Merge tag 'uuid-for-4.14' of git://git.infradead.org/users/hch/uuid
[sfrench/cifs-2.6.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76  * READ this before attempting to hack on futexes!
77  *
78  * Basic futex operation and ordering guarantees
79  * =============================================
80  *
81  * The waiter reads the futex value in user space and calls
82  * futex_wait(). This function computes the hash bucket and acquires
83  * the hash bucket lock. After that it reads the futex user space value
84  * again and verifies that the data has not changed. If it has not changed
85  * it enqueues itself into the hash bucket, releases the hash bucket lock
86  * and schedules.
87  *
88  * The waker side modifies the user space value of the futex and calls
89  * futex_wake(). This function computes the hash bucket and acquires the
90  * hash bucket lock. Then it looks for waiters on that futex in the hash
91  * bucket and wakes them.
92  *
93  * In futex wake up scenarios where no tasks are blocked on a futex, taking
94  * the hb spinlock can be avoided and simply return. In order for this
95  * optimization to work, ordering guarantees must exist so that the waiter
96  * being added to the list is acknowledged when the list is concurrently being
97  * checked by the waker, avoiding scenarios like the following:
98  *
99  * CPU 0                               CPU 1
100  * val = *futex;
101  * sys_futex(WAIT, futex, val);
102  *   futex_wait(futex, val);
103  *   uval = *futex;
104  *                                     *futex = newval;
105  *                                     sys_futex(WAKE, futex);
106  *                                       futex_wake(futex);
107  *                                       if (queue_empty())
108  *                                         return;
109  *   if (uval == val)
110  *      lock(hash_bucket(futex));
111  *      queue();
112  *     unlock(hash_bucket(futex));
113  *     schedule();
114  *
115  * This would cause the waiter on CPU 0 to wait forever because it
116  * missed the transition of the user space value from val to newval
117  * and the waker did not find the waiter in the hash bucket queue.
118  *
119  * The correct serialization ensures that a waiter either observes
120  * the changed user space value before blocking or is woken by a
121  * concurrent waker:
122  *
123  * CPU 0                                 CPU 1
124  * val = *futex;
125  * sys_futex(WAIT, futex, val);
126  *   futex_wait(futex, val);
127  *
128  *   waiters++; (a)
129  *   smp_mb(); (A) <-- paired with -.
130  *                                  |
131  *   lock(hash_bucket(futex));      |
132  *                                  |
133  *   uval = *futex;                 |
134  *                                  |        *futex = newval;
135  *                                  |        sys_futex(WAKE, futex);
136  *                                  |          futex_wake(futex);
137  *                                  |
138  *                                  `--------> smp_mb(); (B)
139  *   if (uval == val)
140  *     queue();
141  *     unlock(hash_bucket(futex));
142  *     schedule();                         if (waiters)
143  *                                           lock(hash_bucket(futex));
144  *   else                                    wake_waiters(futex);
145  *     waiters--; (b)                        unlock(hash_bucket(futex));
146  *
147  * Where (A) orders the waiters increment and the futex value read through
148  * atomic operations (see hb_waiters_inc) and where (B) orders the write
149  * to futex and the waiters read -- this is done by the barriers for both
150  * shared and private futexes in get_futex_key_refs().
151  *
152  * This yields the following case (where X:=waiters, Y:=futex):
153  *
154  *      X = Y = 0
155  *
156  *      w[X]=1          w[Y]=1
157  *      MB              MB
158  *      r[Y]=y          r[X]=x
159  *
160  * Which guarantees that x==0 && y==0 is impossible; which translates back into
161  * the guarantee that we cannot both miss the futex variable change and the
162  * enqueue.
163  *
164  * Note that a new waiter is accounted for in (a) even when it is possible that
165  * the wait call can return error, in which case we backtrack from it in (b).
166  * Refer to the comment in queue_lock().
167  *
168  * Similarly, in order to account for waiters being requeued on another
169  * address we always increment the waiters for the destination bucket before
170  * acquiring the lock. It then decrements them again  after releasing it -
171  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172  * will do the additional required waiter count housekeeping. This is done for
173  * double_lock_hb() and double_unlock_hb(), respectively.
174  */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181  * Futex flags used to encode options to functions and preserve them across
182  * restarts.
183  */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED           0x01
186 #else
187 /*
188  * NOMMU does not have per process address space. Let the compiler optimize
189  * code away.
190  */
191 # define FLAGS_SHARED           0x00
192 #endif
193 #define FLAGS_CLOCKRT           0x02
194 #define FLAGS_HAS_TIMEOUT       0x04
195
196 /*
197  * Priority Inheritance state:
198  */
199 struct futex_pi_state {
200         /*
201          * list of 'owned' pi_state instances - these have to be
202          * cleaned up in do_exit() if the task exits prematurely:
203          */
204         struct list_head list;
205
206         /*
207          * The PI object:
208          */
209         struct rt_mutex pi_mutex;
210
211         struct task_struct *owner;
212         atomic_t refcount;
213
214         union futex_key key;
215 } __randomize_layout;
216
217 /**
218  * struct futex_q - The hashed futex queue entry, one per waiting task
219  * @list:               priority-sorted list of tasks waiting on this futex
220  * @task:               the task waiting on the futex
221  * @lock_ptr:           the hash bucket lock
222  * @key:                the key the futex is hashed on
223  * @pi_state:           optional priority inheritance state
224  * @rt_waiter:          rt_waiter storage for use with requeue_pi
225  * @requeue_pi_key:     the requeue_pi target futex key
226  * @bitset:             bitset for the optional bitmasked wakeup
227  *
228  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229  * we can wake only the relevant ones (hashed queues may be shared).
230  *
231  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233  * The order of wakeup is always to make the first condition true, then
234  * the second.
235  *
236  * PI futexes are typically woken before they are removed from the hash list via
237  * the rt_mutex code. See unqueue_me_pi().
238  */
239 struct futex_q {
240         struct plist_node list;
241
242         struct task_struct *task;
243         spinlock_t *lock_ptr;
244         union futex_key key;
245         struct futex_pi_state *pi_state;
246         struct rt_mutex_waiter *rt_waiter;
247         union futex_key *requeue_pi_key;
248         u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252         /* list gets initialized in queue_me()*/
253         .key = FUTEX_KEY_INIT,
254         .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258  * Hash buckets are shared by all the futex_keys that hash to the same
259  * location.  Each key may have multiple futex_q structures, one for each task
260  * waiting on a futex.
261  */
262 struct futex_hash_bucket {
263         atomic_t waiters;
264         spinlock_t lock;
265         struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269  * The base of the bucket array and its size are always used together
270  * (after initialization only in hash_futex()), so ensure that they
271  * reside in the same cacheline.
272  */
273 static struct {
274         struct futex_hash_bucket *queues;
275         unsigned long            hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues   (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282  * Fault injections for futexes.
283  */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287         struct fault_attr attr;
288
289         bool ignore_private;
290 } fail_futex = {
291         .attr = FAULT_ATTR_INITIALIZER,
292         .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297         return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303         if (fail_futex.ignore_private && !fshared)
304                 return false;
305
306         return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314         struct dentry *dir;
315
316         dir = fault_create_debugfs_attr("fail_futex", NULL,
317                                         &fail_futex.attr);
318         if (IS_ERR(dir))
319                 return PTR_ERR(dir);
320
321         if (!debugfs_create_bool("ignore-private", mode, dir,
322                                  &fail_futex.ignore_private)) {
323                 debugfs_remove_recursive(dir);
324                 return -ENOMEM;
325         }
326
327         return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337         return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343         mmgrab(key->private.mm);
344         /*
345          * Ensure futex_get_mm() implies a full barrier such that
346          * get_futex_key() implies a full barrier. This is relied upon
347          * as smp_mb(); (B), see the ordering comment above.
348          */
349         smp_mb__after_atomic();
350 }
351
352 /*
353  * Reflects a new waiter being added to the waitqueue.
354  */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358         atomic_inc(&hb->waiters);
359         /*
360          * Full barrier (A), see the ordering comment above.
361          */
362         smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367  * Reflects a waiter being removed from the waitqueue by wakeup
368  * paths.
369  */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380         return atomic_read(&hb->waiters);
381 #else
382         return 1;
383 #endif
384 }
385
386 /**
387  * hash_futex - Return the hash bucket in the global hash
388  * @key:        Pointer to the futex key for which the hash is calculated
389  *
390  * We hash on the keys returned from get_futex_key (see below) and return the
391  * corresponding hash bucket in the global hash.
392  */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395         u32 hash = jhash2((u32*)&key->both.word,
396                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397                           key->both.offset);
398         return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403  * match_futex - Check whether two futex keys are equal
404  * @key1:       Pointer to key1
405  * @key2:       Pointer to key2
406  *
407  * Return 1 if two futex_keys are equal, 0 otherwise.
408  */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411         return (key1 && key2
412                 && key1->both.word == key2->both.word
413                 && key1->both.ptr == key2->both.ptr
414                 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418  * Take a reference to the resource addressed by a key.
419  * Can be called while holding spinlocks.
420  *
421  */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424         if (!key->both.ptr)
425                 return;
426
427         /*
428          * On MMU less systems futexes are always "private" as there is no per
429          * process address space. We need the smp wmb nevertheless - yes,
430          * arch/blackfin has MMU less SMP ...
431          */
432         if (!IS_ENABLED(CONFIG_MMU)) {
433                 smp_mb(); /* explicit smp_mb(); (B) */
434                 return;
435         }
436
437         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438         case FUT_OFF_INODE:
439                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440                 break;
441         case FUT_OFF_MMSHARED:
442                 futex_get_mm(key); /* implies smp_mb(); (B) */
443                 break;
444         default:
445                 /*
446                  * Private futexes do not hold reference on an inode or
447                  * mm, therefore the only purpose of calling get_futex_key_refs
448                  * is because we need the barrier for the lockless waiter check.
449                  */
450                 smp_mb(); /* explicit smp_mb(); (B) */
451         }
452 }
453
454 /*
455  * Drop a reference to the resource addressed by a key.
456  * The hash bucket spinlock must not be held. This is
457  * a no-op for private futexes, see comment in the get
458  * counterpart.
459  */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462         if (!key->both.ptr) {
463                 /* If we're here then we tried to put a key we failed to get */
464                 WARN_ON_ONCE(1);
465                 return;
466         }
467
468         if (!IS_ENABLED(CONFIG_MMU))
469                 return;
470
471         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472         case FUT_OFF_INODE:
473                 iput(key->shared.inode);
474                 break;
475         case FUT_OFF_MMSHARED:
476                 mmdrop(key->private.mm);
477                 break;
478         }
479 }
480
481 /**
482  * get_futex_key() - Get parameters which are the keys for a futex
483  * @uaddr:      virtual address of the futex
484  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485  * @key:        address where result is stored.
486  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
487  *              VERIFY_WRITE)
488  *
489  * Return: a negative error code or 0
490  *
491  * The key words are stored in @key on success.
492  *
493  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
495  * We can usually work out the index without swapping in the page.
496  *
497  * lock_page() might sleep, the caller should not hold a spinlock.
498  */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502         unsigned long address = (unsigned long)uaddr;
503         struct mm_struct *mm = current->mm;
504         struct page *page, *tail;
505         struct address_space *mapping;
506         int err, ro = 0;
507
508         /*
509          * The futex address must be "naturally" aligned.
510          */
511         key->both.offset = address % PAGE_SIZE;
512         if (unlikely((address % sizeof(u32)) != 0))
513                 return -EINVAL;
514         address -= key->both.offset;
515
516         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517                 return -EFAULT;
518
519         if (unlikely(should_fail_futex(fshared)))
520                 return -EFAULT;
521
522         /*
523          * PROCESS_PRIVATE futexes are fast.
524          * As the mm cannot disappear under us and the 'key' only needs
525          * virtual address, we dont even have to find the underlying vma.
526          * Note : We do have to check 'uaddr' is a valid user address,
527          *        but access_ok() should be faster than find_vma()
528          */
529         if (!fshared) {
530                 key->private.mm = mm;
531                 key->private.address = address;
532                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
533                 return 0;
534         }
535
536 again:
537         /* Ignore any VERIFY_READ mapping (futex common case) */
538         if (unlikely(should_fail_futex(fshared)))
539                 return -EFAULT;
540
541         err = get_user_pages_fast(address, 1, 1, &page);
542         /*
543          * If write access is not required (eg. FUTEX_WAIT), try
544          * and get read-only access.
545          */
546         if (err == -EFAULT && rw == VERIFY_READ) {
547                 err = get_user_pages_fast(address, 1, 0, &page);
548                 ro = 1;
549         }
550         if (err < 0)
551                 return err;
552         else
553                 err = 0;
554
555         /*
556          * The treatment of mapping from this point on is critical. The page
557          * lock protects many things but in this context the page lock
558          * stabilizes mapping, prevents inode freeing in the shared
559          * file-backed region case and guards against movement to swap cache.
560          *
561          * Strictly speaking the page lock is not needed in all cases being
562          * considered here and page lock forces unnecessarily serialization
563          * From this point on, mapping will be re-verified if necessary and
564          * page lock will be acquired only if it is unavoidable
565          *
566          * Mapping checks require the head page for any compound page so the
567          * head page and mapping is looked up now. For anonymous pages, it
568          * does not matter if the page splits in the future as the key is
569          * based on the address. For filesystem-backed pages, the tail is
570          * required as the index of the page determines the key. For
571          * base pages, there is no tail page and tail == page.
572          */
573         tail = page;
574         page = compound_head(page);
575         mapping = READ_ONCE(page->mapping);
576
577         /*
578          * If page->mapping is NULL, then it cannot be a PageAnon
579          * page; but it might be the ZERO_PAGE or in the gate area or
580          * in a special mapping (all cases which we are happy to fail);
581          * or it may have been a good file page when get_user_pages_fast
582          * found it, but truncated or holepunched or subjected to
583          * invalidate_complete_page2 before we got the page lock (also
584          * cases which we are happy to fail).  And we hold a reference,
585          * so refcount care in invalidate_complete_page's remove_mapping
586          * prevents drop_caches from setting mapping to NULL beneath us.
587          *
588          * The case we do have to guard against is when memory pressure made
589          * shmem_writepage move it from filecache to swapcache beneath us:
590          * an unlikely race, but we do need to retry for page->mapping.
591          */
592         if (unlikely(!mapping)) {
593                 int shmem_swizzled;
594
595                 /*
596                  * Page lock is required to identify which special case above
597                  * applies. If this is really a shmem page then the page lock
598                  * will prevent unexpected transitions.
599                  */
600                 lock_page(page);
601                 shmem_swizzled = PageSwapCache(page) || page->mapping;
602                 unlock_page(page);
603                 put_page(page);
604
605                 if (shmem_swizzled)
606                         goto again;
607
608                 return -EFAULT;
609         }
610
611         /*
612          * Private mappings are handled in a simple way.
613          *
614          * If the futex key is stored on an anonymous page, then the associated
615          * object is the mm which is implicitly pinned by the calling process.
616          *
617          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618          * it's a read-only handle, it's expected that futexes attach to
619          * the object not the particular process.
620          */
621         if (PageAnon(page)) {
622                 /*
623                  * A RO anonymous page will never change and thus doesn't make
624                  * sense for futex operations.
625                  */
626                 if (unlikely(should_fail_futex(fshared)) || ro) {
627                         err = -EFAULT;
628                         goto out;
629                 }
630
631                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632                 key->private.mm = mm;
633                 key->private.address = address;
634
635                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637         } else {
638                 struct inode *inode;
639
640                 /*
641                  * The associated futex object in this case is the inode and
642                  * the page->mapping must be traversed. Ordinarily this should
643                  * be stabilised under page lock but it's not strictly
644                  * necessary in this case as we just want to pin the inode, not
645                  * update the radix tree or anything like that.
646                  *
647                  * The RCU read lock is taken as the inode is finally freed
648                  * under RCU. If the mapping still matches expectations then the
649                  * mapping->host can be safely accessed as being a valid inode.
650                  */
651                 rcu_read_lock();
652
653                 if (READ_ONCE(page->mapping) != mapping) {
654                         rcu_read_unlock();
655                         put_page(page);
656
657                         goto again;
658                 }
659
660                 inode = READ_ONCE(mapping->host);
661                 if (!inode) {
662                         rcu_read_unlock();
663                         put_page(page);
664
665                         goto again;
666                 }
667
668                 /*
669                  * Take a reference unless it is about to be freed. Previously
670                  * this reference was taken by ihold under the page lock
671                  * pinning the inode in place so i_lock was unnecessary. The
672                  * only way for this check to fail is if the inode was
673                  * truncated in parallel which is almost certainly an
674                  * application bug. In such a case, just retry.
675                  *
676                  * We are not calling into get_futex_key_refs() in file-backed
677                  * cases, therefore a successful atomic_inc return below will
678                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
679                  */
680                 if (!atomic_inc_not_zero(&inode->i_count)) {
681                         rcu_read_unlock();
682                         put_page(page);
683
684                         goto again;
685                 }
686
687                 /* Should be impossible but lets be paranoid for now */
688                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689                         err = -EFAULT;
690                         rcu_read_unlock();
691                         iput(inode);
692
693                         goto out;
694                 }
695
696                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697                 key->shared.inode = inode;
698                 key->shared.pgoff = basepage_index(tail);
699                 rcu_read_unlock();
700         }
701
702 out:
703         put_page(page);
704         return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709         drop_futex_key_refs(key);
710 }
711
712 /**
713  * fault_in_user_writeable() - Fault in user address and verify RW access
714  * @uaddr:      pointer to faulting user space address
715  *
716  * Slow path to fixup the fault we just took in the atomic write
717  * access to @uaddr.
718  *
719  * We have no generic implementation of a non-destructive write to the
720  * user address. We know that we faulted in the atomic pagefault
721  * disabled section so we can as well avoid the #PF overhead by
722  * calling get_user_pages() right away.
723  */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726         struct mm_struct *mm = current->mm;
727         int ret;
728
729         down_read(&mm->mmap_sem);
730         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731                                FAULT_FLAG_WRITE, NULL);
732         up_read(&mm->mmap_sem);
733
734         return ret < 0 ? ret : 0;
735 }
736
737 /**
738  * futex_top_waiter() - Return the highest priority waiter on a futex
739  * @hb:         the hash bucket the futex_q's reside in
740  * @key:        the futex key (to distinguish it from other futex futex_q's)
741  *
742  * Must be called with the hb lock held.
743  */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745                                         union futex_key *key)
746 {
747         struct futex_q *this;
748
749         plist_for_each_entry(this, &hb->chain, list) {
750                 if (match_futex(&this->key, key))
751                         return this;
752         }
753         return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757                                       u32 uval, u32 newval)
758 {
759         int ret;
760
761         pagefault_disable();
762         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763         pagefault_enable();
764
765         return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770         int ret;
771
772         pagefault_disable();
773         ret = __get_user(*dest, from);
774         pagefault_enable();
775
776         return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781  * PI code:
782  */
783 static int refill_pi_state_cache(void)
784 {
785         struct futex_pi_state *pi_state;
786
787         if (likely(current->pi_state_cache))
788                 return 0;
789
790         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792         if (!pi_state)
793                 return -ENOMEM;
794
795         INIT_LIST_HEAD(&pi_state->list);
796         /* pi_mutex gets initialized later */
797         pi_state->owner = NULL;
798         atomic_set(&pi_state->refcount, 1);
799         pi_state->key = FUTEX_KEY_INIT;
800
801         current->pi_state_cache = pi_state;
802
803         return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808         struct futex_pi_state *pi_state = current->pi_state_cache;
809
810         WARN_ON(!pi_state);
811         current->pi_state_cache = NULL;
812
813         return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822  * Drops a reference to the pi_state object and frees or caches it
823  * when the last reference is gone.
824  *
825  * Must be called with the hb lock held.
826  */
827 static void put_pi_state(struct futex_pi_state *pi_state)
828 {
829         if (!pi_state)
830                 return;
831
832         if (!atomic_dec_and_test(&pi_state->refcount))
833                 return;
834
835         /*
836          * If pi_state->owner is NULL, the owner is most probably dying
837          * and has cleaned up the pi_state already
838          */
839         if (pi_state->owner) {
840                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
841                 list_del_init(&pi_state->list);
842                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
843
844                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
845         }
846
847         if (current->pi_state_cache)
848                 kfree(pi_state);
849         else {
850                 /*
851                  * pi_state->list is already empty.
852                  * clear pi_state->owner.
853                  * refcount is at 0 - put it back to 1.
854                  */
855                 pi_state->owner = NULL;
856                 atomic_set(&pi_state->refcount, 1);
857                 current->pi_state_cache = pi_state;
858         }
859 }
860
861 /*
862  * Look up the task based on what TID userspace gave us.
863  * We dont trust it.
864  */
865 static struct task_struct *futex_find_get_task(pid_t pid)
866 {
867         struct task_struct *p;
868
869         rcu_read_lock();
870         p = find_task_by_vpid(pid);
871         if (p)
872                 get_task_struct(p);
873
874         rcu_read_unlock();
875
876         return p;
877 }
878
879 #ifdef CONFIG_FUTEX_PI
880
881 /*
882  * This task is holding PI mutexes at exit time => bad.
883  * Kernel cleans up PI-state, but userspace is likely hosed.
884  * (Robust-futex cleanup is separate and might save the day for userspace.)
885  */
886 void exit_pi_state_list(struct task_struct *curr)
887 {
888         struct list_head *next, *head = &curr->pi_state_list;
889         struct futex_pi_state *pi_state;
890         struct futex_hash_bucket *hb;
891         union futex_key key = FUTEX_KEY_INIT;
892
893         if (!futex_cmpxchg_enabled)
894                 return;
895         /*
896          * We are a ZOMBIE and nobody can enqueue itself on
897          * pi_state_list anymore, but we have to be careful
898          * versus waiters unqueueing themselves:
899          */
900         raw_spin_lock_irq(&curr->pi_lock);
901         while (!list_empty(head)) {
902
903                 next = head->next;
904                 pi_state = list_entry(next, struct futex_pi_state, list);
905                 key = pi_state->key;
906                 hb = hash_futex(&key);
907                 raw_spin_unlock_irq(&curr->pi_lock);
908
909                 spin_lock(&hb->lock);
910
911                 raw_spin_lock_irq(&curr->pi_lock);
912                 /*
913                  * We dropped the pi-lock, so re-check whether this
914                  * task still owns the PI-state:
915                  */
916                 if (head->next != next) {
917                         spin_unlock(&hb->lock);
918                         continue;
919                 }
920
921                 WARN_ON(pi_state->owner != curr);
922                 WARN_ON(list_empty(&pi_state->list));
923                 list_del_init(&pi_state->list);
924                 pi_state->owner = NULL;
925                 raw_spin_unlock_irq(&curr->pi_lock);
926
927                 get_pi_state(pi_state);
928                 spin_unlock(&hb->lock);
929
930                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
931                 put_pi_state(pi_state);
932
933                 raw_spin_lock_irq(&curr->pi_lock);
934         }
935         raw_spin_unlock_irq(&curr->pi_lock);
936 }
937
938 #endif
939
940 /*
941  * We need to check the following states:
942  *
943  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
944  *
945  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
946  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
947  *
948  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
949  *
950  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
951  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
952  *
953  * [6]  Found  | Found    | task      | 0         | 1      | Valid
954  *
955  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
956  *
957  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
958  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
959  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
960  *
961  * [1]  Indicates that the kernel can acquire the futex atomically. We
962  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
963  *
964  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
965  *      thread is found then it indicates that the owner TID has died.
966  *
967  * [3]  Invalid. The waiter is queued on a non PI futex
968  *
969  * [4]  Valid state after exit_robust_list(), which sets the user space
970  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
971  *
972  * [5]  The user space value got manipulated between exit_robust_list()
973  *      and exit_pi_state_list()
974  *
975  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
976  *      the pi_state but cannot access the user space value.
977  *
978  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
979  *
980  * [8]  Owner and user space value match
981  *
982  * [9]  There is no transient state which sets the user space TID to 0
983  *      except exit_robust_list(), but this is indicated by the
984  *      FUTEX_OWNER_DIED bit. See [4]
985  *
986  * [10] There is no transient state which leaves owner and user space
987  *      TID out of sync.
988  *
989  *
990  * Serialization and lifetime rules:
991  *
992  * hb->lock:
993  *
994  *      hb -> futex_q, relation
995  *      futex_q -> pi_state, relation
996  *
997  *      (cannot be raw because hb can contain arbitrary amount
998  *       of futex_q's)
999  *
1000  * pi_mutex->wait_lock:
1001  *
1002  *      {uval, pi_state}
1003  *
1004  *      (and pi_mutex 'obviously')
1005  *
1006  * p->pi_lock:
1007  *
1008  *      p->pi_state_list -> pi_state->list, relation
1009  *
1010  * pi_state->refcount:
1011  *
1012  *      pi_state lifetime
1013  *
1014  *
1015  * Lock order:
1016  *
1017  *   hb->lock
1018  *     pi_mutex->wait_lock
1019  *       p->pi_lock
1020  *
1021  */
1022
1023 /*
1024  * Validate that the existing waiter has a pi_state and sanity check
1025  * the pi_state against the user space value. If correct, attach to
1026  * it.
1027  */
1028 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1029                               struct futex_pi_state *pi_state,
1030                               struct futex_pi_state **ps)
1031 {
1032         pid_t pid = uval & FUTEX_TID_MASK;
1033         u32 uval2;
1034         int ret;
1035
1036         /*
1037          * Userspace might have messed up non-PI and PI futexes [3]
1038          */
1039         if (unlikely(!pi_state))
1040                 return -EINVAL;
1041
1042         /*
1043          * We get here with hb->lock held, and having found a
1044          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1045          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1046          * which in turn means that futex_lock_pi() still has a reference on
1047          * our pi_state.
1048          *
1049          * The waiter holding a reference on @pi_state also protects against
1050          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1051          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1052          * free pi_state before we can take a reference ourselves.
1053          */
1054         WARN_ON(!atomic_read(&pi_state->refcount));
1055
1056         /*
1057          * Now that we have a pi_state, we can acquire wait_lock
1058          * and do the state validation.
1059          */
1060         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1061
1062         /*
1063          * Since {uval, pi_state} is serialized by wait_lock, and our current
1064          * uval was read without holding it, it can have changed. Verify it
1065          * still is what we expect it to be, otherwise retry the entire
1066          * operation.
1067          */
1068         if (get_futex_value_locked(&uval2, uaddr))
1069                 goto out_efault;
1070
1071         if (uval != uval2)
1072                 goto out_eagain;
1073
1074         /*
1075          * Handle the owner died case:
1076          */
1077         if (uval & FUTEX_OWNER_DIED) {
1078                 /*
1079                  * exit_pi_state_list sets owner to NULL and wakes the
1080                  * topmost waiter. The task which acquires the
1081                  * pi_state->rt_mutex will fixup owner.
1082                  */
1083                 if (!pi_state->owner) {
1084                         /*
1085                          * No pi state owner, but the user space TID
1086                          * is not 0. Inconsistent state. [5]
1087                          */
1088                         if (pid)
1089                                 goto out_einval;
1090                         /*
1091                          * Take a ref on the state and return success. [4]
1092                          */
1093                         goto out_attach;
1094                 }
1095
1096                 /*
1097                  * If TID is 0, then either the dying owner has not
1098                  * yet executed exit_pi_state_list() or some waiter
1099                  * acquired the rtmutex in the pi state, but did not
1100                  * yet fixup the TID in user space.
1101                  *
1102                  * Take a ref on the state and return success. [6]
1103                  */
1104                 if (!pid)
1105                         goto out_attach;
1106         } else {
1107                 /*
1108                  * If the owner died bit is not set, then the pi_state
1109                  * must have an owner. [7]
1110                  */
1111                 if (!pi_state->owner)
1112                         goto out_einval;
1113         }
1114
1115         /*
1116          * Bail out if user space manipulated the futex value. If pi
1117          * state exists then the owner TID must be the same as the
1118          * user space TID. [9/10]
1119          */
1120         if (pid != task_pid_vnr(pi_state->owner))
1121                 goto out_einval;
1122
1123 out_attach:
1124         get_pi_state(pi_state);
1125         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1126         *ps = pi_state;
1127         return 0;
1128
1129 out_einval:
1130         ret = -EINVAL;
1131         goto out_error;
1132
1133 out_eagain:
1134         ret = -EAGAIN;
1135         goto out_error;
1136
1137 out_efault:
1138         ret = -EFAULT;
1139         goto out_error;
1140
1141 out_error:
1142         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1143         return ret;
1144 }
1145
1146 /*
1147  * Lookup the task for the TID provided from user space and attach to
1148  * it after doing proper sanity checks.
1149  */
1150 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1151                               struct futex_pi_state **ps)
1152 {
1153         pid_t pid = uval & FUTEX_TID_MASK;
1154         struct futex_pi_state *pi_state;
1155         struct task_struct *p;
1156
1157         /*
1158          * We are the first waiter - try to look up the real owner and attach
1159          * the new pi_state to it, but bail out when TID = 0 [1]
1160          */
1161         if (!pid)
1162                 return -ESRCH;
1163         p = futex_find_get_task(pid);
1164         if (!p)
1165                 return -ESRCH;
1166
1167         if (unlikely(p->flags & PF_KTHREAD)) {
1168                 put_task_struct(p);
1169                 return -EPERM;
1170         }
1171
1172         /*
1173          * We need to look at the task state flags to figure out,
1174          * whether the task is exiting. To protect against the do_exit
1175          * change of the task flags, we do this protected by
1176          * p->pi_lock:
1177          */
1178         raw_spin_lock_irq(&p->pi_lock);
1179         if (unlikely(p->flags & PF_EXITING)) {
1180                 /*
1181                  * The task is on the way out. When PF_EXITPIDONE is
1182                  * set, we know that the task has finished the
1183                  * cleanup:
1184                  */
1185                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1186
1187                 raw_spin_unlock_irq(&p->pi_lock);
1188                 put_task_struct(p);
1189                 return ret;
1190         }
1191
1192         /*
1193          * No existing pi state. First waiter. [2]
1194          *
1195          * This creates pi_state, we have hb->lock held, this means nothing can
1196          * observe this state, wait_lock is irrelevant.
1197          */
1198         pi_state = alloc_pi_state();
1199
1200         /*
1201          * Initialize the pi_mutex in locked state and make @p
1202          * the owner of it:
1203          */
1204         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1205
1206         /* Store the key for possible exit cleanups: */
1207         pi_state->key = *key;
1208
1209         WARN_ON(!list_empty(&pi_state->list));
1210         list_add(&pi_state->list, &p->pi_state_list);
1211         pi_state->owner = p;
1212         raw_spin_unlock_irq(&p->pi_lock);
1213
1214         put_task_struct(p);
1215
1216         *ps = pi_state;
1217
1218         return 0;
1219 }
1220
1221 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1222                            struct futex_hash_bucket *hb,
1223                            union futex_key *key, struct futex_pi_state **ps)
1224 {
1225         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1226
1227         /*
1228          * If there is a waiter on that futex, validate it and
1229          * attach to the pi_state when the validation succeeds.
1230          */
1231         if (top_waiter)
1232                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1233
1234         /*
1235          * We are the first waiter - try to look up the owner based on
1236          * @uval and attach to it.
1237          */
1238         return attach_to_pi_owner(uval, key, ps);
1239 }
1240
1241 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1242 {
1243         u32 uninitialized_var(curval);
1244
1245         if (unlikely(should_fail_futex(true)))
1246                 return -EFAULT;
1247
1248         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1249                 return -EFAULT;
1250
1251         /* If user space value changed, let the caller retry */
1252         return curval != uval ? -EAGAIN : 0;
1253 }
1254
1255 /**
1256  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1257  * @uaddr:              the pi futex user address
1258  * @hb:                 the pi futex hash bucket
1259  * @key:                the futex key associated with uaddr and hb
1260  * @ps:                 the pi_state pointer where we store the result of the
1261  *                      lookup
1262  * @task:               the task to perform the atomic lock work for.  This will
1263  *                      be "current" except in the case of requeue pi.
1264  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1265  *
1266  * Return:
1267  *  -  0 - ready to wait;
1268  *  -  1 - acquired the lock;
1269  *  - <0 - error
1270  *
1271  * The hb->lock and futex_key refs shall be held by the caller.
1272  */
1273 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1274                                 union futex_key *key,
1275                                 struct futex_pi_state **ps,
1276                                 struct task_struct *task, int set_waiters)
1277 {
1278         u32 uval, newval, vpid = task_pid_vnr(task);
1279         struct futex_q *top_waiter;
1280         int ret;
1281
1282         /*
1283          * Read the user space value first so we can validate a few
1284          * things before proceeding further.
1285          */
1286         if (get_futex_value_locked(&uval, uaddr))
1287                 return -EFAULT;
1288
1289         if (unlikely(should_fail_futex(true)))
1290                 return -EFAULT;
1291
1292         /*
1293          * Detect deadlocks.
1294          */
1295         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1296                 return -EDEADLK;
1297
1298         if ((unlikely(should_fail_futex(true))))
1299                 return -EDEADLK;
1300
1301         /*
1302          * Lookup existing state first. If it exists, try to attach to
1303          * its pi_state.
1304          */
1305         top_waiter = futex_top_waiter(hb, key);
1306         if (top_waiter)
1307                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1308
1309         /*
1310          * No waiter and user TID is 0. We are here because the
1311          * waiters or the owner died bit is set or called from
1312          * requeue_cmp_pi or for whatever reason something took the
1313          * syscall.
1314          */
1315         if (!(uval & FUTEX_TID_MASK)) {
1316                 /*
1317                  * We take over the futex. No other waiters and the user space
1318                  * TID is 0. We preserve the owner died bit.
1319                  */
1320                 newval = uval & FUTEX_OWNER_DIED;
1321                 newval |= vpid;
1322
1323                 /* The futex requeue_pi code can enforce the waiters bit */
1324                 if (set_waiters)
1325                         newval |= FUTEX_WAITERS;
1326
1327                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1328                 /* If the take over worked, return 1 */
1329                 return ret < 0 ? ret : 1;
1330         }
1331
1332         /*
1333          * First waiter. Set the waiters bit before attaching ourself to
1334          * the owner. If owner tries to unlock, it will be forced into
1335          * the kernel and blocked on hb->lock.
1336          */
1337         newval = uval | FUTEX_WAITERS;
1338         ret = lock_pi_update_atomic(uaddr, uval, newval);
1339         if (ret)
1340                 return ret;
1341         /*
1342          * If the update of the user space value succeeded, we try to
1343          * attach to the owner. If that fails, no harm done, we only
1344          * set the FUTEX_WAITERS bit in the user space variable.
1345          */
1346         return attach_to_pi_owner(uval, key, ps);
1347 }
1348
1349 /**
1350  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1351  * @q:  The futex_q to unqueue
1352  *
1353  * The q->lock_ptr must not be NULL and must be held by the caller.
1354  */
1355 static void __unqueue_futex(struct futex_q *q)
1356 {
1357         struct futex_hash_bucket *hb;
1358
1359         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1360             || WARN_ON(plist_node_empty(&q->list)))
1361                 return;
1362
1363         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1364         plist_del(&q->list, &hb->chain);
1365         hb_waiters_dec(hb);
1366 }
1367
1368 /*
1369  * The hash bucket lock must be held when this is called.
1370  * Afterwards, the futex_q must not be accessed. Callers
1371  * must ensure to later call wake_up_q() for the actual
1372  * wakeups to occur.
1373  */
1374 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1375 {
1376         struct task_struct *p = q->task;
1377
1378         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1379                 return;
1380
1381         /*
1382          * Queue the task for later wakeup for after we've released
1383          * the hb->lock. wake_q_add() grabs reference to p.
1384          */
1385         wake_q_add(wake_q, p);
1386         __unqueue_futex(q);
1387         /*
1388          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1389          * is written, without taking any locks. This is possible in the event
1390          * of a spurious wakeup, for example. A memory barrier is required here
1391          * to prevent the following store to lock_ptr from getting ahead of the
1392          * plist_del in __unqueue_futex().
1393          */
1394         smp_store_release(&q->lock_ptr, NULL);
1395 }
1396
1397 /*
1398  * Caller must hold a reference on @pi_state.
1399  */
1400 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1401 {
1402         u32 uninitialized_var(curval), newval;
1403         struct task_struct *new_owner;
1404         bool postunlock = false;
1405         DEFINE_WAKE_Q(wake_q);
1406         int ret = 0;
1407
1408         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1409         if (WARN_ON_ONCE(!new_owner)) {
1410                 /*
1411                  * As per the comment in futex_unlock_pi() this should not happen.
1412                  *
1413                  * When this happens, give up our locks and try again, giving
1414                  * the futex_lock_pi() instance time to complete, either by
1415                  * waiting on the rtmutex or removing itself from the futex
1416                  * queue.
1417                  */
1418                 ret = -EAGAIN;
1419                 goto out_unlock;
1420         }
1421
1422         /*
1423          * We pass it to the next owner. The WAITERS bit is always kept
1424          * enabled while there is PI state around. We cleanup the owner
1425          * died bit, because we are the owner.
1426          */
1427         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1428
1429         if (unlikely(should_fail_futex(true)))
1430                 ret = -EFAULT;
1431
1432         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1433                 ret = -EFAULT;
1434
1435         } else if (curval != uval) {
1436                 /*
1437                  * If a unconditional UNLOCK_PI operation (user space did not
1438                  * try the TID->0 transition) raced with a waiter setting the
1439                  * FUTEX_WAITERS flag between get_user() and locking the hash
1440                  * bucket lock, retry the operation.
1441                  */
1442                 if ((FUTEX_TID_MASK & curval) == uval)
1443                         ret = -EAGAIN;
1444                 else
1445                         ret = -EINVAL;
1446         }
1447
1448         if (ret)
1449                 goto out_unlock;
1450
1451         /*
1452          * This is a point of no return; once we modify the uval there is no
1453          * going back and subsequent operations must not fail.
1454          */
1455
1456         raw_spin_lock(&pi_state->owner->pi_lock);
1457         WARN_ON(list_empty(&pi_state->list));
1458         list_del_init(&pi_state->list);
1459         raw_spin_unlock(&pi_state->owner->pi_lock);
1460
1461         raw_spin_lock(&new_owner->pi_lock);
1462         WARN_ON(!list_empty(&pi_state->list));
1463         list_add(&pi_state->list, &new_owner->pi_state_list);
1464         pi_state->owner = new_owner;
1465         raw_spin_unlock(&new_owner->pi_lock);
1466
1467         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1468
1469 out_unlock:
1470         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1471
1472         if (postunlock)
1473                 rt_mutex_postunlock(&wake_q);
1474
1475         return ret;
1476 }
1477
1478 /*
1479  * Express the locking dependencies for lockdep:
1480  */
1481 static inline void
1482 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1483 {
1484         if (hb1 <= hb2) {
1485                 spin_lock(&hb1->lock);
1486                 if (hb1 < hb2)
1487                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1488         } else { /* hb1 > hb2 */
1489                 spin_lock(&hb2->lock);
1490                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1491         }
1492 }
1493
1494 static inline void
1495 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1496 {
1497         spin_unlock(&hb1->lock);
1498         if (hb1 != hb2)
1499                 spin_unlock(&hb2->lock);
1500 }
1501
1502 /*
1503  * Wake up waiters matching bitset queued on this futex (uaddr).
1504  */
1505 static int
1506 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1507 {
1508         struct futex_hash_bucket *hb;
1509         struct futex_q *this, *next;
1510         union futex_key key = FUTEX_KEY_INIT;
1511         int ret;
1512         DEFINE_WAKE_Q(wake_q);
1513
1514         if (!bitset)
1515                 return -EINVAL;
1516
1517         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1518         if (unlikely(ret != 0))
1519                 goto out;
1520
1521         hb = hash_futex(&key);
1522
1523         /* Make sure we really have tasks to wakeup */
1524         if (!hb_waiters_pending(hb))
1525                 goto out_put_key;
1526
1527         spin_lock(&hb->lock);
1528
1529         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1530                 if (match_futex (&this->key, &key)) {
1531                         if (this->pi_state || this->rt_waiter) {
1532                                 ret = -EINVAL;
1533                                 break;
1534                         }
1535
1536                         /* Check if one of the bits is set in both bitsets */
1537                         if (!(this->bitset & bitset))
1538                                 continue;
1539
1540                         mark_wake_futex(&wake_q, this);
1541                         if (++ret >= nr_wake)
1542                                 break;
1543                 }
1544         }
1545
1546         spin_unlock(&hb->lock);
1547         wake_up_q(&wake_q);
1548 out_put_key:
1549         put_futex_key(&key);
1550 out:
1551         return ret;
1552 }
1553
1554 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1555 {
1556         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1557         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1558         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
1559         int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
1560         int oldval, ret;
1561
1562         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1563                 if (oparg < 0 || oparg > 31)
1564                         return -EINVAL;
1565                 oparg = 1 << oparg;
1566         }
1567
1568         if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1569                 return -EFAULT;
1570
1571         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1572         if (ret)
1573                 return ret;
1574
1575         switch (cmp) {
1576         case FUTEX_OP_CMP_EQ:
1577                 return oldval == cmparg;
1578         case FUTEX_OP_CMP_NE:
1579                 return oldval != cmparg;
1580         case FUTEX_OP_CMP_LT:
1581                 return oldval < cmparg;
1582         case FUTEX_OP_CMP_GE:
1583                 return oldval >= cmparg;
1584         case FUTEX_OP_CMP_LE:
1585                 return oldval <= cmparg;
1586         case FUTEX_OP_CMP_GT:
1587                 return oldval > cmparg;
1588         default:
1589                 return -ENOSYS;
1590         }
1591 }
1592
1593 /*
1594  * Wake up all waiters hashed on the physical page that is mapped
1595  * to this virtual address:
1596  */
1597 static int
1598 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1599               int nr_wake, int nr_wake2, int op)
1600 {
1601         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1602         struct futex_hash_bucket *hb1, *hb2;
1603         struct futex_q *this, *next;
1604         int ret, op_ret;
1605         DEFINE_WAKE_Q(wake_q);
1606
1607 retry:
1608         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1609         if (unlikely(ret != 0))
1610                 goto out;
1611         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1612         if (unlikely(ret != 0))
1613                 goto out_put_key1;
1614
1615         hb1 = hash_futex(&key1);
1616         hb2 = hash_futex(&key2);
1617
1618 retry_private:
1619         double_lock_hb(hb1, hb2);
1620         op_ret = futex_atomic_op_inuser(op, uaddr2);
1621         if (unlikely(op_ret < 0)) {
1622
1623                 double_unlock_hb(hb1, hb2);
1624
1625 #ifndef CONFIG_MMU
1626                 /*
1627                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1628                  * but we might get them from range checking
1629                  */
1630                 ret = op_ret;
1631                 goto out_put_keys;
1632 #endif
1633
1634                 if (unlikely(op_ret != -EFAULT)) {
1635                         ret = op_ret;
1636                         goto out_put_keys;
1637                 }
1638
1639                 ret = fault_in_user_writeable(uaddr2);
1640                 if (ret)
1641                         goto out_put_keys;
1642
1643                 if (!(flags & FLAGS_SHARED))
1644                         goto retry_private;
1645
1646                 put_futex_key(&key2);
1647                 put_futex_key(&key1);
1648                 goto retry;
1649         }
1650
1651         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1652                 if (match_futex (&this->key, &key1)) {
1653                         if (this->pi_state || this->rt_waiter) {
1654                                 ret = -EINVAL;
1655                                 goto out_unlock;
1656                         }
1657                         mark_wake_futex(&wake_q, this);
1658                         if (++ret >= nr_wake)
1659                                 break;
1660                 }
1661         }
1662
1663         if (op_ret > 0) {
1664                 op_ret = 0;
1665                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1666                         if (match_futex (&this->key, &key2)) {
1667                                 if (this->pi_state || this->rt_waiter) {
1668                                         ret = -EINVAL;
1669                                         goto out_unlock;
1670                                 }
1671                                 mark_wake_futex(&wake_q, this);
1672                                 if (++op_ret >= nr_wake2)
1673                                         break;
1674                         }
1675                 }
1676                 ret += op_ret;
1677         }
1678
1679 out_unlock:
1680         double_unlock_hb(hb1, hb2);
1681         wake_up_q(&wake_q);
1682 out_put_keys:
1683         put_futex_key(&key2);
1684 out_put_key1:
1685         put_futex_key(&key1);
1686 out:
1687         return ret;
1688 }
1689
1690 /**
1691  * requeue_futex() - Requeue a futex_q from one hb to another
1692  * @q:          the futex_q to requeue
1693  * @hb1:        the source hash_bucket
1694  * @hb2:        the target hash_bucket
1695  * @key2:       the new key for the requeued futex_q
1696  */
1697 static inline
1698 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1699                    struct futex_hash_bucket *hb2, union futex_key *key2)
1700 {
1701
1702         /*
1703          * If key1 and key2 hash to the same bucket, no need to
1704          * requeue.
1705          */
1706         if (likely(&hb1->chain != &hb2->chain)) {
1707                 plist_del(&q->list, &hb1->chain);
1708                 hb_waiters_dec(hb1);
1709                 hb_waiters_inc(hb2);
1710                 plist_add(&q->list, &hb2->chain);
1711                 q->lock_ptr = &hb2->lock;
1712         }
1713         get_futex_key_refs(key2);
1714         q->key = *key2;
1715 }
1716
1717 /**
1718  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1719  * @q:          the futex_q
1720  * @key:        the key of the requeue target futex
1721  * @hb:         the hash_bucket of the requeue target futex
1722  *
1723  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1724  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1725  * to the requeue target futex so the waiter can detect the wakeup on the right
1726  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1727  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1728  * to protect access to the pi_state to fixup the owner later.  Must be called
1729  * with both q->lock_ptr and hb->lock held.
1730  */
1731 static inline
1732 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1733                            struct futex_hash_bucket *hb)
1734 {
1735         get_futex_key_refs(key);
1736         q->key = *key;
1737
1738         __unqueue_futex(q);
1739
1740         WARN_ON(!q->rt_waiter);
1741         q->rt_waiter = NULL;
1742
1743         q->lock_ptr = &hb->lock;
1744
1745         wake_up_state(q->task, TASK_NORMAL);
1746 }
1747
1748 /**
1749  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1750  * @pifutex:            the user address of the to futex
1751  * @hb1:                the from futex hash bucket, must be locked by the caller
1752  * @hb2:                the to futex hash bucket, must be locked by the caller
1753  * @key1:               the from futex key
1754  * @key2:               the to futex key
1755  * @ps:                 address to store the pi_state pointer
1756  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1757  *
1758  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1759  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1760  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1761  * hb1 and hb2 must be held by the caller.
1762  *
1763  * Return:
1764  *  -  0 - failed to acquire the lock atomically;
1765  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1766  *  - <0 - error
1767  */
1768 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1769                                  struct futex_hash_bucket *hb1,
1770                                  struct futex_hash_bucket *hb2,
1771                                  union futex_key *key1, union futex_key *key2,
1772                                  struct futex_pi_state **ps, int set_waiters)
1773 {
1774         struct futex_q *top_waiter = NULL;
1775         u32 curval;
1776         int ret, vpid;
1777
1778         if (get_futex_value_locked(&curval, pifutex))
1779                 return -EFAULT;
1780
1781         if (unlikely(should_fail_futex(true)))
1782                 return -EFAULT;
1783
1784         /*
1785          * Find the top_waiter and determine if there are additional waiters.
1786          * If the caller intends to requeue more than 1 waiter to pifutex,
1787          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1788          * as we have means to handle the possible fault.  If not, don't set
1789          * the bit unecessarily as it will force the subsequent unlock to enter
1790          * the kernel.
1791          */
1792         top_waiter = futex_top_waiter(hb1, key1);
1793
1794         /* There are no waiters, nothing for us to do. */
1795         if (!top_waiter)
1796                 return 0;
1797
1798         /* Ensure we requeue to the expected futex. */
1799         if (!match_futex(top_waiter->requeue_pi_key, key2))
1800                 return -EINVAL;
1801
1802         /*
1803          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1804          * the contended case or if set_waiters is 1.  The pi_state is returned
1805          * in ps in contended cases.
1806          */
1807         vpid = task_pid_vnr(top_waiter->task);
1808         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1809                                    set_waiters);
1810         if (ret == 1) {
1811                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1812                 return vpid;
1813         }
1814         return ret;
1815 }
1816
1817 /**
1818  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1819  * @uaddr1:     source futex user address
1820  * @flags:      futex flags (FLAGS_SHARED, etc.)
1821  * @uaddr2:     target futex user address
1822  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1823  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1824  * @cmpval:     @uaddr1 expected value (or %NULL)
1825  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1826  *              pi futex (pi to pi requeue is not supported)
1827  *
1828  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1829  * uaddr2 atomically on behalf of the top waiter.
1830  *
1831  * Return:
1832  *  - >=0 - on success, the number of tasks requeued or woken;
1833  *  -  <0 - on error
1834  */
1835 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1836                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1837                          u32 *cmpval, int requeue_pi)
1838 {
1839         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1840         int drop_count = 0, task_count = 0, ret;
1841         struct futex_pi_state *pi_state = NULL;
1842         struct futex_hash_bucket *hb1, *hb2;
1843         struct futex_q *this, *next;
1844         DEFINE_WAKE_Q(wake_q);
1845
1846         /*
1847          * When PI not supported: return -ENOSYS if requeue_pi is true,
1848          * consequently the compiler knows requeue_pi is always false past
1849          * this point which will optimize away all the conditional code
1850          * further down.
1851          */
1852         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1853                 return -ENOSYS;
1854
1855         if (requeue_pi) {
1856                 /*
1857                  * Requeue PI only works on two distinct uaddrs. This
1858                  * check is only valid for private futexes. See below.
1859                  */
1860                 if (uaddr1 == uaddr2)
1861                         return -EINVAL;
1862
1863                 /*
1864                  * requeue_pi requires a pi_state, try to allocate it now
1865                  * without any locks in case it fails.
1866                  */
1867                 if (refill_pi_state_cache())
1868                         return -ENOMEM;
1869                 /*
1870                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1871                  * + nr_requeue, since it acquires the rt_mutex prior to
1872                  * returning to userspace, so as to not leave the rt_mutex with
1873                  * waiters and no owner.  However, second and third wake-ups
1874                  * cannot be predicted as they involve race conditions with the
1875                  * first wake and a fault while looking up the pi_state.  Both
1876                  * pthread_cond_signal() and pthread_cond_broadcast() should
1877                  * use nr_wake=1.
1878                  */
1879                 if (nr_wake != 1)
1880                         return -EINVAL;
1881         }
1882
1883 retry:
1884         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1885         if (unlikely(ret != 0))
1886                 goto out;
1887         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1888                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1889         if (unlikely(ret != 0))
1890                 goto out_put_key1;
1891
1892         /*
1893          * The check above which compares uaddrs is not sufficient for
1894          * shared futexes. We need to compare the keys:
1895          */
1896         if (requeue_pi && match_futex(&key1, &key2)) {
1897                 ret = -EINVAL;
1898                 goto out_put_keys;
1899         }
1900
1901         hb1 = hash_futex(&key1);
1902         hb2 = hash_futex(&key2);
1903
1904 retry_private:
1905         hb_waiters_inc(hb2);
1906         double_lock_hb(hb1, hb2);
1907
1908         if (likely(cmpval != NULL)) {
1909                 u32 curval;
1910
1911                 ret = get_futex_value_locked(&curval, uaddr1);
1912
1913                 if (unlikely(ret)) {
1914                         double_unlock_hb(hb1, hb2);
1915                         hb_waiters_dec(hb2);
1916
1917                         ret = get_user(curval, uaddr1);
1918                         if (ret)
1919                                 goto out_put_keys;
1920
1921                         if (!(flags & FLAGS_SHARED))
1922                                 goto retry_private;
1923
1924                         put_futex_key(&key2);
1925                         put_futex_key(&key1);
1926                         goto retry;
1927                 }
1928                 if (curval != *cmpval) {
1929                         ret = -EAGAIN;
1930                         goto out_unlock;
1931                 }
1932         }
1933
1934         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1935                 /*
1936                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1937                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1938                  * bit.  We force this here where we are able to easily handle
1939                  * faults rather in the requeue loop below.
1940                  */
1941                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1942                                                  &key2, &pi_state, nr_requeue);
1943
1944                 /*
1945                  * At this point the top_waiter has either taken uaddr2 or is
1946                  * waiting on it.  If the former, then the pi_state will not
1947                  * exist yet, look it up one more time to ensure we have a
1948                  * reference to it. If the lock was taken, ret contains the
1949                  * vpid of the top waiter task.
1950                  * If the lock was not taken, we have pi_state and an initial
1951                  * refcount on it. In case of an error we have nothing.
1952                  */
1953                 if (ret > 0) {
1954                         WARN_ON(pi_state);
1955                         drop_count++;
1956                         task_count++;
1957                         /*
1958                          * If we acquired the lock, then the user space value
1959                          * of uaddr2 should be vpid. It cannot be changed by
1960                          * the top waiter as it is blocked on hb2 lock if it
1961                          * tries to do so. If something fiddled with it behind
1962                          * our back the pi state lookup might unearth it. So
1963                          * we rather use the known value than rereading and
1964                          * handing potential crap to lookup_pi_state.
1965                          *
1966                          * If that call succeeds then we have pi_state and an
1967                          * initial refcount on it.
1968                          */
1969                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1970                 }
1971
1972                 switch (ret) {
1973                 case 0:
1974                         /* We hold a reference on the pi state. */
1975                         break;
1976
1977                         /* If the above failed, then pi_state is NULL */
1978                 case -EFAULT:
1979                         double_unlock_hb(hb1, hb2);
1980                         hb_waiters_dec(hb2);
1981                         put_futex_key(&key2);
1982                         put_futex_key(&key1);
1983                         ret = fault_in_user_writeable(uaddr2);
1984                         if (!ret)
1985                                 goto retry;
1986                         goto out;
1987                 case -EAGAIN:
1988                         /*
1989                          * Two reasons for this:
1990                          * - Owner is exiting and we just wait for the
1991                          *   exit to complete.
1992                          * - The user space value changed.
1993                          */
1994                         double_unlock_hb(hb1, hb2);
1995                         hb_waiters_dec(hb2);
1996                         put_futex_key(&key2);
1997                         put_futex_key(&key1);
1998                         cond_resched();
1999                         goto retry;
2000                 default:
2001                         goto out_unlock;
2002                 }
2003         }
2004
2005         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2006                 if (task_count - nr_wake >= nr_requeue)
2007                         break;
2008
2009                 if (!match_futex(&this->key, &key1))
2010                         continue;
2011
2012                 /*
2013                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2014                  * be paired with each other and no other futex ops.
2015                  *
2016                  * We should never be requeueing a futex_q with a pi_state,
2017                  * which is awaiting a futex_unlock_pi().
2018                  */
2019                 if ((requeue_pi && !this->rt_waiter) ||
2020                     (!requeue_pi && this->rt_waiter) ||
2021                     this->pi_state) {
2022                         ret = -EINVAL;
2023                         break;
2024                 }
2025
2026                 /*
2027                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2028                  * lock, we already woke the top_waiter.  If not, it will be
2029                  * woken by futex_unlock_pi().
2030                  */
2031                 if (++task_count <= nr_wake && !requeue_pi) {
2032                         mark_wake_futex(&wake_q, this);
2033                         continue;
2034                 }
2035
2036                 /* Ensure we requeue to the expected futex for requeue_pi. */
2037                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2038                         ret = -EINVAL;
2039                         break;
2040                 }
2041
2042                 /*
2043                  * Requeue nr_requeue waiters and possibly one more in the case
2044                  * of requeue_pi if we couldn't acquire the lock atomically.
2045                  */
2046                 if (requeue_pi) {
2047                         /*
2048                          * Prepare the waiter to take the rt_mutex. Take a
2049                          * refcount on the pi_state and store the pointer in
2050                          * the futex_q object of the waiter.
2051                          */
2052                         get_pi_state(pi_state);
2053                         this->pi_state = pi_state;
2054                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2055                                                         this->rt_waiter,
2056                                                         this->task);
2057                         if (ret == 1) {
2058                                 /*
2059                                  * We got the lock. We do neither drop the
2060                                  * refcount on pi_state nor clear
2061                                  * this->pi_state because the waiter needs the
2062                                  * pi_state for cleaning up the user space
2063                                  * value. It will drop the refcount after
2064                                  * doing so.
2065                                  */
2066                                 requeue_pi_wake_futex(this, &key2, hb2);
2067                                 drop_count++;
2068                                 continue;
2069                         } else if (ret) {
2070                                 /*
2071                                  * rt_mutex_start_proxy_lock() detected a
2072                                  * potential deadlock when we tried to queue
2073                                  * that waiter. Drop the pi_state reference
2074                                  * which we took above and remove the pointer
2075                                  * to the state from the waiters futex_q
2076                                  * object.
2077                                  */
2078                                 this->pi_state = NULL;
2079                                 put_pi_state(pi_state);
2080                                 /*
2081                                  * We stop queueing more waiters and let user
2082                                  * space deal with the mess.
2083                                  */
2084                                 break;
2085                         }
2086                 }
2087                 requeue_futex(this, hb1, hb2, &key2);
2088                 drop_count++;
2089         }
2090
2091         /*
2092          * We took an extra initial reference to the pi_state either
2093          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2094          * need to drop it here again.
2095          */
2096         put_pi_state(pi_state);
2097
2098 out_unlock:
2099         double_unlock_hb(hb1, hb2);
2100         wake_up_q(&wake_q);
2101         hb_waiters_dec(hb2);
2102
2103         /*
2104          * drop_futex_key_refs() must be called outside the spinlocks. During
2105          * the requeue we moved futex_q's from the hash bucket at key1 to the
2106          * one at key2 and updated their key pointer.  We no longer need to
2107          * hold the references to key1.
2108          */
2109         while (--drop_count >= 0)
2110                 drop_futex_key_refs(&key1);
2111
2112 out_put_keys:
2113         put_futex_key(&key2);
2114 out_put_key1:
2115         put_futex_key(&key1);
2116 out:
2117         return ret ? ret : task_count;
2118 }
2119
2120 /* The key must be already stored in q->key. */
2121 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2122         __acquires(&hb->lock)
2123 {
2124         struct futex_hash_bucket *hb;
2125
2126         hb = hash_futex(&q->key);
2127
2128         /*
2129          * Increment the counter before taking the lock so that
2130          * a potential waker won't miss a to-be-slept task that is
2131          * waiting for the spinlock. This is safe as all queue_lock()
2132          * users end up calling queue_me(). Similarly, for housekeeping,
2133          * decrement the counter at queue_unlock() when some error has
2134          * occurred and we don't end up adding the task to the list.
2135          */
2136         hb_waiters_inc(hb);
2137
2138         q->lock_ptr = &hb->lock;
2139
2140         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2141         return hb;
2142 }
2143
2144 static inline void
2145 queue_unlock(struct futex_hash_bucket *hb)
2146         __releases(&hb->lock)
2147 {
2148         spin_unlock(&hb->lock);
2149         hb_waiters_dec(hb);
2150 }
2151
2152 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2153 {
2154         int prio;
2155
2156         /*
2157          * The priority used to register this element is
2158          * - either the real thread-priority for the real-time threads
2159          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2160          * - or MAX_RT_PRIO for non-RT threads.
2161          * Thus, all RT-threads are woken first in priority order, and
2162          * the others are woken last, in FIFO order.
2163          */
2164         prio = min(current->normal_prio, MAX_RT_PRIO);
2165
2166         plist_node_init(&q->list, prio);
2167         plist_add(&q->list, &hb->chain);
2168         q->task = current;
2169 }
2170
2171 /**
2172  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2173  * @q:  The futex_q to enqueue
2174  * @hb: The destination hash bucket
2175  *
2176  * The hb->lock must be held by the caller, and is released here. A call to
2177  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2178  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2179  * or nothing if the unqueue is done as part of the wake process and the unqueue
2180  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2181  * an example).
2182  */
2183 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2184         __releases(&hb->lock)
2185 {
2186         __queue_me(q, hb);
2187         spin_unlock(&hb->lock);
2188 }
2189
2190 /**
2191  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2192  * @q:  The futex_q to unqueue
2193  *
2194  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2195  * be paired with exactly one earlier call to queue_me().
2196  *
2197  * Return:
2198  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2199  *  - 0 - if the futex_q was already removed by the waking thread
2200  */
2201 static int unqueue_me(struct futex_q *q)
2202 {
2203         spinlock_t *lock_ptr;
2204         int ret = 0;
2205
2206         /* In the common case we don't take the spinlock, which is nice. */
2207 retry:
2208         /*
2209          * q->lock_ptr can change between this read and the following spin_lock.
2210          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2211          * optimizing lock_ptr out of the logic below.
2212          */
2213         lock_ptr = READ_ONCE(q->lock_ptr);
2214         if (lock_ptr != NULL) {
2215                 spin_lock(lock_ptr);
2216                 /*
2217                  * q->lock_ptr can change between reading it and
2218                  * spin_lock(), causing us to take the wrong lock.  This
2219                  * corrects the race condition.
2220                  *
2221                  * Reasoning goes like this: if we have the wrong lock,
2222                  * q->lock_ptr must have changed (maybe several times)
2223                  * between reading it and the spin_lock().  It can
2224                  * change again after the spin_lock() but only if it was
2225                  * already changed before the spin_lock().  It cannot,
2226                  * however, change back to the original value.  Therefore
2227                  * we can detect whether we acquired the correct lock.
2228                  */
2229                 if (unlikely(lock_ptr != q->lock_ptr)) {
2230                         spin_unlock(lock_ptr);
2231                         goto retry;
2232                 }
2233                 __unqueue_futex(q);
2234
2235                 BUG_ON(q->pi_state);
2236
2237                 spin_unlock(lock_ptr);
2238                 ret = 1;
2239         }
2240
2241         drop_futex_key_refs(&q->key);
2242         return ret;
2243 }
2244
2245 /*
2246  * PI futexes can not be requeued and must remove themself from the
2247  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2248  * and dropped here.
2249  */
2250 static void unqueue_me_pi(struct futex_q *q)
2251         __releases(q->lock_ptr)
2252 {
2253         __unqueue_futex(q);
2254
2255         BUG_ON(!q->pi_state);
2256         put_pi_state(q->pi_state);
2257         q->pi_state = NULL;
2258
2259         spin_unlock(q->lock_ptr);
2260 }
2261
2262 /*
2263  * Fixup the pi_state owner with the new owner.
2264  *
2265  * Must be called with hash bucket lock held and mm->sem held for non
2266  * private futexes.
2267  */
2268 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2269                                 struct task_struct *newowner)
2270 {
2271         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2272         struct futex_pi_state *pi_state = q->pi_state;
2273         u32 uval, uninitialized_var(curval), newval;
2274         struct task_struct *oldowner;
2275         int ret;
2276
2277         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2278
2279         oldowner = pi_state->owner;
2280         /* Owner died? */
2281         if (!pi_state->owner)
2282                 newtid |= FUTEX_OWNER_DIED;
2283
2284         /*
2285          * We are here either because we stole the rtmutex from the
2286          * previous highest priority waiter or we are the highest priority
2287          * waiter but have failed to get the rtmutex the first time.
2288          *
2289          * We have to replace the newowner TID in the user space variable.
2290          * This must be atomic as we have to preserve the owner died bit here.
2291          *
2292          * Note: We write the user space value _before_ changing the pi_state
2293          * because we can fault here. Imagine swapped out pages or a fork
2294          * that marked all the anonymous memory readonly for cow.
2295          *
2296          * Modifying pi_state _before_ the user space value would leave the
2297          * pi_state in an inconsistent state when we fault here, because we
2298          * need to drop the locks to handle the fault. This might be observed
2299          * in the PID check in lookup_pi_state.
2300          */
2301 retry:
2302         if (get_futex_value_locked(&uval, uaddr))
2303                 goto handle_fault;
2304
2305         for (;;) {
2306                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2307
2308                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2309                         goto handle_fault;
2310                 if (curval == uval)
2311                         break;
2312                 uval = curval;
2313         }
2314
2315         /*
2316          * We fixed up user space. Now we need to fix the pi_state
2317          * itself.
2318          */
2319         if (pi_state->owner != NULL) {
2320                 raw_spin_lock(&pi_state->owner->pi_lock);
2321                 WARN_ON(list_empty(&pi_state->list));
2322                 list_del_init(&pi_state->list);
2323                 raw_spin_unlock(&pi_state->owner->pi_lock);
2324         }
2325
2326         pi_state->owner = newowner;
2327
2328         raw_spin_lock(&newowner->pi_lock);
2329         WARN_ON(!list_empty(&pi_state->list));
2330         list_add(&pi_state->list, &newowner->pi_state_list);
2331         raw_spin_unlock(&newowner->pi_lock);
2332         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2333
2334         return 0;
2335
2336         /*
2337          * To handle the page fault we need to drop the locks here. That gives
2338          * the other task (either the highest priority waiter itself or the
2339          * task which stole the rtmutex) the chance to try the fixup of the
2340          * pi_state. So once we are back from handling the fault we need to
2341          * check the pi_state after reacquiring the locks and before trying to
2342          * do another fixup. When the fixup has been done already we simply
2343          * return.
2344          *
2345          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2346          * drop hb->lock since the caller owns the hb -> futex_q relation.
2347          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2348          */
2349 handle_fault:
2350         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2351         spin_unlock(q->lock_ptr);
2352
2353         ret = fault_in_user_writeable(uaddr);
2354
2355         spin_lock(q->lock_ptr);
2356         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2357
2358         /*
2359          * Check if someone else fixed it for us:
2360          */
2361         if (pi_state->owner != oldowner) {
2362                 ret = 0;
2363                 goto out_unlock;
2364         }
2365
2366         if (ret)
2367                 goto out_unlock;
2368
2369         goto retry;
2370
2371 out_unlock:
2372         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2373         return ret;
2374 }
2375
2376 static long futex_wait_restart(struct restart_block *restart);
2377
2378 /**
2379  * fixup_owner() - Post lock pi_state and corner case management
2380  * @uaddr:      user address of the futex
2381  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2382  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2383  *
2384  * After attempting to lock an rt_mutex, this function is called to cleanup
2385  * the pi_state owner as well as handle race conditions that may allow us to
2386  * acquire the lock. Must be called with the hb lock held.
2387  *
2388  * Return:
2389  *  -  1 - success, lock taken;
2390  *  -  0 - success, lock not taken;
2391  *  - <0 - on error (-EFAULT)
2392  */
2393 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2394 {
2395         int ret = 0;
2396
2397         if (locked) {
2398                 /*
2399                  * Got the lock. We might not be the anticipated owner if we
2400                  * did a lock-steal - fix up the PI-state in that case:
2401                  *
2402                  * We can safely read pi_state->owner without holding wait_lock
2403                  * because we now own the rt_mutex, only the owner will attempt
2404                  * to change it.
2405                  */
2406                 if (q->pi_state->owner != current)
2407                         ret = fixup_pi_state_owner(uaddr, q, current);
2408                 goto out;
2409         }
2410
2411         /*
2412          * Paranoia check. If we did not take the lock, then we should not be
2413          * the owner of the rt_mutex.
2414          */
2415         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2416                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2417                                 "pi-state %p\n", ret,
2418                                 q->pi_state->pi_mutex.owner,
2419                                 q->pi_state->owner);
2420         }
2421
2422 out:
2423         return ret ? ret : locked;
2424 }
2425
2426 /**
2427  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2428  * @hb:         the futex hash bucket, must be locked by the caller
2429  * @q:          the futex_q to queue up on
2430  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2431  */
2432 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2433                                 struct hrtimer_sleeper *timeout)
2434 {
2435         /*
2436          * The task state is guaranteed to be set before another task can
2437          * wake it. set_current_state() is implemented using smp_store_mb() and
2438          * queue_me() calls spin_unlock() upon completion, both serializing
2439          * access to the hash list and forcing another memory barrier.
2440          */
2441         set_current_state(TASK_INTERRUPTIBLE);
2442         queue_me(q, hb);
2443
2444         /* Arm the timer */
2445         if (timeout)
2446                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2447
2448         /*
2449          * If we have been removed from the hash list, then another task
2450          * has tried to wake us, and we can skip the call to schedule().
2451          */
2452         if (likely(!plist_node_empty(&q->list))) {
2453                 /*
2454                  * If the timer has already expired, current will already be
2455                  * flagged for rescheduling. Only call schedule if there
2456                  * is no timeout, or if it has yet to expire.
2457                  */
2458                 if (!timeout || timeout->task)
2459                         freezable_schedule();
2460         }
2461         __set_current_state(TASK_RUNNING);
2462 }
2463
2464 /**
2465  * futex_wait_setup() - Prepare to wait on a futex
2466  * @uaddr:      the futex userspace address
2467  * @val:        the expected value
2468  * @flags:      futex flags (FLAGS_SHARED, etc.)
2469  * @q:          the associated futex_q
2470  * @hb:         storage for hash_bucket pointer to be returned to caller
2471  *
2472  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2473  * compare it with the expected value.  Handle atomic faults internally.
2474  * Return with the hb lock held and a q.key reference on success, and unlocked
2475  * with no q.key reference on failure.
2476  *
2477  * Return:
2478  *  -  0 - uaddr contains val and hb has been locked;
2479  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2480  */
2481 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2482                            struct futex_q *q, struct futex_hash_bucket **hb)
2483 {
2484         u32 uval;
2485         int ret;
2486
2487         /*
2488          * Access the page AFTER the hash-bucket is locked.
2489          * Order is important:
2490          *
2491          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2492          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2493          *
2494          * The basic logical guarantee of a futex is that it blocks ONLY
2495          * if cond(var) is known to be true at the time of blocking, for
2496          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2497          * would open a race condition where we could block indefinitely with
2498          * cond(var) false, which would violate the guarantee.
2499          *
2500          * On the other hand, we insert q and release the hash-bucket only
2501          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2502          * absorb a wakeup if *uaddr does not match the desired values
2503          * while the syscall executes.
2504          */
2505 retry:
2506         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2507         if (unlikely(ret != 0))
2508                 return ret;
2509
2510 retry_private:
2511         *hb = queue_lock(q);
2512
2513         ret = get_futex_value_locked(&uval, uaddr);
2514
2515         if (ret) {
2516                 queue_unlock(*hb);
2517
2518                 ret = get_user(uval, uaddr);
2519                 if (ret)
2520                         goto out;
2521
2522                 if (!(flags & FLAGS_SHARED))
2523                         goto retry_private;
2524
2525                 put_futex_key(&q->key);
2526                 goto retry;
2527         }
2528
2529         if (uval != val) {
2530                 queue_unlock(*hb);
2531                 ret = -EWOULDBLOCK;
2532         }
2533
2534 out:
2535         if (ret)
2536                 put_futex_key(&q->key);
2537         return ret;
2538 }
2539
2540 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2541                       ktime_t *abs_time, u32 bitset)
2542 {
2543         struct hrtimer_sleeper timeout, *to = NULL;
2544         struct restart_block *restart;
2545         struct futex_hash_bucket *hb;
2546         struct futex_q q = futex_q_init;
2547         int ret;
2548
2549         if (!bitset)
2550                 return -EINVAL;
2551         q.bitset = bitset;
2552
2553         if (abs_time) {
2554                 to = &timeout;
2555
2556                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2557                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2558                                       HRTIMER_MODE_ABS);
2559                 hrtimer_init_sleeper(to, current);
2560                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2561                                              current->timer_slack_ns);
2562         }
2563
2564 retry:
2565         /*
2566          * Prepare to wait on uaddr. On success, holds hb lock and increments
2567          * q.key refs.
2568          */
2569         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2570         if (ret)
2571                 goto out;
2572
2573         /* queue_me and wait for wakeup, timeout, or a signal. */
2574         futex_wait_queue_me(hb, &q, to);
2575
2576         /* If we were woken (and unqueued), we succeeded, whatever. */
2577         ret = 0;
2578         /* unqueue_me() drops q.key ref */
2579         if (!unqueue_me(&q))
2580                 goto out;
2581         ret = -ETIMEDOUT;
2582         if (to && !to->task)
2583                 goto out;
2584
2585         /*
2586          * We expect signal_pending(current), but we might be the
2587          * victim of a spurious wakeup as well.
2588          */
2589         if (!signal_pending(current))
2590                 goto retry;
2591
2592         ret = -ERESTARTSYS;
2593         if (!abs_time)
2594                 goto out;
2595
2596         restart = &current->restart_block;
2597         restart->fn = futex_wait_restart;
2598         restart->futex.uaddr = uaddr;
2599         restart->futex.val = val;
2600         restart->futex.time = *abs_time;
2601         restart->futex.bitset = bitset;
2602         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2603
2604         ret = -ERESTART_RESTARTBLOCK;
2605
2606 out:
2607         if (to) {
2608                 hrtimer_cancel(&to->timer);
2609                 destroy_hrtimer_on_stack(&to->timer);
2610         }
2611         return ret;
2612 }
2613
2614
2615 static long futex_wait_restart(struct restart_block *restart)
2616 {
2617         u32 __user *uaddr = restart->futex.uaddr;
2618         ktime_t t, *tp = NULL;
2619
2620         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2621                 t = restart->futex.time;
2622                 tp = &t;
2623         }
2624         restart->fn = do_no_restart_syscall;
2625
2626         return (long)futex_wait(uaddr, restart->futex.flags,
2627                                 restart->futex.val, tp, restart->futex.bitset);
2628 }
2629
2630
2631 /*
2632  * Userspace tried a 0 -> TID atomic transition of the futex value
2633  * and failed. The kernel side here does the whole locking operation:
2634  * if there are waiters then it will block as a consequence of relying
2635  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2636  * a 0 value of the futex too.).
2637  *
2638  * Also serves as futex trylock_pi()'ing, and due semantics.
2639  */
2640 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2641                          ktime_t *time, int trylock)
2642 {
2643         struct hrtimer_sleeper timeout, *to = NULL;
2644         struct futex_pi_state *pi_state = NULL;
2645         struct rt_mutex_waiter rt_waiter;
2646         struct futex_hash_bucket *hb;
2647         struct futex_q q = futex_q_init;
2648         int res, ret;
2649
2650         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2651                 return -ENOSYS;
2652
2653         if (refill_pi_state_cache())
2654                 return -ENOMEM;
2655
2656         if (time) {
2657                 to = &timeout;
2658                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2659                                       HRTIMER_MODE_ABS);
2660                 hrtimer_init_sleeper(to, current);
2661                 hrtimer_set_expires(&to->timer, *time);
2662         }
2663
2664 retry:
2665         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2666         if (unlikely(ret != 0))
2667                 goto out;
2668
2669 retry_private:
2670         hb = queue_lock(&q);
2671
2672         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2673         if (unlikely(ret)) {
2674                 /*
2675                  * Atomic work succeeded and we got the lock,
2676                  * or failed. Either way, we do _not_ block.
2677                  */
2678                 switch (ret) {
2679                 case 1:
2680                         /* We got the lock. */
2681                         ret = 0;
2682                         goto out_unlock_put_key;
2683                 case -EFAULT:
2684                         goto uaddr_faulted;
2685                 case -EAGAIN:
2686                         /*
2687                          * Two reasons for this:
2688                          * - Task is exiting and we just wait for the
2689                          *   exit to complete.
2690                          * - The user space value changed.
2691                          */
2692                         queue_unlock(hb);
2693                         put_futex_key(&q.key);
2694                         cond_resched();
2695                         goto retry;
2696                 default:
2697                         goto out_unlock_put_key;
2698                 }
2699         }
2700
2701         WARN_ON(!q.pi_state);
2702
2703         /*
2704          * Only actually queue now that the atomic ops are done:
2705          */
2706         __queue_me(&q, hb);
2707
2708         if (trylock) {
2709                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2710                 /* Fixup the trylock return value: */
2711                 ret = ret ? 0 : -EWOULDBLOCK;
2712                 goto no_block;
2713         }
2714
2715         rt_mutex_init_waiter(&rt_waiter);
2716
2717         /*
2718          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2719          * hold it while doing rt_mutex_start_proxy(), because then it will
2720          * include hb->lock in the blocking chain, even through we'll not in
2721          * fact hold it while blocking. This will lead it to report -EDEADLK
2722          * and BUG when futex_unlock_pi() interleaves with this.
2723          *
2724          * Therefore acquire wait_lock while holding hb->lock, but drop the
2725          * latter before calling rt_mutex_start_proxy_lock(). This still fully
2726          * serializes against futex_unlock_pi() as that does the exact same
2727          * lock handoff sequence.
2728          */
2729         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2730         spin_unlock(q.lock_ptr);
2731         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2732         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2733
2734         if (ret) {
2735                 if (ret == 1)
2736                         ret = 0;
2737
2738                 spin_lock(q.lock_ptr);
2739                 goto no_block;
2740         }
2741
2742
2743         if (unlikely(to))
2744                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2745
2746         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2747
2748         spin_lock(q.lock_ptr);
2749         /*
2750          * If we failed to acquire the lock (signal/timeout), we must
2751          * first acquire the hb->lock before removing the lock from the
2752          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2753          * wait lists consistent.
2754          *
2755          * In particular; it is important that futex_unlock_pi() can not
2756          * observe this inconsistency.
2757          */
2758         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2759                 ret = 0;
2760
2761 no_block:
2762         /*
2763          * Fixup the pi_state owner and possibly acquire the lock if we
2764          * haven't already.
2765          */
2766         res = fixup_owner(uaddr, &q, !ret);
2767         /*
2768          * If fixup_owner() returned an error, proprogate that.  If it acquired
2769          * the lock, clear our -ETIMEDOUT or -EINTR.
2770          */
2771         if (res)
2772                 ret = (res < 0) ? res : 0;
2773
2774         /*
2775          * If fixup_owner() faulted and was unable to handle the fault, unlock
2776          * it and return the fault to userspace.
2777          */
2778         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2779                 pi_state = q.pi_state;
2780                 get_pi_state(pi_state);
2781         }
2782
2783         /* Unqueue and drop the lock */
2784         unqueue_me_pi(&q);
2785
2786         if (pi_state) {
2787                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2788                 put_pi_state(pi_state);
2789         }
2790
2791         goto out_put_key;
2792
2793 out_unlock_put_key:
2794         queue_unlock(hb);
2795
2796 out_put_key:
2797         put_futex_key(&q.key);
2798 out:
2799         if (to) {
2800                 hrtimer_cancel(&to->timer);
2801                 destroy_hrtimer_on_stack(&to->timer);
2802         }
2803         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2804
2805 uaddr_faulted:
2806         queue_unlock(hb);
2807
2808         ret = fault_in_user_writeable(uaddr);
2809         if (ret)
2810                 goto out_put_key;
2811
2812         if (!(flags & FLAGS_SHARED))
2813                 goto retry_private;
2814
2815         put_futex_key(&q.key);
2816         goto retry;
2817 }
2818
2819 /*
2820  * Userspace attempted a TID -> 0 atomic transition, and failed.
2821  * This is the in-kernel slowpath: we look up the PI state (if any),
2822  * and do the rt-mutex unlock.
2823  */
2824 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2825 {
2826         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2827         union futex_key key = FUTEX_KEY_INIT;
2828         struct futex_hash_bucket *hb;
2829         struct futex_q *top_waiter;
2830         int ret;
2831
2832         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2833                 return -ENOSYS;
2834
2835 retry:
2836         if (get_user(uval, uaddr))
2837                 return -EFAULT;
2838         /*
2839          * We release only a lock we actually own:
2840          */
2841         if ((uval & FUTEX_TID_MASK) != vpid)
2842                 return -EPERM;
2843
2844         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2845         if (ret)
2846                 return ret;
2847
2848         hb = hash_futex(&key);
2849         spin_lock(&hb->lock);
2850
2851         /*
2852          * Check waiters first. We do not trust user space values at
2853          * all and we at least want to know if user space fiddled
2854          * with the futex value instead of blindly unlocking.
2855          */
2856         top_waiter = futex_top_waiter(hb, &key);
2857         if (top_waiter) {
2858                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2859
2860                 ret = -EINVAL;
2861                 if (!pi_state)
2862                         goto out_unlock;
2863
2864                 /*
2865                  * If current does not own the pi_state then the futex is
2866                  * inconsistent and user space fiddled with the futex value.
2867                  */
2868                 if (pi_state->owner != current)
2869                         goto out_unlock;
2870
2871                 get_pi_state(pi_state);
2872                 /*
2873                  * By taking wait_lock while still holding hb->lock, we ensure
2874                  * there is no point where we hold neither; and therefore
2875                  * wake_futex_pi() must observe a state consistent with what we
2876                  * observed.
2877                  */
2878                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2879                 spin_unlock(&hb->lock);
2880
2881                 ret = wake_futex_pi(uaddr, uval, pi_state);
2882
2883                 put_pi_state(pi_state);
2884
2885                 /*
2886                  * Success, we're done! No tricky corner cases.
2887                  */
2888                 if (!ret)
2889                         goto out_putkey;
2890                 /*
2891                  * The atomic access to the futex value generated a
2892                  * pagefault, so retry the user-access and the wakeup:
2893                  */
2894                 if (ret == -EFAULT)
2895                         goto pi_faulted;
2896                 /*
2897                  * A unconditional UNLOCK_PI op raced against a waiter
2898                  * setting the FUTEX_WAITERS bit. Try again.
2899                  */
2900                 if (ret == -EAGAIN) {
2901                         put_futex_key(&key);
2902                         goto retry;
2903                 }
2904                 /*
2905                  * wake_futex_pi has detected invalid state. Tell user
2906                  * space.
2907                  */
2908                 goto out_putkey;
2909         }
2910
2911         /*
2912          * We have no kernel internal state, i.e. no waiters in the
2913          * kernel. Waiters which are about to queue themselves are stuck
2914          * on hb->lock. So we can safely ignore them. We do neither
2915          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2916          * owner.
2917          */
2918         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2919                 spin_unlock(&hb->lock);
2920                 goto pi_faulted;
2921         }
2922
2923         /*
2924          * If uval has changed, let user space handle it.
2925          */
2926         ret = (curval == uval) ? 0 : -EAGAIN;
2927
2928 out_unlock:
2929         spin_unlock(&hb->lock);
2930 out_putkey:
2931         put_futex_key(&key);
2932         return ret;
2933
2934 pi_faulted:
2935         put_futex_key(&key);
2936
2937         ret = fault_in_user_writeable(uaddr);
2938         if (!ret)
2939                 goto retry;
2940
2941         return ret;
2942 }
2943
2944 /**
2945  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2946  * @hb:         the hash_bucket futex_q was original enqueued on
2947  * @q:          the futex_q woken while waiting to be requeued
2948  * @key2:       the futex_key of the requeue target futex
2949  * @timeout:    the timeout associated with the wait (NULL if none)
2950  *
2951  * Detect if the task was woken on the initial futex as opposed to the requeue
2952  * target futex.  If so, determine if it was a timeout or a signal that caused
2953  * the wakeup and return the appropriate error code to the caller.  Must be
2954  * called with the hb lock held.
2955  *
2956  * Return:
2957  *  -  0 = no early wakeup detected;
2958  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2959  */
2960 static inline
2961 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2962                                    struct futex_q *q, union futex_key *key2,
2963                                    struct hrtimer_sleeper *timeout)
2964 {
2965         int ret = 0;
2966
2967         /*
2968          * With the hb lock held, we avoid races while we process the wakeup.
2969          * We only need to hold hb (and not hb2) to ensure atomicity as the
2970          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2971          * It can't be requeued from uaddr2 to something else since we don't
2972          * support a PI aware source futex for requeue.
2973          */
2974         if (!match_futex(&q->key, key2)) {
2975                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2976                 /*
2977                  * We were woken prior to requeue by a timeout or a signal.
2978                  * Unqueue the futex_q and determine which it was.
2979                  */
2980                 plist_del(&q->list, &hb->chain);
2981                 hb_waiters_dec(hb);
2982
2983                 /* Handle spurious wakeups gracefully */
2984                 ret = -EWOULDBLOCK;
2985                 if (timeout && !timeout->task)
2986                         ret = -ETIMEDOUT;
2987                 else if (signal_pending(current))
2988                         ret = -ERESTARTNOINTR;
2989         }
2990         return ret;
2991 }
2992
2993 /**
2994  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2995  * @uaddr:      the futex we initially wait on (non-pi)
2996  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2997  *              the same type, no requeueing from private to shared, etc.
2998  * @val:        the expected value of uaddr
2999  * @abs_time:   absolute timeout
3000  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3001  * @uaddr2:     the pi futex we will take prior to returning to user-space
3002  *
3003  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3004  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3005  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3006  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3007  * without one, the pi logic would not know which task to boost/deboost, if
3008  * there was a need to.
3009  *
3010  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3011  * via the following--
3012  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3013  * 2) wakeup on uaddr2 after a requeue
3014  * 3) signal
3015  * 4) timeout
3016  *
3017  * If 3, cleanup and return -ERESTARTNOINTR.
3018  *
3019  * If 2, we may then block on trying to take the rt_mutex and return via:
3020  * 5) successful lock
3021  * 6) signal
3022  * 7) timeout
3023  * 8) other lock acquisition failure
3024  *
3025  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3026  *
3027  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3028  *
3029  * Return:
3030  *  -  0 - On success;
3031  *  - <0 - On error
3032  */
3033 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3034                                  u32 val, ktime_t *abs_time, u32 bitset,
3035                                  u32 __user *uaddr2)
3036 {
3037         struct hrtimer_sleeper timeout, *to = NULL;
3038         struct futex_pi_state *pi_state = NULL;
3039         struct rt_mutex_waiter rt_waiter;
3040         struct futex_hash_bucket *hb;
3041         union futex_key key2 = FUTEX_KEY_INIT;
3042         struct futex_q q = futex_q_init;
3043         int res, ret;
3044
3045         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3046                 return -ENOSYS;
3047
3048         if (uaddr == uaddr2)
3049                 return -EINVAL;
3050
3051         if (!bitset)
3052                 return -EINVAL;
3053
3054         if (abs_time) {
3055                 to = &timeout;
3056                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3057                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
3058                                       HRTIMER_MODE_ABS);
3059                 hrtimer_init_sleeper(to, current);
3060                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3061                                              current->timer_slack_ns);
3062         }
3063
3064         /*
3065          * The waiter is allocated on our stack, manipulated by the requeue
3066          * code while we sleep on uaddr.
3067          */
3068         rt_mutex_init_waiter(&rt_waiter);
3069
3070         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3071         if (unlikely(ret != 0))
3072                 goto out;
3073
3074         q.bitset = bitset;
3075         q.rt_waiter = &rt_waiter;
3076         q.requeue_pi_key = &key2;
3077
3078         /*
3079          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3080          * count.
3081          */
3082         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3083         if (ret)
3084                 goto out_key2;
3085
3086         /*
3087          * The check above which compares uaddrs is not sufficient for
3088          * shared futexes. We need to compare the keys:
3089          */
3090         if (match_futex(&q.key, &key2)) {
3091                 queue_unlock(hb);
3092                 ret = -EINVAL;
3093                 goto out_put_keys;
3094         }
3095
3096         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3097         futex_wait_queue_me(hb, &q, to);
3098
3099         spin_lock(&hb->lock);
3100         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3101         spin_unlock(&hb->lock);
3102         if (ret)
3103                 goto out_put_keys;
3104
3105         /*
3106          * In order for us to be here, we know our q.key == key2, and since
3107          * we took the hb->lock above, we also know that futex_requeue() has
3108          * completed and we no longer have to concern ourselves with a wakeup
3109          * race with the atomic proxy lock acquisition by the requeue code. The
3110          * futex_requeue dropped our key1 reference and incremented our key2
3111          * reference count.
3112          */
3113
3114         /* Check if the requeue code acquired the second futex for us. */
3115         if (!q.rt_waiter) {
3116                 /*
3117                  * Got the lock. We might not be the anticipated owner if we
3118                  * did a lock-steal - fix up the PI-state in that case.
3119                  */
3120                 if (q.pi_state && (q.pi_state->owner != current)) {
3121                         spin_lock(q.lock_ptr);
3122                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3123                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3124                                 pi_state = q.pi_state;
3125                                 get_pi_state(pi_state);
3126                         }
3127                         /*
3128                          * Drop the reference to the pi state which
3129                          * the requeue_pi() code acquired for us.
3130                          */
3131                         put_pi_state(q.pi_state);
3132                         spin_unlock(q.lock_ptr);
3133                 }
3134         } else {
3135                 struct rt_mutex *pi_mutex;
3136
3137                 /*
3138                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3139                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3140                  * the pi_state.
3141                  */
3142                 WARN_ON(!q.pi_state);
3143                 pi_mutex = &q.pi_state->pi_mutex;
3144                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3145
3146                 spin_lock(q.lock_ptr);
3147                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3148                         ret = 0;
3149
3150                 debug_rt_mutex_free_waiter(&rt_waiter);
3151                 /*
3152                  * Fixup the pi_state owner and possibly acquire the lock if we
3153                  * haven't already.
3154                  */
3155                 res = fixup_owner(uaddr2, &q, !ret);
3156                 /*
3157                  * If fixup_owner() returned an error, proprogate that.  If it
3158                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3159                  */
3160                 if (res)
3161                         ret = (res < 0) ? res : 0;
3162
3163                 /*
3164                  * If fixup_pi_state_owner() faulted and was unable to handle
3165                  * the fault, unlock the rt_mutex and return the fault to
3166                  * userspace.
3167                  */
3168                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3169                         pi_state = q.pi_state;
3170                         get_pi_state(pi_state);
3171                 }
3172
3173                 /* Unqueue and drop the lock. */
3174                 unqueue_me_pi(&q);
3175         }
3176
3177         if (pi_state) {
3178                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3179                 put_pi_state(pi_state);
3180         }
3181
3182         if (ret == -EINTR) {
3183                 /*
3184                  * We've already been requeued, but cannot restart by calling
3185                  * futex_lock_pi() directly. We could restart this syscall, but
3186                  * it would detect that the user space "val" changed and return
3187                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3188                  * -EWOULDBLOCK directly.
3189                  */
3190                 ret = -EWOULDBLOCK;
3191         }
3192
3193 out_put_keys:
3194         put_futex_key(&q.key);
3195 out_key2:
3196         put_futex_key(&key2);
3197
3198 out:
3199         if (to) {
3200                 hrtimer_cancel(&to->timer);
3201                 destroy_hrtimer_on_stack(&to->timer);
3202         }
3203         return ret;
3204 }
3205
3206 /*
3207  * Support for robust futexes: the kernel cleans up held futexes at
3208  * thread exit time.
3209  *
3210  * Implementation: user-space maintains a per-thread list of locks it
3211  * is holding. Upon do_exit(), the kernel carefully walks this list,
3212  * and marks all locks that are owned by this thread with the
3213  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3214  * always manipulated with the lock held, so the list is private and
3215  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3216  * field, to allow the kernel to clean up if the thread dies after
3217  * acquiring the lock, but just before it could have added itself to
3218  * the list. There can only be one such pending lock.
3219  */
3220
3221 /**
3222  * sys_set_robust_list() - Set the robust-futex list head of a task
3223  * @head:       pointer to the list-head
3224  * @len:        length of the list-head, as userspace expects
3225  */
3226 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3227                 size_t, len)
3228 {
3229         if (!futex_cmpxchg_enabled)
3230                 return -ENOSYS;
3231         /*
3232          * The kernel knows only one size for now:
3233          */
3234         if (unlikely(len != sizeof(*head)))
3235                 return -EINVAL;
3236
3237         current->robust_list = head;
3238
3239         return 0;
3240 }
3241
3242 /**
3243  * sys_get_robust_list() - Get the robust-futex list head of a task
3244  * @pid:        pid of the process [zero for current task]
3245  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3246  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3247  */
3248 SYSCALL_DEFINE3(get_robust_list, int, pid,
3249                 struct robust_list_head __user * __user *, head_ptr,
3250                 size_t __user *, len_ptr)
3251 {
3252         struct robust_list_head __user *head;
3253         unsigned long ret;
3254         struct task_struct *p;
3255
3256         if (!futex_cmpxchg_enabled)
3257                 return -ENOSYS;
3258
3259         rcu_read_lock();
3260
3261         ret = -ESRCH;
3262         if (!pid)
3263                 p = current;
3264         else {
3265                 p = find_task_by_vpid(pid);
3266                 if (!p)
3267                         goto err_unlock;
3268         }
3269
3270         ret = -EPERM;
3271         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3272                 goto err_unlock;
3273
3274         head = p->robust_list;
3275         rcu_read_unlock();
3276
3277         if (put_user(sizeof(*head), len_ptr))
3278                 return -EFAULT;
3279         return put_user(head, head_ptr);
3280
3281 err_unlock:
3282         rcu_read_unlock();
3283
3284         return ret;
3285 }
3286
3287 /*
3288  * Process a futex-list entry, check whether it's owned by the
3289  * dying task, and do notification if so:
3290  */
3291 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3292 {
3293         u32 uval, uninitialized_var(nval), mval;
3294
3295 retry:
3296         if (get_user(uval, uaddr))
3297                 return -1;
3298
3299         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3300                 /*
3301                  * Ok, this dying thread is truly holding a futex
3302                  * of interest. Set the OWNER_DIED bit atomically
3303                  * via cmpxchg, and if the value had FUTEX_WAITERS
3304                  * set, wake up a waiter (if any). (We have to do a
3305                  * futex_wake() even if OWNER_DIED is already set -
3306                  * to handle the rare but possible case of recursive
3307                  * thread-death.) The rest of the cleanup is done in
3308                  * userspace.
3309                  */
3310                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3311                 /*
3312                  * We are not holding a lock here, but we want to have
3313                  * the pagefault_disable/enable() protection because
3314                  * we want to handle the fault gracefully. If the
3315                  * access fails we try to fault in the futex with R/W
3316                  * verification via get_user_pages. get_user() above
3317                  * does not guarantee R/W access. If that fails we
3318                  * give up and leave the futex locked.
3319                  */
3320                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3321                         if (fault_in_user_writeable(uaddr))
3322                                 return -1;
3323                         goto retry;
3324                 }
3325                 if (nval != uval)
3326                         goto retry;
3327
3328                 /*
3329                  * Wake robust non-PI futexes here. The wakeup of
3330                  * PI futexes happens in exit_pi_state():
3331                  */
3332                 if (!pi && (uval & FUTEX_WAITERS))
3333                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3334         }
3335         return 0;
3336 }
3337
3338 /*
3339  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3340  */
3341 static inline int fetch_robust_entry(struct robust_list __user **entry,
3342                                      struct robust_list __user * __user *head,
3343                                      unsigned int *pi)
3344 {
3345         unsigned long uentry;
3346
3347         if (get_user(uentry, (unsigned long __user *)head))
3348                 return -EFAULT;
3349
3350         *entry = (void __user *)(uentry & ~1UL);
3351         *pi = uentry & 1;
3352
3353         return 0;
3354 }
3355
3356 /*
3357  * Walk curr->robust_list (very carefully, it's a userspace list!)
3358  * and mark any locks found there dead, and notify any waiters.
3359  *
3360  * We silently return on any sign of list-walking problem.
3361  */
3362 void exit_robust_list(struct task_struct *curr)
3363 {
3364         struct robust_list_head __user *head = curr->robust_list;
3365         struct robust_list __user *entry, *next_entry, *pending;
3366         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3367         unsigned int uninitialized_var(next_pi);
3368         unsigned long futex_offset;
3369         int rc;
3370
3371         if (!futex_cmpxchg_enabled)
3372                 return;
3373
3374         /*
3375          * Fetch the list head (which was registered earlier, via
3376          * sys_set_robust_list()):
3377          */
3378         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3379                 return;
3380         /*
3381          * Fetch the relative futex offset:
3382          */
3383         if (get_user(futex_offset, &head->futex_offset))
3384                 return;
3385         /*
3386          * Fetch any possibly pending lock-add first, and handle it
3387          * if it exists:
3388          */
3389         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3390                 return;
3391
3392         next_entry = NULL;      /* avoid warning with gcc */
3393         while (entry != &head->list) {
3394                 /*
3395                  * Fetch the next entry in the list before calling
3396                  * handle_futex_death:
3397                  */
3398                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3399                 /*
3400                  * A pending lock might already be on the list, so
3401                  * don't process it twice:
3402                  */
3403                 if (entry != pending)
3404                         if (handle_futex_death((void __user *)entry + futex_offset,
3405                                                 curr, pi))
3406                                 return;
3407                 if (rc)
3408                         return;
3409                 entry = next_entry;
3410                 pi = next_pi;
3411                 /*
3412                  * Avoid excessively long or circular lists:
3413                  */
3414                 if (!--limit)
3415                         break;
3416
3417                 cond_resched();
3418         }
3419
3420         if (pending)
3421                 handle_futex_death((void __user *)pending + futex_offset,
3422                                    curr, pip);
3423 }
3424
3425 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3426                 u32 __user *uaddr2, u32 val2, u32 val3)
3427 {
3428         int cmd = op & FUTEX_CMD_MASK;
3429         unsigned int flags = 0;
3430
3431         if (!(op & FUTEX_PRIVATE_FLAG))
3432                 flags |= FLAGS_SHARED;
3433
3434         if (op & FUTEX_CLOCK_REALTIME) {
3435                 flags |= FLAGS_CLOCKRT;
3436                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3437                     cmd != FUTEX_WAIT_REQUEUE_PI)
3438                         return -ENOSYS;
3439         }
3440
3441         switch (cmd) {
3442         case FUTEX_LOCK_PI:
3443         case FUTEX_UNLOCK_PI:
3444         case FUTEX_TRYLOCK_PI:
3445         case FUTEX_WAIT_REQUEUE_PI:
3446         case FUTEX_CMP_REQUEUE_PI:
3447                 if (!futex_cmpxchg_enabled)
3448                         return -ENOSYS;
3449         }
3450
3451         switch (cmd) {
3452         case FUTEX_WAIT:
3453                 val3 = FUTEX_BITSET_MATCH_ANY;
3454         case FUTEX_WAIT_BITSET:
3455                 return futex_wait(uaddr, flags, val, timeout, val3);
3456         case FUTEX_WAKE:
3457                 val3 = FUTEX_BITSET_MATCH_ANY;
3458         case FUTEX_WAKE_BITSET:
3459                 return futex_wake(uaddr, flags, val, val3);
3460         case FUTEX_REQUEUE:
3461                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3462         case FUTEX_CMP_REQUEUE:
3463                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3464         case FUTEX_WAKE_OP:
3465                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3466         case FUTEX_LOCK_PI:
3467                 return futex_lock_pi(uaddr, flags, timeout, 0);
3468         case FUTEX_UNLOCK_PI:
3469                 return futex_unlock_pi(uaddr, flags);
3470         case FUTEX_TRYLOCK_PI:
3471                 return futex_lock_pi(uaddr, flags, NULL, 1);
3472         case FUTEX_WAIT_REQUEUE_PI:
3473                 val3 = FUTEX_BITSET_MATCH_ANY;
3474                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3475                                              uaddr2);
3476         case FUTEX_CMP_REQUEUE_PI:
3477                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3478         }
3479         return -ENOSYS;
3480 }
3481
3482
3483 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3484                 struct timespec __user *, utime, u32 __user *, uaddr2,
3485                 u32, val3)
3486 {
3487         struct timespec ts;
3488         ktime_t t, *tp = NULL;
3489         u32 val2 = 0;
3490         int cmd = op & FUTEX_CMD_MASK;
3491
3492         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3493                       cmd == FUTEX_WAIT_BITSET ||
3494                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3495                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3496                         return -EFAULT;
3497                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3498                         return -EFAULT;
3499                 if (!timespec_valid(&ts))
3500                         return -EINVAL;
3501
3502                 t = timespec_to_ktime(ts);
3503                 if (cmd == FUTEX_WAIT)
3504                         t = ktime_add_safe(ktime_get(), t);
3505                 tp = &t;
3506         }
3507         /*
3508          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3509          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3510          */
3511         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3512             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3513                 val2 = (u32) (unsigned long) utime;
3514
3515         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3516 }
3517
3518 static void __init futex_detect_cmpxchg(void)
3519 {
3520 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3521         u32 curval;
3522
3523         /*
3524          * This will fail and we want it. Some arch implementations do
3525          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3526          * functionality. We want to know that before we call in any
3527          * of the complex code paths. Also we want to prevent
3528          * registration of robust lists in that case. NULL is
3529          * guaranteed to fault and we get -EFAULT on functional
3530          * implementation, the non-functional ones will return
3531          * -ENOSYS.
3532          */
3533         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3534                 futex_cmpxchg_enabled = 1;
3535 #endif
3536 }
3537
3538 static int __init futex_init(void)
3539 {
3540         unsigned int futex_shift;
3541         unsigned long i;
3542
3543 #if CONFIG_BASE_SMALL
3544         futex_hashsize = 16;
3545 #else
3546         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3547 #endif
3548
3549         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3550                                                futex_hashsize, 0,
3551                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3552                                                &futex_shift, NULL,
3553                                                futex_hashsize, futex_hashsize);
3554         futex_hashsize = 1UL << futex_shift;
3555
3556         futex_detect_cmpxchg();
3557
3558         for (i = 0; i < futex_hashsize; i++) {
3559                 atomic_set(&futex_queues[i].waiters, 0);
3560                 plist_head_init(&futex_queues[i].chain);
3561                 spin_lock_init(&futex_queues[i].lock);
3562         }
3563
3564         return 0;
3565 }
3566 core_initcall(futex_init);