private.address = address;
642
643                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
644
645         } else {
646                 struct inode *inode;
647
648                 /*
649                  * The associated futex object in this case is the inode and
650                  * the page->mapping must be traversed. Ordinarily this should
651                  * be stabilised under page lock but it's not strictly
652                  * necessary in this case as we just want to pin the inode, not
653                  * update the radix tree or anything like that.
654                  *
655                  * The RCU read lock is taken as the inode is finally freed
656                  * under RCU. If the mapping still matches expectations then the
657                  * mapping->host can be safely accessed as being a valid inode.
658                  */
659                 rcu_read_lock();
660
661                 if (READ_ONCE(page->mapping) != mapping) {
662                         rcu_read_unlock();
663                         put_page(page);
664
665                         goto again;
666                 }
667
668                 inode = READ_ONCE(mapping->host);
669                 if (!inode) {
670                         rcu_read_unlock();
671                         put_page(page);
672
673                         goto again;
674                 }
675
676                 /*
677                  * Take a reference unless it is about to be freed. Previously
678                  * this reference was taken by ihold under the page lock
679                  * pinning the inode in place so i_lock was unnecessary. The
680                  * only way for this check to fail is if the inode was
681                  * truncated in parallel which is almost certainly an
682                  * application bug. In such a case, just retry.
683                  *
684                  * We are not calling into get_futex_key_refs() in file-backed
685                  * cases, therefore a successful atomic_inc return below will
686                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
687                  */
688                 if (!atomic_inc_not_zero(&inode->i_count)) {
689                         rcu_read_unlock();
690                         put_page(page);
691
692                         goto again;
693                 }
694
695                 /* Should be impossible but lets be paranoid for now */
696                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
697                         err = -EFAULT;
698                         rcu_read_unlock();
699                         iput(inode);
700
701                         goto out;
702                 }
703
704                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
705                 key->shared.inode = inode;
706                 key->shared.pgoff = basepage_index(tail);
707                 rcu_read_unlock();
708         }
709
710 out:
711         put_page(page);
712         return err;
713 }
714
715 static inline void put_futex_key(union futex_key *key)
716 {
717         drop_futex_key_refs(key);
718 }
719
720 /**
721  * fault_in_user_writeable() - Fault in user address and verify RW access
722  * @uaddr:      pointer to faulting user space address
723  *
724  * Slow path to fixup the fault we just took in the atomic write
725  * access to @uaddr.
726  *
727  * We have no generic implementation of a non-destructive write to the
728  * user address. We know that we faulted in the atomic pagefault
729  * disabled section so we can as well avoid the #PF overhead by
730  * calling get_user_pages() right away.
731  */
732 static int fault_in_user_writeable(u32 __user *uaddr)
733 {
734         struct mm_struct *mm = current->mm;
735         int ret;
736
737         down_read(&mm->mmap_sem);
738         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
739                                FAULT_FLAG_WRITE, NULL);
740         up_read(&mm->mmap_sem);
741
742         return ret < 0 ? ret : 0;
743 }
744
745 /**
746  * futex_top_waiter() - Return the highest priority waiter on a futex
747  * @hb:         the hash bucket the futex_q's reside in
748  * @key:        the futex key (to distinguish it from other futex futex_q's)
749  *
750  * Must be called with the hb lock held.
751  */
752 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
753                                         union futex_key *key)
754 {
755         struct futex_q *this;
756
757         plist_for_each_entry(this, &hb->chain, list) {
758                 if (match_futex(&this->key, key))
759                         return this;
760         }
761         return NULL;
762 }
763
764 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
765                                       u32 uval, u32 newval)
766 {
767         int ret;
768
769         pagefault_disable();
770         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
771         pagefault_enable();
772
773         return ret;
774 }
775
776 static int get_futex_value_locked(u32 *dest, u32 __user *from)
777 {
778         int ret;
779
780         pagefault_disable();
781         ret = __get_user(*dest, from);
782         pagefault_enable();
783
784         return ret ? -EFAULT : 0;
785 }
786
787
788 /*
789  * PI code:
790  */
791 static int refill_pi_state_cache(void)
792 {
793         struct futex_pi_state *pi_state;
794
795         if (likely(current->pi_state_cache))
796                 return 0;
797
798         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
799
800         if (!pi_state)
801                 return -ENOMEM;
802
803         INIT_LIST_HEAD(&pi_state->list);
804         /* pi_mutex gets initialized later */
805         pi_state->owner = NULL;
806         atomic_set(&pi_state->refcount, 1);
807         pi_state->key = FUTEX_KEY_INIT;
808
809         current->pi_state_cache = pi_state;
810
811         return 0;
812 }
813
814 static struct futex_pi_state *alloc_pi_state(void)
815 {
816         struct futex_pi_state *pi_state = current->pi_state_cache;
817
818         WARN_ON(!pi_state);
819         current->pi_state_cache = NULL;
820
821         return pi_state;
822 }
823
824 static void get_pi_state(struct futex_pi_state *pi_state)
825 {
826         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
827 }
828
829 /*
830  * Drops a reference to the pi_state object and frees or caches it
831  * when the last reference is gone.
832  */
833 static void put_pi_state(struct futex_pi_state *pi_state)
834 {
835         if (!pi_state)
836                 return;
837
838         if (!atomic_dec_and_test(&pi_state->refcount))
839                 return;
840
841         /*
842          * If pi_state->owner is NULL, the owner is most probably dying
843          * and has cleaned up the pi_state already
844          */
845         if (pi_state->owner) {
846                 struct task_struct *owner;
847
848                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
849                 owner = pi_state->owner;
850                 if (owner) {
851                         raw_spin_lock(&owner->pi_lock);
852                         list_del_init(&pi_state->list);
853                         raw_spin_unlock(&owner->pi_lock);
854                 }
855                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
856                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
857         }
858
859         if (current->pi_state_cache) {
860                 kfree(pi_state);
861         } else {
862                 /*
863                  * pi_state->list is already empty.
864                  * clear pi_state->owner.
865                  * refcount is at 0 - put it back to 1.
866                  */
867                 pi_state->owner = NULL;
868                 atomic_set(&pi_state->refcount, 1);
869                 current->pi_state_cache = pi_state;
870         }
871 }
872
873 #ifdef CONFIG_FUTEX_PI
874
875 /*
876  * This task is holding PI mutexes at exit time => bad.
877  * Kernel cleans up PI-state, but userspace is likely hosed.
878  * (Robust-futex cleanup is separate and might save the day for userspace.)
879  */
880 void exit_pi_state_list(struct task_struct *curr)
881 {
882         struct list_head *next, *head = &curr->pi_state_list;
883         struct futex_pi_state *pi_state;
884         struct futex_hash_bucket *hb;
885         union futex_key key = FUTEX_KEY_INIT;
886
887         if (!futex_cmpxchg_enabled)
888                 return;
889         /*
890          * We are a ZOMBIE and nobody can enqueue itself on
891          * pi_state_list anymore, but we have to be careful
892          * versus waiters unqueueing themselves:
893          */
894         raw_spin_lock_irq(&curr->pi_lock);
895         while (!list_empty(head)) {
896                 next = head->next;
897                 pi_state = list_entry(next, struct futex_pi_state, list);
898                 key = pi_state->key;
899                 hb = hash_futex(&key);
900
901                 /*
902                  * We can race against put_pi_state() removing itself from the
903                  * list (a waiter going away). put_pi_state() will first
904                  * decrement the reference count and then modify the list, so
905                  * its possible to see the list entry but fail this reference
906                  * acquire.
907                  *
908                  * In that case; drop the locks to let put_pi_state() make
909                  * progress and retry the loop.
910                  */
911                 if (!atomic_inc_not_zero(&pi_state->refcount)) {
912                         raw_spin_unlock_irq(&curr->pi_lock);
913                         cpu_relax();
914                         raw_spin_lock_irq(&curr->pi_lock);
915                         continue;
916                 }
917                 raw_spin_unlock_irq(&curr->pi_lock);
918
919                 spin_lock(&hb->lock);
920                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
921                 raw_spin_lock(&curr->pi_lock);
922                 /*
923                  * We dropped the pi-lock, so re-check whether this
924                  * task still owns the PI-state:
925                  */
926                 if (head->next != next) {
927                         /* retain curr->pi_lock for the loop invariant */
928                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
929                         spin_unlock(&hb->lock);
930                         put_pi_state(pi_state);
931                         continue;
932                 }
933
934                 WARN_ON(pi_state->owner != curr);
935                 WARN_ON(list_empty(&pi_state->list));
936                 list_del_init(&pi_state->list);
937                 pi_state->owner = NULL;
938
939                 raw_spin_unlock(&curr->pi_lock);
940                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
941                 spin_unlock(&hb->lock);
942
943                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
944                 put_pi_state(pi_state);
945
946                 raw_spin_lock_irq(&curr->pi_lock);
947         }
948         raw_spin_unlock_irq(&curr->pi_lock);
949 }
950
951 #endif
952
953 /*
954  * We need to check the following states:
955  *
956  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
957  *
958  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
959  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
960  *
961  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
962  *
963  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
964  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
965  *
966  * [6]  Found  | Found    | task      | 0         | 1      | Valid
967  *
968  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
969  *
970  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
971  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
972  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
973  *
974  * [1]  Indicates that the kernel can acquire the futex atomically. We
975  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
976  *
977  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
978  *      thread is found then it indicates that the owner TID has died.
979  *
980  * [3]  Invalid. The waiter is queued on a non PI futex
981  *
982  * [4]  Valid state after exit_robust_list(), which sets the user space
983  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
984  *
985  * [5]  The user space value got manipulated between exit_robust_list()
986  *      and exit_pi_state_list()
987  *
988  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
989  *      the pi_state but cannot access the user space value.
990  *
991  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
992  *
993  * [8]  Owner and user space value match
994  *
995  * [9]  There is no transient state which sets the user space TID to 0
996  *      except exit_robust_list(), but this is indicated by the
997  *      FUTEX_OWNER_DIED bit. See [4]
998  *
999  * [10] There is no transient state which leaves owner and user space
1000  *      TID out of sync.
1001  *
1002  *
1003  * Serialization and lifetime rules:
1004  *
1005  * hb->lock:
1006  *
1007  *      hb -> futex_q, relation
1008  *      futex_q -> pi_state, relation
1009  *
1010  *      (cannot be raw because hb can contain arbitrary amount
1011  *       of futex_q's)
1012  *
1013  * pi_mutex->wait_lock:
1014  *
1015  *      {uval, pi_state}
1016  *
1017  *      (and pi_mutex 'obviously')
1018  *
1019  * p->pi_lock:
1020  *
1021  *      p->pi_state_list -> pi_state->list, relation
1022  *
1023  * pi_state->refcount:
1024  *
1025  *      pi_state lifetime
1026  *
1027  *
1028  * Lock order:
1029  *
1030  *   hb->lock
1031  *     pi_mutex->wait_lock
1032  *       p->pi_lock
1033  *
1034  */
1035
1036 /*
1037  * Validate that the existing waiter has a pi_state and sanity check
1038  * the pi_state against the user space value. If correct, attach to
1039  * it.
1040  */
1041 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1042                               struct futex_pi_state *pi_state,
1043                               struct futex_pi_state **ps)
1044 {
1045         pid_t pid = uval & FUTEX_TID_MASK;
1046         u32 uval2;
1047         int ret;
1048
1049         /*
1050          * Userspace might have messed up non-PI and PI futexes [3]
1051          */
1052         if (unlikely(!pi_state))
1053                 return -EINVAL;
1054
1055         /*
1056          * We get here with hb->lock held, and having found a
1057          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1058          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1059          * which in turn means that futex_lock_pi() still has a reference on
1060          * our pi_state.
1061          *
1062          * The waiter holding a reference on @pi_state also protects against
1063          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1064          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1065          * free pi_state before we can take a reference ourselves.
1066          */
1067         WARN_ON(!atomic_read(&pi_state->refcount));
1068
1069         /*
1070          * Now that we have a pi_state, we can acquire wait_lock
1071          * and do the state validation.
1072          */
1073         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1074
1075         /*
1076          * Since {uval, pi_state} is serialized by wait_lock, and our current
1077          * uval was read without holding it, it can have changed. Verify it
1078          * still is what we expect it to be, otherwise retry the entire
1079          * operation.
1080          */
1081         if (get_futex_value_locked(&uval2, uaddr))
1082                 goto out_efault;
1083
1084         if (uval != uval2)
1085                 goto out_eagain;
1086
1087         /*
1088          * Handle the owner died case:
1089          */
1090         if (uval & FUTEX_OWNER_DIED) {
1091                 /*
1092                  * exit_pi_state_list sets owner to NULL and wakes the
1093                  * topmost waiter. The task which acquires the
1094                  * pi_state->rt_mutex will fixup owner.
1095                  */
1096                 if (!pi_state->owner) {
1097                         /*
1098                          * No pi state owner, but the user space TID
1099                          * is not 0. Inconsistent state. [5]
1100                          */
1101                         if (pid)
1102                                 goto out_einval;
1103                         /*
1104                          * Take a ref on the state and return success. [4]
1105                          */
1106                         goto out_attach;
1107                 }
1108
1109                 /*
1110                  * If TID is 0, then either the dying owner has not
1111                  * yet executed exit_pi_state_list() or some waiter
1112                  * acquired the rtmutex in the pi state, but did not
1113                  * yet fixup the TID in user space.
1114                  *
1115                  * Take a ref on the state and return success. [6]
1116                  */
1117                 if (!pid)
1118                         goto out_attach;
1119         } else {
1120                 /*
1121                  * If the owner died bit is not set, then the pi_state
1122                  * must have an owner. [7]
1123                  */
1124                 if (!pi_state->owner)
1125                         goto out_einval;
1126         }
1127
1128         /*
1129          * Bail out if user space manipulated the futex value. If pi
1130          * state exists then the owner TID must be the same as the
1131          * user space TID. [9/10]
1132          */
1133         if (pid != task_pid_vnr(pi_state->owner))
1134                 goto out_einval;
1135
1136 out_attach:
1137         get_pi_state(pi_state);
1138         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1139         *ps = pi_state;
1140         return 0;
1141
1142 out_einval:
1143         ret = -EINVAL;
1144         goto out_error;
1145
1146 out_eagain:
1147         ret = -EAGAIN;
1148         goto out_error;
1149
1150 out_efault:
1151         ret = -EFAULT;
1152         goto out_error;
1153
1154 out_error:
1155         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1156         return ret;
1157 }
1158
1159 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1160                             struct task_struct *tsk)
1161 {
1162         u32 uval2;
1163
1164         /*
1165          * If PF_EXITPIDONE is not yet set, then try again.
1166          */
1167         if (tsk && !(tsk->flags & PF_EXITPIDONE))
1168                 return -EAGAIN;
1169
1170         /*
1171          * Reread the user space value to handle the following situation:
1172          *
1173          * CPU0                         CPU1
1174          *
1175          * sys_exit()                   sys_futex()
1176          *  do_exit()                    futex_lock_pi()
1177          *                                futex_lock_pi_atomic()
1178          *   exit_signals(tsk)              No waiters:
1179          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1180          *  mm_release(tsk)                 Set waiter bit
1181          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1182          *      Set owner died              attach_to_pi_owner() {
1183          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1184          *   }                               if (!tsk->flags & PF_EXITING) {
1185          *  ...                                attach();
1186          *  tsk->flags |= PF_EXITPIDONE;     } else {
1187          *                                     if (!(tsk->flags & PF_EXITPIDONE))
1188          *                                       return -EAGAIN;
1189          *                                     return -ESRCH; <--- FAIL
1190          *                                   }
1191          *
1192          * Returning ESRCH unconditionally is wrong here because the
1193          * user space value has been changed by the exiting task.
1194          *
1195          * The same logic applies to the case where the exiting task is
1196          * already gone.
1197          */
1198         if (get_futex_value_locked(&uval2, uaddr))
1199                 return -EFAULT;
1200
1201         /* If the user space value has changed, try again. */
1202         if (uval2 != uval)
1203                 return -EAGAIN;
1204
1205         /*
1206          * The exiting task did not have a robust list, the robust list was
1207          * corrupted or the user space value in *uaddr is simply bogus.
1208          * Give up and tell user space.
1209          */
1210         return -ESRCH;
1211 }
1212
1213 /*
1214  * Lookup the task for the TID provided from user space and attach to
1215  * it after doing proper sanity checks.
1216  */
1217 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1218                               struct futex_pi_state **ps)
1219 {
1220         pid_t pid = uval & FUTEX_TID_MASK;
1221         struct futex_pi_state *pi_state;
1222         struct task_struct *p;
1223
1224         /*
1225          * We are the first waiter - try to look up the real owner and attach
1226          * the new pi_state to it, but bail out when TID = 0 [1]
1227          *
1228          * The !pid check is paranoid. None of the call sites should end up
1229          * with pid == 0, but better safe than sorry. Let the caller retry
1230          */
1231         if (!pid)
1232                 return -EAGAIN;
1233         p = find_get_task_by_vpid(pid);
1234         if (!p)
1235                 return handle_exit_race(uaddr, uval, NULL);
1236
1237         if (unlikely(p->flags & PF_KTHREAD)) {
1238                 put_task_struct(p);
1239                 return -EPERM;
1240         }
1241
1242         /*
1243          * We need to look at the task state flags to figure out,
1244          * whether the task is exiting. To protect against the do_exit
1245          * change of the task flags, we do this protected by
1246          * p->pi_lock:
1247          */
1248         raw_spin_lock_irq(&p->pi_lock);
1249         if (unlikely(p->flags & PF_EXITING)) {
1250                 /*
1251                  * The task is on the way out. When PF_EXITPIDONE is
1252                  * set, we know that the task has finished the
1253                  * cleanup:
1254                  */
1255                 int ret = handle_exit_race(uaddr, uval, p);
1256
1257                 raw_spin_unlock_irq(&p->pi_lock);
1258                 put_task_struct(p);
1259                 return ret;
1260         }
1261
1262         /*
1263          * No existing pi state. First waiter. [2]
1264          *
1265          * This creates pi_state, we have hb->lock held, this means nothing can
1266          * observe this state, wait_lock is irrelevant.
1267          */
1268         pi_state = alloc_pi_state();
1269
1270         /*
1271          * Initialize the pi_mutex in locked state and make @p
1272          * the owner of it:
1273          */
1274         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1275
1276         /* Store the key for possible exit cleanups: */
1277         pi_state->key = *key;
1278
1279         WARN_ON(!list_empty(&pi_state->list));
1280         list_add(&pi_state->list, &p->pi_state_list);
1281         /*
1282          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1283          * because there is no concurrency as the object is not published yet.
1284          */
1285         pi_state->owner = p;
1286         raw_spin_unlock_irq(&p->pi_lock);
1287
1288         put_task_struct(p);
1289
1290         *ps = pi_state;
1291
1292         return 0;
1293 }
1294
1295 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1296                            struct futex_hash_bucket *hb,
1297                            union futex_key *key, struct futex_pi_state **ps)
1298 {
1299         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1300
1301         /*
1302          * If there is a waiter on that futex, validate it and
1303          * attach to the pi_state when the validation succeeds.
1304          */
1305         if (top_waiter)
1306                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1307
1308         /*
1309          * We are the first waiter - try to look up the owner based on
1310          * @uval and attach to it.
1311          */
1312         return attach_to_pi_owner(uaddr, uval, key, ps);
1313 }
1314
1315 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1316 {
1317         u32 uninitialized_var(curval);
1318
1319         if (unlikely(should_fail_futex(true)))
1320                 return -EFAULT;
1321
1322         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1323                 return -EFAULT;
1324
1325         /* If user space value changed, let the caller retry */
1326         return curval != uval ? -EAGAIN : 0;
1327 }
1328
1329 /**
1330  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1331  * @uaddr:              the pi futex user address
1332  * @hb:                 the pi futex hash bucket
1333  * @key:                the futex key associated with uaddr and hb
1334  * @ps:                 the pi_state pointer where we store the result of the
1335  *                      lookup
1336  * @task:               the task to perform the atomic lock work for.  This will
1337  *                      be "current" except in the case of requeue pi.
1338  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1339  *
1340  * Return:
1341  *  -  0 - ready to wait;
1342  *  -  1 - acquired the lock;
1343  *  - <0 - error
1344  *
1345  * The hb->lock and futex_key refs shall be held by the caller.
1346  */
1347 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1348                                 union futex_key *key,
1349                                 struct futex_pi_state **ps,
1350                                 struct task_struct *task, int set_waiters)
1351 {
1352         u32 uval, newval, vpid = task_pid_vnr(task);
1353         struct futex_q *top_waiter;
1354         int ret;
1355
1356         /*
1357          * Read the user space value first so we can validate a few
1358          * things before proceeding further.
1359          */
1360         if (get_futex_value_locked(&uval, uaddr))
1361                 return -EFAULT;
1362
1363         if (unlikely(should_fail_futex(true)))
1364                 return -EFAULT;
1365
1366         /*
1367          * Detect deadlocks.
1368          */
1369         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1370                 return -EDEADLK;
1371
1372         if ((unlikely(should_fail_futex(true))))
1373                 return -EDEADLK;
1374
1375         /*
1376          * Lookup existing state first. If it exists, try to attach to
1377          * its pi_state.
1378          */
1379         top_waiter = futex_top_waiter(hb, key);
1380         if (top_waiter)
1381                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1382
1383         /*
1384          * No waiter and user TID is 0. We are here because the
1385          * waiters or the owner died bit is set or called from
1386          * requeue_cmp_pi or for whatever reason something took the
1387          * syscall.
1388          */
1389         if (!(uval & FUTEX_TID_MASK)) {
1390                 /*
1391                  * We take over the futex. No other waiters and the user space
1392                  * TID is 0. We preserve the owner died bit.
1393                  */
1394                 newval = uval & FUTEX_OWNER_DIED;
1395                 newval |= vpid;
1396
1397                 /* The futex requeue_pi code can enforce the waiters bit */
1398                 if (set_waiters)
1399                         newval |= FUTEX_WAITERS;
1400
1401                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1402                 /* If the take over worked, return 1 */
1403                 return ret < 0 ? ret : 1;
1404         }
1405
1406         /*
1407          * First waiter. Set the waiters bit before attaching ourself to
1408          * the owner. If owner tries to unlock, it will be forced into
1409          * the kernel and blocked on hb->lock.
1410          */
1411         newval = uval | FUTEX_WAITERS;
1412         ret = lock_pi_update_atomic(uaddr, uval, newval);
1413         if (ret)
1414                 return ret;
1415         /*
1416          * If the update of the user space value succeeded, we try to
1417          * attach to the owner. If that fails, no harm done, we only
1418          * set the FUTEX_WAITERS bit in the user space variable.
1419          */
1420         return attach_to_pi_owner(uaddr, newval, key, ps);
1421 }
1422
1423 /**
1424  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1425  * @q:  The futex_q to unqueue
1426  *
1427  * The q->lock_ptr must not be NULL and must be held by the caller.
1428  */
1429 static void __unqueue_futex(struct futex_q *q)
1430 {
1431         struct futex_hash_bucket *hb;
1432
1433         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1434                 return;
1435         lockdep_assert_held(q->lock_ptr);
1436
1437         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1438         plist_del(&q->list, &hb->chain);
1439         hb_waiters_dec(hb);
1440 }
1441
1442 /*
1443  * The hash bucket lock must be held when this is called.
1444  * Afterwards, the futex_q must not be accessed. Callers
1445  * must ensure to later call wake_up_q() for the actual
1446  * wakeups to occur.
1447  */
1448 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1449 {
1450         struct task_struct *p = q->task;
1451
1452         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1453                 return;
1454
1455         /*
1456          * Queue the task for later wakeup for after we've released
1457          * the hb->lock. wake_q_add() grabs reference to p.
1458          */
1459         wake_q_add(wake_q, p);
1460         __unqueue_futex(q);
1461         /*
1462          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1463          * is written, without taking any locks. This is possible in the event
1464          * of a spurious wakeup, for example. A memory barrier is required here
1465          * to prevent the following store to lock_ptr from getting ahead of the
1466          * plist_del in __unqueue_futex().
1467          */
1468         smp_store_release(&q->lock_ptr, NULL);
1469 }
1470
1471 /*
1472  * Caller must hold a reference on @pi_state.
1473  */
1474 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1475 {
1476         u32 uninitialized_var(curval), newval;
1477         struct task_struct *new_owner;
1478         bool postunlock = false;
1479         DEFINE_WAKE_Q(wake_q);
1480         int ret = 0;
1481
1482         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1483         if (WARN_ON_ONCE(!new_owner)) {
1484                 /*
1485                  * As per the comment in futex_unlock_pi() this should not happen.
1486                  *
1487                  * When this happens, give up our locks and try again, giving
1488                  * the futex_lock_pi() instance time to complete, either by
1489                  * waiting on the rtmutex or removing itself from the futex
1490                  * queue.
1491                  */
1492                 ret = -EAGAIN;
1493                 goto out_unlock;
1494         }
1495
1496         /*
1497          * We pass it to the next owner. The WAITERS bit is always kept
1498          * enabled while there is PI state around. We cleanup the owner
1499          * died bit, because we are the owner.
1500          */
1501         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1502
1503         if (unlikely(should_fail_futex(true)))
1504                 ret = -EFAULT;
1505
1506         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1507                 ret = -EFAULT;
1508
1509         } else if (curval != uval) {
1510                 /*
1511                  * If a unconditional UNLOCK_PI operation (user space did not
1512                  * try the TID->0 transition) raced with a waiter setting the
1513                  * FUTEX_WAITERS flag between get_user() and locking the hash
1514                  * bucket lock, retry the operation.
1515                  */
1516                 if ((FUTEX_TID_MASK & curval) == uval)
1517                         ret = -EAGAIN;
1518                 else
1519                         ret = -EINVAL;
1520         }
1521
1522         if (ret)
1523                 goto out_unlock;
1524
1525         /*
1526          * This is a point of no return; once we modify the uval there is no
1527          * going back and subsequent operations must not fail.
1528          */
1529
1530         raw_spin_lock(&pi_state->owner->pi_lock);
1531         WARN_ON(list_empty(&pi_state->list));
1532         list_del_init(&pi_state->list);
1533         raw_spin_unlock(&pi_state->owner->pi_lock);
1534
1535         raw_spin_lock(&new_owner->pi_lock);
1536         WARN_ON(!list_empty(&pi_state->list));
1537         list_add(&pi_state->list, &new_owner->pi_state_list);
1538         pi_state->owner = new_owner;
1539         raw_spin_unlock(&new_owner->pi_lock);
1540
1541         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1542
1543 out_unlock:
1544         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1545
1546         if (postunlock)
1547                 rt_mutex_postunlock(&wake_q);
1548
1549         return ret;
1550 }
1551
1552 /*
1553  * Express the locking dependencies for lockdep:
1554  */
1555 static inline void
1556 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1557 {
1558         if (hb1 <= hb2) {
1559                 spin_lock(&hb1->lock);
1560                 if (hb1 < hb2)
1561                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1562         } else { /* hb1 > hb2 */
1563                 spin_lock(&hb2->lock);
1564                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1565         }
1566 }
1567
1568 static inline void
1569 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1570 {
1571         spin_unlock(&hb1->lock);
1572         if (hb1 != hb2)
1573                 spin_unlock(&hb2->lock);
1574 }
1575
1576 /*
1577  * Wake up waiters matching bitset queued on this futex (uaddr).
1578  */
1579 static int
1580 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1581 {
1582         struct futex_hash_bucket *hb;
1583         struct futex_q *this, *next;
1584         union futex_key key = FUTEX_KEY_INIT;
1585         int ret;
1586         DEFINE_WAKE_Q(wake_q);
1587
1588         if (!bitset)
1589                 return -EINVAL;
1590
1591         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1592         if (unlikely(ret != 0))
1593                 goto out;
1594
1595         hb = hash_futex(&key);
1596
1597         /* Make sure we really have tasks to wakeup */
1598         if (!hb_waiters_pending(hb))
1599                 goto out_put_key;
1600
1601         spin_lock(&hb->lock);
1602
1603         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1604                 if (match_futex (&this->key, &key)) {
1605                         if (this->pi_state || this->rt_waiter) {
1606                                 ret = -EINVAL;
1607                                 break;
1608                         }
1609
1610                         /* Check if one of the bits is set in both bitsets */
1611                         if (!(this->bitset & bitset))
1612                                 continue;
1613
1614                         mark_wake_futex(&wake_q, this);
1615                         if (++ret >= nr_wake)
1616                                 break;
1617                 }
1618         }
1619
1620         spin_unlock(&hb->lock);
1621         wake_up_q(&wake_q);
1622 out_put_key:
1623         put_futex_key(&key);
1624 out:
1625         return ret;
1626 }
1627
1628 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1629 {
1630         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1631         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1632         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1633         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1634         int oldval, ret;
1635
1636         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1637                 if (oparg < 0 || oparg > 31) {
1638                         char comm[sizeof(current->comm)];
1639                         /*
1640                          * kill this print and return -EINVAL when userspace
1641                          * is sane again
1642                          */
1643                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1644                                         get_task_comm(comm, current), oparg);
1645                         oparg &= 31;
1646                 }
1647                 oparg = 1 << oparg;
1648         }
1649
1650         if (!access_ok(uaddr, sizeof(u32)))
1651                 return -EFAULT;
1652
1653         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1654         if (ret)
1655                 return ret;
1656
1657         switch (cmp) {
1658         case FUTEX_OP_CMP_EQ:
1659                 return oldval == cmparg;
1660         case FUTEX_OP_CMP_NE:
1661                 return oldval != cmparg;
1662         case FUTEX_OP_CMP_LT:
1663                 return oldval < cmparg;
1664         case FUTEX_OP_CMP_GE:
1665                 return oldval >= cmparg;
1666         case FUTEX_OP_CMP_LE:
1667                 return oldval <= cmparg;
1668         case FUTEX_OP_CMP_GT:
1669                 return oldval > cmparg;
1670         default:
1671                 return -ENOSYS;
1672         }
1673 }
1674
1675 /*
1676  * Wake up all waiters hashed on the physical page that is mapped
1677  * to this virtual address:
1678  */
1679 static int
1680 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1681               int nr_wake, int nr_wake2, int op)
1682 {
1683         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1684         struct futex_hash_bucket *hb1, *hb2;
1685         struct futex_q *this, *next;
1686         int ret, op_ret;
1687         DEFINE_WAKE_Q(wake_q);
1688
1689 retry:
1690         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1691         if (unlikely(ret != 0))
1692                 goto out;
1693         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1694         if (unlikely(ret != 0))
1695                 goto out_put_key1;
1696
1697         hb1 = hash_futex(&key1);
1698         hb2 = hash_futex(&key2);
1699
1700 retry_private:
1701         double_lock_hb(hb1, hb2);
1702         op_ret = futex_atomic_op_inuser(op, uaddr2);
1703         if (unlikely(op_ret < 0)) {
1704
1705                 double_unlock_hb(hb1, hb2);
1706
1707 #ifndef CONFIG_MMU
1708                 /*
1709                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1710                  * but we might get them from range checking
1711                  */
1712                 ret = op_ret;
1713                 goto out_put_keys;
1714 #endif
1715
1716                 if (unlikely(op_ret != -EFAULT)) {
1717                         ret = op_ret;
1718                         goto out_put_keys;
1719                 }
1720
1721                 ret = fault_in_user_writeable(uaddr2);
1722                 if (ret)
1723                         goto out_put_keys;
1724
1725                 if (!(flags & FLAGS_SHARED))
1726                         goto retry_private;
1727
1728                 put_futex_key(&key2);
1729                 put_futex_key(&key1);
1730                 goto retry;
1731         }
1732
1733         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1734                 if (match_futex (&this->key, &key1)) {
1735                         if (this->pi_state || this->rt_waiter) {
1736                                 ret = -EINVAL;
1737                                 goto out_unlock;
1738                         }
1739                         mark_wake_futex(&wake_q, this);
1740                         if (++ret >= nr_wake)
1741                                 break;
1742                 }
1743         }
1744
1745         if (op_ret > 0) {
1746                 op_ret = 0;
1747                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1748                         if (match_futex (&this->key, &key2)) {
1749                                 if (this->pi_state || this->rt_waiter) {
1750                                         ret = -EINVAL;
1751                                         goto out_unlock;
1752                                 }
1753                                 mark_wake_futex(&wake_q, this);
1754                                 if (++op_ret >= nr_wake2)
1755                                         break;
1756                         }
1757                 }
1758                 ret += op_ret;
1759         }
1760
1761 out_unlock:
1762         double_unlock_hb(hb1, hb2);
1763         wake_up_q(&wake_q);
1764 out_put_keys:
1765         put_futex_key(&key2);
1766 out_put_key1:
1767         put_futex_key(&key1);
1768 out:
1769         return ret;
1770 }
1771
1772 /**
1773  * requeue_futex() - Requeue a futex_q from one hb to another
1774  * @q:          the futex_q to requeue
1775  * @hb1:        the source hash_bucket
1776  * @hb2:        the target hash_bucket
1777  * @key2:       the new key for the requeued futex_q
1778  */
1779 static inline
1780 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1781                    struct futex_hash_bucket *hb2, union futex_key *key2)
1782 {
1783
1784         /*
1785          * If key1 and key2 hash to the same bucket, no need to
1786          * requeue.
1787          */
1788         if (likely(&hb1->chain != &hb2->chain)) {
1789                 plist_del(&q->list, &hb1->chain);
1790                 hb_waiters_dec(hb1);
1791                 hb_waiters_inc(hb2);
1792                 plist_add(&q->list, &hb2->chain);
1793                 q->lock_ptr = &hb2->lock;
1794         }
1795         get_futex_key_refs(key2);
1796         q->key = *key2;
1797 }
1798
1799 /**
1800  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1801  * @q:          the futex_q
1802  * @key:        the key of the requeue target futex
1803  * @hb:         the hash_bucket of the requeue target futex
1804  *
1805  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1806  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1807  * to the requeue target futex so the waiter can detect the wakeup on the right
1808  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1809  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1810  * to protect access to the pi_state to fixup the owner later.  Must be called
1811  * with both q->lock_ptr and hb->lock held.
1812  */
1813 static inline
1814 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1815                            struct futex_hash_bucket *hb)
1816 {
1817         get_futex_key_refs(key);
1818         q->key = *key;
1819
1820         __unqueue_futex(q);
1821
1822         WARN_ON(!q->rt_waiter);
1823         q->rt_waiter = NULL;
1824
1825         q->lock_ptr = &hb->lock;
1826
1827         wake_up_state(q->task, TASK_NORMAL);
1828 }
1829
1830 /**
1831  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1832  * @pifutex:            the user address of the to futex
1833  * @hb1:                the from futex hash bucket, must be locked by the caller
1834  * @hb2:                the to futex hash bucket, must be locked by the caller
1835  * @key1:               the from futex key
1836  * @key2:               the to futex key
1837  * @ps:                 address to store the pi_state pointer
1838  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1839  *
1840  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1841  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1842  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1843  * hb1 and hb2 must be held by the caller.
1844  *
1845  * Return:
1846  *  -  0 - failed to acquire the lock atomically;
1847  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1848  *  - <0 - error
1849  */
1850 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1851                                  struct futex_hash_bucket *hb1,
1852                                  struct futex_hash_bucket *hb2,
1853                                  union futex_key *key1, union futex_key *key2,
1854                                  struct futex_pi_state **ps, int set_waiters)
1855 {
1856         struct futex_q *top_waiter = NULL;
1857         u32 curval;
1858         int ret, vpid;
1859
1860         if (get_futex_value_locked(&curval, pifutex))
1861                 return -EFAULT;
1862
1863         if (unlikely(should_fail_futex(true)))
1864                 return -EFAULT;
1865
1866         /*
1867          * Find the top_waiter and determine if there are additional waiters.
1868          * If the caller intends to requeue more than 1 waiter to pifutex,
1869          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1870          * as we have means to handle the possible fault.  If not, don't set
1871          * the bit unecessarily as it will force the subsequent unlock to enter
1872          * the kernel.
1873          */
1874         top_waiter = futex_top_waiter(hb1, key1);
1875
1876         /* There are no waiters, nothing for us to do. */
1877         if (!top_waiter)
1878                 return 0;
1879
1880         /* Ensure we requeue to the expected futex. */
1881         if (!match_futex(top_waiter->requeue_pi_key, key2))
1882                 return -EINVAL;
1883
1884         /*
1885          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1886          * the contended case or if set_waiters is 1.  The pi_state is returned
1887          * in ps in contended cases.
1888          */
1889         vpid = task_pid_vnr(top_waiter->task);
1890         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1891                                    set_waiters);
1892         if (ret == 1) {
1893                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1894                 return vpid;
1895         }
1896         return ret;
1897 }
1898
1899 /**
1900  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1901  * @uaddr1:     source futex user address
1902  * @flags:      futex flags (FLAGS_SHARED, etc.)
1903  * @uaddr2:     target futex user address
1904  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1905  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1906  * @cmpval:     @uaddr1 expected value (or %NULL)
1907  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1908  *              pi futex (pi to pi requeue is not supported)
1909  *
1910  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1911  * uaddr2 atomically on behalf of the top waiter.
1912  *
1913  * Return:
1914  *  - >=0 - on success, the number of tasks requeued or woken;
1915  *  -  <0 - on error
1916  */
1917 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1918                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1919                          u32 *cmpval, int requeue_pi)
1920 {
1921         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1922         int drop_count = 0, task_count = 0, ret;
1923         struct futex_pi_state *pi_state = NULL;
1924         struct futex_hash_bucket *hb1, *hb2;
1925         struct futex_q *this, *next;
1926         DEFINE_WAKE_Q(wake_q);
1927
1928         if (nr_wake < 0 || nr_requeue < 0)
1929                 return -EINVAL;
1930
1931         /*
1932          * When PI not supported: return -ENOSYS if requeue_pi is true,
1933          * consequently the compiler knows requeue_pi is always false past
1934          * this point which will optimize away all the conditional code
1935          * further down.
1936          */
1937         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1938                 return -ENOSYS;
1939
1940         if (requeue_pi) {
1941                 /*
1942                  * Requeue PI only works on two distinct uaddrs. This
1943                  * check is only valid for private futexes. See below.
1944                  */
1945                 if (uaddr1 == uaddr2)
1946                         return -EINVAL;
1947
1948                 /*
1949                  * requeue_pi requires a pi_state, try to allocate it now
1950                  * without any locks in case it fails.
1951                  */
1952                 if (refill_pi_state_cache())
1953                         return -ENOMEM;
1954                 /*
1955                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1956                  * + nr_requeue, since it acquires the rt_mutex prior to
1957                  * returning to userspace, so as to not leave the rt_mutex with
1958                  * waiters and no owner.  However, second and third wake-ups
1959                  * cannot be predicted as they involve race conditions with the
1960                  * first wake and a fault while looking up the pi_state.  Both
1961                  * pthread_cond_signal() and pthread_cond_broadcast() should
1962                  * use nr_wake=1.
1963                  */
1964                 if (nr_wake != 1)
1965                         return -EINVAL;
1966         }
1967
1968 retry:
1969         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1970         if (unlikely(ret != 0))
1971                 goto out;
1972         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1973                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1974         if (unlikely(ret != 0))
1975                 goto out_put_key1;
1976
1977         /*
1978          * The check above which compares uaddrs is not sufficient for
1979          * shared futexes. We need to compare the keys:
1980          */
1981         if (requeue_pi && match_futex(&key1, &key2)) {
1982                 ret = -EINVAL;
1983                 goto out_put_keys;
1984         }
1985
1986         hb1 = hash_futex(&key1);
1987         hb2 = hash_futex(&key2);
1988
1989 retry_private:
1990         hb_waiters_inc(hb2);
1991         double_lock_hb(hb1, hb2);
1992
1993         if (likely(cmpval != NULL)) {
1994                 u32 curval;
1995
1996                 ret = get_futex_value_locked(&curval, uaddr1);
1997
1998                 if (unlikely(ret)) {
1999                         double_unlock_hb(hb1, hb2);
2000                         hb_waiters_dec(hb2);
2001
2002                         ret = get_user(curval, uaddr1);
2003                         if (ret)
2004                                 goto out_put_keys;
2005
2006                         if (!(flags & FLAGS_SHARED))
2007                                 goto retry_private;
2008
2009                         put_futex_key(&key2);
2010                         put_futex_key(&key1);
2011                         goto retry;
2012                 }
2013                 if (curval != *cmpval) {
2014                         ret = -EAGAIN;
2015                         goto out_unlock;
2016                 }
2017         }
2018
2019         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2020                 /*
2021                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2022                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2023                  * bit.  We force this here where we are able to easily handle
2024                  * faults rather in the requeue loop below.
2025                  */
2026                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2027                                                  &key2, &pi_state, nr_requeue);
2028
2029                 /*
2030                  * At this point the top_waiter has either taken uaddr2 or is
2031                  * waiting on it.  If the former, then the pi_state will not
2032                  * exist yet, look it up one more time to ensure we have a
2033                  * reference to it. If the lock was taken, ret contains the
2034                  * vpid of the top waiter task.
2035                  * If the lock was not taken, we have pi_state and an initial
2036                  * refcount on it. In case of an error we have nothing.
2037                  */
2038                 if (ret > 0) {
2039                         WARN_ON(pi_state);
2040                         drop_count++;
2041                         task_count++;
2042                         /*
2043                          * If we acquired the lock, then the user space value
2044                          * of uaddr2 should be vpid. It cannot be changed by
2045                          * the top waiter as it is blocked on hb2 lock if it
2046                          * tries to do so. If something fiddled with it behind
2047                          * our back the pi state lookup might unearth it. So
2048                          * we rather use the known value than rereading and
2049                          * handing potential crap to lookup_pi_state.
2050                          *
2051                          * If that call succeeds then we have pi_state and an
2052                          * initial refcount on it.
2053                          */
2054                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2055                 }
2056
2057                 switch (ret) {
2058                 case 0:
2059                         /* We hold a reference on the pi state. */
2060                         break;
2061
2062                         /* If the above failed, then pi_state is NULL */
2063                 case -EFAULT:
2064                         double_unlock_hb(hb1, hb2);
2065                         hb_waiters_dec(hb2);
2066                         put_futex_key(&key2);
2067                         put_futex_key(&key1);
2068                         ret = fault_in_user_writeable(uaddr2);
2069                         if (!ret)
2070                                 goto retry;
2071                         goto out;
2072                 case -EAGAIN:
2073                         /*
2074                          * Two reasons for this:
2075                          * - Owner is exiting and we just wait for the
2076                          *   exit to complete.
2077                          * - The user space value changed.
2078                          */
2079                         double_unlock_hb(hb1, hb2);
2080                         hb_waiters_dec(hb2);
2081                         put_futex_key(&key2);
2082                         put_futex_key(&key1);
2083                         cond_resched();
2084                         goto retry;
2085                 default:
2086                         goto out_unlock;
2087                 }
2088         }
2089
2090         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2091                 if (task_count - nr_wake >= nr_requeue)
2092                         break;
2093
2094                 if (!match_futex(&this->key, &key1))
2095                         continue;
2096
2097                 /*
2098                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2099                  * be paired with each other and no other futex ops.
2100                  *
2101                  * We should never be requeueing a futex_q with a pi_state,
2102                  * which is awaiting a futex_unlock_pi().
2103                  */
2104                 if ((requeue_pi && !this->rt_waiter) ||
2105                     (!requeue_pi && this->rt_waiter) ||
2106                     this->pi_state) {
2107                         ret = -EINVAL;
2108                         break;
2109                 }
2110
2111                 /*
2112                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2113                  * lock, we already woke the top_waiter.  If not, it will be
2114                  * woken by futex_unlock_pi().
2115                  */
2116                 if (++task_count <= nr_wake && !requeue_pi) {
2117                         mark_wake_futex(&wake_q, this);
2118                         continue;
2119                 }
2120
2121                 /* Ensure we requeue to the expected futex for requeue_pi. */
2122                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2123                         ret = -EINVAL;
2124                         break;
2125                 }
2126
2127                 /*
2128                  * Requeue nr_requeue waiters and possibly one more in the case
2129                  * of requeue_pi if we couldn't acquire the lock atomically.
2130                  */
2131                 if (requeue_pi) {
2132                         /*
2133                          * Prepare the waiter to take the rt_mutex. Take a
2134                          * refcount on the pi_state and store the pointer in
2135                          * the futex_q object of the waiter.
2136                          */
2137                         get_pi_state(pi_state);
2138                         this->pi_state = pi_state;
2139                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2140                                                         this->rt_waiter,
2141                                                         this->task);
2142                         if (ret == 1) {
2143                                 /*
2144                                  * We got the lock. We do neither drop the
2145                                  * refcount on pi_state nor clear
2146                                  * this->pi_state because the waiter needs the
2147                                  * pi_state for cleaning up the user space
2148                                  * value. It will drop the refcount after
2149                                  * doing so.
2150                                  */
2151                                 requeue_pi_wake_futex(this, &key2, hb2);
2152                                 drop_count++;
2153                                 continue;
2154                         } else if (ret) {
2155                                 /*
2156                                  * rt_mutex_start_proxy_lock() detected a
2157                                  * potential deadlock when we tried to queue
2158                                  * that waiter. Drop the pi_state reference
2159                                  * which we took above and remove the pointer
2160                                  * to the state from the waiters futex_q
2161                                  * object.
2162                                  */
2163                                 this->pi_state = NULL;
2164                                 put_pi_state(pi_state);
2165                                 /*
2166                                  * We stop queueing more waiters and let user
2167                                  * space deal with the mess.
2168                                  */
2169                                 break;
2170                         }
2171                 }
2172                 requeue_futex(this, hb1, hb2, &key2);
2173                 drop_count++;
2174         }
2175
2176         /*
2177          * We took an extra initial reference to the pi_state either
2178          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2179          * need to drop it here again.
2180          */
2181         put_pi_state(pi_state);
2182
2183 out_unlock:
2184         double_unlock_hb(hb1, hb2);
2185         wake_up_q(&wake_q);
2186         hb_waiters_dec(hb2);
2187
2188         /*
2189          * drop_futex_key_refs() must be called outside the spinlocks. During
2190          * the requeue we moved futex_q's from the hash bucket at key1 to the
2191          * one at key2 and updated their key pointer.  We no longer need to
2192          * hold the references to key1.
2193          */
2194         while (--drop_count >= 0)
2195                 drop_futex_key_refs(&key1);
2196
2197 out_put_keys:
2198         put_futex_key(&key2);
2199 out_put_key1:
2200         put_futex_key(&key1);
2201 out:
2202         return ret ? ret : task_count;
2203 }
2204
2205 /* The key must be already stored in q->key. */
2206 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2207         __acquires(&hb->lock)
2208 {
2209         struct futex_hash_bucket *hb;
2210
2211         hb = hash_futex(&q->key);
2212
2213         /*
2214          * Increment the counter before taking the lock so that
2215          * a potential waker won't miss a to-be-slept task that is
2216          * waiting for the spinlock. This is safe as all queue_lock()
2217          * users end up calling queue_me(). Similarly, for housekeeping,
2218          * decrement the counter at queue_unlock() when some error has
2219          * occurred and we don't end up adding the task to the list.
2220          */
2221         hb_waiters_inc(hb);
2222
2223         q->lock_ptr = &hb->lock;
2224
2225         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2226         return hb;
2227 }
2228
2229 static inline void
2230 queue_unlock(struct futex_hash_bucket *hb)
2231         __releases(&hb->lock)
2232 {
2233         spin_unlock(&hb->lock);
2234         hb_waiters_dec(hb);
2235 }
2236
2237 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2238 {
2239         int prio;
2240
2241         /*
2242          * The priority used to register this element is
2243          * - either the real thread-priority for the real-time threads
2244          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2245          * - or MAX_RT_PRIO for non-RT threads.
2246          * Thus, all RT-threads are woken first in priority order, and
2247          * the others are woken last, in FIFO order.
2248          */
2249         prio = min(current->normal_prio, MAX_RT_PRIO);
2250
2251         plist_node_init(&q->list, prio);
2252         plist_add(&q->list, &hb->chain);
2253         q->task = current;
2254 }
2255
2256 /**
2257  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2258  * @q:  The futex_q to enqueue
2259  * @hb: The destination hash bucket
2260  *
2261  * The hb->lock must be held by the caller, and is released here. A call to
2262  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2263  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2264  * or nothing if the unqueue is done as part of the wake process and the unqueue
2265  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2266  * an example).
2267  */
2268 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2269         __releases(&hb->lock)
2270 {
2271         __queue_me(q, hb);
2272         spin_unlock(&hb->lock);
2273 }
2274
2275 /**
2276  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2277  * @q:  The futex_q to unqueue
2278  *
2279  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2280  * be paired with exactly one earlier call to queue_me().
2281  *
2282  * Return:
2283  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2284  *  - 0 - if the futex_q was already removed by the waking thread
2285  */
2286 static int unqueue_me(struct futex_q *q)
2287 {
2288         spinlock_t *lock_ptr;
2289         int ret = 0;
2290
2291         /* In the common case we don't take the spinlock, which is nice. */
2292 retry:
2293         /*
2294          * q->lock_ptr can change between this read and the following spin_lock.
2295          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2296          * optimizing lock_ptr out of the logic below.
2297          */
2298         lock_ptr = READ_ONCE(q->lock_ptr);
2299         if (lock_ptr != NULL) {
2300                 spin_lock(lock_ptr);
2301                 /*
2302                  * q->lock_ptr can change between reading it and
2303                  * spin_lock(), causing us to take the wrong lock.  This
2304                  * corrects the race condition.
2305                  *
2306                  * Reasoning goes like this: if we have the wrong lock,
2307                  * q->lock_ptr must have changed (maybe several times)
2308                  * between reading it and the spin_lock().  It can
2309                  * change again after the spin_lock() but only if it was
2310                  * already changed before the spin_lock().  It cannot,
2311                  * however, change back to the original value.  Therefore
2312                  * we can detect whether we acquired the correct lock.
2313                  */
2314                 if (unlikely(lock_ptr != q->lock_ptr)) {
2315                         spin_unlock(lock_ptr);
2316                         goto retry;
2317                 }
2318                 __unqueue_futex(q);
2319
2320                 BUG_ON(q->pi_state);
2321
2322                 spin_unlock(lock_ptr);
2323                 ret = 1;
2324         }
2325
2326         drop_futex_key_refs(&q->key);
2327         return ret;
2328 }
2329
2330 /*
2331  * PI futexes can not be requeued and must remove themself from the
2332  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2333  * and dropped here.
2334  */
2335 static void unqueue_me_pi(struct futex_q *q)
2336         __releases(q->lock_ptr)
2337 {
2338         __unqueue_futex(q);
2339
2340         BUG_ON(!q->pi_state);
2341         put_pi_state(q->pi_state);
2342         q->pi_state = NULL;
2343
2344         spin_unlock(q->lock_ptr);
2345 }
2346
2347 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2348                                 struct task_struct *argowner)
2349 {
2350         struct futex_pi_state *pi_state = q->pi_state;
2351         u32 uval, uninitialized_var(curval), newval;
2352         struct task_struct *oldowner, *newowner;
2353         u32 newtid;
2354         int ret;
2355
2356         lockdep_assert_held(q->lock_ptr);
2357
2358         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2359
2360         oldowner = pi_state->owner;
2361
2362         /*
2363          * We are here because either:
2364          *
2365          *  - we stole the lock and pi_state->owner needs updating to reflect
2366          *    that (@argowner == current),
2367          *
2368          * or:
2369          *
2370          *  - someone stole our lock and we need to fix things to point to the
2371          *    new owner (@argowner == NULL).
2372          *
2373          * Either way, we have to replace the TID in the user space variable.
2374          * This must be atomic as we have to preserve the owner died bit here.
2375          *
2376          * Note: We write the user space value _before_ changing the pi_state
2377          * because we can fault here. Imagine swapped out pages or a fork
2378          * that marked all the anonymous memory readonly for cow.
2379          *
2380          * Modifying pi_state _before_ the user space value would leave the
2381          * pi_state in an inconsistent state when we fault here, because we
2382          * need to drop the locks to handle the fault. This might be observed
2383          * in the PID check in lookup_pi_state.
2384          */
2385 retry:
2386         if (!argowner) {
2387                 if (oldowner != current) {
2388                         /*
2389                          * We raced against a concurrent self; things are
2390                          * already fixed up. Nothing to do.
2391                          */
2392                         ret = 0;
2393                         goto out_unlock;
2394                 }
2395
2396                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2397                         /* We got the lock after all, nothing to fix. */
2398                         ret = 0;
2399                         goto out_unlock;
2400                 }
2401
2402                 /*
2403                  * Since we just failed the trylock; there must be an owner.
2404                  */
2405                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2406                 BUG_ON(!newowner);
2407         } else {
2408                 WARN_ON_ONCE(argowner != current);
2409                 if (oldowner == current) {
2410                         /*
2411                          * We raced against a concurrent self; things are
2412                          * already fixed up. Nothing to do.
2413                          */
2414                         ret = 0;
2415                         goto out_unlock;
2416                 }
2417                 newowner = argowner;
2418         }
2419
2420         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2421         /* Owner died? */
2422         if (!pi_state->owner)
2423                 newtid |= FUTEX_OWNER_DIED;
2424
2425         if (get_futex_value_locked(&uval, uaddr))
2426                 goto handle_fault;
2427
2428         for (;;) {
2429                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2430
2431                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2432                         goto handle_fault;
2433                 if (curval == uval)
2434                         break;
2435                 uval = curval;
2436         }
2437
2438         /*
2439          * We fixed up user space. Now we need to fix the pi_state
2440          * itself.
2441          */
2442         if (pi_state->owner != NULL) {
2443                 raw_spin_lock(&pi_state->owner->pi_lock);
2444                 WARN_ON(list_empty(&pi_state->list));
2445                 list_del_init(&pi_state->list);
2446                 raw_spin_unlock(&pi_state->owner->pi_lock);
2447         }
2448
2449         pi_state->owner = newowner;
2450
2451         raw_spin_lock(&newowner->pi_lock);
2452         WARN_ON(!list_empty(&pi_state->list));
2453         list_add(&pi_state->list, &newowner->pi_state_list);
2454         raw_spin_unlock(&newowner->pi_lock);
2455         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2456
2457         return 0;
2458
2459         /*
2460          * To handle the page fault we need to drop the locks here. That gives
2461          * the other task (either the highest priority waiter itself or the
2462          * task which stole the rtmutex) the chance to try the fixup of the
2463          * pi_state. So once we are back from handling the fault we need to
2464          * check the pi_state after reacquiring the locks and before trying to
2465          * do another fixup. When the fixup has been done already we simply
2466          * return.
2467          *
2468          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2469          * drop hb->lock since the caller owns the hb -> futex_q relation.
2470          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2471          */
2472 handle_fault:
2473         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2474         spin_unlock(q->lock_ptr);
2475
2476         ret = fault_in_user_writeable(uaddr);
2477
2478         spin_lock(q->lock_ptr);
2479         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2480
2481         /*
2482          * Check if someone else fixed it for us:
2483          */
2484         if (pi_state->owner != oldowner) {
2485                 ret = 0;
2486                 goto out_unlock;
2487         }
2488
2489         if (ret)
2490                 goto out_unlock;
2491
2492         goto retry;
2493
2494 out_unlock:
2495         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2496         return ret;
2497 }
2498
2499 static long futex_wait_restart(struct restart_block *restart);
2500
2501 /**
2502  * fixup_owner() - Post lock pi_state and corner case management
2503  * @uaddr:      user address of the futex
2504  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2505  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2506  *
2507  * After attempting to lock an rt_mutex, this function is called to cleanup
2508  * the pi_state owner as well as handle race conditions that may allow us to
2509  * acquire the lock. Must be called with the hb lock held.
2510  *
2511  * Return:
2512  *  -  1 - success, lock taken;
2513  *  -  0 - success, lock not taken;
2514  *  - <0 - on error (-EFAULT)
2515  */
2516 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2517 {
2518         int ret = 0;
2519
2520         if (locked) {
2521                 /*
2522                  * Got the lock. We might not be the anticipated owner if we
2523                  * did a lock-steal - fix up the PI-state in that case:
2524                  *
2525                  * Speculative pi_state->owner read (we don't hold wait_lock);
2526                  * since we own the lock pi_state->owner == current is the
2527                  * stable state, anything else needs more attention.
2528                  */
2529                 if (q->pi_state->owner != current)
2530                         ret = fixup_pi_state_owner(uaddr, q, current);
2531                 goto out;
2532         }
2533
2534         /*
2535          * If we didn't get the lock; check if anybody stole it from us. In
2536          * that case, we need to fix up the uval to point to them instead of
2537          * us, otherwise bad things happen. [10]
2538          *
2539          * Another speculative read; pi_state->owner == current is unstable
2540          * but needs our attention.
2541          */
2542         if (q->pi_state->owner == current) {
2543                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2544                 goto out;
2545         }
2546
2547         /*
2548          * Paranoia check. If we did not take the lock, then we should not be
2549          * the owner of the rt_mutex.
2550          */
2551         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2552                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2553                                 "pi-state %p\n", ret,
2554                                 q->pi_state->pi_mutex.owner,
2555                                 q->pi_state->owner);
2556         }
2557
2558 out:
2559         return ret ? ret : locked;
2560 }
2561
2562 /**
2563  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2564  * @hb:         the futex hash bucket, must be locked by the caller
2565  * @q:          the futex_q to queue up on
2566  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2567  */
2568 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2569                                 struct hrtimer_sleeper *timeout)
2570 {
2571         /*
2572          * The task state is guaranteed to be set before another task can
2573          * wake it. set_current_state() is implemented using smp_store_mb() and
2574          * queue_me() calls spin_unlock() upon completion, both serializing
2575          * access to the hash list and forcing another memory barrier.
2576          */
2577         set_current_state(TASK_INTERRUPTIBLE);
2578         queue_me(q, hb);
2579
2580         /* Arm the timer */
2581         if (timeout)
2582                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2583
2584         /*
2585          * If we have been removed from the hash list, then another task
2586          * has tried to wake us, and we can skip the call to schedule().
2587          */
2588         if (likely(!plist_node_empty(&q->list))) {
2589                 /*
2590                  * If the timer has already expired, current will already be
2591                  * flagged for rescheduling. Only call schedule if there
2592                  * is no timeout, or if it has yet to expire.
2593                  */
2594                 if (!timeout || timeout->task)
2595                         freezable_schedule();
2596         }
2597         __set_current_state(TASK_RUNNING);
2598 }
2599
2600 /**
2601  * futex_wait_setup() - Prepare to wait on a futex
2602  * @uaddr:      the futex userspace address
2603  * @val:        the expected value
2604  * @flags:      futex flags (FLAGS_SHARED, etc.)
2605  * @q:          the associated futex_q
2606  * @hb:         storage for hash_bucket pointer to be returned to caller
2607  *
2608  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2609  * compare it with the expected value.  Handle atomic faults internally.
2610  * Return with the hb lock held and a q.key reference on success, and unlocked
2611  * with no q.key reference on failure.
2612  *
2613  * Return:
2614  *  -  0 - uaddr contains val and hb has been locked;
2615  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2616  */
2617 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2618                            struct futex_q *q, struct futex_hash_bucket **hb)
2619 {
2620         u32 uval;
2621         int ret;
2622
2623         /*
2624          * Access the page AFTER the hash-bucket is locked.
2625          * Order is important:
2626          *
2627          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2628          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2629          *
2630          * The basic logical guarantee of a futex is that it blocks ONLY
2631          * if cond(var) is known to be true at the time of blocking, for
2632          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2633          * would open a race condition where we could block indefinitely with
2634          * cond(var) false, which would violate the guarantee.
2635          *
2636          * On the other hand, we insert q and release the hash-bucket only
2637          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2638          * absorb a wakeup if *uaddr does not match the desired values
2639          * while the syscall executes.
2640          */
2641 retry:
2642         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2643         if (unlikely(ret != 0))
2644                 return ret;
2645
2646 retry_private:
2647         *hb = queue_lock(q);
2648
2649         ret = get_futex_value_locked(&uval, uaddr);
2650
2651         if (ret) {
2652                 queue_unlock(*hb);
2653
2654                 ret = get_user(uval, uaddr);
2655                 if (ret)
2656                         goto out;
2657
2658                 if (!(flags & FLAGS_SHARED))
2659                         goto retry_private;
2660
2661                 put_futex_key(&q->key);
2662                 goto retry;
2663         }
2664
2665         if (uval != val) {
2666                 queue_unlock(*hb);
2667                 ret = -EWOULDBLOCK;
2668         }
2669
2670 out:
2671         if (ret)
2672                 put_futex_key(&q->key);
2673         return ret;
2674 }
2675
2676 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2677                       ktime_t *abs_time, u32 bitset)
2678 {
2679         struct hrtimer_sleeper timeout, *to = NULL;
2680         struct restart_block *restart;
2681         struct futex_hash_bucket *hb;
2682         struct futex_q q = futex_q_init;
2683         int ret;
2684
2685         if (!bitset)
2686                 return -EINVAL;
2687         q.bitset = bitset;
2688
2689         if (abs_time) {
2690                 to = &timeout;
2691
2692                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2693                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2694                                       HRTIMER_MODE_ABS);
2695                 hrtimer_init_sleeper(to, current);
2696                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2697                                              current->timer_slack_ns);
2698         }
2699
2700 retry:
2701         /*
2702          * Prepare to wait on uaddr. On success, holds hb lock and increments
2703          * q.key refs.
2704          */
2705         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2706         if (ret)
2707                 goto out;
2708
2709         /* queue_me and wait for wakeup, timeout, or a signal. */
2710         futex_wait_queue_me(hb, &q, to);
2711
2712         /* If we were woken (and unqueued), we succeeded, whatever. */
2713         ret = 0;
2714         /* unqueue_me() drops q.key ref */
2715         if (!unqueue_me(&q))
2716                 goto out;
2717         ret = -ETIMEDOUT;
2718         if (to && !to->task)
2719                 goto out;
2720
2721         /*
2722          * We expect signal_pending(current), but we might be the
2723          * victim of a spurious wakeup as well.
2724          */
2725         if (!signal_pending(current))
2726                 goto retry;
2727
2728         ret = -ERESTARTSYS;
2729         if (!abs_time)
2730                 goto out;
2731
2732         restart = &current->restart_block;
2733         restart->fn = futex_wait_restart;
2734         restart->futex.uaddr = uaddr;
2735         restart->futex.val = val;
2736         restart->futex.time = *abs_time;
2737         restart->futex.bitset = bitset;
2738         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2739
2740         ret = -ERESTART_RESTARTBLOCK;
2741
2742 out:
2743         if (to) {
2744                 hrtimer_cancel(&to->timer);
2745                 destroy_hrtimer_on_stack(&to->timer);
2746         }
2747         return ret;
2748 }
2749
2750
2751 static long futex_wait_restart(struct restart_block *restart)
2752 {
2753         u32 __user *uaddr = restart->futex.uaddr;
2754         ktime_t t, *tp = NULL;
2755
2756         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2757                 t = restart->futex.time;
2758                 tp = &t;
2759         }
2760         restart->fn = do_no_restart_syscall;
2761
2762         return (long)futex_wait(uaddr, restart->futex.flags,
2763                                 restart->futex.val, tp, restart->futex.bitset);
2764 }
2765
2766
2767 /*
2768  * Userspace tried a 0 -> TID atomic transition of the futex value
2769  * and failed. The kernel side here does the whole locking operation:
2770  * if there are waiters then it will block as a consequence of relying
2771  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2772  * a 0 value of the futex too.).
2773  *
2774  * Also serves as futex trylock_pi()'ing, and due semantics.
2775  */
2776 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2777                          ktime_t *time, int trylock)
2778 {
2779         struct hrtimer_sleeper timeout, *to = NULL;
2780         struct futex_pi_state *pi_state = NULL;
2781         struct rt_mutex_waiter rt_waiter;
2782         struct futex_hash_bucket *hb;
2783         struct futex_q q = futex_q_init;
2784         int res, ret;
2785
2786         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2787                 return -ENOSYS;
2788
2789         if (refill_pi_state_cache())
2790                 return -ENOMEM;
2791
2792         if (time) {
2793                 to = &timeout;
2794                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2795                                       HRTIMER_MODE_ABS);
2796                 hrtimer_init_sleeper(to, current);
2797                 hrtimer_set_expires(&to->timer, *time);
2798         }
2799
2800 retry:
2801         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2802         if (unlikely(ret != 0))
2803                 goto out;
2804
2805 retry_private:
2806         hb = queue_lock(&q);
2807
2808         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2809         if (unlikely(ret)) {
2810                 /*
2811                  * Atomic work succeeded and we got the lock,
2812                  * or failed. Either way, we do _not_ block.
2813                  */
2814                 switch (ret) {
2815                 case 1:
2816                         /* We got the lock. */
2817                         ret = 0;
2818                         goto out_unlock_put_key;
2819                 case -EFAULT:
2820                         goto uaddr_faulted;
2821                 case -EAGAIN:
2822                         /*
2823                          * Two reasons for this:
2824                          * - Task is exiting and we just wait for the
2825                          *   exit to complete.
2826                          * - The user space value changed.
2827                          */
2828                         queue_unlock(hb);
2829                         put_futex_key(&q.key);
2830                         cond_resched();
2831                         goto retry;
2832                 default:
2833                         goto out_unlock_put_key;
2834                 }
2835         }
2836
2837         WARN_ON(!q.pi_state);
2838
2839         /*
2840          * Only actually queue now that the atomic ops are done:
2841          */
2842         __queue_me(&q, hb);
2843
2844         if (trylock) {
2845                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2846                 /* Fixup the trylock return value: */
2847                 ret = ret ? 0 : -EWOULDBLOCK;
2848                 goto no_block;
2849         }
2850
2851         rt_mutex_init_waiter(&rt_waiter);
2852
2853         /*
2854          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2855          * hold it while doing rt_mutex_start_proxy(), because then it will
2856          * include hb->lock in the blocking chain, even through we'll not in
2857          * fact hold it while blocking. This will lead it to report -EDEADLK
2858          * and BUG when futex_unlock_pi() interleaves with this.
2859          *
2860          * Therefore acquire wait_lock while holding hb->lock, but drop the
2861          * latter before calling rt_mutex_start_proxy_lock(). This still fully
2862          * serializes against futex_unlock_pi() as that does the exact same
2863          * lock handoff sequence.
2864          */
2865         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2866         spin_unlock(q.lock_ptr);
2867         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2868         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2869
2870         if (ret) {
2871                 if (ret == 1)
2872                         ret = 0;
2873
2874                 spin_lock(q.lock_ptr);
2875                 goto no_block;
2876         }
2877
2878
2879         if (unlikely(to))
2880                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2881
2882         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2883
2884         spin_lock(q.lock_ptr);
2885         /*
2886          * If we failed to acquire the lock (signal/timeout), we must
2887          * first acquire the hb->lock before removing the lock from the
2888          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2889          * wait lists consistent.
2890          *
2891          * In particular; it is important that futex_unlock_pi() can not
2892          * observe this inconsistency.
2893          */
2894         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2895                 ret = 0;
2896
2897 no_block:
2898         /*
2899          * Fixup the pi_state owner and possibly acquire the lock if we
2900          * haven't already.
2901          */
2902         res = fixup_owner(uaddr, &q, !ret);
2903         /*
2904          * If fixup_owner() returned an error, proprogate that.  If it acquired
2905          * the lock, clear our -ETIMEDOUT or -EINTR.
2906          */
2907         if (res)
2908                 ret = (res < 0) ? res : 0;
2909
2910         /*
2911          * If fixup_owner() faulted and was unable to handle the fault, unlock
2912          * it and return the fault to userspace.
2913          */
2914         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2915                 pi_state = q.pi_state;
2916                 get_pi_state(pi_state);
2917         }
2918
2919         /* Unqueue and drop the lock */
2920         unqueue_me_pi(&q);
2921
2922         if (pi_state) {
2923                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2924                 put_pi_state(pi_state);
2925         }
2926
2927         goto out_put_key;
2928
2929 out_unlock_put_key:
2930         queue_unlock(hb);
2931
2932 out_put_key:
2933         put_futex_key(&q.key);
2934 out:
2935         if (to) {
2936                 hrtimer_cancel(&to->timer);
2937                 destroy_hrtimer_on_stack(&to->timer);
2938         }
2939         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2940
2941 uaddr_faulted:
2942         queue_unlock(hb);
2943
2944         ret = fault_in_user_writeable(uaddr);
2945         if (ret)
2946                 goto out_put_key;
2947
2948         if (!(flags & FLAGS_SHARED))
2949                 goto retry_private;
2950
2951         put_futex_key(&q.key);
2952         goto retry;
2953 }
2954
2955 /*
2956  * Userspace attempted a TID -> 0 atomic transition, and failed.
2957  * This is the in-kernel slowpath: we look up the PI state (if any),
2958  * and do the rt-mutex unlock.
2959  */
2960 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2961 {
2962         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2963         union futex_key key = FUTEX_KEY_INIT;
2964         struct futex_hash_bucket *hb;
2965         struct futex_q *top_waiter;
2966         int ret;
2967
2968         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2969                 return -ENOSYS;
2970
2971 retry:
2972         if (get_user(uval, uaddr))
2973                 return -EFAULT;
2974         /*
2975          * We release only a lock we actually own:
2976          */
2977         if ((uval & FUTEX_TID_MASK) != vpid)
2978                 return -EPERM;
2979
2980         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2981         if (ret)
2982                 return ret;
2983
2984         hb = hash_futex(&key);
2985         spin_lock(&hb->lock);
2986
2987         /*
2988          * Check waiters first. We do not trust user space values at
2989          * all and we at least want to know if user space fiddled
2990          * with the futex value instead of blindly unlocking.
2991          */
2992         top_waiter = futex_top_waiter(hb, &key);
2993         if (top_waiter) {
2994                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2995
2996                 ret = -EINVAL;
2997                 if (!pi_state)
2998                         goto out_unlock;
2999
3000                 /*
3001                  * If current does not own the pi_state then the futex is
3002                  * inconsistent and user space fiddled with the futex value.
3003                  */
3004                 if (pi_state->owner != current)
3005                         goto out_unlock;
3006
3007                 get_pi_state(pi_state);
3008                 /*
3009                  * By taking wait_lock while still holding hb->lock, we ensure
3010                  * there is no point where we hold neither; and therefore
3011                  * wake_futex_pi() must observe a state consistent with what we
3012                  * observed.
3013                  */
3014                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3015                 spin_unlock(&hb->lock);
3016
3017                 /* drops pi_state->pi_mutex.wait_lock */
3018                 ret = wake_futex_pi(uaddr, uval, pi_state);
3019
3020                 put_pi_state(pi_state);
3021
3022                 /*
3023                  * Success, we're done! No tricky corner cases.
3024                  */
3025                 if (!ret)
3026                         goto out_putkey;
3027                 /*
3028                  * The atomic access to the futex value generated a
3029                  * pagefault, so retry the user-access and the wakeup:
3030                  */
3031                 if (ret == -EFAULT)
3032                         goto pi_faulted;
3033                 /*
3034                  * A unconditional UNLOCK_PI op raced against a waiter
3035                  * setting the FUTEX_WAITERS bit. Try again.
3036                  */
3037                 if (ret == -EAGAIN) {
3038                         put_futex_key(&key);
3039                         goto retry;
3040                 }
3041                 /*
3042                  * wake_futex_pi has detected invalid state. Tell user
3043                  * space.
3044                  */
3045                 goto out_putkey;
3046         }
3047
3048         /*
3049          * We have no kernel internal state, i.e. no waiters in the
3050          * kernel. Waiters which are about to queue themselves are stuck
3051          * on hb->lock. So we can safely ignore them. We do neither
3052          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3053          * owner.
3054          */
3055         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3056                 spin_unlock(&hb->lock);
3057                 goto pi_faulted;
3058         }
3059
3060         /*
3061          * If uval has changed, let user space handle it.
3062          */
3063         ret = (curval == uval) ? 0 : -EAGAIN;
3064
3065 out_unlock:
3066         spin_unlock(&hb->lock);
3067 out_putkey:
3068         put_futex_key(&key);
3069         return ret;
3070
3071 pi_faulted:
3072         put_futex_key(&key);
3073
3074         ret = fault_in_user_writeable(uaddr);
3075         if (!ret)
3076                 goto retry;
3077
3078         return ret;
3079 }
3080
3081 /**
3082  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3083  * @hb:         the hash_bucket futex_q was original enqueued on
3084  * @q:          the futex_q woken while waiting to be requeued
3085  * @key2:       the futex_key of the requeue target futex
3086  * @timeout:    the timeout associated with the wait (NULL if none)
3087  *
3088  * Detect if the task was woken on the initial futex as opposed to the requeue
3089  * target futex.  If so, determine if it was a timeout or a signal that caused
3090  * the wakeup and return the appropriate error code to the caller.  Must be
3091  * called with the hb lock held.
3092  *
3093  * Return:
3094  *  -  0 = no early wakeup detected;
3095  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3096  */
3097 static inline
3098 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3099                                    struct futex_q *q, union futex_key *key2,
3100                                    struct hrtimer_sleeper *timeout)
3101 {
3102         int ret = 0;
3103
3104         /*
3105          * With the hb lock held, we avoid races while we process the wakeup.
3106          * We only need to hold hb (and not hb2) to ensure atomicity as the
3107          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3108          * It can't be requeued from uaddr2 to something else since we don't
3109          * support a PI aware source futex for requeue.
3110          */
3111         if (!match_futex(&q->key, key2)) {
3112                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3113                 /*
3114                  * We were woken prior to requeue by a timeout or a signal.
3115                  * Unqueue the futex_q and determine which it was.
3116                  */
3117                 plist_del(&q->list, &hb->chain);
3118                 hb_waiters_dec(hb);
3119
3120                 /* Handle spurious wakeups gracefully */
3121                 ret = -EWOULDBLOCK;
3122                 if (timeout && !timeout->task)
3123                         ret = -ETIMEDOUT;
3124                 else if (signal_pending(current))
3125                         ret = -ERESTARTNOINTR;
3126         }
3127         return ret;
3128 }
3129
3130 /**
3131  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3132  * @uaddr:      the futex we initially wait on (non-pi)
3133  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3134  *              the same type, no requeueing from private to shared, etc.
3135  * @val:        the expected value of uaddr
3136  * @abs_time:   absolute timeout
3137  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3138  * @uaddr2:     the pi futex we will take prior to returning to user-space
3139  *
3140  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3141  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3142  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3143  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3144  * without one, the pi logic would not know which task to boost/deboost, if
3145  * there was a need to.
3146  *
3147  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3148  * via the following--
3149  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3150  * 2) wakeup on uaddr2 after a requeue
3151  * 3) signal
3152  * 4) timeout
3153  *
3154  * If 3, cleanup and return -ERESTARTNOINTR.
3155  *
3156  * If 2, we may then block on trying to take the rt_mutex and return via:
3157  * 5) successful lock
3158  * 6) signal
3159  * 7) timeout
3160  * 8) other lock acquisition failure
3161  *
3162  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3163  *
3164  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3165  *
3166  * Return:
3167  *  -  0 - On success;
3168  *  - <0 - On error
3169  */
3170 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3171                                  u32 val, ktime_t *abs_time, u32 bitset,
3172                                  u32 __user *uaddr2)
3173 {
3174         struct hrtimer_sleeper timeout, *to = NULL;
3175         struct futex_pi_state *pi_state = NULL;
3176         struct rt_mutex_waiter rt_waiter;
3177         struct futex_hash_bucket *hb;
3178         union futex_key key2 = FUTEX_KEY_INIT;
3179         struct futex_q q = futex_q_init;
3180         int res, ret;
3181
3182         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3183                 return -ENOSYS;
3184
3185         if (uaddr == uaddr2)
3186                 return -EINVAL;
3187
3188         if (!bitset)
3189                 return -EINVAL;
3190
3191         if (abs_time) {
3192                 to = &timeout;
3193                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3194                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
3195                                       HRTIMER_MODE_ABS);
3196                 hrtimer_init_sleeper(to, current);
3197                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3198                                              current->timer_slack_ns);
3199         }
3200
3201         /*
3202          * The waiter is allocated on our stack, manipulated by the requeue
3203          * code while we sleep on uaddr.
3204          */
3205         rt_mutex_init_waiter(&rt_waiter);
3206
3207         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3208         if (unlikely(ret != 0))
3209                 goto out;
3210
3211         q.bitset = bitset;
3212         q.rt_waiter = &rt_waiter;
3213         q.requeue_pi_key = &key2;
3214
3215         /*
3216          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3217          * count.
3218          */
3219         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3220         if (ret)
3221                 goto out_key2;
3222
3223         /*
3224          * The check above which compares uaddrs is not sufficient for
3225          * shared futexes. We need to compare the keys:
3226          */
3227         if (match_futex(&q.key, &key2)) {
3228                 queue_unlock(hb);
3229                 ret = -EINVAL;
3230                 goto out_put_keys;
3231         }
3232
3233         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3234         futex_wait_queue_me(hb, &q, to);
3235
3236         spin_lock(&hb->lock);
3237         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3238         spin_unlock(&hb->lock);
3239         if (ret)
3240                 goto out_put_keys;
3241
3242         /*
3243          * In order for us to be here, we know our q.key == key2, and since
3244          * we took the hb->lock above, we also know that futex_requeue() has
3245          * completed and we no longer have to concern ourselves with a wakeup
3246          * race with the atomic proxy lock acquisition by the requeue code. The
3247          * futex_requeue dropped our key1 reference and incremented our key2
3248          * reference count.
3249          */
3250
3251         /* Check if the requeue code acquired the second futex for us. */
3252         if (!q.rt_waiter) {
3253                 /*
3254                  * Got the lock. We might not be the anticipated owner if we
3255                  * did a lock-steal - fix up the PI-state in that case.
3256                  */
3257                 if (q.pi_state && (q.pi_state->owner != current)) {
3258                         spin_lock(q.lock_ptr);
3259                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3260                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3261                                 pi_state = q.pi_state;
3262                                 get_pi_state(pi_state);
3263                         }
3264                         /*
3265                          * Drop the reference to the pi state which
3266                          * the requeue_pi() code acquired for us.
3267                          */
3268                         put_pi_state(q.pi_state);
3269                         spin_unlock(q.lock_ptr);
3270                 }
3271         } else {
3272                 struct rt_mutex *pi_mutex;
3273
3274                 /*
3275                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3276                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3277                  * the pi_state.
3278                  */
3279                 WARN_ON(!q.pi_state);
3280                 pi_mutex = &q.pi_state->pi_mutex;
3281                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3282
3283                 spin_lock(q.lock_ptr);
3284                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3285                         ret = 0;
3286
3287                 debug_rt_mutex_free_waiter(&rt_waiter);
3288                 /*
3289                  * Fixup the pi_state owner and possibly acquire the lock if we
3290                  * haven't already.
3291                  */
3292                 res = fixup_owner(uaddr2, &q, !ret);
3293                 /*
3294                  * If fixup_owner() returned an error, proprogate that.  If it
3295                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3296                  */
3297                 if (res)
3298                         ret = (res < 0) ? res : 0;
3299
3300                 /*
3301                  * If fixup_pi_state_owner() faulted and was unable to handle
3302                  * the fault, unlock the rt_mutex and return the fault to
3303                  * userspace.
3304                  */
3305                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3306                         pi_state = q.pi_state;
3307                         get_pi_state(pi_state);
3308                 }
3309
3310                 /* Unqueue and drop the lock. */
3311                 unqueue_me_pi(&q);
3312         }
3313
3314         if (pi_state) {
3315                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3316                 put_pi_state(pi_state);
3317         }
3318
3319         if (ret == -EINTR) {
3320                 /*
3321                  * We've already been requeued, but cannot restart by calling
3322                  * futex_lock_pi() directly. We could restart this syscall, but
3323                  * it would detect that the user space "val" changed and return
3324                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3325                  * -EWOULDBLOCK directly.
3326                  */
3327                 ret = -EWOULDBLOCK;
3328         }
3329
3330 out_put_keys:
3331         put_futex_key(&q.key);
3332 out_key2:
3333         put_futex_key(&key2);
3334
3335 out:
3336         if (to) {
3337                 hrtimer_cancel(&to->timer);
3338                 destroy_hrtimer_on_stack(&to->timer);
3339         }
3340         return ret;
3341 }
3342
3343 /*
3344  * Support for robust futexes: the kernel cleans up held futexes at
3345  * thread exit time.
3346  *
3347  * Implementation: user-space maintains a per-thread list of locks it
3348  * is holding. Upon do_exit(), the kernel carefully walks this list,
3349  * and marks all locks that are owned by this thread with the
3350  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3351  * always manipulated with the lock held, so the list is private and
3352  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3353  * field, to allow the kernel to clean up if the thread dies after
3354  * acquiring the lock, but just before it could have added itself to
3355  * the list. There can only be one such pending lock.
3356  */
3357
3358 /**
3359  * sys_set_robust_list() - Set the robust-futex list head of a task
3360  * @head:       pointer to the list-head
3361  * @len:        length of the list-head, as userspace expects
3362  */
3363 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3364                 size_t, len)
3365 {
3366         if (!futex_cmpxchg_enabled)
3367                 return -ENOSYS;
3368         /*
3369          * The kernel knows only one size for now:
3370          */
3371         if (unlikely(len != sizeof(*head)))
3372                 return -EINVAL;
3373
3374         current->robust_list = head;
3375
3376         return 0;
3377 }
3378
3379 /**
3380  * sys_get_robust_list() - Get the robust-futex list head of a task
3381  * @pid:        pid of the process [zero for current task]
3382  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3383  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3384  */
3385 SYSCALL_DEFINE3(get_robust_list, int, pid,
3386                 struct robust_list_head __user * __user *, head_ptr,
3387                 size_t __user *, len_ptr)
3388 {
3389         struct robust_list_head __user *head;
3390         unsigned long ret;
3391         struct task_struct *p;
3392
3393         if (!futex_cmpxchg_enabled)
3394                 return -ENOSYS;
3395
3396         rcu_read_lock();
3397
3398         ret = -ESRCH;
3399         if (!pid)
3400                 p = current;
3401         else {
3402                 p = find_task_by_vpid(pid);
3403                 if (!p)
3404                         goto err_unlock;
3405         }
3406
3407         ret = -EPERM;
3408         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3409                 goto err_unlock;
3410
3411         head = p->robust_list;
3412         rcu_read_unlock();
3413
3414         if (put_user(sizeof(*head), len_ptr))
3415                 return -EFAULT;
3416         return put_user(head, head_ptr);
3417
3418 err_unlock:
3419         rcu_read_unlock();
3420
3421         return ret;
3422 }
3423
3424 /*
3425  * Process a futex-list entry, check whether it's owned by the
3426  * dying task, and do notification if so:
3427  */
3428 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3429 {
3430         u32 uval, uninitialized_var(nval), mval;
3431
3432 retry:
3433         if (get_user(uval, uaddr))
3434                 return -1;
3435
3436         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3437                 /*
3438                  * Ok, this dying thread is truly holding a futex
3439                  * of interest. Set the OWNER_DIED bit atomically
3440                  * via cmpxchg, and if the value had FUTEX_WAITERS
3441                  * set, wake up a waiter (if any). (We have to do a
3442                  * futex_wake() even if OWNER_DIED is already set -
3443                  * to handle the rare but possible case of recursive
3444                  * thread-death.) The rest of the cleanup is done in
3445                  * userspace.
3446                  */
3447                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3448                 /*
3449                  * We are not holding a lock here, but we want to have
3450                  * the pagefault_disable/enable() protection because
3451                  * we want to handle the fault gracefully. If the
3452                  * access fails we try to fault in the futex with R/W
3453                  * verification via get_user_pages. get_user() above
3454                  * does not guarantee R/W access. If that fails we
3455                  * give up and leave the futex locked.
3456                  */
3457                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3458                         if (fault_in_user_writeable(uaddr))
3459                                 return -1;
3460                         goto retry;
3461                 }
3462                 if (nval != uval)
3463                         goto retry;
3464
3465                 /*
3466                  * Wake robust non-PI futexes here. The wakeup of
3467                  * PI futexes happens in exit_pi_state():
3468                  */
3469                 if (!pi && (uval & FUTEX_WAITERS))
3470                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3471         }
3472         return 0;
3473 }
3474
3475 /*
3476  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3477  */
3478 static inline int fetch_robust_entry(struct robust_list __user **entry,
3479                                      struct robust_list __user * __user *head,
3480                                      unsigned int *pi)
3481 {
3482         unsigned long uentry;
3483
3484         if (get_user(uentry, (unsigned long __user *)head))
3485                 return -EFAULT;
3486
3487         *entry = (void __user *)(uentry & ~1UL);
3488         *pi = uentry & 1;
3489
3490         return 0;
3491 }
3492
3493 /*
3494  * Walk curr->robust_list (very carefully, it's a userspace list!)
3495  * and mark any locks found there dead, and notify any waiters.
3496  *
3497  * We silently return on any sign of list-walking problem.
3498  */
3499 void exit_robust_list(struct task_struct *curr)
3500 {
3501         struct robust_list_head __user *head = curr->robust_list;
3502         struct robust_list __user *entry, *next_entry, *pending;
3503         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3504         unsigned int uninitialized_var(next_pi);
3505         unsigned long futex_offset;
3506         int rc;
3507
3508         if (!futex_cmpxchg_enabled)
3509                 return;
3510
3511         /*
3512          * Fetch the list head (which was registered earlier, via
3513          * sys_set_robust_list()):
3514          */
3515         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3516                 return;
3517         /*
3518          * Fetch the relative futex offset:
3519          */
3520         if (get_user(futex_offset, &head->futex_offset))
3521                 return;
3522         /*
3523          * Fetch any possibly pending lock-add first, and handle it
3524          * if it exists:
3525          */
3526         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3527                 return;
3528
3529         next_entry = NULL;      /* avoid warning with gcc */
3530         while (entry != &head->list) {
3531                 /*
3532                  * Fetch the next entry in the list before calling
3533                  * handle_futex_death:
3534                  */
3535                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3536                 /*
3537                  * A pending lock might already be on the list, so
3538                  * don't process it twice:
3539                  */
3540                 if (entry != pending)
3541                         if (handle_futex_death((void __user *)entry + futex_offset,
3542                                                 curr, pi))
3543                                 return;
3544                 if (rc)
3545                         return;
3546                 entry = next_entry;
3547                 pi = next_pi;
3548                 /*
3549                  * Avoid excessively long or circular lists:
3550                  */
3551                 if (!--limit)
3552                         break;
3553
3554                 cond_resched();
3555         }
3556
3557         if (pending)
3558                 handle_futex_death((void __user *)pending + futex_offset,
3559                                    curr, pip);
3560 }
3561
3562 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3563                 u32 __user *uaddr2, u32 val2, u32 val3)
3564 {
3565         int cmd = op & FUTEX_CMD_MASK;
3566         unsigned int flags = 0;
3567
3568         if (!(op & FUTEX_PRIVATE_FLAG))
3569                 flags |= FLAGS_SHARED;
3570
3571         if (op & FUTEX_CLOCK_REALTIME) {
3572                 flags |= FLAGS_CLOCKRT;
3573                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3574                     cmd != FUTEX_WAIT_REQUEUE_PI)
3575                         return -ENOSYS;
3576         }
3577
3578         switch (cmd) {
3579         case FUTEX_LOCK_PI:
3580         case FUTEX_UNLOCK_PI:
3581         case FUTEX_TRYLOCK_PI:
3582         case FUTEX_WAIT_REQUEUE_PI:
3583         case FUTEX_CMP_REQUEUE_PI:
3584                 if (!futex_cmpxchg_enabled)
3585                         return -ENOSYS;
3586         }
3587
3588         switch (cmd) {
3589         case FUTEX_WAIT:
3590                 val3 = FUTEX_BITSET_MATCH_ANY;
3591                 /* fall through */
3592         case FUTEX_WAIT_BITSET:
3593                 return futex_wait(uaddr, flags, val, timeout, val3);
3594         case FUTEX_WAKE:
3595                 val3 = FUTEX_BITSET_MATCH_ANY;
3596                 /* fall through */
3597         case FUTEX_WAKE_BITSET:
3598                 return futex_wake(uaddr, flags, val, val3);
3599         case FUTEX_REQUEUE:
3600                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3601         case FUTEX_CMP_REQUEUE:
3602                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3603         case FUTEX_WAKE_OP:
3604                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3605         case FUTEX_LOCK_PI:
3606                 return futex_lock_pi(uaddr, flags, timeout, 0);
3607         case FUTEX_UNLOCK_PI:
3608                 return futex_unlock_pi(uaddr, flags);
3609         case FUTEX_TRYLOCK_PI:
3610                 return futex_lock_pi(uaddr, flags, NULL, 1);
3611         case FUTEX_WAIT_REQUEUE_PI:
3612                 val3 = FUTEX_BITSET_MATCH_ANY;
3613                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3614                                              uaddr2);
3615         case FUTEX_CMP_REQUEUE_PI:
3616                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3617         }
3618         return -ENOSYS;
3619 }
3620
3621
3622 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3623                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3624                 u32, val3)
3625 {
3626         struct timespec64 ts;
3627         ktime_t t, *tp = NULL;
3628         u32 val2 = 0;
3629         int cmd = op & FUTEX_CMD_MASK;
3630
3631         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3632                       cmd == FUTEX_WAIT_BITSET ||
3633                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3634                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3635                         return -EFAULT;
3636                 if (get_timespec64(&ts, utime))
3637                         return -EFAULT;
3638                 if (!timespec64_valid(&ts))
3639                         return -EINVAL;
3640
3641                 t = timespec64_to_ktime(ts);
3642                 if (cmd == FUTEX_WAIT)
3643                         t = ktime_add_safe(ktime_get(), t);
3644                 tp = &t;
3645         }
3646         /*
3647          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3648          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3649          */
3650         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3651             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3652                 val2 = (u32) (unsigned long) utime;
3653
3654         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3655 }
3656
3657 #ifdef CONFIG_COMPAT
3658 /*
3659  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3660  */
3661 static inline int
3662 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3663                    compat_uptr_t __user *head, unsigned int *pi)
3664 {
3665         if (get_user(*uentry, head))
3666                 return -EFAULT;
3667
3668         *entry = compat_ptr((*uentry) & ~1);
3669         *pi = (unsigned int)(*uentry) & 1;
3670
3671         return 0;
3672 }
3673
3674 static void __user *futex_uaddr(struct robust_list __user *entry,
3675                                 compat_long_t futex_offset)
3676 {
3677         compat_uptr_t base = ptr_to_compat(entry);
3678         void __user *uaddr = compat_ptr(base + futex_offset);
3679
3680         return uaddr;
3681 }
3682
3683 /*
3684  * Walk curr->robust_list (very carefully, it's a userspace list!)
3685  * and mark any locks found there dead, and notify any waiters.
3686  *
3687  * We silently return on any sign of list-walking problem.
3688  */
3689 void compat_exit_robust_list(struct task_struct *curr)
3690 {
3691         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3692         struct robust_list __user *entry, *next_entry, *pending;
3693         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3694         unsigned int uninitialized_var(next_pi);
3695         compat_uptr_t uentry, next_uentry, upending;
3696         compat_long_t futex_offset;
3697         int rc;
3698
3699         if (!futex_cmpxchg_enabled)
3700                 return;
3701
3702         /*
3703          * Fetch the list head (which was registered earlier, via
3704          * sys_set_robust_list()):
3705          */
3706         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3707                 return;
3708         /*
3709          * Fetch the relative futex offset:
3710          */
3711         if (get_user(futex_offset, &head->futex_offset))
3712                 return;
3713         /*
3714          * Fetch any possibly pending lock-add first, and handle it
3715          * if it exists:
3716          */
3717         if (compat_fetch_robust_entry(&upending, &pending,
3718                                &head->list_op_pending, &pip))
3719                 return;
3720
3721         next_entry = NULL;      /* avoid warning with gcc */
3722         while (entry != (struct robust_list __user *) &head->list) {
3723                 /*
3724                  * Fetch the next entry in the list before calling
3725                  * handle_futex_death:
3726                  */
3727                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3728                         (compat_uptr_t __user *)&entry->next, &next_pi);
3729                 /*
3730                  * A pending lock might already be on the list, so
3731                  * dont process it twice:
3732                  */
3733                 if (entry != pending) {
3734                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3735
3736                         if (handle_futex_death(uaddr, curr, pi))
3737                                 return;
3738                 }
3739                 if (rc)
3740                         return;
3741                 uentry = next_uentry;
3742                 entry = next_entry;
3743                 pi = next_pi;
3744                 /*
3745                  * Avoid excessively long or circular lists:
3746                  */
3747                 if (!--limit)
3748                         break;
3749
3750                 cond_resched();
3751         }
3752         if (pending) {
3753                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3754
3755                 handle_futex_death(uaddr, curr, pip);
3756         }
3757 }
3758
3759 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3760                 struct compat_robust_list_head __user *, head,
3761                 compat_size_t, len)
3762 {
3763         if (!futex_cmpxchg_enabled)
3764                 return -ENOSYS;
3765
3766         if (unlikely(len != sizeof(*head)))
3767                 return -EINVAL;
3768
3769         current->compat_robust_list = head;
3770
3771         return 0;
3772 }
3773
3774 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3775                         compat_uptr_t __user *, head_ptr,
3776                         compat_size_t __user *, len_ptr)
3777 {
3778         struct compat_robust_list_head __user *head;
3779         unsigned long ret;
3780         struct task_struct *p;
3781
3782         if (!futex_cmpxchg_enabled)
3783                 return -ENOSYS;
3784
3785         rcu_read_lock();
3786
3787         ret = -ESRCH;
3788         if (!pid)
3789                 p = current;
3790         else {
3791                 p = find_task_by_vpid(pid);
3792                 if (!p)
3793                         goto err_unlock;
3794         }
3795
3796         ret = -EPERM;
3797         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3798                 goto err_unlock;
3799
3800         head = p->compat_robust_list;
3801         rcu_read_unlock();
3802
3803         if (put_user(sizeof(*head), len_ptr))
3804                 return -EFAULT;
3805         return put_user(ptr_to_compat(head), head_ptr);
3806
3807 err_unlock:
3808         rcu_read_unlock();
3809
3810         return ret;
3811 }
3812 #endif /* CONFIG_COMPAT */
3813
3814 #ifdef CONFIG_COMPAT_32BIT_TIME
3815 COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3816                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3817                 u32, val3)
3818 {
3819         struct timespec64 ts;
3820         ktime_t t, *tp = NULL;
3821         int val2 = 0;
3822         int cmd = op & FUTEX_CMD_MASK;
3823
3824         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3825                       cmd == FUTEX_WAIT_BITSET ||
3826                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3827                 if (get_old_timespec32(&ts, utime))
3828                         return -EFAULT;
3829                 if (!timespec64_valid(&ts))
3830                         return -EINVAL;
3831
3832                 t = timespec64_to_ktime(ts);
3833                 if (cmd == FUTEX_WAIT)
3834                         t = ktime_add_safe(ktime_get(), t);
3835                 tp = &t;
3836         }
3837         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3838             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3839                 val2 = (int) (unsigned long) utime;
3840
3841         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3842 }
3843 #endif /* CONFIG_COMPAT_32BIT_TIME */
3844
3845 static void __init futex_detect_cmpxchg(void)
3846 {
3847 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3848         u32 curval;
3849
3850         /*
3851          * This will fail and we want it. Some arch implementations do
3852          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3853          * functionality. We want to know that before we call in any
3854          * of the complex code paths. Also we want to prevent
3855          * registration of robust lists in that case. NULL is
3856          * guaranteed to fault and we get -EFAULT on functional
3857          * implementation, the non-functional ones will return
3858          * -ENOSYS.
3859          */
3860         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3861                 futex_cmpxchg_enabled = 1;
3862 #endif
3863 }
3864
3865 static int __init futex_init(void)
3866 {
3867         unsigned int futex_shift;
3868         unsigned long i;
3869
3870 #if CONFIG_BASE_SMALL
3871         futex_hashsize = 16;
3872 #else
3873         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3874 #endif
3875
3876         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3877                                                futex_hashsize, 0,
3878                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3879                                                &futex_shift, NULL,
3880                                                futex_hashsize, futex_hashsize);
3881         futex_hashsize = 1UL << futex_shift;
3882
3883         futex_detect_cmpxchg();
3884
3885         for (i = 0; i < futex_hashsize; i++) {
3886                 atomic_set(&futex_queues[i].waiters, 0);
3887                 plist_head_init(&futex_queues[i].chain);
3888                 spin_lock_init(&futex_queues[i].lock);
3889         }
3890
3891         return 0;
3892 }
3893 core_initcall(futex_init);