Merge branch '9p-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728         if (cgrp_out)
729                 __update_cgrp_time(cgrp_out);
730 }
731
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734         struct perf_cgroup *cgrp;
735
736         /*
737          * ensure we access cgroup data only when needed and
738          * when we know the cgroup is pinned (css_get)
739          */
740         if (!is_cgroup_event(event))
741                 return;
742
743         cgrp = perf_cgroup_from_task(current, event->ctx);
744         /*
745          * Do not update time when cgroup is not active
746          */
747        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748                 __update_cgrp_time(event->cgrp);
749 }
750
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753                           struct perf_event_context *ctx)
754 {
755         struct perf_cgroup *cgrp;
756         struct perf_cgroup_info *info;
757
758         /*
759          * ctx->lock held by caller
760          * ensure we do not access cgroup data
761          * unless we have the cgroup pinned (css_get)
762          */
763         if (!task || !ctx->nr_cgroups)
764                 return;
765
766         cgrp = perf_cgroup_from_task(task, ctx);
767         info = this_cpu_ptr(cgrp->info);
768         info->timestamp = ctx->timestamp;
769 }
770
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
773 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
775
776 /*
777  * reschedule events based on the cgroup constraint of task.
778  *
779  * mode SWOUT : schedule out everything
780  * mode SWIN : schedule in based on cgroup for next
781  */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784         struct perf_cpu_context *cpuctx;
785         struct list_head *list;
786         unsigned long flags;
787
788         /*
789          * Disable interrupts and preemption to avoid this CPU's
790          * cgrp_cpuctx_entry to change under us.
791          */
792         local_irq_save(flags);
793
794         list = this_cpu_ptr(&cgrp_cpuctx_list);
795         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797
798                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799                 perf_pmu_disable(cpuctx->ctx.pmu);
800
801                 if (mode & PERF_CGROUP_SWOUT) {
802                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803                         /*
804                          * must not be done before ctxswout due
805                          * to event_filter_match() in event_sched_out()
806                          */
807                         cpuctx->cgrp = NULL;
808                 }
809
810                 if (mode & PERF_CGROUP_SWIN) {
811                         WARN_ON_ONCE(cpuctx->cgrp);
812                         /*
813                          * set cgrp before ctxsw in to allow
814                          * event_filter_match() to not have to pass
815                          * task around
816                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
817                          * because cgorup events are only per-cpu
818                          */
819                         cpuctx->cgrp = perf_cgroup_from_task(task,
820                                                              &cpuctx->ctx);
821                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822                 }
823                 perf_pmu_enable(cpuctx->ctx.pmu);
824                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825         }
826
827         local_irq_restore(flags);
828 }
829
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831                                          struct task_struct *next)
832 {
833         struct perf_cgroup *cgrp1;
834         struct perf_cgroup *cgrp2 = NULL;
835
836         rcu_read_lock();
837         /*
838          * we come here when we know perf_cgroup_events > 0
839          * we do not need to pass the ctx here because we know
840          * we are holding the rcu lock
841          */
842         cgrp1 = perf_cgroup_from_task(task, NULL);
843         cgrp2 = perf_cgroup_from_task(next, NULL);
844
845         /*
846          * only schedule out current cgroup events if we know
847          * that we are switching to a different cgroup. Otherwise,
848          * do no touch the cgroup events.
849          */
850         if (cgrp1 != cgrp2)
851                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852
853         rcu_read_unlock();
854 }
855
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857                                         struct task_struct *task)
858 {
859         struct perf_cgroup *cgrp1;
860         struct perf_cgroup *cgrp2 = NULL;
861
862         rcu_read_lock();
863         /*
864          * we come here when we know perf_cgroup_events > 0
865          * we do not need to pass the ctx here because we know
866          * we are holding the rcu lock
867          */
868         cgrp1 = perf_cgroup_from_task(task, NULL);
869         cgrp2 = perf_cgroup_from_task(prev, NULL);
870
871         /*
872          * only need to schedule in cgroup events if we are changing
873          * cgroup during ctxsw. Cgroup events were not scheduled
874          * out of ctxsw out if that was not the case.
875          */
876         if (cgrp1 != cgrp2)
877                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878
879         rcu_read_unlock();
880 }
881
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883                                       struct perf_event_attr *attr,
884                                       struct perf_event *group_leader)
885 {
886         struct perf_cgroup *cgrp;
887         struct cgroup_subsys_state *css;
888         struct fd f = fdget(fd);
889         int ret = 0;
890
891         if (!f.file)
892                 return -EBADF;
893
894         css = css_tryget_online_from_dir(f.file->f_path.dentry,
895                                          &perf_event_cgrp_subsys);
896         if (IS_ERR(css)) {
897                 ret = PTR_ERR(css);
898                 goto out;
899         }
900
901         cgrp = container_of(css, struct perf_cgroup, css);
902         event->cgrp = cgrp;
903
904         /*
905          * all events in a group must monitor
906          * the same cgroup because a task belongs
907          * to only one perf cgroup at a time
908          */
909         if (group_leader && group_leader->cgrp != cgrp) {
910                 perf_detach_cgroup(event);
911                 ret = -EINVAL;
912         }
913 out:
914         fdput(f);
915         return ret;
916 }
917
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921         struct perf_cgroup_info *t;
922         t = per_cpu_ptr(event->cgrp->info, event->cpu);
923         event->shadow_ctx_time = now - t->timestamp;
924 }
925
926 /*
927  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928  * cleared when last cgroup event is removed.
929  */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932                          struct perf_event_context *ctx, bool add)
933 {
934         struct perf_cpu_context *cpuctx;
935         struct list_head *cpuctx_entry;
936
937         if (!is_cgroup_event(event))
938                 return;
939
940         if (add && ctx->nr_cgroups++)
941                 return;
942         else if (!add && --ctx->nr_cgroups)
943                 return;
944         /*
945          * Because cgroup events are always per-cpu events,
946          * this will always be called from the right CPU.
947          */
948         cpuctx = __get_cpu_context(ctx);
949         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951         if (add) {
952                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
954                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956                         cpuctx->cgrp = cgrp;
957         } else {
958                 list_del(cpuctx_entry);
959                 cpuctx->cgrp = NULL;
960         }
961 }
962
963 #else /* !CONFIG_CGROUP_PERF */
964
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
967 {
968         return true;
969 }
970
971 static inline void perf_detach_cgroup(struct perf_event *event)
972 {}
973
974 static inline int is_cgroup_event(struct perf_event *event)
975 {
976         return 0;
977 }
978
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
980 {
981 }
982
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984 {
985 }
986
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988                                          struct task_struct *next)
989 {
990 }
991
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993                                         struct task_struct *task)
994 {
995 }
996
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998                                       struct perf_event_attr *attr,
999                                       struct perf_event *group_leader)
1000 {
1001         return -EINVAL;
1002 }
1003
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006                           struct perf_event_context *ctx)
1007 {
1008 }
1009
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017 {
1018 }
1019
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021 {
1022         return 0;
1023 }
1024
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027                          struct perf_event_context *ctx, bool add)
1028 {
1029 }
1030
1031 #endif
1032
1033 /*
1034  * set default to be dependent on timer tick just
1035  * like original code
1036  */
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1038 /*
1039  * function must be called with interrupts disabled
1040  */
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 {
1043         struct perf_cpu_context *cpuctx;
1044         int rotations = 0;
1045
1046         lockdep_assert_irqs_disabled();
1047
1048         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049         rotations = perf_rotate_context(cpuctx);
1050
1051         raw_spin_lock(&cpuctx->hrtimer_lock);
1052         if (rotations)
1053                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054         else
1055                 cpuctx->hrtimer_active = 0;
1056         raw_spin_unlock(&cpuctx->hrtimer_lock);
1057
1058         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 }
1060
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062 {
1063         struct hrtimer *timer = &cpuctx->hrtimer;
1064         struct pmu *pmu = cpuctx->ctx.pmu;
1065         u64 interval;
1066
1067         /* no multiplexing needed for SW PMU */
1068         if (pmu->task_ctx_nr == perf_sw_context)
1069                 return;
1070
1071         /*
1072          * check default is sane, if not set then force to
1073          * default interval (1/tick)
1074          */
1075         interval = pmu->hrtimer_interval_ms;
1076         if (interval < 1)
1077                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078
1079         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080
1081         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083         timer->function = perf_mux_hrtimer_handler;
1084 }
1085
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087 {
1088         struct hrtimer *timer = &cpuctx->hrtimer;
1089         struct pmu *pmu = cpuctx->ctx.pmu;
1090         unsigned long flags;
1091
1092         /* not for SW PMU */
1093         if (pmu->task_ctx_nr == perf_sw_context)
1094                 return 0;
1095
1096         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097         if (!cpuctx->hrtimer_active) {
1098                 cpuctx->hrtimer_active = 1;
1099                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101         }
1102         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103
1104         return 0;
1105 }
1106
1107 void perf_pmu_disable(struct pmu *pmu)
1108 {
1109         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110         if (!(*count)++)
1111                 pmu->pmu_disable(pmu);
1112 }
1113
1114 void perf_pmu_enable(struct pmu *pmu)
1115 {
1116         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117         if (!--(*count))
1118                 pmu->pmu_enable(pmu);
1119 }
1120
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122
1123 /*
1124  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125  * perf_event_task_tick() are fully serialized because they're strictly cpu
1126  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127  * disabled, while perf_event_task_tick is called from IRQ context.
1128  */
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130 {
1131         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132
1133         lockdep_assert_irqs_disabled();
1134
1135         WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137         list_add(&ctx->active_ctx_list, head);
1138 }
1139
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141 {
1142         lockdep_assert_irqs_disabled();
1143
1144         WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146         list_del_init(&ctx->active_ctx_list);
1147 }
1148
1149 static void get_ctx(struct perf_event_context *ctx)
1150 {
1151         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 }
1153
1154 static void free_ctx(struct rcu_head *head)
1155 {
1156         struct perf_event_context *ctx;
1157
1158         ctx = container_of(head, struct perf_event_context, rcu_head);
1159         kfree(ctx->task_ctx_data);
1160         kfree(ctx);
1161 }
1162
1163 static void put_ctx(struct perf_event_context *ctx)
1164 {
1165         if (atomic_dec_and_test(&ctx->refcount)) {
1166                 if (ctx->parent_ctx)
1167                         put_ctx(ctx->parent_ctx);
1168                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169                         put_task_struct(ctx->task);
1170                 call_rcu(&ctx->rcu_head, free_ctx);
1171         }
1172 }
1173
1174 /*
1175  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176  * perf_pmu_migrate_context() we need some magic.
1177  *
1178  * Those places that change perf_event::ctx will hold both
1179  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180  *
1181  * Lock ordering is by mutex address. There are two other sites where
1182  * perf_event_context::mutex nests and those are:
1183  *
1184  *  - perf_event_exit_task_context()    [ child , 0 ]
1185  *      perf_event_exit_event()
1186  *        put_event()                   [ parent, 1 ]
1187  *
1188  *  - perf_event_init_context()         [ parent, 0 ]
1189  *      inherit_task_group()
1190  *        inherit_group()
1191  *          inherit_event()
1192  *            perf_event_alloc()
1193  *              perf_init_event()
1194  *                perf_try_init_event() [ child , 1 ]
1195  *
1196  * While it appears there is an obvious deadlock here -- the parent and child
1197  * nesting levels are inverted between the two. This is in fact safe because
1198  * life-time rules separate them. That is an exiting task cannot fork, and a
1199  * spawning task cannot (yet) exit.
1200  *
1201  * But remember that that these are parent<->child context relations, and
1202  * migration does not affect children, therefore these two orderings should not
1203  * interact.
1204  *
1205  * The change in perf_event::ctx does not affect children (as claimed above)
1206  * because the sys_perf_event_open() case will install a new event and break
1207  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208  * concerned with cpuctx and that doesn't have children.
1209  *
1210  * The places that change perf_event::ctx will issue:
1211  *
1212  *   perf_remove_from_context();
1213  *   synchronize_rcu();
1214  *   perf_install_in_context();
1215  *
1216  * to affect the change. The remove_from_context() + synchronize_rcu() should
1217  * quiesce the event, after which we can install it in the new location. This
1218  * means that only external vectors (perf_fops, prctl) can perturb the event
1219  * while in transit. Therefore all such accessors should also acquire
1220  * perf_event_context::mutex to serialize against this.
1221  *
1222  * However; because event->ctx can change while we're waiting to acquire
1223  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224  * function.
1225  *
1226  * Lock order:
1227  *    cred_guard_mutex
1228  *      task_struct::perf_event_mutex
1229  *        perf_event_context::mutex
1230  *          perf_event::child_mutex;
1231  *            perf_event_context::lock
1232  *          perf_event::mmap_mutex
1233  *          mmap_sem
1234  */
1235 static struct perf_event_context *
1236 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1237 {
1238         struct perf_event_context *ctx;
1239
1240 again:
1241         rcu_read_lock();
1242         ctx = READ_ONCE(event->ctx);
1243         if (!atomic_inc_not_zero(&ctx->refcount)) {
1244                 rcu_read_unlock();
1245                 goto again;
1246         }
1247         rcu_read_unlock();
1248
1249         mutex_lock_nested(&ctx->mutex, nesting);
1250         if (event->ctx != ctx) {
1251                 mutex_unlock(&ctx->mutex);
1252                 put_ctx(ctx);
1253                 goto again;
1254         }
1255
1256         return ctx;
1257 }
1258
1259 static inline struct perf_event_context *
1260 perf_event_ctx_lock(struct perf_event *event)
1261 {
1262         return perf_event_ctx_lock_nested(event, 0);
1263 }
1264
1265 static void perf_event_ctx_unlock(struct perf_event *event,
1266                                   struct perf_event_context *ctx)
1267 {
1268         mutex_unlock(&ctx->mutex);
1269         put_ctx(ctx);
1270 }
1271
1272 /*
1273  * This must be done under the ctx->lock, such as to serialize against
1274  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1275  * calling scheduler related locks and ctx->lock nests inside those.
1276  */
1277 static __must_check struct perf_event_context *
1278 unclone_ctx(struct perf_event_context *ctx)
1279 {
1280         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1281
1282         lockdep_assert_held(&ctx->lock);
1283
1284         if (parent_ctx)
1285                 ctx->parent_ctx = NULL;
1286         ctx->generation++;
1287
1288         return parent_ctx;
1289 }
1290
1291 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1292                                 enum pid_type type)
1293 {
1294         u32 nr;
1295         /*
1296          * only top level events have the pid namespace they were created in
1297          */
1298         if (event->parent)
1299                 event = event->parent;
1300
1301         nr = __task_pid_nr_ns(p, type, event->ns);
1302         /* avoid -1 if it is idle thread or runs in another ns */
1303         if (!nr && !pid_alive(p))
1304                 nr = -1;
1305         return nr;
1306 }
1307
1308 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1309 {
1310         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1311 }
1312
1313 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1314 {
1315         return perf_event_pid_type(event, p, PIDTYPE_PID);
1316 }
1317
1318 /*
1319  * If we inherit events we want to return the parent event id
1320  * to userspace.
1321  */
1322 static u64 primary_event_id(struct perf_event *event)
1323 {
1324         u64 id = event->id;
1325
1326         if (event->parent)
1327                 id = event->parent->id;
1328
1329         return id;
1330 }
1331
1332 /*
1333  * Get the perf_event_context for a task and lock it.
1334  *
1335  * This has to cope with with the fact that until it is locked,
1336  * the context could get moved to another task.
1337  */
1338 static struct perf_event_context *
1339 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1340 {
1341         struct perf_event_context *ctx;
1342
1343 retry:
1344         /*
1345          * One of the few rules of preemptible RCU is that one cannot do
1346          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1347          * part of the read side critical section was irqs-enabled -- see
1348          * rcu_read_unlock_special().
1349          *
1350          * Since ctx->lock nests under rq->lock we must ensure the entire read
1351          * side critical section has interrupts disabled.
1352          */
1353         local_irq_save(*flags);
1354         rcu_read_lock();
1355         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1356         if (ctx) {
1357                 /*
1358                  * If this context is a clone of another, it might
1359                  * get swapped for another underneath us by
1360                  * perf_event_task_sched_out, though the
1361                  * rcu_read_lock() protects us from any context
1362                  * getting freed.  Lock the context and check if it
1363                  * got swapped before we could get the lock, and retry
1364                  * if so.  If we locked the right context, then it
1365                  * can't get swapped on us any more.
1366                  */
1367                 raw_spin_lock(&ctx->lock);
1368                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1369                         raw_spin_unlock(&ctx->lock);
1370                         rcu_read_unlock();
1371                         local_irq_restore(*flags);
1372                         goto retry;
1373                 }
1374
1375                 if (ctx->task == TASK_TOMBSTONE ||
1376                     !atomic_inc_not_zero(&ctx->refcount)) {
1377                         raw_spin_unlock(&ctx->lock);
1378                         ctx = NULL;
1379                 } else {
1380                         WARN_ON_ONCE(ctx->task != task);
1381                 }
1382         }
1383         rcu_read_unlock();
1384         if (!ctx)
1385                 local_irq_restore(*flags);
1386         return ctx;
1387 }
1388
1389 /*
1390  * Get the context for a task and increment its pin_count so it
1391  * can't get swapped to another task.  This also increments its
1392  * reference count so that the context can't get freed.
1393  */
1394 static struct perf_event_context *
1395 perf_pin_task_context(struct task_struct *task, int ctxn)
1396 {
1397         struct perf_event_context *ctx;
1398         unsigned long flags;
1399
1400         ctx = perf_lock_task_context(task, ctxn, &flags);
1401         if (ctx) {
1402                 ++ctx->pin_count;
1403                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1404         }
1405         return ctx;
1406 }
1407
1408 static void perf_unpin_context(struct perf_event_context *ctx)
1409 {
1410         unsigned long flags;
1411
1412         raw_spin_lock_irqsave(&ctx->lock, flags);
1413         --ctx->pin_count;
1414         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1415 }
1416
1417 /*
1418  * Update the record of the current time in a context.
1419  */
1420 static void update_context_time(struct perf_event_context *ctx)
1421 {
1422         u64 now = perf_clock();
1423
1424         ctx->time += now - ctx->timestamp;
1425         ctx->timestamp = now;
1426 }
1427
1428 static u64 perf_event_time(struct perf_event *event)
1429 {
1430         struct perf_event_context *ctx = event->ctx;
1431
1432         if (is_cgroup_event(event))
1433                 return perf_cgroup_event_time(event);
1434
1435         return ctx ? ctx->time : 0;
1436 }
1437
1438 static enum event_type_t get_event_type(struct perf_event *event)
1439 {
1440         struct perf_event_context *ctx = event->ctx;
1441         enum event_type_t event_type;
1442
1443         lockdep_assert_held(&ctx->lock);
1444
1445         /*
1446          * It's 'group type', really, because if our group leader is
1447          * pinned, so are we.
1448          */
1449         if (event->group_leader != event)
1450                 event = event->group_leader;
1451
1452         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1453         if (!ctx->task)
1454                 event_type |= EVENT_CPU;
1455
1456         return event_type;
1457 }
1458
1459 static struct list_head *
1460 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1461 {
1462         if (event->attr.pinned)
1463                 return &ctx->pinned_groups;
1464         else
1465                 return &ctx->flexible_groups;
1466 }
1467
1468 /*
1469  * Add a event from the lists for its context.
1470  * Must be called with ctx->mutex and ctx->lock held.
1471  */
1472 static void
1473 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1474 {
1475         lockdep_assert_held(&ctx->lock);
1476
1477         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1478         event->attach_state |= PERF_ATTACH_CONTEXT;
1479
1480         event->tstamp = perf_event_time(event);
1481
1482         /*
1483          * If we're a stand alone event or group leader, we go to the context
1484          * list, group events are kept attached to the group so that
1485          * perf_group_detach can, at all times, locate all siblings.
1486          */
1487         if (event->group_leader == event) {
1488                 struct list_head *list;
1489
1490                 event->group_caps = event->event_caps;
1491
1492                 list = ctx_group_list(event, ctx);
1493                 list_add_tail(&event->group_entry, list);
1494         }
1495
1496         list_update_cgroup_event(event, ctx, true);
1497
1498         list_add_rcu(&event->event_entry, &ctx->event_list);
1499         ctx->nr_events++;
1500         if (event->attr.inherit_stat)
1501                 ctx->nr_stat++;
1502
1503         ctx->generation++;
1504 }
1505
1506 /*
1507  * Initialize event state based on the perf_event_attr::disabled.
1508  */
1509 static inline void perf_event__state_init(struct perf_event *event)
1510 {
1511         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512                                               PERF_EVENT_STATE_INACTIVE;
1513 }
1514
1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 {
1517         int entry = sizeof(u64); /* value */
1518         int size = 0;
1519         int nr = 1;
1520
1521         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522                 size += sizeof(u64);
1523
1524         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525                 size += sizeof(u64);
1526
1527         if (event->attr.read_format & PERF_FORMAT_ID)
1528                 entry += sizeof(u64);
1529
1530         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1531                 nr += nr_siblings;
1532                 size += sizeof(u64);
1533         }
1534
1535         size += entry * nr;
1536         event->read_size = size;
1537 }
1538
1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 {
1541         struct perf_sample_data *data;
1542         u16 size = 0;
1543
1544         if (sample_type & PERF_SAMPLE_IP)
1545                 size += sizeof(data->ip);
1546
1547         if (sample_type & PERF_SAMPLE_ADDR)
1548                 size += sizeof(data->addr);
1549
1550         if (sample_type & PERF_SAMPLE_PERIOD)
1551                 size += sizeof(data->period);
1552
1553         if (sample_type & PERF_SAMPLE_WEIGHT)
1554                 size += sizeof(data->weight);
1555
1556         if (sample_type & PERF_SAMPLE_READ)
1557                 size += event->read_size;
1558
1559         if (sample_type & PERF_SAMPLE_DATA_SRC)
1560                 size += sizeof(data->data_src.val);
1561
1562         if (sample_type & PERF_SAMPLE_TRANSACTION)
1563                 size += sizeof(data->txn);
1564
1565         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1566                 size += sizeof(data->phys_addr);
1567
1568         event->header_size = size;
1569 }
1570
1571 /*
1572  * Called at perf_event creation and when events are attached/detached from a
1573  * group.
1574  */
1575 static void perf_event__header_size(struct perf_event *event)
1576 {
1577         __perf_event_read_size(event,
1578                                event->group_leader->nr_siblings);
1579         __perf_event_header_size(event, event->attr.sample_type);
1580 }
1581
1582 static void perf_event__id_header_size(struct perf_event *event)
1583 {
1584         struct perf_sample_data *data;
1585         u64 sample_type = event->attr.sample_type;
1586         u16 size = 0;
1587
1588         if (sample_type & PERF_SAMPLE_TID)
1589                 size += sizeof(data->tid_entry);
1590
1591         if (sample_type & PERF_SAMPLE_TIME)
1592                 size += sizeof(data->time);
1593
1594         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1595                 size += sizeof(data->id);
1596
1597         if (sample_type & PERF_SAMPLE_ID)
1598                 size += sizeof(data->id);
1599
1600         if (sample_type & PERF_SAMPLE_STREAM_ID)
1601                 size += sizeof(data->stream_id);
1602
1603         if (sample_type & PERF_SAMPLE_CPU)
1604                 size += sizeof(data->cpu_entry);
1605
1606         event->id_header_size = size;
1607 }
1608
1609 static bool perf_event_validate_size(struct perf_event *event)
1610 {
1611         /*
1612          * The values computed here will be over-written when we actually
1613          * attach the event.
1614          */
1615         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1616         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1617         perf_event__id_header_size(event);
1618
1619         /*
1620          * Sum the lot; should not exceed the 64k limit we have on records.
1621          * Conservative limit to allow for callchains and other variable fields.
1622          */
1623         if (event->read_size + event->header_size +
1624             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1625                 return false;
1626
1627         return true;
1628 }
1629
1630 static void perf_group_attach(struct perf_event *event)
1631 {
1632         struct perf_event *group_leader = event->group_leader, *pos;
1633
1634         lockdep_assert_held(&event->ctx->lock);
1635
1636         /*
1637          * We can have double attach due to group movement in perf_event_open.
1638          */
1639         if (event->attach_state & PERF_ATTACH_GROUP)
1640                 return;
1641
1642         event->attach_state |= PERF_ATTACH_GROUP;
1643
1644         if (group_leader == event)
1645                 return;
1646
1647         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1648
1649         group_leader->group_caps &= event->event_caps;
1650
1651         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1652         group_leader->nr_siblings++;
1653
1654         perf_event__header_size(group_leader);
1655
1656         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1657                 perf_event__header_size(pos);
1658 }
1659
1660 /*
1661  * Remove a event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667         WARN_ON_ONCE(event->ctx != ctx);
1668         lockdep_assert_held(&ctx->lock);
1669
1670         /*
1671          * We can have double detach due to exit/hot-unplug + close.
1672          */
1673         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1674                 return;
1675
1676         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1677
1678         list_update_cgroup_event(event, ctx, false);
1679
1680         ctx->nr_events--;
1681         if (event->attr.inherit_stat)
1682                 ctx->nr_stat--;
1683
1684         list_del_rcu(&event->event_entry);
1685
1686         if (event->group_leader == event)
1687                 list_del_init(&event->group_entry);
1688
1689         /*
1690          * If event was in error state, then keep it
1691          * that way, otherwise bogus counts will be
1692          * returned on read(). The only way to get out
1693          * of error state is by explicit re-enabling
1694          * of the event
1695          */
1696         if (event->state > PERF_EVENT_STATE_OFF)
1697                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1698
1699         ctx->generation++;
1700 }
1701
1702 static void perf_group_detach(struct perf_event *event)
1703 {
1704         struct perf_event *sibling, *tmp;
1705         struct list_head *list = NULL;
1706
1707         lockdep_assert_held(&event->ctx->lock);
1708
1709         /*
1710          * We can have double detach due to exit/hot-unplug + close.
1711          */
1712         if (!(event->attach_state & PERF_ATTACH_GROUP))
1713                 return;
1714
1715         event->attach_state &= ~PERF_ATTACH_GROUP;
1716
1717         /*
1718          * If this is a sibling, remove it from its group.
1719          */
1720         if (event->group_leader != event) {
1721                 list_del_init(&event->group_entry);
1722                 event->group_leader->nr_siblings--;
1723                 goto out;
1724         }
1725
1726         if (!list_empty(&event->group_entry))
1727                 list = &event->group_entry;
1728
1729         /*
1730          * If this was a group event with sibling events then
1731          * upgrade the siblings to singleton events by adding them
1732          * to whatever list we are on.
1733          */
1734         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1735                 if (list)
1736                         list_move_tail(&sibling->group_entry, list);
1737                 sibling->group_leader = sibling;
1738
1739                 /* Inherit group flags from the previous leader */
1740                 sibling->group_caps = event->group_caps;
1741
1742                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1743         }
1744
1745 out:
1746         perf_event__header_size(event->group_leader);
1747
1748         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749                 perf_event__header_size(tmp);
1750 }
1751
1752 static bool is_orphaned_event(struct perf_event *event)
1753 {
1754         return event->state == PERF_EVENT_STATE_DEAD;
1755 }
1756
1757 static inline int __pmu_filter_match(struct perf_event *event)
1758 {
1759         struct pmu *pmu = event->pmu;
1760         return pmu->filter_match ? pmu->filter_match(event) : 1;
1761 }
1762
1763 /*
1764  * Check whether we should attempt to schedule an event group based on
1765  * PMU-specific filtering. An event group can consist of HW and SW events,
1766  * potentially with a SW leader, so we must check all the filters, to
1767  * determine whether a group is schedulable:
1768  */
1769 static inline int pmu_filter_match(struct perf_event *event)
1770 {
1771         struct perf_event *child;
1772
1773         if (!__pmu_filter_match(event))
1774                 return 0;
1775
1776         list_for_each_entry(child, &event->sibling_list, group_entry) {
1777                 if (!__pmu_filter_match(child))
1778                         return 0;
1779         }
1780
1781         return 1;
1782 }
1783
1784 static inline int
1785 event_filter_match(struct perf_event *event)
1786 {
1787         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788                perf_cgroup_match(event) && pmu_filter_match(event);
1789 }
1790
1791 static void
1792 event_sched_out(struct perf_event *event,
1793                   struct perf_cpu_context *cpuctx,
1794                   struct perf_event_context *ctx)
1795 {
1796         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1797
1798         WARN_ON_ONCE(event->ctx != ctx);
1799         lockdep_assert_held(&ctx->lock);
1800
1801         if (event->state != PERF_EVENT_STATE_ACTIVE)
1802                 return;
1803
1804         perf_pmu_disable(event->pmu);
1805
1806         event->pmu->del(event, 0);
1807         event->oncpu = -1;
1808
1809         if (event->pending_disable) {
1810                 event->pending_disable = 0;
1811                 state = PERF_EVENT_STATE_OFF;
1812         }
1813         perf_event_set_state(event, state);
1814
1815         if (!is_software_event(event))
1816                 cpuctx->active_oncpu--;
1817         if (!--ctx->nr_active)
1818                 perf_event_ctx_deactivate(ctx);
1819         if (event->attr.freq && event->attr.sample_freq)
1820                 ctx->nr_freq--;
1821         if (event->attr.exclusive || !cpuctx->active_oncpu)
1822                 cpuctx->exclusive = 0;
1823
1824         perf_pmu_enable(event->pmu);
1825 }
1826
1827 static void
1828 group_sched_out(struct perf_event *group_event,
1829                 struct perf_cpu_context *cpuctx,
1830                 struct perf_event_context *ctx)
1831 {
1832         struct perf_event *event;
1833
1834         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1835                 return;
1836
1837         perf_pmu_disable(ctx->pmu);
1838
1839         event_sched_out(group_event, cpuctx, ctx);
1840
1841         /*
1842          * Schedule out siblings (if any):
1843          */
1844         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1845                 event_sched_out(event, cpuctx, ctx);
1846
1847         perf_pmu_enable(ctx->pmu);
1848
1849         if (group_event->attr.exclusive)
1850                 cpuctx->exclusive = 0;
1851 }
1852
1853 #define DETACH_GROUP    0x01UL
1854
1855 /*
1856  * Cross CPU call to remove a performance event
1857  *
1858  * We disable the event on the hardware level first. After that we
1859  * remove it from the context list.
1860  */
1861 static void
1862 __perf_remove_from_context(struct perf_event *event,
1863                            struct perf_cpu_context *cpuctx,
1864                            struct perf_event_context *ctx,
1865                            void *info)
1866 {
1867         unsigned long flags = (unsigned long)info;
1868
1869         if (ctx->is_active & EVENT_TIME) {
1870                 update_context_time(ctx);
1871                 update_cgrp_time_from_cpuctx(cpuctx);
1872         }
1873
1874         event_sched_out(event, cpuctx, ctx);
1875         if (flags & DETACH_GROUP)
1876                 perf_group_detach(event);
1877         list_del_event(event, ctx);
1878
1879         if (!ctx->nr_events && ctx->is_active) {
1880                 ctx->is_active = 0;
1881                 if (ctx->task) {
1882                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1883                         cpuctx->task_ctx = NULL;
1884                 }
1885         }
1886 }
1887
1888 /*
1889  * Remove the event from a task's (or a CPU's) list of events.
1890  *
1891  * If event->ctx is a cloned context, callers must make sure that
1892  * every task struct that event->ctx->task could possibly point to
1893  * remains valid.  This is OK when called from perf_release since
1894  * that only calls us on the top-level context, which can't be a clone.
1895  * When called from perf_event_exit_task, it's OK because the
1896  * context has been detached from its task.
1897  */
1898 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1899 {
1900         struct perf_event_context *ctx = event->ctx;
1901
1902         lockdep_assert_held(&ctx->mutex);
1903
1904         event_function_call(event, __perf_remove_from_context, (void *)flags);
1905
1906         /*
1907          * The above event_function_call() can NO-OP when it hits
1908          * TASK_TOMBSTONE. In that case we must already have been detached
1909          * from the context (by perf_event_exit_event()) but the grouping
1910          * might still be in-tact.
1911          */
1912         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1913         if ((flags & DETACH_GROUP) &&
1914             (event->attach_state & PERF_ATTACH_GROUP)) {
1915                 /*
1916                  * Since in that case we cannot possibly be scheduled, simply
1917                  * detach now.
1918                  */
1919                 raw_spin_lock_irq(&ctx->lock);
1920                 perf_group_detach(event);
1921                 raw_spin_unlock_irq(&ctx->lock);
1922         }
1923 }
1924
1925 /*
1926  * Cross CPU call to disable a performance event
1927  */
1928 static void __perf_event_disable(struct perf_event *event,
1929                                  struct perf_cpu_context *cpuctx,
1930                                  struct perf_event_context *ctx,
1931                                  void *info)
1932 {
1933         if (event->state < PERF_EVENT_STATE_INACTIVE)
1934                 return;
1935
1936         if (ctx->is_active & EVENT_TIME) {
1937                 update_context_time(ctx);
1938                 update_cgrp_time_from_event(event);
1939         }
1940
1941         if (event == event->group_leader)
1942                 group_sched_out(event, cpuctx, ctx);
1943         else
1944                 event_sched_out(event, cpuctx, ctx);
1945
1946         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1947 }
1948
1949 /*
1950  * Disable a event.
1951  *
1952  * If event->ctx is a cloned context, callers must make sure that
1953  * every task struct that event->ctx->task could possibly point to
1954  * remains valid.  This condition is satisifed when called through
1955  * perf_event_for_each_child or perf_event_for_each because they
1956  * hold the top-level event's child_mutex, so any descendant that
1957  * goes to exit will block in perf_event_exit_event().
1958  *
1959  * When called from perf_pending_event it's OK because event->ctx
1960  * is the current context on this CPU and preemption is disabled,
1961  * hence we can't get into perf_event_task_sched_out for this context.
1962  */
1963 static void _perf_event_disable(struct perf_event *event)
1964 {
1965         struct perf_event_context *ctx = event->ctx;
1966
1967         raw_spin_lock_irq(&ctx->lock);
1968         if (event->state <= PERF_EVENT_STATE_OFF) {
1969                 raw_spin_unlock_irq(&ctx->lock);
1970                 return;
1971         }
1972         raw_spin_unlock_irq(&ctx->lock);
1973
1974         event_function_call(event, __perf_event_disable, NULL);
1975 }
1976
1977 void perf_event_disable_local(struct perf_event *event)
1978 {
1979         event_function_local(event, __perf_event_disable, NULL);
1980 }
1981
1982 /*
1983  * Strictly speaking kernel users cannot create groups and therefore this
1984  * interface does not need the perf_event_ctx_lock() magic.
1985  */
1986 void perf_event_disable(struct perf_event *event)
1987 {
1988         struct perf_event_context *ctx;
1989
1990         ctx = perf_event_ctx_lock(event);
1991         _perf_event_disable(event);
1992         perf_event_ctx_unlock(event, ctx);
1993 }
1994 EXPORT_SYMBOL_GPL(perf_event_disable);
1995
1996 void perf_event_disable_inatomic(struct perf_event *event)
1997 {
1998         event->pending_disable = 1;
1999         irq_work_queue(&event->pending);
2000 }
2001
2002 static void perf_set_shadow_time(struct perf_event *event,
2003                                  struct perf_event_context *ctx)
2004 {
2005         /*
2006          * use the correct time source for the time snapshot
2007          *
2008          * We could get by without this by leveraging the
2009          * fact that to get to this function, the caller
2010          * has most likely already called update_context_time()
2011          * and update_cgrp_time_xx() and thus both timestamp
2012          * are identical (or very close). Given that tstamp is,
2013          * already adjusted for cgroup, we could say that:
2014          *    tstamp - ctx->timestamp
2015          * is equivalent to
2016          *    tstamp - cgrp->timestamp.
2017          *
2018          * Then, in perf_output_read(), the calculation would
2019          * work with no changes because:
2020          * - event is guaranteed scheduled in
2021          * - no scheduled out in between
2022          * - thus the timestamp would be the same
2023          *
2024          * But this is a bit hairy.
2025          *
2026          * So instead, we have an explicit cgroup call to remain
2027          * within the time time source all along. We believe it
2028          * is cleaner and simpler to understand.
2029          */
2030         if (is_cgroup_event(event))
2031                 perf_cgroup_set_shadow_time(event, event->tstamp);
2032         else
2033                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2034 }
2035
2036 #define MAX_INTERRUPTS (~0ULL)
2037
2038 static void perf_log_throttle(struct perf_event *event, int enable);
2039 static void perf_log_itrace_start(struct perf_event *event);
2040
2041 static int
2042 event_sched_in(struct perf_event *event,
2043                  struct perf_cpu_context *cpuctx,
2044                  struct perf_event_context *ctx)
2045 {
2046         int ret = 0;
2047
2048         lockdep_assert_held(&ctx->lock);
2049
2050         if (event->state <= PERF_EVENT_STATE_OFF)
2051                 return 0;
2052
2053         WRITE_ONCE(event->oncpu, smp_processor_id());
2054         /*
2055          * Order event::oncpu write to happen before the ACTIVE state is
2056          * visible. This allows perf_event_{stop,read}() to observe the correct
2057          * ->oncpu if it sees ACTIVE.
2058          */
2059         smp_wmb();
2060         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2061
2062         /*
2063          * Unthrottle events, since we scheduled we might have missed several
2064          * ticks already, also for a heavily scheduling task there is little
2065          * guarantee it'll get a tick in a timely manner.
2066          */
2067         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2068                 perf_log_throttle(event, 1);
2069                 event->hw.interrupts = 0;
2070         }
2071
2072         perf_pmu_disable(event->pmu);
2073
2074         perf_set_shadow_time(event, ctx);
2075
2076         perf_log_itrace_start(event);
2077
2078         if (event->pmu->add(event, PERF_EF_START)) {
2079                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2080                 event->oncpu = -1;
2081                 ret = -EAGAIN;
2082                 goto out;
2083         }
2084
2085         if (!is_software_event(event))
2086                 cpuctx->active_oncpu++;
2087         if (!ctx->nr_active++)
2088                 perf_event_ctx_activate(ctx);
2089         if (event->attr.freq && event->attr.sample_freq)
2090                 ctx->nr_freq++;
2091
2092         if (event->attr.exclusive)
2093                 cpuctx->exclusive = 1;
2094
2095 out:
2096         perf_pmu_enable(event->pmu);
2097
2098         return ret;
2099 }
2100
2101 static int
2102 group_sched_in(struct perf_event *group_event,
2103                struct perf_cpu_context *cpuctx,
2104                struct perf_event_context *ctx)
2105 {
2106         struct perf_event *event, *partial_group = NULL;
2107         struct pmu *pmu = ctx->pmu;
2108
2109         if (group_event->state == PERF_EVENT_STATE_OFF)
2110                 return 0;
2111
2112         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2113
2114         if (event_sched_in(group_event, cpuctx, ctx)) {
2115                 pmu->cancel_txn(pmu);
2116                 perf_mux_hrtimer_restart(cpuctx);
2117                 return -EAGAIN;
2118         }
2119
2120         /*
2121          * Schedule in siblings as one group (if any):
2122          */
2123         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2124                 if (event_sched_in(event, cpuctx, ctx)) {
2125                         partial_group = event;
2126                         goto group_error;
2127                 }
2128         }
2129
2130         if (!pmu->commit_txn(pmu))
2131                 return 0;
2132
2133 group_error:
2134         /*
2135          * Groups can be scheduled in as one unit only, so undo any
2136          * partial group before returning:
2137          * The events up to the failed event are scheduled out normally.
2138          */
2139         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2140                 if (event == partial_group)
2141                         break;
2142
2143                 event_sched_out(event, cpuctx, ctx);
2144         }
2145         event_sched_out(group_event, cpuctx, ctx);
2146
2147         pmu->cancel_txn(pmu);
2148
2149         perf_mux_hrtimer_restart(cpuctx);
2150
2151         return -EAGAIN;
2152 }
2153
2154 /*
2155  * Work out whether we can put this event group on the CPU now.
2156  */
2157 static int group_can_go_on(struct perf_event *event,
2158                            struct perf_cpu_context *cpuctx,
2159                            int can_add_hw)
2160 {
2161         /*
2162          * Groups consisting entirely of software events can always go on.
2163          */
2164         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2165                 return 1;
2166         /*
2167          * If an exclusive group is already on, no other hardware
2168          * events can go on.
2169          */
2170         if (cpuctx->exclusive)
2171                 return 0;
2172         /*
2173          * If this group is exclusive and there are already
2174          * events on the CPU, it can't go on.
2175          */
2176         if (event->attr.exclusive && cpuctx->active_oncpu)
2177                 return 0;
2178         /*
2179          * Otherwise, try to add it if all previous groups were able
2180          * to go on.
2181          */
2182         return can_add_hw;
2183 }
2184
2185 static void add_event_to_ctx(struct perf_event *event,
2186                                struct perf_event_context *ctx)
2187 {
2188         list_add_event(event, ctx);
2189         perf_group_attach(event);
2190 }
2191
2192 static void ctx_sched_out(struct perf_event_context *ctx,
2193                           struct perf_cpu_context *cpuctx,
2194                           enum event_type_t event_type);
2195 static void
2196 ctx_sched_in(struct perf_event_context *ctx,
2197              struct perf_cpu_context *cpuctx,
2198              enum event_type_t event_type,
2199              struct task_struct *task);
2200
2201 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2202                                struct perf_event_context *ctx,
2203                                enum event_type_t event_type)
2204 {
2205         if (!cpuctx->task_ctx)
2206                 return;
2207
2208         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2209                 return;
2210
2211         ctx_sched_out(ctx, cpuctx, event_type);
2212 }
2213
2214 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2215                                 struct perf_event_context *ctx,
2216                                 struct task_struct *task)
2217 {
2218         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2219         if (ctx)
2220                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2221         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2222         if (ctx)
2223                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2224 }
2225
2226 /*
2227  * We want to maintain the following priority of scheduling:
2228  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2229  *  - task pinned (EVENT_PINNED)
2230  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2231  *  - task flexible (EVENT_FLEXIBLE).
2232  *
2233  * In order to avoid unscheduling and scheduling back in everything every
2234  * time an event is added, only do it for the groups of equal priority and
2235  * below.
2236  *
2237  * This can be called after a batch operation on task events, in which case
2238  * event_type is a bit mask of the types of events involved. For CPU events,
2239  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2240  */
2241 static void ctx_resched(struct perf_cpu_context *cpuctx,
2242                         struct perf_event_context *task_ctx,
2243                         enum event_type_t event_type)
2244 {
2245         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2246         bool cpu_event = !!(event_type & EVENT_CPU);
2247
2248         /*
2249          * If pinned groups are involved, flexible groups also need to be
2250          * scheduled out.
2251          */
2252         if (event_type & EVENT_PINNED)
2253                 event_type |= EVENT_FLEXIBLE;
2254
2255         perf_pmu_disable(cpuctx->ctx.pmu);
2256         if (task_ctx)
2257                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2258
2259         /*
2260          * Decide which cpu ctx groups to schedule out based on the types
2261          * of events that caused rescheduling:
2262          *  - EVENT_CPU: schedule out corresponding groups;
2263          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2264          *  - otherwise, do nothing more.
2265          */
2266         if (cpu_event)
2267                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2268         else if (ctx_event_type & EVENT_PINNED)
2269                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2270
2271         perf_event_sched_in(cpuctx, task_ctx, current);
2272         perf_pmu_enable(cpuctx->ctx.pmu);
2273 }
2274
2275 /*
2276  * Cross CPU call to install and enable a performance event
2277  *
2278  * Very similar to remote_function() + event_function() but cannot assume that
2279  * things like ctx->is_active and cpuctx->task_ctx are set.
2280  */
2281 static int  __perf_install_in_context(void *info)
2282 {
2283         struct perf_event *event = info;
2284         struct perf_event_context *ctx = event->ctx;
2285         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2286         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2287         bool reprogram = true;
2288         int ret = 0;
2289
2290         raw_spin_lock(&cpuctx->ctx.lock);
2291         if (ctx->task) {
2292                 raw_spin_lock(&ctx->lock);
2293                 task_ctx = ctx;
2294
2295                 reprogram = (ctx->task == current);
2296
2297                 /*
2298                  * If the task is running, it must be running on this CPU,
2299                  * otherwise we cannot reprogram things.
2300                  *
2301                  * If its not running, we don't care, ctx->lock will
2302                  * serialize against it becoming runnable.
2303                  */
2304                 if (task_curr(ctx->task) && !reprogram) {
2305                         ret = -ESRCH;
2306                         goto unlock;
2307                 }
2308
2309                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2310         } else if (task_ctx) {
2311                 raw_spin_lock(&task_ctx->lock);
2312         }
2313
2314         if (reprogram) {
2315                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2316                 add_event_to_ctx(event, ctx);
2317                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2318         } else {
2319                 add_event_to_ctx(event, ctx);
2320         }
2321
2322 unlock:
2323         perf_ctx_unlock(cpuctx, task_ctx);
2324
2325         return ret;
2326 }
2327
2328 /*
2329  * Attach a performance event to a context.
2330  *
2331  * Very similar to event_function_call, see comment there.
2332  */
2333 static void
2334 perf_install_in_context(struct perf_event_context *ctx,
2335                         struct perf_event *event,
2336                         int cpu)
2337 {
2338         struct task_struct *task = READ_ONCE(ctx->task);
2339
2340         lockdep_assert_held(&ctx->mutex);
2341
2342         if (event->cpu != -1)
2343                 event->cpu = cpu;
2344
2345         /*
2346          * Ensures that if we can observe event->ctx, both the event and ctx
2347          * will be 'complete'. See perf_iterate_sb_cpu().
2348          */
2349         smp_store_release(&event->ctx, ctx);
2350
2351         if (!task) {
2352                 cpu_function_call(cpu, __perf_install_in_context, event);
2353                 return;
2354         }
2355
2356         /*
2357          * Should not happen, we validate the ctx is still alive before calling.
2358          */
2359         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2360                 return;
2361
2362         /*
2363          * Installing events is tricky because we cannot rely on ctx->is_active
2364          * to be set in case this is the nr_events 0 -> 1 transition.
2365          *
2366          * Instead we use task_curr(), which tells us if the task is running.
2367          * However, since we use task_curr() outside of rq::lock, we can race
2368          * against the actual state. This means the result can be wrong.
2369          *
2370          * If we get a false positive, we retry, this is harmless.
2371          *
2372          * If we get a false negative, things are complicated. If we are after
2373          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2374          * value must be correct. If we're before, it doesn't matter since
2375          * perf_event_context_sched_in() will program the counter.
2376          *
2377          * However, this hinges on the remote context switch having observed
2378          * our task->perf_event_ctxp[] store, such that it will in fact take
2379          * ctx::lock in perf_event_context_sched_in().
2380          *
2381          * We do this by task_function_call(), if the IPI fails to hit the task
2382          * we know any future context switch of task must see the
2383          * perf_event_ctpx[] store.
2384          */
2385
2386         /*
2387          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2388          * task_cpu() load, such that if the IPI then does not find the task
2389          * running, a future context switch of that task must observe the
2390          * store.
2391          */
2392         smp_mb();
2393 again:
2394         if (!task_function_call(task, __perf_install_in_context, event))
2395                 return;
2396
2397         raw_spin_lock_irq(&ctx->lock);
2398         task = ctx->task;
2399         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2400                 /*
2401                  * Cannot happen because we already checked above (which also
2402                  * cannot happen), and we hold ctx->mutex, which serializes us
2403                  * against perf_event_exit_task_context().
2404                  */
2405                 raw_spin_unlock_irq(&ctx->lock);
2406                 return;
2407         }
2408         /*
2409          * If the task is not running, ctx->lock will avoid it becoming so,
2410          * thus we can safely install the event.
2411          */
2412         if (task_curr(task)) {
2413                 raw_spin_unlock_irq(&ctx->lock);
2414                 goto again;
2415         }
2416         add_event_to_ctx(event, ctx);
2417         raw_spin_unlock_irq(&ctx->lock);
2418 }
2419
2420 /*
2421  * Cross CPU call to enable a performance event
2422  */
2423 static void __perf_event_enable(struct perf_event *event,
2424                                 struct perf_cpu_context *cpuctx,
2425                                 struct perf_event_context *ctx,
2426                                 void *info)
2427 {
2428         struct perf_event *leader = event->group_leader;
2429         struct perf_event_context *task_ctx;
2430
2431         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2432             event->state <= PERF_EVENT_STATE_ERROR)
2433                 return;
2434
2435         if (ctx->is_active)
2436                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2437
2438         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2439
2440         if (!ctx->is_active)
2441                 return;
2442
2443         if (!event_filter_match(event)) {
2444                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2445                 return;
2446         }
2447
2448         /*
2449          * If the event is in a group and isn't the group leader,
2450          * then don't put it on unless the group is on.
2451          */
2452         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2453                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2454                 return;
2455         }
2456
2457         task_ctx = cpuctx->task_ctx;
2458         if (ctx->task)
2459                 WARN_ON_ONCE(task_ctx != ctx);
2460
2461         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2462 }
2463
2464 /*
2465  * Enable a event.
2466  *
2467  * If event->ctx is a cloned context, callers must make sure that
2468  * every task struct that event->ctx->task could possibly point to
2469  * remains valid.  This condition is satisfied when called through
2470  * perf_event_for_each_child or perf_event_for_each as described
2471  * for perf_event_disable.
2472  */
2473 static void _perf_event_enable(struct perf_event *event)
2474 {
2475         struct perf_event_context *ctx = event->ctx;
2476
2477         raw_spin_lock_irq(&ctx->lock);
2478         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2479             event->state <  PERF_EVENT_STATE_ERROR) {
2480                 raw_spin_unlock_irq(&ctx->lock);
2481                 return;
2482         }
2483
2484         /*
2485          * If the event is in error state, clear that first.
2486          *
2487          * That way, if we see the event in error state below, we know that it
2488          * has gone back into error state, as distinct from the task having
2489          * been scheduled away before the cross-call arrived.
2490          */
2491         if (event->state == PERF_EVENT_STATE_ERROR)
2492                 event->state = PERF_EVENT_STATE_OFF;
2493         raw_spin_unlock_irq(&ctx->lock);
2494
2495         event_function_call(event, __perf_event_enable, NULL);
2496 }
2497
2498 /*
2499  * See perf_event_disable();
2500  */
2501 void perf_event_enable(struct perf_event *event)
2502 {
2503         struct perf_event_context *ctx;
2504
2505         ctx = perf_event_ctx_lock(event);
2506         _perf_event_enable(event);
2507         perf_event_ctx_unlock(event, ctx);
2508 }
2509 EXPORT_SYMBOL_GPL(perf_event_enable);
2510
2511 struct stop_event_data {
2512         struct perf_event       *event;
2513         unsigned int            restart;
2514 };
2515
2516 static int __perf_event_stop(void *info)
2517 {
2518         struct stop_event_data *sd = info;
2519         struct perf_event *event = sd->event;
2520
2521         /* if it's already INACTIVE, do nothing */
2522         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2523                 return 0;
2524
2525         /* matches smp_wmb() in event_sched_in() */
2526         smp_rmb();
2527
2528         /*
2529          * There is a window with interrupts enabled before we get here,
2530          * so we need to check again lest we try to stop another CPU's event.
2531          */
2532         if (READ_ONCE(event->oncpu) != smp_processor_id())
2533                 return -EAGAIN;
2534
2535         event->pmu->stop(event, PERF_EF_UPDATE);
2536
2537         /*
2538          * May race with the actual stop (through perf_pmu_output_stop()),
2539          * but it is only used for events with AUX ring buffer, and such
2540          * events will refuse to restart because of rb::aux_mmap_count==0,
2541          * see comments in perf_aux_output_begin().
2542          *
2543          * Since this is happening on a event-local CPU, no trace is lost
2544          * while restarting.
2545          */
2546         if (sd->restart)
2547                 event->pmu->start(event, 0);
2548
2549         return 0;
2550 }
2551
2552 static int perf_event_stop(struct perf_event *event, int restart)
2553 {
2554         struct stop_event_data sd = {
2555                 .event          = event,
2556                 .restart        = restart,
2557         };
2558         int ret = 0;
2559
2560         do {
2561                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2562                         return 0;
2563
2564                 /* matches smp_wmb() in event_sched_in() */
2565                 smp_rmb();
2566
2567                 /*
2568                  * We only want to restart ACTIVE events, so if the event goes
2569                  * inactive here (event->oncpu==-1), there's nothing more to do;
2570                  * fall through with ret==-ENXIO.
2571                  */
2572                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2573                                         __perf_event_stop, &sd);
2574         } while (ret == -EAGAIN);
2575
2576         return ret;
2577 }
2578
2579 /*
2580  * In order to contain the amount of racy and tricky in the address filter
2581  * configuration management, it is a two part process:
2582  *
2583  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2584  *      we update the addresses of corresponding vmas in
2585  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2586  * (p2) when an event is scheduled in (pmu::add), it calls
2587  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2588  *      if the generation has changed since the previous call.
2589  *
2590  * If (p1) happens while the event is active, we restart it to force (p2).
2591  *
2592  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2593  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2594  *     ioctl;
2595  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2596  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2597  *     for reading;
2598  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2599  *     of exec.
2600  */
2601 void perf_event_addr_filters_sync(struct perf_event *event)
2602 {
2603         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2604
2605         if (!has_addr_filter(event))
2606                 return;
2607
2608         raw_spin_lock(&ifh->lock);
2609         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2610                 event->pmu->addr_filters_sync(event);
2611                 event->hw.addr_filters_gen = event->addr_filters_gen;
2612         }
2613         raw_spin_unlock(&ifh->lock);
2614 }
2615 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2616
2617 static int _perf_event_refresh(struct perf_event *event, int refresh)
2618 {
2619         /*
2620          * not supported on inherited events
2621          */
2622         if (event->attr.inherit || !is_sampling_event(event))
2623                 return -EINVAL;
2624
2625         atomic_add(refresh, &event->event_limit);
2626         _perf_event_enable(event);
2627
2628         return 0;
2629 }
2630
2631 /*
2632  * See perf_event_disable()
2633  */
2634 int perf_event_refresh(struct perf_event *event, int refresh)
2635 {
2636         struct perf_event_context *ctx;
2637         int ret;
2638
2639         ctx = perf_event_ctx_lock(event);
2640         ret = _perf_event_refresh(event, refresh);
2641         perf_event_ctx_unlock(event, ctx);
2642
2643         return ret;
2644 }
2645 EXPORT_SYMBOL_GPL(perf_event_refresh);
2646
2647 static void ctx_sched_out(struct perf_event_context *ctx,
2648                           struct perf_cpu_context *cpuctx,
2649                           enum event_type_t event_type)
2650 {
2651         int is_active = ctx->is_active;
2652         struct perf_event *event;
2653
2654         lockdep_assert_held(&ctx->lock);
2655
2656         if (likely(!ctx->nr_events)) {
2657                 /*
2658                  * See __perf_remove_from_context().
2659                  */
2660                 WARN_ON_ONCE(ctx->is_active);
2661                 if (ctx->task)
2662                         WARN_ON_ONCE(cpuctx->task_ctx);
2663                 return;
2664         }
2665
2666         ctx->is_active &= ~event_type;
2667         if (!(ctx->is_active & EVENT_ALL))
2668                 ctx->is_active = 0;
2669
2670         if (ctx->task) {
2671                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2672                 if (!ctx->is_active)
2673                         cpuctx->task_ctx = NULL;
2674         }
2675
2676         /*
2677          * Always update time if it was set; not only when it changes.
2678          * Otherwise we can 'forget' to update time for any but the last
2679          * context we sched out. For example:
2680          *
2681          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2682          *   ctx_sched_out(.event_type = EVENT_PINNED)
2683          *
2684          * would only update time for the pinned events.
2685          */
2686         if (is_active & EVENT_TIME) {
2687                 /* update (and stop) ctx time */
2688                 update_context_time(ctx);
2689                 update_cgrp_time_from_cpuctx(cpuctx);
2690         }
2691
2692         is_active ^= ctx->is_active; /* changed bits */
2693
2694         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2695                 return;
2696
2697         perf_pmu_disable(ctx->pmu);
2698         if (is_active & EVENT_PINNED) {
2699                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2700                         group_sched_out(event, cpuctx, ctx);
2701         }
2702
2703         if (is_active & EVENT_FLEXIBLE) {
2704                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2705                         group_sched_out(event, cpuctx, ctx);
2706         }
2707         perf_pmu_enable(ctx->pmu);
2708 }
2709
2710 /*
2711  * Test whether two contexts are equivalent, i.e. whether they have both been
2712  * cloned from the same version of the same context.
2713  *
2714  * Equivalence is measured using a generation number in the context that is
2715  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2716  * and list_del_event().
2717  */
2718 static int context_equiv(struct perf_event_context *ctx1,
2719                          struct perf_event_context *ctx2)
2720 {
2721         lockdep_assert_held(&ctx1->lock);
2722         lockdep_assert_held(&ctx2->lock);
2723
2724         /* Pinning disables the swap optimization */
2725         if (ctx1->pin_count || ctx2->pin_count)
2726                 return 0;
2727
2728         /* If ctx1 is the parent of ctx2 */
2729         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2730                 return 1;
2731
2732         /* If ctx2 is the parent of ctx1 */
2733         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2734                 return 1;
2735
2736         /*
2737          * If ctx1 and ctx2 have the same parent; we flatten the parent
2738          * hierarchy, see perf_event_init_context().
2739          */
2740         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2741                         ctx1->parent_gen == ctx2->parent_gen)
2742                 return 1;
2743
2744         /* Unmatched */
2745         return 0;
2746 }
2747
2748 static void __perf_event_sync_stat(struct perf_event *event,
2749                                      struct perf_event *next_event)
2750 {
2751         u64 value;
2752
2753         if (!event->attr.inherit_stat)
2754                 return;
2755
2756         /*
2757          * Update the event value, we cannot use perf_event_read()
2758          * because we're in the middle of a context switch and have IRQs
2759          * disabled, which upsets smp_call_function_single(), however
2760          * we know the event must be on the current CPU, therefore we
2761          * don't need to use it.
2762          */
2763         if (event->state == PERF_EVENT_STATE_ACTIVE)
2764                 event->pmu->read(event);
2765
2766         perf_event_update_time(event);
2767
2768         /*
2769          * In order to keep per-task stats reliable we need to flip the event
2770          * values when we flip the contexts.
2771          */
2772         value = local64_read(&next_event->count);
2773         value = local64_xchg(&event->count, value);
2774         local64_set(&next_event->count, value);
2775
2776         swap(event->total_time_enabled, next_event->total_time_enabled);
2777         swap(event->total_time_running, next_event->total_time_running);
2778
2779         /*
2780          * Since we swizzled the values, update the user visible data too.
2781          */
2782         perf_event_update_userpage(event);
2783         perf_event_update_userpage(next_event);
2784 }
2785
2786 static void perf_event_sync_stat(struct perf_event_context *ctx,
2787                                    struct perf_event_context *next_ctx)
2788 {
2789         struct perf_event *event, *next_event;
2790
2791         if (!ctx->nr_stat)
2792                 return;
2793
2794         update_context_time(ctx);
2795
2796         event = list_first_entry(&ctx->event_list,
2797                                    struct perf_event, event_entry);
2798
2799         next_event = list_first_entry(&next_ctx->event_list,
2800                                         struct perf_event, event_entry);
2801
2802         while (&event->event_entry != &ctx->event_list &&
2803                &next_event->event_entry != &next_ctx->event_list) {
2804
2805                 __perf_event_sync_stat(event, next_event);
2806
2807                 event = list_next_entry(event, event_entry);
2808                 next_event = list_next_entry(next_event, event_entry);
2809         }
2810 }
2811
2812 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2813                                          struct task_struct *next)
2814 {
2815         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2816         struct perf_event_context *next_ctx;
2817         struct perf_event_context *parent, *next_parent;
2818         struct perf_cpu_context *cpuctx;
2819         int do_switch = 1;
2820
2821         if (likely(!ctx))
2822                 return;
2823
2824         cpuctx = __get_cpu_context(ctx);
2825         if (!cpuctx->task_ctx)
2826                 return;
2827
2828         rcu_read_lock();
2829         next_ctx = next->perf_event_ctxp[ctxn];
2830         if (!next_ctx)
2831                 goto unlock;
2832
2833         parent = rcu_dereference(ctx->parent_ctx);
2834         next_parent = rcu_dereference(next_ctx->parent_ctx);
2835
2836         /* If neither context have a parent context; they cannot be clones. */
2837         if (!parent && !next_parent)
2838                 goto unlock;
2839
2840         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2841                 /*
2842                  * Looks like the two contexts are clones, so we might be
2843                  * able to optimize the context switch.  We lock both
2844                  * contexts and check that they are clones under the
2845                  * lock (including re-checking that neither has been
2846                  * uncloned in the meantime).  It doesn't matter which
2847                  * order we take the locks because no other cpu could
2848                  * be trying to lock both of these tasks.
2849                  */
2850                 raw_spin_lock(&ctx->lock);
2851                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2852                 if (context_equiv(ctx, next_ctx)) {
2853                         WRITE_ONCE(ctx->task, next);
2854                         WRITE_ONCE(next_ctx->task, task);
2855
2856                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2857
2858                         /*
2859                          * RCU_INIT_POINTER here is safe because we've not
2860                          * modified the ctx and the above modification of
2861                          * ctx->task and ctx->task_ctx_data are immaterial
2862                          * since those values are always verified under
2863                          * ctx->lock which we're now holding.
2864                          */
2865                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2866                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2867
2868                         do_switch = 0;
2869
2870                         perf_event_sync_stat(ctx, next_ctx);
2871                 }
2872                 raw_spin_unlock(&next_ctx->lock);
2873                 raw_spin_unlock(&ctx->lock);
2874         }
2875 unlock:
2876         rcu_read_unlock();
2877
2878         if (do_switch) {
2879                 raw_spin_lock(&ctx->lock);
2880                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2881                 raw_spin_unlock(&ctx->lock);
2882         }
2883 }
2884
2885 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2886
2887 void perf_sched_cb_dec(struct pmu *pmu)
2888 {
2889         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2890
2891         this_cpu_dec(perf_sched_cb_usages);
2892
2893         if (!--cpuctx->sched_cb_usage)
2894                 list_del(&cpuctx->sched_cb_entry);
2895 }
2896
2897
2898 void perf_sched_cb_inc(struct pmu *pmu)
2899 {
2900         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2901
2902         if (!cpuctx->sched_cb_usage++)
2903                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2904
2905         this_cpu_inc(perf_sched_cb_usages);
2906 }
2907
2908 /*
2909  * This function provides the context switch callback to the lower code
2910  * layer. It is invoked ONLY when the context switch callback is enabled.
2911  *
2912  * This callback is relevant even to per-cpu events; for example multi event
2913  * PEBS requires this to provide PID/TID information. This requires we flush
2914  * all queued PEBS records before we context switch to a new task.
2915  */
2916 static void perf_pmu_sched_task(struct task_struct *prev,
2917                                 struct task_struct *next,
2918                                 bool sched_in)
2919 {
2920         struct perf_cpu_context *cpuctx;
2921         struct pmu *pmu;
2922
2923         if (prev == next)
2924                 return;
2925
2926         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2927                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2928
2929                 if (WARN_ON_ONCE(!pmu->sched_task))
2930                         continue;
2931
2932                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2933                 perf_pmu_disable(pmu);
2934
2935                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2936
2937                 perf_pmu_enable(pmu);
2938                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2939         }
2940 }
2941
2942 static void perf_event_switch(struct task_struct *task,
2943                               struct task_struct *next_prev, bool sched_in);
2944
2945 #define for_each_task_context_nr(ctxn)                                  \
2946         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2947
2948 /*
2949  * Called from scheduler to remove the events of the current task,
2950  * with interrupts disabled.
2951  *
2952  * We stop each event and update the event value in event->count.
2953  *
2954  * This does not protect us against NMI, but disable()
2955  * sets the disabled bit in the control field of event _before_
2956  * accessing the event control register. If a NMI hits, then it will
2957  * not restart the event.
2958  */
2959 void __perf_event_task_sched_out(struct task_struct *task,
2960                                  struct task_struct *next)
2961 {
2962         int ctxn;
2963
2964         if (__this_cpu_read(perf_sched_cb_usages))
2965                 perf_pmu_sched_task(task, next, false);
2966
2967         if (atomic_read(&nr_switch_events))
2968                 perf_event_switch(task, next, false);
2969
2970         for_each_task_context_nr(ctxn)
2971                 perf_event_context_sched_out(task, ctxn, next);
2972
2973         /*
2974          * if cgroup events exist on this CPU, then we need
2975          * to check if we have to switch out PMU state.
2976          * cgroup event are system-wide mode only
2977          */
2978         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2979                 perf_cgroup_sched_out(task, next);
2980 }
2981
2982 /*
2983  * Called with IRQs disabled
2984  */
2985 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2986                               enum event_type_t event_type)
2987 {
2988         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2989 }
2990
2991 static void
2992 ctx_pinned_sched_in(struct perf_event_context *ctx,
2993                     struct perf_cpu_context *cpuctx)
2994 {
2995         struct perf_event *event;
2996
2997         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2998                 if (event->state <= PERF_EVENT_STATE_OFF)
2999                         continue;
3000                 if (!event_filter_match(event))
3001                         continue;
3002
3003                 if (group_can_go_on(event, cpuctx, 1))
3004                         group_sched_in(event, cpuctx, ctx);
3005
3006                 /*
3007                  * If this pinned group hasn't been scheduled,
3008                  * put it in error state.
3009                  */
3010                 if (event->state == PERF_EVENT_STATE_INACTIVE)
3011                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3012         }
3013 }
3014
3015 static void
3016 ctx_flexible_sched_in(struct perf_event_context *ctx,
3017                       struct perf_cpu_context *cpuctx)
3018 {
3019         struct perf_event *event;
3020         int can_add_hw = 1;
3021
3022         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3023                 /* Ignore events in OFF or ERROR state */
3024                 if (event->state <= PERF_EVENT_STATE_OFF)
3025                         continue;
3026                 /*
3027                  * Listen to the 'cpu' scheduling filter constraint
3028                  * of events:
3029                  */
3030                 if (!event_filter_match(event))
3031                         continue;
3032
3033                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3034                         if (group_sched_in(event, cpuctx, ctx))
3035                                 can_add_hw = 0;
3036                 }
3037         }
3038 }
3039
3040 static void
3041 ctx_sched_in(struct perf_event_context *ctx,
3042              struct perf_cpu_context *cpuctx,
3043              enum event_type_t event_type,
3044              struct task_struct *task)
3045 {
3046         int is_active = ctx->is_active;
3047         u64 now;
3048
3049         lockdep_assert_held(&ctx->lock);
3050
3051         if (likely(!ctx->nr_events))
3052                 return;
3053
3054         ctx->is_active |= (event_type | EVENT_TIME);
3055         if (ctx->task) {
3056                 if (!is_active)
3057                         cpuctx->task_ctx = ctx;
3058                 else
3059                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3060         }
3061
3062         is_active ^= ctx->is_active; /* changed bits */
3063
3064         if (is_active & EVENT_TIME) {
3065                 /* start ctx time */
3066                 now = perf_clock();
3067                 ctx->timestamp = now;
3068                 perf_cgroup_set_timestamp(task, ctx);
3069         }
3070
3071         /*
3072          * First go through the list and put on any pinned groups
3073          * in order to give them the best chance of going on.
3074          */
3075         if (is_active & EVENT_PINNED)
3076                 ctx_pinned_sched_in(ctx, cpuctx);
3077
3078         /* Then walk through the lower prio flexible groups */
3079         if (is_active & EVENT_FLEXIBLE)
3080                 ctx_flexible_sched_in(ctx, cpuctx);
3081 }
3082
3083 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3084                              enum event_type_t event_type,
3085                              struct task_struct *task)
3086 {
3087         struct perf_event_context *ctx = &cpuctx->ctx;
3088
3089         ctx_sched_in(ctx, cpuctx, event_type, task);
3090 }
3091
3092 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3093                                         struct task_struct *task)
3094 {
3095         struct perf_cpu_context *cpuctx;
3096
3097         cpuctx = __get_cpu_context(ctx);
3098         if (cpuctx->task_ctx == ctx)
3099                 return;
3100
3101         perf_ctx_lock(cpuctx, ctx);
3102         /*
3103          * We must check ctx->nr_events while holding ctx->lock, such
3104          * that we serialize against perf_install_in_context().
3105          */
3106         if (!ctx->nr_events)
3107                 goto unlock;
3108
3109         perf_pmu_disable(ctx->pmu);
3110         /*
3111          * We want to keep the following priority order:
3112          * cpu pinned (that don't need to move), task pinned,
3113          * cpu flexible, task flexible.
3114          *
3115          * However, if task's ctx is not carrying any pinned
3116          * events, no need to flip the cpuctx's events around.
3117          */
3118         if (!list_empty(&ctx->pinned_groups))
3119                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3120         perf_event_sched_in(cpuctx, ctx, task);
3121         perf_pmu_enable(ctx->pmu);
3122
3123 unlock:
3124         perf_ctx_unlock(cpuctx, ctx);
3125 }
3126
3127 /*
3128  * Called from scheduler to add the events of the current task
3129  * with interrupts disabled.
3130  *
3131  * We restore the event value and then enable it.
3132  *
3133  * This does not protect us against NMI, but enable()
3134  * sets the enabled bit in the control field of event _before_
3135  * accessing the event control register. If a NMI hits, then it will
3136  * keep the event running.
3137  */
3138 void __perf_event_task_sched_in(struct task_struct *prev,
3139                                 struct task_struct *task)
3140 {
3141         struct perf_event_context *ctx;
3142         int ctxn;
3143
3144         /*
3145          * If cgroup events exist on this CPU, then we need to check if we have
3146          * to switch in PMU state; cgroup event are system-wide mode only.
3147          *
3148          * Since cgroup events are CPU events, we must schedule these in before
3149          * we schedule in the task events.
3150          */
3151         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3152                 perf_cgroup_sched_in(prev, task);
3153
3154         for_each_task_context_nr(ctxn) {
3155                 ctx = task->perf_event_ctxp[ctxn];
3156                 if (likely(!ctx))
3157                         continue;
3158
3159                 perf_event_context_sched_in(ctx, task);
3160         }
3161
3162         if (atomic_read(&nr_switch_events))
3163                 perf_event_switch(task, prev, true);
3164
3165         if (__this_cpu_read(perf_sched_cb_usages))
3166                 perf_pmu_sched_task(prev, task, true);
3167 }
3168
3169 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3170 {
3171         u64 frequency = event->attr.sample_freq;
3172         u64 sec = NSEC_PER_SEC;
3173         u64 divisor, dividend;
3174
3175         int count_fls, nsec_fls, frequency_fls, sec_fls;
3176
3177         count_fls = fls64(count);
3178         nsec_fls = fls64(nsec);
3179         frequency_fls = fls64(frequency);
3180         sec_fls = 30;
3181
3182         /*
3183          * We got @count in @nsec, with a target of sample_freq HZ
3184          * the target period becomes:
3185          *
3186          *             @count * 10^9
3187          * period = -------------------
3188          *          @nsec * sample_freq
3189          *
3190          */
3191
3192         /*
3193          * Reduce accuracy by one bit such that @a and @b converge
3194          * to a similar magnitude.
3195          */
3196 #define REDUCE_FLS(a, b)                \
3197 do {                                    \
3198         if (a##_fls > b##_fls) {        \
3199                 a >>= 1;                \
3200                 a##_fls--;              \
3201         } else {                        \
3202                 b >>= 1;                \
3203                 b##_fls--;              \
3204         }                               \
3205 } while (0)
3206
3207         /*
3208          * Reduce accuracy until either term fits in a u64, then proceed with
3209          * the other, so that finally we can do a u64/u64 division.
3210          */
3211         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3212                 REDUCE_FLS(nsec, frequency);
3213                 REDUCE_FLS(sec, count);
3214         }
3215
3216         if (count_fls + sec_fls > 64) {
3217                 divisor = nsec * frequency;
3218
3219                 while (count_fls + sec_fls > 64) {
3220                         REDUCE_FLS(count, sec);
3221                         divisor >>= 1;
3222                 }
3223
3224                 dividend = count * sec;
3225         } else {
3226                 dividend = count * sec;
3227
3228                 while (nsec_fls + frequency_fls > 64) {
3229                         REDUCE_FLS(nsec, frequency);
3230                         dividend >>= 1;
3231                 }
3232
3233                 divisor = nsec * frequency;
3234         }
3235
3236         if (!divisor)
3237                 return dividend;
3238
3239         return div64_u64(dividend, divisor);
3240 }
3241
3242 static DEFINE_PER_CPU(int, perf_throttled_count);
3243 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3244
3245 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3246 {
3247         struct hw_perf_event *hwc = &event->hw;
3248         s64 period, sample_period;
3249         s64 delta;
3250
3251         period = perf_calculate_period(event, nsec, count);
3252
3253         delta = (s64)(period - hwc->sample_period);
3254         delta = (delta + 7) / 8; /* low pass filter */
3255
3256         sample_period = hwc->sample_period + delta;
3257
3258         if (!sample_period)
3259                 sample_period = 1;
3260
3261         hwc->sample_period = sample_period;
3262
3263         if (local64_read(&hwc->period_left) > 8*sample_period) {
3264                 if (disable)
3265                         event->pmu->stop(event, PERF_EF_UPDATE);
3266
3267                 local64_set(&hwc->period_left, 0);
3268
3269                 if (disable)
3270                         event->pmu->start(event, PERF_EF_RELOAD);
3271         }
3272 }
3273
3274 /*
3275  * combine freq adjustment with unthrottling to avoid two passes over the
3276  * events. At the same time, make sure, having freq events does not change
3277  * the rate of unthrottling as that would introduce bias.
3278  */
3279 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3280                                            int needs_unthr)
3281 {
3282         struct perf_event *event;
3283         struct hw_perf_event *hwc;
3284         u64 now, period = TICK_NSEC;
3285         s64 delta;
3286
3287         /*
3288          * only need to iterate over all events iff:
3289          * - context have events in frequency mode (needs freq adjust)
3290          * - there are events to unthrottle on this cpu
3291          */
3292         if (!(ctx->nr_freq || needs_unthr))
3293                 return;
3294
3295         raw_spin_lock(&ctx->lock);
3296         perf_pmu_disable(ctx->pmu);
3297
3298         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3299                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3300                         continue;
3301
3302                 if (!event_filter_match(event))
3303                         continue;
3304
3305                 perf_pmu_disable(event->pmu);
3306
3307                 hwc = &event->hw;
3308
3309                 if (hwc->interrupts == MAX_INTERRUPTS) {
3310                         hwc->interrupts = 0;
3311                         perf_log_throttle(event, 1);
3312                         event->pmu->start(event, 0);
3313                 }
3314
3315                 if (!event->attr.freq || !event->attr.sample_freq)
3316                         goto next;
3317
3318                 /*
3319                  * stop the event and update event->count
3320                  */
3321                 event->pmu->stop(event, PERF_EF_UPDATE);
3322
3323                 now = local64_read(&event->count);
3324                 delta = now - hwc->freq_count_stamp;
3325                 hwc->freq_count_stamp = now;
3326
3327                 /*
3328                  * restart the event
3329                  * reload only if value has changed
3330                  * we have stopped the event so tell that
3331                  * to perf_adjust_period() to avoid stopping it
3332                  * twice.
3333                  */
3334                 if (delta > 0)
3335                         perf_adjust_period(event, period, delta, false);
3336
3337                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3338         next:
3339                 perf_pmu_enable(event->pmu);
3340         }
3341
3342         perf_pmu_enable(ctx->pmu);
3343         raw_spin_unlock(&ctx->lock);
3344 }
3345
3346 /*
3347  * Round-robin a context's events:
3348  */
3349 static void rotate_ctx(struct perf_event_context *ctx)
3350 {
3351         /*
3352          * Rotate the first entry last of non-pinned groups. Rotation might be
3353          * disabled by the inheritance code.
3354          */
3355         if (!ctx->rotate_disable)
3356                 list_rotate_left(&ctx->flexible_groups);
3357 }
3358
3359 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3360 {
3361         struct perf_event_context *ctx = NULL;
3362         int rotate = 0;
3363
3364         if (cpuctx->ctx.nr_events) {
3365                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3366                         rotate = 1;
3367         }
3368
3369         ctx = cpuctx->task_ctx;
3370         if (ctx && ctx->nr_events) {
3371                 if (ctx->nr_events != ctx->nr_active)
3372                         rotate = 1;
3373         }
3374
3375         if (!rotate)
3376                 goto done;
3377
3378         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3379         perf_pmu_disable(cpuctx->ctx.pmu);
3380
3381         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3382         if (ctx)
3383                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3384
3385         rotate_ctx(&cpuctx->ctx);
3386         if (ctx)
3387                 rotate_ctx(ctx);
3388
3389         perf_event_sched_in(cpuctx, ctx, current);
3390
3391         perf_pmu_enable(cpuctx->ctx.pmu);
3392         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3393 done:
3394
3395         return rotate;
3396 }
3397
3398 void perf_event_task_tick(void)
3399 {
3400         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3401         struct perf_event_context *ctx, *tmp;
3402         int throttled;
3403
3404         lockdep_assert_irqs_disabled();
3405
3406         __this_cpu_inc(perf_throttled_seq);
3407         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3408         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3409
3410         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3411                 perf_adjust_freq_unthr_context(ctx, throttled);
3412 }
3413
3414 static int event_enable_on_exec(struct perf_event *event,
3415                                 struct perf_event_context *ctx)
3416 {
3417         if (!event->attr.enable_on_exec)
3418                 return 0;
3419
3420         event->attr.enable_on_exec = 0;
3421         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3422                 return 0;
3423
3424         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3425
3426         return 1;
3427 }
3428
3429 /*
3430  * Enable all of a task's events that have been marked enable-on-exec.
3431  * This expects task == current.
3432  */
3433 static void perf_event_enable_on_exec(int ctxn)
3434 {
3435         struct perf_event_context *ctx, *clone_ctx = NULL;
3436         enum event_type_t event_type = 0;
3437         struct perf_cpu_context *cpuctx;
3438         struct perf_event *event;
3439         unsigned long flags;
3440         int enabled = 0;
3441
3442         local_irq_save(flags);
3443         ctx = current->perf_event_ctxp[ctxn];
3444         if (!ctx || !ctx->nr_events)
3445                 goto out;
3446
3447         cpuctx = __get_cpu_context(ctx);
3448         perf_ctx_lock(cpuctx, ctx);
3449         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3450         list_for_each_entry(event, &ctx->event_list, event_entry) {
3451                 enabled |= event_enable_on_exec(event, ctx);
3452                 event_type |= get_event_type(event);
3453         }
3454
3455         /*
3456          * Unclone and reschedule this context if we enabled any event.
3457          */
3458         if (enabled) {
3459                 clone_ctx = unclone_ctx(ctx);
3460                 ctx_resched(cpuctx, ctx, event_type);
3461         } else {
3462                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3463         }
3464         perf_ctx_unlock(cpuctx, ctx);
3465
3466 out:
3467         local_irq_restore(flags);
3468
3469         if (clone_ctx)
3470                 put_ctx(clone_ctx);
3471 }
3472
3473 struct perf_read_data {
3474         struct perf_event *event;
3475         bool group;
3476         int ret;
3477 };
3478
3479 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3480 {
3481         u16 local_pkg, event_pkg;
3482
3483         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3484                 int local_cpu = smp_processor_id();
3485
3486                 event_pkg = topology_physical_package_id(event_cpu);
3487                 local_pkg = topology_physical_package_id(local_cpu);
3488
3489                 if (event_pkg == local_pkg)
3490                         return local_cpu;
3491         }
3492
3493         return event_cpu;
3494 }
3495
3496 /*
3497  * Cross CPU call to read the hardware event
3498  */
3499 static void __perf_event_read(void *info)
3500 {
3501         struct perf_read_data *data = info;
3502         struct perf_event *sub, *event = data->event;
3503         struct perf_event_context *ctx = event->ctx;
3504         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3505         struct pmu *pmu = event->pmu;
3506
3507         /*
3508          * If this is a task context, we need to check whether it is
3509          * the current task context of this cpu.  If not it has been
3510          * scheduled out before the smp call arrived.  In that case
3511          * event->count would have been updated to a recent sample
3512          * when the event was scheduled out.
3513          */
3514         if (ctx->task && cpuctx->task_ctx != ctx)
3515                 return;
3516
3517         raw_spin_lock(&ctx->lock);
3518         if (ctx->is_active & EVENT_TIME) {
3519                 update_context_time(ctx);
3520                 update_cgrp_time_from_event(event);
3521         }
3522
3523         perf_event_update_time(event);
3524         if (data->group)
3525                 perf_event_update_sibling_time(event);
3526
3527         if (event->state != PERF_EVENT_STATE_ACTIVE)
3528                 goto unlock;
3529
3530         if (!data->group) {
3531                 pmu->read(event);
3532                 data->ret = 0;
3533                 goto unlock;
3534         }
3535
3536         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3537
3538         pmu->read(event);
3539
3540         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3541                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3542                         /*
3543                          * Use sibling's PMU rather than @event's since
3544                          * sibling could be on different (eg: software) PMU.
3545                          */
3546                         sub->pmu->read(sub);
3547                 }
3548         }
3549
3550         data->ret = pmu->commit_txn(pmu);
3551
3552 unlock:
3553         raw_spin_unlock(&ctx->lock);
3554 }
3555
3556 static inline u64 perf_event_count(struct perf_event *event)
3557 {
3558         return local64_read(&event->count) + atomic64_read(&event->child_count);
3559 }
3560
3561 /*
3562  * NMI-safe method to read a local event, that is an event that
3563  * is:
3564  *   - either for the current task, or for this CPU
3565  *   - does not have inherit set, for inherited task events
3566  *     will not be local and we cannot read them atomically
3567  *   - must not have a pmu::count method
3568  */
3569 int perf_event_read_local(struct perf_event *event, u64 *value,
3570                           u64 *enabled, u64 *running)
3571 {
3572         unsigned long flags;
3573         int ret = 0;
3574
3575         /*
3576          * Disabling interrupts avoids all counter scheduling (context
3577          * switches, timer based rotation and IPIs).
3578          */
3579         local_irq_save(flags);
3580
3581         /*
3582          * It must not be an event with inherit set, we cannot read
3583          * all child counters from atomic context.
3584          */
3585         if (event->attr.inherit) {
3586                 ret = -EOPNOTSUPP;
3587                 goto out;
3588         }
3589
3590         /* If this is a per-task event, it must be for current */
3591         if ((event->attach_state & PERF_ATTACH_TASK) &&
3592             event->hw.target != current) {
3593                 ret = -EINVAL;
3594                 goto out;
3595         }
3596
3597         /* If this is a per-CPU event, it must be for this CPU */
3598         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3599             event->cpu != smp_processor_id()) {
3600                 ret = -EINVAL;
3601                 goto out;
3602         }
3603
3604         /*
3605          * If the event is currently on this CPU, its either a per-task event,
3606          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3607          * oncpu == -1).
3608          */
3609         if (event->oncpu == smp_processor_id())
3610                 event->pmu->read(event);
3611
3612         *value = local64_read(&event->count);
3613         if (enabled || running) {
3614                 u64 now = event->shadow_ctx_time + perf_clock();
3615                 u64 __enabled, __running;
3616
3617                 __perf_update_times(event, now, &__enabled, &__running);
3618                 if (enabled)
3619                         *enabled = __enabled;
3620                 if (running)
3621                         *running = __running;
3622         }
3623 out:
3624         local_irq_restore(flags);
3625
3626         return ret;
3627 }
3628
3629 static int perf_event_read(struct perf_event *event, bool group)
3630 {
3631         enum perf_event_state state = READ_ONCE(event->state);
3632         int event_cpu, ret = 0;
3633
3634         /*
3635          * If event is enabled and currently active on a CPU, update the
3636          * value in the event structure:
3637          */
3638 again:
3639         if (state == PERF_EVENT_STATE_ACTIVE) {
3640                 struct perf_read_data data;
3641
3642                 /*
3643                  * Orders the ->state and ->oncpu loads such that if we see
3644                  * ACTIVE we must also see the right ->oncpu.
3645                  *
3646                  * Matches the smp_wmb() from event_sched_in().
3647                  */
3648                 smp_rmb();
3649
3650                 event_cpu = READ_ONCE(event->oncpu);
3651                 if ((unsigned)event_cpu >= nr_cpu_ids)
3652                         return 0;
3653
3654                 data = (struct perf_read_data){
3655                         .event = event,
3656                         .group = group,
3657                         .ret = 0,
3658                 };
3659
3660                 preempt_disable();
3661                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3662
3663                 /*
3664                  * Purposely ignore the smp_call_function_single() return
3665                  * value.
3666                  *
3667                  * If event_cpu isn't a valid CPU it means the event got
3668                  * scheduled out and that will have updated the event count.
3669                  *
3670                  * Therefore, either way, we'll have an up-to-date event count
3671                  * after this.
3672                  */
3673                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3674                 preempt_enable();
3675                 ret = data.ret;
3676
3677         } else if (state == PERF_EVENT_STATE_INACTIVE) {
3678                 struct perf_event_context *ctx = event->ctx;
3679                 unsigned long flags;
3680
3681                 raw_spin_lock_irqsave(&ctx->lock, flags);
3682                 state = event->state;
3683                 if (state != PERF_EVENT_STATE_INACTIVE) {
3684                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
3685                         goto again;
3686                 }
3687
3688                 /*
3689                  * May read while context is not active (e.g., thread is
3690                  * blocked), in that case we cannot update context time
3691                  */
3692                 if (ctx->is_active & EVENT_TIME) {
3693                         update_context_time(ctx);
3694                         update_cgrp_time_from_event(event);
3695                 }
3696
3697                 perf_event_update_time(event);
3698                 if (group)
3699                         perf_event_update_sibling_time(event);
3700                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3701         }
3702
3703         return ret;
3704 }
3705
3706 /*
3707  * Initialize the perf_event context in a task_struct:
3708  */
3709 static void __perf_event_init_context(struct perf_event_context *ctx)
3710 {
3711         raw_spin_lock_init(&ctx->lock);
3712         mutex_init(&ctx->mutex);
3713         INIT_LIST_HEAD(&ctx->active_ctx_list);
3714         INIT_LIST_HEAD(&ctx->pinned_groups);
3715         INIT_LIST_HEAD(&ctx->flexible_groups);
3716         INIT_LIST_HEAD(&ctx->event_list);
3717         atomic_set(&ctx->refcount, 1);
3718 }
3719
3720 static struct perf_event_context *
3721 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3722 {
3723         struct perf_event_context *ctx;
3724
3725         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3726         if (!ctx)
3727                 return NULL;
3728
3729         __perf_event_init_context(ctx);
3730         if (task) {
3731                 ctx->task = task;
3732                 get_task_struct(task);
3733         }
3734         ctx->pmu = pmu;
3735
3736         return ctx;
3737 }
3738
3739 static struct task_struct *
3740 find_lively_task_by_vpid(pid_t vpid)
3741 {
3742         struct task_struct *task;
3743
3744         rcu_read_lock();
3745         if (!vpid)
3746                 task = current;
3747         else
3748                 task = find_task_by_vpid(vpid);
3749         if (task)
3750                 get_task_struct(task);
3751         rcu_read_unlock();
3752
3753         if (!task)
3754                 return ERR_PTR(-ESRCH);
3755
3756         return task;
3757 }
3758
3759 /*
3760  * Returns a matching context with refcount and pincount.
3761  */
3762 static struct perf_event_context *
3763 find_get_context(struct pmu *pmu, struct task_struct *task,
3764                 struct perf_event *event)
3765 {
3766         struct perf_event_context *ctx, *clone_ctx = NULL;
3767         struct perf_cpu_context *cpuctx;
3768         void *task_ctx_data = NULL;
3769         unsigned long flags;
3770         int ctxn, err;
3771         int cpu = event->cpu;
3772
3773         if (!task) {
3774                 /* Must be root to operate on a CPU event: */
3775                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3776                         return ERR_PTR(-EACCES);
3777
3778                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3779                 ctx = &cpuctx->ctx;
3780                 get_ctx(ctx);
3781                 ++ctx->pin_count;
3782
3783                 return ctx;
3784         }
3785
3786         err = -EINVAL;
3787         ctxn = pmu->task_ctx_nr;
3788         if (ctxn < 0)
3789                 goto errout;
3790
3791         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3792                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3793                 if (!task_ctx_data) {
3794                         err = -ENOMEM;
3795                         goto errout;
3796                 }
3797         }
3798
3799 retry:
3800         ctx = perf_lock_task_context(task, ctxn, &flags);
3801         if (ctx) {
3802                 clone_ctx = unclone_ctx(ctx);
3803                 ++ctx->pin_count;
3804
3805                 if (task_ctx_data && !ctx->task_ctx_data) {
3806                         ctx->task_ctx_data = task_ctx_data;
3807                         task_ctx_data = NULL;
3808                 }
3809                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3810
3811                 if (clone_ctx)
3812                         put_ctx(clone_ctx);
3813         } else {
3814                 ctx = alloc_perf_context(pmu, task);
3815                 err = -ENOMEM;
3816                 if (!ctx)
3817                         goto errout;
3818
3819                 if (task_ctx_data) {
3820                         ctx->task_ctx_data = task_ctx_data;
3821                         task_ctx_data = NULL;
3822                 }
3823
3824                 err = 0;
3825                 mutex_lock(&task->perf_event_mutex);
3826                 /*
3827                  * If it has already passed perf_event_exit_task().
3828                  * we must see PF_EXITING, it takes this mutex too.
3829                  */
3830                 if (task->flags & PF_EXITING)
3831                         err = -ESRCH;
3832                 else if (task->perf_event_ctxp[ctxn])
3833                         err = -EAGAIN;
3834                 else {
3835                         get_ctx(ctx);
3836                         ++ctx->pin_count;
3837                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3838                 }
3839                 mutex_unlock(&task->perf_event_mutex);
3840
3841                 if (unlikely(err)) {
3842                         put_ctx(ctx);
3843
3844                         if (err == -EAGAIN)
3845                                 goto retry;
3846                         goto errout;
3847                 }
3848         }
3849
3850         kfree(task_ctx_data);
3851         return ctx;
3852
3853 errout:
3854         kfree(task_ctx_data);
3855         return ERR_PTR(err);
3856 }
3857
3858 static void perf_event_free_filter(struct perf_event *event);
3859 static void perf_event_free_bpf_prog(struct perf_event *event);
3860
3861 static void free_event_rcu(struct rcu_head *head)
3862 {
3863         struct perf_event *event;
3864
3865         event = container_of(head, struct perf_event, rcu_head);
3866         if (event->ns)
3867                 put_pid_ns(event->ns);
3868         perf_event_free_filter(event);
3869         kfree(event);
3870 }
3871
3872 static void ring_buffer_attach(struct perf_event *event,
3873                                struct ring_buffer *rb);
3874
3875 static void detach_sb_event(struct perf_event *event)
3876 {
3877         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3878
3879         raw_spin_lock(&pel->lock);
3880         list_del_rcu(&event->sb_list);
3881         raw_spin_unlock(&pel->lock);
3882 }
3883
3884 static bool is_sb_event(struct perf_event *event)
3885 {
3886         struct perf_event_attr *attr = &event->attr;
3887
3888         if (event->parent)
3889                 return false;
3890
3891         if (event->attach_state & PERF_ATTACH_TASK)
3892                 return false;
3893
3894         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3895             attr->comm || attr->comm_exec ||
3896             attr->task ||
3897             attr->context_switch)
3898                 return true;
3899         return false;
3900 }
3901
3902 static void unaccount_pmu_sb_event(struct perf_event *event)
3903 {
3904         if (is_sb_event(event))
3905                 detach_sb_event(event);
3906 }
3907
3908 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3909 {
3910         if (event->parent)
3911                 return;
3912
3913         if (is_cgroup_event(event))
3914                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3915 }
3916
3917 #ifdef CONFIG_NO_HZ_FULL
3918 static DEFINE_SPINLOCK(nr_freq_lock);
3919 #endif
3920
3921 static void unaccount_freq_event_nohz(void)
3922 {
3923 #ifdef CONFIG_NO_HZ_FULL
3924         spin_lock(&nr_freq_lock);
3925         if (atomic_dec_and_test(&nr_freq_events))
3926                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3927         spin_unlock(&nr_freq_lock);
3928 #endif
3929 }
3930
3931 static void unaccount_freq_event(void)
3932 {
3933         if (tick_nohz_full_enabled())
3934                 unaccount_freq_event_nohz();
3935         else
3936                 atomic_dec(&nr_freq_events);
3937 }
3938
3939 static void unaccount_event(struct perf_event *event)
3940 {
3941         bool dec = false;
3942
3943         if (event->parent)
3944                 return;
3945
3946         if (event->attach_state & PERF_ATTACH_TASK)
3947                 dec = true;
3948         if (event->attr.mmap || event->attr.mmap_data)
3949                 atomic_dec(&nr_mmap_events);
3950         if (event->attr.comm)
3951                 atomic_dec(&nr_comm_events);
3952         if (event->attr.namespaces)
3953                 atomic_dec(&nr_namespaces_events);
3954         if (event->attr.task)
3955                 atomic_dec(&nr_task_events);
3956         if (event->attr.freq)
3957                 unaccount_freq_event();
3958         if (event->attr.context_switch) {
3959                 dec = true;
3960                 atomic_dec(&nr_switch_events);
3961         }
3962         if (is_cgroup_event(event))
3963                 dec = true;
3964         if (has_branch_stack(event))
3965                 dec = true;
3966
3967         if (dec) {
3968                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3969                         schedule_delayed_work(&perf_sched_work, HZ);
3970         }
3971
3972         unaccount_event_cpu(event, event->cpu);
3973
3974         unaccount_pmu_sb_event(event);
3975 }
3976
3977 static void perf_sched_delayed(struct work_struct *work)
3978 {
3979         mutex_lock(&perf_sched_mutex);
3980         if (atomic_dec_and_test(&perf_sched_count))
3981                 static_branch_disable(&perf_sched_events);
3982         mutex_unlock(&perf_sched_mutex);
3983 }
3984
3985 /*
3986  * The following implement mutual exclusion of events on "exclusive" pmus
3987  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3988  * at a time, so we disallow creating events that might conflict, namely:
3989  *
3990  *  1) cpu-wide events in the presence of per-task events,
3991  *  2) per-task events in the presence of cpu-wide events,
3992  *  3) two matching events on the same context.
3993  *
3994  * The former two cases are handled in the allocation path (perf_event_alloc(),
3995  * _free_event()), the latter -- before the first perf_install_in_context().
3996  */
3997 static int exclusive_event_init(struct perf_event *event)
3998 {
3999         struct pmu *pmu = event->pmu;
4000
4001         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4002                 return 0;
4003
4004         /*
4005          * Prevent co-existence of per-task and cpu-wide events on the
4006          * same exclusive pmu.
4007          *
4008          * Negative pmu::exclusive_cnt means there are cpu-wide
4009          * events on this "exclusive" pmu, positive means there are
4010          * per-task events.
4011          *
4012          * Since this is called in perf_event_alloc() path, event::ctx
4013          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4014          * to mean "per-task event", because unlike other attach states it
4015          * never gets cleared.
4016          */
4017         if (event->attach_state & PERF_ATTACH_TASK) {
4018                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4019                         return -EBUSY;
4020         } else {
4021                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4022                         return -EBUSY;
4023         }
4024
4025         return 0;
4026 }
4027
4028 static void exclusive_event_destroy(struct perf_event *event)
4029 {
4030         struct pmu *pmu = event->pmu;
4031
4032         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4033                 return;
4034
4035         /* see comment in exclusive_event_init() */
4036         if (event->attach_state & PERF_ATTACH_TASK)
4037                 atomic_dec(&pmu->exclusive_cnt);
4038         else
4039                 atomic_inc(&pmu->exclusive_cnt);
4040 }
4041
4042 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4043 {
4044         if ((e1->pmu == e2->pmu) &&
4045             (e1->cpu == e2->cpu ||
4046              e1->cpu == -1 ||
4047              e2->cpu == -1))
4048                 return true;
4049         return false;
4050 }
4051
4052 /* Called under the same ctx::mutex as perf_install_in_context() */
4053 static bool exclusive_event_installable(struct perf_event *event,
4054                                         struct perf_event_context *ctx)
4055 {
4056         struct perf_event *iter_event;
4057         struct pmu *pmu = event->pmu;
4058
4059         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4060                 return true;
4061
4062         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4063                 if (exclusive_event_match(iter_event, event))
4064                         return false;
4065         }
4066
4067         return true;
4068 }
4069
4070 static void perf_addr_filters_splice(struct perf_event *event,
4071                                        struct list_head *head);
4072
4073 static void _free_event(struct perf_event *event)
4074 {
4075         irq_work_sync(&event->pending);
4076
4077         unaccount_event(event);
4078
4079         if (event->rb) {
4080                 /*
4081                  * Can happen when we close an event with re-directed output.
4082                  *
4083                  * Since we have a 0 refcount, perf_mmap_close() will skip
4084                  * over us; possibly making our ring_buffer_put() the last.
4085                  */
4086                 mutex_lock(&event->mmap_mutex);
4087                 ring_buffer_attach(event, NULL);
4088                 mutex_unlock(&event->mmap_mutex);
4089         }
4090
4091         if (is_cgroup_event(event))
4092                 perf_detach_cgroup(event);
4093
4094         if (!event->parent) {
4095                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4096                         put_callchain_buffers();
4097         }
4098
4099         perf_event_free_bpf_prog(event);
4100         perf_addr_filters_splice(event, NULL);
4101         kfree(event->addr_filters_offs);
4102
4103         if (event->destroy)
4104                 event->destroy(event);
4105
4106         if (event->ctx)
4107                 put_ctx(event->ctx);
4108
4109         exclusive_event_destroy(event);
4110         module_put(event->pmu->module);
4111
4112         call_rcu(&event->rcu_head, free_event_rcu);
4113 }
4114
4115 /*
4116  * Used to free events which have a known refcount of 1, such as in error paths
4117  * where the event isn't exposed yet and inherited events.
4118  */
4119 static void free_event(struct perf_event *event)
4120 {
4121         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4122                                 "unexpected event refcount: %ld; ptr=%p\n",
4123                                 atomic_long_read(&event->refcount), event)) {
4124                 /* leak to avoid use-after-free */
4125                 return;
4126         }
4127
4128         _free_event(event);
4129 }
4130
4131 /*
4132  * Remove user event from the owner task.
4133  */
4134 static void perf_remove_from_owner(struct perf_event *event)
4135 {
4136         struct task_struct *owner;
4137
4138         rcu_read_lock();
4139         /*
4140          * Matches the smp_store_release() in perf_event_exit_task(). If we
4141          * observe !owner it means the list deletion is complete and we can
4142          * indeed free this event, otherwise we need to serialize on
4143          * owner->perf_event_mutex.
4144          */
4145         owner = READ_ONCE(event->owner);
4146         if (owner) {
4147                 /*
4148                  * Since delayed_put_task_struct() also drops the last
4149                  * task reference we can safely take a new reference
4150                  * while holding the rcu_read_lock().
4151                  */
4152                 get_task_struct(owner);
4153         }
4154         rcu_read_unlock();
4155
4156         if (owner) {
4157                 /*
4158                  * If we're here through perf_event_exit_task() we're already
4159                  * holding ctx->mutex which would be an inversion wrt. the
4160                  * normal lock order.
4161                  *
4162                  * However we can safely take this lock because its the child
4163                  * ctx->mutex.
4164                  */
4165                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4166
4167                 /*
4168                  * We have to re-check the event->owner field, if it is cleared
4169                  * we raced with perf_event_exit_task(), acquiring the mutex
4170                  * ensured they're done, and we can proceed with freeing the
4171                  * event.
4172                  */
4173                 if (event->owner) {
4174                         list_del_init(&event->owner_entry);
4175                         smp_store_release(&event->owner, NULL);
4176                 }
4177                 mutex_unlock(&owner->perf_event_mutex);
4178                 put_task_struct(owner);
4179         }
4180 }
4181
4182 static void put_event(struct perf_event *event)
4183 {
4184         if (!atomic_long_dec_and_test(&event->refcount))
4185                 return;
4186
4187         _free_event(event);
4188 }
4189
4190 /*
4191  * Kill an event dead; while event:refcount will preserve the event
4192  * object, it will not preserve its functionality. Once the last 'user'
4193  * gives up the object, we'll destroy the thing.
4194  */
4195 int perf_event_release_kernel(struct perf_event *event)
4196 {
4197         struct perf_event_context *ctx = event->ctx;
4198         struct perf_event *child, *tmp;
4199
4200         /*
4201          * If we got here through err_file: fput(event_file); we will not have
4202          * attached to a context yet.
4203          */
4204         if (!ctx) {
4205                 WARN_ON_ONCE(event->attach_state &
4206                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4207                 goto no_ctx;
4208         }
4209
4210         if (!is_kernel_event(event))
4211                 perf_remove_from_owner(event);
4212
4213         ctx = perf_event_ctx_lock(event);
4214         WARN_ON_ONCE(ctx->parent_ctx);
4215         perf_remove_from_context(event, DETACH_GROUP);
4216
4217         raw_spin_lock_irq(&ctx->lock);
4218         /*
4219          * Mark this event as STATE_DEAD, there is no external reference to it
4220          * anymore.
4221          *
4222          * Anybody acquiring event->child_mutex after the below loop _must_
4223          * also see this, most importantly inherit_event() which will avoid
4224          * placing more children on the list.
4225          *
4226          * Thus this guarantees that we will in fact observe and kill _ALL_
4227          * child events.
4228          */
4229         event->state = PERF_EVENT_STATE_DEAD;
4230         raw_spin_unlock_irq(&ctx->lock);
4231
4232         perf_event_ctx_unlock(event, ctx);
4233
4234 again:
4235         mutex_lock(&event->child_mutex);
4236         list_for_each_entry(child, &event->child_list, child_list) {
4237
4238                 /*
4239                  * Cannot change, child events are not migrated, see the
4240                  * comment with perf_event_ctx_lock_nested().
4241                  */
4242                 ctx = READ_ONCE(child->ctx);
4243                 /*
4244                  * Since child_mutex nests inside ctx::mutex, we must jump
4245                  * through hoops. We start by grabbing a reference on the ctx.
4246                  *
4247                  * Since the event cannot get freed while we hold the
4248                  * child_mutex, the context must also exist and have a !0
4249                  * reference count.
4250                  */
4251                 get_ctx(ctx);
4252
4253                 /*
4254                  * Now that we have a ctx ref, we can drop child_mutex, and
4255                  * acquire ctx::mutex without fear of it going away. Then we
4256                  * can re-acquire child_mutex.
4257                  */
4258                 mutex_unlock(&event->child_mutex);
4259                 mutex_lock(&ctx->mutex);
4260                 mutex_lock(&event->child_mutex);
4261
4262                 /*
4263                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4264                  * state, if child is still the first entry, it didn't get freed
4265                  * and we can continue doing so.
4266                  */
4267                 tmp = list_first_entry_or_null(&event->child_list,
4268                                                struct perf_event, child_list);
4269                 if (tmp == child) {
4270                         perf_remove_from_context(child, DETACH_GROUP);
4271                         list_del(&child->child_list);
4272                         free_event(child);
4273                         /*
4274                          * This matches the refcount bump in inherit_event();
4275                          * this can't be the last reference.
4276                          */
4277                         put_event(event);
4278                 }
4279
4280                 mutex_unlock(&event->child_mutex);
4281                 mutex_unlock(&ctx->mutex);
4282                 put_ctx(ctx);
4283                 goto again;
4284         }
4285         mutex_unlock(&event->child_mutex);
4286
4287 no_ctx:
4288         put_event(event); /* Must be the 'last' reference */
4289         return 0;
4290 }
4291 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4292
4293 /*
4294  * Called when the last reference to the file is gone.
4295  */
4296 static int perf_release(struct inode *inode, struct file *file)
4297 {
4298         perf_event_release_kernel(file->private_data);
4299         return 0;
4300 }
4301
4302 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4303 {
4304         struct perf_event *child;
4305         u64 total = 0;
4306
4307         *enabled = 0;
4308         *running = 0;
4309
4310         mutex_lock(&event->child_mutex);
4311
4312         (void)perf_event_read(event, false);
4313         total += perf_event_count(event);
4314
4315         *enabled += event->total_time_enabled +
4316                         atomic64_read(&event->child_total_time_enabled);
4317         *running += event->total_time_running +
4318                         atomic64_read(&event->child_total_time_running);
4319
4320         list_for_each_entry(child, &event->child_list, child_list) {
4321                 (void)perf_event_read(child, false);
4322                 total += perf_event_count(child);
4323                 *enabled += child->total_time_enabled;
4324                 *running += child->total_time_running;
4325         }
4326         mutex_unlock(&event->child_mutex);
4327
4328         return total;
4329 }
4330
4331 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4332 {
4333         struct perf_event_context *ctx;
4334         u64 count;
4335
4336         ctx = perf_event_ctx_lock(event);
4337         count = __perf_event_read_value(event, enabled, running);
4338         perf_event_ctx_unlock(event, ctx);
4339
4340         return count;
4341 }
4342 EXPORT_SYMBOL_GPL(perf_event_read_value);
4343
4344 static int __perf_read_group_add(struct perf_event *leader,
4345                                         u64 read_format, u64 *values)
4346 {
4347         struct perf_event_context *ctx = leader->ctx;
4348         struct perf_event *sub;
4349         unsigned long flags;
4350         int n = 1; /* skip @nr */
4351         int ret;
4352
4353         ret = perf_event_read(leader, true);
4354         if (ret)
4355                 return ret;
4356
4357         raw_spin_lock_irqsave(&ctx->lock, flags);
4358
4359         /*
4360          * Since we co-schedule groups, {enabled,running} times of siblings
4361          * will be identical to those of the leader, so we only publish one
4362          * set.
4363          */
4364         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4365                 values[n++] += leader->total_time_enabled +
4366                         atomic64_read(&leader->child_total_time_enabled);
4367         }
4368
4369         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4370                 values[n++] += leader->total_time_running +
4371                         atomic64_read(&leader->child_total_time_running);
4372         }
4373
4374         /*
4375          * Write {count,id} tuples for every sibling.
4376          */
4377         values[n++] += perf_event_count(leader);
4378         if (read_format & PERF_FORMAT_ID)
4379                 values[n++] = primary_event_id(leader);
4380
4381         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4382                 values[n++] += perf_event_count(sub);
4383                 if (read_format & PERF_FORMAT_ID)
4384                         values[n++] = primary_event_id(sub);
4385         }
4386
4387         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4388         return 0;
4389 }
4390
4391 static int perf_read_group(struct perf_event *event,
4392                                    u64 read_format, char __user *buf)
4393 {
4394         struct perf_event *leader = event->group_leader, *child;
4395         struct perf_event_context *ctx = leader->ctx;
4396         int ret;
4397         u64 *values;
4398
4399         lockdep_assert_held(&ctx->mutex);
4400
4401         values = kzalloc(event->read_size, GFP_KERNEL);
4402         if (!values)
4403                 return -ENOMEM;
4404
4405         values[0] = 1 + leader->nr_siblings;
4406
4407         /*
4408          * By locking the child_mutex of the leader we effectively
4409          * lock the child list of all siblings.. XXX explain how.
4410          */
4411         mutex_lock(&leader->child_mutex);
4412
4413         ret = __perf_read_group_add(leader, read_format, values);
4414         if (ret)
4415                 goto unlock;
4416
4417         list_for_each_entry(child, &leader->child_list, child_list) {
4418                 ret = __perf_read_group_add(child, read_format, values);
4419                 if (ret)
4420                         goto unlock;
4421         }
4422
4423         mutex_unlock(&leader->child_mutex);
4424
4425         ret = event->read_size;
4426         if (copy_to_user(buf, values, event->read_size))
4427                 ret = -EFAULT;
4428         goto out;
4429
4430 unlock:
4431         mutex_unlock(&leader->child_mutex);
4432 out:
4433         kfree(values);
4434         return ret;
4435 }
4436
4437 static int perf_read_one(struct perf_event *event,
4438                                  u64 read_format, char __user *buf)
4439 {
4440         u64 enabled, running;
4441         u64 values[4];
4442         int n = 0;
4443
4444         values[n++] = __perf_event_read_value(event, &enabled, &running);
4445         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4446                 values[n++] = enabled;
4447         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4448                 values[n++] = running;
4449         if (read_format & PERF_FORMAT_ID)
4450                 values[n++] = primary_event_id(event);
4451
4452         if (copy_to_user(buf, values, n * sizeof(u64)))
4453                 return -EFAULT;
4454
4455         return n * sizeof(u64);
4456 }
4457
4458 static bool is_event_hup(struct perf_event *event)
4459 {
4460         bool no_children;
4461
4462         if (event->state > PERF_EVENT_STATE_EXIT)
4463                 return false;
4464
4465         mutex_lock(&event->child_mutex);
4466         no_children = list_empty(&event->child_list);
4467         mutex_unlock(&event->child_mutex);
4468         return no_children;
4469 }
4470
4471 /*
4472  * Read the performance event - simple non blocking version for now
4473  */
4474 static ssize_t
4475 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4476 {
4477         u64 read_format = event->attr.read_format;
4478         int ret;
4479
4480         /*
4481          * Return end-of-file for a read on a event that is in
4482          * error state (i.e. because it was pinned but it couldn't be
4483          * scheduled on to the CPU at some point).
4484          */
4485         if (event->state == PERF_EVENT_STATE_ERROR)
4486                 return 0;
4487
4488         if (count < event->read_size)
4489                 return -ENOSPC;
4490
4491         WARN_ON_ONCE(event->ctx->parent_ctx);
4492         if (read_format & PERF_FORMAT_GROUP)
4493                 ret = perf_read_group(event, read_format, buf);
4494         else
4495                 ret = perf_read_one(event, read_format, buf);
4496
4497         return ret;
4498 }
4499
4500 static ssize_t
4501 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4502 {
4503         struct perf_event *event = file->private_data;
4504         struct perf_event_context *ctx;
4505         int ret;
4506
4507         ctx = perf_event_ctx_lock(event);
4508         ret = __perf_read(event, buf, count);
4509         perf_event_ctx_unlock(event, ctx);
4510
4511         return ret;
4512 }
4513
4514 static unsigned int perf_poll(struct file *file, poll_table *wait)
4515 {
4516         struct perf_event *event = file->private_data;
4517         struct ring_buffer *rb;
4518         unsigned int events = POLLHUP;
4519
4520         poll_wait(file, &event->waitq, wait);
4521
4522         if (is_event_hup(event))
4523                 return events;
4524
4525         /*
4526          * Pin the event->rb by taking event->mmap_mutex; otherwise
4527          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4528          */
4529         mutex_lock(&event->mmap_mutex);
4530         rb = event->rb;
4531         if (rb)
4532                 events = atomic_xchg(&rb->poll, 0);
4533         mutex_unlock(&event->mmap_mutex);
4534         return events;
4535 }
4536
4537 static void _perf_event_reset(struct perf_event *event)
4538 {
4539         (void)perf_event_read(event, false);
4540         local64_set(&event->count, 0);
4541         perf_event_update_userpage(event);
4542 }
4543
4544 /*
4545  * Holding the top-level event's child_mutex means that any
4546  * descendant process that has inherited this event will block
4547  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4548  * task existence requirements of perf_event_enable/disable.
4549  */
4550 static void perf_event_for_each_child(struct perf_event *event,
4551                                         void (*func)(struct perf_event *))
4552 {
4553         struct perf_event *child;
4554
4555         WARN_ON_ONCE(event->ctx->parent_ctx);
4556
4557         mutex_lock(&event->child_mutex);
4558         func(event);
4559         list_for_each_entry(child, &event->child_list, child_list)
4560                 func(child);
4561         mutex_unlock(&event->child_mutex);
4562 }
4563
4564 static void perf_event_for_each(struct perf_event *event,
4565                                   void (*func)(struct perf_event *))
4566 {
4567         struct perf_event_context *ctx = event->ctx;
4568         struct perf_event *sibling;
4569
4570         lockdep_assert_held(&ctx->mutex);
4571
4572         event = event->group_leader;
4573
4574         perf_event_for_each_child(event, func);
4575         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4576                 perf_event_for_each_child(sibling, func);
4577 }
4578
4579 static void __perf_event_period(struct perf_event *event,
4580                                 struct perf_cpu_context *cpuctx,
4581                                 struct perf_event_context *ctx,
4582                                 void *info)
4583 {
4584         u64 value = *((u64 *)info);
4585         bool active;
4586
4587         if (event->attr.freq) {
4588                 event->attr.sample_freq = value;
4589         } else {
4590                 event->attr.sample_period = value;
4591                 event->hw.sample_period = value;
4592         }
4593
4594         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4595         if (active) {
4596                 perf_pmu_disable(ctx->pmu);
4597                 /*
4598                  * We could be throttled; unthrottle now to avoid the tick
4599                  * trying to unthrottle while we already re-started the event.
4600                  */
4601                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4602                         event->hw.interrupts = 0;
4603                         perf_log_throttle(event, 1);
4604                 }
4605                 event->pmu->stop(event, PERF_EF_UPDATE);
4606         }
4607
4608         local64_set(&event->hw.period_left, 0);
4609
4610         if (active) {
4611                 event->pmu->start(event, PERF_EF_RELOAD);
4612                 perf_pmu_enable(ctx->pmu);
4613         }
4614 }
4615
4616 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4617 {
4618         u64 value;
4619
4620         if (!is_sampling_event(event))
4621                 return -EINVAL;
4622
4623         if (copy_from_user(&value, arg, sizeof(value)))
4624                 return -EFAULT;
4625
4626         if (!value)
4627                 return -EINVAL;
4628
4629         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4630                 return -EINVAL;
4631
4632         event_function_call(event, __perf_event_period, &value);
4633
4634         return 0;
4635 }
4636
4637 static const struct file_operations perf_fops;
4638
4639 static inline int perf_fget_light(int fd, struct fd *p)
4640 {
4641         struct fd f = fdget(fd);
4642         if (!f.file)
4643                 return -EBADF;
4644
4645         if (f.file->f_op != &perf_fops) {
4646                 fdput(f);
4647                 return -EBADF;
4648         }
4649         *p = f;
4650         return 0;
4651 }
4652
4653 static int perf_event_set_output(struct perf_event *event,
4654                                  struct perf_event *output_event);
4655 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4656 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4657
4658 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4659 {
4660         void (*func)(struct perf_event *);
4661         u32 flags = arg;
4662
4663         switch (cmd) {
4664         case PERF_EVENT_IOC_ENABLE:
4665                 func = _perf_event_enable;
4666                 break;
4667         case PERF_EVENT_IOC_DISABLE:
4668                 func = _perf_event_disable;
4669                 break;
4670         case PERF_EVENT_IOC_RESET:
4671                 func = _perf_event_reset;
4672                 break;
4673
4674         case PERF_EVENT_IOC_REFRESH:
4675                 return _perf_event_refresh(event, arg);
4676
4677         case PERF_EVENT_IOC_PERIOD:
4678                 return perf_event_period(event, (u64 __user *)arg);
4679
4680         case PERF_EVENT_IOC_ID:
4681         {
4682                 u64 id = primary_event_id(event);
4683
4684                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4685                         return -EFAULT;
4686                 return 0;
4687         }
4688
4689         case PERF_EVENT_IOC_SET_OUTPUT:
4690         {
4691                 int ret;
4692                 if (arg != -1) {
4693                         struct perf_event *output_event;
4694                         struct fd output;
4695                         ret = perf_fget_light(arg, &output);
4696                         if (ret)
4697                                 return ret;
4698                         output_event = output.file->private_data;
4699                         ret = perf_event_set_output(event, output_event);
4700                         fdput(output);
4701                 } else {
4702                         ret = perf_event_set_output(event, NULL);
4703                 }
4704                 return ret;
4705         }
4706
4707         case PERF_EVENT_IOC_SET_FILTER:
4708                 return perf_event_set_filter(event, (void __user *)arg);
4709
4710         case PERF_EVENT_IOC_SET_BPF:
4711                 return perf_event_set_bpf_prog(event, arg);
4712
4713         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4714                 struct ring_buffer *rb;
4715
4716                 rcu_read_lock();
4717                 rb = rcu_dereference(event->rb);
4718                 if (!rb || !rb->nr_pages) {
4719                         rcu_read_unlock();
4720                         return -EINVAL;
4721                 }
4722                 rb_toggle_paused(rb, !!arg);
4723                 rcu_read_unlock();
4724                 return 0;
4725         }
4726         default:
4727                 return -ENOTTY;
4728         }
4729
4730         if (flags & PERF_IOC_FLAG_GROUP)
4731                 perf_event_for_each(event, func);
4732         else
4733                 perf_event_for_each_child(event, func);
4734
4735         return 0;
4736 }
4737
4738 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4739 {
4740         struct perf_event *event = file->private_data;
4741         struct perf_event_context *ctx;
4742         long ret;
4743
4744         ctx = perf_event_ctx_lock(event);
4745         ret = _perf_ioctl(event, cmd, arg);
4746         perf_event_ctx_unlock(event, ctx);
4747
4748         return ret;
4749 }
4750
4751 #ifdef CONFIG_COMPAT
4752 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4753                                 unsigned long arg)
4754 {
4755         switch (_IOC_NR(cmd)) {
4756         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4757         case _IOC_NR(PERF_EVENT_IOC_ID):
4758                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4759                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4760                         cmd &= ~IOCSIZE_MASK;
4761                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4762                 }
4763                 break;
4764         }
4765         return perf_ioctl(file, cmd, arg);
4766 }
4767 #else
4768 # define perf_compat_ioctl NULL
4769 #endif
4770
4771 int perf_event_task_enable(void)
4772 {
4773         struct perf_event_context *ctx;
4774         struct perf_event *event;
4775
4776         mutex_lock(&current->perf_event_mutex);
4777         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4778                 ctx = perf_event_ctx_lock(event);
4779                 perf_event_for_each_child(event, _perf_event_enable);
4780                 perf_event_ctx_unlock(event, ctx);
4781         }
4782         mutex_unlock(&current->perf_event_mutex);
4783
4784         return 0;
4785 }
4786
4787 int perf_event_task_disable(void)
4788 {
4789         struct perf_event_context *ctx;
4790         struct perf_event *event;
4791
4792         mutex_lock(&current->perf_event_mutex);
4793         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4794                 ctx = perf_event_ctx_lock(event);
4795                 perf_event_for_each_child(event, _perf_event_disable);
4796                 perf_event_ctx_unlock(event, ctx);
4797         }
4798         mutex_unlock(&current->perf_event_mutex);
4799
4800         return 0;
4801 }
4802
4803 static int perf_event_index(struct perf_event *event)
4804 {
4805         if (event->hw.state & PERF_HES_STOPPED)
4806                 return 0;
4807
4808         if (event->state != PERF_EVENT_STATE_ACTIVE)
4809                 return 0;
4810
4811         return event->pmu->event_idx(event);
4812 }
4813
4814 static void calc_timer_values(struct perf_event *event,
4815                                 u64 *now,
4816                                 u64 *enabled,
4817                                 u64 *running)
4818 {
4819         u64 ctx_time;
4820
4821         *now = perf_clock();
4822         ctx_time = event->shadow_ctx_time + *now;
4823         __perf_update_times(event, ctx_time, enabled, running);
4824 }
4825
4826 static void perf_event_init_userpage(struct perf_event *event)
4827 {
4828         struct perf_event_mmap_page *userpg;
4829         struct ring_buffer *rb;
4830
4831         rcu_read_lock();
4832         rb = rcu_dereference(event->rb);
4833         if (!rb)
4834                 goto unlock;
4835
4836         userpg = rb->user_page;
4837
4838         /* Allow new userspace to detect that bit 0 is deprecated */
4839         userpg->cap_bit0_is_deprecated = 1;
4840         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4841         userpg->data_offset = PAGE_SIZE;
4842         userpg->data_size = perf_data_size(rb);
4843
4844 unlock:
4845         rcu_read_unlock();
4846 }
4847
4848 void __weak arch_perf_update_userpage(
4849         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4850 {
4851 }
4852
4853 /*
4854  * Callers need to ensure there can be no nesting of this function, otherwise
4855  * the seqlock logic goes bad. We can not serialize this because the arch
4856  * code calls this from NMI context.
4857  */
4858 void perf_event_update_userpage(struct perf_event *event)
4859 {
4860         struct perf_event_mmap_page *userpg;
4861         struct ring_buffer *rb;
4862         u64 enabled, running, now;
4863
4864         rcu_read_lock();
4865         rb = rcu_dereference(event->rb);
4866         if (!rb)
4867                 goto unlock;
4868
4869         /*
4870          * compute total_time_enabled, total_time_running
4871          * based on snapshot values taken when the event
4872          * was last scheduled in.
4873          *
4874          * we cannot simply called update_context_time()
4875          * because of locking issue as we can be called in
4876          * NMI context
4877          */
4878         calc_timer_values(event, &now, &enabled, &running);
4879
4880         userpg = rb->user_page;
4881         /*
4882          * Disable preemption so as to not let the corresponding user-space
4883          * spin too long if we get preempted.
4884          */
4885         preempt_disable();
4886         ++userpg->lock;
4887         barrier();
4888         userpg->index = perf_event_index(event);
4889         userpg->offset = perf_event_count(event);
4890         if (userpg->index)
4891                 userpg->offset -= local64_read(&event->hw.prev_count);
4892
4893         userpg->time_enabled = enabled +
4894                         atomic64_read(&event->child_total_time_enabled);
4895
4896         userpg->time_running = running +
4897                         atomic64_read(&event->child_total_time_running);
4898
4899         arch_perf_update_userpage(event, userpg, now);
4900
4901         barrier();
4902         ++userpg->lock;
4903         preempt_enable();
4904 unlock:
4905         rcu_read_unlock();
4906 }
4907
4908 static int perf_mmap_fault(struct vm_fault *vmf)
4909 {
4910         struct perf_event *event = vmf->vma->vm_file->private_data;
4911         struct ring_buffer *rb;
4912         int ret = VM_FAULT_SIGBUS;
4913
4914         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4915                 if (vmf->pgoff == 0)
4916                         ret = 0;
4917                 return ret;
4918         }
4919
4920         rcu_read_lock();
4921         rb = rcu_dereference(event->rb);
4922         if (!rb)
4923                 goto unlock;
4924
4925         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4926                 goto unlock;
4927
4928         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4929         if (!vmf->page)
4930                 goto unlock;
4931
4932         get_page(vmf->page);
4933         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4934         vmf->page->index   = vmf->pgoff;
4935
4936         ret = 0;
4937 unlock:
4938         rcu_read_unlock();
4939
4940         return ret;
4941 }
4942
4943 static void ring_buffer_attach(struct perf_event *event,
4944                                struct ring_buffer *rb)
4945 {
4946         struct ring_buffer *old_rb = NULL;
4947         unsigned long flags;
4948
4949         if (event->rb) {
4950                 /*
4951                  * Should be impossible, we set this when removing
4952                  * event->rb_entry and wait/clear when adding event->rb_entry.
4953                  */
4954                 WARN_ON_ONCE(event->rcu_pending);
4955
4956                 old_rb = event->rb;
4957                 spin_lock_irqsave(&old_rb->event_lock, flags);
4958                 list_del_rcu(&event->rb_entry);
4959                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4960
4961                 event->rcu_batches = get_state_synchronize_rcu();
4962                 event->rcu_pending = 1;
4963         }
4964
4965         if (rb) {
4966                 if (event->rcu_pending) {
4967                         cond_synchronize_rcu(event->rcu_batches);
4968                         event->rcu_pending = 0;
4969                 }
4970
4971                 spin_lock_irqsave(&rb->event_lock, flags);
4972                 list_add_rcu(&event->rb_entry, &rb->event_list);
4973                 spin_unlock_irqrestore(&rb->event_lock, flags);
4974         }
4975
4976         /*
4977          * Avoid racing with perf_mmap_close(AUX): stop the event
4978          * before swizzling the event::rb pointer; if it's getting
4979          * unmapped, its aux_mmap_count will be 0 and it won't
4980          * restart. See the comment in __perf_pmu_output_stop().
4981          *
4982          * Data will inevitably be lost when set_output is done in
4983          * mid-air, but then again, whoever does it like this is
4984          * not in for the data anyway.
4985          */
4986         if (has_aux(event))
4987                 perf_event_stop(event, 0);
4988
4989         rcu_assign_pointer(event->rb, rb);
4990
4991         if (old_rb) {
4992                 ring_buffer_put(old_rb);
4993                 /*
4994                  * Since we detached before setting the new rb, so that we
4995                  * could attach the new rb, we could have missed a wakeup.
4996                  * Provide it now.
4997                  */
4998                 wake_up_all(&event->waitq);
4999         }
5000 }
5001
5002 static void ring_buffer_wakeup(struct perf_event *event)
5003 {
5004         struct ring_buffer *rb;
5005
5006         rcu_read_lock();
5007         rb = rcu_dereference(event->rb);
5008         if (rb) {
5009                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5010                         wake_up_all(&event->waitq);
5011         }
5012         rcu_read_unlock();
5013 }
5014
5015 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5016 {
5017         struct ring_buffer *rb;
5018
5019         rcu_read_lock();
5020         rb = rcu_dereference(event->rb);
5021         if (rb) {
5022                 if (!atomic_inc_not_zero(&rb->refcount))
5023                         rb = NULL;
5024         }
5025         rcu_read_unlock();
5026
5027         return rb;
5028 }
5029
5030 void ring_buffer_put(struct ring_buffer *rb)
5031 {
5032         if (!atomic_dec_and_test(&rb->refcount))
5033                 return;
5034
5035         WARN_ON_ONCE(!list_empty(&rb->event_list));
5036
5037         call_rcu(&rb->rcu_head, rb_free_rcu);
5038 }
5039
5040 static void perf_mmap_open(struct vm_area_struct *vma)
5041 {
5042         struct perf_event *event = vma->vm_file->private_data;
5043
5044         atomic_inc(&event->mmap_count);
5045         atomic_inc(&event->rb->mmap_count);
5046
5047         if (vma->vm_pgoff)
5048                 atomic_inc(&event->rb->aux_mmap_count);
5049
5050         if (event->pmu->event_mapped)
5051                 event->pmu->event_mapped(event, vma->vm_mm);
5052 }
5053
5054 static void perf_pmu_output_stop(struct perf_event *event);
5055
5056 /*
5057  * A buffer can be mmap()ed multiple times; either directly through the same
5058  * event, or through other events by use of perf_event_set_output().
5059  *
5060  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5061  * the buffer here, where we still have a VM context. This means we need
5062  * to detach all events redirecting to us.
5063  */
5064 static void perf_mmap_close(struct vm_area_struct *vma)
5065 {
5066         struct perf_event *event = vma->vm_file->private_data;
5067
5068         struct ring_buffer *rb = ring_buffer_get(event);
5069         struct user_struct *mmap_user = rb->mmap_user;
5070         int mmap_locked = rb->mmap_locked;
5071         unsigned long size = perf_data_size(rb);
5072
5073         if (event->pmu->event_unmapped)
5074                 event->pmu->event_unmapped(event, vma->vm_mm);
5075
5076         /*
5077          * rb->aux_mmap_count will always drop before rb->mmap_count and
5078          * event->mmap_count, so it is ok to use event->mmap_mutex to
5079          * serialize with perf_mmap here.
5080          */
5081         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5082             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5083                 /*
5084                  * Stop all AUX events that are writing to this buffer,
5085                  * so that we can free its AUX pages and corresponding PMU
5086                  * data. Note that after rb::aux_mmap_count dropped to zero,
5087                  * they won't start any more (see perf_aux_output_begin()).
5088                  */
5089                 perf_pmu_output_stop(event);
5090
5091                 /* now it's safe to free the pages */
5092                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5093                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5094
5095                 /* this has to be the last one */
5096                 rb_free_aux(rb);
5097                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5098
5099                 mutex_unlock(&event->mmap_mutex);
5100         }
5101
5102         atomic_dec(&rb->mmap_count);
5103
5104         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5105                 goto out_put;
5106
5107         ring_buffer_attach(event, NULL);
5108         mutex_unlock(&event->mmap_mutex);
5109
5110         /* If there's still other mmap()s of this buffer, we're done. */
5111         if (atomic_read(&rb->mmap_count))
5112                 goto out_put;
5113
5114         /*
5115          * No other mmap()s, detach from all other events that might redirect
5116          * into the now unreachable buffer. Somewhat complicated by the
5117          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5118          */
5119 again:
5120         rcu_read_lock();
5121         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5122                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5123                         /*
5124                          * This event is en-route to free_event() which will
5125                          * detach it and remove it from the list.
5126                          */
5127                         continue;
5128                 }
5129                 rcu_read_unlock();
5130
5131                 mutex_lock(&event->mmap_mutex);
5132                 /*
5133                  * Check we didn't race with perf_event_set_output() which can
5134                  * swizzle the rb from under us while we were waiting to
5135                  * acquire mmap_mutex.
5136                  *
5137                  * If we find a different rb; ignore this event, a next
5138                  * iteration will no longer find it on the list. We have to
5139                  * still restart the iteration to make sure we're not now
5140                  * iterating the wrong list.
5141                  */
5142                 if (event->rb == rb)
5143                         ring_buffer_attach(event, NULL);
5144
5145                 mutex_unlock(&event->mmap_mutex);
5146                 put_event(event);
5147
5148                 /*
5149                  * Restart the iteration; either we're on the wrong list or
5150                  * destroyed its integrity by doing a deletion.
5151                  */
5152                 goto again;
5153         }
5154         rcu_read_unlock();
5155
5156         /*
5157          * It could be there's still a few 0-ref events on the list; they'll
5158          * get cleaned up by free_event() -- they'll also still have their
5159          * ref on the rb and will free it whenever they are done with it.
5160          *
5161          * Aside from that, this buffer is 'fully' detached and unmapped,
5162          * undo the VM accounting.
5163          */
5164
5165         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5166         vma->vm_mm->pinned_vm -= mmap_locked;
5167         free_uid(mmap_user);
5168
5169 out_put:
5170         ring_buffer_put(rb); /* could be last */
5171 }
5172
5173 static const struct vm_operations_struct perf_mmap_vmops = {
5174         .open           = perf_mmap_open,
5175         .close          = perf_mmap_close, /* non mergable */
5176         .fault          = perf_mmap_fault,
5177         .page_mkwrite   = perf_mmap_fault,
5178 };
5179
5180 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5181 {
5182         struct perf_event *event = file->private_data;
5183         unsigned long user_locked, user_lock_limit;
5184         struct user_struct *user = current_user();
5185         unsigned long locked, lock_limit;
5186         struct ring_buffer *rb = NULL;
5187         unsigned long vma_size;
5188         unsigned long nr_pages;
5189         long user_extra = 0, extra = 0;
5190         int ret = 0, flags = 0;
5191
5192         /*
5193          * Don't allow mmap() of inherited per-task counters. This would
5194          * create a performance issue due to all children writing to the
5195          * same rb.
5196          */
5197         if (event->cpu == -1 && event->attr.inherit)
5198                 return -EINVAL;
5199
5200         if (!(vma->vm_flags & VM_SHARED))
5201                 return -EINVAL;
5202
5203         vma_size = vma->vm_end - vma->vm_start;
5204
5205         if (vma->vm_pgoff == 0) {
5206                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5207         } else {
5208                 /*
5209                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5210                  * mapped, all subsequent mappings should have the same size
5211                  * and offset. Must be above the normal perf buffer.
5212                  */
5213                 u64 aux_offset, aux_size;
5214
5215                 if (!event->rb)
5216                         return -EINVAL;
5217
5218                 nr_pages = vma_size / PAGE_SIZE;
5219
5220                 mutex_lock(&event->mmap_mutex);
5221                 ret = -EINVAL;
5222
5223                 rb = event->rb;
5224                 if (!rb)
5225                         goto aux_unlock;
5226
5227                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5228                 aux_size = READ_ONCE(rb->user_page->aux_size);
5229
5230                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5231                         goto aux_unlock;
5232
5233                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5234                         goto aux_unlock;
5235
5236                 /* already mapped with a different offset */
5237                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5238                         goto aux_unlock;
5239
5240                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5241                         goto aux_unlock;
5242
5243                 /* already mapped with a different size */
5244                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5245                         goto aux_unlock;
5246
5247                 if (!is_power_of_2(nr_pages))
5248                         goto aux_unlock;
5249
5250                 if (!atomic_inc_not_zero(&rb->mmap_count))
5251                         goto aux_unlock;
5252
5253                 if (rb_has_aux(rb)) {
5254                         atomic_inc(&rb->aux_mmap_count);
5255                         ret = 0;
5256                         goto unlock;
5257                 }
5258
5259                 atomic_set(&rb->aux_mmap_count, 1);
5260                 user_extra = nr_pages;
5261
5262                 goto accounting;
5263         }
5264
5265         /*
5266          * If we have rb pages ensure they're a power-of-two number, so we
5267          * can do bitmasks instead of modulo.
5268          */
5269         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5270                 return -EINVAL;
5271
5272         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5273                 return -EINVAL;
5274
5275         WARN_ON_ONCE(event->ctx->parent_ctx);
5276 again:
5277         mutex_lock(&event->mmap_mutex);
5278         if (event->rb) {
5279                 if (event->rb->nr_pages != nr_pages) {
5280                         ret = -EINVAL;
5281                         goto unlock;
5282                 }
5283
5284                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5285                         /*
5286                          * Raced against perf_mmap_close() through
5287                          * perf_event_set_output(). Try again, hope for better
5288                          * luck.
5289                          */
5290                         mutex_unlock(&event->mmap_mutex);
5291                         goto again;
5292                 }
5293
5294                 goto unlock;
5295         }
5296
5297         user_extra = nr_pages + 1;
5298
5299 accounting:
5300         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5301
5302         /*
5303          * Increase the limit linearly with more CPUs:
5304          */
5305         user_lock_limit *= num_online_cpus();
5306
5307         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5308
5309         if (user_locked > user_lock_limit)
5310                 extra = user_locked - user_lock_limit;
5311
5312         lock_limit = rlimit(RLIMIT_MEMLOCK);
5313         lock_limit >>= PAGE_SHIFT;
5314         locked = vma->vm_mm->pinned_vm + extra;
5315
5316         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5317                 !capable(CAP_IPC_LOCK)) {
5318                 ret = -EPERM;
5319                 goto unlock;
5320         }
5321
5322         WARN_ON(!rb && event->rb);
5323
5324         if (vma->vm_flags & VM_WRITE)
5325                 flags |= RING_BUFFER_WRITABLE;
5326
5327         if (!rb) {
5328                 rb = rb_alloc(nr_pages,
5329                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5330                               event->cpu, flags);
5331
5332                 if (!rb) {
5333                         ret = -ENOMEM;
5334                         goto unlock;
5335                 }
5336
5337                 atomic_set(&rb->mmap_count, 1);
5338                 rb->mmap_user = get_current_user();
5339                 rb->mmap_locked = extra;
5340
5341                 ring_buffer_attach(event, rb);
5342
5343                 perf_event_init_userpage(event);
5344                 perf_event_update_userpage(event);
5345         } else {
5346                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5347                                    event->attr.aux_watermark, flags);
5348                 if (!ret)
5349                         rb->aux_mmap_locked = extra;
5350         }
5351
5352 unlock:
5353         if (!ret) {
5354                 atomic_long_add(user_extra, &user->locked_vm);
5355                 vma->vm_mm->pinned_vm += extra;
5356
5357                 atomic_inc(&event->mmap_count);
5358         } else if (rb) {
5359                 atomic_dec(&rb->mmap_count);
5360         }
5361 aux_unlock:
5362         mutex_unlock(&event->mmap_mutex);
5363
5364         /*
5365          * Since pinned accounting is per vm we cannot allow fork() to copy our
5366          * vma.
5367          */
5368         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5369         vma->vm_ops = &perf_mmap_vmops;
5370
5371         if (event->pmu->event_mapped)
5372                 event->pmu->event_mapped(event, vma->vm_mm);
5373
5374         return ret;
5375 }
5376
5377 static int perf_fasync(int fd, struct file *filp, int on)
5378 {
5379         struct inode *inode = file_inode(filp);
5380         struct perf_event *event = filp->private_data;
5381         int retval;
5382
5383         inode_lock(inode);
5384         retval = fasync_helper(fd, filp, on, &event->fasync);
5385         inode_unlock(inode);
5386
5387         if (retval < 0)
5388                 return retval;
5389
5390         return 0;
5391 }
5392
5393 static const struct file_operations perf_fops = {
5394         .llseek                 = no_llseek,
5395         .release                = perf_release,
5396         .read                   = perf_read,
5397         .poll                   = perf_poll,
5398         .unlocked_ioctl         = perf_ioctl,
5399         .compat_ioctl           = perf_compat_ioctl,
5400         .mmap                   = perf_mmap,
5401         .fasync                 = perf_fasync,
5402 };
5403
5404 /*
5405  * Perf event wakeup
5406  *
5407  * If there's data, ensure we set the poll() state and publish everything
5408  * to user-space before waking everybody up.
5409  */
5410
5411 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5412 {
5413         /* only the parent has fasync state */
5414         if (event->parent)
5415                 event = event->parent;
5416         return &event->fasync;
5417 }
5418
5419 void perf_event_wakeup(struct perf_event *event)
5420 {
5421         ring_buffer_wakeup(event);
5422
5423         if (event->pending_kill) {
5424                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5425                 event->pending_kill = 0;
5426         }
5427 }
5428
5429 static void perf_pending_event(struct irq_work *entry)
5430 {
5431         struct perf_event *event = container_of(entry,
5432                         struct perf_event, pending);
5433         int rctx;
5434
5435         rctx = perf_swevent_get_recursion_context();
5436         /*
5437          * If we 'fail' here, that's OK, it means recursion is already disabled
5438          * and we won't recurse 'further'.
5439          */
5440
5441         if (event->pending_disable) {
5442                 event->pending_disable = 0;
5443                 perf_event_disable_local(event);
5444         }
5445
5446         if (event->pending_wakeup) {
5447                 event->pending_wakeup = 0;
5448                 perf_event_wakeup(event);
5449         }
5450
5451         if (rctx >= 0)
5452                 perf_swevent_put_recursion_context(rctx);
5453 }
5454
5455 /*
5456  * We assume there is only KVM supporting the callbacks.
5457  * Later on, we might change it to a list if there is
5458  * another virtualization implementation supporting the callbacks.
5459  */
5460 struct perf_guest_info_callbacks *perf_guest_cbs;
5461
5462 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5463 {
5464         perf_guest_cbs = cbs;
5465         return 0;
5466 }
5467 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5468
5469 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5470 {
5471         perf_guest_cbs = NULL;
5472         return 0;
5473 }
5474 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5475
5476 static void
5477 perf_output_sample_regs(struct perf_output_handle *handle,
5478                         struct pt_regs *regs, u64 mask)
5479 {
5480         int bit;
5481         DECLARE_BITMAP(_mask, 64);
5482
5483         bitmap_from_u64(_mask, mask);
5484         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5485                 u64 val;
5486
5487                 val = perf_reg_value(regs, bit);
5488                 perf_output_put(handle, val);
5489         }
5490 }
5491
5492 static void perf_sample_regs_user(struct perf_regs *regs_user,
5493                                   struct pt_regs *regs,
5494                                   struct pt_regs *regs_user_copy)
5495 {
5496         if (user_mode(regs)) {
5497                 regs_user->abi = perf_reg_abi(current);
5498                 regs_user->regs = regs;
5499         } else if (current->mm) {
5500                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5501         } else {
5502                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5503                 regs_user->regs = NULL;
5504         }
5505 }
5506
5507 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5508                                   struct pt_regs *regs)
5509 {
5510         regs_intr->regs = regs;
5511         regs_intr->abi  = perf_reg_abi(current);
5512 }
5513
5514
5515 /*
5516  * Get remaining task size from user stack pointer.
5517  *
5518  * It'd be better to take stack vma map and limit this more
5519  * precisly, but there's no way to get it safely under interrupt,
5520  * so using TASK_SIZE as limit.
5521  */
5522 static u64 perf_ustack_task_size(struct pt_regs *regs)
5523 {
5524         unsigned long addr = perf_user_stack_pointer(regs);
5525
5526         if (!addr || addr >= TASK_SIZE)
5527                 return 0;
5528
5529         return TASK_SIZE - addr;
5530 }
5531
5532 static u16
5533 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5534                         struct pt_regs *regs)
5535 {
5536         u64 task_size;
5537
5538         /* No regs, no stack pointer, no dump. */
5539         if (!regs)
5540                 return 0;
5541
5542         /*
5543          * Check if we fit in with the requested stack size into the:
5544          * - TASK_SIZE
5545          *   If we don't, we limit the size to the TASK_SIZE.
5546          *
5547          * - remaining sample size
5548          *   If we don't, we customize the stack size to
5549          *   fit in to the remaining sample size.
5550          */
5551
5552         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5553         stack_size = min(stack_size, (u16) task_size);
5554
5555         /* Current header size plus static size and dynamic size. */
5556         header_size += 2 * sizeof(u64);
5557
5558         /* Do we fit in with the current stack dump size? */
5559         if ((u16) (header_size + stack_size) < header_size) {
5560                 /*
5561                  * If we overflow the maximum size for the sample,
5562                  * we customize the stack dump size to fit in.
5563                  */
5564                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5565                 stack_size = round_up(stack_size, sizeof(u64));
5566         }
5567
5568         return stack_size;
5569 }
5570
5571 static void
5572 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5573                           struct pt_regs *regs)
5574 {
5575         /* Case of a kernel thread, nothing to dump */
5576         if (!regs) {
5577                 u64 size = 0;
5578                 perf_output_put(handle, size);
5579         } else {
5580                 unsigned long sp;
5581                 unsigned int rem;
5582                 u64 dyn_size;
5583
5584                 /*
5585                  * We dump:
5586                  * static size
5587                  *   - the size requested by user or the best one we can fit
5588                  *     in to the sample max size
5589                  * data
5590                  *   - user stack dump data
5591                  * dynamic size
5592                  *   - the actual dumped size
5593                  */
5594
5595                 /* Static size. */
5596                 perf_output_put(handle, dump_size);
5597
5598                 /* Data. */
5599                 sp = perf_user_stack_pointer(regs);
5600                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5601                 dyn_size = dump_size - rem;
5602
5603                 perf_output_skip(handle, rem);
5604
5605                 /* Dynamic size. */
5606                 perf_output_put(handle, dyn_size);
5607         }
5608 }
5609
5610 static void __perf_event_header__init_id(struct perf_event_header *header,
5611                                          struct perf_sample_data *data,
5612                                          struct perf_event *event)
5613 {
5614         u64 sample_type = event->attr.sample_type;
5615
5616         data->type = sample_type;
5617         header->size += event->id_header_size;
5618
5619         if (sample_type & PERF_SAMPLE_TID) {
5620                 /* namespace issues */
5621                 data->tid_entry.pid = perf_event_pid(event, current);
5622                 data->tid_entry.tid = perf_event_tid(event, current);
5623         }
5624
5625         if (sample_type & PERF_SAMPLE_TIME)
5626                 data->time = perf_event_clock(event);
5627
5628         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5629                 data->id = primary_event_id(event);
5630
5631         if (sample_type & PERF_SAMPLE_STREAM_ID)
5632                 data->stream_id = event->id;
5633
5634         if (sample_type & PERF_SAMPLE_CPU) {
5635                 data->cpu_entry.cpu      = raw_smp_processor_id();
5636                 data->cpu_entry.reserved = 0;
5637         }
5638 }
5639
5640 void perf_event_header__init_id(struct perf_event_header *header,
5641                                 struct perf_sample_data *data,
5642                                 struct perf_event *event)
5643 {
5644         if (event->attr.sample_id_all)
5645                 __perf_event_header__init_id(header, data, event);
5646 }
5647
5648 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5649                                            struct perf_sample_data *data)
5650 {
5651         u64 sample_type = data->type;
5652
5653         if (sample_type & PERF_SAMPLE_TID)
5654                 perf_output_put(handle, data->tid_entry);
5655
5656         if (sample_type & PERF_SAMPLE_TIME)
5657                 perf_output_put(handle, data->time);
5658
5659         if (sample_type & PERF_SAMPLE_ID)
5660                 perf_output_put(handle, data->id);
5661
5662         if (sample_type & PERF_SAMPLE_STREAM_ID)
5663                 perf_output_put(handle, data->stream_id);
5664
5665         if (sample_type & PERF_SAMPLE_CPU)
5666                 perf_output_put(handle, data->cpu_entry);
5667
5668         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5669                 perf_output_put(handle, data->id);
5670 }
5671
5672 void perf_event__output_id_sample(struct perf_event *event,
5673                                   struct perf_output_handle *handle,
5674                                   struct perf_sample_data *sample)
5675 {
5676         if (event->attr.sample_id_all)
5677                 __perf_event__output_id_sample(handle, sample);
5678 }
5679
5680 static void perf_output_read_one(struct perf_output_handle *handle,
5681                                  struct perf_event *event,
5682                                  u64 enabled, u64 running)
5683 {
5684         u64 read_format = event->attr.read_format;
5685         u64 values[4];
5686         int n = 0;
5687
5688         values[n++] = perf_event_count(event);
5689         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5690                 values[n++] = enabled +
5691                         atomic64_read(&event->child_total_time_enabled);
5692         }
5693         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5694                 values[n++] = running +
5695                         atomic64_read(&event->child_total_time_running);
5696         }
5697         if (read_format & PERF_FORMAT_ID)
5698                 values[n++] = primary_event_id(event);
5699
5700         __output_copy(handle, values, n * sizeof(u64));
5701 }
5702
5703 static void perf_output_read_group(struct perf_output_handle *handle,
5704                             struct perf_event *event,
5705                             u64 enabled, u64 running)
5706 {
5707         struct perf_event *leader = event->group_leader, *sub;
5708         u64 read_format = event->attr.read_format;
5709         u64 values[5];
5710         int n = 0;
5711
5712         values[n++] = 1 + leader->nr_siblings;
5713
5714         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5715                 values[n++] = enabled;
5716
5717         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5718                 values[n++] = running;
5719
5720         if (leader != event)
5721                 leader->pmu->read(leader);
5722
5723         values[n++] = perf_event_count(leader);
5724         if (read_format & PERF_FORMAT_ID)
5725                 values[n++] = primary_event_id(leader);
5726
5727         __output_copy(handle, values, n * sizeof(u64));
5728
5729         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5730                 n = 0;
5731
5732                 if ((sub != event) &&
5733                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5734                         sub->pmu->read(sub);
5735
5736                 values[n++] = perf_event_count(sub);
5737                 if (read_format & PERF_FORMAT_ID)
5738                         values[n++] = primary_event_id(sub);
5739
5740                 __output_copy(handle, values, n * sizeof(u64));
5741         }
5742 }
5743
5744 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5745                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5746
5747 /*
5748  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5749  *
5750  * The problem is that its both hard and excessively expensive to iterate the
5751  * child list, not to mention that its impossible to IPI the children running
5752  * on another CPU, from interrupt/NMI context.
5753  */
5754 static void perf_output_read(struct perf_output_handle *handle,
5755                              struct perf_event *event)
5756 {
5757         u64 enabled = 0, running = 0, now;
5758         u64 read_format = event->attr.read_format;
5759
5760         /*
5761          * compute total_time_enabled, total_time_running
5762          * based on snapshot values taken when the event
5763          * was last scheduled in.
5764          *
5765          * we cannot simply called update_context_time()
5766          * because of locking issue as we are called in
5767          * NMI context
5768          */
5769         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5770                 calc_timer_values(event, &now, &enabled, &running);
5771
5772         if (event->attr.read_format & PERF_FORMAT_GROUP)
5773                 perf_output_read_group(handle, event, enabled, running);
5774         else
5775                 perf_output_read_one(handle, event, enabled, running);
5776 }
5777
5778 void perf_output_sample(struct perf_output_handle *handle,
5779                         struct perf_event_header *header,
5780                         struct perf_sample_data *data,
5781                         struct perf_event *event)
5782 {
5783         u64 sample_type = data->type;
5784
5785         perf_output_put(handle, *header);
5786
5787         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5788                 perf_output_put(handle, data->id);
5789
5790         if (sample_type & PERF_SAMPLE_IP)
5791                 perf_output_put(handle, data->ip);
5792
5793         if (sample_type & PERF_SAMPLE_TID)
5794                 perf_output_put(handle, data->tid_entry);
5795
5796         if (sample_type & PERF_SAMPLE_TIME)
5797                 perf_output_put(handle, data->time);
5798
5799         if (sample_type & PERF_SAMPLE_ADDR)
5800                 perf_output_put(handle, data->addr);
5801
5802         if (sample_type & PERF_SAMPLE_ID)
5803                 perf_output_put(handle, data->id);
5804
5805         if (sample_type & PERF_SAMPLE_STREAM_ID)
5806                 perf_output_put(handle, data->stream_id);
5807
5808         if (sample_type & PERF_SAMPLE_CPU)
5809                 perf_output_put(handle, data->cpu_entry);
5810
5811         if (sample_type & PERF_SAMPLE_PERIOD)
5812                 perf_output_put(handle, data->period);
5813
5814         if (sample_type & PERF_SAMPLE_READ)
5815                 perf_output_read(handle, event);
5816
5817         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5818                 if (data->callchain) {
5819                         int size = 1;
5820
5821                         if (data->callchain)
5822                                 size += data->callchain->nr;
5823
5824                         size *= sizeof(u64);
5825
5826                         __output_copy(handle, data->callchain, size);
5827                 } else {
5828                         u64 nr = 0;
5829                         perf_output_put(handle, nr);
5830                 }
5831         }
5832
5833         if (sample_type & PERF_SAMPLE_RAW) {
5834                 struct perf_raw_record *raw = data->raw;
5835
5836                 if (raw) {
5837                         struct perf_raw_frag *frag = &raw->frag;
5838
5839                         perf_output_put(handle, raw->size);
5840                         do {
5841                                 if (frag->copy) {
5842                                         __output_custom(handle, frag->copy,
5843                                                         frag->data, frag->size);
5844                                 } else {
5845                                         __output_copy(handle, frag->data,
5846                                                       frag->size);
5847                                 }
5848                                 if (perf_raw_frag_last(frag))
5849                                         break;
5850                                 frag = frag->next;
5851                         } while (1);
5852                         if (frag->pad)
5853                                 __output_skip(handle, NULL, frag->pad);
5854                 } else {
5855                         struct {
5856                                 u32     size;
5857                                 u32     data;
5858                         } raw = {
5859                                 .size = sizeof(u32),
5860                                 .data = 0,
5861                         };
5862                         perf_output_put(handle, raw);
5863                 }
5864         }
5865
5866         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5867                 if (data->br_stack) {
5868                         size_t size;
5869
5870                         size = data->br_stack->nr
5871                              * sizeof(struct perf_branch_entry);
5872
5873                         perf_output_put(handle, data->br_stack->nr);
5874                         perf_output_copy(handle, data->br_stack->entries, size);
5875                 } else {
5876                         /*
5877                          * we always store at least the value of nr
5878                          */
5879                         u64 nr = 0;
5880                         perf_output_put(handle, nr);
5881                 }
5882         }
5883
5884         if (sample_type & PERF_SAMPLE_REGS_USER) {
5885                 u64 abi = data->regs_user.abi;
5886
5887                 /*
5888                  * If there are no regs to dump, notice it through
5889                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5890                  */
5891                 perf_output_put(handle, abi);
5892
5893                 if (abi) {
5894                         u64 mask = event->attr.sample_regs_user;
5895                         perf_output_sample_regs(handle,
5896                                                 data->regs_user.regs,
5897                                                 mask);
5898                 }
5899         }
5900
5901         if (sample_type & PERF_SAMPLE_STACK_USER) {
5902                 perf_output_sample_ustack(handle,
5903                                           data->stack_user_size,
5904                                           data->regs_user.regs);
5905         }
5906
5907         if (sample_type & PERF_SAMPLE_WEIGHT)
5908                 perf_output_put(handle, data->weight);
5909
5910         if (sample_type & PERF_SAMPLE_DATA_SRC)
5911                 perf_output_put(handle, data->data_src.val);
5912
5913         if (sample_type & PERF_SAMPLE_TRANSACTION)
5914                 perf_output_put(handle, data->txn);
5915
5916         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5917                 u64 abi = data->regs_intr.abi;
5918                 /*
5919                  * If there are no regs to dump, notice it through
5920                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5921                  */
5922                 perf_output_put(handle, abi);
5923
5924                 if (abi) {
5925                         u64 mask = event->attr.sample_regs_intr;
5926
5927                         perf_output_sample_regs(handle,
5928                                                 data->regs_intr.regs,
5929                                                 mask);
5930                 }
5931         }
5932
5933         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5934                 perf_output_put(handle, data->phys_addr);
5935
5936         if (!event->attr.watermark) {
5937                 int wakeup_events = event->attr.wakeup_events;
5938
5939                 if (wakeup_events) {
5940                         struct ring_buffer *rb = handle->rb;
5941                         int events = local_inc_return(&rb->events);
5942
5943                         if (events >= wakeup_events) {
5944                                 local_sub(wakeup_events, &rb->events);
5945                                 local_inc(&rb->wakeup);
5946                         }
5947                 }
5948         }
5949 }
5950
5951 static u64 perf_virt_to_phys(u64 virt)
5952 {
5953         u64 phys_addr = 0;
5954         struct page *p = NULL;
5955
5956         if (!virt)
5957                 return 0;
5958
5959         if (virt >= TASK_SIZE) {
5960                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5961                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5962                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
5963                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5964         } else {
5965                 /*
5966                  * Walking the pages tables for user address.
5967                  * Interrupts are disabled, so it prevents any tear down
5968                  * of the page tables.
5969                  * Try IRQ-safe __get_user_pages_fast first.
5970                  * If failed, leave phys_addr as 0.
5971                  */
5972                 if ((current->mm != NULL) &&
5973                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5974                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5975
5976                 if (p)
5977                         put_page(p);
5978         }
5979
5980         return phys_addr;
5981 }
5982
5983 void perf_prepare_sample(struct perf_event_header *header,
5984                          struct perf_sample_data *data,
5985                          struct perf_event *event,
5986                          struct pt_regs *regs)
5987 {
5988         u64 sample_type = event->attr.sample_type;
5989
5990         header->type = PERF_RECORD_SAMPLE;
5991         header->size = sizeof(*header) + event->header_size;
5992
5993         header->misc = 0;
5994         header->misc |= perf_misc_flags(regs);
5995
5996         __perf_event_header__init_id(header, data, event);
5997
5998         if (sample_type & PERF_SAMPLE_IP)
5999                 data->ip = perf_instruction_pointer(regs);
6000
6001         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6002                 int size = 1;
6003
6004                 data->callchain = perf_callchain(event, regs);
6005
6006                 if (data->callchain)
6007                         size += data->callchain->nr;
6008
6009                 header->size += size * sizeof(u64);
6010         }
6011
6012         if (sample_type & PERF_SAMPLE_RAW) {
6013                 struct perf_raw_record *raw = data->raw;
6014                 int size;
6015
6016                 if (raw) {
6017                         struct perf_raw_frag *frag = &raw->frag;
6018                         u32 sum = 0;
6019
6020                         do {
6021                                 sum += frag->size;
6022                                 if (perf_raw_frag_last(frag))
6023                                         break;
6024                                 frag = frag->next;
6025                         } while (1);
6026
6027                         size = round_up(sum + sizeof(u32), sizeof(u64));
6028                         raw->size = size - sizeof(u32);
6029                         frag->pad = raw->size - sum;
6030                 } else {
6031                         size = sizeof(u64);
6032                 }
6033
6034                 header->size += size;
6035         }
6036
6037         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6038                 int size = sizeof(u64); /* nr */
6039                 if (data->br_stack) {
6040                         size += data->br_stack->nr
6041                               * sizeof(struct perf_branch_entry);
6042                 }
6043                 header->size += size;
6044         }
6045
6046         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6047                 perf_sample_regs_user(&data->regs_user, regs,
6048                                       &data->regs_user_copy);
6049
6050         if (sample_type & PERF_SAMPLE_REGS_USER) {
6051                 /* regs dump ABI info */
6052                 int size = sizeof(u64);
6053
6054                 if (data->regs_user.regs) {
6055                         u64 mask = event->attr.sample_regs_user;
6056                         size += hweight64(mask) * sizeof(u64);
6057                 }
6058
6059                 header->size += size;
6060         }
6061
6062         if (sample_type & PERF_SAMPLE_STACK_USER) {
6063                 /*
6064                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6065                  * processed as the last one or have additional check added
6066                  * in case new sample type is added, because we could eat
6067                  * up the rest of the sample size.
6068                  */
6069                 u16 stack_size = event->attr.sample_stack_user;
6070                 u16 size = sizeof(u64);
6071
6072                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6073                                                      data->regs_user.regs);
6074
6075                 /*
6076                  * If there is something to dump, add space for the dump
6077                  * itself and for the field that tells the dynamic size,
6078                  * which is how many have been actually dumped.
6079                  */
6080                 if (stack_size)
6081                         size += sizeof(u64) + stack_size;
6082
6083                 data->stack_user_size = stack_size;
6084                 header->size += size;
6085         }
6086
6087         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6088                 /* regs dump ABI info */
6089                 int size = sizeof(u64);
6090
6091                 perf_sample_regs_intr(&data->regs_intr, regs);
6092
6093                 if (data->regs_intr.regs) {
6094                         u64 mask = event->attr.sample_regs_intr;
6095
6096                         size += hweight64(mask) * sizeof(u64);
6097                 }
6098
6099                 header->size += size;
6100         }
6101
6102         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6103                 data->phys_addr = perf_virt_to_phys(data->addr);
6104 }
6105
6106 static void __always_inline
6107 __perf_event_output(struct perf_event *event,
6108                     struct perf_sample_data *data,
6109                     struct pt_regs *regs,
6110                     int (*output_begin)(struct perf_output_handle *,
6111                                         struct perf_event *,
6112                                         unsigned int))
6113 {
6114         struct perf_output_handle handle;
6115         struct perf_event_header header;
6116
6117         /* protect the callchain buffers */
6118         rcu_read_lock();
6119
6120         perf_prepare_sample(&header, data, event, regs);
6121
6122         if (output_begin(&handle, event, header.size))
6123                 goto exit;
6124
6125         perf_output_sample(&handle, &header, data, event);
6126
6127         perf_output_end(&handle);
6128
6129 exit:
6130         rcu_read_unlock();
6131 }
6132
6133 void
6134 perf_event_output_forward(struct perf_event *event,
6135                          struct perf_sample_data *data,
6136                          struct pt_regs *regs)
6137 {
6138         __perf_event_output(event, data, regs, perf_output_begin_forward);
6139 }
6140
6141 void
6142 perf_event_output_backward(struct perf_event *event,
6143                            struct perf_sample_data *data,
6144                            struct pt_regs *regs)
6145 {
6146         __perf_event_output(event, data, regs, perf_output_begin_backward);
6147 }
6148
6149 void
6150 perf_event_output(struct perf_event *event,
6151                   struct perf_sample_data *data,
6152                   struct pt_regs *regs)
6153 {
6154         __perf_event_output(event, data, regs, perf_output_begin);
6155 }
6156
6157 /*
6158  * read event_id
6159  */
6160
6161 struct perf_read_event {
6162         struct perf_event_header        header;
6163
6164         u32                             pid;
6165         u32                             tid;
6166 };
6167
6168 static void
6169 perf_event_read_event(struct perf_event *event,
6170                         struct task_struct *task)
6171 {
6172         struct perf_output_handle handle;
6173         struct perf_sample_data sample;
6174         struct perf_read_event read_event = {
6175                 .header = {
6176                         .type = PERF_RECORD_READ,
6177                         .misc = 0,
6178                         .size = sizeof(read_event) + event->read_size,
6179                 },
6180                 .pid = perf_event_pid(event, task),
6181                 .tid = perf_event_tid(event, task),
6182         };
6183         int ret;
6184
6185         perf_event_header__init_id(&read_event.header, &sample, event);
6186         ret = perf_output_begin(&handle, event, read_event.header.size);
6187         if (ret)
6188                 return;
6189
6190         perf_output_put(&handle, read_event);
6191         perf_output_read(&handle, event);
6192         perf_event__output_id_sample(event, &handle, &sample);
6193
6194         perf_output_end(&handle);
6195 }
6196
6197 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6198
6199 static void
6200 perf_iterate_ctx(struct perf_event_context *ctx,
6201                    perf_iterate_f output,
6202                    void *data, bool all)
6203 {
6204         struct perf_event *event;
6205
6206         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6207                 if (!all) {
6208                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6209                                 continue;
6210                         if (!event_filter_match(event))
6211                                 continue;
6212                 }
6213
6214                 output(event, data);
6215         }
6216 }
6217
6218 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6219 {
6220         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6221         struct perf_event *event;
6222
6223         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6224                 /*
6225                  * Skip events that are not fully formed yet; ensure that
6226                  * if we observe event->ctx, both event and ctx will be
6227                  * complete enough. See perf_install_in_context().
6228                  */
6229                 if (!smp_load_acquire(&event->ctx))
6230                         continue;
6231
6232                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6233                         continue;
6234                 if (!event_filter_match(event))
6235                         continue;
6236                 output(event, data);
6237         }
6238 }
6239
6240 /*
6241  * Iterate all events that need to receive side-band events.
6242  *
6243  * For new callers; ensure that account_pmu_sb_event() includes
6244  * your event, otherwise it might not get delivered.
6245  */
6246 static void
6247 perf_iterate_sb(perf_iterate_f output, void *data,
6248                struct perf_event_context *task_ctx)
6249 {
6250         struct perf_event_context *ctx;
6251         int ctxn;
6252
6253         rcu_read_lock();
6254         preempt_disable();
6255
6256         /*
6257          * If we have task_ctx != NULL we only notify the task context itself.
6258          * The task_ctx is set only for EXIT events before releasing task
6259          * context.
6260          */
6261         if (task_ctx) {
6262                 perf_iterate_ctx(task_ctx, output, data, false);
6263                 goto done;
6264         }
6265
6266         perf_iterate_sb_cpu(output, data);
6267
6268         for_each_task_context_nr(ctxn) {
6269                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6270                 if (ctx)
6271                         perf_iterate_ctx(ctx, output, data, false);
6272         }
6273 done:
6274         preempt_enable();
6275         rcu_read_unlock();
6276 }
6277
6278 /*
6279  * Clear all file-based filters at exec, they'll have to be
6280  * re-instated when/if these objects are mmapped again.
6281  */
6282 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6283 {
6284         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6285         struct perf_addr_filter *filter;
6286         unsigned int restart = 0, count = 0;
6287         unsigned long flags;
6288
6289         if (!has_addr_filter(event))
6290                 return;
6291
6292         raw_spin_lock_irqsave(&ifh->lock, flags);
6293         list_for_each_entry(filter, &ifh->list, entry) {
6294                 if (filter->inode) {
6295                         event->addr_filters_offs[count] = 0;
6296                         restart++;
6297                 }
6298
6299                 count++;
6300         }
6301
6302         if (restart)
6303                 event->addr_filters_gen++;
6304         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6305
6306         if (restart)
6307                 perf_event_stop(event, 1);
6308 }
6309
6310 void perf_event_exec(void)
6311 {
6312         struct perf_event_context *ctx;
6313         int ctxn;
6314
6315         rcu_read_lock();
6316         for_each_task_context_nr(ctxn) {
6317                 ctx = current->perf_event_ctxp[ctxn];
6318                 if (!ctx)
6319                         continue;
6320
6321                 perf_event_enable_on_exec(ctxn);
6322
6323                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6324                                    true);
6325         }
6326         rcu_read_unlock();
6327 }
6328
6329 struct remote_output {
6330         struct ring_buffer      *rb;
6331         int                     err;
6332 };
6333
6334 static void __perf_event_output_stop(struct perf_event *event, void *data)
6335 {
6336         struct perf_event *parent = event->parent;
6337         struct remote_output *ro = data;
6338         struct ring_buffer *rb = ro->rb;
6339         struct stop_event_data sd = {
6340                 .event  = event,
6341         };
6342
6343         if (!has_aux(event))
6344                 return;
6345
6346         if (!parent)
6347                 parent = event;
6348
6349         /*
6350          * In case of inheritance, it will be the parent that links to the
6351          * ring-buffer, but it will be the child that's actually using it.
6352          *
6353          * We are using event::rb to determine if the event should be stopped,
6354          * however this may race with ring_buffer_attach() (through set_output),
6355          * which will make us skip the event that actually needs to be stopped.
6356          * So ring_buffer_attach() has to stop an aux event before re-assigning
6357          * its rb pointer.
6358          */
6359         if (rcu_dereference(parent->rb) == rb)
6360                 ro->err = __perf_event_stop(&sd);
6361 }
6362
6363 static int __perf_pmu_output_stop(void *info)
6364 {
6365         struct perf_event *event = info;
6366         struct pmu *pmu = event->pmu;
6367         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6368         struct remote_output ro = {
6369                 .rb     = event->rb,
6370         };
6371
6372         rcu_read_lock();
6373         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6374         if (cpuctx->task_ctx)
6375                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6376                                    &ro, false);
6377         rcu_read_unlock();
6378
6379         return ro.err;
6380 }
6381
6382 static void perf_pmu_output_stop(struct perf_event *event)
6383 {
6384         struct perf_event *iter;
6385         int err, cpu;
6386
6387 restart:
6388         rcu_read_lock();
6389         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6390                 /*
6391                  * For per-CPU events, we need to make sure that neither they
6392                  * nor their children are running; for cpu==-1 events it's
6393                  * sufficient to stop the event itself if it's active, since
6394                  * it can't have children.
6395                  */
6396                 cpu = iter->cpu;
6397                 if (cpu == -1)
6398                         cpu = READ_ONCE(iter->oncpu);
6399
6400                 if (cpu == -1)
6401                         continue;
6402
6403                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6404                 if (err == -EAGAIN) {
6405                         rcu_read_unlock();
6406                         goto restart;
6407                 }
6408         }
6409         rcu_read_unlock();
6410 }
6411
6412 /*
6413  * task tracking -- fork/exit
6414  *
6415  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6416  */
6417
6418 struct perf_task_event {
6419         struct task_struct              *task;
6420         struct perf_event_context       *task_ctx;
6421
6422         struct {
6423                 struct perf_event_header        header;
6424
6425                 u32                             pid;
6426                 u32                             ppid;
6427                 u32                             tid;
6428                 u32                             ptid;
6429                 u64                             time;
6430         } event_id;
6431 };
6432
6433 static int perf_event_task_match(struct perf_event *event)
6434 {
6435         return event->attr.comm  || event->attr.mmap ||
6436                event->attr.mmap2 || event->attr.mmap_data ||
6437                event->attr.task;
6438 }
6439
6440 static void perf_event_task_output(struct perf_event *event,
6441                                    void *data)
6442 {
6443         struct perf_task_event *task_event = data;
6444         struct perf_output_handle handle;
6445         struct perf_sample_data sample;
6446         struct task_struct *task = task_event->task;
6447         int ret, size = task_event->event_id.header.size;
6448
6449         if (!perf_event_task_match(event))
6450                 return;
6451
6452         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6453
6454         ret = perf_output_begin(&handle, event,
6455                                 task_event->event_id.header.size);
6456         if (ret)
6457                 goto out;
6458
6459         task_event->event_id.pid = perf_event_pid(event, task);
6460         task_event->event_id.ppid = perf_event_pid(event, current);
6461
6462         task_event->event_id.tid = perf_event_tid(event, task);
6463         task_event->event_id.ptid = perf_event_tid(event, current);
6464
6465         task_event->event_id.time = perf_event_clock(event);
6466
6467         perf_output_put(&handle, task_event->event_id);
6468
6469         perf_event__output_id_sample(event, &handle, &sample);
6470
6471         perf_output_end(&handle);
6472 out:
6473         task_event->event_id.header.size = size;
6474 }
6475
6476 static void perf_event_task(struct task_struct *task,
6477                               struct perf_event_context *task_ctx,
6478                               int new)
6479 {
6480         struct perf_task_event task_event;
6481
6482         if (!atomic_read(&nr_comm_events) &&
6483             !atomic_read(&nr_mmap_events) &&
6484             !atomic_read(&nr_task_events))
6485                 return;
6486
6487         task_event = (struct perf_task_event){
6488                 .task     = task,
6489                 .task_ctx = task_ctx,
6490                 .event_id    = {
6491                         .header = {
6492                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6493                                 .misc = 0,
6494                                 .size = sizeof(task_event.event_id),
6495                         },
6496                         /* .pid  */
6497                         /* .ppid */
6498                         /* .tid  */
6499                         /* .ptid */
6500                         /* .time */
6501                 },
6502         };
6503
6504         perf_iterate_sb(perf_event_task_output,
6505                        &task_event,
6506                        task_ctx);
6507 }
6508
6509 void perf_event_fork(struct task_struct *task)
6510 {
6511         perf_event_task(task, NULL, 1);
6512         perf_event_namespaces(task);
6513 }
6514
6515 /*
6516  * comm tracking
6517  */
6518
6519 struct perf_comm_event {
6520         struct task_struct      *task;
6521         char                    *comm;
6522         int                     comm_size;
6523
6524         struct {
6525                 struct perf_event_header        header;
6526
6527                 u32                             pid;
6528                 u32                             tid;
6529         } event_id;
6530 };
6531
6532 static int perf_event_comm_match(struct perf_event *event)
6533 {
6534         return event->attr.comm;
6535 }
6536
6537 static void perf_event_comm_output(struct perf_event *event,
6538                                    void *data)
6539 {
6540         struct perf_comm_event *comm_event = data;
6541         struct perf_output_handle handle;
6542         struct perf_sample_data sample;
6543         int size = comm_event->event_id.header.size;
6544         int ret;
6545
6546         if (!perf_event_comm_match(event))
6547                 return;
6548
6549         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6550         ret = perf_output_begin(&handle, event,
6551                                 comm_event->event_id.header.size);
6552
6553         if (ret)
6554                 goto out;
6555
6556         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6557         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6558
6559         perf_output_put(&handle, comm_event->event_id);
6560         __output_copy(&handle, comm_event->comm,
6561                                    comm_event->comm_size);
6562
6563         perf_event__output_id_sample(event, &handle, &sample);
6564
6565         perf_output_end(&handle);
6566 out:
6567         comm_event->event_id.header.size = size;
6568 }
6569
6570 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6571 {
6572         char comm[TASK_COMM_LEN];
6573         unsigned int size;
6574
6575         memset(comm, 0, sizeof(comm));
6576         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6577         size = ALIGN(strlen(comm)+1, sizeof(u64));
6578
6579         comm_event->comm = comm;
6580         comm_event->comm_size = size;
6581
6582         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6583
6584         perf_iterate_sb(perf_event_comm_output,
6585                        comm_event,
6586                        NULL);
6587 }
6588
6589 void perf_event_comm(struct task_struct *task, bool exec)
6590 {
6591         struct perf_comm_event comm_event;
6592
6593         if (!atomic_read(&nr_comm_events))
6594                 return;
6595
6596         comm_event = (struct perf_comm_event){
6597                 .task   = task,
6598                 /* .comm      */
6599                 /* .comm_size */
6600                 .event_id  = {
6601                         .header = {
6602                                 .type = PERF_RECORD_COMM,
6603                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6604                                 /* .size */
6605                         },
6606                         /* .pid */
6607                         /* .tid */
6608                 },
6609         };
6610
6611         perf_event_comm_event(&comm_event);
6612 }
6613
6614 /*
6615  * namespaces tracking
6616  */
6617
6618 struct perf_namespaces_event {
6619         struct task_struct              *task;
6620
6621         struct {
6622                 struct perf_event_header        header;
6623
6624                 u32                             pid;
6625                 u32                             tid;
6626                 u64                             nr_namespaces;
6627                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6628         } event_id;
6629 };
6630
6631 static int perf_event_namespaces_match(struct perf_event *event)
6632 {
6633         return event->attr.namespaces;
6634 }
6635
6636 static void perf_event_namespaces_output(struct perf_event *event,
6637                                          void *data)
6638 {
6639         struct perf_namespaces_event *namespaces_event = data;
6640         struct perf_output_handle handle;
6641         struct perf_sample_data sample;
6642         int ret;
6643
6644         if (!perf_event_namespaces_match(event))
6645                 return;
6646
6647         perf_event_header__init_id(&namespaces_event->event_id.header,
6648                                    &sample, event);
6649         ret = perf_output_begin(&handle, event,
6650                                 namespaces_event->event_id.header.size);
6651         if (ret)
6652                 return;
6653
6654         namespaces_event->event_id.pid = perf_event_pid(event,
6655                                                         namespaces_event->task);
6656         namespaces_event->event_id.tid = perf_event_tid(event,
6657                                                         namespaces_event->task);
6658
6659         perf_output_put(&handle, namespaces_event->event_id);
6660
6661         perf_event__output_id_sample(event, &handle, &sample);
6662
6663         perf_output_end(&handle);
6664 }
6665
6666 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6667                                    struct task_struct *task,
6668                                    const struct proc_ns_operations *ns_ops)
6669 {
6670         struct path ns_path;
6671         struct inode *ns_inode;
6672         void *error;
6673
6674         error = ns_get_path(&ns_path, task, ns_ops);
6675         if (!error) {
6676                 ns_inode = ns_path.dentry->d_inode;
6677                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6678                 ns_link_info->ino = ns_inode->i_ino;
6679         }
6680 }
6681
6682 void perf_event_namespaces(struct task_struct *task)
6683 {
6684         struct perf_namespaces_event namespaces_event;
6685         struct perf_ns_link_info *ns_link_info;
6686
6687         if (!atomic_read(&nr_namespaces_events))
6688                 return;
6689
6690         namespaces_event = (struct perf_namespaces_event){
6691                 .task   = task,
6692                 .event_id  = {
6693                         .header = {
6694                                 .type = PERF_RECORD_NAMESPACES,
6695                                 .misc = 0,
6696                                 .size = sizeof(namespaces_event.event_id),
6697                         },
6698                         /* .pid */
6699                         /* .tid */
6700                         .nr_namespaces = NR_NAMESPACES,
6701                         /* .link_info[NR_NAMESPACES] */
6702                 },
6703         };
6704
6705         ns_link_info = namespaces_event.event_id.link_info;
6706
6707         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6708                                task, &mntns_operations);
6709
6710 #ifdef CONFIG_USER_NS
6711         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6712                                task, &userns_operations);
6713 #endif
6714 #ifdef CONFIG_NET_NS
6715         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6716                                task, &netns_operations);
6717 #endif
6718 #ifdef CONFIG_UTS_NS
6719         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6720                                task, &utsns_operations);
6721 #endif
6722 #ifdef CONFIG_IPC_NS
6723         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6724                                task, &ipcns_operations);
6725 #endif
6726 #ifdef CONFIG_PID_NS
6727         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6728                                task, &pidns_operations);
6729 #endif
6730 #ifdef CONFIG_CGROUPS
6731         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6732                                task, &cgroupns_operations);
6733 #endif
6734
6735         perf_iterate_sb(perf_event_namespaces_output,
6736                         &namespaces_event,
6737                         NULL);
6738 }
6739
6740 /*
6741  * mmap tracking
6742  */
6743
6744 struct perf_mmap_event {
6745         struct vm_area_struct   *vma;
6746
6747         const char              *file_name;
6748         int                     file_size;
6749         int                     maj, min;
6750         u64                     ino;
6751         u64                     ino_generation;
6752         u32                     prot, flags;
6753
6754         struct {
6755                 struct perf_event_header        header;
6756
6757                 u32                             pid;
6758                 u32                             tid;
6759                 u64                             start;
6760                 u64                             len;
6761                 u64                             pgoff;
6762         } event_id;
6763 };
6764
6765 static int perf_event_mmap_match(struct perf_event *event,
6766                                  void *data)
6767 {
6768         struct perf_mmap_event *mmap_event = data;
6769         struct vm_area_struct *vma = mmap_event->vma;
6770         int executable = vma->vm_flags & VM_EXEC;
6771
6772         return (!executable && event->attr.mmap_data) ||
6773                (executable && (event->attr.mmap || event->attr.mmap2));
6774 }
6775
6776 static void perf_event_mmap_output(struct perf_event *event,
6777                                    void *data)
6778 {
6779         struct perf_mmap_event *mmap_event = data;
6780         struct perf_output_handle handle;
6781         struct perf_sample_data sample;
6782         int size = mmap_event->event_id.header.size;
6783         int ret;
6784
6785         if (!perf_event_mmap_match(event, data))
6786                 return;
6787
6788         if (event->attr.mmap2) {
6789                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6790                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6791                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6792                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6793                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6794                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6795                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6796         }
6797
6798         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6799         ret = perf_output_begin(&handle, event,
6800                                 mmap_event->event_id.header.size);
6801         if (ret)
6802                 goto out;
6803
6804         mmap_event->event_id.pid = perf_event_pid(event, current);
6805         mmap_event->event_id.tid = perf_event_tid(event, current);
6806
6807         perf_output_put(&handle, mmap_event->event_id);
6808
6809         if (event->attr.mmap2) {
6810                 perf_output_put(&handle, mmap_event->maj);
6811                 perf_output_put(&handle, mmap_event->min);
6812                 perf_output_put(&handle, mmap_event->ino);
6813                 perf_output_put(&handle, mmap_event->ino_generation);
6814                 perf_output_put(&handle, mmap_event->prot);
6815                 perf_output_put(&handle, mmap_event->flags);
6816         }
6817
6818         __output_copy(&handle, mmap_event->file_name,
6819                                    mmap_event->file_size);
6820
6821         perf_event__output_id_sample(event, &handle, &sample);
6822
6823         perf_output_end(&handle);
6824 out:
6825         mmap_event->event_id.header.size = size;
6826 }
6827
6828 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6829 {
6830         struct vm_area_struct *vma = mmap_event->vma;
6831         struct file *file = vma->vm_file;
6832         int maj = 0, min = 0;
6833         u64 ino = 0, gen = 0;
6834         u32 prot = 0, flags = 0;
6835         unsigned int size;
6836         char tmp[16];
6837         char *buf = NULL;
6838         char *name;
6839
6840         if (vma->vm_flags & VM_READ)
6841                 prot |= PROT_READ;
6842         if (vma->vm_flags & VM_WRITE)
6843                 prot |= PROT_WRITE;
6844         if (vma->vm_flags & VM_EXEC)
6845                 prot |= PROT_EXEC;
6846
6847         if (vma->vm_flags & VM_MAYSHARE)
6848                 flags = MAP_SHARED;
6849         else
6850                 flags = MAP_PRIVATE;
6851
6852         if (vma->vm_flags & VM_DENYWRITE)
6853                 flags |= MAP_DENYWRITE;
6854         if (vma->vm_flags & VM_MAYEXEC)
6855                 flags |= MAP_EXECUTABLE;
6856         if (vma->vm_flags & VM_LOCKED)
6857                 flags |= MAP_LOCKED;
6858         if (vma->vm_flags & VM_HUGETLB)
6859                 flags |= MAP_HUGETLB;
6860
6861         if (file) {
6862                 struct inode *inode;
6863                 dev_t dev;
6864
6865                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6866                 if (!buf) {
6867                         name = "//enomem";
6868                         goto cpy_name;
6869                 }
6870                 /*
6871                  * d_path() works from the end of the rb backwards, so we
6872                  * need to add enough zero bytes after the string to handle
6873                  * the 64bit alignment we do later.
6874                  */
6875                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6876                 if (IS_ERR(name)) {
6877                         name = "//toolong";
6878                         goto cpy_name;
6879                 }
6880                 inode = file_inode(vma->vm_file);
6881                 dev = inode->i_sb->s_dev;
6882                 ino = inode->i_ino;
6883                 gen = inode->i_generation;
6884                 maj = MAJOR(dev);
6885                 min = MINOR(dev);
6886
6887                 goto got_name;
6888         } else {
6889                 if (vma->vm_ops && vma->vm_ops->name) {
6890                         name = (char *) vma->vm_ops->name(vma);
6891                         if (name)
6892                                 goto cpy_name;
6893                 }
6894
6895                 name = (char *)arch_vma_name(vma);
6896                 if (name)
6897                         goto cpy_name;
6898
6899                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6900                                 vma->vm_end >= vma->vm_mm->brk) {
6901                         name = "[heap]";
6902                         goto cpy_name;
6903                 }
6904                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6905                                 vma->vm_end >= vma->vm_mm->start_stack) {
6906                         name = "[stack]";
6907                         goto cpy_name;
6908                 }
6909
6910                 name = "//anon";
6911                 goto cpy_name;
6912         }
6913
6914 cpy_name:
6915         strlcpy(tmp, name, sizeof(tmp));
6916         name = tmp;
6917 got_name:
6918         /*
6919          * Since our buffer works in 8 byte units we need to align our string
6920          * size to a multiple of 8. However, we must guarantee the tail end is
6921          * zero'd out to avoid leaking random bits to userspace.
6922          */
6923         size = strlen(name)+1;
6924         while (!IS_ALIGNED(size, sizeof(u64)))
6925                 name[size++] = '\0';
6926
6927         mmap_event->file_name = name;
6928         mmap_event->file_size = size;
6929         mmap_event->maj = maj;
6930         mmap_event->min = min;
6931         mmap_event->ino = ino;
6932         mmap_event->ino_generation = gen;
6933         mmap_event->prot = prot;
6934         mmap_event->flags = flags;
6935
6936         if (!(vma->vm_flags & VM_EXEC))
6937                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6938
6939         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6940
6941         perf_iterate_sb(perf_event_mmap_output,
6942                        mmap_event,
6943                        NULL);
6944
6945         kfree(buf);
6946 }
6947
6948 /*
6949  * Check whether inode and address range match filter criteria.
6950  */
6951 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6952                                      struct file *file, unsigned long offset,
6953                                      unsigned long size)
6954 {
6955         if (filter->inode != file_inode(file))
6956                 return false;
6957
6958         if (filter->offset > offset + size)
6959                 return false;
6960
6961         if (filter->offset + filter->size < offset)
6962                 return false;
6963
6964         return true;
6965 }
6966
6967 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6968 {
6969         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6970         struct vm_area_struct *vma = data;
6971         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6972         struct file *file = vma->vm_file;
6973         struct perf_addr_filter *filter;
6974         unsigned int restart = 0, count = 0;
6975
6976         if (!has_addr_filter(event))
6977                 return;
6978
6979         if (!file)
6980                 return;
6981
6982         raw_spin_lock_irqsave(&ifh->lock, flags);
6983         list_for_each_entry(filter, &ifh->list, entry) {
6984                 if (perf_addr_filter_match(filter, file, off,
6985                                              vma->vm_end - vma->vm_start)) {
6986                         event->addr_filters_offs[count] = vma->vm_start;
6987                         restart++;
6988                 }
6989
6990                 count++;
6991         }
6992
6993         if (restart)
6994                 event->addr_filters_gen++;
6995         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6996
6997         if (restart)
6998                 perf_event_stop(event, 1);
6999 }
7000
7001 /*
7002  * Adjust all task's events' filters to the new vma
7003  */
7004 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7005 {
7006         struct perf_event_context *ctx;
7007         int ctxn;
7008
7009         /*
7010          * Data tracing isn't supported yet and as such there is no need
7011          * to keep track of anything that isn't related to executable code:
7012          */
7013         if (!(vma->vm_flags & VM_EXEC))
7014                 return;
7015
7016         rcu_read_lock();
7017         for_each_task_context_nr(ctxn) {
7018                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7019                 if (!ctx)
7020                         continue;
7021
7022                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7023         }
7024         rcu_read_unlock();
7025 }
7026
7027 void perf_event_mmap(struct vm_area_struct *vma)
7028 {
7029         struct perf_mmap_event mmap_event;
7030
7031         if (!atomic_read(&nr_mmap_events))
7032                 return;
7033
7034         mmap_event = (struct perf_mmap_event){
7035                 .vma    = vma,
7036                 /* .file_name */
7037                 /* .file_size */
7038                 .event_id  = {
7039                         .header = {
7040                                 .type = PERF_RECORD_MMAP,
7041                                 .misc = PERF_RECORD_MISC_USER,
7042                                 /* .size */
7043                         },
7044                         /* .pid */
7045                         /* .tid */
7046                         .start  = vma->vm_start,
7047                         .len    = vma->vm_end - vma->vm_start,
7048                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7049                 },
7050                 /* .maj (attr_mmap2 only) */
7051                 /* .min (attr_mmap2 only) */
7052                 /* .ino (attr_mmap2 only) */
7053                 /* .ino_generation (attr_mmap2 only) */
7054                 /* .prot (attr_mmap2 only) */
7055                 /* .flags (attr_mmap2 only) */
7056         };
7057
7058         perf_addr_filters_adjust(vma);
7059         perf_event_mmap_event(&mmap_event);
7060 }
7061
7062 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7063                           unsigned long size, u64 flags)
7064 {
7065         struct perf_output_handle handle;
7066         struct perf_sample_data sample;
7067         struct perf_aux_event {
7068                 struct perf_event_header        header;
7069                 u64                             offset;
7070                 u64                             size;
7071                 u64                             flags;
7072         } rec = {
7073                 .header = {
7074                         .type = PERF_RECORD_AUX,
7075                         .misc = 0,
7076                         .size = sizeof(rec),
7077                 },
7078                 .offset         = head,
7079                 .size           = size,
7080                 .flags          = flags,
7081         };
7082         int ret;
7083
7084         perf_event_header__init_id(&rec.header, &sample, event);
7085         ret = perf_output_begin(&handle, event, rec.header.size);
7086
7087         if (ret)
7088                 return;
7089
7090         perf_output_put(&handle, rec);
7091         perf_event__output_id_sample(event, &handle, &sample);
7092
7093         perf_output_end(&handle);
7094 }
7095
7096 /*
7097  * Lost/dropped samples logging
7098  */
7099 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7100 {
7101         struct perf_output_handle handle;
7102         struct perf_sample_data sample;
7103         int ret;
7104
7105         struct {
7106                 struct perf_event_header        header;
7107                 u64                             lost;
7108         } lost_samples_event = {
7109                 .header = {
7110                         .type = PERF_RECORD_LOST_SAMPLES,
7111                         .misc = 0,
7112                         .size = sizeof(lost_samples_event),
7113                 },
7114                 .lost           = lost,
7115         };
7116
7117         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7118
7119         ret = perf_output_begin(&handle, event,
7120                                 lost_samples_event.header.size);
7121         if (ret)
7122                 return;
7123
7124         perf_output_put(&handle, lost_samples_event);
7125         perf_event__output_id_sample(event, &handle, &sample);
7126         perf_output_end(&handle);
7127 }
7128
7129 /*
7130  * context_switch tracking
7131  */
7132
7133 struct perf_switch_event {
7134         struct task_struct      *task;
7135         struct task_struct      *next_prev;
7136
7137         struct {
7138                 struct perf_event_header        header;
7139                 u32                             next_prev_pid;
7140                 u32                             next_prev_tid;
7141         } event_id;
7142 };
7143
7144 static int perf_event_switch_match(struct perf_event *event)
7145 {
7146         return event->attr.context_switch;
7147 }
7148
7149 static void perf_event_switch_output(struct perf_event *event, void *data)
7150 {
7151         struct perf_switch_event *se = data;
7152         struct perf_output_handle handle;
7153         struct perf_sample_data sample;
7154         int ret;
7155
7156         if (!perf_event_switch_match(event))
7157                 return;
7158
7159         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7160         if (event->ctx->task) {
7161                 se->event_id.header.type = PERF_RECORD_SWITCH;
7162                 se->event_id.header.size = sizeof(se->event_id.header);
7163         } else {
7164                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7165                 se->event_id.header.size = sizeof(se->event_id);
7166                 se->event_id.next_prev_pid =
7167                                         perf_event_pid(event, se->next_prev);
7168                 se->event_id.next_prev_tid =
7169                                         perf_event_tid(event, se->next_prev);
7170         }
7171
7172         perf_event_header__init_id(&se->event_id.header, &sample, event);
7173
7174         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7175         if (ret)
7176                 return;
7177
7178         if (event->ctx->task)
7179                 perf_output_put(&handle, se->event_id.header);
7180         else
7181                 perf_output_put(&handle, se->event_id);
7182
7183         perf_event__output_id_sample(event, &handle, &sample);
7184
7185         perf_output_end(&handle);
7186 }
7187
7188 static void perf_event_switch(struct task_struct *task,
7189                               struct task_struct *next_prev, bool sched_in)
7190 {
7191         struct perf_switch_event switch_event;
7192
7193         /* N.B. caller checks nr_switch_events != 0 */
7194
7195         switch_event = (struct perf_switch_event){
7196                 .task           = task,
7197                 .next_prev      = next_prev,
7198                 .event_id       = {
7199                         .header = {
7200                                 /* .type */
7201                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7202                                 /* .size */
7203                         },
7204                         /* .next_prev_pid */
7205                         /* .next_prev_tid */
7206                 },
7207         };
7208
7209         perf_iterate_sb(perf_event_switch_output,
7210                        &switch_event,
7211                        NULL);
7212 }
7213
7214 /*
7215  * IRQ throttle logging
7216  */
7217
7218 static void perf_log_throttle(struct perf_event *event, int enable)
7219 {
7220         struct perf_output_handle handle;
7221         struct perf_sample_data sample;
7222         int ret;
7223
7224         struct {
7225                 struct perf_event_header        header;
7226                 u64                             time;
7227                 u64                             id;
7228                 u64                             stream_id;
7229         } throttle_event = {
7230                 .header = {
7231                         .type = PERF_RECORD_THROTTLE,
7232                         .misc = 0,
7233                         .size = sizeof(throttle_event),
7234                 },
7235                 .time           = perf_event_clock(event),
7236                 .id             = primary_event_id(event),
7237                 .stream_id      = event->id,
7238         };
7239
7240         if (enable)
7241                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7242
7243         perf_event_header__init_id(&throttle_event.header, &sample, event);
7244
7245         ret = perf_output_begin(&handle, event,
7246                                 throttle_event.header.size);
7247         if (ret)
7248                 return;
7249
7250         perf_output_put(&handle, throttle_event);
7251         perf_event__output_id_sample(event, &handle, &sample);
7252         perf_output_end(&handle);
7253 }
7254
7255 void perf_event_itrace_started(struct perf_event *event)
7256 {
7257         event->attach_state |= PERF_ATTACH_ITRACE;
7258 }
7259
7260 static void perf_log_itrace_start(struct perf_event *event)
7261 {
7262         struct perf_output_handle handle;
7263         struct perf_sample_data sample;
7264         struct perf_aux_event {
7265                 struct perf_event_header        header;
7266                 u32                             pid;
7267                 u32                             tid;
7268         } rec;
7269         int ret;
7270
7271         if (event->parent)
7272                 event = event->parent;
7273
7274         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7275             event->attach_state & PERF_ATTACH_ITRACE)
7276                 return;
7277
7278         rec.header.type = PERF_RECORD_ITRACE_START;
7279         rec.header.misc = 0;
7280         rec.header.size = sizeof(rec);
7281         rec.pid = perf_event_pid(event, current);
7282         rec.tid = perf_event_tid(event, current);
7283
7284         perf_event_header__init_id(&rec.header, &sample, event);
7285         ret = perf_output_begin(&handle, event, rec.header.size);
7286
7287         if (ret)
7288                 return;
7289
7290         perf_output_put(&handle, rec);
7291         perf_event__output_id_sample(event, &handle, &sample);
7292
7293         perf_output_end(&handle);
7294 }
7295
7296 static int
7297 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7298 {
7299         struct hw_perf_event *hwc = &event->hw;
7300         int ret = 0;
7301         u64 seq;
7302
7303         seq = __this_cpu_read(perf_throttled_seq);
7304         if (seq != hwc->interrupts_seq) {
7305                 hwc->interrupts_seq = seq;
7306                 hwc->interrupts = 1;
7307         } else {
7308                 hwc->interrupts++;
7309                 if (unlikely(throttle
7310                              && hwc->interrupts >= max_samples_per_tick)) {
7311                         __this_cpu_inc(perf_throttled_count);
7312                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7313                         hwc->interrupts = MAX_INTERRUPTS;
7314                         perf_log_throttle(event, 0);
7315                         ret = 1;
7316                 }
7317         }
7318
7319         if (event->attr.freq) {
7320                 u64 now = perf_clock();
7321                 s64 delta = now - hwc->freq_time_stamp;
7322
7323                 hwc->freq_time_stamp = now;
7324
7325                 if (delta > 0 && delta < 2*TICK_NSEC)
7326                         perf_adjust_period(event, delta, hwc->last_period, true);
7327         }
7328
7329         return ret;
7330 }
7331
7332 int perf_event_account_interrupt(struct perf_event *event)
7333 {
7334         return __perf_event_account_interrupt(event, 1);
7335 }
7336
7337 /*
7338  * Generic event overflow handling, sampling.
7339  */
7340
7341 static int __perf_event_overflow(struct perf_event *event,
7342                                    int throttle, struct perf_sample_data *data,
7343                                    struct pt_regs *regs)
7344 {
7345         int events = atomic_read(&event->event_limit);
7346         int ret = 0;
7347
7348         /*
7349          * Non-sampling counters might still use the PMI to fold short
7350          * hardware counters, ignore those.
7351          */
7352         if (unlikely(!is_sampling_event(event)))
7353                 return 0;
7354
7355         ret = __perf_event_account_interrupt(event, throttle);
7356
7357         /*
7358          * XXX event_limit might not quite work as expected on inherited
7359          * events
7360          */
7361
7362         event->pending_kill = POLL_IN;
7363         if (events && atomic_dec_and_test(&event->event_limit)) {
7364                 ret = 1;
7365                 event->pending_kill = POLL_HUP;
7366
7367                 perf_event_disable_inatomic(event);
7368         }
7369
7370         READ_ONCE(event->overflow_handler)(event, data, regs);
7371
7372         if (*perf_event_fasync(event) && event->pending_kill) {
7373                 event->pending_wakeup = 1;
7374                 irq_work_queue(&event->pending);
7375         }
7376
7377         return ret;
7378 }
7379
7380 int perf_event_overflow(struct perf_event *event,
7381                           struct perf_sample_data *data,
7382                           struct pt_regs *regs)
7383 {
7384         return __perf_event_overflow(event, 1, data, regs);
7385 }
7386
7387 /*
7388  * Generic software event infrastructure
7389  */
7390
7391 struct swevent_htable {
7392         struct swevent_hlist            *swevent_hlist;
7393         struct mutex                    hlist_mutex;
7394         int                             hlist_refcount;
7395
7396         /* Recursion avoidance in each contexts */
7397         int                             recursion[PERF_NR_CONTEXTS];
7398 };
7399
7400 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7401
7402 /*
7403  * We directly increment event->count and keep a second value in
7404  * event->hw.period_left to count intervals. This period event
7405  * is kept in the range [-sample_period, 0] so that we can use the
7406  * sign as trigger.
7407  */
7408
7409 u64 perf_swevent_set_period(struct perf_event *event)
7410 {
7411         struct hw_perf_event *hwc = &event->hw;
7412         u64 period = hwc->last_period;
7413         u64 nr, offset;
7414         s64 old, val;
7415
7416         hwc->last_period = hwc->sample_period;
7417
7418 again:
7419         old = val = local64_read(&hwc->period_left);
7420         if (val < 0)
7421                 return 0;
7422
7423         nr = div64_u64(period + val, period);
7424         offset = nr * period;
7425         val -= offset;
7426         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7427                 goto again;
7428
7429         return nr;
7430 }
7431
7432 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7433                                     struct perf_sample_data *data,
7434                                     struct pt_regs *regs)
7435 {
7436         struct hw_perf_event *hwc = &event->hw;
7437         int throttle = 0;
7438
7439         if (!overflow)
7440                 overflow = perf_swevent_set_period(event);
7441
7442         if (hwc->interrupts == MAX_INTERRUPTS)
7443                 return;
7444
7445         for (; overflow; overflow--) {
7446                 if (__perf_event_overflow(event, throttle,
7447                                             data, regs)) {
7448                         /*
7449                          * We inhibit the overflow from happening when
7450                          * hwc->interrupts == MAX_INTERRUPTS.
7451                          */
7452                         break;
7453                 }
7454                 throttle = 1;
7455         }
7456 }
7457
7458 static void perf_swevent_event(struct perf_event *event, u64 nr,
7459                                struct perf_sample_data *data,
7460                                struct pt_regs *regs)
7461 {
7462         struct hw_perf_event *hwc = &event->hw;
7463
7464         local64_add(nr, &event->count);
7465
7466         if (!regs)
7467                 return;
7468
7469         if (!is_sampling_event(event))
7470                 return;
7471
7472         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7473                 data->period = nr;
7474                 return perf_swevent_overflow(event, 1, data, regs);
7475         } else
7476                 data->period = event->hw.last_period;
7477
7478         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7479                 return perf_swevent_overflow(event, 1, data, regs);
7480
7481         if (local64_add_negative(nr, &hwc->period_left))
7482                 return;
7483
7484         perf_swevent_overflow(event, 0, data, regs);
7485 }
7486
7487 static int perf_exclude_event(struct perf_event *event,
7488                               struct pt_regs *regs)
7489 {
7490         if (event->hw.state & PERF_HES_STOPPED)
7491                 return 1;
7492
7493         if (regs) {
7494                 if (event->attr.exclude_user && user_mode(regs))
7495                         return 1;
7496
7497                 if (event->attr.exclude_kernel && !user_mode(regs))
7498                         return 1;
7499         }
7500
7501         return 0;
7502 }
7503
7504 static int perf_swevent_match(struct perf_event *event,
7505                                 enum perf_type_id type,
7506                                 u32 event_id,
7507                                 struct perf_sample_data *data,
7508                                 struct pt_regs *regs)
7509 {
7510         if (event->attr.type != type)
7511                 return 0;
7512
7513         if (event->attr.config != event_id)
7514                 return 0;
7515
7516         if (perf_exclude_event(event, regs))
7517                 return 0;
7518
7519         return 1;
7520 }
7521
7522 static inline u64 swevent_hash(u64 type, u32 event_id)
7523 {
7524         u64 val = event_id | (type << 32);
7525
7526         return hash_64(val, SWEVENT_HLIST_BITS);
7527 }
7528
7529 static inline struct hlist_head *
7530 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7531 {
7532         u64 hash = swevent_hash(type, event_id);
7533
7534         return &hlist->heads[hash];
7535 }
7536
7537 /* For the read side: events when they trigger */
7538 static inline struct hlist_head *
7539 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7540 {
7541         struct swevent_hlist *hlist;
7542
7543         hlist = rcu_dereference(swhash->swevent_hlist);
7544         if (!hlist)
7545                 return NULL;
7546
7547         return __find_swevent_head(hlist, type, event_id);
7548 }
7549
7550 /* For the event head insertion and removal in the hlist */
7551 static inline struct hlist_head *
7552 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7553 {
7554         struct swevent_hlist *hlist;
7555         u32 event_id = event->attr.config;
7556         u64 type = event->attr.type;
7557
7558         /*
7559          * Event scheduling is always serialized against hlist allocation
7560          * and release. Which makes the protected version suitable here.
7561          * The context lock guarantees that.
7562          */
7563         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7564                                           lockdep_is_held(&event->ctx->lock));
7565         if (!hlist)
7566                 return NULL;
7567
7568         return __find_swevent_head(hlist, type, event_id);
7569 }
7570
7571 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7572                                     u64 nr,
7573                                     struct perf_sample_data *data,
7574                                     struct pt_regs *regs)
7575 {
7576         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7577         struct perf_event *event;
7578         struct hlist_head *head;
7579
7580         rcu_read_lock();
7581         head = find_swevent_head_rcu(swhash, type, event_id);
7582         if (!head)
7583                 goto end;
7584
7585         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7586                 if (perf_swevent_match(event, type, event_id, data, regs))
7587                         perf_swevent_event(event, nr, data, regs);
7588         }
7589 end:
7590         rcu_read_unlock();
7591 }
7592
7593 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7594
7595 int perf_swevent_get_recursion_context(void)
7596 {
7597         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7598
7599         return get_recursion_context(swhash->recursion);
7600 }
7601 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7602
7603 void perf_swevent_put_recursion_context(int rctx)
7604 {
7605         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7606
7607         put_recursion_context(swhash->recursion, rctx);
7608 }
7609
7610 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7611 {
7612         struct perf_sample_data data;
7613
7614         if (WARN_ON_ONCE(!regs))
7615                 return;
7616
7617         perf_sample_data_init(&data, addr, 0);
7618         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7619 }
7620
7621 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7622 {
7623         int rctx;
7624
7625         preempt_disable_notrace();
7626         rctx = perf_swevent_get_recursion_context();
7627         if (unlikely(rctx < 0))
7628                 goto fail;
7629
7630         ___perf_sw_event(event_id, nr, regs, addr);
7631
7632         perf_swevent_put_recursion_context(rctx);
7633 fail:
7634         preempt_enable_notrace();
7635 }
7636
7637 static void perf_swevent_read(struct perf_event *event)
7638 {
7639 }
7640
7641 static int perf_swevent_add(struct perf_event *event, int flags)
7642 {
7643         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7644         struct hw_perf_event *hwc = &event->hw;
7645         struct hlist_head *head;
7646
7647         if (is_sampling_event(event)) {
7648                 hwc->last_period = hwc->sample_period;
7649                 perf_swevent_set_period(event);
7650         }
7651
7652         hwc->state = !(flags & PERF_EF_START);
7653
7654         head = find_swevent_head(swhash, event);
7655         if (WARN_ON_ONCE(!head))
7656                 return -EINVAL;
7657
7658         hlist_add_head_rcu(&event->hlist_entry, head);
7659         perf_event_update_userpage(event);
7660
7661         return 0;
7662 }
7663
7664 static void perf_swevent_del(struct perf_event *event, int flags)
7665 {
7666         hlist_del_rcu(&event->hlist_entry);
7667 }
7668
7669 static void perf_swevent_start(struct perf_event *event, int flags)
7670 {
7671         event->hw.state = 0;
7672 }
7673
7674 static void perf_swevent_stop(struct perf_event *event, int flags)
7675 {
7676         event->hw.state = PERF_HES_STOPPED;
7677 }
7678
7679 /* Deref the hlist from the update side */
7680 static inline struct swevent_hlist *
7681 swevent_hlist_deref(struct swevent_htable *swhash)
7682 {
7683         return rcu_dereference_protected(swhash->swevent_hlist,
7684                                          lockdep_is_held(&swhash->hlist_mutex));
7685 }
7686
7687 static void swevent_hlist_release(struct swevent_htable *swhash)
7688 {
7689         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7690
7691         if (!hlist)
7692                 return;
7693
7694         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7695         kfree_rcu(hlist, rcu_head);
7696 }
7697
7698 static void swevent_hlist_put_cpu(int cpu)
7699 {
7700         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7701
7702         mutex_lock(&swhash->hlist_mutex);
7703
7704         if (!--swhash->hlist_refcount)
7705                 swevent_hlist_release(swhash);
7706
7707         mutex_unlock(&swhash->hlist_mutex);
7708 }
7709
7710 static void swevent_hlist_put(void)
7711 {
7712         int cpu;
7713
7714         for_each_possible_cpu(cpu)
7715                 swevent_hlist_put_cpu(cpu);
7716 }
7717
7718 static int swevent_hlist_get_cpu(int cpu)
7719 {
7720         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7721         int err = 0;
7722
7723         mutex_lock(&swhash->hlist_mutex);
7724         if (!swevent_hlist_deref(swhash) &&
7725             cpumask_test_cpu(cpu, perf_online_mask)) {
7726                 struct swevent_hlist *hlist;
7727
7728                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7729                 if (!hlist) {
7730                         err = -ENOMEM;
7731                         goto exit;
7732                 }
7733                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7734         }
7735         swhash->hlist_refcount++;
7736 exit:
7737         mutex_unlock(&swhash->hlist_mutex);
7738
7739         return err;
7740 }
7741
7742 static int swevent_hlist_get(void)
7743 {
7744         int err, cpu, failed_cpu;
7745
7746         mutex_lock(&pmus_lock);
7747         for_each_possible_cpu(cpu) {
7748                 err = swevent_hlist_get_cpu(cpu);
7749                 if (err) {
7750                         failed_cpu = cpu;
7751                         goto fail;
7752                 }
7753         }
7754         mutex_unlock(&pmus_lock);
7755         return 0;
7756 fail:
7757         for_each_possible_cpu(cpu) {
7758                 if (cpu == failed_cpu)
7759                         break;
7760                 swevent_hlist_put_cpu(cpu);
7761         }
7762         mutex_unlock(&pmus_lock);
7763         return err;
7764 }
7765
7766 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7767
7768 static void sw_perf_event_destroy(struct perf_event *event)
7769 {
7770         u64 event_id = event->attr.config;
7771
7772         WARN_ON(event->parent);
7773
7774         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7775         swevent_hlist_put();
7776 }
7777
7778 static int perf_swevent_init(struct perf_event *event)
7779 {
7780         u64 event_id = event->attr.config;
7781
7782         if (event->attr.type != PERF_TYPE_SOFTWARE)
7783                 return -ENOENT;
7784
7785         /*
7786          * no branch sampling for software events
7787          */
7788         if (has_branch_stack(event))
7789                 return -EOPNOTSUPP;
7790
7791         switch (event_id) {
7792         case PERF_COUNT_SW_CPU_CLOCK:
7793         case PERF_COUNT_SW_TASK_CLOCK:
7794                 return -ENOENT;
7795
7796         default:
7797                 break;
7798         }
7799
7800         if (event_id >= PERF_COUNT_SW_MAX)
7801                 return -ENOENT;
7802
7803         if (!event->parent) {
7804                 int err;
7805
7806                 err = swevent_hlist_get();
7807                 if (err)
7808                         return err;
7809
7810                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7811                 event->destroy = sw_perf_event_destroy;
7812         }
7813
7814         return 0;
7815 }
7816
7817 static struct pmu perf_swevent = {
7818         .task_ctx_nr    = perf_sw_context,
7819
7820         .capabilities   = PERF_PMU_CAP_NO_NMI,
7821
7822         .event_init     = perf_swevent_init,
7823         .add            = perf_swevent_add,
7824         .del            = perf_swevent_del,
7825         .start          = perf_swevent_start,
7826         .stop           = perf_swevent_stop,
7827         .read           = perf_swevent_read,
7828 };
7829
7830 #ifdef CONFIG_EVENT_TRACING
7831
7832 static int perf_tp_filter_match(struct perf_event *event,
7833                                 struct perf_sample_data *data)
7834 {
7835         void *record = data->raw->frag.data;
7836
7837         /* only top level events have filters set */
7838         if (event->parent)
7839                 event = event->parent;
7840
7841         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7842                 return 1;
7843         return 0;
7844 }
7845
7846 static int perf_tp_event_match(struct perf_event *event,
7847                                 struct perf_sample_data *data,
7848                                 struct pt_regs *regs)
7849 {
7850         if (event->hw.state & PERF_HES_STOPPED)
7851                 return 0;
7852         /*
7853          * All tracepoints are from kernel-space.
7854          */
7855         if (event->attr.exclude_kernel)
7856                 return 0;
7857
7858         if (!perf_tp_filter_match(event, data))
7859                 return 0;
7860
7861         return 1;
7862 }
7863
7864 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7865                                struct trace_event_call *call, u64 count,
7866                                struct pt_regs *regs, struct hlist_head *head,
7867                                struct task_struct *task)
7868 {
7869         if (bpf_prog_array_valid(call)) {
7870                 *(struct pt_regs **)raw_data = regs;
7871                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7872                         perf_swevent_put_recursion_context(rctx);
7873                         return;
7874                 }
7875         }
7876         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7877                       rctx, task);
7878 }
7879 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7880
7881 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7882                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7883                    struct task_struct *task)
7884 {
7885         struct perf_sample_data data;
7886         struct perf_event *event;
7887
7888         struct perf_raw_record raw = {
7889                 .frag = {
7890                         .size = entry_size,
7891                         .data = record,
7892                 },
7893         };
7894
7895         perf_sample_data_init(&data, 0, 0);
7896         data.raw = &raw;
7897
7898         perf_trace_buf_update(record, event_type);
7899
7900         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7901                 if (perf_tp_event_match(event, &data, regs))
7902                         perf_swevent_event(event, count, &data, regs);
7903         }
7904
7905         /*
7906          * If we got specified a target task, also iterate its context and
7907          * deliver this event there too.
7908          */
7909         if (task && task != current) {
7910                 struct perf_event_context *ctx;
7911                 struct trace_entry *entry = record;
7912
7913                 rcu_read_lock();
7914                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7915                 if (!ctx)
7916                         goto unlock;
7917
7918                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7919                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7920                                 continue;
7921                         if (event->attr.config != entry->type)
7922                                 continue;
7923                         if (perf_tp_event_match(event, &data, regs))
7924                                 perf_swevent_event(event, count, &data, regs);
7925                 }
7926 unlock:
7927                 rcu_read_unlock();
7928         }
7929
7930         perf_swevent_put_recursion_context(rctx);
7931 }
7932 EXPORT_SYMBOL_GPL(perf_tp_event);
7933
7934 static void tp_perf_event_destroy(struct perf_event *event)
7935 {
7936         perf_trace_destroy(event);
7937 }
7938
7939 static int perf_tp_event_init(struct perf_event *event)
7940 {
7941         int err;
7942
7943         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7944                 return -ENOENT;
7945
7946         /*
7947          * no branch sampling for tracepoint events
7948          */
7949         if (has_branch_stack(event))
7950                 return -EOPNOTSUPP;
7951
7952         err = perf_trace_init(event);
7953         if (err)
7954                 return err;
7955
7956         event->destroy = tp_perf_event_destroy;
7957
7958         return 0;
7959 }
7960
7961 static struct pmu perf_tracepoint = {
7962         .task_ctx_nr    = perf_sw_context,
7963
7964         .event_init     = perf_tp_event_init,
7965         .add            = perf_trace_add,
7966         .del            = perf_trace_del,
7967         .start          = perf_swevent_start,
7968         .stop           = perf_swevent_stop,
7969         .read           = perf_swevent_read,
7970 };
7971
7972 static inline void perf_tp_register(void)
7973 {
7974         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7975 }
7976
7977 static void perf_event_free_filter(struct perf_event *event)
7978 {
7979         ftrace_profile_free_filter(event);
7980 }
7981
7982 #ifdef CONFIG_BPF_SYSCALL
7983 static void bpf_overflow_handler(struct perf_event *event,
7984                                  struct perf_sample_data *data,
7985                                  struct pt_regs *regs)
7986 {
7987         struct bpf_perf_event_data_kern ctx = {
7988                 .data = data,
7989                 .regs = regs,
7990                 .event = event,
7991         };
7992         int ret = 0;
7993
7994         preempt_disable();
7995         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7996                 goto out;
7997         rcu_read_lock();
7998         ret = BPF_PROG_RUN(event->prog, &ctx);
7999         rcu_read_unlock();
8000 out:
8001         __this_cpu_dec(bpf_prog_active);
8002         preempt_enable();
8003         if (!ret)
8004                 return;
8005
8006         event->orig_overflow_handler(event, data, regs);
8007 }
8008
8009 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8010 {
8011         struct bpf_prog *prog;
8012
8013         if (event->overflow_handler_context)
8014                 /* hw breakpoint or kernel counter */
8015                 return -EINVAL;
8016
8017         if (event->prog)
8018                 return -EEXIST;
8019
8020         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8021         if (IS_ERR(prog))
8022                 return PTR_ERR(prog);
8023
8024         event->prog = prog;
8025         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8026         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8027         return 0;
8028 }
8029
8030 static void perf_event_free_bpf_handler(struct perf_event *event)
8031 {
8032         struct bpf_prog *prog = event->prog;
8033
8034         if (!prog)
8035                 return;
8036
8037         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8038         event->prog = NULL;
8039         bpf_prog_put(prog);
8040 }
8041 #else
8042 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8043 {
8044         return -EOPNOTSUPP;
8045 }
8046 static void perf_event_free_bpf_handler(struct perf_event *event)
8047 {
8048 }
8049 #endif
8050
8051 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8052 {
8053         bool is_kprobe, is_tracepoint, is_syscall_tp;
8054         struct bpf_prog *prog;
8055         int ret;
8056
8057         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8058                 return perf_event_set_bpf_handler(event, prog_fd);
8059
8060         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8061         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8062         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8063         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8064                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8065                 return -EINVAL;
8066
8067         prog = bpf_prog_get(prog_fd);
8068         if (IS_ERR(prog))
8069                 return PTR_ERR(prog);
8070
8071         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8072             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8073             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8074                 /* valid fd, but invalid bpf program type */
8075                 bpf_prog_put(prog);
8076                 return -EINVAL;
8077         }
8078
8079         if (is_tracepoint || is_syscall_tp) {
8080                 int off = trace_event_get_offsets(event->tp_event);
8081
8082                 if (prog->aux->max_ctx_offset > off) {
8083                         bpf_prog_put(prog);
8084                         return -EACCES;
8085                 }
8086         }
8087
8088         ret = perf_event_attach_bpf_prog(event, prog);
8089         if (ret)
8090                 bpf_prog_put(prog);
8091         return ret;
8092 }
8093
8094 static void perf_event_free_bpf_prog(struct perf_event *event)
8095 {
8096         if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8097                 perf_event_free_bpf_handler(event);
8098                 return;
8099         }
8100         perf_event_detach_bpf_prog(event);
8101 }
8102
8103 #else
8104
8105 static inline void perf_tp_register(void)
8106 {
8107 }
8108
8109 static void perf_event_free_filter(struct perf_event *event)
8110 {
8111 }
8112
8113 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8114 {
8115         return -ENOENT;
8116 }
8117
8118 static void perf_event_free_bpf_prog(struct perf_event *event)
8119 {
8120 }
8121 #endif /* CONFIG_EVENT_TRACING */
8122
8123 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8124 void perf_bp_event(struct perf_event *bp, void *data)
8125 {
8126         struct perf_sample_data sample;
8127         struct pt_regs *regs = data;
8128
8129         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8130
8131         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8132                 perf_swevent_event(bp, 1, &sample, regs);
8133 }
8134 #endif
8135
8136 /*
8137  * Allocate a new address filter
8138  */
8139 static struct perf_addr_filter *
8140 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8141 {
8142         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8143         struct perf_addr_filter *filter;
8144
8145         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8146         if (!filter)
8147                 return NULL;
8148
8149         INIT_LIST_HEAD(&filter->entry);
8150         list_add_tail(&filter->entry, filters);
8151
8152         return filter;
8153 }
8154
8155 static void free_filters_list(struct list_head *filters)
8156 {
8157         struct perf_addr_filter *filter, *iter;
8158
8159         list_for_each_entry_safe(filter, iter, filters, entry) {
8160                 if (filter->inode)
8161                         iput(filter->inode);
8162                 list_del(&filter->entry);
8163                 kfree(filter);
8164         }
8165 }
8166
8167 /*
8168  * Free existing address filters and optionally install new ones
8169  */
8170 static void perf_addr_filters_splice(struct perf_event *event,
8171                                      struct list_head *head)
8172 {
8173         unsigned long flags;
8174         LIST_HEAD(list);
8175
8176         if (!has_addr_filter(event))
8177                 return;
8178
8179         /* don't bother with children, they don't have their own filters */
8180         if (event->parent)
8181                 return;
8182
8183         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8184
8185         list_splice_init(&event->addr_filters.list, &list);
8186         if (head)
8187                 list_splice(head, &event->addr_filters.list);
8188
8189         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8190
8191         free_filters_list(&list);
8192 }
8193
8194 /*
8195  * Scan through mm's vmas and see if one of them matches the
8196  * @filter; if so, adjust filter's address range.
8197  * Called with mm::mmap_sem down for reading.
8198  */
8199 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8200                                             struct mm_struct *mm)
8201 {
8202         struct vm_area_struct *vma;
8203
8204         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8205                 struct file *file = vma->vm_file;
8206                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8207                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8208
8209                 if (!file)
8210                         continue;
8211
8212                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8213                         continue;
8214
8215                 return vma->vm_start;
8216         }
8217
8218         return 0;
8219 }
8220
8221 /*
8222  * Update event's address range filters based on the
8223  * task's existing mappings, if any.
8224  */
8225 static void perf_event_addr_filters_apply(struct perf_event *event)
8226 {
8227         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8228         struct task_struct *task = READ_ONCE(event->ctx->task);
8229         struct perf_addr_filter *filter;
8230         struct mm_struct *mm = NULL;
8231         unsigned int count = 0;
8232         unsigned long flags;
8233
8234         /*
8235          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8236          * will stop on the parent's child_mutex that our caller is also holding
8237          */
8238         if (task == TASK_TOMBSTONE)
8239                 return;
8240
8241         if (!ifh->nr_file_filters)
8242                 return;
8243
8244         mm = get_task_mm(event->ctx->task);
8245         if (!mm)
8246                 goto restart;
8247
8248         down_read(&mm->mmap_sem);
8249
8250         raw_spin_lock_irqsave(&ifh->lock, flags);
8251         list_for_each_entry(filter, &ifh->list, entry) {
8252                 event->addr_filters_offs[count] = 0;
8253
8254                 /*
8255                  * Adjust base offset if the filter is associated to a binary
8256                  * that needs to be mapped:
8257                  */
8258                 if (filter->inode)
8259                         event->addr_filters_offs[count] =
8260                                 perf_addr_filter_apply(filter, mm);
8261
8262                 count++;
8263         }
8264
8265         event->addr_filters_gen++;
8266         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8267
8268         up_read(&mm->mmap_sem);
8269
8270         mmput(mm);
8271
8272 restart:
8273         perf_event_stop(event, 1);
8274 }
8275
8276 /*
8277  * Address range filtering: limiting the data to certain
8278  * instruction address ranges. Filters are ioctl()ed to us from
8279  * userspace as ascii strings.
8280  *
8281  * Filter string format:
8282  *
8283  * ACTION RANGE_SPEC
8284  * where ACTION is one of the
8285  *  * "filter": limit the trace to this region
8286  *  * "start": start tracing from this address
8287  *  * "stop": stop tracing at this address/region;
8288  * RANGE_SPEC is
8289  *  * for kernel addresses: <start address>[/<size>]
8290  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8291  *
8292  * if <size> is not specified, the range is treated as a single address.
8293  */
8294 enum {
8295         IF_ACT_NONE = -1,
8296         IF_ACT_FILTER,
8297         IF_ACT_START,
8298         IF_ACT_STOP,
8299         IF_SRC_FILE,
8300         IF_SRC_KERNEL,
8301         IF_SRC_FILEADDR,
8302         IF_SRC_KERNELADDR,
8303 };
8304
8305 enum {
8306         IF_STATE_ACTION = 0,
8307         IF_STATE_SOURCE,
8308         IF_STATE_END,
8309 };
8310
8311 static const match_table_t if_tokens = {
8312         { IF_ACT_FILTER,        "filter" },
8313         { IF_ACT_START,         "start" },
8314         { IF_ACT_STOP,          "stop" },
8315         { IF_SRC_FILE,          "%u/%u@%s" },
8316         { IF_SRC_KERNEL,        "%u/%u" },
8317         { IF_SRC_FILEADDR,      "%u@%s" },
8318         { IF_SRC_KERNELADDR,    "%u" },
8319         { IF_ACT_NONE,          NULL },
8320 };
8321
8322 /*
8323  * Address filter string parser
8324  */
8325 static int
8326 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8327                              struct list_head *filters)
8328 {
8329         struct perf_addr_filter *filter = NULL;
8330         char *start, *orig, *filename = NULL;
8331         struct path path;
8332         substring_t args[MAX_OPT_ARGS];
8333         int state = IF_STATE_ACTION, token;
8334         unsigned int kernel = 0;
8335         int ret = -EINVAL;
8336
8337         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8338         if (!fstr)
8339                 return -ENOMEM;
8340
8341         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8342                 ret = -EINVAL;
8343
8344                 if (!*start)
8345                         continue;
8346
8347                 /* filter definition begins */
8348                 if (state == IF_STATE_ACTION) {
8349                         filter = perf_addr_filter_new(event, filters);
8350                         if (!filter)
8351                                 goto fail;
8352                 }
8353
8354                 token = match_token(start, if_tokens, args);
8355                 switch (token) {
8356                 case IF_ACT_FILTER:
8357                 case IF_ACT_START:
8358                         filter->filter = 1;
8359
8360                 case IF_ACT_STOP:
8361                         if (state != IF_STATE_ACTION)
8362                                 goto fail;
8363
8364                         state = IF_STATE_SOURCE;
8365                         break;
8366
8367                 case IF_SRC_KERNELADDR:
8368                 case IF_SRC_KERNEL:
8369                         kernel = 1;
8370
8371                 case IF_SRC_FILEADDR:
8372                 case IF_SRC_FILE:
8373                         if (state != IF_STATE_SOURCE)
8374                                 goto fail;
8375
8376                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8377                                 filter->range = 1;
8378
8379                         *args[0].to = 0;
8380                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8381                         if (ret)
8382                                 goto fail;
8383
8384                         if (filter->range) {
8385                                 *args[1].to = 0;
8386                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8387                                 if (ret)
8388                                         goto fail;
8389                         }
8390
8391                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8392                                 int fpos = filter->range ? 2 : 1;
8393
8394                                 filename = match_strdup(&args[fpos]);
8395                                 if (!filename) {
8396                                         ret = -ENOMEM;
8397                                         goto fail;
8398                                 }
8399                         }
8400
8401                         state = IF_STATE_END;
8402                         break;
8403
8404                 default:
8405                         goto fail;
8406                 }
8407
8408                 /*
8409                  * Filter definition is fully parsed, validate and install it.
8410                  * Make sure that it doesn't contradict itself or the event's
8411                  * attribute.
8412                  */
8413                 if (state == IF_STATE_END) {
8414                         ret = -EINVAL;
8415                         if (kernel && event->attr.exclude_kernel)
8416                                 goto fail;
8417
8418                         if (!kernel) {
8419                                 if (!filename)
8420                                         goto fail;
8421
8422                                 /*
8423                                  * For now, we only support file-based filters
8424                                  * in per-task events; doing so for CPU-wide
8425                                  * events requires additional context switching
8426                                  * trickery, since same object code will be
8427                                  * mapped at different virtual addresses in
8428                                  * different processes.
8429                                  */
8430                                 ret = -EOPNOTSUPP;
8431                                 if (!event->ctx->task)
8432                                         goto fail_free_name;
8433
8434                                 /* look up the path and grab its inode */
8435                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8436                                 if (ret)
8437                                         goto fail_free_name;
8438
8439                                 filter->inode = igrab(d_inode(path.dentry));
8440                                 path_put(&path);
8441                                 kfree(filename);
8442                                 filename = NULL;
8443
8444                                 ret = -EINVAL;
8445                                 if (!filter->inode ||
8446                                     !S_ISREG(filter->inode->i_mode))
8447                                         /* free_filters_list() will iput() */
8448                                         goto fail;
8449
8450                                 event->addr_filters.nr_file_filters++;
8451                         }
8452
8453                         /* ready to consume more filters */
8454                         state = IF_STATE_ACTION;
8455                         filter = NULL;
8456                 }
8457         }
8458
8459         if (state != IF_STATE_ACTION)
8460                 goto fail;
8461
8462         kfree(orig);
8463
8464         return 0;
8465
8466 fail_free_name:
8467         kfree(filename);
8468 fail:
8469         free_filters_list(filters);
8470         kfree(orig);
8471
8472         return ret;
8473 }
8474
8475 static int
8476 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8477 {
8478         LIST_HEAD(filters);
8479         int ret;
8480
8481         /*
8482          * Since this is called in perf_ioctl() path, we're already holding
8483          * ctx::mutex.
8484          */
8485         lockdep_assert_held(&event->ctx->mutex);
8486
8487         if (WARN_ON_ONCE(event->parent))
8488                 return -EINVAL;
8489
8490         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8491         if (ret)
8492                 goto fail_clear_files;
8493
8494         ret = event->pmu->addr_filters_validate(&filters);
8495         if (ret)
8496                 goto fail_free_filters;
8497
8498         /* remove existing filters, if any */
8499         perf_addr_filters_splice(event, &filters);
8500
8501         /* install new filters */
8502         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8503
8504         return ret;
8505
8506 fail_free_filters:
8507         free_filters_list(&filters);
8508
8509 fail_clear_files:
8510         event->addr_filters.nr_file_filters = 0;
8511
8512         return ret;
8513 }
8514
8515 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8516 {
8517         char *filter_str;
8518         int ret = -EINVAL;
8519
8520         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8521             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8522             !has_addr_filter(event))
8523                 return -EINVAL;
8524
8525         filter_str = strndup_user(arg, PAGE_SIZE);
8526         if (IS_ERR(filter_str))
8527                 return PTR_ERR(filter_str);
8528
8529         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8530             event->attr.type == PERF_TYPE_TRACEPOINT)
8531                 ret = ftrace_profile_set_filter(event, event->attr.config,
8532                                                 filter_str);
8533         else if (has_addr_filter(event))
8534                 ret = perf_event_set_addr_filter(event, filter_str);
8535
8536         kfree(filter_str);
8537         return ret;
8538 }
8539
8540 /*
8541  * hrtimer based swevent callback
8542  */
8543
8544 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8545 {
8546         enum hrtimer_restart ret = HRTIMER_RESTART;
8547         struct perf_sample_data data;
8548         struct pt_regs *regs;
8549         struct perf_event *event;
8550         u64 period;
8551
8552         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8553
8554         if (event->state != PERF_EVENT_STATE_ACTIVE)
8555                 return HRTIMER_NORESTART;
8556
8557         event->pmu->read(event);
8558
8559         perf_sample_data_init(&data, 0, event->hw.last_period);
8560         regs = get_irq_regs();
8561
8562         if (regs && !perf_exclude_event(event, regs)) {
8563                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8564                         if (__perf_event_overflow(event, 1, &data, regs))
8565                                 ret = HRTIMER_NORESTART;
8566         }
8567
8568         period = max_t(u64, 10000, event->hw.sample_period);
8569         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8570
8571         return ret;
8572 }
8573
8574 static void perf_swevent_start_hrtimer(struct perf_event *event)
8575 {
8576         struct hw_perf_event *hwc = &event->hw;
8577         s64 period;
8578
8579         if (!is_sampling_event(event))
8580                 return;
8581
8582         period = local64_read(&hwc->period_left);
8583         if (period) {
8584                 if (period < 0)
8585                         period = 10000;
8586
8587                 local64_set(&hwc->period_left, 0);
8588         } else {
8589                 period = max_t(u64, 10000, hwc->sample_period);
8590         }
8591         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8592                       HRTIMER_MODE_REL_PINNED);
8593 }
8594
8595 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8596 {
8597         struct hw_perf_event *hwc = &event->hw;
8598
8599         if (is_sampling_event(event)) {
8600                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8601                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8602
8603                 hrtimer_cancel(&hwc->hrtimer);
8604         }
8605 }
8606
8607 static void perf_swevent_init_hrtimer(struct perf_event *event)
8608 {
8609         struct hw_perf_event *hwc = &event->hw;
8610
8611         if (!is_sampling_event(event))
8612                 return;
8613
8614         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8615         hwc->hrtimer.function = perf_swevent_hrtimer;
8616
8617         /*
8618          * Since hrtimers have a fixed rate, we can do a static freq->period
8619          * mapping and avoid the whole period adjust feedback stuff.
8620          */
8621         if (event->attr.freq) {
8622                 long freq = event->attr.sample_freq;
8623
8624                 event->attr.sample_period = NSEC_PER_SEC / freq;
8625                 hwc->sample_period = event->attr.sample_period;
8626                 local64_set(&hwc->period_left, hwc->sample_period);
8627                 hwc->last_period = hwc->sample_period;
8628                 event->attr.freq = 0;
8629         }
8630 }
8631
8632 /*
8633  * Software event: cpu wall time clock
8634  */
8635
8636 static void cpu_clock_event_update(struct perf_event *event)
8637 {
8638         s64 prev;
8639         u64 now;
8640
8641         now = local_clock();
8642         prev = local64_xchg(&event->hw.prev_count, now);
8643         local64_add(now - prev, &event->count);
8644 }
8645
8646 static void cpu_clock_event_start(struct perf_event *event, int flags)
8647 {
8648         local64_set(&event->hw.prev_count, local_clock());
8649         perf_swevent_start_hrtimer(event);
8650 }
8651
8652 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8653 {
8654         perf_swevent_cancel_hrtimer(event);
8655         cpu_clock_event_update(event);
8656 }
8657
8658 static int cpu_clock_event_add(struct perf_event *event, int flags)
8659 {
8660         if (flags & PERF_EF_START)
8661                 cpu_clock_event_start(event, flags);
8662         perf_event_update_userpage(event);
8663
8664         return 0;
8665 }
8666
8667 static void cpu_clock_event_del(struct perf_event *event, int flags)
8668 {
8669         cpu_clock_event_stop(event, flags);
8670 }
8671
8672 static void cpu_clock_event_read(struct perf_event *event)
8673 {
8674         cpu_clock_event_update(event);
8675 }
8676
8677 static int cpu_clock_event_init(struct perf_event *event)
8678 {
8679         if (event->attr.type != PERF_TYPE_SOFTWARE)
8680                 return -ENOENT;
8681
8682         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8683                 return -ENOENT;
8684
8685         /*
8686          * no branch sampling for software events
8687          */
8688         if (has_branch_stack(event))
8689                 return -EOPNOTSUPP;
8690
8691         perf_swevent_init_hrtimer(event);
8692
8693         return 0;
8694 }
8695
8696 static struct pmu perf_cpu_clock = {
8697         .task_ctx_nr    = perf_sw_context,
8698
8699         .capabilities   = PERF_PMU_CAP_NO_NMI,
8700
8701         .event_init     = cpu_clock_event_init,
8702         .add            = cpu_clock_event_add,
8703         .del            = cpu_clock_event_del,
8704         .start          = cpu_clock_event_start,
8705         .stop           = cpu_clock_event_stop,
8706         .read           = cpu_clock_event_read,
8707 };
8708
8709 /*
8710  * Software event: task time clock
8711  */
8712
8713 static void task_clock_event_update(struct perf_event *event, u64 now)
8714 {
8715         u64 prev;
8716         s64 delta;
8717
8718         prev = local64_xchg(&event->hw.prev_count, now);
8719         delta = now - prev;
8720         local64_add(delta, &event->count);
8721 }
8722
8723 static void task_clock_event_start(struct perf_event *event, int flags)
8724 {
8725         local64_set(&event->hw.prev_count, event->ctx->time);
8726         perf_swevent_start_hrtimer(event);
8727 }
8728
8729 static void task_clock_event_stop(struct perf_event *event, int flags)
8730 {
8731         perf_swevent_cancel_hrtimer(event);
8732         task_clock_event_update(event, event->ctx->time);
8733 }
8734
8735 static int task_clock_event_add(struct perf_event *event, int flags)
8736 {
8737         if (flags & PERF_EF_START)
8738                 task_clock_event_start(event, flags);
8739         perf_event_update_userpage(event);
8740
8741         return 0;
8742 }
8743
8744 static void task_clock_event_del(struct perf_event *event, int flags)
8745 {
8746         task_clock_event_stop(event, PERF_EF_UPDATE);
8747 }
8748
8749 static void task_clock_event_read(struct perf_event *event)
8750 {
8751         u64 now = perf_clock();
8752         u64 delta = now - event->ctx->timestamp;
8753         u64 time = event->ctx->time + delta;
8754
8755         task_clock_event_update(event, time);
8756 }
8757
8758 static int task_clock_event_init(struct perf_event *event)
8759 {
8760         if (event->attr.type != PERF_TYPE_SOFTWARE)
8761                 return -ENOENT;
8762
8763         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8764                 return -ENOENT;
8765
8766         /*
8767          * no branch sampling for software events
8768          */
8769         if (has_branch_stack(event))
8770                 return -EOPNOTSUPP;
8771
8772         perf_swevent_init_hrtimer(event);
8773
8774         return 0;
8775 }
8776
8777 static struct pmu perf_task_clock = {
8778         .task_ctx_nr    = perf_sw_context,
8779
8780         .capabilities   = PERF_PMU_CAP_NO_NMI,
8781
8782         .event_init     = task_clock_event_init,
8783         .add            = task_clock_event_add,
8784         .del            = task_clock_event_del,
8785         .start          = task_clock_event_start,
8786         .stop           = task_clock_event_stop,
8787         .read           = task_clock_event_read,
8788 };
8789
8790 static void perf_pmu_nop_void(struct pmu *pmu)
8791 {
8792 }
8793
8794 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8795 {
8796 }
8797
8798 static int perf_pmu_nop_int(struct pmu *pmu)
8799 {
8800         return 0;
8801 }
8802
8803 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8804
8805 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8806 {
8807         __this_cpu_write(nop_txn_flags, flags);
8808
8809         if (flags & ~PERF_PMU_TXN_ADD)
8810                 return;
8811
8812         perf_pmu_disable(pmu);
8813 }
8814
8815 static int perf_pmu_commit_txn(struct pmu *pmu)
8816 {
8817         unsigned int flags = __this_cpu_read(nop_txn_flags);
8818
8819         __this_cpu_write(nop_txn_flags, 0);
8820
8821         if (flags & ~PERF_PMU_TXN_ADD)
8822                 return 0;
8823
8824         perf_pmu_enable(pmu);
8825         return 0;
8826 }
8827
8828 static void perf_pmu_cancel_txn(struct pmu *pmu)
8829 {
8830         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8831
8832         __this_cpu_write(nop_txn_flags, 0);
8833
8834         if (flags & ~PERF_PMU_TXN_ADD)
8835                 return;
8836
8837         perf_pmu_enable(pmu);
8838 }
8839
8840 static int perf_event_idx_default(struct perf_event *event)
8841 {
8842         return 0;
8843 }
8844
8845 /*
8846  * Ensures all contexts with the same task_ctx_nr have the same
8847  * pmu_cpu_context too.
8848  */
8849 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8850 {
8851         struct pmu *pmu;
8852
8853         if (ctxn < 0)
8854                 return NULL;
8855
8856         list_for_each_entry(pmu, &pmus, entry) {
8857                 if (pmu->task_ctx_nr == ctxn)
8858                         return pmu->pmu_cpu_context;
8859         }
8860
8861         return NULL;
8862 }
8863
8864 static void free_pmu_context(struct pmu *pmu)
8865 {
8866         /*
8867          * Static contexts such as perf_sw_context have a global lifetime
8868          * and may be shared between different PMUs. Avoid freeing them
8869          * when a single PMU is going away.
8870          */
8871         if (pmu->task_ctx_nr > perf_invalid_context)
8872                 return;
8873
8874         mutex_lock(&pmus_lock);
8875         free_percpu(pmu->pmu_cpu_context);
8876         mutex_unlock(&pmus_lock);
8877 }
8878
8879 /*
8880  * Let userspace know that this PMU supports address range filtering:
8881  */
8882 static ssize_t nr_addr_filters_show(struct device *dev,
8883                                     struct device_attribute *attr,
8884                                     char *page)
8885 {
8886         struct pmu *pmu = dev_get_drvdata(dev);
8887
8888         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8889 }
8890 DEVICE_ATTR_RO(nr_addr_filters);
8891
8892 static struct idr pmu_idr;
8893
8894 static ssize_t
8895 type_show(struct device *dev, struct device_attribute *attr, char *page)
8896 {
8897         struct pmu *pmu = dev_get_drvdata(dev);
8898
8899         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8900 }
8901 static DEVICE_ATTR_RO(type);
8902
8903 static ssize_t
8904 perf_event_mux_interval_ms_show(struct device *dev,
8905                                 struct device_attribute *attr,
8906                                 char *page)
8907 {
8908         struct pmu *pmu = dev_get_drvdata(dev);
8909
8910         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8911 }
8912
8913 static DEFINE_MUTEX(mux_interval_mutex);
8914
8915 static ssize_t
8916 perf_event_mux_interval_ms_store(struct device *dev,
8917                                  struct device_attribute *attr,
8918                                  const char *buf, size_t count)
8919 {
8920         struct pmu *pmu = dev_get_drvdata(dev);
8921         int timer, cpu, ret;
8922
8923         ret = kstrtoint(buf, 0, &timer);
8924         if (ret)
8925                 return ret;
8926
8927         if (timer < 1)
8928                 return -EINVAL;
8929
8930         /* same value, noting to do */
8931         if (timer == pmu->hrtimer_interval_ms)
8932                 return count;
8933
8934         mutex_lock(&mux_interval_mutex);
8935         pmu->hrtimer_interval_ms = timer;
8936
8937         /* update all cpuctx for this PMU */
8938         cpus_read_lock();
8939         for_each_online_cpu(cpu) {
8940                 struct perf_cpu_context *cpuctx;
8941                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8942                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8943
8944                 cpu_function_call(cpu,
8945                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8946         }
8947         cpus_read_unlock();
8948         mutex_unlock(&mux_interval_mutex);
8949
8950         return count;
8951 }
8952 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8953
8954 static struct attribute *pmu_dev_attrs[] = {
8955         &dev_attr_type.attr,
8956         &dev_attr_perf_event_mux_interval_ms.attr,
8957         NULL,
8958 };
8959 ATTRIBUTE_GROUPS(pmu_dev);
8960
8961 static int pmu_bus_running;
8962 static struct bus_type pmu_bus = {
8963         .name           = "event_source",
8964         .dev_groups     = pmu_dev_groups,
8965 };
8966
8967 static void pmu_dev_release(struct device *dev)
8968 {
8969         kfree(dev);
8970 }
8971
8972 static int pmu_dev_alloc(struct pmu *pmu)
8973 {
8974         int ret = -ENOMEM;
8975
8976         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8977         if (!pmu->dev)
8978                 goto out;
8979
8980         pmu->dev->groups = pmu->attr_groups;
8981         device_initialize(pmu->dev);
8982         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8983         if (ret)
8984                 goto free_dev;
8985
8986         dev_set_drvdata(pmu->dev, pmu);
8987         pmu->dev->bus = &pmu_bus;
8988         pmu->dev->release = pmu_dev_release;
8989         ret = device_add(pmu->dev);
8990         if (ret)
8991                 goto free_dev;
8992
8993         /* For PMUs with address filters, throw in an extra attribute: */
8994         if (pmu->nr_addr_filters)
8995                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8996
8997         if (ret)
8998                 goto del_dev;
8999
9000 out:
9001         return ret;
9002
9003 del_dev:
9004         device_del(pmu->dev);
9005
9006 free_dev:
9007         put_device(pmu->dev);
9008         goto out;
9009 }
9010
9011 static struct lock_class_key cpuctx_mutex;
9012 static struct lock_class_key cpuctx_lock;
9013
9014 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9015 {
9016         int cpu, ret;
9017
9018         mutex_lock(&pmus_lock);
9019         ret = -ENOMEM;
9020         pmu->pmu_disable_count = alloc_percpu(int);
9021         if (!pmu->pmu_disable_count)
9022                 goto unlock;
9023
9024         pmu->type = -1;
9025         if (!name)
9026                 goto skip_type;
9027         pmu->name = name;
9028
9029         if (type < 0) {
9030                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9031                 if (type < 0) {
9032                         ret = type;
9033                         goto free_pdc;
9034                 }
9035         }
9036         pmu->type = type;
9037
9038         if (pmu_bus_running) {
9039                 ret = pmu_dev_alloc(pmu);
9040                 if (ret)
9041                         goto free_idr;
9042         }
9043
9044 skip_type:
9045         if (pmu->task_ctx_nr == perf_hw_context) {
9046                 static int hw_context_taken = 0;
9047
9048                 /*
9049                  * Other than systems with heterogeneous CPUs, it never makes
9050                  * sense for two PMUs to share perf_hw_context. PMUs which are
9051                  * uncore must use perf_invalid_context.
9052                  */
9053                 if (WARN_ON_ONCE(hw_context_taken &&
9054                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9055                         pmu->task_ctx_nr = perf_invalid_context;
9056
9057                 hw_context_taken = 1;
9058         }
9059
9060         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9061         if (pmu->pmu_cpu_context)
9062                 goto got_cpu_context;
9063
9064         ret = -ENOMEM;
9065         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9066         if (!pmu->pmu_cpu_context)
9067                 goto free_dev;
9068
9069         for_each_possible_cpu(cpu) {
9070                 struct perf_cpu_context *cpuctx;
9071
9072                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9073                 __perf_event_init_context(&cpuctx->ctx);
9074                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9075                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9076                 cpuctx->ctx.pmu = pmu;
9077                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9078
9079                 __perf_mux_hrtimer_init(cpuctx, cpu);
9080         }
9081
9082 got_cpu_context:
9083         if (!pmu->start_txn) {
9084                 if (pmu->pmu_enable) {
9085                         /*
9086                          * If we have pmu_enable/pmu_disable calls, install
9087                          * transaction stubs that use that to try and batch
9088                          * hardware accesses.
9089                          */
9090                         pmu->start_txn  = perf_pmu_start_txn;
9091                         pmu->commit_txn = perf_pmu_commit_txn;
9092                         pmu->cancel_txn = perf_pmu_cancel_txn;
9093                 } else {
9094                         pmu->start_txn  = perf_pmu_nop_txn;
9095                         pmu->commit_txn = perf_pmu_nop_int;
9096                         pmu->cancel_txn = perf_pmu_nop_void;
9097                 }
9098         }
9099
9100         if (!pmu->pmu_enable) {
9101                 pmu->pmu_enable  = perf_pmu_nop_void;
9102                 pmu->pmu_disable = perf_pmu_nop_void;
9103         }
9104
9105         if (!pmu->event_idx)
9106                 pmu->event_idx = perf_event_idx_default;
9107
9108         list_add_rcu(&pmu->entry, &pmus);
9109         atomic_set(&pmu->exclusive_cnt, 0);
9110         ret = 0;
9111 unlock:
9112         mutex_unlock(&pmus_lock);
9113
9114         return ret;
9115
9116 free_dev:
9117         device_del(pmu->dev);
9118         put_device(pmu->dev);
9119
9120 free_idr:
9121         if (pmu->type >= PERF_TYPE_MAX)
9122                 idr_remove(&pmu_idr, pmu->type);
9123
9124 free_pdc:
9125         free_percpu(pmu->pmu_disable_count);
9126         goto unlock;
9127 }
9128 EXPORT_SYMBOL_GPL(perf_pmu_register);
9129
9130 void perf_pmu_unregister(struct pmu *pmu)
9131 {
9132         int remove_device;
9133
9134         mutex_lock(&pmus_lock);
9135         remove_device = pmu_bus_running;
9136         list_del_rcu(&pmu->entry);
9137         mutex_unlock(&pmus_lock);
9138
9139         /*
9140          * We dereference the pmu list under both SRCU and regular RCU, so
9141          * synchronize against both of those.
9142          */
9143         synchronize_srcu(&pmus_srcu);
9144         synchronize_rcu();
9145
9146         free_percpu(pmu->pmu_disable_count);
9147         if (pmu->type >= PERF_TYPE_MAX)
9148                 idr_remove(&pmu_idr, pmu->type);
9149         if (remove_device) {
9150                 if (pmu->nr_addr_filters)
9151                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9152                 device_del(pmu->dev);
9153                 put_device(pmu->dev);
9154         }
9155         free_pmu_context(pmu);
9156 }
9157 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9158
9159 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9160 {
9161         struct perf_event_context *ctx = NULL;
9162         int ret;
9163
9164         if (!try_module_get(pmu->module))
9165                 return -ENODEV;
9166
9167         if (event->group_leader != event) {
9168                 /*
9169                  * This ctx->mutex can nest when we're called through
9170                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9171                  */
9172                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9173                                                  SINGLE_DEPTH_NESTING);
9174                 BUG_ON(!ctx);
9175         }
9176
9177         event->pmu = pmu;
9178         ret = pmu->event_init(event);
9179
9180         if (ctx)
9181                 perf_event_ctx_unlock(event->group_leader, ctx);
9182
9183         if (ret)
9184                 module_put(pmu->module);
9185
9186         return ret;
9187 }
9188
9189 static struct pmu *perf_init_event(struct perf_event *event)
9190 {
9191         struct pmu *pmu;
9192         int idx;
9193         int ret;
9194
9195         idx = srcu_read_lock(&pmus_srcu);
9196
9197         /* Try parent's PMU first: */
9198         if (event->parent && event->parent->pmu) {
9199                 pmu = event->parent->pmu;
9200                 ret = perf_try_init_event(pmu, event);
9201                 if (!ret)
9202                         goto unlock;
9203         }
9204
9205         rcu_read_lock();
9206         pmu = idr_find(&pmu_idr, event->attr.type);
9207         rcu_read_unlock();
9208         if (pmu) {
9209                 ret = perf_try_init_event(pmu, event);
9210                 if (ret)
9211                         pmu = ERR_PTR(ret);
9212                 goto unlock;
9213         }
9214
9215         list_for_each_entry_rcu(pmu, &pmus, entry) {
9216                 ret = perf_try_init_event(pmu, event);
9217                 if (!ret)
9218                         goto unlock;
9219
9220                 if (ret != -ENOENT) {
9221                         pmu = ERR_PTR(ret);
9222                         goto unlock;
9223                 }
9224         }
9225         pmu = ERR_PTR(-ENOENT);
9226 unlock:
9227         srcu_read_unlock(&pmus_srcu, idx);
9228
9229         return pmu;
9230 }
9231
9232 static void attach_sb_event(struct perf_event *event)
9233 {
9234         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9235
9236         raw_spin_lock(&pel->lock);
9237         list_add_rcu(&event->sb_list, &pel->list);
9238         raw_spin_unlock(&pel->lock);
9239 }
9240
9241 /*
9242  * We keep a list of all !task (and therefore per-cpu) events
9243  * that need to receive side-band records.
9244  *
9245  * This avoids having to scan all the various PMU per-cpu contexts
9246  * looking for them.
9247  */
9248 static void account_pmu_sb_event(struct perf_event *event)
9249 {
9250         if (is_sb_event(event))
9251                 attach_sb_event(event);
9252 }
9253
9254 static void account_event_cpu(struct perf_event *event, int cpu)
9255 {
9256         if (event->parent)
9257                 return;
9258
9259         if (is_cgroup_event(event))
9260                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9261 }
9262
9263 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9264 static void account_freq_event_nohz(void)
9265 {
9266 #ifdef CONFIG_NO_HZ_FULL
9267         /* Lock so we don't race with concurrent unaccount */
9268         spin_lock(&nr_freq_lock);
9269         if (atomic_inc_return(&nr_freq_events) == 1)
9270                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9271         spin_unlock(&nr_freq_lock);
9272 #endif
9273 }
9274
9275 static void account_freq_event(void)
9276 {
9277         if (tick_nohz_full_enabled())
9278                 account_freq_event_nohz();
9279         else
9280                 atomic_inc(&nr_freq_events);
9281 }
9282
9283
9284 static void account_event(struct perf_event *event)
9285 {
9286         bool inc = false;
9287
9288         if (event->parent)
9289                 return;
9290
9291         if (event->attach_state & PERF_ATTACH_TASK)
9292                 inc = true;
9293         if (event->attr.mmap || event->attr.mmap_data)
9294                 atomic_inc(&nr_mmap_events);
9295         if (event->attr.comm)
9296                 atomic_inc(&nr_comm_events);
9297         if (event->attr.namespaces)
9298                 atomic_inc(&nr_namespaces_events);
9299         if (event->attr.task)
9300                 atomic_inc(&nr_task_events);
9301         if (event->attr.freq)
9302                 account_freq_event();
9303         if (event->attr.context_switch) {
9304                 atomic_inc(&nr_switch_events);
9305                 inc = true;
9306         }
9307         if (has_branch_stack(event))
9308                 inc = true;
9309         if (is_cgroup_event(event))
9310                 inc = true;
9311
9312         if (inc) {
9313                 /*
9314                  * We need the mutex here because static_branch_enable()
9315                  * must complete *before* the perf_sched_count increment
9316                  * becomes visible.
9317                  */
9318                 if (atomic_inc_not_zero(&perf_sched_count))
9319                         goto enabled;
9320
9321                 mutex_lock(&perf_sched_mutex);
9322                 if (!atomic_read(&perf_sched_count)) {
9323                         static_branch_enable(&perf_sched_events);
9324                         /*
9325                          * Guarantee that all CPUs observe they key change and
9326                          * call the perf scheduling hooks before proceeding to
9327                          * install events that need them.
9328                          */
9329                         synchronize_sched();
9330                 }
9331                 /*
9332                  * Now that we have waited for the sync_sched(), allow further
9333                  * increments to by-pass the mutex.
9334                  */
9335                 atomic_inc(&perf_sched_count);
9336                 mutex_unlock(&perf_sched_mutex);
9337         }
9338 enabled:
9339
9340         account_event_cpu(event, event->cpu);
9341
9342         account_pmu_sb_event(event);
9343 }
9344
9345 /*
9346  * Allocate and initialize a event structure
9347  */
9348 static struct perf_event *
9349 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9350                  struct task_struct *task,
9351                  struct perf_event *group_leader,
9352                  struct perf_event *parent_event,
9353                  perf_overflow_handler_t overflow_handler,
9354                  void *context, int cgroup_fd)
9355 {
9356         struct pmu *pmu;
9357         struct perf_event *event;
9358         struct hw_perf_event *hwc;
9359         long err = -EINVAL;
9360
9361         if ((unsigned)cpu >= nr_cpu_ids) {
9362                 if (!task || cpu != -1)
9363                         return ERR_PTR(-EINVAL);
9364         }
9365
9366         event = kzalloc(sizeof(*event), GFP_KERNEL);
9367         if (!event)
9368                 return ERR_PTR(-ENOMEM);
9369
9370         /*
9371          * Single events are their own group leaders, with an
9372          * empty sibling list:
9373          */
9374         if (!group_leader)
9375                 group_leader = event;
9376
9377         mutex_init(&event->child_mutex);
9378         INIT_LIST_HEAD(&event->child_list);
9379
9380         INIT_LIST_HEAD(&event->group_entry);
9381         INIT_LIST_HEAD(&event->event_entry);
9382         INIT_LIST_HEAD(&event->sibling_list);
9383         INIT_LIST_HEAD(&event->rb_entry);
9384         INIT_LIST_HEAD(&event->active_entry);
9385         INIT_LIST_HEAD(&event->addr_filters.list);
9386         INIT_HLIST_NODE(&event->hlist_entry);
9387
9388
9389         init_waitqueue_head(&event->waitq);
9390         init_irq_work(&event->pending, perf_pending_event);
9391
9392         mutex_init(&event->mmap_mutex);
9393         raw_spin_lock_init(&event->addr_filters.lock);
9394
9395         atomic_long_set(&event->refcount, 1);
9396         event->cpu              = cpu;
9397         event->attr             = *attr;
9398         event->group_leader     = group_leader;
9399         event->pmu              = NULL;
9400         event->oncpu            = -1;
9401
9402         event->parent           = parent_event;
9403
9404         event->ns               = get_pid_ns(task_active_pid_ns(current));
9405         event->id               = atomic64_inc_return(&perf_event_id);
9406
9407         event->state            = PERF_EVENT_STATE_INACTIVE;
9408
9409         if (task) {
9410                 event->attach_state = PERF_ATTACH_TASK;
9411                 /*
9412                  * XXX pmu::event_init needs to know what task to account to
9413                  * and we cannot use the ctx information because we need the
9414                  * pmu before we get a ctx.
9415                  */
9416                 event->hw.target = task;
9417         }
9418
9419         event->clock = &local_clock;
9420         if (parent_event)
9421                 event->clock = parent_event->clock;
9422
9423         if (!overflow_handler && parent_event) {
9424                 overflow_handler = parent_event->overflow_handler;
9425                 context = parent_event->overflow_handler_context;
9426 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9427                 if (overflow_handler == bpf_overflow_handler) {
9428                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9429
9430                         if (IS_ERR(prog)) {
9431                                 err = PTR_ERR(prog);
9432                                 goto err_ns;
9433                         }
9434                         event->prog = prog;
9435                         event->orig_overflow_handler =
9436                                 parent_event->orig_overflow_handler;
9437                 }
9438 #endif
9439         }
9440
9441         if (overflow_handler) {
9442                 event->overflow_handler = overflow_handler;
9443                 event->overflow_handler_context = context;
9444         } else if (is_write_backward(event)){
9445                 event->overflow_handler = perf_event_output_backward;
9446                 event->overflow_handler_context = NULL;
9447         } else {
9448                 event->overflow_handler = perf_event_output_forward;
9449                 event->overflow_handler_context = NULL;
9450         }
9451
9452         perf_event__state_init(event);
9453
9454         pmu = NULL;
9455
9456         hwc = &event->hw;
9457         hwc->sample_period = attr->sample_period;
9458         if (attr->freq && attr->sample_freq)
9459                 hwc->sample_period = 1;
9460         hwc->last_period = hwc->sample_period;
9461
9462         local64_set(&hwc->period_left, hwc->sample_period);
9463
9464         /*
9465          * We currently do not support PERF_SAMPLE_READ on inherited events.
9466          * See perf_output_read().
9467          */
9468         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9469                 goto err_ns;
9470
9471         if (!has_branch_stack(event))
9472                 event->attr.branch_sample_type = 0;
9473
9474         if (cgroup_fd != -1) {
9475                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9476                 if (err)
9477                         goto err_ns;
9478         }
9479
9480         pmu = perf_init_event(event);
9481         if (IS_ERR(pmu)) {
9482                 err = PTR_ERR(pmu);
9483                 goto err_ns;
9484         }
9485
9486         err = exclusive_event_init(event);
9487         if (err)
9488                 goto err_pmu;
9489
9490         if (has_addr_filter(event)) {
9491                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9492                                                    sizeof(unsigned long),
9493                                                    GFP_KERNEL);
9494                 if (!event->addr_filters_offs) {
9495                         err = -ENOMEM;
9496                         goto err_per_task;
9497                 }
9498
9499                 /* force hw sync on the address filters */
9500                 event->addr_filters_gen = 1;
9501         }
9502
9503         if (!event->parent) {
9504                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9505                         err = get_callchain_buffers(attr->sample_max_stack);
9506                         if (err)
9507                                 goto err_addr_filters;
9508                 }
9509         }
9510
9511         /* symmetric to unaccount_event() in _free_event() */
9512         account_event(event);
9513
9514         return event;
9515
9516 err_addr_filters:
9517         kfree(event->addr_filters_offs);
9518
9519 err_per_task:
9520         exclusive_event_destroy(event);
9521
9522 err_pmu:
9523         if (event->destroy)
9524                 event->destroy(event);
9525         module_put(pmu->module);
9526 err_ns:
9527         if (is_cgroup_event(event))
9528                 perf_detach_cgroup(event);
9529         if (event->ns)
9530                 put_pid_ns(event->ns);
9531         kfree(event);
9532
9533         return ERR_PTR(err);
9534 }
9535
9536 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9537                           struct perf_event_attr *attr)
9538 {
9539         u32 size;
9540         int ret;
9541
9542         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9543                 return -EFAULT;
9544
9545         /*
9546          * zero the full structure, so that a short copy will be nice.
9547          */
9548         memset(attr, 0, sizeof(*attr));
9549
9550         ret = get_user(size, &uattr->size);
9551         if (ret)
9552                 return ret;
9553
9554         if (size > PAGE_SIZE)   /* silly large */
9555                 goto err_size;
9556
9557         if (!size)              /* abi compat */
9558                 size = PERF_ATTR_SIZE_VER0;
9559
9560         if (size < PERF_ATTR_SIZE_VER0)
9561                 goto err_size;
9562
9563         /*
9564          * If we're handed a bigger struct than we know of,
9565          * ensure all the unknown bits are 0 - i.e. new
9566          * user-space does not rely on any kernel feature
9567          * extensions we dont know about yet.
9568          */
9569         if (size > sizeof(*attr)) {
9570                 unsigned char __user *addr;
9571                 unsigned char __user *end;
9572                 unsigned char val;
9573
9574                 addr = (void __user *)uattr + sizeof(*attr);
9575                 end  = (void __user *)uattr + size;
9576
9577                 for (; addr < end; addr++) {
9578                         ret = get_user(val, addr);
9579                         if (ret)
9580                                 return ret;
9581                         if (val)
9582                                 goto err_size;
9583                 }
9584                 size = sizeof(*attr);
9585         }
9586
9587         ret = copy_from_user(attr, uattr, size);
9588         if (ret)
9589                 return -EFAULT;
9590
9591         attr->size = size;
9592
9593         if (attr->__reserved_1)
9594                 return -EINVAL;
9595
9596         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9597                 return -EINVAL;
9598
9599         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9600                 return -EINVAL;
9601
9602         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9603                 u64 mask = attr->branch_sample_type;
9604
9605                 /* only using defined bits */
9606                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9607                         return -EINVAL;
9608
9609                 /* at least one branch bit must be set */
9610                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9611                         return -EINVAL;
9612
9613                 /* propagate priv level, when not set for branch */
9614                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9615
9616                         /* exclude_kernel checked on syscall entry */
9617                         if (!attr->exclude_kernel)
9618                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9619
9620                         if (!attr->exclude_user)
9621                                 mask |= PERF_SAMPLE_BRANCH_USER;
9622
9623                         if (!attr->exclude_hv)
9624                                 mask |= PERF_SAMPLE_BRANCH_HV;
9625                         /*
9626                          * adjust user setting (for HW filter setup)
9627                          */
9628                         attr->branch_sample_type = mask;
9629                 }
9630                 /* privileged levels capture (kernel, hv): check permissions */
9631                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9632                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9633                         return -EACCES;
9634         }
9635
9636         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9637                 ret = perf_reg_validate(attr->sample_regs_user);
9638                 if (ret)
9639                         return ret;
9640         }
9641
9642         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9643                 if (!arch_perf_have_user_stack_dump())
9644                         return -ENOSYS;
9645
9646                 /*
9647                  * We have __u32 type for the size, but so far
9648                  * we can only use __u16 as maximum due to the
9649                  * __u16 sample size limit.
9650                  */
9651                 if (attr->sample_stack_user >= USHRT_MAX)
9652                         ret = -EINVAL;
9653                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9654                         ret = -EINVAL;
9655         }
9656
9657         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9658                 ret = perf_reg_validate(attr->sample_regs_intr);
9659 out:
9660         return ret;
9661
9662 err_size:
9663         put_user(sizeof(*attr), &uattr->size);
9664         ret = -E2BIG;
9665         goto out;
9666 }
9667
9668 static int
9669 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9670 {
9671         struct ring_buffer *rb = NULL;
9672         int ret = -EINVAL;
9673
9674         if (!output_event)
9675                 goto set;
9676
9677         /* don't allow circular references */
9678         if (event == output_event)
9679                 goto out;
9680
9681         /*
9682          * Don't allow cross-cpu buffers
9683          */
9684         if (output_event->cpu != event->cpu)
9685                 goto out;
9686
9687         /*
9688          * If its not a per-cpu rb, it must be the same task.
9689          */
9690         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9691                 goto out;
9692
9693         /*
9694          * Mixing clocks in the same buffer is trouble you don't need.
9695          */
9696         if (output_event->clock != event->clock)
9697                 goto out;
9698
9699         /*
9700          * Either writing ring buffer from beginning or from end.
9701          * Mixing is not allowed.
9702          */
9703         if (is_write_backward(output_event) != is_write_backward(event))
9704                 goto out;
9705
9706         /*
9707          * If both events generate aux data, they must be on the same PMU
9708          */
9709         if (has_aux(event) && has_aux(output_event) &&
9710             event->pmu != output_event->pmu)
9711                 goto out;
9712
9713 set:
9714         mutex_lock(&event->mmap_mutex);
9715         /* Can't redirect output if we've got an active mmap() */
9716         if (atomic_read(&event->mmap_count))
9717                 goto unlock;
9718
9719         if (output_event) {
9720                 /* get the rb we want to redirect to */
9721                 rb = ring_buffer_get(output_event);
9722                 if (!rb)
9723                         goto unlock;
9724         }
9725
9726         ring_buffer_attach(event, rb);
9727
9728         ret = 0;
9729 unlock:
9730         mutex_unlock(&event->mmap_mutex);
9731
9732 out:
9733         return ret;
9734 }
9735
9736 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9737 {
9738         if (b < a)
9739                 swap(a, b);
9740
9741         mutex_lock(a);
9742         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9743 }
9744
9745 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9746 {
9747         bool nmi_safe = false;
9748
9749         switch (clk_id) {
9750         case CLOCK_MONOTONIC:
9751                 event->clock = &ktime_get_mono_fast_ns;
9752                 nmi_safe = true;
9753                 break;
9754
9755         case CLOCK_MONOTONIC_RAW:
9756                 event->clock = &ktime_get_raw_fast_ns;
9757                 nmi_safe = true;
9758                 break;
9759
9760         case CLOCK_REALTIME:
9761                 event->clock = &ktime_get_real_ns;
9762                 break;
9763
9764         case CLOCK_BOOTTIME:
9765                 event->clock = &ktime_get_boot_ns;
9766                 break;
9767
9768         case CLOCK_TAI:
9769                 event->clock = &ktime_get_tai_ns;
9770                 break;
9771
9772         default:
9773                 return -EINVAL;
9774         }
9775
9776         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9777                 return -EINVAL;
9778
9779         return 0;
9780 }
9781
9782 /*
9783  * Variation on perf_event_ctx_lock_nested(), except we take two context
9784  * mutexes.
9785  */
9786 static struct perf_event_context *
9787 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9788                              struct perf_event_context *ctx)
9789 {
9790         struct perf_event_context *gctx;
9791
9792 again:
9793         rcu_read_lock();
9794         gctx = READ_ONCE(group_leader->ctx);
9795         if (!atomic_inc_not_zero(&gctx->refcount)) {
9796                 rcu_read_unlock();
9797                 goto again;
9798         }
9799         rcu_read_unlock();
9800
9801         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9802
9803         if (group_leader->ctx != gctx) {
9804                 mutex_unlock(&ctx->mutex);
9805                 mutex_unlock(&gctx->mutex);
9806                 put_ctx(gctx);
9807                 goto again;
9808         }
9809
9810         return gctx;
9811 }
9812
9813 /**
9814  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9815  *
9816  * @attr_uptr:  event_id type attributes for monitoring/sampling
9817  * @pid:                target pid
9818  * @cpu:                target cpu
9819  * @group_fd:           group leader event fd
9820  */
9821 SYSCALL_DEFINE5(perf_event_open,
9822                 struct perf_event_attr __user *, attr_uptr,
9823                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9824 {
9825         struct perf_event *group_leader = NULL, *output_event = NULL;
9826         struct perf_event *event, *sibling;
9827         struct perf_event_attr attr;
9828         struct perf_event_context *ctx, *uninitialized_var(gctx);
9829         struct file *event_file = NULL;
9830         struct fd group = {NULL, 0};
9831         struct task_struct *task = NULL;
9832         struct pmu *pmu;
9833         int event_fd;
9834         int move_group = 0;
9835         int err;
9836         int f_flags = O_RDWR;
9837         int cgroup_fd = -1;
9838
9839         /* for future expandability... */
9840         if (flags & ~PERF_FLAG_ALL)
9841                 return -EINVAL;
9842
9843         err = perf_copy_attr(attr_uptr, &attr);
9844         if (err)
9845                 return err;
9846
9847         if (!attr.exclude_kernel) {
9848                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9849                         return -EACCES;
9850         }
9851
9852         if (attr.namespaces) {
9853                 if (!capable(CAP_SYS_ADMIN))
9854                         return -EACCES;
9855         }
9856
9857         if (attr.freq) {
9858                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9859                         return -EINVAL;
9860         } else {
9861                 if (attr.sample_period & (1ULL << 63))
9862                         return -EINVAL;
9863         }
9864
9865         /* Only privileged users can get physical addresses */
9866         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9867             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9868                 return -EACCES;
9869
9870         if (!attr.sample_max_stack)
9871                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9872
9873         /*
9874          * In cgroup mode, the pid argument is used to pass the fd
9875          * opened to the cgroup directory in cgroupfs. The cpu argument
9876          * designates the cpu on which to monitor threads from that
9877          * cgroup.
9878          */
9879         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9880                 return -EINVAL;
9881
9882         if (flags & PERF_FLAG_FD_CLOEXEC)
9883                 f_flags |= O_CLOEXEC;
9884
9885         event_fd = get_unused_fd_flags(f_flags);
9886         if (event_fd < 0)
9887                 return event_fd;
9888
9889         if (group_fd != -1) {
9890                 err = perf_fget_light(group_fd, &group);
9891                 if (err)
9892                         goto err_fd;
9893                 group_leader = group.file->private_data;
9894                 if (flags & PERF_FLAG_FD_OUTPUT)
9895                         output_event = group_leader;
9896                 if (flags & PERF_FLAG_FD_NO_GROUP)
9897                         group_leader = NULL;
9898         }
9899
9900         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9901                 task = find_lively_task_by_vpid(pid);
9902                 if (IS_ERR(task)) {
9903                         err = PTR_ERR(task);
9904                         goto err_group_fd;
9905                 }
9906         }
9907
9908         if (task && group_leader &&
9909             group_leader->attr.inherit != attr.inherit) {
9910                 err = -EINVAL;
9911                 goto err_task;
9912         }
9913
9914         if (task) {
9915                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9916                 if (err)
9917                         goto err_task;
9918
9919                 /*
9920                  * Reuse ptrace permission checks for now.
9921                  *
9922                  * We must hold cred_guard_mutex across this and any potential
9923                  * perf_install_in_context() call for this new event to
9924                  * serialize against exec() altering our credentials (and the
9925                  * perf_event_exit_task() that could imply).
9926                  */
9927                 err = -EACCES;
9928                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9929                         goto err_cred;
9930         }
9931
9932         if (flags & PERF_FLAG_PID_CGROUP)
9933                 cgroup_fd = pid;
9934
9935         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9936                                  NULL, NULL, cgroup_fd);
9937         if (IS_ERR(event)) {
9938                 err = PTR_ERR(event);
9939                 goto err_cred;
9940         }
9941
9942         if (is_sampling_event(event)) {
9943                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9944                         err = -EOPNOTSUPP;
9945                         goto err_alloc;
9946                 }
9947         }
9948
9949         /*
9950          * Special case software events and allow them to be part of
9951          * any hardware group.
9952          */
9953         pmu = event->pmu;
9954
9955         if (attr.use_clockid) {
9956                 err = perf_event_set_clock(event, attr.clockid);
9957                 if (err)
9958                         goto err_alloc;
9959         }
9960
9961         if (pmu->task_ctx_nr == perf_sw_context)
9962                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9963
9964         if (group_leader &&
9965             (is_software_event(event) != is_software_event(group_leader))) {
9966                 if (is_software_event(event)) {
9967                         /*
9968                          * If event and group_leader are not both a software
9969                          * event, and event is, then group leader is not.
9970                          *
9971                          * Allow the addition of software events to !software
9972                          * groups, this is safe because software events never
9973                          * fail to schedule.
9974                          */
9975                         pmu = group_leader->pmu;
9976                 } else if (is_software_event(group_leader) &&
9977                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9978                         /*
9979                          * In case the group is a pure software group, and we
9980                          * try to add a hardware event, move the whole group to
9981                          * the hardware context.
9982                          */
9983                         move_group = 1;
9984                 }
9985         }
9986
9987         /*
9988          * Get the target context (task or percpu):
9989          */
9990         ctx = find_get_context(pmu, task, event);
9991         if (IS_ERR(ctx)) {
9992                 err = PTR_ERR(ctx);
9993                 goto err_alloc;
9994         }
9995
9996         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9997                 err = -EBUSY;
9998                 goto err_context;
9999         }
10000
10001         /*
10002          * Look up the group leader (we will attach this event to it):
10003          */
10004         if (group_leader) {
10005                 err = -EINVAL;
10006
10007                 /*
10008                  * Do not allow a recursive hierarchy (this new sibling
10009                  * becoming part of another group-sibling):
10010                  */
10011                 if (group_leader->group_leader != group_leader)
10012                         goto err_context;
10013
10014                 /* All events in a group should have the same clock */
10015                 if (group_leader->clock != event->clock)
10016                         goto err_context;
10017
10018                 /*
10019                  * Make sure we're both events for the same CPU;
10020                  * grouping events for different CPUs is broken; since
10021                  * you can never concurrently schedule them anyhow.
10022                  */
10023                 if (group_leader->cpu != event->cpu)
10024                         goto err_context;
10025
10026                 /*
10027                  * Make sure we're both on the same task, or both
10028                  * per-CPU events.
10029                  */
10030                 if (group_leader->ctx->task != ctx->task)
10031                         goto err_context;
10032
10033                 /*
10034                  * Do not allow to attach to a group in a different task
10035                  * or CPU context. If we're moving SW events, we'll fix
10036                  * this up later, so allow that.
10037                  */
10038                 if (!move_group && group_leader->ctx != ctx)
10039                         goto err_context;
10040
10041                 /*
10042                  * Only a group leader can be exclusive or pinned
10043                  */
10044                 if (attr.exclusive || attr.pinned)
10045                         goto err_context;
10046         }
10047
10048         if (output_event) {
10049                 err = perf_event_set_output(event, output_event);
10050                 if (err)
10051                         goto err_context;
10052         }
10053
10054         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10055                                         f_flags);
10056         if (IS_ERR(event_file)) {
10057                 err = PTR_ERR(event_file);
10058                 event_file = NULL;
10059                 goto err_context;
10060         }
10061
10062         if (move_group) {
10063                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10064
10065                 if (gctx->task == TASK_TOMBSTONE) {
10066                         err = -ESRCH;
10067                         goto err_locked;
10068                 }
10069
10070                 /*
10071                  * Check if we raced against another sys_perf_event_open() call
10072                  * moving the software group underneath us.
10073                  */
10074                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10075                         /*
10076                          * If someone moved the group out from under us, check
10077                          * if this new event wound up on the same ctx, if so
10078                          * its the regular !move_group case, otherwise fail.
10079                          */
10080                         if (gctx != ctx) {
10081                                 err = -EINVAL;
10082                                 goto err_locked;
10083                         } else {
10084                                 perf_event_ctx_unlock(group_leader, gctx);
10085                                 move_group = 0;
10086                         }
10087                 }
10088         } else {
10089                 mutex_lock(&ctx->mutex);
10090         }
10091
10092         if (ctx->task == TASK_TOMBSTONE) {
10093                 err = -ESRCH;
10094                 goto err_locked;
10095         }
10096
10097         if (!perf_event_validate_size(event)) {
10098                 err = -E2BIG;
10099                 goto err_locked;
10100         }
10101
10102         if (!task) {
10103                 /*
10104                  * Check if the @cpu we're creating an event for is online.
10105                  *
10106                  * We use the perf_cpu_context::ctx::mutex to serialize against
10107                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10108                  */
10109                 struct perf_cpu_context *cpuctx =
10110                         container_of(ctx, struct perf_cpu_context, ctx);
10111
10112                 if (!cpuctx->online) {
10113                         err = -ENODEV;
10114                         goto err_locked;
10115                 }
10116         }
10117
10118
10119         /*
10120          * Must be under the same ctx::mutex as perf_install_in_context(),
10121          * because we need to serialize with concurrent event creation.
10122          */
10123         if (!exclusive_event_installable(event, ctx)) {
10124                 /* exclusive and group stuff are assumed mutually exclusive */
10125                 WARN_ON_ONCE(move_group);
10126
10127                 err = -EBUSY;
10128                 goto err_locked;
10129         }
10130
10131         WARN_ON_ONCE(ctx->parent_ctx);
10132
10133         /*
10134          * This is the point on no return; we cannot fail hereafter. This is
10135          * where we start modifying current state.
10136          */
10137
10138         if (move_group) {
10139                 /*
10140                  * See perf_event_ctx_lock() for comments on the details
10141                  * of swizzling perf_event::ctx.
10142                  */
10143                 perf_remove_from_context(group_leader, 0);
10144                 put_ctx(gctx);
10145
10146                 list_for_each_entry(sibling, &group_leader->sibling_list,
10147                                     group_entry) {
10148                         perf_remove_from_context(sibling, 0);
10149                         put_ctx(gctx);
10150                 }
10151
10152                 /*
10153                  * Wait for everybody to stop referencing the events through
10154                  * the old lists, before installing it on new lists.
10155                  */
10156                 synchronize_rcu();
10157
10158                 /*
10159                  * Install the group siblings before the group leader.
10160                  *
10161                  * Because a group leader will try and install the entire group
10162                  * (through the sibling list, which is still in-tact), we can
10163                  * end up with siblings installed in the wrong context.
10164                  *
10165                  * By installing siblings first we NO-OP because they're not
10166                  * reachable through the group lists.
10167                  */
10168                 list_for_each_entry(sibling, &group_leader->sibling_list,
10169                                     group_entry) {
10170                         perf_event__state_init(sibling);
10171                         perf_install_in_context(ctx, sibling, sibling->cpu);
10172                         get_ctx(ctx);
10173                 }
10174
10175                 /*
10176                  * Removing from the context ends up with disabled
10177                  * event. What we want here is event in the initial
10178                  * startup state, ready to be add into new context.
10179                  */
10180                 perf_event__state_init(group_leader);
10181                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10182                 get_ctx(ctx);
10183         }
10184
10185         /*
10186          * Precalculate sample_data sizes; do while holding ctx::mutex such
10187          * that we're serialized against further additions and before
10188          * perf_install_in_context() which is the point the event is active and
10189          * can use these values.
10190          */
10191         perf_event__header_size(event);
10192         perf_event__id_header_size(event);
10193
10194         event->owner = current;
10195
10196         perf_install_in_context(ctx, event, event->cpu);
10197         perf_unpin_context(ctx);
10198
10199         if (move_group)
10200                 perf_event_ctx_unlock(group_leader, gctx);
10201         mutex_unlock(&ctx->mutex);
10202
10203         if (task) {
10204                 mutex_unlock(&task->signal->cred_guard_mutex);
10205                 put_task_struct(task);
10206         }
10207
10208         mutex_lock(&current->perf_event_mutex);
10209         list_add_tail(&event->owner_entry, &current->perf_event_list);
10210         mutex_unlock(&current->perf_event_mutex);
10211
10212         /*
10213          * Drop the reference on the group_event after placing the
10214          * new event on the sibling_list. This ensures destruction
10215          * of the group leader will find the pointer to itself in
10216          * perf_group_detach().
10217          */
10218         fdput(group);
10219         fd_install(event_fd, event_file);
10220         return event_fd;
10221
10222 err_locked:
10223         if (move_group)
10224                 perf_event_ctx_unlock(group_leader, gctx);
10225         mutex_unlock(&ctx->mutex);
10226 /* err_file: */
10227         fput(event_file);
10228 err_context:
10229         perf_unpin_context(ctx);
10230         put_ctx(ctx);
10231 err_alloc:
10232         /*
10233          * If event_file is set, the fput() above will have called ->release()
10234          * and that will take care of freeing the event.
10235          */
10236         if (!event_file)
10237                 free_event(event);
10238 err_cred:
10239         if (task)
10240                 mutex_unlock(&task->signal->cred_guard_mutex);
10241 err_task:
10242         if (task)
10243                 put_task_struct(task);
10244 err_group_fd:
10245         fdput(group);
10246 err_fd:
10247         put_unused_fd(event_fd);
10248         return err;
10249 }
10250
10251 /**
10252  * perf_event_create_kernel_counter
10253  *
10254  * @attr: attributes of the counter to create
10255  * @cpu: cpu in which the counter is bound
10256  * @task: task to profile (NULL for percpu)
10257  */
10258 struct perf_event *
10259 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10260                                  struct task_struct *task,
10261                                  perf_overflow_handler_t overflow_handler,
10262                                  void *context)
10263 {
10264         struct perf_event_context *ctx;
10265         struct perf_event *event;
10266         int err;
10267
10268         /*
10269          * Get the target context (task or percpu):
10270          */
10271
10272         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10273                                  overflow_handler, context, -1);
10274         if (IS_ERR(event)) {
10275                 err = PTR_ERR(event);
10276                 goto err;
10277         }
10278
10279         /* Mark owner so we could distinguish it from user events. */
10280         event->owner = TASK_TOMBSTONE;
10281
10282         ctx = find_get_context(event->pmu, task, event);
10283         if (IS_ERR(ctx)) {
10284                 err = PTR_ERR(ctx);
10285                 goto err_free;
10286         }
10287
10288         WARN_ON_ONCE(ctx->parent_ctx);
10289         mutex_lock(&ctx->mutex);
10290         if (ctx->task == TASK_TOMBSTONE) {
10291                 err = -ESRCH;
10292                 goto err_unlock;
10293         }
10294
10295         if (!task) {
10296                 /*
10297                  * Check if the @cpu we're creating an event for is online.
10298                  *
10299                  * We use the perf_cpu_context::ctx::mutex to serialize against
10300                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10301                  */
10302                 struct perf_cpu_context *cpuctx =
10303                         container_of(ctx, struct perf_cpu_context, ctx);
10304                 if (!cpuctx->online) {
10305                         err = -ENODEV;
10306                         goto err_unlock;
10307                 }
10308         }
10309
10310         if (!exclusive_event_installable(event, ctx)) {
10311                 err = -EBUSY;
10312                 goto err_unlock;
10313         }
10314
10315         perf_install_in_context(ctx, event, cpu);
10316         perf_unpin_context(ctx);
10317         mutex_unlock(&ctx->mutex);
10318
10319         return event;
10320
10321 err_unlock:
10322         mutex_unlock(&ctx->mutex);
10323         perf_unpin_context(ctx);
10324         put_ctx(ctx);
10325 err_free:
10326         free_event(event);
10327 err:
10328         return ERR_PTR(err);
10329 }
10330 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10331
10332 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10333 {
10334         struct perf_event_context *src_ctx;
10335         struct perf_event_context *dst_ctx;
10336         struct perf_event *event, *tmp;
10337         LIST_HEAD(events);
10338
10339         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10340         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10341
10342         /*
10343          * See perf_event_ctx_lock() for comments on the details
10344          * of swizzling perf_event::ctx.
10345          */
10346         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10347         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10348                                  event_entry) {
10349                 perf_remove_from_context(event, 0);
10350                 unaccount_event_cpu(event, src_cpu);
10351                 put_ctx(src_ctx);
10352                 list_add(&event->migrate_entry, &events);
10353         }
10354
10355         /*
10356          * Wait for the events to quiesce before re-instating them.
10357          */
10358         synchronize_rcu();
10359
10360         /*
10361          * Re-instate events in 2 passes.
10362          *
10363          * Skip over group leaders and only install siblings on this first
10364          * pass, siblings will not get enabled without a leader, however a
10365          * leader will enable its siblings, even if those are still on the old
10366          * context.
10367          */
10368         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10369                 if (event->group_leader == event)
10370                         continue;
10371
10372                 list_del(&event->migrate_entry);
10373                 if (event->state >= PERF_EVENT_STATE_OFF)
10374                         event->state = PERF_EVENT_STATE_INACTIVE;
10375                 account_event_cpu(event, dst_cpu);
10376                 perf_install_in_context(dst_ctx, event, dst_cpu);
10377                 get_ctx(dst_ctx);
10378         }
10379
10380         /*
10381          * Once all the siblings are setup properly, install the group leaders
10382          * to make it go.
10383          */
10384         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10385                 list_del(&event->migrate_entry);
10386                 if (event->state >= PERF_EVENT_STATE_OFF)
10387                         event->state = PERF_EVENT_STATE_INACTIVE;
10388                 account_event_cpu(event, dst_cpu);
10389                 perf_install_in_context(dst_ctx, event, dst_cpu);
10390                 get_ctx(dst_ctx);
10391         }
10392         mutex_unlock(&dst_ctx->mutex);
10393         mutex_unlock(&src_ctx->mutex);
10394 }
10395 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10396
10397 static void sync_child_event(struct perf_event *child_event,
10398                                struct task_struct *child)
10399 {
10400         struct perf_event *parent_event = child_event->parent;
10401         u64 child_val;
10402
10403         if (child_event->attr.inherit_stat)
10404                 perf_event_read_event(child_event, child);
10405
10406         child_val = perf_event_count(child_event);
10407
10408         /*
10409          * Add back the child's count to the parent's count:
10410          */
10411         atomic64_add(child_val, &parent_event->child_count);
10412         atomic64_add(child_event->total_time_enabled,
10413                      &parent_event->child_total_time_enabled);
10414         atomic64_add(child_event->total_time_running,
10415                      &parent_event->child_total_time_running);
10416 }
10417
10418 static void
10419 perf_event_exit_event(struct perf_event *child_event,
10420                       struct perf_event_context *child_ctx,
10421                       struct task_struct *child)
10422 {
10423         struct perf_event *parent_event = child_event->parent;
10424
10425         /*
10426          * Do not destroy the 'original' grouping; because of the context
10427          * switch optimization the original events could've ended up in a
10428          * random child task.
10429          *
10430          * If we were to destroy the original group, all group related
10431          * operations would cease to function properly after this random
10432          * child dies.
10433          *
10434          * Do destroy all inherited groups, we don't care about those
10435          * and being thorough is better.
10436          */
10437         raw_spin_lock_irq(&child_ctx->lock);
10438         WARN_ON_ONCE(child_ctx->is_active);
10439
10440         if (parent_event)
10441                 perf_group_detach(child_event);
10442         list_del_event(child_event, child_ctx);
10443         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10444         raw_spin_unlock_irq(&child_ctx->lock);
10445
10446         /*
10447          * Parent events are governed by their filedesc, retain them.
10448          */
10449         if (!parent_event) {
10450                 perf_event_wakeup(child_event);
10451                 return;
10452         }
10453         /*
10454          * Child events can be cleaned up.
10455          */
10456
10457         sync_child_event(child_event, child);
10458
10459         /*
10460          * Remove this event from the parent's list
10461          */
10462         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10463         mutex_lock(&parent_event->child_mutex);
10464         list_del_init(&child_event->child_list);
10465         mutex_unlock(&parent_event->child_mutex);
10466
10467         /*
10468          * Kick perf_poll() for is_event_hup().
10469          */
10470         perf_event_wakeup(parent_event);
10471         free_event(child_event);
10472         put_event(parent_event);
10473 }
10474
10475 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10476 {
10477         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10478         struct perf_event *child_event, *next;
10479
10480         WARN_ON_ONCE(child != current);
10481
10482         child_ctx = perf_pin_task_context(child, ctxn);
10483         if (!child_ctx)
10484                 return;
10485
10486         /*
10487          * In order to reduce the amount of tricky in ctx tear-down, we hold
10488          * ctx::mutex over the entire thing. This serializes against almost
10489          * everything that wants to access the ctx.
10490          *
10491          * The exception is sys_perf_event_open() /
10492          * perf_event_create_kernel_count() which does find_get_context()
10493          * without ctx::mutex (it cannot because of the move_group double mutex
10494          * lock thing). See the comments in perf_install_in_context().
10495          */
10496         mutex_lock(&child_ctx->mutex);
10497
10498         /*
10499          * In a single ctx::lock section, de-schedule the events and detach the
10500          * context from the task such that we cannot ever get it scheduled back
10501          * in.
10502          */
10503         raw_spin_lock_irq(&child_ctx->lock);
10504         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10505
10506         /*
10507          * Now that the context is inactive, destroy the task <-> ctx relation
10508          * and mark the context dead.
10509          */
10510         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10511         put_ctx(child_ctx); /* cannot be last */
10512         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10513         put_task_struct(current); /* cannot be last */
10514
10515         clone_ctx = unclone_ctx(child_ctx);
10516         raw_spin_unlock_irq(&child_ctx->lock);
10517
10518         if (clone_ctx)
10519                 put_ctx(clone_ctx);
10520
10521         /*
10522          * Report the task dead after unscheduling the events so that we
10523          * won't get any samples after PERF_RECORD_EXIT. We can however still
10524          * get a few PERF_RECORD_READ events.
10525          */
10526         perf_event_task(child, child_ctx, 0);
10527
10528         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10529                 perf_event_exit_event(child_event, child_ctx, child);
10530
10531         mutex_unlock(&child_ctx->mutex);
10532
10533         put_ctx(child_ctx);
10534 }
10535
10536 /*
10537  * When a child task exits, feed back event values to parent events.
10538  *
10539  * Can be called with cred_guard_mutex held when called from
10540  * install_exec_creds().
10541  */
10542 void perf_event_exit_task(struct task_struct *child)
10543 {
10544         struct perf_event *event, *tmp;
10545         int ctxn;
10546
10547         mutex_lock(&child->perf_event_mutex);
10548         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10549                                  owner_entry) {
10550                 list_del_init(&event->owner_entry);
10551
10552                 /*
10553                  * Ensure the list deletion is visible before we clear
10554                  * the owner, closes a race against perf_release() where
10555                  * we need to serialize on the owner->perf_event_mutex.
10556                  */
10557                 smp_store_release(&event->owner, NULL);
10558         }
10559         mutex_unlock(&child->perf_event_mutex);
10560
10561         for_each_task_context_nr(ctxn)
10562                 perf_event_exit_task_context(child, ctxn);
10563
10564         /*
10565          * The perf_event_exit_task_context calls perf_event_task
10566          * with child's task_ctx, which generates EXIT events for
10567          * child contexts and sets child->perf_event_ctxp[] to NULL.
10568          * At this point we need to send EXIT events to cpu contexts.
10569          */
10570         perf_event_task(child, NULL, 0);
10571 }
10572
10573 static void perf_free_event(struct perf_event *event,
10574                             struct perf_event_context *ctx)
10575 {
10576         struct perf_event *parent = event->parent;
10577
10578         if (WARN_ON_ONCE(!parent))
10579                 return;
10580
10581         mutex_lock(&parent->child_mutex);
10582         list_del_init(&event->child_list);
10583         mutex_unlock(&parent->child_mutex);
10584
10585         put_event(parent);
10586
10587         raw_spin_lock_irq(&ctx->lock);
10588         perf_group_detach(event);
10589         list_del_event(event, ctx);
10590         raw_spin_unlock_irq(&ctx->lock);
10591         free_event(event);
10592 }
10593
10594 /*
10595  * Free an unexposed, unused context as created by inheritance by
10596  * perf_event_init_task below, used by fork() in case of fail.
10597  *
10598  * Not all locks are strictly required, but take them anyway to be nice and
10599  * help out with the lockdep assertions.
10600  */
10601 void perf_event_free_task(struct task_struct *task)
10602 {
10603         struct perf_event_context *ctx;
10604         struct perf_event *event, *tmp;
10605         int ctxn;
10606
10607         for_each_task_context_nr(ctxn) {
10608                 ctx = task->perf_event_ctxp[ctxn];
10609                 if (!ctx)
10610                         continue;
10611
10612                 mutex_lock(&ctx->mutex);
10613                 raw_spin_lock_irq(&ctx->lock);
10614                 /*
10615                  * Destroy the task <-> ctx relation and mark the context dead.
10616                  *
10617                  * This is important because even though the task hasn't been
10618                  * exposed yet the context has been (through child_list).
10619                  */
10620                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10621                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10622                 put_task_struct(task); /* cannot be last */
10623                 raw_spin_unlock_irq(&ctx->lock);
10624
10625                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10626                         perf_free_event(event, ctx);
10627
10628                 mutex_unlock(&ctx->mutex);
10629                 put_ctx(ctx);
10630         }
10631 }
10632
10633 void perf_event_delayed_put(struct task_struct *task)
10634 {
10635         int ctxn;
10636
10637         for_each_task_context_nr(ctxn)
10638                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10639 }
10640
10641 struct file *perf_event_get(unsigned int fd)
10642 {
10643         struct file *file;
10644
10645         file = fget_raw(fd);
10646         if (!file)
10647                 return ERR_PTR(-EBADF);
10648
10649         if (file->f_op != &perf_fops) {
10650                 fput(file);
10651                 return ERR_PTR(-EBADF);
10652         }
10653
10654         return file;
10655 }
10656
10657 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10658 {
10659         if (!event)
10660                 return ERR_PTR(-EINVAL);
10661
10662         return &event->attr;
10663 }
10664
10665 /*
10666  * Inherit a event from parent task to child task.
10667  *
10668  * Returns:
10669  *  - valid pointer on success
10670  *  - NULL for orphaned events
10671  *  - IS_ERR() on error
10672  */
10673 static struct perf_event *
10674 inherit_event(struct perf_event *parent_event,
10675               struct task_struct *parent,
10676               struct perf_event_context *parent_ctx,
10677               struct task_struct *child,
10678               struct perf_event *group_leader,
10679               struct perf_event_context *child_ctx)
10680 {
10681         enum perf_event_state parent_state = parent_event->state;
10682         struct perf_event *child_event;
10683         unsigned long flags;
10684
10685         /*
10686          * Instead of creating recursive hierarchies of events,
10687          * we link inherited events back to the original parent,
10688          * which has a filp for sure, which we use as the reference
10689          * count:
10690          */
10691         if (parent_event->parent)
10692                 parent_event = parent_event->parent;
10693
10694         child_event = perf_event_alloc(&parent_event->attr,
10695                                            parent_event->cpu,
10696                                            child,
10697                                            group_leader, parent_event,
10698                                            NULL, NULL, -1);
10699         if (IS_ERR(child_event))
10700                 return child_event;
10701
10702         /*
10703          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10704          * must be under the same lock in order to serialize against
10705          * perf_event_release_kernel(), such that either we must observe
10706          * is_orphaned_event() or they will observe us on the child_list.
10707          */
10708         mutex_lock(&parent_event->child_mutex);
10709         if (is_orphaned_event(parent_event) ||
10710             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10711                 mutex_unlock(&parent_event->child_mutex);
10712                 free_event(child_event);
10713                 return NULL;
10714         }
10715
10716         get_ctx(child_ctx);
10717
10718         /*
10719          * Make the child state follow the state of the parent event,
10720          * not its attr.disabled bit.  We hold the parent's mutex,
10721          * so we won't race with perf_event_{en, dis}able_family.
10722          */
10723         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10724                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10725         else
10726                 child_event->state = PERF_EVENT_STATE_OFF;
10727
10728         if (parent_event->attr.freq) {
10729                 u64 sample_period = parent_event->hw.sample_period;
10730                 struct hw_perf_event *hwc = &child_event->hw;
10731
10732                 hwc->sample_period = sample_period;
10733                 hwc->last_period   = sample_period;
10734
10735                 local64_set(&hwc->period_left, sample_period);
10736         }
10737
10738         child_event->ctx = child_ctx;
10739         child_event->overflow_handler = parent_event->overflow_handler;
10740         child_event->overflow_handler_context
10741                 = parent_event->overflow_handler_context;
10742
10743         /*
10744          * Precalculate sample_data sizes
10745          */
10746         perf_event__header_size(child_event);
10747         perf_event__id_header_size(child_event);
10748
10749         /*
10750          * Link it up in the child's context:
10751          */
10752         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10753         add_event_to_ctx(child_event, child_ctx);
10754         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10755
10756         /*
10757          * Link this into the parent event's child list
10758          */
10759         list_add_tail(&child_event->child_list, &parent_event->child_list);
10760         mutex_unlock(&parent_event->child_mutex);
10761
10762         return child_event;
10763 }
10764
10765 /*
10766  * Inherits an event group.
10767  *
10768  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10769  * This matches with perf_event_release_kernel() removing all child events.
10770  *
10771  * Returns:
10772  *  - 0 on success
10773  *  - <0 on error
10774  */
10775 static int inherit_group(struct perf_event *parent_event,
10776               struct task_struct *parent,
10777               struct perf_event_context *parent_ctx,
10778               struct task_struct *child,
10779               struct perf_event_context *child_ctx)
10780 {
10781         struct perf_event *leader;
10782         struct perf_event *sub;
10783         struct perf_event *child_ctr;
10784
10785         leader = inherit_event(parent_event, parent, parent_ctx,
10786                                  child, NULL, child_ctx);
10787         if (IS_ERR(leader))
10788                 return PTR_ERR(leader);
10789         /*
10790          * @leader can be NULL here because of is_orphaned_event(). In this
10791          * case inherit_event() will create individual events, similar to what
10792          * perf_group_detach() would do anyway.
10793          */
10794         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10795                 child_ctr = inherit_event(sub, parent, parent_ctx,
10796                                             child, leader, child_ctx);
10797                 if (IS_ERR(child_ctr))
10798                         return PTR_ERR(child_ctr);
10799         }
10800         return 0;
10801 }
10802
10803 /*
10804  * Creates the child task context and tries to inherit the event-group.
10805  *
10806  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10807  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10808  * consistent with perf_event_release_kernel() removing all child events.
10809  *
10810  * Returns:
10811  *  - 0 on success
10812  *  - <0 on error
10813  */
10814 static int
10815 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10816                    struct perf_event_context *parent_ctx,
10817                    struct task_struct *child, int ctxn,
10818                    int *inherited_all)
10819 {
10820         int ret;
10821         struct perf_event_context *child_ctx;
10822
10823         if (!event->attr.inherit) {
10824                 *inherited_all = 0;
10825                 return 0;
10826         }
10827
10828         child_ctx = child->perf_event_ctxp[ctxn];
10829         if (!child_ctx) {
10830                 /*
10831                  * This is executed from the parent task context, so
10832                  * inherit events that have been marked for cloning.
10833                  * First allocate and initialize a context for the
10834                  * child.
10835                  */
10836                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10837                 if (!child_ctx)
10838                         return -ENOMEM;
10839
10840                 child->perf_event_ctxp[ctxn] = child_ctx;
10841         }
10842
10843         ret = inherit_group(event, parent, parent_ctx,
10844                             child, child_ctx);
10845
10846         if (ret)
10847                 *inherited_all = 0;
10848
10849         return ret;
10850 }
10851
10852 /*
10853  * Initialize the perf_event context in task_struct
10854  */
10855 static int perf_event_init_context(struct task_struct *child, int ctxn)
10856 {
10857         struct perf_event_context *child_ctx, *parent_ctx;
10858         struct perf_event_context *cloned_ctx;
10859         struct perf_event *event;
10860         struct task_struct *parent = current;
10861         int inherited_all = 1;
10862         unsigned long flags;
10863         int ret = 0;
10864
10865         if (likely(!parent->perf_event_ctxp[ctxn]))
10866                 return 0;
10867
10868         /*
10869          * If the parent's context is a clone, pin it so it won't get
10870          * swapped under us.
10871          */
10872         parent_ctx = perf_pin_task_context(parent, ctxn);
10873         if (!parent_ctx)
10874                 return 0;
10875
10876         /*
10877          * No need to check if parent_ctx != NULL here; since we saw
10878          * it non-NULL earlier, the only reason for it to become NULL
10879          * is if we exit, and since we're currently in the middle of
10880          * a fork we can't be exiting at the same time.
10881          */
10882
10883         /*
10884          * Lock the parent list. No need to lock the child - not PID
10885          * hashed yet and not running, so nobody can access it.
10886          */
10887         mutex_lock(&parent_ctx->mutex);
10888
10889         /*
10890          * We dont have to disable NMIs - we are only looking at
10891          * the list, not manipulating it:
10892          */
10893         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10894                 ret = inherit_task_group(event, parent, parent_ctx,
10895                                          child, ctxn, &inherited_all);
10896                 if (ret)
10897                         goto out_unlock;
10898         }
10899
10900         /*
10901          * We can't hold ctx->lock when iterating the ->flexible_group list due
10902          * to allocations, but we need to prevent rotation because
10903          * rotate_ctx() will change the list from interrupt context.
10904          */
10905         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10906         parent_ctx->rotate_disable = 1;
10907         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10908
10909         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10910                 ret = inherit_task_group(event, parent, parent_ctx,
10911                                          child, ctxn, &inherited_all);
10912                 if (ret)
10913                         goto out_unlock;
10914         }
10915
10916         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10917         parent_ctx->rotate_disable = 0;
10918
10919         child_ctx = child->perf_event_ctxp[ctxn];
10920
10921         if (child_ctx && inherited_all) {
10922                 /*
10923                  * Mark the child context as a clone of the parent
10924                  * context, or of whatever the parent is a clone of.
10925                  *
10926                  * Note that if the parent is a clone, the holding of
10927                  * parent_ctx->lock avoids it from being uncloned.
10928                  */
10929                 cloned_ctx = parent_ctx->parent_ctx;
10930                 if (cloned_ctx) {
10931                         child_ctx->parent_ctx = cloned_ctx;
10932                         child_ctx->parent_gen = parent_ctx->parent_gen;
10933                 } else {
10934                         child_ctx->parent_ctx = parent_ctx;
10935                         child_ctx->parent_gen = parent_ctx->generation;
10936                 }
10937                 get_ctx(child_ctx->parent_ctx);
10938         }
10939
10940         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10941 out_unlock:
10942         mutex_unlock(&parent_ctx->mutex);
10943
10944         perf_unpin_context(parent_ctx);
10945         put_ctx(parent_ctx);
10946
10947         return ret;
10948 }
10949
10950 /*
10951  * Initialize the perf_event context in task_struct
10952  */
10953 int perf_event_init_task(struct task_struct *child)
10954 {
10955         int ctxn, ret;
10956
10957         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10958         mutex_init(&child->perf_event_mutex);
10959         INIT_LIST_HEAD(&child->perf_event_list);
10960
10961         for_each_task_context_nr(ctxn) {
10962                 ret = perf_event_init_context(child, ctxn);
10963                 if (ret) {
10964                         perf_event_free_task(child);
10965                         return ret;
10966                 }
10967         }
10968
10969         return 0;
10970 }
10971
10972 static void __init perf_event_init_all_cpus(void)
10973 {
10974         struct swevent_htable *swhash;
10975         int cpu;
10976
10977         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10978
10979         for_each_possible_cpu(cpu) {
10980                 swhash = &per_cpu(swevent_htable, cpu);
10981                 mutex_init(&swhash->hlist_mutex);
10982                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10983
10984                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10985                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10986
10987 #ifdef CONFIG_CGROUP_PERF
10988                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10989 #endif
10990                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10991         }
10992 }
10993
10994 void perf_swevent_init_cpu(unsigned int cpu)
10995 {
10996         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10997
10998         mutex_lock(&swhash->hlist_mutex);
10999         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11000                 struct swevent_hlist *hlist;
11001
11002                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11003                 WARN_ON(!hlist);
11004                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11005         }
11006         mutex_unlock(&swhash->hlist_mutex);
11007 }
11008
11009 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11010 static void __perf_event_exit_context(void *__info)
11011 {
11012         struct perf_event_context *ctx = __info;
11013         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11014         struct perf_event *event;
11015
11016         raw_spin_lock(&ctx->lock);
11017         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11018         list_for_each_entry(event, &ctx->event_list, event_entry)
11019                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11020         raw_spin_unlock(&ctx->lock);
11021 }
11022
11023 static void perf_event_exit_cpu_context(int cpu)
11024 {
11025         struct perf_cpu_context *cpuctx;
11026         struct perf_event_context *ctx;
11027         struct pmu *pmu;
11028
11029         mutex_lock(&pmus_lock);
11030         list_for_each_entry(pmu, &pmus, entry) {
11031                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11032                 ctx = &cpuctx->ctx;
11033
11034                 mutex_lock(&ctx->mutex);
11035                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11036                 cpuctx->online = 0;
11037                 mutex_unlock(&ctx->mutex);
11038         }
11039         cpumask_clear_cpu(cpu, perf_online_mask);
11040         mutex_unlock(&pmus_lock);
11041 }
11042 #else
11043
11044 static void perf_event_exit_cpu_context(int cpu) { }
11045
11046 #endif
11047
11048 int perf_event_init_cpu(unsigned int cpu)
11049 {
11050         struct perf_cpu_context *cpuctx;
11051         struct perf_event_context *ctx;
11052         struct pmu *pmu;
11053
11054         perf_swevent_init_cpu(cpu);
11055
11056         mutex_lock(&pmus_lock);
11057         cpumask_set_cpu(cpu, perf_online_mask);
11058         list_for_each_entry(pmu, &pmus, entry) {
11059                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11060                 ctx = &cpuctx->ctx;
11061
11062                 mutex_lock(&ctx->mutex);
11063                 cpuctx->online = 1;
11064                 mutex_unlock(&ctx->mutex);
11065         }
11066         mutex_unlock(&pmus_lock);
11067
11068         return 0;
11069 }
11070
11071 int perf_event_exit_cpu(unsigned int cpu)
11072 {
11073         perf_event_exit_cpu_context(cpu);
11074         return 0;
11075 }
11076
11077 static int
11078 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11079 {
11080         int cpu;
11081
11082         for_each_online_cpu(cpu)
11083                 perf_event_exit_cpu(cpu);
11084
11085         return NOTIFY_OK;
11086 }
11087
11088 /*
11089  * Run the perf reboot notifier at the very last possible moment so that
11090  * the generic watchdog code runs as long as possible.
11091  */
11092 static struct notifier_block perf_reboot_notifier = {
11093         .notifier_call = perf_reboot,
11094         .priority = INT_MIN,
11095 };
11096
11097 void __init perf_event_init(void)
11098 {
11099         int ret;
11100
11101         idr_init(&pmu_idr);
11102
11103         perf_event_init_all_cpus();
11104         init_srcu_struct(&pmus_srcu);
11105         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11106         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11107         perf_pmu_register(&perf_task_clock, NULL, -1);
11108         perf_tp_register();
11109         perf_event_init_cpu(smp_processor_id());
11110         register_reboot_notifier(&perf_reboot_notifier);
11111
11112         ret = init_hw_breakpoint();
11113         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11114
11115         /*
11116          * Build time assertion that we keep the data_head at the intended
11117          * location.  IOW, validation we got the __reserved[] size right.
11118          */
11119         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11120                      != 1024);
11121 }
11122
11123 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11124                               char *page)
11125 {
11126         struct perf_pmu_events_attr *pmu_attr =
11127                 container_of(attr, struct perf_pmu_events_attr, attr);
11128
11129         if (pmu_attr->event_str)
11130                 return sprintf(page, "%s\n", pmu_attr->event_str);
11131
11132         return 0;
11133 }
11134 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11135
11136 static int __init perf_event_sysfs_init(void)
11137 {
11138         struct pmu *pmu;
11139         int ret;
11140
11141         mutex_lock(&pmus_lock);
11142
11143         ret = bus_register(&pmu_bus);
11144         if (ret)
11145                 goto unlock;
11146
11147         list_for_each_entry(pmu, &pmus, entry) {
11148                 if (!pmu->name || pmu->type < 0)
11149                         continue;
11150
11151                 ret = pmu_dev_alloc(pmu);
11152                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11153         }
11154         pmu_bus_running = 1;
11155         ret = 0;
11156
11157 unlock:
11158         mutex_unlock(&pmus_lock);
11159
11160         return ret;
11161 }
11162 device_initcall(perf_event_sysfs_init);
11163
11164 #ifdef CONFIG_CGROUP_PERF
11165 static struct cgroup_subsys_state *
11166 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11167 {
11168         struct perf_cgroup *jc;
11169
11170         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11171         if (!jc)
11172                 return ERR_PTR(-ENOMEM);
11173
11174         jc->info = alloc_percpu(struct perf_cgroup_info);
11175         if (!jc->info) {
11176                 kfree(jc);
11177                 return ERR_PTR(-ENOMEM);
11178         }
11179
11180         return &jc->css;
11181 }
11182
11183 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11184 {
11185         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11186
11187         free_percpu(jc->info);
11188         kfree(jc);
11189 }
11190
11191 static int __perf_cgroup_move(void *info)
11192 {
11193         struct task_struct *task = info;
11194         rcu_read_lock();
11195         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11196         rcu_read_unlock();
11197         return 0;
11198 }
11199
11200 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11201 {
11202         struct task_struct *task;
11203         struct cgroup_subsys_state *css;
11204
11205         cgroup_taskset_for_each(task, css, tset)
11206                 task_function_call(task, __perf_cgroup_move, task);
11207 }
11208
11209 struct cgroup_subsys perf_event_cgrp_subsys = {
11210         .css_alloc      = perf_cgroup_css_alloc,
11211         .css_free       = perf_cgroup_css_free,
11212         .attach         = perf_cgroup_attach,
11213         /*
11214          * Implicitly enable on dfl hierarchy so that perf events can
11215          * always be filtered by cgroup2 path as long as perf_event
11216          * controller is not mounted on a legacy hierarchy.
11217          */
11218         .implicit_on_dfl = true,
11219         .threaded       = true,
11220 };
11221 #endif /* CONFIG_CGROUP_PERF */