Merge branch 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *      Srikar Dronamraju
8  *      Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>      /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>         /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h>         /* try_to_free_swap */
23 #include <linux/ptrace.h>       /* user_enable_single_step */
24 #include <linux/kdebug.h>       /* notifier mechanism */
25 #include "../../mm/internal.h"  /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29
30 #include <linux/uprobes.h>
31
32 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
34
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37  * allows us to skip the uprobe_mmap if there are no uprobe events active
38  * at this time.  Probably a fine grained per inode count is better?
39  */
40 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
41
42 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
43
44 #define UPROBES_HASH_SZ 13
45 /* serialize uprobe->pending_list */
46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48
49 static struct percpu_rw_semaphore dup_mmap_sem;
50
51 /* Have a copy of original instruction */
52 #define UPROBE_COPY_INSN        0
53
54 struct uprobe {
55         struct rb_node          rb_node;        /* node in the rb tree */
56         atomic_t                ref;
57         struct rw_semaphore     register_rwsem;
58         struct rw_semaphore     consumer_rwsem;
59         struct list_head        pending_list;
60         struct uprobe_consumer  *consumers;
61         struct inode            *inode;         /* Also hold a ref to inode */
62         loff_t                  offset;
63         loff_t                  ref_ctr_offset;
64         unsigned long           flags;
65
66         /*
67          * The generic code assumes that it has two members of unknown type
68          * owned by the arch-specific code:
69          *
70          *      insn -  copy_insn() saves the original instruction here for
71          *              arch_uprobe_analyze_insn().
72          *
73          *      ixol -  potentially modified instruction to execute out of
74          *              line, copied to xol_area by xol_get_insn_slot().
75          */
76         struct arch_uprobe      arch;
77 };
78
79 struct delayed_uprobe {
80         struct list_head list;
81         struct uprobe *uprobe;
82         struct mm_struct *mm;
83 };
84
85 static DEFINE_MUTEX(delayed_uprobe_lock);
86 static LIST_HEAD(delayed_uprobe_list);
87
88 /*
89  * Execute out of line area: anonymous executable mapping installed
90  * by the probed task to execute the copy of the original instruction
91  * mangled by set_swbp().
92  *
93  * On a breakpoint hit, thread contests for a slot.  It frees the
94  * slot after singlestep. Currently a fixed number of slots are
95  * allocated.
96  */
97 struct xol_area {
98         wait_queue_head_t               wq;             /* if all slots are busy */
99         atomic_t                        slot_count;     /* number of in-use slots */
100         unsigned long                   *bitmap;        /* 0 = free slot */
101
102         struct vm_special_mapping       xol_mapping;
103         struct page                     *pages[2];
104         /*
105          * We keep the vma's vm_start rather than a pointer to the vma
106          * itself.  The probed process or a naughty kernel module could make
107          * the vma go away, and we must handle that reasonably gracefully.
108          */
109         unsigned long                   vaddr;          /* Page(s) of instruction slots */
110 };
111
112 /*
113  * valid_vma: Verify if the specified vma is an executable vma
114  * Relax restrictions while unregistering: vm_flags might have
115  * changed after breakpoint was inserted.
116  *      - is_register: indicates if we are in register context.
117  *      - Return 1 if the specified virtual address is in an
118  *        executable vma.
119  */
120 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121 {
122         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123
124         if (is_register)
125                 flags |= VM_WRITE;
126
127         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128 }
129
130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131 {
132         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133 }
134
135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136 {
137         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138 }
139
140 /**
141  * __replace_page - replace page in vma by new page.
142  * based on replace_page in mm/ksm.c
143  *
144  * @vma:      vma that holds the pte pointing to page
145  * @addr:     address the old @page is mapped at
146  * @page:     the cowed page we are replacing by kpage
147  * @kpage:    the modified page we replace page by
148  *
149  * Returns 0 on success, -EFAULT on failure.
150  */
151 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
152                                 struct page *old_page, struct page *new_page)
153 {
154         struct mm_struct *mm = vma->vm_mm;
155         struct page_vma_mapped_walk pvmw = {
156                 .page = old_page,
157                 .vma = vma,
158                 .address = addr,
159         };
160         int err;
161         struct mmu_notifier_range range;
162         struct mem_cgroup *memcg;
163
164         mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
165
166         VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
167
168         err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
169                         false);
170         if (err)
171                 return err;
172
173         /* For try_to_free_swap() and munlock_vma_page() below */
174         lock_page(old_page);
175
176         mmu_notifier_invalidate_range_start(&range);
177         err = -EAGAIN;
178         if (!page_vma_mapped_walk(&pvmw)) {
179                 mem_cgroup_cancel_charge(new_page, memcg, false);
180                 goto unlock;
181         }
182         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
183
184         get_page(new_page);
185         page_add_new_anon_rmap(new_page, vma, addr, false);
186         mem_cgroup_commit_charge(new_page, memcg, false, false);
187         lru_cache_add_active_or_unevictable(new_page, vma);
188
189         if (!PageAnon(old_page)) {
190                 dec_mm_counter(mm, mm_counter_file(old_page));
191                 inc_mm_counter(mm, MM_ANONPAGES);
192         }
193
194         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
195         ptep_clear_flush_notify(vma, addr, pvmw.pte);
196         set_pte_at_notify(mm, addr, pvmw.pte,
197                         mk_pte(new_page, vma->vm_page_prot));
198
199         page_remove_rmap(old_page, false);
200         if (!page_mapped(old_page))
201                 try_to_free_swap(old_page);
202         page_vma_mapped_walk_done(&pvmw);
203
204         if (vma->vm_flags & VM_LOCKED)
205                 munlock_vma_page(old_page);
206         put_page(old_page);
207
208         err = 0;
209  unlock:
210         mmu_notifier_invalidate_range_end(&range);
211         unlock_page(old_page);
212         return err;
213 }
214
215 /**
216  * is_swbp_insn - check if instruction is breakpoint instruction.
217  * @insn: instruction to be checked.
218  * Default implementation of is_swbp_insn
219  * Returns true if @insn is a breakpoint instruction.
220  */
221 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
222 {
223         return *insn == UPROBE_SWBP_INSN;
224 }
225
226 /**
227  * is_trap_insn - check if instruction is breakpoint instruction.
228  * @insn: instruction to be checked.
229  * Default implementation of is_trap_insn
230  * Returns true if @insn is a breakpoint instruction.
231  *
232  * This function is needed for the case where an architecture has multiple
233  * trap instructions (like powerpc).
234  */
235 bool __weak is_trap_insn(uprobe_opcode_t *insn)
236 {
237         return is_swbp_insn(insn);
238 }
239
240 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
241 {
242         void *kaddr = kmap_atomic(page);
243         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
244         kunmap_atomic(kaddr);
245 }
246
247 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
248 {
249         void *kaddr = kmap_atomic(page);
250         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
251         kunmap_atomic(kaddr);
252 }
253
254 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
255 {
256         uprobe_opcode_t old_opcode;
257         bool is_swbp;
258
259         /*
260          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
261          * We do not check if it is any other 'trap variant' which could
262          * be conditional trap instruction such as the one powerpc supports.
263          *
264          * The logic is that we do not care if the underlying instruction
265          * is a trap variant; uprobes always wins over any other (gdb)
266          * breakpoint.
267          */
268         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
269         is_swbp = is_swbp_insn(&old_opcode);
270
271         if (is_swbp_insn(new_opcode)) {
272                 if (is_swbp)            /* register: already installed? */
273                         return 0;
274         } else {
275                 if (!is_swbp)           /* unregister: was it changed by us? */
276                         return 0;
277         }
278
279         return 1;
280 }
281
282 static struct delayed_uprobe *
283 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
284 {
285         struct delayed_uprobe *du;
286
287         list_for_each_entry(du, &delayed_uprobe_list, list)
288                 if (du->uprobe == uprobe && du->mm == mm)
289                         return du;
290         return NULL;
291 }
292
293 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
294 {
295         struct delayed_uprobe *du;
296
297         if (delayed_uprobe_check(uprobe, mm))
298                 return 0;
299
300         du  = kzalloc(sizeof(*du), GFP_KERNEL);
301         if (!du)
302                 return -ENOMEM;
303
304         du->uprobe = uprobe;
305         du->mm = mm;
306         list_add(&du->list, &delayed_uprobe_list);
307         return 0;
308 }
309
310 static void delayed_uprobe_delete(struct delayed_uprobe *du)
311 {
312         if (WARN_ON(!du))
313                 return;
314         list_del(&du->list);
315         kfree(du);
316 }
317
318 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
319 {
320         struct list_head *pos, *q;
321         struct delayed_uprobe *du;
322
323         if (!uprobe && !mm)
324                 return;
325
326         list_for_each_safe(pos, q, &delayed_uprobe_list) {
327                 du = list_entry(pos, struct delayed_uprobe, list);
328
329                 if (uprobe && du->uprobe != uprobe)
330                         continue;
331                 if (mm && du->mm != mm)
332                         continue;
333
334                 delayed_uprobe_delete(du);
335         }
336 }
337
338 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
339                               struct vm_area_struct *vma)
340 {
341         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
342
343         return uprobe->ref_ctr_offset &&
344                 vma->vm_file &&
345                 file_inode(vma->vm_file) == uprobe->inode &&
346                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
347                 vma->vm_start <= vaddr &&
348                 vma->vm_end > vaddr;
349 }
350
351 static struct vm_area_struct *
352 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
353 {
354         struct vm_area_struct *tmp;
355
356         for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
357                 if (valid_ref_ctr_vma(uprobe, tmp))
358                         return tmp;
359
360         return NULL;
361 }
362
363 static int
364 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365 {
366         void *kaddr;
367         struct page *page;
368         struct vm_area_struct *vma;
369         int ret;
370         short *ptr;
371
372         if (!vaddr || !d)
373                 return -EINVAL;
374
375         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
376                         FOLL_WRITE, &page, &vma, NULL);
377         if (unlikely(ret <= 0)) {
378                 /*
379                  * We are asking for 1 page. If get_user_pages_remote() fails,
380                  * it may return 0, in that case we have to return error.
381                  */
382                 return ret == 0 ? -EBUSY : ret;
383         }
384
385         kaddr = kmap_atomic(page);
386         ptr = kaddr + (vaddr & ~PAGE_MASK);
387
388         if (unlikely(*ptr + d < 0)) {
389                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
390                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
391                 ret = -EINVAL;
392                 goto out;
393         }
394
395         *ptr += d;
396         ret = 0;
397 out:
398         kunmap_atomic(kaddr);
399         put_page(page);
400         return ret;
401 }
402
403 static void update_ref_ctr_warn(struct uprobe *uprobe,
404                                 struct mm_struct *mm, short d)
405 {
406         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
407                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
408                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
409                 (unsigned long long) uprobe->offset,
410                 (unsigned long long) uprobe->ref_ctr_offset, mm);
411 }
412
413 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
414                           short d)
415 {
416         struct vm_area_struct *rc_vma;
417         unsigned long rc_vaddr;
418         int ret = 0;
419
420         rc_vma = find_ref_ctr_vma(uprobe, mm);
421
422         if (rc_vma) {
423                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
424                 ret = __update_ref_ctr(mm, rc_vaddr, d);
425                 if (ret)
426                         update_ref_ctr_warn(uprobe, mm, d);
427
428                 if (d > 0)
429                         return ret;
430         }
431
432         mutex_lock(&delayed_uprobe_lock);
433         if (d > 0)
434                 ret = delayed_uprobe_add(uprobe, mm);
435         else
436                 delayed_uprobe_remove(uprobe, mm);
437         mutex_unlock(&delayed_uprobe_lock);
438
439         return ret;
440 }
441
442 /*
443  * NOTE:
444  * Expect the breakpoint instruction to be the smallest size instruction for
445  * the architecture. If an arch has variable length instruction and the
446  * breakpoint instruction is not of the smallest length instruction
447  * supported by that architecture then we need to modify is_trap_at_addr and
448  * uprobe_write_opcode accordingly. This would never be a problem for archs
449  * that have fixed length instructions.
450  *
451  * uprobe_write_opcode - write the opcode at a given virtual address.
452  * @mm: the probed process address space.
453  * @vaddr: the virtual address to store the opcode.
454  * @opcode: opcode to be written at @vaddr.
455  *
456  * Called with mm->mmap_sem held for write.
457  * Return 0 (success) or a negative errno.
458  */
459 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
460                         unsigned long vaddr, uprobe_opcode_t opcode)
461 {
462         struct uprobe *uprobe;
463         struct page *old_page, *new_page;
464         struct vm_area_struct *vma;
465         int ret, is_register, ref_ctr_updated = 0;
466
467         is_register = is_swbp_insn(&opcode);
468         uprobe = container_of(auprobe, struct uprobe, arch);
469
470 retry:
471         /* Read the page with vaddr into memory */
472         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
473                         FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
474         if (ret <= 0)
475                 return ret;
476
477         ret = verify_opcode(old_page, vaddr, &opcode);
478         if (ret <= 0)
479                 goto put_old;
480
481         /* We are going to replace instruction, update ref_ctr. */
482         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
483                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
484                 if (ret)
485                         goto put_old;
486
487                 ref_ctr_updated = 1;
488         }
489
490         ret = anon_vma_prepare(vma);
491         if (ret)
492                 goto put_old;
493
494         ret = -ENOMEM;
495         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
496         if (!new_page)
497                 goto put_old;
498
499         __SetPageUptodate(new_page);
500         copy_highpage(new_page, old_page);
501         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
502
503         ret = __replace_page(vma, vaddr, old_page, new_page);
504         put_page(new_page);
505 put_old:
506         put_page(old_page);
507
508         if (unlikely(ret == -EAGAIN))
509                 goto retry;
510
511         /* Revert back reference counter if instruction update failed. */
512         if (ret && is_register && ref_ctr_updated)
513                 update_ref_ctr(uprobe, mm, -1);
514
515         return ret;
516 }
517
518 /**
519  * set_swbp - store breakpoint at a given address.
520  * @auprobe: arch specific probepoint information.
521  * @mm: the probed process address space.
522  * @vaddr: the virtual address to insert the opcode.
523  *
524  * For mm @mm, store the breakpoint instruction at @vaddr.
525  * Return 0 (success) or a negative errno.
526  */
527 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
528 {
529         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
530 }
531
532 /**
533  * set_orig_insn - Restore the original instruction.
534  * @mm: the probed process address space.
535  * @auprobe: arch specific probepoint information.
536  * @vaddr: the virtual address to insert the opcode.
537  *
538  * For mm @mm, restore the original opcode (opcode) at @vaddr.
539  * Return 0 (success) or a negative errno.
540  */
541 int __weak
542 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
543 {
544         return uprobe_write_opcode(auprobe, mm, vaddr,
545                         *(uprobe_opcode_t *)&auprobe->insn);
546 }
547
548 static struct uprobe *get_uprobe(struct uprobe *uprobe)
549 {
550         atomic_inc(&uprobe->ref);
551         return uprobe;
552 }
553
554 static void put_uprobe(struct uprobe *uprobe)
555 {
556         if (atomic_dec_and_test(&uprobe->ref)) {
557                 /*
558                  * If application munmap(exec_vma) before uprobe_unregister()
559                  * gets called, we don't get a chance to remove uprobe from
560                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
561                  */
562                 mutex_lock(&delayed_uprobe_lock);
563                 delayed_uprobe_remove(uprobe, NULL);
564                 mutex_unlock(&delayed_uprobe_lock);
565                 kfree(uprobe);
566         }
567 }
568
569 static int match_uprobe(struct uprobe *l, struct uprobe *r)
570 {
571         if (l->inode < r->inode)
572                 return -1;
573
574         if (l->inode > r->inode)
575                 return 1;
576
577         if (l->offset < r->offset)
578                 return -1;
579
580         if (l->offset > r->offset)
581                 return 1;
582
583         return 0;
584 }
585
586 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
587 {
588         struct uprobe u = { .inode = inode, .offset = offset };
589         struct rb_node *n = uprobes_tree.rb_node;
590         struct uprobe *uprobe;
591         int match;
592
593         while (n) {
594                 uprobe = rb_entry(n, struct uprobe, rb_node);
595                 match = match_uprobe(&u, uprobe);
596                 if (!match)
597                         return get_uprobe(uprobe);
598
599                 if (match < 0)
600                         n = n->rb_left;
601                 else
602                         n = n->rb_right;
603         }
604         return NULL;
605 }
606
607 /*
608  * Find a uprobe corresponding to a given inode:offset
609  * Acquires uprobes_treelock
610  */
611 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
612 {
613         struct uprobe *uprobe;
614
615         spin_lock(&uprobes_treelock);
616         uprobe = __find_uprobe(inode, offset);
617         spin_unlock(&uprobes_treelock);
618
619         return uprobe;
620 }
621
622 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
623 {
624         struct rb_node **p = &uprobes_tree.rb_node;
625         struct rb_node *parent = NULL;
626         struct uprobe *u;
627         int match;
628
629         while (*p) {
630                 parent = *p;
631                 u = rb_entry(parent, struct uprobe, rb_node);
632                 match = match_uprobe(uprobe, u);
633                 if (!match)
634                         return get_uprobe(u);
635
636                 if (match < 0)
637                         p = &parent->rb_left;
638                 else
639                         p = &parent->rb_right;
640
641         }
642
643         u = NULL;
644         rb_link_node(&uprobe->rb_node, parent, p);
645         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
646         /* get access + creation ref */
647         atomic_set(&uprobe->ref, 2);
648
649         return u;
650 }
651
652 /*
653  * Acquire uprobes_treelock.
654  * Matching uprobe already exists in rbtree;
655  *      increment (access refcount) and return the matching uprobe.
656  *
657  * No matching uprobe; insert the uprobe in rb_tree;
658  *      get a double refcount (access + creation) and return NULL.
659  */
660 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
661 {
662         struct uprobe *u;
663
664         spin_lock(&uprobes_treelock);
665         u = __insert_uprobe(uprobe);
666         spin_unlock(&uprobes_treelock);
667
668         return u;
669 }
670
671 static void
672 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
673 {
674         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
675                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
676                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
677                 (unsigned long long) cur_uprobe->ref_ctr_offset,
678                 (unsigned long long) uprobe->ref_ctr_offset);
679 }
680
681 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
682                                    loff_t ref_ctr_offset)
683 {
684         struct uprobe *uprobe, *cur_uprobe;
685
686         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
687         if (!uprobe)
688                 return NULL;
689
690         uprobe->inode = inode;
691         uprobe->offset = offset;
692         uprobe->ref_ctr_offset = ref_ctr_offset;
693         init_rwsem(&uprobe->register_rwsem);
694         init_rwsem(&uprobe->consumer_rwsem);
695
696         /* add to uprobes_tree, sorted on inode:offset */
697         cur_uprobe = insert_uprobe(uprobe);
698         /* a uprobe exists for this inode:offset combination */
699         if (cur_uprobe) {
700                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
701                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
702                         put_uprobe(cur_uprobe);
703                         kfree(uprobe);
704                         return ERR_PTR(-EINVAL);
705                 }
706                 kfree(uprobe);
707                 uprobe = cur_uprobe;
708         }
709
710         return uprobe;
711 }
712
713 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
714 {
715         down_write(&uprobe->consumer_rwsem);
716         uc->next = uprobe->consumers;
717         uprobe->consumers = uc;
718         up_write(&uprobe->consumer_rwsem);
719 }
720
721 /*
722  * For uprobe @uprobe, delete the consumer @uc.
723  * Return true if the @uc is deleted successfully
724  * or return false.
725  */
726 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
727 {
728         struct uprobe_consumer **con;
729         bool ret = false;
730
731         down_write(&uprobe->consumer_rwsem);
732         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
733                 if (*con == uc) {
734                         *con = uc->next;
735                         ret = true;
736                         break;
737                 }
738         }
739         up_write(&uprobe->consumer_rwsem);
740
741         return ret;
742 }
743
744 static int __copy_insn(struct address_space *mapping, struct file *filp,
745                         void *insn, int nbytes, loff_t offset)
746 {
747         struct page *page;
748         /*
749          * Ensure that the page that has the original instruction is populated
750          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
751          * see uprobe_register().
752          */
753         if (mapping->a_ops->readpage)
754                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
755         else
756                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
757         if (IS_ERR(page))
758                 return PTR_ERR(page);
759
760         copy_from_page(page, offset, insn, nbytes);
761         put_page(page);
762
763         return 0;
764 }
765
766 static int copy_insn(struct uprobe *uprobe, struct file *filp)
767 {
768         struct address_space *mapping = uprobe->inode->i_mapping;
769         loff_t offs = uprobe->offset;
770         void *insn = &uprobe->arch.insn;
771         int size = sizeof(uprobe->arch.insn);
772         int len, err = -EIO;
773
774         /* Copy only available bytes, -EIO if nothing was read */
775         do {
776                 if (offs >= i_size_read(uprobe->inode))
777                         break;
778
779                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
780                 err = __copy_insn(mapping, filp, insn, len, offs);
781                 if (err)
782                         break;
783
784                 insn += len;
785                 offs += len;
786                 size -= len;
787         } while (size);
788
789         return err;
790 }
791
792 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
793                                 struct mm_struct *mm, unsigned long vaddr)
794 {
795         int ret = 0;
796
797         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
798                 return ret;
799
800         /* TODO: move this into _register, until then we abuse this sem. */
801         down_write(&uprobe->consumer_rwsem);
802         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
803                 goto out;
804
805         ret = copy_insn(uprobe, file);
806         if (ret)
807                 goto out;
808
809         ret = -ENOTSUPP;
810         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
811                 goto out;
812
813         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
814         if (ret)
815                 goto out;
816
817         /* uprobe_write_opcode() assumes we don't cross page boundary */
818         BUG_ON((uprobe->offset & ~PAGE_MASK) +
819                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
820
821         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
822         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
823
824  out:
825         up_write(&uprobe->consumer_rwsem);
826
827         return ret;
828 }
829
830 static inline bool consumer_filter(struct uprobe_consumer *uc,
831                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
832 {
833         return !uc->filter || uc->filter(uc, ctx, mm);
834 }
835
836 static bool filter_chain(struct uprobe *uprobe,
837                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
838 {
839         struct uprobe_consumer *uc;
840         bool ret = false;
841
842         down_read(&uprobe->consumer_rwsem);
843         for (uc = uprobe->consumers; uc; uc = uc->next) {
844                 ret = consumer_filter(uc, ctx, mm);
845                 if (ret)
846                         break;
847         }
848         up_read(&uprobe->consumer_rwsem);
849
850         return ret;
851 }
852
853 static int
854 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
855                         struct vm_area_struct *vma, unsigned long vaddr)
856 {
857         bool first_uprobe;
858         int ret;
859
860         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
861         if (ret)
862                 return ret;
863
864         /*
865          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
866          * the task can hit this breakpoint right after __replace_page().
867          */
868         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
869         if (first_uprobe)
870                 set_bit(MMF_HAS_UPROBES, &mm->flags);
871
872         ret = set_swbp(&uprobe->arch, mm, vaddr);
873         if (!ret)
874                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
875         else if (first_uprobe)
876                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
877
878         return ret;
879 }
880
881 static int
882 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
883 {
884         set_bit(MMF_RECALC_UPROBES, &mm->flags);
885         return set_orig_insn(&uprobe->arch, mm, vaddr);
886 }
887
888 static inline bool uprobe_is_active(struct uprobe *uprobe)
889 {
890         return !RB_EMPTY_NODE(&uprobe->rb_node);
891 }
892 /*
893  * There could be threads that have already hit the breakpoint. They
894  * will recheck the current insn and restart if find_uprobe() fails.
895  * See find_active_uprobe().
896  */
897 static void delete_uprobe(struct uprobe *uprobe)
898 {
899         if (WARN_ON(!uprobe_is_active(uprobe)))
900                 return;
901
902         spin_lock(&uprobes_treelock);
903         rb_erase(&uprobe->rb_node, &uprobes_tree);
904         spin_unlock(&uprobes_treelock);
905         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
906         put_uprobe(uprobe);
907 }
908
909 struct map_info {
910         struct map_info *next;
911         struct mm_struct *mm;
912         unsigned long vaddr;
913 };
914
915 static inline struct map_info *free_map_info(struct map_info *info)
916 {
917         struct map_info *next = info->next;
918         kfree(info);
919         return next;
920 }
921
922 static struct map_info *
923 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
924 {
925         unsigned long pgoff = offset >> PAGE_SHIFT;
926         struct vm_area_struct *vma;
927         struct map_info *curr = NULL;
928         struct map_info *prev = NULL;
929         struct map_info *info;
930         int more = 0;
931
932  again:
933         i_mmap_lock_read(mapping);
934         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
935                 if (!valid_vma(vma, is_register))
936                         continue;
937
938                 if (!prev && !more) {
939                         /*
940                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
941                          * reclaim. This is optimistic, no harm done if it fails.
942                          */
943                         prev = kmalloc(sizeof(struct map_info),
944                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
945                         if (prev)
946                                 prev->next = NULL;
947                 }
948                 if (!prev) {
949                         more++;
950                         continue;
951                 }
952
953                 if (!mmget_not_zero(vma->vm_mm))
954                         continue;
955
956                 info = prev;
957                 prev = prev->next;
958                 info->next = curr;
959                 curr = info;
960
961                 info->mm = vma->vm_mm;
962                 info->vaddr = offset_to_vaddr(vma, offset);
963         }
964         i_mmap_unlock_read(mapping);
965
966         if (!more)
967                 goto out;
968
969         prev = curr;
970         while (curr) {
971                 mmput(curr->mm);
972                 curr = curr->next;
973         }
974
975         do {
976                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
977                 if (!info) {
978                         curr = ERR_PTR(-ENOMEM);
979                         goto out;
980                 }
981                 info->next = prev;
982                 prev = info;
983         } while (--more);
984
985         goto again;
986  out:
987         while (prev)
988                 prev = free_map_info(prev);
989         return curr;
990 }
991
992 static int
993 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
994 {
995         bool is_register = !!new;
996         struct map_info *info;
997         int err = 0;
998
999         percpu_down_write(&dup_mmap_sem);
1000         info = build_map_info(uprobe->inode->i_mapping,
1001                                         uprobe->offset, is_register);
1002         if (IS_ERR(info)) {
1003                 err = PTR_ERR(info);
1004                 goto out;
1005         }
1006
1007         while (info) {
1008                 struct mm_struct *mm = info->mm;
1009                 struct vm_area_struct *vma;
1010
1011                 if (err && is_register)
1012                         goto free;
1013
1014                 down_write(&mm->mmap_sem);
1015                 vma = find_vma(mm, info->vaddr);
1016                 if (!vma || !valid_vma(vma, is_register) ||
1017                     file_inode(vma->vm_file) != uprobe->inode)
1018                         goto unlock;
1019
1020                 if (vma->vm_start > info->vaddr ||
1021                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1022                         goto unlock;
1023
1024                 if (is_register) {
1025                         /* consult only the "caller", new consumer. */
1026                         if (consumer_filter(new,
1027                                         UPROBE_FILTER_REGISTER, mm))
1028                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1029                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1030                         if (!filter_chain(uprobe,
1031                                         UPROBE_FILTER_UNREGISTER, mm))
1032                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1033                 }
1034
1035  unlock:
1036                 up_write(&mm->mmap_sem);
1037  free:
1038                 mmput(mm);
1039                 info = free_map_info(info);
1040         }
1041  out:
1042         percpu_up_write(&dup_mmap_sem);
1043         return err;
1044 }
1045
1046 static void
1047 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1048 {
1049         int err;
1050
1051         if (WARN_ON(!consumer_del(uprobe, uc)))
1052                 return;
1053
1054         err = register_for_each_vma(uprobe, NULL);
1055         /* TODO : cant unregister? schedule a worker thread */
1056         if (!uprobe->consumers && !err)
1057                 delete_uprobe(uprobe);
1058 }
1059
1060 /*
1061  * uprobe_unregister - unregister an already registered probe.
1062  * @inode: the file in which the probe has to be removed.
1063  * @offset: offset from the start of the file.
1064  * @uc: identify which probe if multiple probes are colocated.
1065  */
1066 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1067 {
1068         struct uprobe *uprobe;
1069
1070         uprobe = find_uprobe(inode, offset);
1071         if (WARN_ON(!uprobe))
1072                 return;
1073
1074         down_write(&uprobe->register_rwsem);
1075         __uprobe_unregister(uprobe, uc);
1076         up_write(&uprobe->register_rwsem);
1077         put_uprobe(uprobe);
1078 }
1079 EXPORT_SYMBOL_GPL(uprobe_unregister);
1080
1081 /*
1082  * __uprobe_register - register a probe
1083  * @inode: the file in which the probe has to be placed.
1084  * @offset: offset from the start of the file.
1085  * @uc: information on howto handle the probe..
1086  *
1087  * Apart from the access refcount, __uprobe_register() takes a creation
1088  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1089  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1090  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1091  * @uprobe even before the register operation is complete. Creation
1092  * refcount is released when the last @uc for the @uprobe
1093  * unregisters. Caller of __uprobe_register() is required to keep @inode
1094  * (and the containing mount) referenced.
1095  *
1096  * Return errno if it cannot successully install probes
1097  * else return 0 (success)
1098  */
1099 static int __uprobe_register(struct inode *inode, loff_t offset,
1100                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1101 {
1102         struct uprobe *uprobe;
1103         int ret;
1104
1105         /* Uprobe must have at least one set consumer */
1106         if (!uc->handler && !uc->ret_handler)
1107                 return -EINVAL;
1108
1109         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1110         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1111                 return -EIO;
1112         /* Racy, just to catch the obvious mistakes */
1113         if (offset > i_size_read(inode))
1114                 return -EINVAL;
1115
1116  retry:
1117         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1118         if (!uprobe)
1119                 return -ENOMEM;
1120         if (IS_ERR(uprobe))
1121                 return PTR_ERR(uprobe);
1122
1123         /*
1124          * We can race with uprobe_unregister()->delete_uprobe().
1125          * Check uprobe_is_active() and retry if it is false.
1126          */
1127         down_write(&uprobe->register_rwsem);
1128         ret = -EAGAIN;
1129         if (likely(uprobe_is_active(uprobe))) {
1130                 consumer_add(uprobe, uc);
1131                 ret = register_for_each_vma(uprobe, uc);
1132                 if (ret)
1133                         __uprobe_unregister(uprobe, uc);
1134         }
1135         up_write(&uprobe->register_rwsem);
1136         put_uprobe(uprobe);
1137
1138         if (unlikely(ret == -EAGAIN))
1139                 goto retry;
1140         return ret;
1141 }
1142
1143 int uprobe_register(struct inode *inode, loff_t offset,
1144                     struct uprobe_consumer *uc)
1145 {
1146         return __uprobe_register(inode, offset, 0, uc);
1147 }
1148 EXPORT_SYMBOL_GPL(uprobe_register);
1149
1150 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1151                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1152 {
1153         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1154 }
1155 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1156
1157 /*
1158  * uprobe_apply - unregister an already registered probe.
1159  * @inode: the file in which the probe has to be removed.
1160  * @offset: offset from the start of the file.
1161  * @uc: consumer which wants to add more or remove some breakpoints
1162  * @add: add or remove the breakpoints
1163  */
1164 int uprobe_apply(struct inode *inode, loff_t offset,
1165                         struct uprobe_consumer *uc, bool add)
1166 {
1167         struct uprobe *uprobe;
1168         struct uprobe_consumer *con;
1169         int ret = -ENOENT;
1170
1171         uprobe = find_uprobe(inode, offset);
1172         if (WARN_ON(!uprobe))
1173                 return ret;
1174
1175         down_write(&uprobe->register_rwsem);
1176         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1177                 ;
1178         if (con)
1179                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1180         up_write(&uprobe->register_rwsem);
1181         put_uprobe(uprobe);
1182
1183         return ret;
1184 }
1185
1186 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1187 {
1188         struct vm_area_struct *vma;
1189         int err = 0;
1190
1191         down_read(&mm->mmap_sem);
1192         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1193                 unsigned long vaddr;
1194                 loff_t offset;
1195
1196                 if (!valid_vma(vma, false) ||
1197                     file_inode(vma->vm_file) != uprobe->inode)
1198                         continue;
1199
1200                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1201                 if (uprobe->offset <  offset ||
1202                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1203                         continue;
1204
1205                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1206                 err |= remove_breakpoint(uprobe, mm, vaddr);
1207         }
1208         up_read(&mm->mmap_sem);
1209
1210         return err;
1211 }
1212
1213 static struct rb_node *
1214 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1215 {
1216         struct rb_node *n = uprobes_tree.rb_node;
1217
1218         while (n) {
1219                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1220
1221                 if (inode < u->inode) {
1222                         n = n->rb_left;
1223                 } else if (inode > u->inode) {
1224                         n = n->rb_right;
1225                 } else {
1226                         if (max < u->offset)
1227                                 n = n->rb_left;
1228                         else if (min > u->offset)
1229                                 n = n->rb_right;
1230                         else
1231                                 break;
1232                 }
1233         }
1234
1235         return n;
1236 }
1237
1238 /*
1239  * For a given range in vma, build a list of probes that need to be inserted.
1240  */
1241 static void build_probe_list(struct inode *inode,
1242                                 struct vm_area_struct *vma,
1243                                 unsigned long start, unsigned long end,
1244                                 struct list_head *head)
1245 {
1246         loff_t min, max;
1247         struct rb_node *n, *t;
1248         struct uprobe *u;
1249
1250         INIT_LIST_HEAD(head);
1251         min = vaddr_to_offset(vma, start);
1252         max = min + (end - start) - 1;
1253
1254         spin_lock(&uprobes_treelock);
1255         n = find_node_in_range(inode, min, max);
1256         if (n) {
1257                 for (t = n; t; t = rb_prev(t)) {
1258                         u = rb_entry(t, struct uprobe, rb_node);
1259                         if (u->inode != inode || u->offset < min)
1260                                 break;
1261                         list_add(&u->pending_list, head);
1262                         get_uprobe(u);
1263                 }
1264                 for (t = n; (t = rb_next(t)); ) {
1265                         u = rb_entry(t, struct uprobe, rb_node);
1266                         if (u->inode != inode || u->offset > max)
1267                                 break;
1268                         list_add(&u->pending_list, head);
1269                         get_uprobe(u);
1270                 }
1271         }
1272         spin_unlock(&uprobes_treelock);
1273 }
1274
1275 /* @vma contains reference counter, not the probed instruction. */
1276 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1277 {
1278         struct list_head *pos, *q;
1279         struct delayed_uprobe *du;
1280         unsigned long vaddr;
1281         int ret = 0, err = 0;
1282
1283         mutex_lock(&delayed_uprobe_lock);
1284         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1285                 du = list_entry(pos, struct delayed_uprobe, list);
1286
1287                 if (du->mm != vma->vm_mm ||
1288                     !valid_ref_ctr_vma(du->uprobe, vma))
1289                         continue;
1290
1291                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1292                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1293                 if (ret) {
1294                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1295                         if (!err)
1296                                 err = ret;
1297                 }
1298                 delayed_uprobe_delete(du);
1299         }
1300         mutex_unlock(&delayed_uprobe_lock);
1301         return err;
1302 }
1303
1304 /*
1305  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1306  *
1307  * Currently we ignore all errors and always return 0, the callers
1308  * can't handle the failure anyway.
1309  */
1310 int uprobe_mmap(struct vm_area_struct *vma)
1311 {
1312         struct list_head tmp_list;
1313         struct uprobe *uprobe, *u;
1314         struct inode *inode;
1315
1316         if (no_uprobe_events())
1317                 return 0;
1318
1319         if (vma->vm_file &&
1320             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1321             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1322                 delayed_ref_ctr_inc(vma);
1323
1324         if (!valid_vma(vma, true))
1325                 return 0;
1326
1327         inode = file_inode(vma->vm_file);
1328         if (!inode)
1329                 return 0;
1330
1331         mutex_lock(uprobes_mmap_hash(inode));
1332         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1333         /*
1334          * We can race with uprobe_unregister(), this uprobe can be already
1335          * removed. But in this case filter_chain() must return false, all
1336          * consumers have gone away.
1337          */
1338         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1339                 if (!fatal_signal_pending(current) &&
1340                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1341                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1342                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1343                 }
1344                 put_uprobe(uprobe);
1345         }
1346         mutex_unlock(uprobes_mmap_hash(inode));
1347
1348         return 0;
1349 }
1350
1351 static bool
1352 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1353 {
1354         loff_t min, max;
1355         struct inode *inode;
1356         struct rb_node *n;
1357
1358         inode = file_inode(vma->vm_file);
1359
1360         min = vaddr_to_offset(vma, start);
1361         max = min + (end - start) - 1;
1362
1363         spin_lock(&uprobes_treelock);
1364         n = find_node_in_range(inode, min, max);
1365         spin_unlock(&uprobes_treelock);
1366
1367         return !!n;
1368 }
1369
1370 /*
1371  * Called in context of a munmap of a vma.
1372  */
1373 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1374 {
1375         if (no_uprobe_events() || !valid_vma(vma, false))
1376                 return;
1377
1378         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1379                 return;
1380
1381         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1382              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1383                 return;
1384
1385         if (vma_has_uprobes(vma, start, end))
1386                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1387 }
1388
1389 /* Slot allocation for XOL */
1390 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1391 {
1392         struct vm_area_struct *vma;
1393         int ret;
1394
1395         if (down_write_killable(&mm->mmap_sem))
1396                 return -EINTR;
1397
1398         if (mm->uprobes_state.xol_area) {
1399                 ret = -EALREADY;
1400                 goto fail;
1401         }
1402
1403         if (!area->vaddr) {
1404                 /* Try to map as high as possible, this is only a hint. */
1405                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1406                                                 PAGE_SIZE, 0, 0);
1407                 if (area->vaddr & ~PAGE_MASK) {
1408                         ret = area->vaddr;
1409                         goto fail;
1410                 }
1411         }
1412
1413         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1414                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1415                                 &area->xol_mapping);
1416         if (IS_ERR(vma)) {
1417                 ret = PTR_ERR(vma);
1418                 goto fail;
1419         }
1420
1421         ret = 0;
1422         /* pairs with get_xol_area() */
1423         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1424  fail:
1425         up_write(&mm->mmap_sem);
1426
1427         return ret;
1428 }
1429
1430 static struct xol_area *__create_xol_area(unsigned long vaddr)
1431 {
1432         struct mm_struct *mm = current->mm;
1433         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1434         struct xol_area *area;
1435
1436         area = kmalloc(sizeof(*area), GFP_KERNEL);
1437         if (unlikely(!area))
1438                 goto out;
1439
1440         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1441                                GFP_KERNEL);
1442         if (!area->bitmap)
1443                 goto free_area;
1444
1445         area->xol_mapping.name = "[uprobes]";
1446         area->xol_mapping.fault = NULL;
1447         area->xol_mapping.pages = area->pages;
1448         area->pages[0] = alloc_page(GFP_HIGHUSER);
1449         if (!area->pages[0])
1450                 goto free_bitmap;
1451         area->pages[1] = NULL;
1452
1453         area->vaddr = vaddr;
1454         init_waitqueue_head(&area->wq);
1455         /* Reserve the 1st slot for get_trampoline_vaddr() */
1456         set_bit(0, area->bitmap);
1457         atomic_set(&area->slot_count, 1);
1458         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1459
1460         if (!xol_add_vma(mm, area))
1461                 return area;
1462
1463         __free_page(area->pages[0]);
1464  free_bitmap:
1465         kfree(area->bitmap);
1466  free_area:
1467         kfree(area);
1468  out:
1469         return NULL;
1470 }
1471
1472 /*
1473  * get_xol_area - Allocate process's xol_area if necessary.
1474  * This area will be used for storing instructions for execution out of line.
1475  *
1476  * Returns the allocated area or NULL.
1477  */
1478 static struct xol_area *get_xol_area(void)
1479 {
1480         struct mm_struct *mm = current->mm;
1481         struct xol_area *area;
1482
1483         if (!mm->uprobes_state.xol_area)
1484                 __create_xol_area(0);
1485
1486         /* Pairs with xol_add_vma() smp_store_release() */
1487         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1488         return area;
1489 }
1490
1491 /*
1492  * uprobe_clear_state - Free the area allocated for slots.
1493  */
1494 void uprobe_clear_state(struct mm_struct *mm)
1495 {
1496         struct xol_area *area = mm->uprobes_state.xol_area;
1497
1498         mutex_lock(&delayed_uprobe_lock);
1499         delayed_uprobe_remove(NULL, mm);
1500         mutex_unlock(&delayed_uprobe_lock);
1501
1502         if (!area)
1503                 return;
1504
1505         put_page(area->pages[0]);
1506         kfree(area->bitmap);
1507         kfree(area);
1508 }
1509
1510 void uprobe_start_dup_mmap(void)
1511 {
1512         percpu_down_read(&dup_mmap_sem);
1513 }
1514
1515 void uprobe_end_dup_mmap(void)
1516 {
1517         percpu_up_read(&dup_mmap_sem);
1518 }
1519
1520 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1521 {
1522         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1523                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1524                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1525                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1526         }
1527 }
1528
1529 /*
1530  *  - search for a free slot.
1531  */
1532 static unsigned long xol_take_insn_slot(struct xol_area *area)
1533 {
1534         unsigned long slot_addr;
1535         int slot_nr;
1536
1537         do {
1538                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1539                 if (slot_nr < UINSNS_PER_PAGE) {
1540                         if (!test_and_set_bit(slot_nr, area->bitmap))
1541                                 break;
1542
1543                         slot_nr = UINSNS_PER_PAGE;
1544                         continue;
1545                 }
1546                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1547         } while (slot_nr >= UINSNS_PER_PAGE);
1548
1549         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1550         atomic_inc(&area->slot_count);
1551
1552         return slot_addr;
1553 }
1554
1555 /*
1556  * xol_get_insn_slot - allocate a slot for xol.
1557  * Returns the allocated slot address or 0.
1558  */
1559 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1560 {
1561         struct xol_area *area;
1562         unsigned long xol_vaddr;
1563
1564         area = get_xol_area();
1565         if (!area)
1566                 return 0;
1567
1568         xol_vaddr = xol_take_insn_slot(area);
1569         if (unlikely(!xol_vaddr))
1570                 return 0;
1571
1572         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1573                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1574
1575         return xol_vaddr;
1576 }
1577
1578 /*
1579  * xol_free_insn_slot - If slot was earlier allocated by
1580  * @xol_get_insn_slot(), make the slot available for
1581  * subsequent requests.
1582  */
1583 static void xol_free_insn_slot(struct task_struct *tsk)
1584 {
1585         struct xol_area *area;
1586         unsigned long vma_end;
1587         unsigned long slot_addr;
1588
1589         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1590                 return;
1591
1592         slot_addr = tsk->utask->xol_vaddr;
1593         if (unlikely(!slot_addr))
1594                 return;
1595
1596         area = tsk->mm->uprobes_state.xol_area;
1597         vma_end = area->vaddr + PAGE_SIZE;
1598         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1599                 unsigned long offset;
1600                 int slot_nr;
1601
1602                 offset = slot_addr - area->vaddr;
1603                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1604                 if (slot_nr >= UINSNS_PER_PAGE)
1605                         return;
1606
1607                 clear_bit(slot_nr, area->bitmap);
1608                 atomic_dec(&area->slot_count);
1609                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1610                 if (waitqueue_active(&area->wq))
1611                         wake_up(&area->wq);
1612
1613                 tsk->utask->xol_vaddr = 0;
1614         }
1615 }
1616
1617 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1618                                   void *src, unsigned long len)
1619 {
1620         /* Initialize the slot */
1621         copy_to_page(page, vaddr, src, len);
1622
1623         /*
1624          * We probably need flush_icache_user_range() but it needs vma.
1625          * This should work on most of architectures by default. If
1626          * architecture needs to do something different it can define
1627          * its own version of the function.
1628          */
1629         flush_dcache_page(page);
1630 }
1631
1632 /**
1633  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1634  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1635  * instruction.
1636  * Return the address of the breakpoint instruction.
1637  */
1638 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1639 {
1640         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1641 }
1642
1643 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1644 {
1645         struct uprobe_task *utask = current->utask;
1646
1647         if (unlikely(utask && utask->active_uprobe))
1648                 return utask->vaddr;
1649
1650         return instruction_pointer(regs);
1651 }
1652
1653 static struct return_instance *free_ret_instance(struct return_instance *ri)
1654 {
1655         struct return_instance *next = ri->next;
1656         put_uprobe(ri->uprobe);
1657         kfree(ri);
1658         return next;
1659 }
1660
1661 /*
1662  * Called with no locks held.
1663  * Called in context of an exiting or an exec-ing thread.
1664  */
1665 void uprobe_free_utask(struct task_struct *t)
1666 {
1667         struct uprobe_task *utask = t->utask;
1668         struct return_instance *ri;
1669
1670         if (!utask)
1671                 return;
1672
1673         if (utask->active_uprobe)
1674                 put_uprobe(utask->active_uprobe);
1675
1676         ri = utask->return_instances;
1677         while (ri)
1678                 ri = free_ret_instance(ri);
1679
1680         xol_free_insn_slot(t);
1681         kfree(utask);
1682         t->utask = NULL;
1683 }
1684
1685 /*
1686  * Allocate a uprobe_task object for the task if if necessary.
1687  * Called when the thread hits a breakpoint.
1688  *
1689  * Returns:
1690  * - pointer to new uprobe_task on success
1691  * - NULL otherwise
1692  */
1693 static struct uprobe_task *get_utask(void)
1694 {
1695         if (!current->utask)
1696                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1697         return current->utask;
1698 }
1699
1700 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1701 {
1702         struct uprobe_task *n_utask;
1703         struct return_instance **p, *o, *n;
1704
1705         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1706         if (!n_utask)
1707                 return -ENOMEM;
1708         t->utask = n_utask;
1709
1710         p = &n_utask->return_instances;
1711         for (o = o_utask->return_instances; o; o = o->next) {
1712                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1713                 if (!n)
1714                         return -ENOMEM;
1715
1716                 *n = *o;
1717                 get_uprobe(n->uprobe);
1718                 n->next = NULL;
1719
1720                 *p = n;
1721                 p = &n->next;
1722                 n_utask->depth++;
1723         }
1724
1725         return 0;
1726 }
1727
1728 static void uprobe_warn(struct task_struct *t, const char *msg)
1729 {
1730         pr_warn("uprobe: %s:%d failed to %s\n",
1731                         current->comm, current->pid, msg);
1732 }
1733
1734 static void dup_xol_work(struct callback_head *work)
1735 {
1736         if (current->flags & PF_EXITING)
1737                 return;
1738
1739         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1740                         !fatal_signal_pending(current))
1741                 uprobe_warn(current, "dup xol area");
1742 }
1743
1744 /*
1745  * Called in context of a new clone/fork from copy_process.
1746  */
1747 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1748 {
1749         struct uprobe_task *utask = current->utask;
1750         struct mm_struct *mm = current->mm;
1751         struct xol_area *area;
1752
1753         t->utask = NULL;
1754
1755         if (!utask || !utask->return_instances)
1756                 return;
1757
1758         if (mm == t->mm && !(flags & CLONE_VFORK))
1759                 return;
1760
1761         if (dup_utask(t, utask))
1762                 return uprobe_warn(t, "dup ret instances");
1763
1764         /* The task can fork() after dup_xol_work() fails */
1765         area = mm->uprobes_state.xol_area;
1766         if (!area)
1767                 return uprobe_warn(t, "dup xol area");
1768
1769         if (mm == t->mm)
1770                 return;
1771
1772         t->utask->dup_xol_addr = area->vaddr;
1773         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1774         task_work_add(t, &t->utask->dup_xol_work, true);
1775 }
1776
1777 /*
1778  * Current area->vaddr notion assume the trampoline address is always
1779  * equal area->vaddr.
1780  *
1781  * Returns -1 in case the xol_area is not allocated.
1782  */
1783 static unsigned long get_trampoline_vaddr(void)
1784 {
1785         struct xol_area *area;
1786         unsigned long trampoline_vaddr = -1;
1787
1788         /* Pairs with xol_add_vma() smp_store_release() */
1789         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1790         if (area)
1791                 trampoline_vaddr = area->vaddr;
1792
1793         return trampoline_vaddr;
1794 }
1795
1796 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1797                                         struct pt_regs *regs)
1798 {
1799         struct return_instance *ri = utask->return_instances;
1800         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1801
1802         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1803                 ri = free_ret_instance(ri);
1804                 utask->depth--;
1805         }
1806         utask->return_instances = ri;
1807 }
1808
1809 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1810 {
1811         struct return_instance *ri;
1812         struct uprobe_task *utask;
1813         unsigned long orig_ret_vaddr, trampoline_vaddr;
1814         bool chained;
1815
1816         if (!get_xol_area())
1817                 return;
1818
1819         utask = get_utask();
1820         if (!utask)
1821                 return;
1822
1823         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1824                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1825                                 " nestedness limit pid/tgid=%d/%d\n",
1826                                 current->pid, current->tgid);
1827                 return;
1828         }
1829
1830         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1831         if (!ri)
1832                 return;
1833
1834         trampoline_vaddr = get_trampoline_vaddr();
1835         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1836         if (orig_ret_vaddr == -1)
1837                 goto fail;
1838
1839         /* drop the entries invalidated by longjmp() */
1840         chained = (orig_ret_vaddr == trampoline_vaddr);
1841         cleanup_return_instances(utask, chained, regs);
1842
1843         /*
1844          * We don't want to keep trampoline address in stack, rather keep the
1845          * original return address of first caller thru all the consequent
1846          * instances. This also makes breakpoint unwrapping easier.
1847          */
1848         if (chained) {
1849                 if (!utask->return_instances) {
1850                         /*
1851                          * This situation is not possible. Likely we have an
1852                          * attack from user-space.
1853                          */
1854                         uprobe_warn(current, "handle tail call");
1855                         goto fail;
1856                 }
1857                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1858         }
1859
1860         ri->uprobe = get_uprobe(uprobe);
1861         ri->func = instruction_pointer(regs);
1862         ri->stack = user_stack_pointer(regs);
1863         ri->orig_ret_vaddr = orig_ret_vaddr;
1864         ri->chained = chained;
1865
1866         utask->depth++;
1867         ri->next = utask->return_instances;
1868         utask->return_instances = ri;
1869
1870         return;
1871  fail:
1872         kfree(ri);
1873 }
1874
1875 /* Prepare to single-step probed instruction out of line. */
1876 static int
1877 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1878 {
1879         struct uprobe_task *utask;
1880         unsigned long xol_vaddr;
1881         int err;
1882
1883         utask = get_utask();
1884         if (!utask)
1885                 return -ENOMEM;
1886
1887         xol_vaddr = xol_get_insn_slot(uprobe);
1888         if (!xol_vaddr)
1889                 return -ENOMEM;
1890
1891         utask->xol_vaddr = xol_vaddr;
1892         utask->vaddr = bp_vaddr;
1893
1894         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1895         if (unlikely(err)) {
1896                 xol_free_insn_slot(current);
1897                 return err;
1898         }
1899
1900         utask->active_uprobe = uprobe;
1901         utask->state = UTASK_SSTEP;
1902         return 0;
1903 }
1904
1905 /*
1906  * If we are singlestepping, then ensure this thread is not connected to
1907  * non-fatal signals until completion of singlestep.  When xol insn itself
1908  * triggers the signal,  restart the original insn even if the task is
1909  * already SIGKILL'ed (since coredump should report the correct ip).  This
1910  * is even more important if the task has a handler for SIGSEGV/etc, The
1911  * _same_ instruction should be repeated again after return from the signal
1912  * handler, and SSTEP can never finish in this case.
1913  */
1914 bool uprobe_deny_signal(void)
1915 {
1916         struct task_struct *t = current;
1917         struct uprobe_task *utask = t->utask;
1918
1919         if (likely(!utask || !utask->active_uprobe))
1920                 return false;
1921
1922         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1923
1924         if (signal_pending(t)) {
1925                 spin_lock_irq(&t->sighand->siglock);
1926                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1927                 spin_unlock_irq(&t->sighand->siglock);
1928
1929                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1930                         utask->state = UTASK_SSTEP_TRAPPED;
1931                         set_tsk_thread_flag(t, TIF_UPROBE);
1932                 }
1933         }
1934
1935         return true;
1936 }
1937
1938 static void mmf_recalc_uprobes(struct mm_struct *mm)
1939 {
1940         struct vm_area_struct *vma;
1941
1942         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1943                 if (!valid_vma(vma, false))
1944                         continue;
1945                 /*
1946                  * This is not strictly accurate, we can race with
1947                  * uprobe_unregister() and see the already removed
1948                  * uprobe if delete_uprobe() was not yet called.
1949                  * Or this uprobe can be filtered out.
1950                  */
1951                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1952                         return;
1953         }
1954
1955         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1956 }
1957
1958 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1959 {
1960         struct page *page;
1961         uprobe_opcode_t opcode;
1962         int result;
1963
1964         pagefault_disable();
1965         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1966         pagefault_enable();
1967
1968         if (likely(result == 0))
1969                 goto out;
1970
1971         /*
1972          * The NULL 'tsk' here ensures that any faults that occur here
1973          * will not be accounted to the task.  'mm' *is* current->mm,
1974          * but we treat this as a 'remote' access since it is
1975          * essentially a kernel access to the memory.
1976          */
1977         result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1978                         NULL, NULL);
1979         if (result < 0)
1980                 return result;
1981
1982         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1983         put_page(page);
1984  out:
1985         /* This needs to return true for any variant of the trap insn */
1986         return is_trap_insn(&opcode);
1987 }
1988
1989 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1990 {
1991         struct mm_struct *mm = current->mm;
1992         struct uprobe *uprobe = NULL;
1993         struct vm_area_struct *vma;
1994
1995         down_read(&mm->mmap_sem);
1996         vma = find_vma(mm, bp_vaddr);
1997         if (vma && vma->vm_start <= bp_vaddr) {
1998                 if (valid_vma(vma, false)) {
1999                         struct inode *inode = file_inode(vma->vm_file);
2000                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2001
2002                         uprobe = find_uprobe(inode, offset);
2003                 }
2004
2005                 if (!uprobe)
2006                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2007         } else {
2008                 *is_swbp = -EFAULT;
2009         }
2010
2011         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2012                 mmf_recalc_uprobes(mm);
2013         up_read(&mm->mmap_sem);
2014
2015         return uprobe;
2016 }
2017
2018 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2019 {
2020         struct uprobe_consumer *uc;
2021         int remove = UPROBE_HANDLER_REMOVE;
2022         bool need_prep = false; /* prepare return uprobe, when needed */
2023
2024         down_read(&uprobe->register_rwsem);
2025         for (uc = uprobe->consumers; uc; uc = uc->next) {
2026                 int rc = 0;
2027
2028                 if (uc->handler) {
2029                         rc = uc->handler(uc, regs);
2030                         WARN(rc & ~UPROBE_HANDLER_MASK,
2031                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
2032                 }
2033
2034                 if (uc->ret_handler)
2035                         need_prep = true;
2036
2037                 remove &= rc;
2038         }
2039
2040         if (need_prep && !remove)
2041                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2042
2043         if (remove && uprobe->consumers) {
2044                 WARN_ON(!uprobe_is_active(uprobe));
2045                 unapply_uprobe(uprobe, current->mm);
2046         }
2047         up_read(&uprobe->register_rwsem);
2048 }
2049
2050 static void
2051 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2052 {
2053         struct uprobe *uprobe = ri->uprobe;
2054         struct uprobe_consumer *uc;
2055
2056         down_read(&uprobe->register_rwsem);
2057         for (uc = uprobe->consumers; uc; uc = uc->next) {
2058                 if (uc->ret_handler)
2059                         uc->ret_handler(uc, ri->func, regs);
2060         }
2061         up_read(&uprobe->register_rwsem);
2062 }
2063
2064 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2065 {
2066         bool chained;
2067
2068         do {
2069                 chained = ri->chained;
2070                 ri = ri->next;  /* can't be NULL if chained */
2071         } while (chained);
2072
2073         return ri;
2074 }
2075
2076 static void handle_trampoline(struct pt_regs *regs)
2077 {
2078         struct uprobe_task *utask;
2079         struct return_instance *ri, *next;
2080         bool valid;
2081
2082         utask = current->utask;
2083         if (!utask)
2084                 goto sigill;
2085
2086         ri = utask->return_instances;
2087         if (!ri)
2088                 goto sigill;
2089
2090         do {
2091                 /*
2092                  * We should throw out the frames invalidated by longjmp().
2093                  * If this chain is valid, then the next one should be alive
2094                  * or NULL; the latter case means that nobody but ri->func
2095                  * could hit this trampoline on return. TODO: sigaltstack().
2096                  */
2097                 next = find_next_ret_chain(ri);
2098                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2099
2100                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2101                 do {
2102                         if (valid)
2103                                 handle_uretprobe_chain(ri, regs);
2104                         ri = free_ret_instance(ri);
2105                         utask->depth--;
2106                 } while (ri != next);
2107         } while (!valid);
2108
2109         utask->return_instances = ri;
2110         return;
2111
2112  sigill:
2113         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2114         force_sig(SIGILL, current);
2115
2116 }
2117
2118 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2119 {
2120         return false;
2121 }
2122
2123 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2124                                         struct pt_regs *regs)
2125 {
2126         return true;
2127 }
2128
2129 /*
2130  * Run handler and ask thread to singlestep.
2131  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2132  */
2133 static void handle_swbp(struct pt_regs *regs)
2134 {
2135         struct uprobe *uprobe;
2136         unsigned long bp_vaddr;
2137         int uninitialized_var(is_swbp);
2138
2139         bp_vaddr = uprobe_get_swbp_addr(regs);
2140         if (bp_vaddr == get_trampoline_vaddr())
2141                 return handle_trampoline(regs);
2142
2143         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2144         if (!uprobe) {
2145                 if (is_swbp > 0) {
2146                         /* No matching uprobe; signal SIGTRAP. */
2147                         send_sig(SIGTRAP, current, 0);
2148                 } else {
2149                         /*
2150                          * Either we raced with uprobe_unregister() or we can't
2151                          * access this memory. The latter is only possible if
2152                          * another thread plays with our ->mm. In both cases
2153                          * we can simply restart. If this vma was unmapped we
2154                          * can pretend this insn was not executed yet and get
2155                          * the (correct) SIGSEGV after restart.
2156                          */
2157                         instruction_pointer_set(regs, bp_vaddr);
2158                 }
2159                 return;
2160         }
2161
2162         /* change it in advance for ->handler() and restart */
2163         instruction_pointer_set(regs, bp_vaddr);
2164
2165         /*
2166          * TODO: move copy_insn/etc into _register and remove this hack.
2167          * After we hit the bp, _unregister + _register can install the
2168          * new and not-yet-analyzed uprobe at the same address, restart.
2169          */
2170         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2171                 goto out;
2172
2173         /*
2174          * Pairs with the smp_wmb() in prepare_uprobe().
2175          *
2176          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2177          * we must also see the stores to &uprobe->arch performed by the
2178          * prepare_uprobe() call.
2179          */
2180         smp_rmb();
2181
2182         /* Tracing handlers use ->utask to communicate with fetch methods */
2183         if (!get_utask())
2184                 goto out;
2185
2186         if (arch_uprobe_ignore(&uprobe->arch, regs))
2187                 goto out;
2188
2189         handler_chain(uprobe, regs);
2190
2191         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2192                 goto out;
2193
2194         if (!pre_ssout(uprobe, regs, bp_vaddr))
2195                 return;
2196
2197         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2198 out:
2199         put_uprobe(uprobe);
2200 }
2201
2202 /*
2203  * Perform required fix-ups and disable singlestep.
2204  * Allow pending signals to take effect.
2205  */
2206 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2207 {
2208         struct uprobe *uprobe;
2209         int err = 0;
2210
2211         uprobe = utask->active_uprobe;
2212         if (utask->state == UTASK_SSTEP_ACK)
2213                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2214         else if (utask->state == UTASK_SSTEP_TRAPPED)
2215                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2216         else
2217                 WARN_ON_ONCE(1);
2218
2219         put_uprobe(uprobe);
2220         utask->active_uprobe = NULL;
2221         utask->state = UTASK_RUNNING;
2222         xol_free_insn_slot(current);
2223
2224         spin_lock_irq(&current->sighand->siglock);
2225         recalc_sigpending(); /* see uprobe_deny_signal() */
2226         spin_unlock_irq(&current->sighand->siglock);
2227
2228         if (unlikely(err)) {
2229                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2230                 force_sig(SIGILL, current);
2231         }
2232 }
2233
2234 /*
2235  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2236  * allows the thread to return from interrupt. After that handle_swbp()
2237  * sets utask->active_uprobe.
2238  *
2239  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2240  * and allows the thread to return from interrupt.
2241  *
2242  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2243  * uprobe_notify_resume().
2244  */
2245 void uprobe_notify_resume(struct pt_regs *regs)
2246 {
2247         struct uprobe_task *utask;
2248
2249         clear_thread_flag(TIF_UPROBE);
2250
2251         utask = current->utask;
2252         if (utask && utask->active_uprobe)
2253                 handle_singlestep(utask, regs);
2254         else
2255                 handle_swbp(regs);
2256 }
2257
2258 /*
2259  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2260  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2261  */
2262 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2263 {
2264         if (!current->mm)
2265                 return 0;
2266
2267         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2268             (!current->utask || !current->utask->return_instances))
2269                 return 0;
2270
2271         set_thread_flag(TIF_UPROBE);
2272         return 1;
2273 }
2274
2275 /*
2276  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2277  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2278  */
2279 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2280 {
2281         struct uprobe_task *utask = current->utask;
2282
2283         if (!current->mm || !utask || !utask->active_uprobe)
2284                 /* task is currently not uprobed */
2285                 return 0;
2286
2287         utask->state = UTASK_SSTEP_ACK;
2288         set_thread_flag(TIF_UPROBE);
2289         return 1;
2290 }
2291
2292 static struct notifier_block uprobe_exception_nb = {
2293         .notifier_call          = arch_uprobe_exception_notify,
2294         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2295 };
2296
2297 static int __init init_uprobes(void)
2298 {
2299         int i;
2300
2301         for (i = 0; i < UPROBES_HASH_SZ; i++)
2302                 mutex_init(&uprobes_mmap_mutex[i]);
2303
2304         if (percpu_init_rwsem(&dup_mmap_sem))
2305                 return -ENOMEM;
2306
2307         return register_die_notifier(&uprobe_exception_nb);
2308 }
2309 __initcall(init_uprobes);