Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[sfrench/cifs-2.6.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * Basic futex operation and ordering guarantees:
74  *
75  * The waiter reads the futex value in user space and calls
76  * futex_wait(). This function computes the hash bucket and acquires
77  * the hash bucket lock. After that it reads the futex user space value
78  * again and verifies that the data has not changed. If it has not changed
79  * it enqueues itself into the hash bucket, releases the hash bucket lock
80  * and schedules.
81  *
82  * The waker side modifies the user space value of the futex and calls
83  * futex_wake(). This function computes the hash bucket and acquires the
84  * hash bucket lock. Then it looks for waiters on that futex in the hash
85  * bucket and wakes them.
86  *
87  * In futex wake up scenarios where no tasks are blocked on a futex, taking
88  * the hb spinlock can be avoided and simply return. In order for this
89  * optimization to work, ordering guarantees must exist so that the waiter
90  * being added to the list is acknowledged when the list is concurrently being
91  * checked by the waker, avoiding scenarios like the following:
92  *
93  * CPU 0                               CPU 1
94  * val = *futex;
95  * sys_futex(WAIT, futex, val);
96  *   futex_wait(futex, val);
97  *   uval = *futex;
98  *                                     *futex = newval;
99  *                                     sys_futex(WAKE, futex);
100  *                                       futex_wake(futex);
101  *                                       if (queue_empty())
102  *                                         return;
103  *   if (uval == val)
104  *      lock(hash_bucket(futex));
105  *      queue();
106  *     unlock(hash_bucket(futex));
107  *     schedule();
108  *
109  * This would cause the waiter on CPU 0 to wait forever because it
110  * missed the transition of the user space value from val to newval
111  * and the waker did not find the waiter in the hash bucket queue.
112  *
113  * The correct serialization ensures that a waiter either observes
114  * the changed user space value before blocking or is woken by a
115  * concurrent waker:
116  *
117  * CPU 0                                 CPU 1
118  * val = *futex;
119  * sys_futex(WAIT, futex, val);
120  *   futex_wait(futex, val);
121  *
122  *   waiters++;
123  *   mb(); (A) <-- paired with -.
124  *                              |
125  *   lock(hash_bucket(futex));  |
126  *                              |
127  *   uval = *futex;             |
128  *                              |        *futex = newval;
129  *                              |        sys_futex(WAKE, futex);
130  *                              |          futex_wake(futex);
131  *                              |
132  *                              `------->  mb(); (B)
133  *   if (uval == val)
134  *     queue();
135  *     unlock(hash_bucket(futex));
136  *     schedule();                         if (waiters)
137  *                                           lock(hash_bucket(futex));
138  *                                           wake_waiters(futex);
139  *                                           unlock(hash_bucket(futex));
140  *
141  * Where (A) orders the waiters increment and the futex value read -- this
142  * is guaranteed by the head counter in the hb spinlock; and where (B)
143  * orders the write to futex and the waiters read -- this is done by the
144  * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
145  * depending on the futex type.
146  *
147  * This yields the following case (where X:=waiters, Y:=futex):
148  *
149  *      X = Y = 0
150  *
151  *      w[X]=1          w[Y]=1
152  *      MB              MB
153  *      r[Y]=y          r[X]=x
154  *
155  * Which guarantees that x==0 && y==0 is impossible; which translates back into
156  * the guarantee that we cannot both miss the futex variable change and the
157  * enqueue.
158  */
159
160 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
161 int __read_mostly futex_cmpxchg_enabled;
162 #endif
163
164 /*
165  * Futex flags used to encode options to functions and preserve them across
166  * restarts.
167  */
168 #define FLAGS_SHARED            0x01
169 #define FLAGS_CLOCKRT           0x02
170 #define FLAGS_HAS_TIMEOUT       0x04
171
172 /*
173  * Priority Inheritance state:
174  */
175 struct futex_pi_state {
176         /*
177          * list of 'owned' pi_state instances - these have to be
178          * cleaned up in do_exit() if the task exits prematurely:
179          */
180         struct list_head list;
181
182         /*
183          * The PI object:
184          */
185         struct rt_mutex pi_mutex;
186
187         struct task_struct *owner;
188         atomic_t refcount;
189
190         union futex_key key;
191 };
192
193 /**
194  * struct futex_q - The hashed futex queue entry, one per waiting task
195  * @list:               priority-sorted list of tasks waiting on this futex
196  * @task:               the task waiting on the futex
197  * @lock_ptr:           the hash bucket lock
198  * @key:                the key the futex is hashed on
199  * @pi_state:           optional priority inheritance state
200  * @rt_waiter:          rt_waiter storage for use with requeue_pi
201  * @requeue_pi_key:     the requeue_pi target futex key
202  * @bitset:             bitset for the optional bitmasked wakeup
203  *
204  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
205  * we can wake only the relevant ones (hashed queues may be shared).
206  *
207  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
208  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
209  * The order of wakeup is always to make the first condition true, then
210  * the second.
211  *
212  * PI futexes are typically woken before they are removed from the hash list via
213  * the rt_mutex code. See unqueue_me_pi().
214  */
215 struct futex_q {
216         struct plist_node list;
217
218         struct task_struct *task;
219         spinlock_t *lock_ptr;
220         union futex_key key;
221         struct futex_pi_state *pi_state;
222         struct rt_mutex_waiter *rt_waiter;
223         union futex_key *requeue_pi_key;
224         u32 bitset;
225 };
226
227 static const struct futex_q futex_q_init = {
228         /* list gets initialized in queue_me()*/
229         .key = FUTEX_KEY_INIT,
230         .bitset = FUTEX_BITSET_MATCH_ANY
231 };
232
233 /*
234  * Hash buckets are shared by all the futex_keys that hash to the same
235  * location.  Each key may have multiple futex_q structures, one for each task
236  * waiting on a futex.
237  */
238 struct futex_hash_bucket {
239         atomic_t waiters;
240         spinlock_t lock;
241         struct plist_head chain;
242 } ____cacheline_aligned_in_smp;
243
244 static unsigned long __read_mostly futex_hashsize;
245
246 static struct futex_hash_bucket *futex_queues;
247
248 static inline void futex_get_mm(union futex_key *key)
249 {
250         atomic_inc(&key->private.mm->mm_count);
251         /*
252          * Ensure futex_get_mm() implies a full barrier such that
253          * get_futex_key() implies a full barrier. This is relied upon
254          * as full barrier (B), see the ordering comment above.
255          */
256         smp_mb__after_atomic_inc();
257 }
258
259 /*
260  * Reflects a new waiter being added to the waitqueue.
261  */
262 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
263 {
264 #ifdef CONFIG_SMP
265         atomic_inc(&hb->waiters);
266         /*
267          * Full barrier (A), see the ordering comment above.
268          */
269         smp_mb__after_atomic_inc();
270 #endif
271 }
272
273 /*
274  * Reflects a waiter being removed from the waitqueue by wakeup
275  * paths.
276  */
277 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
278 {
279 #ifdef CONFIG_SMP
280         atomic_dec(&hb->waiters);
281 #endif
282 }
283
284 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
285 {
286 #ifdef CONFIG_SMP
287         return atomic_read(&hb->waiters);
288 #else
289         return 1;
290 #endif
291 }
292
293 /*
294  * We hash on the keys returned from get_futex_key (see below).
295  */
296 static struct futex_hash_bucket *hash_futex(union futex_key *key)
297 {
298         u32 hash = jhash2((u32*)&key->both.word,
299                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
300                           key->both.offset);
301         return &futex_queues[hash & (futex_hashsize - 1)];
302 }
303
304 /*
305  * Return 1 if two futex_keys are equal, 0 otherwise.
306  */
307 static inline int match_futex(union futex_key *key1, union futex_key *key2)
308 {
309         return (key1 && key2
310                 && key1->both.word == key2->both.word
311                 && key1->both.ptr == key2->both.ptr
312                 && key1->both.offset == key2->both.offset);
313 }
314
315 /*
316  * Take a reference to the resource addressed by a key.
317  * Can be called while holding spinlocks.
318  *
319  */
320 static void get_futex_key_refs(union futex_key *key)
321 {
322         if (!key->both.ptr)
323                 return;
324
325         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
326         case FUT_OFF_INODE:
327                 ihold(key->shared.inode); /* implies MB (B) */
328                 break;
329         case FUT_OFF_MMSHARED:
330                 futex_get_mm(key); /* implies MB (B) */
331                 break;
332         }
333 }
334
335 /*
336  * Drop a reference to the resource addressed by a key.
337  * The hash bucket spinlock must not be held.
338  */
339 static void drop_futex_key_refs(union futex_key *key)
340 {
341         if (!key->both.ptr) {
342                 /* If we're here then we tried to put a key we failed to get */
343                 WARN_ON_ONCE(1);
344                 return;
345         }
346
347         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
348         case FUT_OFF_INODE:
349                 iput(key->shared.inode);
350                 break;
351         case FUT_OFF_MMSHARED:
352                 mmdrop(key->private.mm);
353                 break;
354         }
355 }
356
357 /**
358  * get_futex_key() - Get parameters which are the keys for a futex
359  * @uaddr:      virtual address of the futex
360  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
361  * @key:        address where result is stored.
362  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
363  *              VERIFY_WRITE)
364  *
365  * Return: a negative error code or 0
366  *
367  * The key words are stored in *key on success.
368  *
369  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
370  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
371  * We can usually work out the index without swapping in the page.
372  *
373  * lock_page() might sleep, the caller should not hold a spinlock.
374  */
375 static int
376 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
377 {
378         unsigned long address = (unsigned long)uaddr;
379         struct mm_struct *mm = current->mm;
380         struct page *page, *page_head;
381         int err, ro = 0;
382
383         /*
384          * The futex address must be "naturally" aligned.
385          */
386         key->both.offset = address % PAGE_SIZE;
387         if (unlikely((address % sizeof(u32)) != 0))
388                 return -EINVAL;
389         address -= key->both.offset;
390
391         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
392                 return -EFAULT;
393
394         /*
395          * PROCESS_PRIVATE futexes are fast.
396          * As the mm cannot disappear under us and the 'key' only needs
397          * virtual address, we dont even have to find the underlying vma.
398          * Note : We do have to check 'uaddr' is a valid user address,
399          *        but access_ok() should be faster than find_vma()
400          */
401         if (!fshared) {
402                 key->private.mm = mm;
403                 key->private.address = address;
404                 get_futex_key_refs(key);  /* implies MB (B) */
405                 return 0;
406         }
407
408 again:
409         err = get_user_pages_fast(address, 1, 1, &page);
410         /*
411          * If write access is not required (eg. FUTEX_WAIT), try
412          * and get read-only access.
413          */
414         if (err == -EFAULT && rw == VERIFY_READ) {
415                 err = get_user_pages_fast(address, 1, 0, &page);
416                 ro = 1;
417         }
418         if (err < 0)
419                 return err;
420         else
421                 err = 0;
422
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424         page_head = page;
425         if (unlikely(PageTail(page))) {
426                 put_page(page);
427                 /* serialize against __split_huge_page_splitting() */
428                 local_irq_disable();
429                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
430                         page_head = compound_head(page);
431                         /*
432                          * page_head is valid pointer but we must pin
433                          * it before taking the PG_lock and/or
434                          * PG_compound_lock. The moment we re-enable
435                          * irqs __split_huge_page_splitting() can
436                          * return and the head page can be freed from
437                          * under us. We can't take the PG_lock and/or
438                          * PG_compound_lock on a page that could be
439                          * freed from under us.
440                          */
441                         if (page != page_head) {
442                                 get_page(page_head);
443                                 put_page(page);
444                         }
445                         local_irq_enable();
446                 } else {
447                         local_irq_enable();
448                         goto again;
449                 }
450         }
451 #else
452         page_head = compound_head(page);
453         if (page != page_head) {
454                 get_page(page_head);
455                 put_page(page);
456         }
457 #endif
458
459         lock_page(page_head);
460
461         /*
462          * If page_head->mapping is NULL, then it cannot be a PageAnon
463          * page; but it might be the ZERO_PAGE or in the gate area or
464          * in a special mapping (all cases which we are happy to fail);
465          * or it may have been a good file page when get_user_pages_fast
466          * found it, but truncated or holepunched or subjected to
467          * invalidate_complete_page2 before we got the page lock (also
468          * cases which we are happy to fail).  And we hold a reference,
469          * so refcount care in invalidate_complete_page's remove_mapping
470          * prevents drop_caches from setting mapping to NULL beneath us.
471          *
472          * The case we do have to guard against is when memory pressure made
473          * shmem_writepage move it from filecache to swapcache beneath us:
474          * an unlikely race, but we do need to retry for page_head->mapping.
475          */
476         if (!page_head->mapping) {
477                 int shmem_swizzled = PageSwapCache(page_head);
478                 unlock_page(page_head);
479                 put_page(page_head);
480                 if (shmem_swizzled)
481                         goto again;
482                 return -EFAULT;
483         }
484
485         /*
486          * Private mappings are handled in a simple way.
487          *
488          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
489          * it's a read-only handle, it's expected that futexes attach to
490          * the object not the particular process.
491          */
492         if (PageAnon(page_head)) {
493                 /*
494                  * A RO anonymous page will never change and thus doesn't make
495                  * sense for futex operations.
496                  */
497                 if (ro) {
498                         err = -EFAULT;
499                         goto out;
500                 }
501
502                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
503                 key->private.mm = mm;
504                 key->private.address = address;
505         } else {
506                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
507                 key->shared.inode = page_head->mapping->host;
508                 key->shared.pgoff = basepage_index(page);
509         }
510
511         get_futex_key_refs(key); /* implies MB (B) */
512
513 out:
514         unlock_page(page_head);
515         put_page(page_head);
516         return err;
517 }
518
519 static inline void put_futex_key(union futex_key *key)
520 {
521         drop_futex_key_refs(key);
522 }
523
524 /**
525  * fault_in_user_writeable() - Fault in user address and verify RW access
526  * @uaddr:      pointer to faulting user space address
527  *
528  * Slow path to fixup the fault we just took in the atomic write
529  * access to @uaddr.
530  *
531  * We have no generic implementation of a non-destructive write to the
532  * user address. We know that we faulted in the atomic pagefault
533  * disabled section so we can as well avoid the #PF overhead by
534  * calling get_user_pages() right away.
535  */
536 static int fault_in_user_writeable(u32 __user *uaddr)
537 {
538         struct mm_struct *mm = current->mm;
539         int ret;
540
541         down_read(&mm->mmap_sem);
542         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
543                                FAULT_FLAG_WRITE);
544         up_read(&mm->mmap_sem);
545
546         return ret < 0 ? ret : 0;
547 }
548
549 /**
550  * futex_top_waiter() - Return the highest priority waiter on a futex
551  * @hb:         the hash bucket the futex_q's reside in
552  * @key:        the futex key (to distinguish it from other futex futex_q's)
553  *
554  * Must be called with the hb lock held.
555  */
556 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
557                                         union futex_key *key)
558 {
559         struct futex_q *this;
560
561         plist_for_each_entry(this, &hb->chain, list) {
562                 if (match_futex(&this->key, key))
563                         return this;
564         }
565         return NULL;
566 }
567
568 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
569                                       u32 uval, u32 newval)
570 {
571         int ret;
572
573         pagefault_disable();
574         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
575         pagefault_enable();
576
577         return ret;
578 }
579
580 static int get_futex_value_locked(u32 *dest, u32 __user *from)
581 {
582         int ret;
583
584         pagefault_disable();
585         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
586         pagefault_enable();
587
588         return ret ? -EFAULT : 0;
589 }
590
591
592 /*
593  * PI code:
594  */
595 static int refill_pi_state_cache(void)
596 {
597         struct futex_pi_state *pi_state;
598
599         if (likely(current->pi_state_cache))
600                 return 0;
601
602         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
603
604         if (!pi_state)
605                 return -ENOMEM;
606
607         INIT_LIST_HEAD(&pi_state->list);
608         /* pi_mutex gets initialized later */
609         pi_state->owner = NULL;
610         atomic_set(&pi_state->refcount, 1);
611         pi_state->key = FUTEX_KEY_INIT;
612
613         current->pi_state_cache = pi_state;
614
615         return 0;
616 }
617
618 static struct futex_pi_state * alloc_pi_state(void)
619 {
620         struct futex_pi_state *pi_state = current->pi_state_cache;
621
622         WARN_ON(!pi_state);
623         current->pi_state_cache = NULL;
624
625         return pi_state;
626 }
627
628 static void free_pi_state(struct futex_pi_state *pi_state)
629 {
630         if (!atomic_dec_and_test(&pi_state->refcount))
631                 return;
632
633         /*
634          * If pi_state->owner is NULL, the owner is most probably dying
635          * and has cleaned up the pi_state already
636          */
637         if (pi_state->owner) {
638                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
639                 list_del_init(&pi_state->list);
640                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
641
642                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
643         }
644
645         if (current->pi_state_cache)
646                 kfree(pi_state);
647         else {
648                 /*
649                  * pi_state->list is already empty.
650                  * clear pi_state->owner.
651                  * refcount is at 0 - put it back to 1.
652                  */
653                 pi_state->owner = NULL;
654                 atomic_set(&pi_state->refcount, 1);
655                 current->pi_state_cache = pi_state;
656         }
657 }
658
659 /*
660  * Look up the task based on what TID userspace gave us.
661  * We dont trust it.
662  */
663 static struct task_struct * futex_find_get_task(pid_t pid)
664 {
665         struct task_struct *p;
666
667         rcu_read_lock();
668         p = find_task_by_vpid(pid);
669         if (p)
670                 get_task_struct(p);
671
672         rcu_read_unlock();
673
674         return p;
675 }
676
677 /*
678  * This task is holding PI mutexes at exit time => bad.
679  * Kernel cleans up PI-state, but userspace is likely hosed.
680  * (Robust-futex cleanup is separate and might save the day for userspace.)
681  */
682 void exit_pi_state_list(struct task_struct *curr)
683 {
684         struct list_head *next, *head = &curr->pi_state_list;
685         struct futex_pi_state *pi_state;
686         struct futex_hash_bucket *hb;
687         union futex_key key = FUTEX_KEY_INIT;
688
689         if (!futex_cmpxchg_enabled)
690                 return;
691         /*
692          * We are a ZOMBIE and nobody can enqueue itself on
693          * pi_state_list anymore, but we have to be careful
694          * versus waiters unqueueing themselves:
695          */
696         raw_spin_lock_irq(&curr->pi_lock);
697         while (!list_empty(head)) {
698
699                 next = head->next;
700                 pi_state = list_entry(next, struct futex_pi_state, list);
701                 key = pi_state->key;
702                 hb = hash_futex(&key);
703                 raw_spin_unlock_irq(&curr->pi_lock);
704
705                 spin_lock(&hb->lock);
706
707                 raw_spin_lock_irq(&curr->pi_lock);
708                 /*
709                  * We dropped the pi-lock, so re-check whether this
710                  * task still owns the PI-state:
711                  */
712                 if (head->next != next) {
713                         spin_unlock(&hb->lock);
714                         continue;
715                 }
716
717                 WARN_ON(pi_state->owner != curr);
718                 WARN_ON(list_empty(&pi_state->list));
719                 list_del_init(&pi_state->list);
720                 pi_state->owner = NULL;
721                 raw_spin_unlock_irq(&curr->pi_lock);
722
723                 rt_mutex_unlock(&pi_state->pi_mutex);
724
725                 spin_unlock(&hb->lock);
726
727                 raw_spin_lock_irq(&curr->pi_lock);
728         }
729         raw_spin_unlock_irq(&curr->pi_lock);
730 }
731
732 static int
733 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
734                 union futex_key *key, struct futex_pi_state **ps)
735 {
736         struct futex_pi_state *pi_state = NULL;
737         struct futex_q *this, *next;
738         struct task_struct *p;
739         pid_t pid = uval & FUTEX_TID_MASK;
740
741         plist_for_each_entry_safe(this, next, &hb->chain, list) {
742                 if (match_futex(&this->key, key)) {
743                         /*
744                          * Another waiter already exists - bump up
745                          * the refcount and return its pi_state:
746                          */
747                         pi_state = this->pi_state;
748                         /*
749                          * Userspace might have messed up non-PI and PI futexes
750                          */
751                         if (unlikely(!pi_state))
752                                 return -EINVAL;
753
754                         WARN_ON(!atomic_read(&pi_state->refcount));
755
756                         /*
757                          * When pi_state->owner is NULL then the owner died
758                          * and another waiter is on the fly. pi_state->owner
759                          * is fixed up by the task which acquires
760                          * pi_state->rt_mutex.
761                          *
762                          * We do not check for pid == 0 which can happen when
763                          * the owner died and robust_list_exit() cleared the
764                          * TID.
765                          */
766                         if (pid && pi_state->owner) {
767                                 /*
768                                  * Bail out if user space manipulated the
769                                  * futex value.
770                                  */
771                                 if (pid != task_pid_vnr(pi_state->owner))
772                                         return -EINVAL;
773                         }
774
775                         atomic_inc(&pi_state->refcount);
776                         *ps = pi_state;
777
778                         return 0;
779                 }
780         }
781
782         /*
783          * We are the first waiter - try to look up the real owner and attach
784          * the new pi_state to it, but bail out when TID = 0
785          */
786         if (!pid)
787                 return -ESRCH;
788         p = futex_find_get_task(pid);
789         if (!p)
790                 return -ESRCH;
791
792         /*
793          * We need to look at the task state flags to figure out,
794          * whether the task is exiting. To protect against the do_exit
795          * change of the task flags, we do this protected by
796          * p->pi_lock:
797          */
798         raw_spin_lock_irq(&p->pi_lock);
799         if (unlikely(p->flags & PF_EXITING)) {
800                 /*
801                  * The task is on the way out. When PF_EXITPIDONE is
802                  * set, we know that the task has finished the
803                  * cleanup:
804                  */
805                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
806
807                 raw_spin_unlock_irq(&p->pi_lock);
808                 put_task_struct(p);
809                 return ret;
810         }
811
812         pi_state = alloc_pi_state();
813
814         /*
815          * Initialize the pi_mutex in locked state and make 'p'
816          * the owner of it:
817          */
818         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
819
820         /* Store the key for possible exit cleanups: */
821         pi_state->key = *key;
822
823         WARN_ON(!list_empty(&pi_state->list));
824         list_add(&pi_state->list, &p->pi_state_list);
825         pi_state->owner = p;
826         raw_spin_unlock_irq(&p->pi_lock);
827
828         put_task_struct(p);
829
830         *ps = pi_state;
831
832         return 0;
833 }
834
835 /**
836  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
837  * @uaddr:              the pi futex user address
838  * @hb:                 the pi futex hash bucket
839  * @key:                the futex key associated with uaddr and hb
840  * @ps:                 the pi_state pointer where we store the result of the
841  *                      lookup
842  * @task:               the task to perform the atomic lock work for.  This will
843  *                      be "current" except in the case of requeue pi.
844  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
845  *
846  * Return:
847  *  0 - ready to wait;
848  *  1 - acquired the lock;
849  * <0 - error
850  *
851  * The hb->lock and futex_key refs shall be held by the caller.
852  */
853 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
854                                 union futex_key *key,
855                                 struct futex_pi_state **ps,
856                                 struct task_struct *task, int set_waiters)
857 {
858         int lock_taken, ret, force_take = 0;
859         u32 uval, newval, curval, vpid = task_pid_vnr(task);
860
861 retry:
862         ret = lock_taken = 0;
863
864         /*
865          * To avoid races, we attempt to take the lock here again
866          * (by doing a 0 -> TID atomic cmpxchg), while holding all
867          * the locks. It will most likely not succeed.
868          */
869         newval = vpid;
870         if (set_waiters)
871                 newval |= FUTEX_WAITERS;
872
873         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
874                 return -EFAULT;
875
876         /*
877          * Detect deadlocks.
878          */
879         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
880                 return -EDEADLK;
881
882         /*
883          * Surprise - we got the lock. Just return to userspace:
884          */
885         if (unlikely(!curval))
886                 return 1;
887
888         uval = curval;
889
890         /*
891          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
892          * to wake at the next unlock.
893          */
894         newval = curval | FUTEX_WAITERS;
895
896         /*
897          * Should we force take the futex? See below.
898          */
899         if (unlikely(force_take)) {
900                 /*
901                  * Keep the OWNER_DIED and the WAITERS bit and set the
902                  * new TID value.
903                  */
904                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
905                 force_take = 0;
906                 lock_taken = 1;
907         }
908
909         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
910                 return -EFAULT;
911         if (unlikely(curval != uval))
912                 goto retry;
913
914         /*
915          * We took the lock due to forced take over.
916          */
917         if (unlikely(lock_taken))
918                 return 1;
919
920         /*
921          * We dont have the lock. Look up the PI state (or create it if
922          * we are the first waiter):
923          */
924         ret = lookup_pi_state(uval, hb, key, ps);
925
926         if (unlikely(ret)) {
927                 switch (ret) {
928                 case -ESRCH:
929                         /*
930                          * We failed to find an owner for this
931                          * futex. So we have no pi_state to block
932                          * on. This can happen in two cases:
933                          *
934                          * 1) The owner died
935                          * 2) A stale FUTEX_WAITERS bit
936                          *
937                          * Re-read the futex value.
938                          */
939                         if (get_futex_value_locked(&curval, uaddr))
940                                 return -EFAULT;
941
942                         /*
943                          * If the owner died or we have a stale
944                          * WAITERS bit the owner TID in the user space
945                          * futex is 0.
946                          */
947                         if (!(curval & FUTEX_TID_MASK)) {
948                                 force_take = 1;
949                                 goto retry;
950                         }
951                 default:
952                         break;
953                 }
954         }
955
956         return ret;
957 }
958
959 /**
960  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
961  * @q:  The futex_q to unqueue
962  *
963  * The q->lock_ptr must not be NULL and must be held by the caller.
964  */
965 static void __unqueue_futex(struct futex_q *q)
966 {
967         struct futex_hash_bucket *hb;
968
969         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
970             || WARN_ON(plist_node_empty(&q->list)))
971                 return;
972
973         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
974         plist_del(&q->list, &hb->chain);
975         hb_waiters_dec(hb);
976 }
977
978 /*
979  * The hash bucket lock must be held when this is called.
980  * Afterwards, the futex_q must not be accessed.
981  */
982 static void wake_futex(struct futex_q *q)
983 {
984         struct task_struct *p = q->task;
985
986         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
987                 return;
988
989         /*
990          * We set q->lock_ptr = NULL _before_ we wake up the task. If
991          * a non-futex wake up happens on another CPU then the task
992          * might exit and p would dereference a non-existing task
993          * struct. Prevent this by holding a reference on p across the
994          * wake up.
995          */
996         get_task_struct(p);
997
998         __unqueue_futex(q);
999         /*
1000          * The waiting task can free the futex_q as soon as
1001          * q->lock_ptr = NULL is written, without taking any locks. A
1002          * memory barrier is required here to prevent the following
1003          * store to lock_ptr from getting ahead of the plist_del.
1004          */
1005         smp_wmb();
1006         q->lock_ptr = NULL;
1007
1008         wake_up_state(p, TASK_NORMAL);
1009         put_task_struct(p);
1010 }
1011
1012 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1013 {
1014         struct task_struct *new_owner;
1015         struct futex_pi_state *pi_state = this->pi_state;
1016         u32 uninitialized_var(curval), newval;
1017
1018         if (!pi_state)
1019                 return -EINVAL;
1020
1021         /*
1022          * If current does not own the pi_state then the futex is
1023          * inconsistent and user space fiddled with the futex value.
1024          */
1025         if (pi_state->owner != current)
1026                 return -EINVAL;
1027
1028         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1029         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1030
1031         /*
1032          * It is possible that the next waiter (the one that brought
1033          * this owner to the kernel) timed out and is no longer
1034          * waiting on the lock.
1035          */
1036         if (!new_owner)
1037                 new_owner = this->task;
1038
1039         /*
1040          * We pass it to the next owner. (The WAITERS bit is always
1041          * kept enabled while there is PI state around. We must also
1042          * preserve the owner died bit.)
1043          */
1044         if (!(uval & FUTEX_OWNER_DIED)) {
1045                 int ret = 0;
1046
1047                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1048
1049                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1050                         ret = -EFAULT;
1051                 else if (curval != uval)
1052                         ret = -EINVAL;
1053                 if (ret) {
1054                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1055                         return ret;
1056                 }
1057         }
1058
1059         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1060         WARN_ON(list_empty(&pi_state->list));
1061         list_del_init(&pi_state->list);
1062         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1063
1064         raw_spin_lock_irq(&new_owner->pi_lock);
1065         WARN_ON(!list_empty(&pi_state->list));
1066         list_add(&pi_state->list, &new_owner->pi_state_list);
1067         pi_state->owner = new_owner;
1068         raw_spin_unlock_irq(&new_owner->pi_lock);
1069
1070         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1071         rt_mutex_unlock(&pi_state->pi_mutex);
1072
1073         return 0;
1074 }
1075
1076 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1077 {
1078         u32 uninitialized_var(oldval);
1079
1080         /*
1081          * There is no waiter, so we unlock the futex. The owner died
1082          * bit has not to be preserved here. We are the owner:
1083          */
1084         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1085                 return -EFAULT;
1086         if (oldval != uval)
1087                 return -EAGAIN;
1088
1089         return 0;
1090 }
1091
1092 /*
1093  * Express the locking dependencies for lockdep:
1094  */
1095 static inline void
1096 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1097 {
1098         if (hb1 <= hb2) {
1099                 spin_lock(&hb1->lock);
1100                 if (hb1 < hb2)
1101                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1102         } else { /* hb1 > hb2 */
1103                 spin_lock(&hb2->lock);
1104                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1105         }
1106 }
1107
1108 static inline void
1109 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1110 {
1111         spin_unlock(&hb1->lock);
1112         if (hb1 != hb2)
1113                 spin_unlock(&hb2->lock);
1114 }
1115
1116 /*
1117  * Wake up waiters matching bitset queued on this futex (uaddr).
1118  */
1119 static int
1120 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1121 {
1122         struct futex_hash_bucket *hb;
1123         struct futex_q *this, *next;
1124         union futex_key key = FUTEX_KEY_INIT;
1125         int ret;
1126
1127         if (!bitset)
1128                 return -EINVAL;
1129
1130         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1131         if (unlikely(ret != 0))
1132                 goto out;
1133
1134         hb = hash_futex(&key);
1135
1136         /* Make sure we really have tasks to wakeup */
1137         if (!hb_waiters_pending(hb))
1138                 goto out_put_key;
1139
1140         spin_lock(&hb->lock);
1141
1142         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1143                 if (match_futex (&this->key, &key)) {
1144                         if (this->pi_state || this->rt_waiter) {
1145                                 ret = -EINVAL;
1146                                 break;
1147                         }
1148
1149                         /* Check if one of the bits is set in both bitsets */
1150                         if (!(this->bitset & bitset))
1151                                 continue;
1152
1153                         wake_futex(this);
1154                         if (++ret >= nr_wake)
1155                                 break;
1156                 }
1157         }
1158
1159         spin_unlock(&hb->lock);
1160 out_put_key:
1161         put_futex_key(&key);
1162 out:
1163         return ret;
1164 }
1165
1166 /*
1167  * Wake up all waiters hashed on the physical page that is mapped
1168  * to this virtual address:
1169  */
1170 static int
1171 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1172               int nr_wake, int nr_wake2, int op)
1173 {
1174         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1175         struct futex_hash_bucket *hb1, *hb2;
1176         struct futex_q *this, *next;
1177         int ret, op_ret;
1178
1179 retry:
1180         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1181         if (unlikely(ret != 0))
1182                 goto out;
1183         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1184         if (unlikely(ret != 0))
1185                 goto out_put_key1;
1186
1187         hb1 = hash_futex(&key1);
1188         hb2 = hash_futex(&key2);
1189
1190 retry_private:
1191         double_lock_hb(hb1, hb2);
1192         op_ret = futex_atomic_op_inuser(op, uaddr2);
1193         if (unlikely(op_ret < 0)) {
1194
1195                 double_unlock_hb(hb1, hb2);
1196
1197 #ifndef CONFIG_MMU
1198                 /*
1199                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1200                  * but we might get them from range checking
1201                  */
1202                 ret = op_ret;
1203                 goto out_put_keys;
1204 #endif
1205
1206                 if (unlikely(op_ret != -EFAULT)) {
1207                         ret = op_ret;
1208                         goto out_put_keys;
1209                 }
1210
1211                 ret = fault_in_user_writeable(uaddr2);
1212                 if (ret)
1213                         goto out_put_keys;
1214
1215                 if (!(flags & FLAGS_SHARED))
1216                         goto retry_private;
1217
1218                 put_futex_key(&key2);
1219                 put_futex_key(&key1);
1220                 goto retry;
1221         }
1222
1223         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1224                 if (match_futex (&this->key, &key1)) {
1225                         if (this->pi_state || this->rt_waiter) {
1226                                 ret = -EINVAL;
1227                                 goto out_unlock;
1228                         }
1229                         wake_futex(this);
1230                         if (++ret >= nr_wake)
1231                                 break;
1232                 }
1233         }
1234
1235         if (op_ret > 0) {
1236                 op_ret = 0;
1237                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1238                         if (match_futex (&this->key, &key2)) {
1239                                 if (this->pi_state || this->rt_waiter) {
1240                                         ret = -EINVAL;
1241                                         goto out_unlock;
1242                                 }
1243                                 wake_futex(this);
1244                                 if (++op_ret >= nr_wake2)
1245                                         break;
1246                         }
1247                 }
1248                 ret += op_ret;
1249         }
1250
1251 out_unlock:
1252         double_unlock_hb(hb1, hb2);
1253 out_put_keys:
1254         put_futex_key(&key2);
1255 out_put_key1:
1256         put_futex_key(&key1);
1257 out:
1258         return ret;
1259 }
1260
1261 /**
1262  * requeue_futex() - Requeue a futex_q from one hb to another
1263  * @q:          the futex_q to requeue
1264  * @hb1:        the source hash_bucket
1265  * @hb2:        the target hash_bucket
1266  * @key2:       the new key for the requeued futex_q
1267  */
1268 static inline
1269 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1270                    struct futex_hash_bucket *hb2, union futex_key *key2)
1271 {
1272
1273         /*
1274          * If key1 and key2 hash to the same bucket, no need to
1275          * requeue.
1276          */
1277         if (likely(&hb1->chain != &hb2->chain)) {
1278                 plist_del(&q->list, &hb1->chain);
1279                 hb_waiters_dec(hb1);
1280                 plist_add(&q->list, &hb2->chain);
1281                 hb_waiters_inc(hb2);
1282                 q->lock_ptr = &hb2->lock;
1283         }
1284         get_futex_key_refs(key2);
1285         q->key = *key2;
1286 }
1287
1288 /**
1289  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1290  * @q:          the futex_q
1291  * @key:        the key of the requeue target futex
1292  * @hb:         the hash_bucket of the requeue target futex
1293  *
1294  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1295  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1296  * to the requeue target futex so the waiter can detect the wakeup on the right
1297  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1298  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1299  * to protect access to the pi_state to fixup the owner later.  Must be called
1300  * with both q->lock_ptr and hb->lock held.
1301  */
1302 static inline
1303 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1304                            struct futex_hash_bucket *hb)
1305 {
1306         get_futex_key_refs(key);
1307         q->key = *key;
1308
1309         __unqueue_futex(q);
1310
1311         WARN_ON(!q->rt_waiter);
1312         q->rt_waiter = NULL;
1313
1314         q->lock_ptr = &hb->lock;
1315
1316         wake_up_state(q->task, TASK_NORMAL);
1317 }
1318
1319 /**
1320  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1321  * @pifutex:            the user address of the to futex
1322  * @hb1:                the from futex hash bucket, must be locked by the caller
1323  * @hb2:                the to futex hash bucket, must be locked by the caller
1324  * @key1:               the from futex key
1325  * @key2:               the to futex key
1326  * @ps:                 address to store the pi_state pointer
1327  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1328  *
1329  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1330  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1331  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1332  * hb1 and hb2 must be held by the caller.
1333  *
1334  * Return:
1335  *  0 - failed to acquire the lock atomically;
1336  *  1 - acquired the lock;
1337  * <0 - error
1338  */
1339 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1340                                  struct futex_hash_bucket *hb1,
1341                                  struct futex_hash_bucket *hb2,
1342                                  union futex_key *key1, union futex_key *key2,
1343                                  struct futex_pi_state **ps, int set_waiters)
1344 {
1345         struct futex_q *top_waiter = NULL;
1346         u32 curval;
1347         int ret;
1348
1349         if (get_futex_value_locked(&curval, pifutex))
1350                 return -EFAULT;
1351
1352         /*
1353          * Find the top_waiter and determine if there are additional waiters.
1354          * If the caller intends to requeue more than 1 waiter to pifutex,
1355          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1356          * as we have means to handle the possible fault.  If not, don't set
1357          * the bit unecessarily as it will force the subsequent unlock to enter
1358          * the kernel.
1359          */
1360         top_waiter = futex_top_waiter(hb1, key1);
1361
1362         /* There are no waiters, nothing for us to do. */
1363         if (!top_waiter)
1364                 return 0;
1365
1366         /* Ensure we requeue to the expected futex. */
1367         if (!match_futex(top_waiter->requeue_pi_key, key2))
1368                 return -EINVAL;
1369
1370         /*
1371          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1372          * the contended case or if set_waiters is 1.  The pi_state is returned
1373          * in ps in contended cases.
1374          */
1375         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1376                                    set_waiters);
1377         if (ret == 1)
1378                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1379
1380         return ret;
1381 }
1382
1383 /**
1384  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1385  * @uaddr1:     source futex user address
1386  * @flags:      futex flags (FLAGS_SHARED, etc.)
1387  * @uaddr2:     target futex user address
1388  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1389  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1390  * @cmpval:     @uaddr1 expected value (or %NULL)
1391  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1392  *              pi futex (pi to pi requeue is not supported)
1393  *
1394  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1395  * uaddr2 atomically on behalf of the top waiter.
1396  *
1397  * Return:
1398  * >=0 - on success, the number of tasks requeued or woken;
1399  *  <0 - on error
1400  */
1401 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1402                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1403                          u32 *cmpval, int requeue_pi)
1404 {
1405         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1406         int drop_count = 0, task_count = 0, ret;
1407         struct futex_pi_state *pi_state = NULL;
1408         struct futex_hash_bucket *hb1, *hb2;
1409         struct futex_q *this, *next;
1410         u32 curval2;
1411
1412         if (requeue_pi) {
1413                 /*
1414                  * requeue_pi requires a pi_state, try to allocate it now
1415                  * without any locks in case it fails.
1416                  */
1417                 if (refill_pi_state_cache())
1418                         return -ENOMEM;
1419                 /*
1420                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1421                  * + nr_requeue, since it acquires the rt_mutex prior to
1422                  * returning to userspace, so as to not leave the rt_mutex with
1423                  * waiters and no owner.  However, second and third wake-ups
1424                  * cannot be predicted as they involve race conditions with the
1425                  * first wake and a fault while looking up the pi_state.  Both
1426                  * pthread_cond_signal() and pthread_cond_broadcast() should
1427                  * use nr_wake=1.
1428                  */
1429                 if (nr_wake != 1)
1430                         return -EINVAL;
1431         }
1432
1433 retry:
1434         if (pi_state != NULL) {
1435                 /*
1436                  * We will have to lookup the pi_state again, so free this one
1437                  * to keep the accounting correct.
1438                  */
1439                 free_pi_state(pi_state);
1440                 pi_state = NULL;
1441         }
1442
1443         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1444         if (unlikely(ret != 0))
1445                 goto out;
1446         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1447                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1448         if (unlikely(ret != 0))
1449                 goto out_put_key1;
1450
1451         hb1 = hash_futex(&key1);
1452         hb2 = hash_futex(&key2);
1453
1454 retry_private:
1455         double_lock_hb(hb1, hb2);
1456
1457         if (likely(cmpval != NULL)) {
1458                 u32 curval;
1459
1460                 ret = get_futex_value_locked(&curval, uaddr1);
1461
1462                 if (unlikely(ret)) {
1463                         double_unlock_hb(hb1, hb2);
1464
1465                         ret = get_user(curval, uaddr1);
1466                         if (ret)
1467                                 goto out_put_keys;
1468
1469                         if (!(flags & FLAGS_SHARED))
1470                                 goto retry_private;
1471
1472                         put_futex_key(&key2);
1473                         put_futex_key(&key1);
1474                         goto retry;
1475                 }
1476                 if (curval != *cmpval) {
1477                         ret = -EAGAIN;
1478                         goto out_unlock;
1479                 }
1480         }
1481
1482         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1483                 /*
1484                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1485                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1486                  * bit.  We force this here where we are able to easily handle
1487                  * faults rather in the requeue loop below.
1488                  */
1489                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1490                                                  &key2, &pi_state, nr_requeue);
1491
1492                 /*
1493                  * At this point the top_waiter has either taken uaddr2 or is
1494                  * waiting on it.  If the former, then the pi_state will not
1495                  * exist yet, look it up one more time to ensure we have a
1496                  * reference to it.
1497                  */
1498                 if (ret == 1) {
1499                         WARN_ON(pi_state);
1500                         drop_count++;
1501                         task_count++;
1502                         ret = get_futex_value_locked(&curval2, uaddr2);
1503                         if (!ret)
1504                                 ret = lookup_pi_state(curval2, hb2, &key2,
1505                                                       &pi_state);
1506                 }
1507
1508                 switch (ret) {
1509                 case 0:
1510                         break;
1511                 case -EFAULT:
1512                         double_unlock_hb(hb1, hb2);
1513                         put_futex_key(&key2);
1514                         put_futex_key(&key1);
1515                         ret = fault_in_user_writeable(uaddr2);
1516                         if (!ret)
1517                                 goto retry;
1518                         goto out;
1519                 case -EAGAIN:
1520                         /* The owner was exiting, try again. */
1521                         double_unlock_hb(hb1, hb2);
1522                         put_futex_key(&key2);
1523                         put_futex_key(&key1);
1524                         cond_resched();
1525                         goto retry;
1526                 default:
1527                         goto out_unlock;
1528                 }
1529         }
1530
1531         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1532                 if (task_count - nr_wake >= nr_requeue)
1533                         break;
1534
1535                 if (!match_futex(&this->key, &key1))
1536                         continue;
1537
1538                 /*
1539                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1540                  * be paired with each other and no other futex ops.
1541                  *
1542                  * We should never be requeueing a futex_q with a pi_state,
1543                  * which is awaiting a futex_unlock_pi().
1544                  */
1545                 if ((requeue_pi && !this->rt_waiter) ||
1546                     (!requeue_pi && this->rt_waiter) ||
1547                     this->pi_state) {
1548                         ret = -EINVAL;
1549                         break;
1550                 }
1551
1552                 /*
1553                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1554                  * lock, we already woke the top_waiter.  If not, it will be
1555                  * woken by futex_unlock_pi().
1556                  */
1557                 if (++task_count <= nr_wake && !requeue_pi) {
1558                         wake_futex(this);
1559                         continue;
1560                 }
1561
1562                 /* Ensure we requeue to the expected futex for requeue_pi. */
1563                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1564                         ret = -EINVAL;
1565                         break;
1566                 }
1567
1568                 /*
1569                  * Requeue nr_requeue waiters and possibly one more in the case
1570                  * of requeue_pi if we couldn't acquire the lock atomically.
1571                  */
1572                 if (requeue_pi) {
1573                         /* Prepare the waiter to take the rt_mutex. */
1574                         atomic_inc(&pi_state->refcount);
1575                         this->pi_state = pi_state;
1576                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1577                                                         this->rt_waiter,
1578                                                         this->task, 1);
1579                         if (ret == 1) {
1580                                 /* We got the lock. */
1581                                 requeue_pi_wake_futex(this, &key2, hb2);
1582                                 drop_count++;
1583                                 continue;
1584                         } else if (ret) {
1585                                 /* -EDEADLK */
1586                                 this->pi_state = NULL;
1587                                 free_pi_state(pi_state);
1588                                 goto out_unlock;
1589                         }
1590                 }
1591                 requeue_futex(this, hb1, hb2, &key2);
1592                 drop_count++;
1593         }
1594
1595 out_unlock:
1596         double_unlock_hb(hb1, hb2);
1597
1598         /*
1599          * drop_futex_key_refs() must be called outside the spinlocks. During
1600          * the requeue we moved futex_q's from the hash bucket at key1 to the
1601          * one at key2 and updated their key pointer.  We no longer need to
1602          * hold the references to key1.
1603          */
1604         while (--drop_count >= 0)
1605                 drop_futex_key_refs(&key1);
1606
1607 out_put_keys:
1608         put_futex_key(&key2);
1609 out_put_key1:
1610         put_futex_key(&key1);
1611 out:
1612         if (pi_state != NULL)
1613                 free_pi_state(pi_state);
1614         return ret ? ret : task_count;
1615 }
1616
1617 /* The key must be already stored in q->key. */
1618 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1619         __acquires(&hb->lock)
1620 {
1621         struct futex_hash_bucket *hb;
1622
1623         hb = hash_futex(&q->key);
1624
1625         /*
1626          * Increment the counter before taking the lock so that
1627          * a potential waker won't miss a to-be-slept task that is
1628          * waiting for the spinlock. This is safe as all queue_lock()
1629          * users end up calling queue_me(). Similarly, for housekeeping,
1630          * decrement the counter at queue_unlock() when some error has
1631          * occurred and we don't end up adding the task to the list.
1632          */
1633         hb_waiters_inc(hb);
1634
1635         q->lock_ptr = &hb->lock;
1636
1637         spin_lock(&hb->lock); /* implies MB (A) */
1638         return hb;
1639 }
1640
1641 static inline void
1642 queue_unlock(struct futex_hash_bucket *hb)
1643         __releases(&hb->lock)
1644 {
1645         spin_unlock(&hb->lock);
1646         hb_waiters_dec(hb);
1647 }
1648
1649 /**
1650  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1651  * @q:  The futex_q to enqueue
1652  * @hb: The destination hash bucket
1653  *
1654  * The hb->lock must be held by the caller, and is released here. A call to
1655  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1656  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1657  * or nothing if the unqueue is done as part of the wake process and the unqueue
1658  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1659  * an example).
1660  */
1661 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1662         __releases(&hb->lock)
1663 {
1664         int prio;
1665
1666         /*
1667          * The priority used to register this element is
1668          * - either the real thread-priority for the real-time threads
1669          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1670          * - or MAX_RT_PRIO for non-RT threads.
1671          * Thus, all RT-threads are woken first in priority order, and
1672          * the others are woken last, in FIFO order.
1673          */
1674         prio = min(current->normal_prio, MAX_RT_PRIO);
1675
1676         plist_node_init(&q->list, prio);
1677         plist_add(&q->list, &hb->chain);
1678         q->task = current;
1679         spin_unlock(&hb->lock);
1680 }
1681
1682 /**
1683  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1684  * @q:  The futex_q to unqueue
1685  *
1686  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1687  * be paired with exactly one earlier call to queue_me().
1688  *
1689  * Return:
1690  *   1 - if the futex_q was still queued (and we removed unqueued it);
1691  *   0 - if the futex_q was already removed by the waking thread
1692  */
1693 static int unqueue_me(struct futex_q *q)
1694 {
1695         spinlock_t *lock_ptr;
1696         int ret = 0;
1697
1698         /* In the common case we don't take the spinlock, which is nice. */
1699 retry:
1700         lock_ptr = q->lock_ptr;
1701         barrier();
1702         if (lock_ptr != NULL) {
1703                 spin_lock(lock_ptr);
1704                 /*
1705                  * q->lock_ptr can change between reading it and
1706                  * spin_lock(), causing us to take the wrong lock.  This
1707                  * corrects the race condition.
1708                  *
1709                  * Reasoning goes like this: if we have the wrong lock,
1710                  * q->lock_ptr must have changed (maybe several times)
1711                  * between reading it and the spin_lock().  It can
1712                  * change again after the spin_lock() but only if it was
1713                  * already changed before the spin_lock().  It cannot,
1714                  * however, change back to the original value.  Therefore
1715                  * we can detect whether we acquired the correct lock.
1716                  */
1717                 if (unlikely(lock_ptr != q->lock_ptr)) {
1718                         spin_unlock(lock_ptr);
1719                         goto retry;
1720                 }
1721                 __unqueue_futex(q);
1722
1723                 BUG_ON(q->pi_state);
1724
1725                 spin_unlock(lock_ptr);
1726                 ret = 1;
1727         }
1728
1729         drop_futex_key_refs(&q->key);
1730         return ret;
1731 }
1732
1733 /*
1734  * PI futexes can not be requeued and must remove themself from the
1735  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1736  * and dropped here.
1737  */
1738 static void unqueue_me_pi(struct futex_q *q)
1739         __releases(q->lock_ptr)
1740 {
1741         __unqueue_futex(q);
1742
1743         BUG_ON(!q->pi_state);
1744         free_pi_state(q->pi_state);
1745         q->pi_state = NULL;
1746
1747         spin_unlock(q->lock_ptr);
1748 }
1749
1750 /*
1751  * Fixup the pi_state owner with the new owner.
1752  *
1753  * Must be called with hash bucket lock held and mm->sem held for non
1754  * private futexes.
1755  */
1756 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1757                                 struct task_struct *newowner)
1758 {
1759         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1760         struct futex_pi_state *pi_state = q->pi_state;
1761         struct task_struct *oldowner = pi_state->owner;
1762         u32 uval, uninitialized_var(curval), newval;
1763         int ret;
1764
1765         /* Owner died? */
1766         if (!pi_state->owner)
1767                 newtid |= FUTEX_OWNER_DIED;
1768
1769         /*
1770          * We are here either because we stole the rtmutex from the
1771          * previous highest priority waiter or we are the highest priority
1772          * waiter but failed to get the rtmutex the first time.
1773          * We have to replace the newowner TID in the user space variable.
1774          * This must be atomic as we have to preserve the owner died bit here.
1775          *
1776          * Note: We write the user space value _before_ changing the pi_state
1777          * because we can fault here. Imagine swapped out pages or a fork
1778          * that marked all the anonymous memory readonly for cow.
1779          *
1780          * Modifying pi_state _before_ the user space value would
1781          * leave the pi_state in an inconsistent state when we fault
1782          * here, because we need to drop the hash bucket lock to
1783          * handle the fault. This might be observed in the PID check
1784          * in lookup_pi_state.
1785          */
1786 retry:
1787         if (get_futex_value_locked(&uval, uaddr))
1788                 goto handle_fault;
1789
1790         while (1) {
1791                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1792
1793                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1794                         goto handle_fault;
1795                 if (curval == uval)
1796                         break;
1797                 uval = curval;
1798         }
1799
1800         /*
1801          * We fixed up user space. Now we need to fix the pi_state
1802          * itself.
1803          */
1804         if (pi_state->owner != NULL) {
1805                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1806                 WARN_ON(list_empty(&pi_state->list));
1807                 list_del_init(&pi_state->list);
1808                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1809         }
1810
1811         pi_state->owner = newowner;
1812
1813         raw_spin_lock_irq(&newowner->pi_lock);
1814         WARN_ON(!list_empty(&pi_state->list));
1815         list_add(&pi_state->list, &newowner->pi_state_list);
1816         raw_spin_unlock_irq(&newowner->pi_lock);
1817         return 0;
1818
1819         /*
1820          * To handle the page fault we need to drop the hash bucket
1821          * lock here. That gives the other task (either the highest priority
1822          * waiter itself or the task which stole the rtmutex) the
1823          * chance to try the fixup of the pi_state. So once we are
1824          * back from handling the fault we need to check the pi_state
1825          * after reacquiring the hash bucket lock and before trying to
1826          * do another fixup. When the fixup has been done already we
1827          * simply return.
1828          */
1829 handle_fault:
1830         spin_unlock(q->lock_ptr);
1831
1832         ret = fault_in_user_writeable(uaddr);
1833
1834         spin_lock(q->lock_ptr);
1835
1836         /*
1837          * Check if someone else fixed it for us:
1838          */
1839         if (pi_state->owner != oldowner)
1840                 return 0;
1841
1842         if (ret)
1843                 return ret;
1844
1845         goto retry;
1846 }
1847
1848 static long futex_wait_restart(struct restart_block *restart);
1849
1850 /**
1851  * fixup_owner() - Post lock pi_state and corner case management
1852  * @uaddr:      user address of the futex
1853  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1854  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1855  *
1856  * After attempting to lock an rt_mutex, this function is called to cleanup
1857  * the pi_state owner as well as handle race conditions that may allow us to
1858  * acquire the lock. Must be called with the hb lock held.
1859  *
1860  * Return:
1861  *  1 - success, lock taken;
1862  *  0 - success, lock not taken;
1863  * <0 - on error (-EFAULT)
1864  */
1865 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1866 {
1867         struct task_struct *owner;
1868         int ret = 0;
1869
1870         if (locked) {
1871                 /*
1872                  * Got the lock. We might not be the anticipated owner if we
1873                  * did a lock-steal - fix up the PI-state in that case:
1874                  */
1875                 if (q->pi_state->owner != current)
1876                         ret = fixup_pi_state_owner(uaddr, q, current);
1877                 goto out;
1878         }
1879
1880         /*
1881          * Catch the rare case, where the lock was released when we were on the
1882          * way back before we locked the hash bucket.
1883          */
1884         if (q->pi_state->owner == current) {
1885                 /*
1886                  * Try to get the rt_mutex now. This might fail as some other
1887                  * task acquired the rt_mutex after we removed ourself from the
1888                  * rt_mutex waiters list.
1889                  */
1890                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1891                         locked = 1;
1892                         goto out;
1893                 }
1894
1895                 /*
1896                  * pi_state is incorrect, some other task did a lock steal and
1897                  * we returned due to timeout or signal without taking the
1898                  * rt_mutex. Too late.
1899                  */
1900                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1901                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1902                 if (!owner)
1903                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1904                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1905                 ret = fixup_pi_state_owner(uaddr, q, owner);
1906                 goto out;
1907         }
1908
1909         /*
1910          * Paranoia check. If we did not take the lock, then we should not be
1911          * the owner of the rt_mutex.
1912          */
1913         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1914                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1915                                 "pi-state %p\n", ret,
1916                                 q->pi_state->pi_mutex.owner,
1917                                 q->pi_state->owner);
1918
1919 out:
1920         return ret ? ret : locked;
1921 }
1922
1923 /**
1924  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1925  * @hb:         the futex hash bucket, must be locked by the caller
1926  * @q:          the futex_q to queue up on
1927  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1928  */
1929 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1930                                 struct hrtimer_sleeper *timeout)
1931 {
1932         /*
1933          * The task state is guaranteed to be set before another task can
1934          * wake it. set_current_state() is implemented using set_mb() and
1935          * queue_me() calls spin_unlock() upon completion, both serializing
1936          * access to the hash list and forcing another memory barrier.
1937          */
1938         set_current_state(TASK_INTERRUPTIBLE);
1939         queue_me(q, hb);
1940
1941         /* Arm the timer */
1942         if (timeout) {
1943                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1944                 if (!hrtimer_active(&timeout->timer))
1945                         timeout->task = NULL;
1946         }
1947
1948         /*
1949          * If we have been removed from the hash list, then another task
1950          * has tried to wake us, and we can skip the call to schedule().
1951          */
1952         if (likely(!plist_node_empty(&q->list))) {
1953                 /*
1954                  * If the timer has already expired, current will already be
1955                  * flagged for rescheduling. Only call schedule if there
1956                  * is no timeout, or if it has yet to expire.
1957                  */
1958                 if (!timeout || timeout->task)
1959                         freezable_schedule();
1960         }
1961         __set_current_state(TASK_RUNNING);
1962 }
1963
1964 /**
1965  * futex_wait_setup() - Prepare to wait on a futex
1966  * @uaddr:      the futex userspace address
1967  * @val:        the expected value
1968  * @flags:      futex flags (FLAGS_SHARED, etc.)
1969  * @q:          the associated futex_q
1970  * @hb:         storage for hash_bucket pointer to be returned to caller
1971  *
1972  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1973  * compare it with the expected value.  Handle atomic faults internally.
1974  * Return with the hb lock held and a q.key reference on success, and unlocked
1975  * with no q.key reference on failure.
1976  *
1977  * Return:
1978  *  0 - uaddr contains val and hb has been locked;
1979  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1980  */
1981 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1982                            struct futex_q *q, struct futex_hash_bucket **hb)
1983 {
1984         u32 uval;
1985         int ret;
1986
1987         /*
1988          * Access the page AFTER the hash-bucket is locked.
1989          * Order is important:
1990          *
1991          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1992          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1993          *
1994          * The basic logical guarantee of a futex is that it blocks ONLY
1995          * if cond(var) is known to be true at the time of blocking, for
1996          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1997          * would open a race condition where we could block indefinitely with
1998          * cond(var) false, which would violate the guarantee.
1999          *
2000          * On the other hand, we insert q and release the hash-bucket only
2001          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2002          * absorb a wakeup if *uaddr does not match the desired values
2003          * while the syscall executes.
2004          */
2005 retry:
2006         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2007         if (unlikely(ret != 0))
2008                 return ret;
2009
2010 retry_private:
2011         *hb = queue_lock(q);
2012
2013         ret = get_futex_value_locked(&uval, uaddr);
2014
2015         if (ret) {
2016                 queue_unlock(*hb);
2017
2018                 ret = get_user(uval, uaddr);
2019                 if (ret)
2020                         goto out;
2021
2022                 if (!(flags & FLAGS_SHARED))
2023                         goto retry_private;
2024
2025                 put_futex_key(&q->key);
2026                 goto retry;
2027         }
2028
2029         if (uval != val) {
2030                 queue_unlock(*hb);
2031                 ret = -EWOULDBLOCK;
2032         }
2033
2034 out:
2035         if (ret)
2036                 put_futex_key(&q->key);
2037         return ret;
2038 }
2039
2040 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2041                       ktime_t *abs_time, u32 bitset)
2042 {
2043         struct hrtimer_sleeper timeout, *to = NULL;
2044         struct restart_block *restart;
2045         struct futex_hash_bucket *hb;
2046         struct futex_q q = futex_q_init;
2047         int ret;
2048
2049         if (!bitset)
2050                 return -EINVAL;
2051         q.bitset = bitset;
2052
2053         if (abs_time) {
2054                 to = &timeout;
2055
2056                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2057                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2058                                       HRTIMER_MODE_ABS);
2059                 hrtimer_init_sleeper(to, current);
2060                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2061                                              current->timer_slack_ns);
2062         }
2063
2064 retry:
2065         /*
2066          * Prepare to wait on uaddr. On success, holds hb lock and increments
2067          * q.key refs.
2068          */
2069         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2070         if (ret)
2071                 goto out;
2072
2073         /* queue_me and wait for wakeup, timeout, or a signal. */
2074         futex_wait_queue_me(hb, &q, to);
2075
2076         /* If we were woken (and unqueued), we succeeded, whatever. */
2077         ret = 0;
2078         /* unqueue_me() drops q.key ref */
2079         if (!unqueue_me(&q))
2080                 goto out;
2081         ret = -ETIMEDOUT;
2082         if (to && !to->task)
2083                 goto out;
2084
2085         /*
2086          * We expect signal_pending(current), but we might be the
2087          * victim of a spurious wakeup as well.
2088          */
2089         if (!signal_pending(current))
2090                 goto retry;
2091
2092         ret = -ERESTARTSYS;
2093         if (!abs_time)
2094                 goto out;
2095
2096         restart = &current_thread_info()->restart_block;
2097         restart->fn = futex_wait_restart;
2098         restart->futex.uaddr = uaddr;
2099         restart->futex.val = val;
2100         restart->futex.time = abs_time->tv64;
2101         restart->futex.bitset = bitset;
2102         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2103
2104         ret = -ERESTART_RESTARTBLOCK;
2105
2106 out:
2107         if (to) {
2108                 hrtimer_cancel(&to->timer);
2109                 destroy_hrtimer_on_stack(&to->timer);
2110         }
2111         return ret;
2112 }
2113
2114
2115 static long futex_wait_restart(struct restart_block *restart)
2116 {
2117         u32 __user *uaddr = restart->futex.uaddr;
2118         ktime_t t, *tp = NULL;
2119
2120         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2121                 t.tv64 = restart->futex.time;
2122                 tp = &t;
2123         }
2124         restart->fn = do_no_restart_syscall;
2125
2126         return (long)futex_wait(uaddr, restart->futex.flags,
2127                                 restart->futex.val, tp, restart->futex.bitset);
2128 }
2129
2130
2131 /*
2132  * Userspace tried a 0 -> TID atomic transition of the futex value
2133  * and failed. The kernel side here does the whole locking operation:
2134  * if there are waiters then it will block, it does PI, etc. (Due to
2135  * races the kernel might see a 0 value of the futex too.)
2136  */
2137 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2138                          ktime_t *time, int trylock)
2139 {
2140         struct hrtimer_sleeper timeout, *to = NULL;
2141         struct futex_hash_bucket *hb;
2142         struct futex_q q = futex_q_init;
2143         int res, ret;
2144
2145         if (refill_pi_state_cache())
2146                 return -ENOMEM;
2147
2148         if (time) {
2149                 to = &timeout;
2150                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2151                                       HRTIMER_MODE_ABS);
2152                 hrtimer_init_sleeper(to, current);
2153                 hrtimer_set_expires(&to->timer, *time);
2154         }
2155
2156 retry:
2157         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2158         if (unlikely(ret != 0))
2159                 goto out;
2160
2161 retry_private:
2162         hb = queue_lock(&q);
2163
2164         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2165         if (unlikely(ret)) {
2166                 switch (ret) {
2167                 case 1:
2168                         /* We got the lock. */
2169                         ret = 0;
2170                         goto out_unlock_put_key;
2171                 case -EFAULT:
2172                         goto uaddr_faulted;
2173                 case -EAGAIN:
2174                         /*
2175                          * Task is exiting and we just wait for the
2176                          * exit to complete.
2177                          */
2178                         queue_unlock(hb);
2179                         put_futex_key(&q.key);
2180                         cond_resched();
2181                         goto retry;
2182                 default:
2183                         goto out_unlock_put_key;
2184                 }
2185         }
2186
2187         /*
2188          * Only actually queue now that the atomic ops are done:
2189          */
2190         queue_me(&q, hb);
2191
2192         WARN_ON(!q.pi_state);
2193         /*
2194          * Block on the PI mutex:
2195          */
2196         if (!trylock)
2197                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2198         else {
2199                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2200                 /* Fixup the trylock return value: */
2201                 ret = ret ? 0 : -EWOULDBLOCK;
2202         }
2203
2204         spin_lock(q.lock_ptr);
2205         /*
2206          * Fixup the pi_state owner and possibly acquire the lock if we
2207          * haven't already.
2208          */
2209         res = fixup_owner(uaddr, &q, !ret);
2210         /*
2211          * If fixup_owner() returned an error, proprogate that.  If it acquired
2212          * the lock, clear our -ETIMEDOUT or -EINTR.
2213          */
2214         if (res)
2215                 ret = (res < 0) ? res : 0;
2216
2217         /*
2218          * If fixup_owner() faulted and was unable to handle the fault, unlock
2219          * it and return the fault to userspace.
2220          */
2221         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2222                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2223
2224         /* Unqueue and drop the lock */
2225         unqueue_me_pi(&q);
2226
2227         goto out_put_key;
2228
2229 out_unlock_put_key:
2230         queue_unlock(hb);
2231
2232 out_put_key:
2233         put_futex_key(&q.key);
2234 out:
2235         if (to)
2236                 destroy_hrtimer_on_stack(&to->timer);
2237         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2238
2239 uaddr_faulted:
2240         queue_unlock(hb);
2241
2242         ret = fault_in_user_writeable(uaddr);
2243         if (ret)
2244                 goto out_put_key;
2245
2246         if (!(flags & FLAGS_SHARED))
2247                 goto retry_private;
2248
2249         put_futex_key(&q.key);
2250         goto retry;
2251 }
2252
2253 /*
2254  * Userspace attempted a TID -> 0 atomic transition, and failed.
2255  * This is the in-kernel slowpath: we look up the PI state (if any),
2256  * and do the rt-mutex unlock.
2257  */
2258 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2259 {
2260         struct futex_hash_bucket *hb;
2261         struct futex_q *this, *next;
2262         union futex_key key = FUTEX_KEY_INIT;
2263         u32 uval, vpid = task_pid_vnr(current);
2264         int ret;
2265
2266 retry:
2267         if (get_user(uval, uaddr))
2268                 return -EFAULT;
2269         /*
2270          * We release only a lock we actually own:
2271          */
2272         if ((uval & FUTEX_TID_MASK) != vpid)
2273                 return -EPERM;
2274
2275         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2276         if (unlikely(ret != 0))
2277                 goto out;
2278
2279         hb = hash_futex(&key);
2280         spin_lock(&hb->lock);
2281
2282         /*
2283          * To avoid races, try to do the TID -> 0 atomic transition
2284          * again. If it succeeds then we can return without waking
2285          * anyone else up:
2286          */
2287         if (!(uval & FUTEX_OWNER_DIED) &&
2288             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2289                 goto pi_faulted;
2290         /*
2291          * Rare case: we managed to release the lock atomically,
2292          * no need to wake anyone else up:
2293          */
2294         if (unlikely(uval == vpid))
2295                 goto out_unlock;
2296
2297         /*
2298          * Ok, other tasks may need to be woken up - check waiters
2299          * and do the wakeup if necessary:
2300          */
2301         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2302                 if (!match_futex (&this->key, &key))
2303                         continue;
2304                 ret = wake_futex_pi(uaddr, uval, this);
2305                 /*
2306                  * The atomic access to the futex value
2307                  * generated a pagefault, so retry the
2308                  * user-access and the wakeup:
2309                  */
2310                 if (ret == -EFAULT)
2311                         goto pi_faulted;
2312                 goto out_unlock;
2313         }
2314         /*
2315          * No waiters - kernel unlocks the futex:
2316          */
2317         if (!(uval & FUTEX_OWNER_DIED)) {
2318                 ret = unlock_futex_pi(uaddr, uval);
2319                 if (ret == -EFAULT)
2320                         goto pi_faulted;
2321         }
2322
2323 out_unlock:
2324         spin_unlock(&hb->lock);
2325         put_futex_key(&key);
2326
2327 out:
2328         return ret;
2329
2330 pi_faulted:
2331         spin_unlock(&hb->lock);
2332         put_futex_key(&key);
2333
2334         ret = fault_in_user_writeable(uaddr);
2335         if (!ret)
2336                 goto retry;
2337
2338         return ret;
2339 }
2340
2341 /**
2342  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2343  * @hb:         the hash_bucket futex_q was original enqueued on
2344  * @q:          the futex_q woken while waiting to be requeued
2345  * @key2:       the futex_key of the requeue target futex
2346  * @timeout:    the timeout associated with the wait (NULL if none)
2347  *
2348  * Detect if the task was woken on the initial futex as opposed to the requeue
2349  * target futex.  If so, determine if it was a timeout or a signal that caused
2350  * the wakeup and return the appropriate error code to the caller.  Must be
2351  * called with the hb lock held.
2352  *
2353  * Return:
2354  *  0 = no early wakeup detected;
2355  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2356  */
2357 static inline
2358 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2359                                    struct futex_q *q, union futex_key *key2,
2360                                    struct hrtimer_sleeper *timeout)
2361 {
2362         int ret = 0;
2363
2364         /*
2365          * With the hb lock held, we avoid races while we process the wakeup.
2366          * We only need to hold hb (and not hb2) to ensure atomicity as the
2367          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2368          * It can't be requeued from uaddr2 to something else since we don't
2369          * support a PI aware source futex for requeue.
2370          */
2371         if (!match_futex(&q->key, key2)) {
2372                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2373                 /*
2374                  * We were woken prior to requeue by a timeout or a signal.
2375                  * Unqueue the futex_q and determine which it was.
2376                  */
2377                 plist_del(&q->list, &hb->chain);
2378                 hb_waiters_dec(hb);
2379
2380                 /* Handle spurious wakeups gracefully */
2381                 ret = -EWOULDBLOCK;
2382                 if (timeout && !timeout->task)
2383                         ret = -ETIMEDOUT;
2384                 else if (signal_pending(current))
2385                         ret = -ERESTARTNOINTR;
2386         }
2387         return ret;
2388 }
2389
2390 /**
2391  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2392  * @uaddr:      the futex we initially wait on (non-pi)
2393  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2394  *              the same type, no requeueing from private to shared, etc.
2395  * @val:        the expected value of uaddr
2396  * @abs_time:   absolute timeout
2397  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2398  * @uaddr2:     the pi futex we will take prior to returning to user-space
2399  *
2400  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2401  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2402  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2403  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2404  * without one, the pi logic would not know which task to boost/deboost, if
2405  * there was a need to.
2406  *
2407  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2408  * via the following--
2409  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2410  * 2) wakeup on uaddr2 after a requeue
2411  * 3) signal
2412  * 4) timeout
2413  *
2414  * If 3, cleanup and return -ERESTARTNOINTR.
2415  *
2416  * If 2, we may then block on trying to take the rt_mutex and return via:
2417  * 5) successful lock
2418  * 6) signal
2419  * 7) timeout
2420  * 8) other lock acquisition failure
2421  *
2422  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2423  *
2424  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2425  *
2426  * Return:
2427  *  0 - On success;
2428  * <0 - On error
2429  */
2430 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2431                                  u32 val, ktime_t *abs_time, u32 bitset,
2432                                  u32 __user *uaddr2)
2433 {
2434         struct hrtimer_sleeper timeout, *to = NULL;
2435         struct rt_mutex_waiter rt_waiter;
2436         struct rt_mutex *pi_mutex = NULL;
2437         struct futex_hash_bucket *hb;
2438         union futex_key key2 = FUTEX_KEY_INIT;
2439         struct futex_q q = futex_q_init;
2440         int res, ret;
2441
2442         if (uaddr == uaddr2)
2443                 return -EINVAL;
2444
2445         if (!bitset)
2446                 return -EINVAL;
2447
2448         if (abs_time) {
2449                 to = &timeout;
2450                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2451                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2452                                       HRTIMER_MODE_ABS);
2453                 hrtimer_init_sleeper(to, current);
2454                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2455                                              current->timer_slack_ns);
2456         }
2457
2458         /*
2459          * The waiter is allocated on our stack, manipulated by the requeue
2460          * code while we sleep on uaddr.
2461          */
2462         debug_rt_mutex_init_waiter(&rt_waiter);
2463         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2464         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2465         rt_waiter.task = NULL;
2466
2467         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2468         if (unlikely(ret != 0))
2469                 goto out;
2470
2471         q.bitset = bitset;
2472         q.rt_waiter = &rt_waiter;
2473         q.requeue_pi_key = &key2;
2474
2475         /*
2476          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2477          * count.
2478          */
2479         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2480         if (ret)
2481                 goto out_key2;
2482
2483         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2484         futex_wait_queue_me(hb, &q, to);
2485
2486         spin_lock(&hb->lock);
2487         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2488         spin_unlock(&hb->lock);
2489         if (ret)
2490                 goto out_put_keys;
2491
2492         /*
2493          * In order for us to be here, we know our q.key == key2, and since
2494          * we took the hb->lock above, we also know that futex_requeue() has
2495          * completed and we no longer have to concern ourselves with a wakeup
2496          * race with the atomic proxy lock acquisition by the requeue code. The
2497          * futex_requeue dropped our key1 reference and incremented our key2
2498          * reference count.
2499          */
2500
2501         /* Check if the requeue code acquired the second futex for us. */
2502         if (!q.rt_waiter) {
2503                 /*
2504                  * Got the lock. We might not be the anticipated owner if we
2505                  * did a lock-steal - fix up the PI-state in that case.
2506                  */
2507                 if (q.pi_state && (q.pi_state->owner != current)) {
2508                         spin_lock(q.lock_ptr);
2509                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2510                         spin_unlock(q.lock_ptr);
2511                 }
2512         } else {
2513                 /*
2514                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2515                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2516                  * the pi_state.
2517                  */
2518                 WARN_ON(!q.pi_state);
2519                 pi_mutex = &q.pi_state->pi_mutex;
2520                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2521                 debug_rt_mutex_free_waiter(&rt_waiter);
2522
2523                 spin_lock(q.lock_ptr);
2524                 /*
2525                  * Fixup the pi_state owner and possibly acquire the lock if we
2526                  * haven't already.
2527                  */
2528                 res = fixup_owner(uaddr2, &q, !ret);
2529                 /*
2530                  * If fixup_owner() returned an error, proprogate that.  If it
2531                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2532                  */
2533                 if (res)
2534                         ret = (res < 0) ? res : 0;
2535
2536                 /* Unqueue and drop the lock. */
2537                 unqueue_me_pi(&q);
2538         }
2539
2540         /*
2541          * If fixup_pi_state_owner() faulted and was unable to handle the
2542          * fault, unlock the rt_mutex and return the fault to userspace.
2543          */
2544         if (ret == -EFAULT) {
2545                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2546                         rt_mutex_unlock(pi_mutex);
2547         } else if (ret == -EINTR) {
2548                 /*
2549                  * We've already been requeued, but cannot restart by calling
2550                  * futex_lock_pi() directly. We could restart this syscall, but
2551                  * it would detect that the user space "val" changed and return
2552                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2553                  * -EWOULDBLOCK directly.
2554                  */
2555                 ret = -EWOULDBLOCK;
2556         }
2557
2558 out_put_keys:
2559         put_futex_key(&q.key);
2560 out_key2:
2561         put_futex_key(&key2);
2562
2563 out:
2564         if (to) {
2565                 hrtimer_cancel(&to->timer);
2566                 destroy_hrtimer_on_stack(&to->timer);
2567         }
2568         return ret;
2569 }
2570
2571 /*
2572  * Support for robust futexes: the kernel cleans up held futexes at
2573  * thread exit time.
2574  *
2575  * Implementation: user-space maintains a per-thread list of locks it
2576  * is holding. Upon do_exit(), the kernel carefully walks this list,
2577  * and marks all locks that are owned by this thread with the
2578  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2579  * always manipulated with the lock held, so the list is private and
2580  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2581  * field, to allow the kernel to clean up if the thread dies after
2582  * acquiring the lock, but just before it could have added itself to
2583  * the list. There can only be one such pending lock.
2584  */
2585
2586 /**
2587  * sys_set_robust_list() - Set the robust-futex list head of a task
2588  * @head:       pointer to the list-head
2589  * @len:        length of the list-head, as userspace expects
2590  */
2591 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2592                 size_t, len)
2593 {
2594         if (!futex_cmpxchg_enabled)
2595                 return -ENOSYS;
2596         /*
2597          * The kernel knows only one size for now:
2598          */
2599         if (unlikely(len != sizeof(*head)))
2600                 return -EINVAL;
2601
2602         current->robust_list = head;
2603
2604         return 0;
2605 }
2606
2607 /**
2608  * sys_get_robust_list() - Get the robust-futex list head of a task
2609  * @pid:        pid of the process [zero for current task]
2610  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2611  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2612  */
2613 SYSCALL_DEFINE3(get_robust_list, int, pid,
2614                 struct robust_list_head __user * __user *, head_ptr,
2615                 size_t __user *, len_ptr)
2616 {
2617         struct robust_list_head __user *head;
2618         unsigned long ret;
2619         struct task_struct *p;
2620
2621         if (!futex_cmpxchg_enabled)
2622                 return -ENOSYS;
2623
2624         rcu_read_lock();
2625
2626         ret = -ESRCH;
2627         if (!pid)
2628                 p = current;
2629         else {
2630                 p = find_task_by_vpid(pid);
2631                 if (!p)
2632                         goto err_unlock;
2633         }
2634
2635         ret = -EPERM;
2636         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2637                 goto err_unlock;
2638
2639         head = p->robust_list;
2640         rcu_read_unlock();
2641
2642         if (put_user(sizeof(*head), len_ptr))
2643                 return -EFAULT;
2644         return put_user(head, head_ptr);
2645
2646 err_unlock:
2647         rcu_read_unlock();
2648
2649         return ret;
2650 }
2651
2652 /*
2653  * Process a futex-list entry, check whether it's owned by the
2654  * dying task, and do notification if so:
2655  */
2656 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2657 {
2658         u32 uval, uninitialized_var(nval), mval;
2659
2660 retry:
2661         if (get_user(uval, uaddr))
2662                 return -1;
2663
2664         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2665                 /*
2666                  * Ok, this dying thread is truly holding a futex
2667                  * of interest. Set the OWNER_DIED bit atomically
2668                  * via cmpxchg, and if the value had FUTEX_WAITERS
2669                  * set, wake up a waiter (if any). (We have to do a
2670                  * futex_wake() even if OWNER_DIED is already set -
2671                  * to handle the rare but possible case of recursive
2672                  * thread-death.) The rest of the cleanup is done in
2673                  * userspace.
2674                  */
2675                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2676                 /*
2677                  * We are not holding a lock here, but we want to have
2678                  * the pagefault_disable/enable() protection because
2679                  * we want to handle the fault gracefully. If the
2680                  * access fails we try to fault in the futex with R/W
2681                  * verification via get_user_pages. get_user() above
2682                  * does not guarantee R/W access. If that fails we
2683                  * give up and leave the futex locked.
2684                  */
2685                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2686                         if (fault_in_user_writeable(uaddr))
2687                                 return -1;
2688                         goto retry;
2689                 }
2690                 if (nval != uval)
2691                         goto retry;
2692
2693                 /*
2694                  * Wake robust non-PI futexes here. The wakeup of
2695                  * PI futexes happens in exit_pi_state():
2696                  */
2697                 if (!pi && (uval & FUTEX_WAITERS))
2698                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2699         }
2700         return 0;
2701 }
2702
2703 /*
2704  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2705  */
2706 static inline int fetch_robust_entry(struct robust_list __user **entry,
2707                                      struct robust_list __user * __user *head,
2708                                      unsigned int *pi)
2709 {
2710         unsigned long uentry;
2711
2712         if (get_user(uentry, (unsigned long __user *)head))
2713                 return -EFAULT;
2714
2715         *entry = (void __user *)(uentry & ~1UL);
2716         *pi = uentry & 1;
2717
2718         return 0;
2719 }
2720
2721 /*
2722  * Walk curr->robust_list (very carefully, it's a userspace list!)
2723  * and mark any locks found there dead, and notify any waiters.
2724  *
2725  * We silently return on any sign of list-walking problem.
2726  */
2727 void exit_robust_list(struct task_struct *curr)
2728 {
2729         struct robust_list_head __user *head = curr->robust_list;
2730         struct robust_list __user *entry, *next_entry, *pending;
2731         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2732         unsigned int uninitialized_var(next_pi);
2733         unsigned long futex_offset;
2734         int rc;
2735
2736         if (!futex_cmpxchg_enabled)
2737                 return;
2738
2739         /*
2740          * Fetch the list head (which was registered earlier, via
2741          * sys_set_robust_list()):
2742          */
2743         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2744                 return;
2745         /*
2746          * Fetch the relative futex offset:
2747          */
2748         if (get_user(futex_offset, &head->futex_offset))
2749                 return;
2750         /*
2751          * Fetch any possibly pending lock-add first, and handle it
2752          * if it exists:
2753          */
2754         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2755                 return;
2756
2757         next_entry = NULL;      /* avoid warning with gcc */
2758         while (entry != &head->list) {
2759                 /*
2760                  * Fetch the next entry in the list before calling
2761                  * handle_futex_death:
2762                  */
2763                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2764                 /*
2765                  * A pending lock might already be on the list, so
2766                  * don't process it twice:
2767                  */
2768                 if (entry != pending)
2769                         if (handle_futex_death((void __user *)entry + futex_offset,
2770                                                 curr, pi))
2771                                 return;
2772                 if (rc)
2773                         return;
2774                 entry = next_entry;
2775                 pi = next_pi;
2776                 /*
2777                  * Avoid excessively long or circular lists:
2778                  */
2779                 if (!--limit)
2780                         break;
2781
2782                 cond_resched();
2783         }
2784
2785         if (pending)
2786                 handle_futex_death((void __user *)pending + futex_offset,
2787                                    curr, pip);
2788 }
2789
2790 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2791                 u32 __user *uaddr2, u32 val2, u32 val3)
2792 {
2793         int cmd = op & FUTEX_CMD_MASK;
2794         unsigned int flags = 0;
2795
2796         if (!(op & FUTEX_PRIVATE_FLAG))
2797                 flags |= FLAGS_SHARED;
2798
2799         if (op & FUTEX_CLOCK_REALTIME) {
2800                 flags |= FLAGS_CLOCKRT;
2801                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2802                         return -ENOSYS;
2803         }
2804
2805         switch (cmd) {
2806         case FUTEX_LOCK_PI:
2807         case FUTEX_UNLOCK_PI:
2808         case FUTEX_TRYLOCK_PI:
2809         case FUTEX_WAIT_REQUEUE_PI:
2810         case FUTEX_CMP_REQUEUE_PI:
2811                 if (!futex_cmpxchg_enabled)
2812                         return -ENOSYS;
2813         }
2814
2815         switch (cmd) {
2816         case FUTEX_WAIT:
2817                 val3 = FUTEX_BITSET_MATCH_ANY;
2818         case FUTEX_WAIT_BITSET:
2819                 return futex_wait(uaddr, flags, val, timeout, val3);
2820         case FUTEX_WAKE:
2821                 val3 = FUTEX_BITSET_MATCH_ANY;
2822         case FUTEX_WAKE_BITSET:
2823                 return futex_wake(uaddr, flags, val, val3);
2824         case FUTEX_REQUEUE:
2825                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2826         case FUTEX_CMP_REQUEUE:
2827                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2828         case FUTEX_WAKE_OP:
2829                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2830         case FUTEX_LOCK_PI:
2831                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2832         case FUTEX_UNLOCK_PI:
2833                 return futex_unlock_pi(uaddr, flags);
2834         case FUTEX_TRYLOCK_PI:
2835                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2836         case FUTEX_WAIT_REQUEUE_PI:
2837                 val3 = FUTEX_BITSET_MATCH_ANY;
2838                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2839                                              uaddr2);
2840         case FUTEX_CMP_REQUEUE_PI:
2841                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2842         }
2843         return -ENOSYS;
2844 }
2845
2846
2847 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2848                 struct timespec __user *, utime, u32 __user *, uaddr2,
2849                 u32, val3)
2850 {
2851         struct timespec ts;
2852         ktime_t t, *tp = NULL;
2853         u32 val2 = 0;
2854         int cmd = op & FUTEX_CMD_MASK;
2855
2856         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2857                       cmd == FUTEX_WAIT_BITSET ||
2858                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2859                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2860                         return -EFAULT;
2861                 if (!timespec_valid(&ts))
2862                         return -EINVAL;
2863
2864                 t = timespec_to_ktime(ts);
2865                 if (cmd == FUTEX_WAIT)
2866                         t = ktime_add_safe(ktime_get(), t);
2867                 tp = &t;
2868         }
2869         /*
2870          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2871          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2872          */
2873         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2874             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2875                 val2 = (u32) (unsigned long) utime;
2876
2877         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2878 }
2879
2880 static void __init futex_detect_cmpxchg(void)
2881 {
2882 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2883         u32 curval;
2884
2885         /*
2886          * This will fail and we want it. Some arch implementations do
2887          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2888          * functionality. We want to know that before we call in any
2889          * of the complex code paths. Also we want to prevent
2890          * registration of robust lists in that case. NULL is
2891          * guaranteed to fault and we get -EFAULT on functional
2892          * implementation, the non-functional ones will return
2893          * -ENOSYS.
2894          */
2895         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2896                 futex_cmpxchg_enabled = 1;
2897 #endif
2898 }
2899
2900 static int __init futex_init(void)
2901 {
2902         unsigned int futex_shift;
2903         unsigned long i;
2904
2905 #if CONFIG_BASE_SMALL
2906         futex_hashsize = 16;
2907 #else
2908         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2909 #endif
2910
2911         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2912                                                futex_hashsize, 0,
2913                                                futex_hashsize < 256 ? HASH_SMALL : 0,
2914                                                &futex_shift, NULL,
2915                                                futex_hashsize, futex_hashsize);
2916         futex_hashsize = 1UL << futex_shift;
2917
2918         futex_detect_cmpxchg();
2919
2920         for (i = 0; i < futex_hashsize; i++) {
2921                 atomic_set(&futex_queues[i].waiters, 0);
2922                 plist_head_init(&futex_queues[i].chain);
2923                 spin_lock_init(&futex_queues[i].lock);
2924         }
2925
2926         return 0;
2927 }
2928 __initcall(futex_init);