Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[sfrench/cifs-2.6.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         for_each_sibling_event(sibling, leader)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp = cpuctx->cgrp;
728         struct cgroup_subsys_state *css;
729
730         if (cgrp) {
731                 for (css = &cgrp->css; css; css = css->parent) {
732                         cgrp = container_of(css, struct perf_cgroup, css);
733                         __update_cgrp_time(cgrp);
734                 }
735         }
736 }
737
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740         struct perf_cgroup *cgrp;
741
742         /*
743          * ensure we access cgroup data only when needed and
744          * when we know the cgroup is pinned (css_get)
745          */
746         if (!is_cgroup_event(event))
747                 return;
748
749         cgrp = perf_cgroup_from_task(current, event->ctx);
750         /*
751          * Do not update time when cgroup is not active
752          */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754                 __update_cgrp_time(event->cgrp);
755 }
756
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759                           struct perf_event_context *ctx)
760 {
761         struct perf_cgroup *cgrp;
762         struct perf_cgroup_info *info;
763         struct cgroup_subsys_state *css;
764
765         /*
766          * ctx->lock held by caller
767          * ensure we do not access cgroup data
768          * unless we have the cgroup pinned (css_get)
769          */
770         if (!task || !ctx->nr_cgroups)
771                 return;
772
773         cgrp = perf_cgroup_from_task(task, ctx);
774
775         for (css = &cgrp->css; css; css = css->parent) {
776                 cgrp = container_of(css, struct perf_cgroup, css);
777                 info = this_cpu_ptr(cgrp->info);
778                 info->timestamp = ctx->timestamp;
779         }
780 }
781
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
784 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
786
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795         struct perf_cpu_context *cpuctx;
796         struct list_head *list;
797         unsigned long flags;
798
799         /*
800          * Disable interrupts and preemption to avoid this CPU's
801          * cgrp_cpuctx_entry to change under us.
802          */
803         local_irq_save(flags);
804
805         list = this_cpu_ptr(&cgrp_cpuctx_list);
806         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808
809                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810                 perf_pmu_disable(cpuctx->ctx.pmu);
811
812                 if (mode & PERF_CGROUP_SWOUT) {
813                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814                         /*
815                          * must not be done before ctxswout due
816                          * to event_filter_match() in event_sched_out()
817                          */
818                         cpuctx->cgrp = NULL;
819                 }
820
821                 if (mode & PERF_CGROUP_SWIN) {
822                         WARN_ON_ONCE(cpuctx->cgrp);
823                         /*
824                          * set cgrp before ctxsw in to allow
825                          * event_filter_match() to not have to pass
826                          * task around
827                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
828                          * because cgorup events are only per-cpu
829                          */
830                         cpuctx->cgrp = perf_cgroup_from_task(task,
831                                                              &cpuctx->ctx);
832                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833                 }
834                 perf_pmu_enable(cpuctx->ctx.pmu);
835                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836         }
837
838         local_irq_restore(flags);
839 }
840
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842                                          struct task_struct *next)
843 {
844         struct perf_cgroup *cgrp1;
845         struct perf_cgroup *cgrp2 = NULL;
846
847         rcu_read_lock();
848         /*
849          * we come here when we know perf_cgroup_events > 0
850          * we do not need to pass the ctx here because we know
851          * we are holding the rcu lock
852          */
853         cgrp1 = perf_cgroup_from_task(task, NULL);
854         cgrp2 = perf_cgroup_from_task(next, NULL);
855
856         /*
857          * only schedule out current cgroup events if we know
858          * that we are switching to a different cgroup. Otherwise,
859          * do no touch the cgroup events.
860          */
861         if (cgrp1 != cgrp2)
862                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863
864         rcu_read_unlock();
865 }
866
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868                                         struct task_struct *task)
869 {
870         struct perf_cgroup *cgrp1;
871         struct perf_cgroup *cgrp2 = NULL;
872
873         rcu_read_lock();
874         /*
875          * we come here when we know perf_cgroup_events > 0
876          * we do not need to pass the ctx here because we know
877          * we are holding the rcu lock
878          */
879         cgrp1 = perf_cgroup_from_task(task, NULL);
880         cgrp2 = perf_cgroup_from_task(prev, NULL);
881
882         /*
883          * only need to schedule in cgroup events if we are changing
884          * cgroup during ctxsw. Cgroup events were not scheduled
885          * out of ctxsw out if that was not the case.
886          */
887         if (cgrp1 != cgrp2)
888                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889
890         rcu_read_unlock();
891 }
892
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894                                       struct perf_event_attr *attr,
895                                       struct perf_event *group_leader)
896 {
897         struct perf_cgroup *cgrp;
898         struct cgroup_subsys_state *css;
899         struct fd f = fdget(fd);
900         int ret = 0;
901
902         if (!f.file)
903                 return -EBADF;
904
905         css = css_tryget_online_from_dir(f.file->f_path.dentry,
906                                          &perf_event_cgrp_subsys);
907         if (IS_ERR(css)) {
908                 ret = PTR_ERR(css);
909                 goto out;
910         }
911
912         cgrp = container_of(css, struct perf_cgroup, css);
913         event->cgrp = cgrp;
914
915         /*
916          * all events in a group must monitor
917          * the same cgroup because a task belongs
918          * to only one perf cgroup at a time
919          */
920         if (group_leader && group_leader->cgrp != cgrp) {
921                 perf_detach_cgroup(event);
922                 ret = -EINVAL;
923         }
924 out:
925         fdput(f);
926         return ret;
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932         struct perf_cgroup_info *t;
933         t = per_cpu_ptr(event->cgrp->info, event->cpu);
934         event->shadow_ctx_time = now - t->timestamp;
935 }
936
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943                          struct perf_event_context *ctx, bool add)
944 {
945         struct perf_cpu_context *cpuctx;
946         struct list_head *cpuctx_entry;
947
948         if (!is_cgroup_event(event))
949                 return;
950
951         /*
952          * Because cgroup events are always per-cpu events,
953          * this will always be called from the right CPU.
954          */
955         cpuctx = __get_cpu_context(ctx);
956
957         /*
958          * Since setting cpuctx->cgrp is conditional on the current @cgrp
959          * matching the event's cgroup, we must do this for every new event,
960          * because if the first would mismatch, the second would not try again
961          * and we would leave cpuctx->cgrp unset.
962          */
963         if (add && !cpuctx->cgrp) {
964                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
966                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967                         cpuctx->cgrp = cgrp;
968         }
969
970         if (add && ctx->nr_cgroups++)
971                 return;
972         else if (!add && --ctx->nr_cgroups)
973                 return;
974
975         /* no cgroup running */
976         if (!add)
977                 cpuctx->cgrp = NULL;
978
979         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980         if (add)
981                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982         else
983                 list_del(cpuctx_entry);
984 }
985
986 #else /* !CONFIG_CGROUP_PERF */
987
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991         return true;
992 }
993
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999         return 0;
1000 }
1001
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011                                          struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016                                         struct task_struct *task)
1017 {
1018 }
1019
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021                                       struct perf_event_attr *attr,
1022                                       struct perf_event *group_leader)
1023 {
1024         return -EINVAL;
1025 }
1026
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029                           struct perf_event_context *ctx)
1030 {
1031 }
1032
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045         return 0;
1046 }
1047
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050                          struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053
1054 #endif
1055
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066         struct perf_cpu_context *cpuctx;
1067         bool rotations;
1068
1069         lockdep_assert_irqs_disabled();
1070
1071         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072         rotations = perf_rotate_context(cpuctx);
1073
1074         raw_spin_lock(&cpuctx->hrtimer_lock);
1075         if (rotations)
1076                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077         else
1078                 cpuctx->hrtimer_active = 0;
1079         raw_spin_unlock(&cpuctx->hrtimer_lock);
1080
1081         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086         struct hrtimer *timer = &cpuctx->hrtimer;
1087         struct pmu *pmu = cpuctx->ctx.pmu;
1088         u64 interval;
1089
1090         /* no multiplexing needed for SW PMU */
1091         if (pmu->task_ctx_nr == perf_sw_context)
1092                 return;
1093
1094         /*
1095          * check default is sane, if not set then force to
1096          * default interval (1/tick)
1097          */
1098         interval = pmu->hrtimer_interval_ms;
1099         if (interval < 1)
1100                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101
1102         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103
1104         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106         timer->function = perf_mux_hrtimer_handler;
1107 }
1108
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111         struct hrtimer *timer = &cpuctx->hrtimer;
1112         struct pmu *pmu = cpuctx->ctx.pmu;
1113         unsigned long flags;
1114
1115         /* not for SW PMU */
1116         if (pmu->task_ctx_nr == perf_sw_context)
1117                 return 0;
1118
1119         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120         if (!cpuctx->hrtimer_active) {
1121                 cpuctx->hrtimer_active = 1;
1122                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124         }
1125         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126
1127         return 0;
1128 }
1129
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133         if (!(*count)++)
1134                 pmu->pmu_disable(pmu);
1135 }
1136
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140         if (!--(*count))
1141                 pmu->pmu_enable(pmu);
1142 }
1143
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155
1156         lockdep_assert_irqs_disabled();
1157
1158         WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160         list_add(&ctx->active_ctx_list, head);
1161 }
1162
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165         lockdep_assert_irqs_disabled();
1166
1167         WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169         list_del_init(&ctx->active_ctx_list);
1170 }
1171
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179         struct perf_event_context *ctx;
1180
1181         ctx = container_of(head, struct perf_event_context, rcu_head);
1182         kfree(ctx->task_ctx_data);
1183         kfree(ctx);
1184 }
1185
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188         if (atomic_dec_and_test(&ctx->refcount)) {
1189                 if (ctx->parent_ctx)
1190                         put_ctx(ctx->parent_ctx);
1191                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192                         put_task_struct(ctx->task);
1193                 call_rcu(&ctx->rcu_head, free_ctx);
1194         }
1195 }
1196
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()    [ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()                   [ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()         [ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event() [ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *      task_struct::perf_event_mutex
1252  *        perf_event_context::mutex
1253  *          perf_event::child_mutex;
1254  *            perf_event_context::lock
1255  *          perf_event::mmap_mutex
1256  *          mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *        cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265         struct perf_event_context *ctx;
1266
1267 again:
1268         rcu_read_lock();
1269         ctx = READ_ONCE(event->ctx);
1270         if (!atomic_inc_not_zero(&ctx->refcount)) {
1271                 rcu_read_unlock();
1272                 goto again;
1273         }
1274         rcu_read_unlock();
1275
1276         mutex_lock_nested(&ctx->mutex, nesting);
1277         if (event->ctx != ctx) {
1278                 mutex_unlock(&ctx->mutex);
1279                 put_ctx(ctx);
1280                 goto again;
1281         }
1282
1283         return ctx;
1284 }
1285
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289         return perf_event_ctx_lock_nested(event, 0);
1290 }
1291
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293                                   struct perf_event_context *ctx)
1294 {
1295         mutex_unlock(&ctx->mutex);
1296         put_ctx(ctx);
1297 }
1298
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309         lockdep_assert_held(&ctx->lock);
1310
1311         if (parent_ctx)
1312                 ctx->parent_ctx = NULL;
1313         ctx->generation++;
1314
1315         return parent_ctx;
1316 }
1317
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319                                 enum pid_type type)
1320 {
1321         u32 nr;
1322         /*
1323          * only top level events have the pid namespace they were created in
1324          */
1325         if (event->parent)
1326                 event = event->parent;
1327
1328         nr = __task_pid_nr_ns(p, type, event->ns);
1329         /* avoid -1 if it is idle thread or runs in another ns */
1330         if (!nr && !pid_alive(p))
1331                 nr = -1;
1332         return nr;
1333 }
1334
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1338 }
1339
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342         return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351         u64 id = event->id;
1352
1353         if (event->parent)
1354                 id = event->parent->id;
1355
1356         return id;
1357 }
1358
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368         struct perf_event_context *ctx;
1369
1370 retry:
1371         /*
1372          * One of the few rules of preemptible RCU is that one cannot do
1373          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374          * part of the read side critical section was irqs-enabled -- see
1375          * rcu_read_unlock_special().
1376          *
1377          * Since ctx->lock nests under rq->lock we must ensure the entire read
1378          * side critical section has interrupts disabled.
1379          */
1380         local_irq_save(*flags);
1381         rcu_read_lock();
1382         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383         if (ctx) {
1384                 /*
1385                  * If this context is a clone of another, it might
1386                  * get swapped for another underneath us by
1387                  * perf_event_task_sched_out, though the
1388                  * rcu_read_lock() protects us from any context
1389                  * getting freed.  Lock the context and check if it
1390                  * got swapped before we could get the lock, and retry
1391                  * if so.  If we locked the right context, then it
1392                  * can't get swapped on us any more.
1393                  */
1394                 raw_spin_lock(&ctx->lock);
1395                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396                         raw_spin_unlock(&ctx->lock);
1397                         rcu_read_unlock();
1398                         local_irq_restore(*flags);
1399                         goto retry;
1400                 }
1401
1402                 if (ctx->task == TASK_TOMBSTONE ||
1403                     !atomic_inc_not_zero(&ctx->refcount)) {
1404                         raw_spin_unlock(&ctx->lock);
1405                         ctx = NULL;
1406                 } else {
1407                         WARN_ON_ONCE(ctx->task != task);
1408                 }
1409         }
1410         rcu_read_unlock();
1411         if (!ctx)
1412                 local_irq_restore(*flags);
1413         return ctx;
1414 }
1415
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424         struct perf_event_context *ctx;
1425         unsigned long flags;
1426
1427         ctx = perf_lock_task_context(task, ctxn, &flags);
1428         if (ctx) {
1429                 ++ctx->pin_count;
1430                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431         }
1432         return ctx;
1433 }
1434
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437         unsigned long flags;
1438
1439         raw_spin_lock_irqsave(&ctx->lock, flags);
1440         --ctx->pin_count;
1441         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449         u64 now = perf_clock();
1450
1451         ctx->time += now - ctx->timestamp;
1452         ctx->timestamp = now;
1453 }
1454
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457         struct perf_event_context *ctx = event->ctx;
1458
1459         if (is_cgroup_event(event))
1460                 return perf_cgroup_event_time(event);
1461
1462         return ctx ? ctx->time : 0;
1463 }
1464
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467         struct perf_event_context *ctx = event->ctx;
1468         enum event_type_t event_type;
1469
1470         lockdep_assert_held(&ctx->lock);
1471
1472         /*
1473          * It's 'group type', really, because if our group leader is
1474          * pinned, so are we.
1475          */
1476         if (event->group_leader != event)
1477                 event = event->group_leader;
1478
1479         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480         if (!ctx->task)
1481                 event_type |= EVENT_CPU;
1482
1483         return event_type;
1484 }
1485
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491         RB_CLEAR_NODE(&event->group_node);
1492         event->group_index = 0;
1493 }
1494
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502         if (event->attr.pinned)
1503                 return &ctx->pinned_groups;
1504         else
1505                 return &ctx->flexible_groups;
1506 }
1507
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513         groups->tree = RB_ROOT;
1514         groups->index = 0;
1515 }
1516
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526         if (left->cpu < right->cpu)
1527                 return true;
1528         if (left->cpu > right->cpu)
1529                 return false;
1530
1531         if (left->group_index < right->group_index)
1532                 return true;
1533         if (left->group_index > right->group_index)
1534                 return false;
1535
1536         return false;
1537 }
1538
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546                          struct perf_event *event)
1547 {
1548         struct perf_event *node_event;
1549         struct rb_node *parent;
1550         struct rb_node **node;
1551
1552         event->group_index = ++groups->index;
1553
1554         node = &groups->tree.rb_node;
1555         parent = *node;
1556
1557         while (*node) {
1558                 parent = *node;
1559                 node_event = container_of(*node, struct perf_event, group_node);
1560
1561                 if (perf_event_groups_less(event, node_event))
1562                         node = &parent->rb_left;
1563                 else
1564                         node = &parent->rb_right;
1565         }
1566
1567         rb_link_node(&event->group_node, parent, node);
1568         rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577         struct perf_event_groups *groups;
1578
1579         groups = get_event_groups(event, ctx);
1580         perf_event_groups_insert(groups, event);
1581 }
1582
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588                          struct perf_event *event)
1589 {
1590         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591                      RB_EMPTY_ROOT(&groups->tree));
1592
1593         rb_erase(&event->group_node, &groups->tree);
1594         init_event_group(event);
1595 }
1596
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603         struct perf_event_groups *groups;
1604
1605         groups = get_event_groups(event, ctx);
1606         perf_event_groups_delete(groups, event);
1607 }
1608
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615         struct perf_event *node_event = NULL, *match = NULL;
1616         struct rb_node *node = groups->tree.rb_node;
1617
1618         while (node) {
1619                 node_event = container_of(node, struct perf_event, group_node);
1620
1621                 if (cpu < node_event->cpu) {
1622                         node = node->rb_left;
1623                 } else if (cpu > node_event->cpu) {
1624                         node = node->rb_right;
1625                 } else {
1626                         match = node_event;
1627                         node = node->rb_left;
1628                 }
1629         }
1630
1631         return match;
1632 }
1633
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640         struct perf_event *next;
1641
1642         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643         if (next && next->cpu == event->cpu)
1644                 return next;
1645
1646         return NULL;
1647 }
1648
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)                       \
1653         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1654                                 typeof(*event), group_node); event;     \
1655                 event = rb_entry_safe(rb_next(&event->group_node),      \
1656                                 typeof(*event), group_node))
1657
1658 /*
1659  * Add an event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665         lockdep_assert_held(&ctx->lock);
1666
1667         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668         event->attach_state |= PERF_ATTACH_CONTEXT;
1669
1670         event->tstamp = perf_event_time(event);
1671
1672         /*
1673          * If we're a stand alone event or group leader, we go to the context
1674          * list, group events are kept attached to the group so that
1675          * perf_group_detach can, at all times, locate all siblings.
1676          */
1677         if (event->group_leader == event) {
1678                 event->group_caps = event->event_caps;
1679                 add_event_to_groups(event, ctx);
1680         }
1681
1682         list_update_cgroup_event(event, ctx, true);
1683
1684         list_add_rcu(&event->event_entry, &ctx->event_list);
1685         ctx->nr_events++;
1686         if (event->attr.inherit_stat)
1687                 ctx->nr_stat++;
1688
1689         ctx->generation++;
1690 }
1691
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698                                               PERF_EVENT_STATE_INACTIVE;
1699 }
1700
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703         int entry = sizeof(u64); /* value */
1704         int size = 0;
1705         int nr = 1;
1706
1707         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708                 size += sizeof(u64);
1709
1710         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711                 size += sizeof(u64);
1712
1713         if (event->attr.read_format & PERF_FORMAT_ID)
1714                 entry += sizeof(u64);
1715
1716         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717                 nr += nr_siblings;
1718                 size += sizeof(u64);
1719         }
1720
1721         size += entry * nr;
1722         event->read_size = size;
1723 }
1724
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727         struct perf_sample_data *data;
1728         u16 size = 0;
1729
1730         if (sample_type & PERF_SAMPLE_IP)
1731                 size += sizeof(data->ip);
1732
1733         if (sample_type & PERF_SAMPLE_ADDR)
1734                 size += sizeof(data->addr);
1735
1736         if (sample_type & PERF_SAMPLE_PERIOD)
1737                 size += sizeof(data->period);
1738
1739         if (sample_type & PERF_SAMPLE_WEIGHT)
1740                 size += sizeof(data->weight);
1741
1742         if (sample_type & PERF_SAMPLE_READ)
1743                 size += event->read_size;
1744
1745         if (sample_type & PERF_SAMPLE_DATA_SRC)
1746                 size += sizeof(data->data_src.val);
1747
1748         if (sample_type & PERF_SAMPLE_TRANSACTION)
1749                 size += sizeof(data->txn);
1750
1751         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752                 size += sizeof(data->phys_addr);
1753
1754         event->header_size = size;
1755 }
1756
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763         __perf_event_read_size(event,
1764                                event->group_leader->nr_siblings);
1765         __perf_event_header_size(event, event->attr.sample_type);
1766 }
1767
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770         struct perf_sample_data *data;
1771         u64 sample_type = event->attr.sample_type;
1772         u16 size = 0;
1773
1774         if (sample_type & PERF_SAMPLE_TID)
1775                 size += sizeof(data->tid_entry);
1776
1777         if (sample_type & PERF_SAMPLE_TIME)
1778                 size += sizeof(data->time);
1779
1780         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781                 size += sizeof(data->id);
1782
1783         if (sample_type & PERF_SAMPLE_ID)
1784                 size += sizeof(data->id);
1785
1786         if (sample_type & PERF_SAMPLE_STREAM_ID)
1787                 size += sizeof(data->stream_id);
1788
1789         if (sample_type & PERF_SAMPLE_CPU)
1790                 size += sizeof(data->cpu_entry);
1791
1792         event->id_header_size = size;
1793 }
1794
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797         /*
1798          * The values computed here will be over-written when we actually
1799          * attach the event.
1800          */
1801         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803         perf_event__id_header_size(event);
1804
1805         /*
1806          * Sum the lot; should not exceed the 64k limit we have on records.
1807          * Conservative limit to allow for callchains and other variable fields.
1808          */
1809         if (event->read_size + event->header_size +
1810             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811                 return false;
1812
1813         return true;
1814 }
1815
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818         struct perf_event *group_leader = event->group_leader, *pos;
1819
1820         lockdep_assert_held(&event->ctx->lock);
1821
1822         /*
1823          * We can have double attach due to group movement in perf_event_open.
1824          */
1825         if (event->attach_state & PERF_ATTACH_GROUP)
1826                 return;
1827
1828         event->attach_state |= PERF_ATTACH_GROUP;
1829
1830         if (group_leader == event)
1831                 return;
1832
1833         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
1835         group_leader->group_caps &= event->event_caps;
1836
1837         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838         group_leader->nr_siblings++;
1839
1840         perf_event__header_size(group_leader);
1841
1842         for_each_sibling_event(pos, group_leader)
1843                 perf_event__header_size(pos);
1844 }
1845
1846 /*
1847  * Remove an event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853         WARN_ON_ONCE(event->ctx != ctx);
1854         lockdep_assert_held(&ctx->lock);
1855
1856         /*
1857          * We can have double detach due to exit/hot-unplug + close.
1858          */
1859         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860                 return;
1861
1862         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
1864         list_update_cgroup_event(event, ctx, false);
1865
1866         ctx->nr_events--;
1867         if (event->attr.inherit_stat)
1868                 ctx->nr_stat--;
1869
1870         list_del_rcu(&event->event_entry);
1871
1872         if (event->group_leader == event)
1873                 del_event_from_groups(event, ctx);
1874
1875         /*
1876          * If event was in error state, then keep it
1877          * that way, otherwise bogus counts will be
1878          * returned on read(). The only way to get out
1879          * of error state is by explicit re-enabling
1880          * of the event
1881          */
1882         if (event->state > PERF_EVENT_STATE_OFF)
1883                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884
1885         ctx->generation++;
1886 }
1887
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890         struct perf_event *sibling, *tmp;
1891         struct perf_event_context *ctx = event->ctx;
1892
1893         lockdep_assert_held(&ctx->lock);
1894
1895         /*
1896          * We can have double detach due to exit/hot-unplug + close.
1897          */
1898         if (!(event->attach_state & PERF_ATTACH_GROUP))
1899                 return;
1900
1901         event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903         /*
1904          * If this is a sibling, remove it from its group.
1905          */
1906         if (event->group_leader != event) {
1907                 list_del_init(&event->sibling_list);
1908                 event->group_leader->nr_siblings--;
1909                 goto out;
1910         }
1911
1912         /*
1913          * If this was a group event with sibling events then
1914          * upgrade the siblings to singleton events by adding them
1915          * to whatever list we are on.
1916          */
1917         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918
1919                 sibling->group_leader = sibling;
1920                 list_del_init(&sibling->sibling_list);
1921
1922                 /* Inherit group flags from the previous leader */
1923                 sibling->group_caps = event->group_caps;
1924
1925                 if (!RB_EMPTY_NODE(&event->group_node)) {
1926                         add_event_to_groups(sibling, event->ctx);
1927
1928                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929                                 struct list_head *list = sibling->attr.pinned ?
1930                                         &ctx->pinned_active : &ctx->flexible_active;
1931
1932                                 list_add_tail(&sibling->active_list, list);
1933                         }
1934                 }
1935
1936                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1937         }
1938
1939 out:
1940         perf_event__header_size(event->group_leader);
1941
1942         for_each_sibling_event(tmp, event->group_leader)
1943                 perf_event__header_size(tmp);
1944 }
1945
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948         return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953         struct pmu *pmu = event->pmu;
1954         return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965         struct perf_event *sibling;
1966
1967         if (!__pmu_filter_match(event))
1968                 return 0;
1969
1970         for_each_sibling_event(sibling, event) {
1971                 if (!__pmu_filter_match(sibling))
1972                         return 0;
1973         }
1974
1975         return 1;
1976 }
1977
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982                perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984
1985 static void
1986 event_sched_out(struct perf_event *event,
1987                   struct perf_cpu_context *cpuctx,
1988                   struct perf_event_context *ctx)
1989 {
1990         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991
1992         WARN_ON_ONCE(event->ctx != ctx);
1993         lockdep_assert_held(&ctx->lock);
1994
1995         if (event->state != PERF_EVENT_STATE_ACTIVE)
1996                 return;
1997
1998         /*
1999          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000          * we can schedule events _OUT_ individually through things like
2001          * __perf_remove_from_context().
2002          */
2003         list_del_init(&event->active_list);
2004
2005         perf_pmu_disable(event->pmu);
2006
2007         event->pmu->del(event, 0);
2008         event->oncpu = -1;
2009
2010         if (event->pending_disable) {
2011                 event->pending_disable = 0;
2012                 state = PERF_EVENT_STATE_OFF;
2013         }
2014         perf_event_set_state(event, state);
2015
2016         if (!is_software_event(event))
2017                 cpuctx->active_oncpu--;
2018         if (!--ctx->nr_active)
2019                 perf_event_ctx_deactivate(ctx);
2020         if (event->attr.freq && event->attr.sample_freq)
2021                 ctx->nr_freq--;
2022         if (event->attr.exclusive || !cpuctx->active_oncpu)
2023                 cpuctx->exclusive = 0;
2024
2025         perf_pmu_enable(event->pmu);
2026 }
2027
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030                 struct perf_cpu_context *cpuctx,
2031                 struct perf_event_context *ctx)
2032 {
2033         struct perf_event *event;
2034
2035         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036                 return;
2037
2038         perf_pmu_disable(ctx->pmu);
2039
2040         event_sched_out(group_event, cpuctx, ctx);
2041
2042         /*
2043          * Schedule out siblings (if any):
2044          */
2045         for_each_sibling_event(event, group_event)
2046                 event_sched_out(event, cpuctx, ctx);
2047
2048         perf_pmu_enable(ctx->pmu);
2049
2050         if (group_event->attr.exclusive)
2051                 cpuctx->exclusive = 0;
2052 }
2053
2054 #define DETACH_GROUP    0x01UL
2055
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064                            struct perf_cpu_context *cpuctx,
2065                            struct perf_event_context *ctx,
2066                            void *info)
2067 {
2068         unsigned long flags = (unsigned long)info;
2069
2070         if (ctx->is_active & EVENT_TIME) {
2071                 update_context_time(ctx);
2072                 update_cgrp_time_from_cpuctx(cpuctx);
2073         }
2074
2075         event_sched_out(event, cpuctx, ctx);
2076         if (flags & DETACH_GROUP)
2077                 perf_group_detach(event);
2078         list_del_event(event, ctx);
2079
2080         if (!ctx->nr_events && ctx->is_active) {
2081                 ctx->is_active = 0;
2082                 if (ctx->task) {
2083                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084                         cpuctx->task_ctx = NULL;
2085                 }
2086         }
2087 }
2088
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101         struct perf_event_context *ctx = event->ctx;
2102
2103         lockdep_assert_held(&ctx->mutex);
2104
2105         event_function_call(event, __perf_remove_from_context, (void *)flags);
2106
2107         /*
2108          * The above event_function_call() can NO-OP when it hits
2109          * TASK_TOMBSTONE. In that case we must already have been detached
2110          * from the context (by perf_event_exit_event()) but the grouping
2111          * might still be in-tact.
2112          */
2113         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114         if ((flags & DETACH_GROUP) &&
2115             (event->attach_state & PERF_ATTACH_GROUP)) {
2116                 /*
2117                  * Since in that case we cannot possibly be scheduled, simply
2118                  * detach now.
2119                  */
2120                 raw_spin_lock_irq(&ctx->lock);
2121                 perf_group_detach(event);
2122                 raw_spin_unlock_irq(&ctx->lock);
2123         }
2124 }
2125
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130                                  struct perf_cpu_context *cpuctx,
2131                                  struct perf_event_context *ctx,
2132                                  void *info)
2133 {
2134         if (event->state < PERF_EVENT_STATE_INACTIVE)
2135                 return;
2136
2137         if (ctx->is_active & EVENT_TIME) {
2138                 update_context_time(ctx);
2139                 update_cgrp_time_from_event(event);
2140         }
2141
2142         if (event == event->group_leader)
2143                 group_sched_out(event, cpuctx, ctx);
2144         else
2145                 event_sched_out(event, cpuctx, ctx);
2146
2147         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149
2150 /*
2151  * Disable an event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166         struct perf_event_context *ctx = event->ctx;
2167
2168         raw_spin_lock_irq(&ctx->lock);
2169         if (event->state <= PERF_EVENT_STATE_OFF) {
2170                 raw_spin_unlock_irq(&ctx->lock);
2171                 return;
2172         }
2173         raw_spin_unlock_irq(&ctx->lock);
2174
2175         event_function_call(event, __perf_event_disable, NULL);
2176 }
2177
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180         event_function_local(event, __perf_event_disable, NULL);
2181 }
2182
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189         struct perf_event_context *ctx;
2190
2191         ctx = perf_event_ctx_lock(event);
2192         _perf_event_disable(event);
2193         perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199         event->pending_disable = 1;
2200         irq_work_queue(&event->pending);
2201 }
2202
2203 static void perf_set_shadow_time(struct perf_event *event,
2204                                  struct perf_event_context *ctx)
2205 {
2206         /*
2207          * use the correct time source for the time snapshot
2208          *
2209          * We could get by without this by leveraging the
2210          * fact that to get to this function, the caller
2211          * has most likely already called update_context_time()
2212          * and update_cgrp_time_xx() and thus both timestamp
2213          * are identical (or very close). Given that tstamp is,
2214          * already adjusted for cgroup, we could say that:
2215          *    tstamp - ctx->timestamp
2216          * is equivalent to
2217          *    tstamp - cgrp->timestamp.
2218          *
2219          * Then, in perf_output_read(), the calculation would
2220          * work with no changes because:
2221          * - event is guaranteed scheduled in
2222          * - no scheduled out in between
2223          * - thus the timestamp would be the same
2224          *
2225          * But this is a bit hairy.
2226          *
2227          * So instead, we have an explicit cgroup call to remain
2228          * within the time time source all along. We believe it
2229          * is cleaner and simpler to understand.
2230          */
2231         if (is_cgroup_event(event))
2232                 perf_cgroup_set_shadow_time(event, event->tstamp);
2233         else
2234                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236
2237 #define MAX_INTERRUPTS (~0ULL)
2238
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241
2242 static int
2243 event_sched_in(struct perf_event *event,
2244                  struct perf_cpu_context *cpuctx,
2245                  struct perf_event_context *ctx)
2246 {
2247         int ret = 0;
2248
2249         lockdep_assert_held(&ctx->lock);
2250
2251         if (event->state <= PERF_EVENT_STATE_OFF)
2252                 return 0;
2253
2254         WRITE_ONCE(event->oncpu, smp_processor_id());
2255         /*
2256          * Order event::oncpu write to happen before the ACTIVE state is
2257          * visible. This allows perf_event_{stop,read}() to observe the correct
2258          * ->oncpu if it sees ACTIVE.
2259          */
2260         smp_wmb();
2261         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262
2263         /*
2264          * Unthrottle events, since we scheduled we might have missed several
2265          * ticks already, also for a heavily scheduling task there is little
2266          * guarantee it'll get a tick in a timely manner.
2267          */
2268         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269                 perf_log_throttle(event, 1);
2270                 event->hw.interrupts = 0;
2271         }
2272
2273         perf_pmu_disable(event->pmu);
2274
2275         perf_set_shadow_time(event, ctx);
2276
2277         perf_log_itrace_start(event);
2278
2279         if (event->pmu->add(event, PERF_EF_START)) {
2280                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281                 event->oncpu = -1;
2282                 ret = -EAGAIN;
2283                 goto out;
2284         }
2285
2286         if (!is_software_event(event))
2287                 cpuctx->active_oncpu++;
2288         if (!ctx->nr_active++)
2289                 perf_event_ctx_activate(ctx);
2290         if (event->attr.freq && event->attr.sample_freq)
2291                 ctx->nr_freq++;
2292
2293         if (event->attr.exclusive)
2294                 cpuctx->exclusive = 1;
2295
2296 out:
2297         perf_pmu_enable(event->pmu);
2298
2299         return ret;
2300 }
2301
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304                struct perf_cpu_context *cpuctx,
2305                struct perf_event_context *ctx)
2306 {
2307         struct perf_event *event, *partial_group = NULL;
2308         struct pmu *pmu = ctx->pmu;
2309
2310         if (group_event->state == PERF_EVENT_STATE_OFF)
2311                 return 0;
2312
2313         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314
2315         if (event_sched_in(group_event, cpuctx, ctx)) {
2316                 pmu->cancel_txn(pmu);
2317                 perf_mux_hrtimer_restart(cpuctx);
2318                 return -EAGAIN;
2319         }
2320
2321         /*
2322          * Schedule in siblings as one group (if any):
2323          */
2324         for_each_sibling_event(event, group_event) {
2325                 if (event_sched_in(event, cpuctx, ctx)) {
2326                         partial_group = event;
2327                         goto group_error;
2328                 }
2329         }
2330
2331         if (!pmu->commit_txn(pmu))
2332                 return 0;
2333
2334 group_error:
2335         /*
2336          * Groups can be scheduled in as one unit only, so undo any
2337          * partial group before returning:
2338          * The events up to the failed event are scheduled out normally.
2339          */
2340         for_each_sibling_event(event, group_event) {
2341                 if (event == partial_group)
2342                         break;
2343
2344                 event_sched_out(event, cpuctx, ctx);
2345         }
2346         event_sched_out(group_event, cpuctx, ctx);
2347
2348         pmu->cancel_txn(pmu);
2349
2350         perf_mux_hrtimer_restart(cpuctx);
2351
2352         return -EAGAIN;
2353 }
2354
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359                            struct perf_cpu_context *cpuctx,
2360                            int can_add_hw)
2361 {
2362         /*
2363          * Groups consisting entirely of software events can always go on.
2364          */
2365         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366                 return 1;
2367         /*
2368          * If an exclusive group is already on, no other hardware
2369          * events can go on.
2370          */
2371         if (cpuctx->exclusive)
2372                 return 0;
2373         /*
2374          * If this group is exclusive and there are already
2375          * events on the CPU, it can't go on.
2376          */
2377         if (event->attr.exclusive && cpuctx->active_oncpu)
2378                 return 0;
2379         /*
2380          * Otherwise, try to add it if all previous groups were able
2381          * to go on.
2382          */
2383         return can_add_hw;
2384 }
2385
2386 static void add_event_to_ctx(struct perf_event *event,
2387                                struct perf_event_context *ctx)
2388 {
2389         list_add_event(event, ctx);
2390         perf_group_attach(event);
2391 }
2392
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394                           struct perf_cpu_context *cpuctx,
2395                           enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398              struct perf_cpu_context *cpuctx,
2399              enum event_type_t event_type,
2400              struct task_struct *task);
2401
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403                                struct perf_event_context *ctx,
2404                                enum event_type_t event_type)
2405 {
2406         if (!cpuctx->task_ctx)
2407                 return;
2408
2409         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410                 return;
2411
2412         ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416                                 struct perf_event_context *ctx,
2417                                 struct task_struct *task)
2418 {
2419         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420         if (ctx)
2421                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443                         struct perf_event_context *task_ctx,
2444                         enum event_type_t event_type)
2445 {
2446         enum event_type_t ctx_event_type;
2447         bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449         /*
2450          * If pinned groups are involved, flexible groups also need to be
2451          * scheduled out.
2452          */
2453         if (event_type & EVENT_PINNED)
2454                 event_type |= EVENT_FLEXIBLE;
2455
2456         ctx_event_type = event_type & EVENT_ALL;
2457
2458         perf_pmu_disable(cpuctx->ctx.pmu);
2459         if (task_ctx)
2460                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462         /*
2463          * Decide which cpu ctx groups to schedule out based on the types
2464          * of events that caused rescheduling:
2465          *  - EVENT_CPU: schedule out corresponding groups;
2466          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467          *  - otherwise, do nothing more.
2468          */
2469         if (cpu_event)
2470                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471         else if (ctx_event_type & EVENT_PINNED)
2472                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
2474         perf_event_sched_in(cpuctx, task_ctx, current);
2475         perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486         struct perf_event *event = info;
2487         struct perf_event_context *ctx = event->ctx;
2488         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490         bool reprogram = true;
2491         int ret = 0;
2492
2493         raw_spin_lock(&cpuctx->ctx.lock);
2494         if (ctx->task) {
2495                 raw_spin_lock(&ctx->lock);
2496                 task_ctx = ctx;
2497
2498                 reprogram = (ctx->task == current);
2499
2500                 /*
2501                  * If the task is running, it must be running on this CPU,
2502                  * otherwise we cannot reprogram things.
2503                  *
2504                  * If its not running, we don't care, ctx->lock will
2505                  * serialize against it becoming runnable.
2506                  */
2507                 if (task_curr(ctx->task) && !reprogram) {
2508                         ret = -ESRCH;
2509                         goto unlock;
2510                 }
2511
2512                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513         } else if (task_ctx) {
2514                 raw_spin_lock(&task_ctx->lock);
2515         }
2516
2517 #ifdef CONFIG_CGROUP_PERF
2518         if (is_cgroup_event(event)) {
2519                 /*
2520                  * If the current cgroup doesn't match the event's
2521                  * cgroup, we should not try to schedule it.
2522                  */
2523                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525                                         event->cgrp->css.cgroup);
2526         }
2527 #endif
2528
2529         if (reprogram) {
2530                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531                 add_event_to_ctx(event, ctx);
2532                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533         } else {
2534                 add_event_to_ctx(event, ctx);
2535         }
2536
2537 unlock:
2538         perf_ctx_unlock(cpuctx, task_ctx);
2539
2540         return ret;
2541 }
2542
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550                         struct perf_event *event,
2551                         int cpu)
2552 {
2553         struct task_struct *task = READ_ONCE(ctx->task);
2554
2555         lockdep_assert_held(&ctx->mutex);
2556
2557         if (event->cpu != -1)
2558                 event->cpu = cpu;
2559
2560         /*
2561          * Ensures that if we can observe event->ctx, both the event and ctx
2562          * will be 'complete'. See perf_iterate_sb_cpu().
2563          */
2564         smp_store_release(&event->ctx, ctx);
2565
2566         if (!task) {
2567                 cpu_function_call(cpu, __perf_install_in_context, event);
2568                 return;
2569         }
2570
2571         /*
2572          * Should not happen, we validate the ctx is still alive before calling.
2573          */
2574         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575                 return;
2576
2577         /*
2578          * Installing events is tricky because we cannot rely on ctx->is_active
2579          * to be set in case this is the nr_events 0 -> 1 transition.
2580          *
2581          * Instead we use task_curr(), which tells us if the task is running.
2582          * However, since we use task_curr() outside of rq::lock, we can race
2583          * against the actual state. This means the result can be wrong.
2584          *
2585          * If we get a false positive, we retry, this is harmless.
2586          *
2587          * If we get a false negative, things are complicated. If we are after
2588          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589          * value must be correct. If we're before, it doesn't matter since
2590          * perf_event_context_sched_in() will program the counter.
2591          *
2592          * However, this hinges on the remote context switch having observed
2593          * our task->perf_event_ctxp[] store, such that it will in fact take
2594          * ctx::lock in perf_event_context_sched_in().
2595          *
2596          * We do this by task_function_call(), if the IPI fails to hit the task
2597          * we know any future context switch of task must see the
2598          * perf_event_ctpx[] store.
2599          */
2600
2601         /*
2602          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603          * task_cpu() load, such that if the IPI then does not find the task
2604          * running, a future context switch of that task must observe the
2605          * store.
2606          */
2607         smp_mb();
2608 again:
2609         if (!task_function_call(task, __perf_install_in_context, event))
2610                 return;
2611
2612         raw_spin_lock_irq(&ctx->lock);
2613         task = ctx->task;
2614         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615                 /*
2616                  * Cannot happen because we already checked above (which also
2617                  * cannot happen), and we hold ctx->mutex, which serializes us
2618                  * against perf_event_exit_task_context().
2619                  */
2620                 raw_spin_unlock_irq(&ctx->lock);
2621                 return;
2622         }
2623         /*
2624          * If the task is not running, ctx->lock will avoid it becoming so,
2625          * thus we can safely install the event.
2626          */
2627         if (task_curr(task)) {
2628                 raw_spin_unlock_irq(&ctx->lock);
2629                 goto again;
2630         }
2631         add_event_to_ctx(event, ctx);
2632         raw_spin_unlock_irq(&ctx->lock);
2633 }
2634
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639                                 struct perf_cpu_context *cpuctx,
2640                                 struct perf_event_context *ctx,
2641                                 void *info)
2642 {
2643         struct perf_event *leader = event->group_leader;
2644         struct perf_event_context *task_ctx;
2645
2646         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647             event->state <= PERF_EVENT_STATE_ERROR)
2648                 return;
2649
2650         if (ctx->is_active)
2651                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
2653         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654
2655         if (!ctx->is_active)
2656                 return;
2657
2658         if (!event_filter_match(event)) {
2659                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660                 return;
2661         }
2662
2663         /*
2664          * If the event is in a group and isn't the group leader,
2665          * then don't put it on unless the group is on.
2666          */
2667         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669                 return;
2670         }
2671
2672         task_ctx = cpuctx->task_ctx;
2673         if (ctx->task)
2674                 WARN_ON_ONCE(task_ctx != ctx);
2675
2676         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678
2679 /*
2680  * Enable an event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690         struct perf_event_context *ctx = event->ctx;
2691
2692         raw_spin_lock_irq(&ctx->lock);
2693         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694             event->state <  PERF_EVENT_STATE_ERROR) {
2695                 raw_spin_unlock_irq(&ctx->lock);
2696                 return;
2697         }
2698
2699         /*
2700          * If the event is in error state, clear that first.
2701          *
2702          * That way, if we see the event in error state below, we know that it
2703          * has gone back into error state, as distinct from the task having
2704          * been scheduled away before the cross-call arrived.
2705          */
2706         if (event->state == PERF_EVENT_STATE_ERROR)
2707                 event->state = PERF_EVENT_STATE_OFF;
2708         raw_spin_unlock_irq(&ctx->lock);
2709
2710         event_function_call(event, __perf_event_enable, NULL);
2711 }
2712
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718         struct perf_event_context *ctx;
2719
2720         ctx = perf_event_ctx_lock(event);
2721         _perf_event_enable(event);
2722         perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725
2726 struct stop_event_data {
2727         struct perf_event       *event;
2728         unsigned int            restart;
2729 };
2730
2731 static int __perf_event_stop(void *info)
2732 {
2733         struct stop_event_data *sd = info;
2734         struct perf_event *event = sd->event;
2735
2736         /* if it's already INACTIVE, do nothing */
2737         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738                 return 0;
2739
2740         /* matches smp_wmb() in event_sched_in() */
2741         smp_rmb();
2742
2743         /*
2744          * There is a window with interrupts enabled before we get here,
2745          * so we need to check again lest we try to stop another CPU's event.
2746          */
2747         if (READ_ONCE(event->oncpu) != smp_processor_id())
2748                 return -EAGAIN;
2749
2750         event->pmu->stop(event, PERF_EF_UPDATE);
2751
2752         /*
2753          * May race with the actual stop (through perf_pmu_output_stop()),
2754          * but it is only used for events with AUX ring buffer, and such
2755          * events will refuse to restart because of rb::aux_mmap_count==0,
2756          * see comments in perf_aux_output_begin().
2757          *
2758          * Since this is happening on an event-local CPU, no trace is lost
2759          * while restarting.
2760          */
2761         if (sd->restart)
2762                 event->pmu->start(event, 0);
2763
2764         return 0;
2765 }
2766
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769         struct stop_event_data sd = {
2770                 .event          = event,
2771                 .restart        = restart,
2772         };
2773         int ret = 0;
2774
2775         do {
2776                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777                         return 0;
2778
2779                 /* matches smp_wmb() in event_sched_in() */
2780                 smp_rmb();
2781
2782                 /*
2783                  * We only want to restart ACTIVE events, so if the event goes
2784                  * inactive here (event->oncpu==-1), there's nothing more to do;
2785                  * fall through with ret==-ENXIO.
2786                  */
2787                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788                                         __perf_event_stop, &sd);
2789         } while (ret == -EAGAIN);
2790
2791         return ret;
2792 }
2793
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820         if (!has_addr_filter(event))
2821                 return;
2822
2823         raw_spin_lock(&ifh->lock);
2824         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825                 event->pmu->addr_filters_sync(event);
2826                 event->hw.addr_filters_gen = event->addr_filters_gen;
2827         }
2828         raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834         /*
2835          * not supported on inherited events
2836          */
2837         if (event->attr.inherit || !is_sampling_event(event))
2838                 return -EINVAL;
2839
2840         atomic_add(refresh, &event->event_limit);
2841         _perf_event_enable(event);
2842
2843         return 0;
2844 }
2845
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851         struct perf_event_context *ctx;
2852         int ret;
2853
2854         ctx = perf_event_ctx_lock(event);
2855         ret = _perf_event_refresh(event, refresh);
2856         perf_event_ctx_unlock(event, ctx);
2857
2858         return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863                                          struct perf_event_attr *attr)
2864 {
2865         int err;
2866
2867         _perf_event_disable(bp);
2868
2869         err = modify_user_hw_breakpoint_check(bp, attr, true);
2870
2871         if (!bp->attr.disabled)
2872                 _perf_event_enable(bp);
2873
2874         return err;
2875 }
2876
2877 static int perf_event_modify_attr(struct perf_event *event,
2878                                   struct perf_event_attr *attr)
2879 {
2880         if (event->attr.type != attr->type)
2881                 return -EINVAL;
2882
2883         switch (event->attr.type) {
2884         case PERF_TYPE_BREAKPOINT:
2885                 return perf_event_modify_breakpoint(event, attr);
2886         default:
2887                 /* Place holder for future additions. */
2888                 return -EOPNOTSUPP;
2889         }
2890 }
2891
2892 static void ctx_sched_out(struct perf_event_context *ctx,
2893                           struct perf_cpu_context *cpuctx,
2894                           enum event_type_t event_type)
2895 {
2896         struct perf_event *event, *tmp;
2897         int is_active = ctx->is_active;
2898
2899         lockdep_assert_held(&ctx->lock);
2900
2901         if (likely(!ctx->nr_events)) {
2902                 /*
2903                  * See __perf_remove_from_context().
2904                  */
2905                 WARN_ON_ONCE(ctx->is_active);
2906                 if (ctx->task)
2907                         WARN_ON_ONCE(cpuctx->task_ctx);
2908                 return;
2909         }
2910
2911         ctx->is_active &= ~event_type;
2912         if (!(ctx->is_active & EVENT_ALL))
2913                 ctx->is_active = 0;
2914
2915         if (ctx->task) {
2916                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2917                 if (!ctx->is_active)
2918                         cpuctx->task_ctx = NULL;
2919         }
2920
2921         /*
2922          * Always update time if it was set; not only when it changes.
2923          * Otherwise we can 'forget' to update time for any but the last
2924          * context we sched out. For example:
2925          *
2926          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2927          *   ctx_sched_out(.event_type = EVENT_PINNED)
2928          *
2929          * would only update time for the pinned events.
2930          */
2931         if (is_active & EVENT_TIME) {
2932                 /* update (and stop) ctx time */
2933                 update_context_time(ctx);
2934                 update_cgrp_time_from_cpuctx(cpuctx);
2935         }
2936
2937         is_active ^= ctx->is_active; /* changed bits */
2938
2939         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2940                 return;
2941
2942         perf_pmu_disable(ctx->pmu);
2943         if (is_active & EVENT_PINNED) {
2944                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2945                         group_sched_out(event, cpuctx, ctx);
2946         }
2947
2948         if (is_active & EVENT_FLEXIBLE) {
2949                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2950                         group_sched_out(event, cpuctx, ctx);
2951         }
2952         perf_pmu_enable(ctx->pmu);
2953 }
2954
2955 /*
2956  * Test whether two contexts are equivalent, i.e. whether they have both been
2957  * cloned from the same version of the same context.
2958  *
2959  * Equivalence is measured using a generation number in the context that is
2960  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2961  * and list_del_event().
2962  */
2963 static int context_equiv(struct perf_event_context *ctx1,
2964                          struct perf_event_context *ctx2)
2965 {
2966         lockdep_assert_held(&ctx1->lock);
2967         lockdep_assert_held(&ctx2->lock);
2968
2969         /* Pinning disables the swap optimization */
2970         if (ctx1->pin_count || ctx2->pin_count)
2971                 return 0;
2972
2973         /* If ctx1 is the parent of ctx2 */
2974         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2975                 return 1;
2976
2977         /* If ctx2 is the parent of ctx1 */
2978         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2979                 return 1;
2980
2981         /*
2982          * If ctx1 and ctx2 have the same parent; we flatten the parent
2983          * hierarchy, see perf_event_init_context().
2984          */
2985         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2986                         ctx1->parent_gen == ctx2->parent_gen)
2987                 return 1;
2988
2989         /* Unmatched */
2990         return 0;
2991 }
2992
2993 static void __perf_event_sync_stat(struct perf_event *event,
2994                                      struct perf_event *next_event)
2995 {
2996         u64 value;
2997
2998         if (!event->attr.inherit_stat)
2999                 return;
3000
3001         /*
3002          * Update the event value, we cannot use perf_event_read()
3003          * because we're in the middle of a context switch and have IRQs
3004          * disabled, which upsets smp_call_function_single(), however
3005          * we know the event must be on the current CPU, therefore we
3006          * don't need to use it.
3007          */
3008         if (event->state == PERF_EVENT_STATE_ACTIVE)
3009                 event->pmu->read(event);
3010
3011         perf_event_update_time(event);
3012
3013         /*
3014          * In order to keep per-task stats reliable we need to flip the event
3015          * values when we flip the contexts.
3016          */
3017         value = local64_read(&next_event->count);
3018         value = local64_xchg(&event->count, value);
3019         local64_set(&next_event->count, value);
3020
3021         swap(event->total_time_enabled, next_event->total_time_enabled);
3022         swap(event->total_time_running, next_event->total_time_running);
3023
3024         /*
3025          * Since we swizzled the values, update the user visible data too.
3026          */
3027         perf_event_update_userpage(event);
3028         perf_event_update_userpage(next_event);
3029 }
3030
3031 static void perf_event_sync_stat(struct perf_event_context *ctx,
3032                                    struct perf_event_context *next_ctx)
3033 {
3034         struct perf_event *event, *next_event;
3035
3036         if (!ctx->nr_stat)
3037                 return;
3038
3039         update_context_time(ctx);
3040
3041         event = list_first_entry(&ctx->event_list,
3042                                    struct perf_event, event_entry);
3043
3044         next_event = list_first_entry(&next_ctx->event_list,
3045                                         struct perf_event, event_entry);
3046
3047         while (&event->event_entry != &ctx->event_list &&
3048                &next_event->event_entry != &next_ctx->event_list) {
3049
3050                 __perf_event_sync_stat(event, next_event);
3051
3052                 event = list_next_entry(event, event_entry);
3053                 next_event = list_next_entry(next_event, event_entry);
3054         }
3055 }
3056
3057 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3058                                          struct task_struct *next)
3059 {
3060         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3061         struct perf_event_context *next_ctx;
3062         struct perf_event_context *parent, *next_parent;
3063         struct perf_cpu_context *cpuctx;
3064         int do_switch = 1;
3065
3066         if (likely(!ctx))
3067                 return;
3068
3069         cpuctx = __get_cpu_context(ctx);
3070         if (!cpuctx->task_ctx)
3071                 return;
3072
3073         rcu_read_lock();
3074         next_ctx = next->perf_event_ctxp[ctxn];
3075         if (!next_ctx)
3076                 goto unlock;
3077
3078         parent = rcu_dereference(ctx->parent_ctx);
3079         next_parent = rcu_dereference(next_ctx->parent_ctx);
3080
3081         /* If neither context have a parent context; they cannot be clones. */
3082         if (!parent && !next_parent)
3083                 goto unlock;
3084
3085         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3086                 /*
3087                  * Looks like the two contexts are clones, so we might be
3088                  * able to optimize the context switch.  We lock both
3089                  * contexts and check that they are clones under the
3090                  * lock (including re-checking that neither has been
3091                  * uncloned in the meantime).  It doesn't matter which
3092                  * order we take the locks because no other cpu could
3093                  * be trying to lock both of these tasks.
3094                  */
3095                 raw_spin_lock(&ctx->lock);
3096                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3097                 if (context_equiv(ctx, next_ctx)) {
3098                         WRITE_ONCE(ctx->task, next);
3099                         WRITE_ONCE(next_ctx->task, task);
3100
3101                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3102
3103                         /*
3104                          * RCU_INIT_POINTER here is safe because we've not
3105                          * modified the ctx and the above modification of
3106                          * ctx->task and ctx->task_ctx_data are immaterial
3107                          * since those values are always verified under
3108                          * ctx->lock which we're now holding.
3109                          */
3110                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3111                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3112
3113                         do_switch = 0;
3114
3115                         perf_event_sync_stat(ctx, next_ctx);
3116                 }
3117                 raw_spin_unlock(&next_ctx->lock);
3118                 raw_spin_unlock(&ctx->lock);
3119         }
3120 unlock:
3121         rcu_read_unlock();
3122
3123         if (do_switch) {
3124                 raw_spin_lock(&ctx->lock);
3125                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3126                 raw_spin_unlock(&ctx->lock);
3127         }
3128 }
3129
3130 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3131
3132 void perf_sched_cb_dec(struct pmu *pmu)
3133 {
3134         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3135
3136         this_cpu_dec(perf_sched_cb_usages);
3137
3138         if (!--cpuctx->sched_cb_usage)
3139                 list_del(&cpuctx->sched_cb_entry);
3140 }
3141
3142
3143 void perf_sched_cb_inc(struct pmu *pmu)
3144 {
3145         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3146
3147         if (!cpuctx->sched_cb_usage++)
3148                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3149
3150         this_cpu_inc(perf_sched_cb_usages);
3151 }
3152
3153 /*
3154  * This function provides the context switch callback to the lower code
3155  * layer. It is invoked ONLY when the context switch callback is enabled.
3156  *
3157  * This callback is relevant even to per-cpu events; for example multi event
3158  * PEBS requires this to provide PID/TID information. This requires we flush
3159  * all queued PEBS records before we context switch to a new task.
3160  */
3161 static void perf_pmu_sched_task(struct task_struct *prev,
3162                                 struct task_struct *next,
3163                                 bool sched_in)
3164 {
3165         struct perf_cpu_context *cpuctx;
3166         struct pmu *pmu;
3167
3168         if (prev == next)
3169                 return;
3170
3171         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3172                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3173
3174                 if (WARN_ON_ONCE(!pmu->sched_task))
3175                         continue;
3176
3177                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3178                 perf_pmu_disable(pmu);
3179
3180                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3181
3182                 perf_pmu_enable(pmu);
3183                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3184         }
3185 }
3186
3187 static void perf_event_switch(struct task_struct *task,
3188                               struct task_struct *next_prev, bool sched_in);
3189
3190 #define for_each_task_context_nr(ctxn)                                  \
3191         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3192
3193 /*
3194  * Called from scheduler to remove the events of the current task,
3195  * with interrupts disabled.
3196  *
3197  * We stop each event and update the event value in event->count.
3198  *
3199  * This does not protect us against NMI, but disable()
3200  * sets the disabled bit in the control field of event _before_
3201  * accessing the event control register. If a NMI hits, then it will
3202  * not restart the event.
3203  */
3204 void __perf_event_task_sched_out(struct task_struct *task,
3205                                  struct task_struct *next)
3206 {
3207         int ctxn;
3208
3209         if (__this_cpu_read(perf_sched_cb_usages))
3210                 perf_pmu_sched_task(task, next, false);
3211
3212         if (atomic_read(&nr_switch_events))
3213                 perf_event_switch(task, next, false);
3214
3215         for_each_task_context_nr(ctxn)
3216                 perf_event_context_sched_out(task, ctxn, next);
3217
3218         /*
3219          * if cgroup events exist on this CPU, then we need
3220          * to check if we have to switch out PMU state.
3221          * cgroup event are system-wide mode only
3222          */
3223         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3224                 perf_cgroup_sched_out(task, next);
3225 }
3226
3227 /*
3228  * Called with IRQs disabled
3229  */
3230 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3231                               enum event_type_t event_type)
3232 {
3233         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3234 }
3235
3236 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3237                               int (*func)(struct perf_event *, void *), void *data)
3238 {
3239         struct perf_event **evt, *evt1, *evt2;
3240         int ret;
3241
3242         evt1 = perf_event_groups_first(groups, -1);
3243         evt2 = perf_event_groups_first(groups, cpu);
3244
3245         while (evt1 || evt2) {
3246                 if (evt1 && evt2) {
3247                         if (evt1->group_index < evt2->group_index)
3248                                 evt = &evt1;
3249                         else
3250                                 evt = &evt2;
3251                 } else if (evt1) {
3252                         evt = &evt1;
3253                 } else {
3254                         evt = &evt2;
3255                 }
3256
3257                 ret = func(*evt, data);
3258                 if (ret)
3259                         return ret;
3260
3261                 *evt = perf_event_groups_next(*evt);
3262         }
3263
3264         return 0;
3265 }
3266
3267 struct sched_in_data {
3268         struct perf_event_context *ctx;
3269         struct perf_cpu_context *cpuctx;
3270         int can_add_hw;
3271 };
3272
3273 static int pinned_sched_in(struct perf_event *event, void *data)
3274 {
3275         struct sched_in_data *sid = data;
3276
3277         if (event->state <= PERF_EVENT_STATE_OFF)
3278                 return 0;
3279
3280         if (!event_filter_match(event))
3281                 return 0;
3282
3283         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3284                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3285                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3286         }
3287
3288         /*
3289          * If this pinned group hasn't been scheduled,
3290          * put it in error state.
3291          */
3292         if (event->state == PERF_EVENT_STATE_INACTIVE)
3293                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3294
3295         return 0;
3296 }
3297
3298 static int flexible_sched_in(struct perf_event *event, void *data)
3299 {
3300         struct sched_in_data *sid = data;
3301
3302         if (event->state <= PERF_EVENT_STATE_OFF)
3303                 return 0;
3304
3305         if (!event_filter_match(event))
3306                 return 0;
3307
3308         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3309                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3310                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3311                 else
3312                         sid->can_add_hw = 0;
3313         }
3314
3315         return 0;
3316 }
3317
3318 static void
3319 ctx_pinned_sched_in(struct perf_event_context *ctx,
3320                     struct perf_cpu_context *cpuctx)
3321 {
3322         struct sched_in_data sid = {
3323                 .ctx = ctx,
3324                 .cpuctx = cpuctx,
3325                 .can_add_hw = 1,
3326         };
3327
3328         visit_groups_merge(&ctx->pinned_groups,
3329                            smp_processor_id(),
3330                            pinned_sched_in, &sid);
3331 }
3332
3333 static void
3334 ctx_flexible_sched_in(struct perf_event_context *ctx,
3335                       struct perf_cpu_context *cpuctx)
3336 {
3337         struct sched_in_data sid = {
3338                 .ctx = ctx,
3339                 .cpuctx = cpuctx,
3340                 .can_add_hw = 1,
3341         };
3342
3343         visit_groups_merge(&ctx->flexible_groups,
3344                            smp_processor_id(),
3345                            flexible_sched_in, &sid);
3346 }
3347
3348 static void
3349 ctx_sched_in(struct perf_event_context *ctx,
3350              struct perf_cpu_context *cpuctx,
3351              enum event_type_t event_type,
3352              struct task_struct *task)
3353 {
3354         int is_active = ctx->is_active;
3355         u64 now;
3356
3357         lockdep_assert_held(&ctx->lock);
3358
3359         if (likely(!ctx->nr_events))
3360                 return;
3361
3362         ctx->is_active |= (event_type | EVENT_TIME);
3363         if (ctx->task) {
3364                 if (!is_active)
3365                         cpuctx->task_ctx = ctx;
3366                 else
3367                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3368         }
3369
3370         is_active ^= ctx->is_active; /* changed bits */
3371
3372         if (is_active & EVENT_TIME) {
3373                 /* start ctx time */
3374                 now = perf_clock();
3375                 ctx->timestamp = now;
3376                 perf_cgroup_set_timestamp(task, ctx);
3377         }
3378
3379         /*
3380          * First go through the list and put on any pinned groups
3381          * in order to give them the best chance of going on.
3382          */
3383         if (is_active & EVENT_PINNED)
3384                 ctx_pinned_sched_in(ctx, cpuctx);
3385
3386         /* Then walk through the lower prio flexible groups */
3387         if (is_active & EVENT_FLEXIBLE)
3388                 ctx_flexible_sched_in(ctx, cpuctx);
3389 }
3390
3391 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3392                              enum event_type_t event_type,
3393                              struct task_struct *task)
3394 {
3395         struct perf_event_context *ctx = &cpuctx->ctx;
3396
3397         ctx_sched_in(ctx, cpuctx, event_type, task);
3398 }
3399
3400 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3401                                         struct task_struct *task)
3402 {
3403         struct perf_cpu_context *cpuctx;
3404
3405         cpuctx = __get_cpu_context(ctx);
3406         if (cpuctx->task_ctx == ctx)
3407                 return;
3408
3409         perf_ctx_lock(cpuctx, ctx);
3410         /*
3411          * We must check ctx->nr_events while holding ctx->lock, such
3412          * that we serialize against perf_install_in_context().
3413          */
3414         if (!ctx->nr_events)
3415                 goto unlock;
3416
3417         perf_pmu_disable(ctx->pmu);
3418         /*
3419          * We want to keep the following priority order:
3420          * cpu pinned (that don't need to move), task pinned,
3421          * cpu flexible, task flexible.
3422          *
3423          * However, if task's ctx is not carrying any pinned
3424          * events, no need to flip the cpuctx's events around.
3425          */
3426         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3427                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3428         perf_event_sched_in(cpuctx, ctx, task);
3429         perf_pmu_enable(ctx->pmu);
3430
3431 unlock:
3432         perf_ctx_unlock(cpuctx, ctx);
3433 }
3434
3435 /*
3436  * Called from scheduler to add the events of the current task
3437  * with interrupts disabled.
3438  *
3439  * We restore the event value and then enable it.
3440  *
3441  * This does not protect us against NMI, but enable()
3442  * sets the enabled bit in the control field of event _before_
3443  * accessing the event control register. If a NMI hits, then it will
3444  * keep the event running.
3445  */
3446 void __perf_event_task_sched_in(struct task_struct *prev,
3447                                 struct task_struct *task)
3448 {
3449         struct perf_event_context *ctx;
3450         int ctxn;
3451
3452         /*
3453          * If cgroup events exist on this CPU, then we need to check if we have
3454          * to switch in PMU state; cgroup event are system-wide mode only.
3455          *
3456          * Since cgroup events are CPU events, we must schedule these in before
3457          * we schedule in the task events.
3458          */
3459         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3460                 perf_cgroup_sched_in(prev, task);
3461
3462         for_each_task_context_nr(ctxn) {
3463                 ctx = task->perf_event_ctxp[ctxn];
3464                 if (likely(!ctx))
3465                         continue;
3466
3467                 perf_event_context_sched_in(ctx, task);
3468         }
3469
3470         if (atomic_read(&nr_switch_events))
3471                 perf_event_switch(task, prev, true);
3472
3473         if (__this_cpu_read(perf_sched_cb_usages))
3474                 perf_pmu_sched_task(prev, task, true);
3475 }
3476
3477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3478 {
3479         u64 frequency = event->attr.sample_freq;
3480         u64 sec = NSEC_PER_SEC;
3481         u64 divisor, dividend;
3482
3483         int count_fls, nsec_fls, frequency_fls, sec_fls;
3484
3485         count_fls = fls64(count);
3486         nsec_fls = fls64(nsec);
3487         frequency_fls = fls64(frequency);
3488         sec_fls = 30;
3489
3490         /*
3491          * We got @count in @nsec, with a target of sample_freq HZ
3492          * the target period becomes:
3493          *
3494          *             @count * 10^9
3495          * period = -------------------
3496          *          @nsec * sample_freq
3497          *
3498          */
3499
3500         /*
3501          * Reduce accuracy by one bit such that @a and @b converge
3502          * to a similar magnitude.
3503          */
3504 #define REDUCE_FLS(a, b)                \
3505 do {                                    \
3506         if (a##_fls > b##_fls) {        \
3507                 a >>= 1;                \
3508                 a##_fls--;              \
3509         } else {                        \
3510                 b >>= 1;                \
3511                 b##_fls--;              \
3512         }                               \
3513 } while (0)
3514
3515         /*
3516          * Reduce accuracy until either term fits in a u64, then proceed with
3517          * the other, so that finally we can do a u64/u64 division.
3518          */
3519         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3520                 REDUCE_FLS(nsec, frequency);
3521                 REDUCE_FLS(sec, count);
3522         }
3523
3524         if (count_fls + sec_fls > 64) {
3525                 divisor = nsec * frequency;
3526
3527                 while (count_fls + sec_fls > 64) {
3528                         REDUCE_FLS(count, sec);
3529                         divisor >>= 1;
3530                 }
3531
3532                 dividend = count * sec;
3533         } else {
3534                 dividend = count * sec;
3535
3536                 while (nsec_fls + frequency_fls > 64) {
3537                         REDUCE_FLS(nsec, frequency);
3538                         dividend >>= 1;
3539                 }
3540
3541                 divisor = nsec * frequency;
3542         }
3543
3544         if (!divisor)
3545                 return dividend;
3546
3547         return div64_u64(dividend, divisor);
3548 }
3549
3550 static DEFINE_PER_CPU(int, perf_throttled_count);
3551 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3552
3553 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3554 {
3555         struct hw_perf_event *hwc = &event->hw;
3556         s64 period, sample_period;
3557         s64 delta;
3558
3559         period = perf_calculate_period(event, nsec, count);
3560
3561         delta = (s64)(period - hwc->sample_period);
3562         delta = (delta + 7) / 8; /* low pass filter */
3563
3564         sample_period = hwc->sample_period + delta;
3565
3566         if (!sample_period)
3567                 sample_period = 1;
3568
3569         hwc->sample_period = sample_period;
3570
3571         if (local64_read(&hwc->period_left) > 8*sample_period) {
3572                 if (disable)
3573                         event->pmu->stop(event, PERF_EF_UPDATE);
3574
3575                 local64_set(&hwc->period_left, 0);
3576
3577                 if (disable)
3578                         event->pmu->start(event, PERF_EF_RELOAD);
3579         }
3580 }
3581
3582 /*
3583  * combine freq adjustment with unthrottling to avoid two passes over the
3584  * events. At the same time, make sure, having freq events does not change
3585  * the rate of unthrottling as that would introduce bias.
3586  */
3587 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3588                                            int needs_unthr)
3589 {
3590         struct perf_event *event;
3591         struct hw_perf_event *hwc;
3592         u64 now, period = TICK_NSEC;
3593         s64 delta;
3594
3595         /*
3596          * only need to iterate over all events iff:
3597          * - context have events in frequency mode (needs freq adjust)
3598          * - there are events to unthrottle on this cpu
3599          */
3600         if (!(ctx->nr_freq || needs_unthr))
3601                 return;
3602
3603         raw_spin_lock(&ctx->lock);
3604         perf_pmu_disable(ctx->pmu);
3605
3606         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3607                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3608                         continue;
3609
3610                 if (!event_filter_match(event))
3611                         continue;
3612
3613                 perf_pmu_disable(event->pmu);
3614
3615                 hwc = &event->hw;
3616
3617                 if (hwc->interrupts == MAX_INTERRUPTS) {
3618                         hwc->interrupts = 0;
3619                         perf_log_throttle(event, 1);
3620                         event->pmu->start(event, 0);
3621                 }
3622
3623                 if (!event->attr.freq || !event->attr.sample_freq)
3624                         goto next;
3625
3626                 /*
3627                  * stop the event and update event->count
3628                  */
3629                 event->pmu->stop(event, PERF_EF_UPDATE);
3630
3631                 now = local64_read(&event->count);
3632                 delta = now - hwc->freq_count_stamp;
3633                 hwc->freq_count_stamp = now;
3634
3635                 /*
3636                  * restart the event
3637                  * reload only if value has changed
3638                  * we have stopped the event so tell that
3639                  * to perf_adjust_period() to avoid stopping it
3640                  * twice.
3641                  */
3642                 if (delta > 0)
3643                         perf_adjust_period(event, period, delta, false);
3644
3645                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3646         next:
3647                 perf_pmu_enable(event->pmu);
3648         }
3649
3650         perf_pmu_enable(ctx->pmu);
3651         raw_spin_unlock(&ctx->lock);
3652 }
3653
3654 /*
3655  * Move @event to the tail of the @ctx's elegible events.
3656  */
3657 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3658 {
3659         /*
3660          * Rotate the first entry last of non-pinned groups. Rotation might be
3661          * disabled by the inheritance code.
3662          */
3663         if (ctx->rotate_disable)
3664                 return;
3665
3666         perf_event_groups_delete(&ctx->flexible_groups, event);
3667         perf_event_groups_insert(&ctx->flexible_groups, event);
3668 }
3669
3670 static inline struct perf_event *
3671 ctx_first_active(struct perf_event_context *ctx)
3672 {
3673         return list_first_entry_or_null(&ctx->flexible_active,
3674                                         struct perf_event, active_list);
3675 }
3676
3677 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3678 {
3679         struct perf_event *cpu_event = NULL, *task_event = NULL;
3680         bool cpu_rotate = false, task_rotate = false;
3681         struct perf_event_context *ctx = NULL;
3682
3683         /*
3684          * Since we run this from IRQ context, nobody can install new
3685          * events, thus the event count values are stable.
3686          */
3687
3688         if (cpuctx->ctx.nr_events) {
3689                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3690                         cpu_rotate = true;
3691         }
3692
3693         ctx = cpuctx->task_ctx;
3694         if (ctx && ctx->nr_events) {
3695                 if (ctx->nr_events != ctx->nr_active)
3696                         task_rotate = true;
3697         }
3698
3699         if (!(cpu_rotate || task_rotate))
3700                 return false;
3701
3702         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3703         perf_pmu_disable(cpuctx->ctx.pmu);
3704
3705         if (task_rotate)
3706                 task_event = ctx_first_active(ctx);
3707         if (cpu_rotate)
3708                 cpu_event = ctx_first_active(&cpuctx->ctx);
3709
3710         /*
3711          * As per the order given at ctx_resched() first 'pop' task flexible
3712          * and then, if needed CPU flexible.
3713          */
3714         if (task_event || (ctx && cpu_event))
3715                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3716         if (cpu_event)
3717                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3718
3719         if (task_event)
3720                 rotate_ctx(ctx, task_event);
3721         if (cpu_event)
3722                 rotate_ctx(&cpuctx->ctx, cpu_event);
3723
3724         perf_event_sched_in(cpuctx, ctx, current);
3725
3726         perf_pmu_enable(cpuctx->ctx.pmu);
3727         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3728
3729         return true;
3730 }
3731
3732 void perf_event_task_tick(void)
3733 {
3734         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3735         struct perf_event_context *ctx, *tmp;
3736         int throttled;
3737
3738         lockdep_assert_irqs_disabled();
3739
3740         __this_cpu_inc(perf_throttled_seq);
3741         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3742         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3743
3744         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3745                 perf_adjust_freq_unthr_context(ctx, throttled);
3746 }
3747
3748 static int event_enable_on_exec(struct perf_event *event,
3749                                 struct perf_event_context *ctx)
3750 {
3751         if (!event->attr.enable_on_exec)
3752                 return 0;
3753
3754         event->attr.enable_on_exec = 0;
3755         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3756                 return 0;
3757
3758         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3759
3760         return 1;
3761 }
3762
3763 /*
3764  * Enable all of a task's events that have been marked enable-on-exec.
3765  * This expects task == current.
3766  */
3767 static void perf_event_enable_on_exec(int ctxn)
3768 {
3769         struct perf_event_context *ctx, *clone_ctx = NULL;
3770         enum event_type_t event_type = 0;
3771         struct perf_cpu_context *cpuctx;
3772         struct perf_event *event;
3773         unsigned long flags;
3774         int enabled = 0;
3775
3776         local_irq_save(flags);
3777         ctx = current->perf_event_ctxp[ctxn];
3778         if (!ctx || !ctx->nr_events)
3779                 goto out;
3780
3781         cpuctx = __get_cpu_context(ctx);
3782         perf_ctx_lock(cpuctx, ctx);
3783         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3784         list_for_each_entry(event, &ctx->event_list, event_entry) {
3785                 enabled |= event_enable_on_exec(event, ctx);
3786                 event_type |= get_event_type(event);
3787         }
3788
3789         /*
3790          * Unclone and reschedule this context if we enabled any event.
3791          */
3792         if (enabled) {
3793                 clone_ctx = unclone_ctx(ctx);
3794                 ctx_resched(cpuctx, ctx, event_type);
3795         } else {
3796                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3797         }
3798         perf_ctx_unlock(cpuctx, ctx);
3799
3800 out:
3801         local_irq_restore(flags);
3802
3803         if (clone_ctx)
3804                 put_ctx(clone_ctx);
3805 }
3806
3807 struct perf_read_data {
3808         struct perf_event *event;
3809         bool group;
3810         int ret;
3811 };
3812
3813 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3814 {
3815         u16 local_pkg, event_pkg;
3816
3817         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3818                 int local_cpu = smp_processor_id();
3819
3820                 event_pkg = topology_physical_package_id(event_cpu);
3821                 local_pkg = topology_physical_package_id(local_cpu);
3822
3823                 if (event_pkg == local_pkg)
3824                         return local_cpu;
3825         }
3826
3827         return event_cpu;
3828 }
3829
3830 /*
3831  * Cross CPU call to read the hardware event
3832  */
3833 static void __perf_event_read(void *info)
3834 {
3835         struct perf_read_data *data = info;
3836         struct perf_event *sub, *event = data->event;
3837         struct perf_event_context *ctx = event->ctx;
3838         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3839         struct pmu *pmu = event->pmu;
3840
3841         /*
3842          * If this is a task context, we need to check whether it is
3843          * the current task context of this cpu.  If not it has been
3844          * scheduled out before the smp call arrived.  In that case
3845          * event->count would have been updated to a recent sample
3846          * when the event was scheduled out.
3847          */
3848         if (ctx->task && cpuctx->task_ctx != ctx)
3849                 return;
3850
3851         raw_spin_lock(&ctx->lock);
3852         if (ctx->is_active & EVENT_TIME) {
3853                 update_context_time(ctx);
3854                 update_cgrp_time_from_event(event);
3855         }
3856
3857         perf_event_update_time(event);
3858         if (data->group)
3859                 perf_event_update_sibling_time(event);
3860
3861         if (event->state != PERF_EVENT_STATE_ACTIVE)
3862                 goto unlock;
3863
3864         if (!data->group) {
3865                 pmu->read(event);
3866                 data->ret = 0;
3867                 goto unlock;
3868         }
3869
3870         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3871
3872         pmu->read(event);
3873
3874         for_each_sibling_event(sub, event) {
3875                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3876                         /*
3877                          * Use sibling's PMU rather than @event's since
3878                          * sibling could be on different (eg: software) PMU.
3879                          */
3880                         sub->pmu->read(sub);
3881                 }
3882         }
3883
3884         data->ret = pmu->commit_txn(pmu);
3885
3886 unlock:
3887         raw_spin_unlock(&ctx->lock);
3888 }
3889
3890 static inline u64 perf_event_count(struct perf_event *event)
3891 {
3892         return local64_read(&event->count) + atomic64_read(&event->child_count);
3893 }
3894
3895 /*
3896  * NMI-safe method to read a local event, that is an event that
3897  * is:
3898  *   - either for the current task, or for this CPU
3899  *   - does not have inherit set, for inherited task events
3900  *     will not be local and we cannot read them atomically
3901  *   - must not have a pmu::count method
3902  */
3903 int perf_event_read_local(struct perf_event *event, u64 *value,
3904                           u64 *enabled, u64 *running)
3905 {
3906         unsigned long flags;
3907         int ret = 0;
3908
3909         /*
3910          * Disabling interrupts avoids all counter scheduling (context
3911          * switches, timer based rotation and IPIs).
3912          */
3913         local_irq_save(flags);
3914
3915         /*
3916          * It must not be an event with inherit set, we cannot read
3917          * all child counters from atomic context.
3918          */
3919         if (event->attr.inherit) {
3920                 ret = -EOPNOTSUPP;
3921                 goto out;
3922         }
3923
3924         /* If this is a per-task event, it must be for current */
3925         if ((event->attach_state & PERF_ATTACH_TASK) &&
3926             event->hw.target != current) {
3927                 ret = -EINVAL;
3928                 goto out;
3929         }
3930
3931         /* If this is a per-CPU event, it must be for this CPU */
3932         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3933             event->cpu != smp_processor_id()) {
3934                 ret = -EINVAL;
3935                 goto out;
3936         }
3937
3938         /* If this is a pinned event it must be running on this CPU */
3939         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3940                 ret = -EBUSY;
3941                 goto out;
3942         }
3943
3944         /*
3945          * If the event is currently on this CPU, its either a per-task event,
3946          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3947          * oncpu == -1).
3948          */
3949         if (event->oncpu == smp_processor_id())
3950                 event->pmu->read(event);
3951
3952         *value = local64_read(&event->count);
3953         if (enabled || running) {
3954                 u64 now = event->shadow_ctx_time + perf_clock();
3955                 u64 __enabled, __running;
3956
3957                 __perf_update_times(event, now, &__enabled, &__running);
3958                 if (enabled)
3959                         *enabled = __enabled;
3960                 if (running)
3961                         *running = __running;
3962         }
3963 out:
3964         local_irq_restore(flags);
3965
3966         return ret;
3967 }
3968
3969 static int perf_event_read(struct perf_event *event, bool group)
3970 {
3971         enum perf_event_state state = READ_ONCE(event->state);
3972         int event_cpu, ret = 0;
3973
3974         /*
3975          * If event is enabled and currently active on a CPU, update the
3976          * value in the event structure:
3977          */
3978 again:
3979         if (state == PERF_EVENT_STATE_ACTIVE) {
3980                 struct perf_read_data data;
3981
3982                 /*
3983                  * Orders the ->state and ->oncpu loads such that if we see
3984                  * ACTIVE we must also see the right ->oncpu.
3985                  *
3986                  * Matches the smp_wmb() from event_sched_in().
3987                  */
3988                 smp_rmb();
3989
3990                 event_cpu = READ_ONCE(event->oncpu);
3991                 if ((unsigned)event_cpu >= nr_cpu_ids)
3992                         return 0;
3993
3994                 data = (struct perf_read_data){
3995                         .event = event,
3996                         .group = group,
3997                         .ret = 0,
3998                 };
3999
4000                 preempt_disable();
4001                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4002
4003                 /*
4004                  * Purposely ignore the smp_call_function_single() return
4005                  * value.
4006                  *
4007                  * If event_cpu isn't a valid CPU it means the event got
4008                  * scheduled out and that will have updated the event count.
4009                  *
4010                  * Therefore, either way, we'll have an up-to-date event count
4011                  * after this.
4012                  */
4013                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4014                 preempt_enable();
4015                 ret = data.ret;
4016
4017         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4018                 struct perf_event_context *ctx = event->ctx;
4019                 unsigned long flags;
4020
4021                 raw_spin_lock_irqsave(&ctx->lock, flags);
4022                 state = event->state;
4023                 if (state != PERF_EVENT_STATE_INACTIVE) {
4024                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4025                         goto again;
4026                 }
4027
4028                 /*
4029                  * May read while context is not active (e.g., thread is
4030                  * blocked), in that case we cannot update context time
4031                  */
4032                 if (ctx->is_active & EVENT_TIME) {
4033                         update_context_time(ctx);
4034                         update_cgrp_time_from_event(event);
4035                 }
4036
4037                 perf_event_update_time(event);
4038                 if (group)
4039                         perf_event_update_sibling_time(event);
4040                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4041         }
4042
4043         return ret;
4044 }
4045
4046 /*
4047  * Initialize the perf_event context in a task_struct:
4048  */
4049 static void __perf_event_init_context(struct perf_event_context *ctx)
4050 {
4051         raw_spin_lock_init(&ctx->lock);
4052         mutex_init(&ctx->mutex);
4053         INIT_LIST_HEAD(&ctx->active_ctx_list);
4054         perf_event_groups_init(&ctx->pinned_groups);
4055         perf_event_groups_init(&ctx->flexible_groups);
4056         INIT_LIST_HEAD(&ctx->event_list);
4057         INIT_LIST_HEAD(&ctx->pinned_active);
4058         INIT_LIST_HEAD(&ctx->flexible_active);
4059         atomic_set(&ctx->refcount, 1);
4060 }
4061
4062 static struct perf_event_context *
4063 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4064 {
4065         struct perf_event_context *ctx;
4066
4067         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4068         if (!ctx)
4069                 return NULL;
4070
4071         __perf_event_init_context(ctx);
4072         if (task) {
4073                 ctx->task = task;
4074                 get_task_struct(task);
4075         }
4076         ctx->pmu = pmu;
4077
4078         return ctx;
4079 }
4080
4081 static struct task_struct *
4082 find_lively_task_by_vpid(pid_t vpid)
4083 {
4084         struct task_struct *task;
4085
4086         rcu_read_lock();
4087         if (!vpid)
4088                 task = current;
4089         else
4090                 task = find_task_by_vpid(vpid);
4091         if (task)
4092                 get_task_struct(task);
4093         rcu_read_unlock();
4094
4095         if (!task)
4096                 return ERR_PTR(-ESRCH);
4097
4098         return task;
4099 }
4100
4101 /*
4102  * Returns a matching context with refcount and pincount.
4103  */
4104 static struct perf_event_context *
4105 find_get_context(struct pmu *pmu, struct task_struct *task,
4106                 struct perf_event *event)
4107 {
4108         struct perf_event_context *ctx, *clone_ctx = NULL;
4109         struct perf_cpu_context *cpuctx;
4110         void *task_ctx_data = NULL;
4111         unsigned long flags;
4112         int ctxn, err;
4113         int cpu = event->cpu;
4114
4115         if (!task) {
4116                 /* Must be root to operate on a CPU event: */
4117                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4118                         return ERR_PTR(-EACCES);
4119
4120                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4121                 ctx = &cpuctx->ctx;
4122                 get_ctx(ctx);
4123                 ++ctx->pin_count;
4124
4125                 return ctx;
4126         }
4127
4128         err = -EINVAL;
4129         ctxn = pmu->task_ctx_nr;
4130         if (ctxn < 0)
4131                 goto errout;
4132
4133         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4134                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4135                 if (!task_ctx_data) {
4136                         err = -ENOMEM;
4137                         goto errout;
4138                 }
4139         }
4140
4141 retry:
4142         ctx = perf_lock_task_context(task, ctxn, &flags);
4143         if (ctx) {
4144                 clone_ctx = unclone_ctx(ctx);
4145                 ++ctx->pin_count;
4146
4147                 if (task_ctx_data && !ctx->task_ctx_data) {
4148                         ctx->task_ctx_data = task_ctx_data;
4149                         task_ctx_data = NULL;
4150                 }
4151                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4152
4153                 if (clone_ctx)
4154                         put_ctx(clone_ctx);
4155         } else {
4156                 ctx = alloc_perf_context(pmu, task);
4157                 err = -ENOMEM;
4158                 if (!ctx)
4159                         goto errout;
4160
4161                 if (task_ctx_data) {
4162                         ctx->task_ctx_data = task_ctx_data;
4163                         task_ctx_data = NULL;
4164                 }
4165
4166                 err = 0;
4167                 mutex_lock(&task->perf_event_mutex);
4168                 /*
4169                  * If it has already passed perf_event_exit_task().
4170                  * we must see PF_EXITING, it takes this mutex too.
4171                  */
4172                 if (task->flags & PF_EXITING)
4173                         err = -ESRCH;
4174                 else if (task->perf_event_ctxp[ctxn])
4175                         err = -EAGAIN;
4176                 else {
4177                         get_ctx(ctx);
4178                         ++ctx->pin_count;
4179                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4180                 }
4181                 mutex_unlock(&task->perf_event_mutex);
4182
4183                 if (unlikely(err)) {
4184                         put_ctx(ctx);
4185
4186                         if (err == -EAGAIN)
4187                                 goto retry;
4188                         goto errout;
4189                 }
4190         }
4191
4192         kfree(task_ctx_data);
4193         return ctx;
4194
4195 errout:
4196         kfree(task_ctx_data);
4197         return ERR_PTR(err);
4198 }
4199
4200 static void perf_event_free_filter(struct perf_event *event);
4201 static void perf_event_free_bpf_prog(struct perf_event *event);
4202
4203 static void free_event_rcu(struct rcu_head *head)
4204 {
4205         struct perf_event *event;
4206
4207         event = container_of(head, struct perf_event, rcu_head);
4208         if (event->ns)
4209                 put_pid_ns(event->ns);
4210         perf_event_free_filter(event);
4211         kfree(event);
4212 }
4213
4214 static void ring_buffer_attach(struct perf_event *event,
4215                                struct ring_buffer *rb);
4216
4217 static void detach_sb_event(struct perf_event *event)
4218 {
4219         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4220
4221         raw_spin_lock(&pel->lock);
4222         list_del_rcu(&event->sb_list);
4223         raw_spin_unlock(&pel->lock);
4224 }
4225
4226 static bool is_sb_event(struct perf_event *event)
4227 {
4228         struct perf_event_attr *attr = &event->attr;
4229
4230         if (event->parent)
4231                 return false;
4232
4233         if (event->attach_state & PERF_ATTACH_TASK)
4234                 return false;
4235
4236         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4237             attr->comm || attr->comm_exec ||
4238             attr->task ||
4239             attr->context_switch)
4240                 return true;
4241         return false;
4242 }
4243
4244 static void unaccount_pmu_sb_event(struct perf_event *event)
4245 {
4246         if (is_sb_event(event))
4247                 detach_sb_event(event);
4248 }
4249
4250 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4251 {
4252         if (event->parent)
4253                 return;
4254
4255         if (is_cgroup_event(event))
4256                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4257 }
4258
4259 #ifdef CONFIG_NO_HZ_FULL
4260 static DEFINE_SPINLOCK(nr_freq_lock);
4261 #endif
4262
4263 static void unaccount_freq_event_nohz(void)
4264 {
4265 #ifdef CONFIG_NO_HZ_FULL
4266         spin_lock(&nr_freq_lock);
4267         if (atomic_dec_and_test(&nr_freq_events))
4268                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4269         spin_unlock(&nr_freq_lock);
4270 #endif
4271 }
4272
4273 static void unaccount_freq_event(void)
4274 {
4275         if (tick_nohz_full_enabled())
4276                 unaccount_freq_event_nohz();
4277         else
4278                 atomic_dec(&nr_freq_events);
4279 }
4280
4281 static void unaccount_event(struct perf_event *event)
4282 {
4283         bool dec = false;
4284
4285         if (event->parent)
4286                 return;
4287
4288         if (event->attach_state & PERF_ATTACH_TASK)
4289                 dec = true;
4290         if (event->attr.mmap || event->attr.mmap_data)
4291                 atomic_dec(&nr_mmap_events);
4292         if (event->attr.comm)
4293                 atomic_dec(&nr_comm_events);
4294         if (event->attr.namespaces)
4295                 atomic_dec(&nr_namespaces_events);
4296         if (event->attr.task)
4297                 atomic_dec(&nr_task_events);
4298         if (event->attr.freq)
4299                 unaccount_freq_event();
4300         if (event->attr.context_switch) {
4301                 dec = true;
4302                 atomic_dec(&nr_switch_events);
4303         }
4304         if (is_cgroup_event(event))
4305                 dec = true;
4306         if (has_branch_stack(event))
4307                 dec = true;
4308
4309         if (dec) {
4310                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4311                         schedule_delayed_work(&perf_sched_work, HZ);
4312         }
4313
4314         unaccount_event_cpu(event, event->cpu);
4315
4316         unaccount_pmu_sb_event(event);
4317 }
4318
4319 static void perf_sched_delayed(struct work_struct *work)
4320 {
4321         mutex_lock(&perf_sched_mutex);
4322         if (atomic_dec_and_test(&perf_sched_count))
4323                 static_branch_disable(&perf_sched_events);
4324         mutex_unlock(&perf_sched_mutex);
4325 }
4326
4327 /*
4328  * The following implement mutual exclusion of events on "exclusive" pmus
4329  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4330  * at a time, so we disallow creating events that might conflict, namely:
4331  *
4332  *  1) cpu-wide events in the presence of per-task events,
4333  *  2) per-task events in the presence of cpu-wide events,
4334  *  3) two matching events on the same context.
4335  *
4336  * The former two cases are handled in the allocation path (perf_event_alloc(),
4337  * _free_event()), the latter -- before the first perf_install_in_context().
4338  */
4339 static int exclusive_event_init(struct perf_event *event)
4340 {
4341         struct pmu *pmu = event->pmu;
4342
4343         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4344                 return 0;
4345
4346         /*
4347          * Prevent co-existence of per-task and cpu-wide events on the
4348          * same exclusive pmu.
4349          *
4350          * Negative pmu::exclusive_cnt means there are cpu-wide
4351          * events on this "exclusive" pmu, positive means there are
4352          * per-task events.
4353          *
4354          * Since this is called in perf_event_alloc() path, event::ctx
4355          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4356          * to mean "per-task event", because unlike other attach states it
4357          * never gets cleared.
4358          */
4359         if (event->attach_state & PERF_ATTACH_TASK) {
4360                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4361                         return -EBUSY;
4362         } else {
4363                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4364                         return -EBUSY;
4365         }
4366
4367         return 0;
4368 }
4369
4370 static void exclusive_event_destroy(struct perf_event *event)
4371 {
4372         struct pmu *pmu = event->pmu;
4373
4374         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4375                 return;
4376
4377         /* see comment in exclusive_event_init() */
4378         if (event->attach_state & PERF_ATTACH_TASK)
4379                 atomic_dec(&pmu->exclusive_cnt);
4380         else
4381                 atomic_inc(&pmu->exclusive_cnt);
4382 }
4383
4384 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4385 {
4386         if ((e1->pmu == e2->pmu) &&
4387             (e1->cpu == e2->cpu ||
4388              e1->cpu == -1 ||
4389              e2->cpu == -1))
4390                 return true;
4391         return false;
4392 }
4393
4394 /* Called under the same ctx::mutex as perf_install_in_context() */
4395 static bool exclusive_event_installable(struct perf_event *event,
4396                                         struct perf_event_context *ctx)
4397 {
4398         struct perf_event *iter_event;
4399         struct pmu *pmu = event->pmu;
4400
4401         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4402                 return true;
4403
4404         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4405                 if (exclusive_event_match(iter_event, event))
4406                         return false;
4407         }
4408
4409         return true;
4410 }
4411
4412 static void perf_addr_filters_splice(struct perf_event *event,
4413                                        struct list_head *head);
4414
4415 static void _free_event(struct perf_event *event)
4416 {
4417         irq_work_sync(&event->pending);
4418
4419         unaccount_event(event);
4420
4421         if (event->rb) {
4422                 /*
4423                  * Can happen when we close an event with re-directed output.
4424                  *
4425                  * Since we have a 0 refcount, perf_mmap_close() will skip
4426                  * over us; possibly making our ring_buffer_put() the last.
4427                  */
4428                 mutex_lock(&event->mmap_mutex);
4429                 ring_buffer_attach(event, NULL);
4430                 mutex_unlock(&event->mmap_mutex);
4431         }
4432
4433         if (is_cgroup_event(event))
4434                 perf_detach_cgroup(event);
4435
4436         if (!event->parent) {
4437                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4438                         put_callchain_buffers();
4439         }
4440
4441         perf_event_free_bpf_prog(event);
4442         perf_addr_filters_splice(event, NULL);
4443         kfree(event->addr_filters_offs);
4444
4445         if (event->destroy)
4446                 event->destroy(event);
4447
4448         if (event->ctx)
4449                 put_ctx(event->ctx);
4450
4451         if (event->hw.target)
4452                 put_task_struct(event->hw.target);
4453
4454         exclusive_event_destroy(event);
4455         module_put(event->pmu->module);
4456
4457         call_rcu(&event->rcu_head, free_event_rcu);
4458 }
4459
4460 /*
4461  * Used to free events which have a known refcount of 1, such as in error paths
4462  * where the event isn't exposed yet and inherited events.
4463  */
4464 static void free_event(struct perf_event *event)
4465 {
4466         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4467                                 "unexpected event refcount: %ld; ptr=%p\n",
4468                                 atomic_long_read(&event->refcount), event)) {
4469                 /* leak to avoid use-after-free */
4470                 return;
4471         }
4472
4473         _free_event(event);
4474 }
4475
4476 /*
4477  * Remove user event from the owner task.
4478  */
4479 static void perf_remove_from_owner(struct perf_event *event)
4480 {
4481         struct task_struct *owner;
4482
4483         rcu_read_lock();
4484         /*
4485          * Matches the smp_store_release() in perf_event_exit_task(). If we
4486          * observe !owner it means the list deletion is complete and we can
4487          * indeed free this event, otherwise we need to serialize on
4488          * owner->perf_event_mutex.
4489          */
4490         owner = READ_ONCE(event->owner);
4491         if (owner) {
4492                 /*
4493                  * Since delayed_put_task_struct() also drops the last
4494                  * task reference we can safely take a new reference
4495                  * while holding the rcu_read_lock().
4496                  */
4497                 get_task_struct(owner);
4498         }
4499         rcu_read_unlock();
4500
4501         if (owner) {
4502                 /*
4503                  * If we're here through perf_event_exit_task() we're already
4504                  * holding ctx->mutex which would be an inversion wrt. the
4505                  * normal lock order.
4506                  *
4507                  * However we can safely take this lock because its the child
4508                  * ctx->mutex.
4509                  */
4510                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4511
4512                 /*
4513                  * We have to re-check the event->owner field, if it is cleared
4514                  * we raced with perf_event_exit_task(), acquiring the mutex
4515                  * ensured they're done, and we can proceed with freeing the
4516                  * event.
4517                  */
4518                 if (event->owner) {
4519                         list_del_init(&event->owner_entry);
4520                         smp_store_release(&event->owner, NULL);
4521                 }
4522                 mutex_unlock(&owner->perf_event_mutex);
4523                 put_task_struct(owner);
4524         }
4525 }
4526
4527 static void put_event(struct perf_event *event)
4528 {
4529         if (!atomic_long_dec_and_test(&event->refcount))
4530                 return;
4531
4532         _free_event(event);
4533 }
4534
4535 /*
4536  * Kill an event dead; while event:refcount will preserve the event
4537  * object, it will not preserve its functionality. Once the last 'user'
4538  * gives up the object, we'll destroy the thing.
4539  */
4540 int perf_event_release_kernel(struct perf_event *event)
4541 {
4542         struct perf_event_context *ctx = event->ctx;
4543         struct perf_event *child, *tmp;
4544         LIST_HEAD(free_list);
4545
4546         /*
4547          * If we got here through err_file: fput(event_file); we will not have
4548          * attached to a context yet.
4549          */
4550         if (!ctx) {
4551                 WARN_ON_ONCE(event->attach_state &
4552                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4553                 goto no_ctx;
4554         }
4555
4556         if (!is_kernel_event(event))
4557                 perf_remove_from_owner(event);
4558
4559         ctx = perf_event_ctx_lock(event);
4560         WARN_ON_ONCE(ctx->parent_ctx);
4561         perf_remove_from_context(event, DETACH_GROUP);
4562
4563         raw_spin_lock_irq(&ctx->lock);
4564         /*
4565          * Mark this event as STATE_DEAD, there is no external reference to it
4566          * anymore.
4567          *
4568          * Anybody acquiring event->child_mutex after the below loop _must_
4569          * also see this, most importantly inherit_event() which will avoid
4570          * placing more children on the list.
4571          *
4572          * Thus this guarantees that we will in fact observe and kill _ALL_
4573          * child events.
4574          */
4575         event->state = PERF_EVENT_STATE_DEAD;
4576         raw_spin_unlock_irq(&ctx->lock);
4577
4578         perf_event_ctx_unlock(event, ctx);
4579
4580 again:
4581         mutex_lock(&event->child_mutex);
4582         list_for_each_entry(child, &event->child_list, child_list) {
4583
4584                 /*
4585                  * Cannot change, child events are not migrated, see the
4586                  * comment with perf_event_ctx_lock_nested().
4587                  */
4588                 ctx = READ_ONCE(child->ctx);
4589                 /*
4590                  * Since child_mutex nests inside ctx::mutex, we must jump
4591                  * through hoops. We start by grabbing a reference on the ctx.
4592                  *
4593                  * Since the event cannot get freed while we hold the
4594                  * child_mutex, the context must also exist and have a !0
4595                  * reference count.
4596                  */
4597                 get_ctx(ctx);
4598
4599                 /*
4600                  * Now that we have a ctx ref, we can drop child_mutex, and
4601                  * acquire ctx::mutex without fear of it going away. Then we
4602                  * can re-acquire child_mutex.
4603                  */
4604                 mutex_unlock(&event->child_mutex);
4605                 mutex_lock(&ctx->mutex);
4606                 mutex_lock(&event->child_mutex);
4607
4608                 /*
4609                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4610                  * state, if child is still the first entry, it didn't get freed
4611                  * and we can continue doing so.
4612                  */
4613                 tmp = list_first_entry_or_null(&event->child_list,
4614                                                struct perf_event, child_list);
4615                 if (tmp == child) {
4616                         perf_remove_from_context(child, DETACH_GROUP);
4617                         list_move(&child->child_list, &free_list);
4618                         /*
4619                          * This matches the refcount bump in inherit_event();
4620                          * this can't be the last reference.
4621                          */
4622                         put_event(event);
4623                 }
4624
4625                 mutex_unlock(&event->child_mutex);
4626                 mutex_unlock(&ctx->mutex);
4627                 put_ctx(ctx);
4628                 goto again;
4629         }
4630         mutex_unlock(&event->child_mutex);
4631
4632         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4633                 list_del(&child->child_list);
4634                 free_event(child);
4635         }
4636
4637 no_ctx:
4638         put_event(event); /* Must be the 'last' reference */
4639         return 0;
4640 }
4641 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4642
4643 /*
4644  * Called when the last reference to the file is gone.
4645  */
4646 static int perf_release(struct inode *inode, struct file *file)
4647 {
4648         perf_event_release_kernel(file->private_data);
4649         return 0;
4650 }
4651
4652 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4653 {
4654         struct perf_event *child;
4655         u64 total = 0;
4656
4657         *enabled = 0;
4658         *running = 0;
4659
4660         mutex_lock(&event->child_mutex);
4661
4662         (void)perf_event_read(event, false);
4663         total += perf_event_count(event);
4664
4665         *enabled += event->total_time_enabled +
4666                         atomic64_read(&event->child_total_time_enabled);
4667         *running += event->total_time_running +
4668                         atomic64_read(&event->child_total_time_running);
4669
4670         list_for_each_entry(child, &event->child_list, child_list) {
4671                 (void)perf_event_read(child, false);
4672                 total += perf_event_count(child);
4673                 *enabled += child->total_time_enabled;
4674                 *running += child->total_time_running;
4675         }
4676         mutex_unlock(&event->child_mutex);
4677
4678         return total;
4679 }
4680
4681 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4682 {
4683         struct perf_event_context *ctx;
4684         u64 count;
4685
4686         ctx = perf_event_ctx_lock(event);
4687         count = __perf_event_read_value(event, enabled, running);
4688         perf_event_ctx_unlock(event, ctx);
4689
4690         return count;
4691 }
4692 EXPORT_SYMBOL_GPL(perf_event_read_value);
4693
4694 static int __perf_read_group_add(struct perf_event *leader,
4695                                         u64 read_format, u64 *values)
4696 {
4697         struct perf_event_context *ctx = leader->ctx;
4698         struct perf_event *sub;
4699         unsigned long flags;
4700         int n = 1; /* skip @nr */
4701         int ret;
4702
4703         ret = perf_event_read(leader, true);
4704         if (ret)
4705                 return ret;
4706
4707         raw_spin_lock_irqsave(&ctx->lock, flags);
4708
4709         /*
4710          * Since we co-schedule groups, {enabled,running} times of siblings
4711          * will be identical to those of the leader, so we only publish one
4712          * set.
4713          */
4714         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4715                 values[n++] += leader->total_time_enabled +
4716                         atomic64_read(&leader->child_total_time_enabled);
4717         }
4718
4719         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4720                 values[n++] += leader->total_time_running +
4721                         atomic64_read(&leader->child_total_time_running);
4722         }
4723
4724         /*
4725          * Write {count,id} tuples for every sibling.
4726          */
4727         values[n++] += perf_event_count(leader);
4728         if (read_format & PERF_FORMAT_ID)
4729                 values[n++] = primary_event_id(leader);
4730
4731         for_each_sibling_event(sub, leader) {
4732                 values[n++] += perf_event_count(sub);
4733                 if (read_format & PERF_FORMAT_ID)
4734                         values[n++] = primary_event_id(sub);
4735         }
4736
4737         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4738         return 0;
4739 }
4740
4741 static int perf_read_group(struct perf_event *event,
4742                                    u64 read_format, char __user *buf)
4743 {
4744         struct perf_event *leader = event->group_leader, *child;
4745         struct perf_event_context *ctx = leader->ctx;
4746         int ret;
4747         u64 *values;
4748
4749         lockdep_assert_held(&ctx->mutex);
4750
4751         values = kzalloc(event->read_size, GFP_KERNEL);
4752         if (!values)
4753                 return -ENOMEM;
4754
4755         values[0] = 1 + leader->nr_siblings;
4756
4757         /*
4758          * By locking the child_mutex of the leader we effectively
4759          * lock the child list of all siblings.. XXX explain how.
4760          */
4761         mutex_lock(&leader->child_mutex);
4762
4763         ret = __perf_read_group_add(leader, read_format, values);
4764         if (ret)
4765                 goto unlock;
4766
4767         list_for_each_entry(child, &leader->child_list, child_list) {
4768                 ret = __perf_read_group_add(child, read_format, values);
4769                 if (ret)
4770                         goto unlock;
4771         }
4772
4773         mutex_unlock(&leader->child_mutex);
4774
4775         ret = event->read_size;
4776         if (copy_to_user(buf, values, event->read_size))
4777                 ret = -EFAULT;
4778         goto out;
4779
4780 unlock:
4781         mutex_unlock(&leader->child_mutex);
4782 out:
4783         kfree(values);
4784         return ret;
4785 }
4786
4787 static int perf_read_one(struct perf_event *event,
4788                                  u64 read_format, char __user *buf)
4789 {
4790         u64 enabled, running;
4791         u64 values[4];
4792         int n = 0;
4793
4794         values[n++] = __perf_event_read_value(event, &enabled, &running);
4795         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4796                 values[n++] = enabled;
4797         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4798                 values[n++] = running;
4799         if (read_format & PERF_FORMAT_ID)
4800                 values[n++] = primary_event_id(event);
4801
4802         if (copy_to_user(buf, values, n * sizeof(u64)))
4803                 return -EFAULT;
4804
4805         return n * sizeof(u64);
4806 }
4807
4808 static bool is_event_hup(struct perf_event *event)
4809 {
4810         bool no_children;
4811
4812         if (event->state > PERF_EVENT_STATE_EXIT)
4813                 return false;
4814
4815         mutex_lock(&event->child_mutex);
4816         no_children = list_empty(&event->child_list);
4817         mutex_unlock(&event->child_mutex);
4818         return no_children;
4819 }
4820
4821 /*
4822  * Read the performance event - simple non blocking version for now
4823  */
4824 static ssize_t
4825 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4826 {
4827         u64 read_format = event->attr.read_format;
4828         int ret;
4829
4830         /*
4831          * Return end-of-file for a read on an event that is in
4832          * error state (i.e. because it was pinned but it couldn't be
4833          * scheduled on to the CPU at some point).
4834          */
4835         if (event->state == PERF_EVENT_STATE_ERROR)
4836                 return 0;
4837
4838         if (count < event->read_size)
4839                 return -ENOSPC;
4840
4841         WARN_ON_ONCE(event->ctx->parent_ctx);
4842         if (read_format & PERF_FORMAT_GROUP)
4843                 ret = perf_read_group(event, read_format, buf);
4844         else
4845                 ret = perf_read_one(event, read_format, buf);
4846
4847         return ret;
4848 }
4849
4850 static ssize_t
4851 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4852 {
4853         struct perf_event *event = file->private_data;
4854         struct perf_event_context *ctx;
4855         int ret;
4856
4857         ctx = perf_event_ctx_lock(event);
4858         ret = __perf_read(event, buf, count);
4859         perf_event_ctx_unlock(event, ctx);
4860
4861         return ret;
4862 }
4863
4864 static __poll_t perf_poll(struct file *file, poll_table *wait)
4865 {
4866         struct perf_event *event = file->private_data;
4867         struct ring_buffer *rb;
4868         __poll_t events = EPOLLHUP;
4869
4870         poll_wait(file, &event->waitq, wait);
4871
4872         if (is_event_hup(event))
4873                 return events;
4874
4875         /*
4876          * Pin the event->rb by taking event->mmap_mutex; otherwise
4877          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4878          */
4879         mutex_lock(&event->mmap_mutex);
4880         rb = event->rb;
4881         if (rb)
4882                 events = atomic_xchg(&rb->poll, 0);
4883         mutex_unlock(&event->mmap_mutex);
4884         return events;
4885 }
4886
4887 static void _perf_event_reset(struct perf_event *event)
4888 {
4889         (void)perf_event_read(event, false);
4890         local64_set(&event->count, 0);
4891         perf_event_update_userpage(event);
4892 }
4893
4894 /*
4895  * Holding the top-level event's child_mutex means that any
4896  * descendant process that has inherited this event will block
4897  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4898  * task existence requirements of perf_event_enable/disable.
4899  */
4900 static void perf_event_for_each_child(struct perf_event *event,
4901                                         void (*func)(struct perf_event *))
4902 {
4903         struct perf_event *child;
4904
4905         WARN_ON_ONCE(event->ctx->parent_ctx);
4906
4907         mutex_lock(&event->child_mutex);
4908         func(event);
4909         list_for_each_entry(child, &event->child_list, child_list)
4910                 func(child);
4911         mutex_unlock(&event->child_mutex);
4912 }
4913
4914 static void perf_event_for_each(struct perf_event *event,
4915                                   void (*func)(struct perf_event *))
4916 {
4917         struct perf_event_context *ctx = event->ctx;
4918         struct perf_event *sibling;
4919
4920         lockdep_assert_held(&ctx->mutex);
4921
4922         event = event->group_leader;
4923
4924         perf_event_for_each_child(event, func);
4925         for_each_sibling_event(sibling, event)
4926                 perf_event_for_each_child(sibling, func);
4927 }
4928
4929 static void __perf_event_period(struct perf_event *event,
4930                                 struct perf_cpu_context *cpuctx,
4931                                 struct perf_event_context *ctx,
4932                                 void *info)
4933 {
4934         u64 value = *((u64 *)info);
4935         bool active;
4936
4937         if (event->attr.freq) {
4938                 event->attr.sample_freq = value;
4939         } else {
4940                 event->attr.sample_period = value;
4941                 event->hw.sample_period = value;
4942         }
4943
4944         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4945         if (active) {
4946                 perf_pmu_disable(ctx->pmu);
4947                 /*
4948                  * We could be throttled; unthrottle now to avoid the tick
4949                  * trying to unthrottle while we already re-started the event.
4950                  */
4951                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4952                         event->hw.interrupts = 0;
4953                         perf_log_throttle(event, 1);
4954                 }
4955                 event->pmu->stop(event, PERF_EF_UPDATE);
4956         }
4957
4958         local64_set(&event->hw.period_left, 0);
4959
4960         if (active) {
4961                 event->pmu->start(event, PERF_EF_RELOAD);
4962                 perf_pmu_enable(ctx->pmu);
4963         }
4964 }
4965
4966 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4967 {
4968         u64 value;
4969
4970         if (!is_sampling_event(event))
4971                 return -EINVAL;
4972
4973         if (copy_from_user(&value, arg, sizeof(value)))
4974                 return -EFAULT;
4975
4976         if (!value)
4977                 return -EINVAL;
4978
4979         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4980                 return -EINVAL;
4981
4982         event_function_call(event, __perf_event_period, &value);
4983
4984         return 0;
4985 }
4986
4987 static const struct file_operations perf_fops;
4988
4989 static inline int perf_fget_light(int fd, struct fd *p)
4990 {
4991         struct fd f = fdget(fd);
4992         if (!f.file)
4993                 return -EBADF;
4994
4995         if (f.file->f_op != &perf_fops) {
4996                 fdput(f);
4997                 return -EBADF;
4998         }
4999         *p = f;
5000         return 0;
5001 }
5002
5003 static int perf_event_set_output(struct perf_event *event,
5004                                  struct perf_event *output_event);
5005 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5006 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5007 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5008                           struct perf_event_attr *attr);
5009
5010 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5011 {
5012         void (*func)(struct perf_event *);
5013         u32 flags = arg;
5014
5015         switch (cmd) {
5016         case PERF_EVENT_IOC_ENABLE:
5017                 func = _perf_event_enable;
5018                 break;
5019         case PERF_EVENT_IOC_DISABLE:
5020                 func = _perf_event_disable;
5021                 break;
5022         case PERF_EVENT_IOC_RESET:
5023                 func = _perf_event_reset;
5024                 break;
5025
5026         case PERF_EVENT_IOC_REFRESH:
5027                 return _perf_event_refresh(event, arg);
5028
5029         case PERF_EVENT_IOC_PERIOD:
5030                 return perf_event_period(event, (u64 __user *)arg);
5031
5032         case PERF_EVENT_IOC_ID:
5033         {
5034                 u64 id = primary_event_id(event);
5035
5036                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5037                         return -EFAULT;
5038                 return 0;
5039         }
5040
5041         case PERF_EVENT_IOC_SET_OUTPUT:
5042         {
5043                 int ret;
5044                 if (arg != -1) {
5045                         struct perf_event *output_event;
5046                         struct fd output;
5047                         ret = perf_fget_light(arg, &output);
5048                         if (ret)
5049                                 return ret;
5050                         output_event = output.file->private_data;
5051                         ret = perf_event_set_output(event, output_event);
5052                         fdput(output);
5053                 } else {
5054                         ret = perf_event_set_output(event, NULL);
5055                 }
5056                 return ret;
5057         }
5058
5059         case PERF_EVENT_IOC_SET_FILTER:
5060                 return perf_event_set_filter(event, (void __user *)arg);
5061
5062         case PERF_EVENT_IOC_SET_BPF:
5063                 return perf_event_set_bpf_prog(event, arg);
5064
5065         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5066                 struct ring_buffer *rb;
5067
5068                 rcu_read_lock();
5069                 rb = rcu_dereference(event->rb);
5070                 if (!rb || !rb->nr_pages) {
5071                         rcu_read_unlock();
5072                         return -EINVAL;
5073                 }
5074                 rb_toggle_paused(rb, !!arg);
5075                 rcu_read_unlock();
5076                 return 0;
5077         }
5078
5079         case PERF_EVENT_IOC_QUERY_BPF:
5080                 return perf_event_query_prog_array(event, (void __user *)arg);
5081
5082         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5083                 struct perf_event_attr new_attr;
5084                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5085                                          &new_attr);
5086
5087                 if (err)
5088                         return err;
5089
5090                 return perf_event_modify_attr(event,  &new_attr);
5091         }
5092         default:
5093                 return -ENOTTY;
5094         }
5095
5096         if (flags & PERF_IOC_FLAG_GROUP)
5097                 perf_event_for_each(event, func);
5098         else
5099                 perf_event_for_each_child(event, func);
5100
5101         return 0;
5102 }
5103
5104 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5105 {
5106         struct perf_event *event = file->private_data;
5107         struct perf_event_context *ctx;
5108         long ret;
5109
5110         ctx = perf_event_ctx_lock(event);
5111         ret = _perf_ioctl(event, cmd, arg);
5112         perf_event_ctx_unlock(event, ctx);
5113
5114         return ret;
5115 }
5116
5117 #ifdef CONFIG_COMPAT
5118 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5119                                 unsigned long arg)
5120 {
5121         switch (_IOC_NR(cmd)) {
5122         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5123         case _IOC_NR(PERF_EVENT_IOC_ID):
5124         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5125         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5126                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5127                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5128                         cmd &= ~IOCSIZE_MASK;
5129                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5130                 }
5131                 break;
5132         }
5133         return perf_ioctl(file, cmd, arg);
5134 }
5135 #else
5136 # define perf_compat_ioctl NULL
5137 #endif
5138
5139 int perf_event_task_enable(void)
5140 {
5141         struct perf_event_context *ctx;
5142         struct perf_event *event;
5143
5144         mutex_lock(&current->perf_event_mutex);
5145         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5146                 ctx = perf_event_ctx_lock(event);
5147                 perf_event_for_each_child(event, _perf_event_enable);
5148                 perf_event_ctx_unlock(event, ctx);
5149         }
5150         mutex_unlock(&current->perf_event_mutex);
5151
5152         return 0;
5153 }
5154
5155 int perf_event_task_disable(void)
5156 {
5157         struct perf_event_context *ctx;
5158         struct perf_event *event;
5159
5160         mutex_lock(&current->perf_event_mutex);
5161         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5162                 ctx = perf_event_ctx_lock(event);
5163                 perf_event_for_each_child(event, _perf_event_disable);
5164                 perf_event_ctx_unlock(event, ctx);
5165         }
5166         mutex_unlock(&current->perf_event_mutex);
5167
5168         return 0;
5169 }
5170
5171 static int perf_event_index(struct perf_event *event)
5172 {
5173         if (event->hw.state & PERF_HES_STOPPED)
5174                 return 0;
5175
5176         if (event->state != PERF_EVENT_STATE_ACTIVE)
5177                 return 0;
5178
5179         return event->pmu->event_idx(event);
5180 }
5181
5182 static void calc_timer_values(struct perf_event *event,
5183                                 u64 *now,
5184                                 u64 *enabled,
5185                                 u64 *running)
5186 {
5187         u64 ctx_time;
5188
5189         *now = perf_clock();
5190         ctx_time = event->shadow_ctx_time + *now;
5191         __perf_update_times(event, ctx_time, enabled, running);
5192 }
5193
5194 static void perf_event_init_userpage(struct perf_event *event)
5195 {
5196         struct perf_event_mmap_page *userpg;
5197         struct ring_buffer *rb;
5198
5199         rcu_read_lock();
5200         rb = rcu_dereference(event->rb);
5201         if (!rb)
5202                 goto unlock;
5203
5204         userpg = rb->user_page;
5205
5206         /* Allow new userspace to detect that bit 0 is deprecated */
5207         userpg->cap_bit0_is_deprecated = 1;
5208         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5209         userpg->data_offset = PAGE_SIZE;
5210         userpg->data_size = perf_data_size(rb);
5211
5212 unlock:
5213         rcu_read_unlock();
5214 }
5215
5216 void __weak arch_perf_update_userpage(
5217         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5218 {
5219 }
5220
5221 /*
5222  * Callers need to ensure there can be no nesting of this function, otherwise
5223  * the seqlock logic goes bad. We can not serialize this because the arch
5224  * code calls this from NMI context.
5225  */
5226 void perf_event_update_userpage(struct perf_event *event)
5227 {
5228         struct perf_event_mmap_page *userpg;
5229         struct ring_buffer *rb;
5230         u64 enabled, running, now;
5231
5232         rcu_read_lock();
5233         rb = rcu_dereference(event->rb);
5234         if (!rb)
5235                 goto unlock;
5236
5237         /*
5238          * compute total_time_enabled, total_time_running
5239          * based on snapshot values taken when the event
5240          * was last scheduled in.
5241          *
5242          * we cannot simply called update_context_time()
5243          * because of locking issue as we can be called in
5244          * NMI context
5245          */
5246         calc_timer_values(event, &now, &enabled, &running);
5247
5248         userpg = rb->user_page;
5249         /*
5250          * Disable preemption to guarantee consistent time stamps are stored to
5251          * the user page.
5252          */
5253         preempt_disable();
5254         ++userpg->lock;
5255         barrier();
5256         userpg->index = perf_event_index(event);
5257         userpg->offset = perf_event_count(event);
5258         if (userpg->index)
5259                 userpg->offset -= local64_read(&event->hw.prev_count);
5260
5261         userpg->time_enabled = enabled +
5262                         atomic64_read(&event->child_total_time_enabled);
5263
5264         userpg->time_running = running +
5265                         atomic64_read(&event->child_total_time_running);
5266
5267         arch_perf_update_userpage(event, userpg, now);
5268
5269         barrier();
5270         ++userpg->lock;
5271         preempt_enable();
5272 unlock:
5273         rcu_read_unlock();
5274 }
5275 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5276
5277 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5278 {
5279         struct perf_event *event = vmf->vma->vm_file->private_data;
5280         struct ring_buffer *rb;
5281         vm_fault_t ret = VM_FAULT_SIGBUS;
5282
5283         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5284                 if (vmf->pgoff == 0)
5285                         ret = 0;
5286                 return ret;
5287         }
5288
5289         rcu_read_lock();
5290         rb = rcu_dereference(event->rb);
5291         if (!rb)
5292                 goto unlock;
5293
5294         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5295                 goto unlock;
5296
5297         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5298         if (!vmf->page)
5299                 goto unlock;
5300
5301         get_page(vmf->page);
5302         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5303         vmf->page->index   = vmf->pgoff;
5304
5305         ret = 0;
5306 unlock:
5307         rcu_read_unlock();
5308
5309         return ret;
5310 }
5311
5312 static void ring_buffer_attach(struct perf_event *event,
5313                                struct ring_buffer *rb)
5314 {
5315         struct ring_buffer *old_rb = NULL;
5316         unsigned long flags;
5317
5318         if (event->rb) {
5319                 /*
5320                  * Should be impossible, we set this when removing
5321                  * event->rb_entry and wait/clear when adding event->rb_entry.
5322                  */
5323                 WARN_ON_ONCE(event->rcu_pending);
5324
5325                 old_rb = event->rb;
5326                 spin_lock_irqsave(&old_rb->event_lock, flags);
5327                 list_del_rcu(&event->rb_entry);
5328                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5329
5330                 event->rcu_batches = get_state_synchronize_rcu();
5331                 event->rcu_pending = 1;
5332         }
5333
5334         if (rb) {
5335                 if (event->rcu_pending) {
5336                         cond_synchronize_rcu(event->rcu_batches);
5337                         event->rcu_pending = 0;
5338                 }
5339
5340                 spin_lock_irqsave(&rb->event_lock, flags);
5341                 list_add_rcu(&event->rb_entry, &rb->event_list);
5342                 spin_unlock_irqrestore(&rb->event_lock, flags);
5343         }
5344
5345         /*
5346          * Avoid racing with perf_mmap_close(AUX): stop the event
5347          * before swizzling the event::rb pointer; if it's getting
5348          * unmapped, its aux_mmap_count will be 0 and it won't
5349          * restart. See the comment in __perf_pmu_output_stop().
5350          *
5351          * Data will inevitably be lost when set_output is done in
5352          * mid-air, but then again, whoever does it like this is
5353          * not in for the data anyway.
5354          */
5355         if (has_aux(event))
5356                 perf_event_stop(event, 0);
5357
5358         rcu_assign_pointer(event->rb, rb);
5359
5360         if (old_rb) {
5361                 ring_buffer_put(old_rb);
5362                 /*
5363                  * Since we detached before setting the new rb, so that we
5364                  * could attach the new rb, we could have missed a wakeup.
5365                  * Provide it now.
5366                  */
5367                 wake_up_all(&event->waitq);
5368         }
5369 }
5370
5371 static void ring_buffer_wakeup(struct perf_event *event)
5372 {
5373         struct ring_buffer *rb;
5374
5375         rcu_read_lock();
5376         rb = rcu_dereference(event->rb);
5377         if (rb) {
5378                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5379                         wake_up_all(&event->waitq);
5380         }
5381         rcu_read_unlock();
5382 }
5383
5384 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5385 {
5386         struct ring_buffer *rb;
5387
5388         rcu_read_lock();
5389         rb = rcu_dereference(event->rb);
5390         if (rb) {
5391                 if (!atomic_inc_not_zero(&rb->refcount))
5392                         rb = NULL;
5393         }
5394         rcu_read_unlock();
5395
5396         return rb;
5397 }
5398
5399 void ring_buffer_put(struct ring_buffer *rb)
5400 {
5401         if (!atomic_dec_and_test(&rb->refcount))
5402                 return;
5403
5404         WARN_ON_ONCE(!list_empty(&rb->event_list));
5405
5406         call_rcu(&rb->rcu_head, rb_free_rcu);
5407 }
5408
5409 static void perf_mmap_open(struct vm_area_struct *vma)
5410 {
5411         struct perf_event *event = vma->vm_file->private_data;
5412
5413         atomic_inc(&event->mmap_count);
5414         atomic_inc(&event->rb->mmap_count);
5415
5416         if (vma->vm_pgoff)
5417                 atomic_inc(&event->rb->aux_mmap_count);
5418
5419         if (event->pmu->event_mapped)
5420                 event->pmu->event_mapped(event, vma->vm_mm);
5421 }
5422
5423 static void perf_pmu_output_stop(struct perf_event *event);
5424
5425 /*
5426  * A buffer can be mmap()ed multiple times; either directly through the same
5427  * event, or through other events by use of perf_event_set_output().
5428  *
5429  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5430  * the buffer here, where we still have a VM context. This means we need
5431  * to detach all events redirecting to us.
5432  */
5433 static void perf_mmap_close(struct vm_area_struct *vma)
5434 {
5435         struct perf_event *event = vma->vm_file->private_data;
5436
5437         struct ring_buffer *rb = ring_buffer_get(event);
5438         struct user_struct *mmap_user = rb->mmap_user;
5439         int mmap_locked = rb->mmap_locked;
5440         unsigned long size = perf_data_size(rb);
5441
5442         if (event->pmu->event_unmapped)
5443                 event->pmu->event_unmapped(event, vma->vm_mm);
5444
5445         /*
5446          * rb->aux_mmap_count will always drop before rb->mmap_count and
5447          * event->mmap_count, so it is ok to use event->mmap_mutex to
5448          * serialize with perf_mmap here.
5449          */
5450         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5451             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5452                 /*
5453                  * Stop all AUX events that are writing to this buffer,
5454                  * so that we can free its AUX pages and corresponding PMU
5455                  * data. Note that after rb::aux_mmap_count dropped to zero,
5456                  * they won't start any more (see perf_aux_output_begin()).
5457                  */
5458                 perf_pmu_output_stop(event);
5459
5460                 /* now it's safe to free the pages */
5461                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5462                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5463
5464                 /* this has to be the last one */
5465                 rb_free_aux(rb);
5466                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5467
5468                 mutex_unlock(&event->mmap_mutex);
5469         }
5470
5471         atomic_dec(&rb->mmap_count);
5472
5473         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5474                 goto out_put;
5475
5476         ring_buffer_attach(event, NULL);
5477         mutex_unlock(&event->mmap_mutex);
5478
5479         /* If there's still other mmap()s of this buffer, we're done. */
5480         if (atomic_read(&rb->mmap_count))
5481                 goto out_put;
5482
5483         /*
5484          * No other mmap()s, detach from all other events that might redirect
5485          * into the now unreachable buffer. Somewhat complicated by the
5486          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5487          */
5488 again:
5489         rcu_read_lock();
5490         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5491                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5492                         /*
5493                          * This event is en-route to free_event() which will
5494                          * detach it and remove it from the list.
5495                          */
5496                         continue;
5497                 }
5498                 rcu_read_unlock();
5499
5500                 mutex_lock(&event->mmap_mutex);
5501                 /*
5502                  * Check we didn't race with perf_event_set_output() which can
5503                  * swizzle the rb from under us while we were waiting to
5504                  * acquire mmap_mutex.
5505                  *
5506                  * If we find a different rb; ignore this event, a next
5507                  * iteration will no longer find it on the list. We have to
5508                  * still restart the iteration to make sure we're not now
5509                  * iterating the wrong list.
5510                  */
5511                 if (event->rb == rb)
5512                         ring_buffer_attach(event, NULL);
5513
5514                 mutex_unlock(&event->mmap_mutex);
5515                 put_event(event);
5516
5517                 /*
5518                  * Restart the iteration; either we're on the wrong list or
5519                  * destroyed its integrity by doing a deletion.
5520                  */
5521                 goto again;
5522         }
5523         rcu_read_unlock();
5524
5525         /*
5526          * It could be there's still a few 0-ref events on the list; they'll
5527          * get cleaned up by free_event() -- they'll also still have their
5528          * ref on the rb and will free it whenever they are done with it.
5529          *
5530          * Aside from that, this buffer is 'fully' detached and unmapped,
5531          * undo the VM accounting.
5532          */
5533
5534         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5535         vma->vm_mm->pinned_vm -= mmap_locked;
5536         free_uid(mmap_user);
5537
5538 out_put:
5539         ring_buffer_put(rb); /* could be last */
5540 }
5541
5542 static const struct vm_operations_struct perf_mmap_vmops = {
5543         .open           = perf_mmap_open,
5544         .close          = perf_mmap_close, /* non mergable */
5545         .fault          = perf_mmap_fault,
5546         .page_mkwrite   = perf_mmap_fault,
5547 };
5548
5549 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5550 {
5551         struct perf_event *event = file->private_data;
5552         unsigned long user_locked, user_lock_limit;
5553         struct user_struct *user = current_user();
5554         unsigned long locked, lock_limit;
5555         struct ring_buffer *rb = NULL;
5556         unsigned long vma_size;
5557         unsigned long nr_pages;
5558         long user_extra = 0, extra = 0;
5559         int ret = 0, flags = 0;
5560
5561         /*
5562          * Don't allow mmap() of inherited per-task counters. This would
5563          * create a performance issue due to all children writing to the
5564          * same rb.
5565          */
5566         if (event->cpu == -1 && event->attr.inherit)
5567                 return -EINVAL;
5568
5569         if (!(vma->vm_flags & VM_SHARED))
5570                 return -EINVAL;
5571
5572         vma_size = vma->vm_end - vma->vm_start;
5573
5574         if (vma->vm_pgoff == 0) {
5575                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5576         } else {
5577                 /*
5578                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5579                  * mapped, all subsequent mappings should have the same size
5580                  * and offset. Must be above the normal perf buffer.
5581                  */
5582                 u64 aux_offset, aux_size;
5583
5584                 if (!event->rb)
5585                         return -EINVAL;
5586
5587                 nr_pages = vma_size / PAGE_SIZE;
5588
5589                 mutex_lock(&event->mmap_mutex);
5590                 ret = -EINVAL;
5591
5592                 rb = event->rb;
5593                 if (!rb)
5594                         goto aux_unlock;
5595
5596                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5597                 aux_size = READ_ONCE(rb->user_page->aux_size);
5598
5599                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5600                         goto aux_unlock;
5601
5602                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5603                         goto aux_unlock;
5604
5605                 /* already mapped with a different offset */
5606                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5607                         goto aux_unlock;
5608
5609                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5610                         goto aux_unlock;
5611
5612                 /* already mapped with a different size */
5613                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5614                         goto aux_unlock;
5615
5616                 if (!is_power_of_2(nr_pages))
5617                         goto aux_unlock;
5618
5619                 if (!atomic_inc_not_zero(&rb->mmap_count))
5620                         goto aux_unlock;
5621
5622                 if (rb_has_aux(rb)) {
5623                         atomic_inc(&rb->aux_mmap_count);
5624                         ret = 0;
5625                         goto unlock;
5626                 }
5627
5628                 atomic_set(&rb->aux_mmap_count, 1);
5629                 user_extra = nr_pages;
5630
5631                 goto accounting;
5632         }
5633
5634         /*
5635          * If we have rb pages ensure they're a power-of-two number, so we
5636          * can do bitmasks instead of modulo.
5637          */
5638         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5639                 return -EINVAL;
5640
5641         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5642                 return -EINVAL;
5643
5644         WARN_ON_ONCE(event->ctx->parent_ctx);
5645 again:
5646         mutex_lock(&event->mmap_mutex);
5647         if (event->rb) {
5648                 if (event->rb->nr_pages != nr_pages) {
5649                         ret = -EINVAL;
5650                         goto unlock;
5651                 }
5652
5653                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5654                         /*
5655                          * Raced against perf_mmap_close() through
5656                          * perf_event_set_output(). Try again, hope for better
5657                          * luck.
5658                          */
5659                         mutex_unlock(&event->mmap_mutex);
5660                         goto again;
5661                 }
5662
5663                 goto unlock;
5664         }
5665
5666         user_extra = nr_pages + 1;
5667
5668 accounting:
5669         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5670
5671         /*
5672          * Increase the limit linearly with more CPUs:
5673          */
5674         user_lock_limit *= num_online_cpus();
5675
5676         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5677
5678         if (user_locked > user_lock_limit)
5679                 extra = user_locked - user_lock_limit;
5680
5681         lock_limit = rlimit(RLIMIT_MEMLOCK);
5682         lock_limit >>= PAGE_SHIFT;
5683         locked = vma->vm_mm->pinned_vm + extra;
5684
5685         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5686                 !capable(CAP_IPC_LOCK)) {
5687                 ret = -EPERM;
5688                 goto unlock;
5689         }
5690
5691         WARN_ON(!rb && event->rb);
5692
5693         if (vma->vm_flags & VM_WRITE)
5694                 flags |= RING_BUFFER_WRITABLE;
5695
5696         if (!rb) {
5697                 rb = rb_alloc(nr_pages,
5698                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5699                               event->cpu, flags);
5700
5701                 if (!rb) {
5702                         ret = -ENOMEM;
5703                         goto unlock;
5704                 }
5705
5706                 atomic_set(&rb->mmap_count, 1);
5707                 rb->mmap_user = get_current_user();
5708                 rb->mmap_locked = extra;
5709
5710                 ring_buffer_attach(event, rb);
5711
5712                 perf_event_init_userpage(event);
5713                 perf_event_update_userpage(event);
5714         } else {
5715                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5716                                    event->attr.aux_watermark, flags);
5717                 if (!ret)
5718                         rb->aux_mmap_locked = extra;
5719         }
5720
5721 unlock:
5722         if (!ret) {
5723                 atomic_long_add(user_extra, &user->locked_vm);
5724                 vma->vm_mm->pinned_vm += extra;
5725
5726                 atomic_inc(&event->mmap_count);
5727         } else if (rb) {
5728                 atomic_dec(&rb->mmap_count);
5729         }
5730 aux_unlock:
5731         mutex_unlock(&event->mmap_mutex);
5732
5733         /*
5734          * Since pinned accounting is per vm we cannot allow fork() to copy our
5735          * vma.
5736          */
5737         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5738         vma->vm_ops = &perf_mmap_vmops;
5739
5740         if (event->pmu->event_mapped)
5741                 event->pmu->event_mapped(event, vma->vm_mm);
5742
5743         return ret;
5744 }
5745
5746 static int perf_fasync(int fd, struct file *filp, int on)
5747 {
5748         struct inode *inode = file_inode(filp);
5749         struct perf_event *event = filp->private_data;
5750         int retval;
5751
5752         inode_lock(inode);
5753         retval = fasync_helper(fd, filp, on, &event->fasync);
5754         inode_unlock(inode);
5755
5756         if (retval < 0)
5757                 return retval;
5758
5759         return 0;
5760 }
5761
5762 static const struct file_operations perf_fops = {
5763         .llseek                 = no_llseek,
5764         .release                = perf_release,
5765         .read                   = perf_read,
5766         .poll                   = perf_poll,
5767         .unlocked_ioctl         = perf_ioctl,
5768         .compat_ioctl           = perf_compat_ioctl,
5769         .mmap                   = perf_mmap,
5770         .fasync                 = perf_fasync,
5771 };
5772
5773 /*
5774  * Perf event wakeup
5775  *
5776  * If there's data, ensure we set the poll() state and publish everything
5777  * to user-space before waking everybody up.
5778  */
5779
5780 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5781 {
5782         /* only the parent has fasync state */
5783         if (event->parent)
5784                 event = event->parent;
5785         return &event->fasync;
5786 }
5787
5788 void perf_event_wakeup(struct perf_event *event)
5789 {
5790         ring_buffer_wakeup(event);
5791
5792         if (event->pending_kill) {
5793                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5794                 event->pending_kill = 0;
5795         }
5796 }
5797
5798 static void perf_pending_event(struct irq_work *entry)
5799 {
5800         struct perf_event *event = container_of(entry,
5801                         struct perf_event, pending);
5802         int rctx;
5803
5804         rctx = perf_swevent_get_recursion_context();
5805         /*
5806          * If we 'fail' here, that's OK, it means recursion is already disabled
5807          * and we won't recurse 'further'.
5808          */
5809
5810         if (event->pending_disable) {
5811                 event->pending_disable = 0;
5812                 perf_event_disable_local(event);
5813         }
5814
5815         if (event->pending_wakeup) {
5816                 event->pending_wakeup = 0;
5817                 perf_event_wakeup(event);
5818         }
5819
5820         if (rctx >= 0)
5821                 perf_swevent_put_recursion_context(rctx);
5822 }
5823
5824 /*
5825  * We assume there is only KVM supporting the callbacks.
5826  * Later on, we might change it to a list if there is
5827  * another virtualization implementation supporting the callbacks.
5828  */
5829 struct perf_guest_info_callbacks *perf_guest_cbs;
5830
5831 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5832 {
5833         perf_guest_cbs = cbs;
5834         return 0;
5835 }
5836 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5837
5838 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5839 {
5840         perf_guest_cbs = NULL;
5841         return 0;
5842 }
5843 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5844
5845 static void
5846 perf_output_sample_regs(struct perf_output_handle *handle,
5847                         struct pt_regs *regs, u64 mask)
5848 {
5849         int bit;
5850         DECLARE_BITMAP(_mask, 64);
5851
5852         bitmap_from_u64(_mask, mask);
5853         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5854                 u64 val;
5855
5856                 val = perf_reg_value(regs, bit);
5857                 perf_output_put(handle, val);
5858         }
5859 }
5860
5861 static void perf_sample_regs_user(struct perf_regs *regs_user,
5862                                   struct pt_regs *regs,
5863                                   struct pt_regs *regs_user_copy)
5864 {
5865         if (user_mode(regs)) {
5866                 regs_user->abi = perf_reg_abi(current);
5867                 regs_user->regs = regs;
5868         } else if (current->mm) {
5869                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5870         } else {
5871                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5872                 regs_user->regs = NULL;
5873         }
5874 }
5875
5876 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5877                                   struct pt_regs *regs)
5878 {
5879         regs_intr->regs = regs;
5880         regs_intr->abi  = perf_reg_abi(current);
5881 }
5882
5883
5884 /*
5885  * Get remaining task size from user stack pointer.
5886  *
5887  * It'd be better to take stack vma map and limit this more
5888  * precisly, but there's no way to get it safely under interrupt,
5889  * so using TASK_SIZE as limit.
5890  */
5891 static u64 perf_ustack_task_size(struct pt_regs *regs)
5892 {
5893         unsigned long addr = perf_user_stack_pointer(regs);
5894
5895         if (!addr || addr >= TASK_SIZE)
5896                 return 0;
5897
5898         return TASK_SIZE - addr;
5899 }
5900
5901 static u16
5902 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5903                         struct pt_regs *regs)
5904 {
5905         u64 task_size;
5906
5907         /* No regs, no stack pointer, no dump. */
5908         if (!regs)
5909                 return 0;
5910
5911         /*
5912          * Check if we fit in with the requested stack size into the:
5913          * - TASK_SIZE
5914          *   If we don't, we limit the size to the TASK_SIZE.
5915          *
5916          * - remaining sample size
5917          *   If we don't, we customize the stack size to
5918          *   fit in to the remaining sample size.
5919          */
5920
5921         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5922         stack_size = min(stack_size, (u16) task_size);
5923
5924         /* Current header size plus static size and dynamic size. */
5925         header_size += 2 * sizeof(u64);
5926
5927         /* Do we fit in with the current stack dump size? */
5928         if ((u16) (header_size + stack_size) < header_size) {
5929                 /*
5930                  * If we overflow the maximum size for the sample,
5931                  * we customize the stack dump size to fit in.
5932                  */
5933                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5934                 stack_size = round_up(stack_size, sizeof(u64));
5935         }
5936
5937         return stack_size;
5938 }
5939
5940 static void
5941 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5942                           struct pt_regs *regs)
5943 {
5944         /* Case of a kernel thread, nothing to dump */
5945         if (!regs) {
5946                 u64 size = 0;
5947                 perf_output_put(handle, size);
5948         } else {
5949                 unsigned long sp;
5950                 unsigned int rem;
5951                 u64 dyn_size;
5952                 mm_segment_t fs;
5953
5954                 /*
5955                  * We dump:
5956                  * static size
5957                  *   - the size requested by user or the best one we can fit
5958                  *     in to the sample max size
5959                  * data
5960                  *   - user stack dump data
5961                  * dynamic size
5962                  *   - the actual dumped size
5963                  */
5964
5965                 /* Static size. */
5966                 perf_output_put(handle, dump_size);
5967
5968                 /* Data. */
5969                 sp = perf_user_stack_pointer(regs);
5970                 fs = get_fs();
5971                 set_fs(USER_DS);
5972                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5973                 set_fs(fs);
5974                 dyn_size = dump_size - rem;
5975
5976                 perf_output_skip(handle, rem);
5977
5978                 /* Dynamic size. */
5979                 perf_output_put(handle, dyn_size);
5980         }
5981 }
5982
5983 static void __perf_event_header__init_id(struct perf_event_header *header,
5984                                          struct perf_sample_data *data,
5985                                          struct perf_event *event)
5986 {
5987         u64 sample_type = event->attr.sample_type;
5988
5989         data->type = sample_type;
5990         header->size += event->id_header_size;
5991
5992         if (sample_type & PERF_SAMPLE_TID) {
5993                 /* namespace issues */
5994                 data->tid_entry.pid = perf_event_pid(event, current);
5995                 data->tid_entry.tid = perf_event_tid(event, current);
5996         }
5997
5998         if (sample_type & PERF_SAMPLE_TIME)
5999                 data->time = perf_event_clock(event);
6000
6001         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6002                 data->id = primary_event_id(event);
6003
6004         if (sample_type & PERF_SAMPLE_STREAM_ID)
6005                 data->stream_id = event->id;
6006
6007         if (sample_type & PERF_SAMPLE_CPU) {
6008                 data->cpu_entry.cpu      = raw_smp_processor_id();
6009                 data->cpu_entry.reserved = 0;
6010         }
6011 }
6012
6013 void perf_event_header__init_id(struct perf_event_header *header,
6014                                 struct perf_sample_data *data,
6015                                 struct perf_event *event)
6016 {
6017         if (event->attr.sample_id_all)
6018                 __perf_event_header__init_id(header, data, event);
6019 }
6020
6021 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6022                                            struct perf_sample_data *data)
6023 {
6024         u64 sample_type = data->type;
6025
6026         if (sample_type & PERF_SAMPLE_TID)
6027                 perf_output_put(handle, data->tid_entry);
6028
6029         if (sample_type & PERF_SAMPLE_TIME)
6030                 perf_output_put(handle, data->time);
6031
6032         if (sample_type & PERF_SAMPLE_ID)
6033                 perf_output_put(handle, data->id);
6034
6035         if (sample_type & PERF_SAMPLE_STREAM_ID)
6036                 perf_output_put(handle, data->stream_id);
6037
6038         if (sample_type & PERF_SAMPLE_CPU)
6039                 perf_output_put(handle, data->cpu_entry);
6040
6041         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6042                 perf_output_put(handle, data->id);
6043 }
6044
6045 void perf_event__output_id_sample(struct perf_event *event,
6046                                   struct perf_output_handle *handle,
6047                                   struct perf_sample_data *sample)
6048 {
6049         if (event->attr.sample_id_all)
6050                 __perf_event__output_id_sample(handle, sample);
6051 }
6052
6053 static void perf_output_read_one(struct perf_output_handle *handle,
6054                                  struct perf_event *event,
6055                                  u64 enabled, u64 running)
6056 {
6057         u64 read_format = event->attr.read_format;
6058         u64 values[4];
6059         int n = 0;
6060
6061         values[n++] = perf_event_count(event);
6062         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6063                 values[n++] = enabled +
6064                         atomic64_read(&event->child_total_time_enabled);
6065         }
6066         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6067                 values[n++] = running +
6068                         atomic64_read(&event->child_total_time_running);
6069         }
6070         if (read_format & PERF_FORMAT_ID)
6071                 values[n++] = primary_event_id(event);
6072
6073         __output_copy(handle, values, n * sizeof(u64));
6074 }
6075
6076 static void perf_output_read_group(struct perf_output_handle *handle,
6077                             struct perf_event *event,
6078                             u64 enabled, u64 running)
6079 {
6080         struct perf_event *leader = event->group_leader, *sub;
6081         u64 read_format = event->attr.read_format;
6082         u64 values[5];
6083         int n = 0;
6084
6085         values[n++] = 1 + leader->nr_siblings;
6086
6087         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6088                 values[n++] = enabled;
6089
6090         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6091                 values[n++] = running;
6092
6093         if ((leader != event) &&
6094             (leader->state == PERF_EVENT_STATE_ACTIVE))
6095                 leader->pmu->read(leader);
6096
6097         values[n++] = perf_event_count(leader);
6098         if (read_format & PERF_FORMAT_ID)
6099                 values[n++] = primary_event_id(leader);
6100
6101         __output_copy(handle, values, n * sizeof(u64));
6102
6103         for_each_sibling_event(sub, leader) {
6104                 n = 0;
6105
6106                 if ((sub != event) &&
6107                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6108                         sub->pmu->read(sub);
6109
6110                 values[n++] = perf_event_count(sub);
6111                 if (read_format & PERF_FORMAT_ID)
6112                         values[n++] = primary_event_id(sub);
6113
6114                 __output_copy(handle, values, n * sizeof(u64));
6115         }
6116 }
6117
6118 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6119                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6120
6121 /*
6122  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6123  *
6124  * The problem is that its both hard and excessively expensive to iterate the
6125  * child list, not to mention that its impossible to IPI the children running
6126  * on another CPU, from interrupt/NMI context.
6127  */
6128 static void perf_output_read(struct perf_output_handle *handle,
6129                              struct perf_event *event)
6130 {
6131         u64 enabled = 0, running = 0, now;
6132         u64 read_format = event->attr.read_format;
6133
6134         /*
6135          * compute total_time_enabled, total_time_running
6136          * based on snapshot values taken when the event
6137          * was last scheduled in.
6138          *
6139          * we cannot simply called update_context_time()
6140          * because of locking issue as we are called in
6141          * NMI context
6142          */
6143         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6144                 calc_timer_values(event, &now, &enabled, &running);
6145
6146         if (event->attr.read_format & PERF_FORMAT_GROUP)
6147                 perf_output_read_group(handle, event, enabled, running);
6148         else
6149                 perf_output_read_one(handle, event, enabled, running);
6150 }
6151
6152 void perf_output_sample(struct perf_output_handle *handle,
6153                         struct perf_event_header *header,
6154                         struct perf_sample_data *data,
6155                         struct perf_event *event)
6156 {
6157         u64 sample_type = data->type;
6158
6159         perf_output_put(handle, *header);
6160
6161         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6162                 perf_output_put(handle, data->id);
6163
6164         if (sample_type & PERF_SAMPLE_IP)
6165                 perf_output_put(handle, data->ip);
6166
6167         if (sample_type & PERF_SAMPLE_TID)
6168                 perf_output_put(handle, data->tid_entry);
6169
6170         if (sample_type & PERF_SAMPLE_TIME)
6171                 perf_output_put(handle, data->time);
6172
6173         if (sample_type & PERF_SAMPLE_ADDR)
6174                 perf_output_put(handle, data->addr);
6175
6176         if (sample_type & PERF_SAMPLE_ID)
6177                 perf_output_put(handle, data->id);
6178
6179         if (sample_type & PERF_SAMPLE_STREAM_ID)
6180                 perf_output_put(handle, data->stream_id);
6181
6182         if (sample_type & PERF_SAMPLE_CPU)
6183                 perf_output_put(handle, data->cpu_entry);
6184
6185         if (sample_type & PERF_SAMPLE_PERIOD)
6186                 perf_output_put(handle, data->period);
6187
6188         if (sample_type & PERF_SAMPLE_READ)
6189                 perf_output_read(handle, event);
6190
6191         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6192                 int size = 1;
6193
6194                 size += data->callchain->nr;
6195                 size *= sizeof(u64);
6196                 __output_copy(handle, data->callchain, size);
6197         }
6198
6199         if (sample_type & PERF_SAMPLE_RAW) {
6200                 struct perf_raw_record *raw = data->raw;
6201
6202                 if (raw) {
6203                         struct perf_raw_frag *frag = &raw->frag;
6204
6205                         perf_output_put(handle, raw->size);
6206                         do {
6207                                 if (frag->copy) {
6208                                         __output_custom(handle, frag->copy,
6209                                                         frag->data, frag->size);
6210                                 } else {
6211                                         __output_copy(handle, frag->data,
6212                                                       frag->size);
6213                                 }
6214                                 if (perf_raw_frag_last(frag))
6215                                         break;
6216                                 frag = frag->next;
6217                         } while (1);
6218                         if (frag->pad)
6219                                 __output_skip(handle, NULL, frag->pad);
6220                 } else {
6221                         struct {
6222                                 u32     size;
6223                                 u32     data;
6224                         } raw = {
6225                                 .size = sizeof(u32),
6226                                 .data = 0,
6227                         };
6228                         perf_output_put(handle, raw);
6229                 }
6230         }
6231
6232         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6233                 if (data->br_stack) {
6234                         size_t size;
6235
6236                         size = data->br_stack->nr
6237                              * sizeof(struct perf_branch_entry);
6238
6239                         perf_output_put(handle, data->br_stack->nr);
6240                         perf_output_copy(handle, data->br_stack->entries, size);
6241                 } else {
6242                         /*
6243                          * we always store at least the value of nr
6244                          */
6245                         u64 nr = 0;
6246                         perf_output_put(handle, nr);
6247                 }
6248         }
6249
6250         if (sample_type & PERF_SAMPLE_REGS_USER) {
6251                 u64 abi = data->regs_user.abi;
6252
6253                 /*
6254                  * If there are no regs to dump, notice it through
6255                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6256                  */
6257                 perf_output_put(handle, abi);
6258
6259                 if (abi) {
6260                         u64 mask = event->attr.sample_regs_user;
6261                         perf_output_sample_regs(handle,
6262                                                 data->regs_user.regs,
6263                                                 mask);
6264                 }
6265         }
6266
6267         if (sample_type & PERF_SAMPLE_STACK_USER) {
6268                 perf_output_sample_ustack(handle,
6269                                           data->stack_user_size,
6270                                           data->regs_user.regs);
6271         }
6272
6273         if (sample_type & PERF_SAMPLE_WEIGHT)
6274                 perf_output_put(handle, data->weight);
6275
6276         if (sample_type & PERF_SAMPLE_DATA_SRC)
6277                 perf_output_put(handle, data->data_src.val);
6278
6279         if (sample_type & PERF_SAMPLE_TRANSACTION)
6280                 perf_output_put(handle, data->txn);
6281
6282         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6283                 u64 abi = data->regs_intr.abi;
6284                 /*
6285                  * If there are no regs to dump, notice it through
6286                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6287                  */
6288                 perf_output_put(handle, abi);
6289
6290                 if (abi) {
6291                         u64 mask = event->attr.sample_regs_intr;
6292
6293                         perf_output_sample_regs(handle,
6294                                                 data->regs_intr.regs,
6295                                                 mask);
6296                 }
6297         }
6298
6299         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6300                 perf_output_put(handle, data->phys_addr);
6301
6302         if (!event->attr.watermark) {
6303                 int wakeup_events = event->attr.wakeup_events;
6304
6305                 if (wakeup_events) {
6306                         struct ring_buffer *rb = handle->rb;
6307                         int events = local_inc_return(&rb->events);
6308
6309                         if (events >= wakeup_events) {
6310                                 local_sub(wakeup_events, &rb->events);
6311                                 local_inc(&rb->wakeup);
6312                         }
6313                 }
6314         }
6315 }
6316
6317 static u64 perf_virt_to_phys(u64 virt)
6318 {
6319         u64 phys_addr = 0;
6320         struct page *p = NULL;
6321
6322         if (!virt)
6323                 return 0;
6324
6325         if (virt >= TASK_SIZE) {
6326                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6327                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6328                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6329                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6330         } else {
6331                 /*
6332                  * Walking the pages tables for user address.
6333                  * Interrupts are disabled, so it prevents any tear down
6334                  * of the page tables.
6335                  * Try IRQ-safe __get_user_pages_fast first.
6336                  * If failed, leave phys_addr as 0.
6337                  */
6338                 if ((current->mm != NULL) &&
6339                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6340                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6341
6342                 if (p)
6343                         put_page(p);
6344         }
6345
6346         return phys_addr;
6347 }
6348
6349 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6350
6351 struct perf_callchain_entry *
6352 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6353 {
6354         bool kernel = !event->attr.exclude_callchain_kernel;
6355         bool user   = !event->attr.exclude_callchain_user;
6356         /* Disallow cross-task user callchains. */
6357         bool crosstask = event->ctx->task && event->ctx->task != current;
6358         const u32 max_stack = event->attr.sample_max_stack;
6359         struct perf_callchain_entry *callchain;
6360
6361         if (!kernel && !user)
6362                 return &__empty_callchain;
6363
6364         callchain = get_perf_callchain(regs, 0, kernel, user,
6365                                        max_stack, crosstask, true);
6366         return callchain ?: &__empty_callchain;
6367 }
6368
6369 void perf_prepare_sample(struct perf_event_header *header,
6370                          struct perf_sample_data *data,
6371                          struct perf_event *event,
6372                          struct pt_regs *regs)
6373 {
6374         u64 sample_type = event->attr.sample_type;
6375
6376         header->type = PERF_RECORD_SAMPLE;
6377         header->size = sizeof(*header) + event->header_size;
6378
6379         header->misc = 0;
6380         header->misc |= perf_misc_flags(regs);
6381
6382         __perf_event_header__init_id(header, data, event);
6383
6384         if (sample_type & PERF_SAMPLE_IP)
6385                 data->ip = perf_instruction_pointer(regs);
6386
6387         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6388                 int size = 1;
6389
6390                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6391                         data->callchain = perf_callchain(event, regs);
6392
6393                 size += data->callchain->nr;
6394
6395                 header->size += size * sizeof(u64);
6396         }
6397
6398         if (sample_type & PERF_SAMPLE_RAW) {
6399                 struct perf_raw_record *raw = data->raw;
6400                 int size;
6401
6402                 if (raw) {
6403                         struct perf_raw_frag *frag = &raw->frag;
6404                         u32 sum = 0;
6405
6406                         do {
6407                                 sum += frag->size;
6408                                 if (perf_raw_frag_last(frag))
6409                                         break;
6410                                 frag = frag->next;
6411                         } while (1);
6412
6413                         size = round_up(sum + sizeof(u32), sizeof(u64));
6414                         raw->size = size - sizeof(u32);
6415                         frag->pad = raw->size - sum;
6416                 } else {
6417                         size = sizeof(u64);
6418                 }
6419
6420                 header->size += size;
6421         }
6422
6423         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6424                 int size = sizeof(u64); /* nr */
6425                 if (data->br_stack) {
6426                         size += data->br_stack->nr
6427                               * sizeof(struct perf_branch_entry);
6428                 }
6429                 header->size += size;
6430         }
6431
6432         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6433                 perf_sample_regs_user(&data->regs_user, regs,
6434                                       &data->regs_user_copy);
6435
6436         if (sample_type & PERF_SAMPLE_REGS_USER) {
6437                 /* regs dump ABI info */
6438                 int size = sizeof(u64);
6439
6440                 if (data->regs_user.regs) {
6441                         u64 mask = event->attr.sample_regs_user;
6442                         size += hweight64(mask) * sizeof(u64);
6443                 }
6444
6445                 header->size += size;
6446         }
6447
6448         if (sample_type & PERF_SAMPLE_STACK_USER) {
6449                 /*
6450                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6451                  * processed as the last one or have additional check added
6452                  * in case new sample type is added, because we could eat
6453                  * up the rest of the sample size.
6454                  */
6455                 u16 stack_size = event->attr.sample_stack_user;
6456                 u16 size = sizeof(u64);
6457
6458                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6459                                                      data->regs_user.regs);
6460
6461                 /*
6462                  * If there is something to dump, add space for the dump
6463                  * itself and for the field that tells the dynamic size,
6464                  * which is how many have been actually dumped.
6465                  */
6466                 if (stack_size)
6467                         size += sizeof(u64) + stack_size;
6468
6469                 data->stack_user_size = stack_size;
6470                 header->size += size;
6471         }
6472
6473         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6474                 /* regs dump ABI info */
6475                 int size = sizeof(u64);
6476
6477                 perf_sample_regs_intr(&data->regs_intr, regs);
6478
6479                 if (data->regs_intr.regs) {
6480                         u64 mask = event->attr.sample_regs_intr;
6481
6482                         size += hweight64(mask) * sizeof(u64);
6483                 }
6484
6485                 header->size += size;
6486         }
6487
6488         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6489                 data->phys_addr = perf_virt_to_phys(data->addr);
6490 }
6491
6492 static __always_inline void
6493 __perf_event_output(struct perf_event *event,
6494                     struct perf_sample_data *data,
6495                     struct pt_regs *regs,
6496                     int (*output_begin)(struct perf_output_handle *,
6497                                         struct perf_event *,
6498                                         unsigned int))
6499 {
6500         struct perf_output_handle handle;
6501         struct perf_event_header header;
6502
6503         /* protect the callchain buffers */
6504         rcu_read_lock();
6505
6506         perf_prepare_sample(&header, data, event, regs);
6507
6508         if (output_begin(&handle, event, header.size))
6509                 goto exit;
6510
6511         perf_output_sample(&handle, &header, data, event);
6512
6513         perf_output_end(&handle);
6514
6515 exit:
6516         rcu_read_unlock();
6517 }
6518
6519 void
6520 perf_event_output_forward(struct perf_event *event,
6521                          struct perf_sample_data *data,
6522                          struct pt_regs *regs)
6523 {
6524         __perf_event_output(event, data, regs, perf_output_begin_forward);
6525 }
6526
6527 void
6528 perf_event_output_backward(struct perf_event *event,
6529                            struct perf_sample_data *data,
6530                            struct pt_regs *regs)
6531 {
6532         __perf_event_output(event, data, regs, perf_output_begin_backward);
6533 }
6534
6535 void
6536 perf_event_output(struct perf_event *event,
6537                   struct perf_sample_data *data,
6538                   struct pt_regs *regs)
6539 {
6540         __perf_event_output(event, data, regs, perf_output_begin);
6541 }
6542
6543 /*
6544  * read event_id
6545  */
6546
6547 struct perf_read_event {
6548         struct perf_event_header        header;
6549
6550         u32                             pid;
6551         u32                             tid;
6552 };
6553
6554 static void
6555 perf_event_read_event(struct perf_event *event,
6556                         struct task_struct *task)
6557 {
6558         struct perf_output_handle handle;
6559         struct perf_sample_data sample;
6560         struct perf_read_event read_event = {
6561                 .header = {
6562                         .type = PERF_RECORD_READ,
6563                         .misc = 0,
6564                         .size = sizeof(read_event) + event->read_size,
6565                 },
6566                 .pid = perf_event_pid(event, task),
6567                 .tid = perf_event_tid(event, task),
6568         };
6569         int ret;
6570
6571         perf_event_header__init_id(&read_event.header, &sample, event);
6572         ret = perf_output_begin(&handle, event, read_event.header.size);
6573         if (ret)
6574                 return;
6575
6576         perf_output_put(&handle, read_event);
6577         perf_output_read(&handle, event);
6578         perf_event__output_id_sample(event, &handle, &sample);
6579
6580         perf_output_end(&handle);
6581 }
6582
6583 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6584
6585 static void
6586 perf_iterate_ctx(struct perf_event_context *ctx,
6587                    perf_iterate_f output,
6588                    void *data, bool all)
6589 {
6590         struct perf_event *event;
6591
6592         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6593                 if (!all) {
6594                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6595                                 continue;
6596                         if (!event_filter_match(event))
6597                                 continue;
6598                 }
6599
6600                 output(event, data);
6601         }
6602 }
6603
6604 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6605 {
6606         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6607         struct perf_event *event;
6608
6609         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6610                 /*
6611                  * Skip events that are not fully formed yet; ensure that
6612                  * if we observe event->ctx, both event and ctx will be
6613                  * complete enough. See perf_install_in_context().
6614                  */
6615                 if (!smp_load_acquire(&event->ctx))
6616                         continue;
6617
6618                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6619                         continue;
6620                 if (!event_filter_match(event))
6621                         continue;
6622                 output(event, data);
6623         }
6624 }
6625
6626 /*
6627  * Iterate all events that need to receive side-band events.
6628  *
6629  * For new callers; ensure that account_pmu_sb_event() includes
6630  * your event, otherwise it might not get delivered.
6631  */
6632 static void
6633 perf_iterate_sb(perf_iterate_f output, void *data,
6634                struct perf_event_context *task_ctx)
6635 {
6636         struct perf_event_context *ctx;
6637         int ctxn;
6638
6639         rcu_read_lock();
6640         preempt_disable();
6641
6642         /*
6643          * If we have task_ctx != NULL we only notify the task context itself.
6644          * The task_ctx is set only for EXIT events before releasing task
6645          * context.
6646          */
6647         if (task_ctx) {
6648                 perf_iterate_ctx(task_ctx, output, data, false);
6649                 goto done;
6650         }
6651
6652         perf_iterate_sb_cpu(output, data);
6653
6654         for_each_task_context_nr(ctxn) {
6655                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6656                 if (ctx)
6657                         perf_iterate_ctx(ctx, output, data, false);
6658         }
6659 done:
6660         preempt_enable();
6661         rcu_read_unlock();
6662 }
6663
6664 /*
6665  * Clear all file-based filters at exec, they'll have to be
6666  * re-instated when/if these objects are mmapped again.
6667  */
6668 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6669 {
6670         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6671         struct perf_addr_filter *filter;
6672         unsigned int restart = 0, count = 0;
6673         unsigned long flags;
6674
6675         if (!has_addr_filter(event))
6676                 return;
6677
6678         raw_spin_lock_irqsave(&ifh->lock, flags);
6679         list_for_each_entry(filter, &ifh->list, entry) {
6680                 if (filter->path.dentry) {
6681                         event->addr_filters_offs[count] = 0;
6682                         restart++;
6683                 }
6684
6685                 count++;
6686         }
6687
6688         if (restart)
6689                 event->addr_filters_gen++;
6690         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6691
6692         if (restart)
6693                 perf_event_stop(event, 1);
6694 }
6695
6696 void perf_event_exec(void)
6697 {
6698         struct perf_event_context *ctx;
6699         int ctxn;
6700
6701         rcu_read_lock();
6702         for_each_task_context_nr(ctxn) {
6703                 ctx = current->perf_event_ctxp[ctxn];
6704                 if (!ctx)
6705                         continue;
6706
6707                 perf_event_enable_on_exec(ctxn);
6708
6709                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6710                                    true);
6711         }
6712         rcu_read_unlock();
6713 }
6714
6715 struct remote_output {
6716         struct ring_buffer      *rb;
6717         int                     err;
6718 };
6719
6720 static void __perf_event_output_stop(struct perf_event *event, void *data)
6721 {
6722         struct perf_event *parent = event->parent;
6723         struct remote_output *ro = data;
6724         struct ring_buffer *rb = ro->rb;
6725         struct stop_event_data sd = {
6726                 .event  = event,
6727         };
6728
6729         if (!has_aux(event))
6730                 return;
6731
6732         if (!parent)
6733                 parent = event;
6734
6735         /*
6736          * In case of inheritance, it will be the parent that links to the
6737          * ring-buffer, but it will be the child that's actually using it.
6738          *
6739          * We are using event::rb to determine if the event should be stopped,
6740          * however this may race with ring_buffer_attach() (through set_output),
6741          * which will make us skip the event that actually needs to be stopped.
6742          * So ring_buffer_attach() has to stop an aux event before re-assigning
6743          * its rb pointer.
6744          */
6745         if (rcu_dereference(parent->rb) == rb)
6746                 ro->err = __perf_event_stop(&sd);
6747 }
6748
6749 static int __perf_pmu_output_stop(void *info)
6750 {
6751         struct perf_event *event = info;
6752         struct pmu *pmu = event->pmu;
6753         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6754         struct remote_output ro = {
6755                 .rb     = event->rb,
6756         };
6757
6758         rcu_read_lock();
6759         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6760         if (cpuctx->task_ctx)
6761                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6762                                    &ro, false);
6763         rcu_read_unlock();
6764
6765         return ro.err;
6766 }
6767
6768 static void perf_pmu_output_stop(struct perf_event *event)
6769 {
6770         struct perf_event *iter;
6771         int err, cpu;
6772
6773 restart:
6774         rcu_read_lock();
6775         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6776                 /*
6777                  * For per-CPU events, we need to make sure that neither they
6778                  * nor their children are running; for cpu==-1 events it's
6779                  * sufficient to stop the event itself if it's active, since
6780                  * it can't have children.
6781                  */
6782                 cpu = iter->cpu;
6783                 if (cpu == -1)
6784                         cpu = READ_ONCE(iter->oncpu);
6785
6786                 if (cpu == -1)
6787                         continue;
6788
6789                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6790                 if (err == -EAGAIN) {
6791                         rcu_read_unlock();
6792                         goto restart;
6793                 }
6794         }
6795         rcu_read_unlock();
6796 }
6797
6798 /*
6799  * task tracking -- fork/exit
6800  *
6801  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6802  */
6803
6804 struct perf_task_event {
6805         struct task_struct              *task;
6806         struct perf_event_context       *task_ctx;
6807
6808         struct {
6809                 struct perf_event_header        header;
6810
6811                 u32                             pid;
6812                 u32                             ppid;
6813                 u32                             tid;
6814                 u32                             ptid;
6815                 u64                             time;
6816         } event_id;
6817 };
6818
6819 static int perf_event_task_match(struct perf_event *event)
6820 {
6821         return event->attr.comm  || event->attr.mmap ||
6822                event->attr.mmap2 || event->attr.mmap_data ||
6823                event->attr.task;
6824 }
6825
6826 static void perf_event_task_output(struct perf_event *event,
6827                                    void *data)
6828 {
6829         struct perf_task_event *task_event = data;
6830         struct perf_output_handle handle;
6831         struct perf_sample_data sample;
6832         struct task_struct *task = task_event->task;
6833         int ret, size = task_event->event_id.header.size;
6834
6835         if (!perf_event_task_match(event))
6836                 return;
6837
6838         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6839
6840         ret = perf_output_begin(&handle, event,
6841                                 task_event->event_id.header.size);
6842         if (ret)
6843                 goto out;
6844
6845         task_event->event_id.pid = perf_event_pid(event, task);
6846         task_event->event_id.ppid = perf_event_pid(event, current);
6847
6848         task_event->event_id.tid = perf_event_tid(event, task);
6849         task_event->event_id.ptid = perf_event_tid(event, current);
6850
6851         task_event->event_id.time = perf_event_clock(event);
6852
6853         perf_output_put(&handle, task_event->event_id);
6854
6855         perf_event__output_id_sample(event, &handle, &sample);
6856
6857         perf_output_end(&handle);
6858 out:
6859         task_event->event_id.header.size = size;
6860 }
6861
6862 static void perf_event_task(struct task_struct *task,
6863                               struct perf_event_context *task_ctx,
6864                               int new)
6865 {
6866         struct perf_task_event task_event;
6867
6868         if (!atomic_read(&nr_comm_events) &&
6869             !atomic_read(&nr_mmap_events) &&
6870             !atomic_read(&nr_task_events))
6871                 return;
6872
6873         task_event = (struct perf_task_event){
6874                 .task     = task,
6875                 .task_ctx = task_ctx,
6876                 .event_id    = {
6877                         .header = {
6878                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6879                                 .misc = 0,
6880                                 .size = sizeof(task_event.event_id),
6881                         },
6882                         /* .pid  */
6883                         /* .ppid */
6884                         /* .tid  */
6885                         /* .ptid */
6886                         /* .time */
6887                 },
6888         };
6889
6890         perf_iterate_sb(perf_event_task_output,
6891                        &task_event,
6892                        task_ctx);
6893 }
6894
6895 void perf_event_fork(struct task_struct *task)
6896 {
6897         perf_event_task(task, NULL, 1);
6898         perf_event_namespaces(task);
6899 }
6900
6901 /*
6902  * comm tracking
6903  */
6904
6905 struct perf_comm_event {
6906         struct task_struct      *task;
6907         char                    *comm;
6908         int                     comm_size;
6909
6910         struct {
6911                 struct perf_event_header        header;
6912
6913                 u32                             pid;
6914                 u32                             tid;
6915         } event_id;
6916 };
6917
6918 static int perf_event_comm_match(struct perf_event *event)
6919 {
6920         return event->attr.comm;
6921 }
6922
6923 static void perf_event_comm_output(struct perf_event *event,
6924                                    void *data)
6925 {
6926         struct perf_comm_event *comm_event = data;
6927         struct perf_output_handle handle;
6928         struct perf_sample_data sample;
6929         int size = comm_event->event_id.header.size;
6930         int ret;
6931
6932         if (!perf_event_comm_match(event))
6933                 return;
6934
6935         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6936         ret = perf_output_begin(&handle, event,
6937                                 comm_event->event_id.header.size);
6938
6939         if (ret)
6940                 goto out;
6941
6942         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6943         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6944
6945         perf_output_put(&handle, comm_event->event_id);
6946         __output_copy(&handle, comm_event->comm,
6947                                    comm_event->comm_size);
6948
6949         perf_event__output_id_sample(event, &handle, &sample);
6950
6951         perf_output_end(&handle);
6952 out:
6953         comm_event->event_id.header.size = size;
6954 }
6955
6956 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6957 {
6958         char comm[TASK_COMM_LEN];
6959         unsigned int size;
6960
6961         memset(comm, 0, sizeof(comm));
6962         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6963         size = ALIGN(strlen(comm)+1, sizeof(u64));
6964
6965         comm_event->comm = comm;
6966         comm_event->comm_size = size;
6967
6968         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6969
6970         perf_iterate_sb(perf_event_comm_output,
6971                        comm_event,
6972                        NULL);
6973 }
6974
6975 void perf_event_comm(struct task_struct *task, bool exec)
6976 {
6977         struct perf_comm_event comm_event;
6978
6979         if (!atomic_read(&nr_comm_events))
6980                 return;
6981
6982         comm_event = (struct perf_comm_event){
6983                 .task   = task,
6984                 /* .comm      */
6985                 /* .comm_size */
6986                 .event_id  = {
6987                         .header = {
6988                                 .type = PERF_RECORD_COMM,
6989                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6990                                 /* .size */
6991                         },
6992                         /* .pid */
6993                         /* .tid */
6994                 },
6995         };
6996
6997         perf_event_comm_event(&comm_event);
6998 }
6999
7000 /*
7001  * namespaces tracking
7002  */
7003
7004 struct perf_namespaces_event {
7005         struct task_struct              *task;
7006
7007         struct {
7008                 struct perf_event_header        header;
7009
7010                 u32                             pid;
7011                 u32                             tid;
7012                 u64                             nr_namespaces;
7013                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7014         } event_id;
7015 };
7016
7017 static int perf_event_namespaces_match(struct perf_event *event)
7018 {
7019         return event->attr.namespaces;
7020 }
7021
7022 static void perf_event_namespaces_output(struct perf_event *event,
7023                                          void *data)
7024 {
7025         struct perf_namespaces_event *namespaces_event = data;
7026         struct perf_output_handle handle;
7027         struct perf_sample_data sample;
7028         u16 header_size = namespaces_event->event_id.header.size;
7029         int ret;
7030
7031         if (!perf_event_namespaces_match(event))
7032                 return;
7033
7034         perf_event_header__init_id(&namespaces_event->event_id.header,
7035                                    &sample, event);
7036         ret = perf_output_begin(&handle, event,
7037                                 namespaces_event->event_id.header.size);
7038         if (ret)
7039                 goto out;
7040
7041         namespaces_event->event_id.pid = perf_event_pid(event,
7042                                                         namespaces_event->task);
7043         namespaces_event->event_id.tid = perf_event_tid(event,
7044                                                         namespaces_event->task);
7045
7046         perf_output_put(&handle, namespaces_event->event_id);
7047
7048         perf_event__output_id_sample(event, &handle, &sample);
7049
7050         perf_output_end(&handle);
7051 out:
7052         namespaces_event->event_id.header.size = header_size;
7053 }
7054
7055 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7056                                    struct task_struct *task,
7057                                    const struct proc_ns_operations *ns_ops)
7058 {
7059         struct path ns_path;
7060         struct inode *ns_inode;
7061         void *error;
7062
7063         error = ns_get_path(&ns_path, task, ns_ops);
7064         if (!error) {
7065                 ns_inode = ns_path.dentry->d_inode;
7066                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7067                 ns_link_info->ino = ns_inode->i_ino;
7068                 path_put(&ns_path);
7069         }
7070 }
7071
7072 void perf_event_namespaces(struct task_struct *task)
7073 {
7074         struct perf_namespaces_event namespaces_event;
7075         struct perf_ns_link_info *ns_link_info;
7076
7077         if (!atomic_read(&nr_namespaces_events))
7078                 return;
7079
7080         namespaces_event = (struct perf_namespaces_event){
7081                 .task   = task,
7082                 .event_id  = {
7083                         .header = {
7084                                 .type = PERF_RECORD_NAMESPACES,
7085                                 .misc = 0,
7086                                 .size = sizeof(namespaces_event.event_id),
7087                         },
7088                         /* .pid */
7089                         /* .tid */
7090                         .nr_namespaces = NR_NAMESPACES,
7091                         /* .link_info[NR_NAMESPACES] */
7092                 },
7093         };
7094
7095         ns_link_info = namespaces_event.event_id.link_info;
7096
7097         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7098                                task, &mntns_operations);
7099
7100 #ifdef CONFIG_USER_NS
7101         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7102                                task, &userns_operations);
7103 #endif
7104 #ifdef CONFIG_NET_NS
7105         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7106                                task, &netns_operations);
7107 #endif
7108 #ifdef CONFIG_UTS_NS
7109         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7110                                task, &utsns_operations);
7111 #endif
7112 #ifdef CONFIG_IPC_NS
7113         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7114                                task, &ipcns_operations);
7115 #endif
7116 #ifdef CONFIG_PID_NS
7117         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7118                                task, &pidns_operations);
7119 #endif
7120 #ifdef CONFIG_CGROUPS
7121         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7122                                task, &cgroupns_operations);
7123 #endif
7124
7125         perf_iterate_sb(perf_event_namespaces_output,
7126                         &namespaces_event,
7127                         NULL);
7128 }
7129
7130 /*
7131  * mmap tracking
7132  */
7133
7134 struct perf_mmap_event {
7135         struct vm_area_struct   *vma;
7136
7137         const char              *file_name;
7138         int                     file_size;
7139         int                     maj, min;
7140         u64                     ino;
7141         u64                     ino_generation;
7142         u32                     prot, flags;
7143
7144         struct {
7145                 struct perf_event_header        header;
7146
7147                 u32                             pid;
7148                 u32                             tid;
7149                 u64                             start;
7150                 u64                             len;
7151                 u64                             pgoff;
7152         } event_id;
7153 };
7154
7155 static int perf_event_mmap_match(struct perf_event *event,
7156                                  void *data)
7157 {
7158         struct perf_mmap_event *mmap_event = data;
7159         struct vm_area_struct *vma = mmap_event->vma;
7160         int executable = vma->vm_flags & VM_EXEC;
7161
7162         return (!executable && event->attr.mmap_data) ||
7163                (executable && (event->attr.mmap || event->attr.mmap2));
7164 }
7165
7166 static void perf_event_mmap_output(struct perf_event *event,
7167                                    void *data)
7168 {
7169         struct perf_mmap_event *mmap_event = data;
7170         struct perf_output_handle handle;
7171         struct perf_sample_data sample;
7172         int size = mmap_event->event_id.header.size;
7173         int ret;
7174
7175         if (!perf_event_mmap_match(event, data))
7176                 return;
7177
7178         if (event->attr.mmap2) {
7179                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7180                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7181                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7182                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7183                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7184                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7185                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7186         }
7187
7188         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7189         ret = perf_output_begin(&handle, event,
7190                                 mmap_event->event_id.header.size);
7191         if (ret)
7192                 goto out;
7193
7194         mmap_event->event_id.pid = perf_event_pid(event, current);
7195         mmap_event->event_id.tid = perf_event_tid(event, current);
7196
7197         perf_output_put(&handle, mmap_event->event_id);
7198
7199         if (event->attr.mmap2) {
7200                 perf_output_put(&handle, mmap_event->maj);
7201                 perf_output_put(&handle, mmap_event->min);
7202                 perf_output_put(&handle, mmap_event->ino);
7203                 perf_output_put(&handle, mmap_event->ino_generation);
7204                 perf_output_put(&handle, mmap_event->prot);
7205                 perf_output_put(&handle, mmap_event->flags);
7206         }
7207
7208         __output_copy(&handle, mmap_event->file_name,
7209                                    mmap_event->file_size);
7210
7211         perf_event__output_id_sample(event, &handle, &sample);
7212
7213         perf_output_end(&handle);
7214 out:
7215         mmap_event->event_id.header.size = size;
7216 }
7217
7218 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7219 {
7220         struct vm_area_struct *vma = mmap_event->vma;
7221         struct file *file = vma->vm_file;
7222         int maj = 0, min = 0;
7223         u64 ino = 0, gen = 0;
7224         u32 prot = 0, flags = 0;
7225         unsigned int size;
7226         char tmp[16];
7227         char *buf = NULL;
7228         char *name;
7229
7230         if (vma->vm_flags & VM_READ)
7231                 prot |= PROT_READ;
7232         if (vma->vm_flags & VM_WRITE)
7233                 prot |= PROT_WRITE;
7234         if (vma->vm_flags & VM_EXEC)
7235                 prot |= PROT_EXEC;
7236
7237         if (vma->vm_flags & VM_MAYSHARE)
7238                 flags = MAP_SHARED;
7239         else
7240                 flags = MAP_PRIVATE;
7241
7242         if (vma->vm_flags & VM_DENYWRITE)
7243                 flags |= MAP_DENYWRITE;
7244         if (vma->vm_flags & VM_MAYEXEC)
7245                 flags |= MAP_EXECUTABLE;
7246         if (vma->vm_flags & VM_LOCKED)
7247                 flags |= MAP_LOCKED;
7248         if (vma->vm_flags & VM_HUGETLB)
7249                 flags |= MAP_HUGETLB;
7250
7251         if (file) {
7252                 struct inode *inode;
7253                 dev_t dev;
7254
7255                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7256                 if (!buf) {
7257                         name = "//enomem";
7258                         goto cpy_name;
7259                 }
7260                 /*
7261                  * d_path() works from the end of the rb backwards, so we
7262                  * need to add enough zero bytes after the string to handle
7263                  * the 64bit alignment we do later.
7264                  */
7265                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7266                 if (IS_ERR(name)) {
7267                         name = "//toolong";
7268                         goto cpy_name;
7269                 }
7270                 inode = file_inode(vma->vm_file);
7271                 dev = inode->i_sb->s_dev;
7272                 ino = inode->i_ino;
7273                 gen = inode->i_generation;
7274                 maj = MAJOR(dev);
7275                 min = MINOR(dev);
7276
7277                 goto got_name;
7278         } else {
7279                 if (vma->vm_ops && vma->vm_ops->name) {
7280                         name = (char *) vma->vm_ops->name(vma);
7281                         if (name)
7282                                 goto cpy_name;
7283                 }
7284
7285                 name = (char *)arch_vma_name(vma);
7286                 if (name)
7287                         goto cpy_name;
7288
7289                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7290                                 vma->vm_end >= vma->vm_mm->brk) {
7291                         name = "[heap]";
7292                         goto cpy_name;
7293                 }
7294                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7295                                 vma->vm_end >= vma->vm_mm->start_stack) {
7296                         name = "[stack]";
7297                         goto cpy_name;
7298                 }
7299
7300                 name = "//anon";
7301                 goto cpy_name;
7302         }
7303
7304 cpy_name:
7305         strlcpy(tmp, name, sizeof(tmp));
7306         name = tmp;
7307 got_name:
7308         /*
7309          * Since our buffer works in 8 byte units we need to align our string
7310          * size to a multiple of 8. However, we must guarantee the tail end is
7311          * zero'd out to avoid leaking random bits to userspace.
7312          */
7313         size = strlen(name)+1;
7314         while (!IS_ALIGNED(size, sizeof(u64)))
7315                 name[size++] = '\0';
7316
7317         mmap_event->file_name = name;
7318         mmap_event->file_size = size;
7319         mmap_event->maj = maj;
7320         mmap_event->min = min;
7321         mmap_event->ino = ino;
7322         mmap_event->ino_generation = gen;
7323         mmap_event->prot = prot;
7324         mmap_event->flags = flags;
7325
7326         if (!(vma->vm_flags & VM_EXEC))
7327                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7328
7329         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7330
7331         perf_iterate_sb(perf_event_mmap_output,
7332                        mmap_event,
7333                        NULL);
7334
7335         kfree(buf);
7336 }
7337
7338 /*
7339  * Check whether inode and address range match filter criteria.
7340  */
7341 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7342                                      struct file *file, unsigned long offset,
7343                                      unsigned long size)
7344 {
7345         /* d_inode(NULL) won't be equal to any mapped user-space file */
7346         if (!filter->path.dentry)
7347                 return false;
7348
7349         if (d_inode(filter->path.dentry) != file_inode(file))
7350                 return false;
7351
7352         if (filter->offset > offset + size)
7353                 return false;
7354
7355         if (filter->offset + filter->size < offset)
7356                 return false;
7357
7358         return true;
7359 }
7360
7361 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7362 {
7363         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7364         struct vm_area_struct *vma = data;
7365         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7366         struct file *file = vma->vm_file;
7367         struct perf_addr_filter *filter;
7368         unsigned int restart = 0, count = 0;
7369
7370         if (!has_addr_filter(event))
7371                 return;
7372
7373         if (!file)
7374                 return;
7375
7376         raw_spin_lock_irqsave(&ifh->lock, flags);
7377         list_for_each_entry(filter, &ifh->list, entry) {
7378                 if (perf_addr_filter_match(filter, file, off,
7379                                              vma->vm_end - vma->vm_start)) {
7380                         event->addr_filters_offs[count] = vma->vm_start;
7381                         restart++;
7382                 }
7383
7384                 count++;
7385         }
7386
7387         if (restart)
7388                 event->addr_filters_gen++;
7389         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7390
7391         if (restart)
7392                 perf_event_stop(event, 1);
7393 }
7394
7395 /*
7396  * Adjust all task's events' filters to the new vma
7397  */
7398 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7399 {
7400         struct perf_event_context *ctx;
7401         int ctxn;
7402
7403         /*
7404          * Data tracing isn't supported yet and as such there is no need
7405          * to keep track of anything that isn't related to executable code:
7406          */
7407         if (!(vma->vm_flags & VM_EXEC))
7408                 return;
7409
7410         rcu_read_lock();
7411         for_each_task_context_nr(ctxn) {
7412                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7413                 if (!ctx)
7414                         continue;
7415
7416                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7417         }
7418         rcu_read_unlock();
7419 }
7420
7421 void perf_event_mmap(struct vm_area_struct *vma)
7422 {
7423         struct perf_mmap_event mmap_event;
7424
7425         if (!atomic_read(&nr_mmap_events))
7426                 return;
7427
7428         mmap_event = (struct perf_mmap_event){
7429                 .vma    = vma,
7430                 /* .file_name */
7431                 /* .file_size */
7432                 .event_id  = {
7433                         .header = {
7434                                 .type = PERF_RECORD_MMAP,
7435                                 .misc = PERF_RECORD_MISC_USER,
7436                                 /* .size */
7437                         },
7438                         /* .pid */
7439                         /* .tid */
7440                         .start  = vma->vm_start,
7441                         .len    = vma->vm_end - vma->vm_start,
7442                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7443                 },
7444                 /* .maj (attr_mmap2 only) */
7445                 /* .min (attr_mmap2 only) */
7446                 /* .ino (attr_mmap2 only) */
7447                 /* .ino_generation (attr_mmap2 only) */
7448                 /* .prot (attr_mmap2 only) */
7449                 /* .flags (attr_mmap2 only) */
7450         };
7451
7452         perf_addr_filters_adjust(vma);
7453         perf_event_mmap_event(&mmap_event);
7454 }
7455
7456 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7457                           unsigned long size, u64 flags)
7458 {
7459         struct perf_output_handle handle;
7460         struct perf_sample_data sample;
7461         struct perf_aux_event {
7462                 struct perf_event_header        header;
7463                 u64                             offset;
7464                 u64                             size;
7465                 u64                             flags;
7466         } rec = {
7467                 .header = {
7468                         .type = PERF_RECORD_AUX,
7469                         .misc = 0,
7470                         .size = sizeof(rec),
7471                 },
7472                 .offset         = head,
7473                 .size           = size,
7474                 .flags          = flags,
7475         };
7476         int ret;
7477
7478         perf_event_header__init_id(&rec.header, &sample, event);
7479         ret = perf_output_begin(&handle, event, rec.header.size);
7480
7481         if (ret)
7482                 return;
7483
7484         perf_output_put(&handle, rec);
7485         perf_event__output_id_sample(event, &handle, &sample);
7486
7487         perf_output_end(&handle);
7488 }
7489
7490 /*
7491  * Lost/dropped samples logging
7492  */
7493 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7494 {
7495         struct perf_output_handle handle;
7496         struct perf_sample_data sample;
7497         int ret;
7498
7499         struct {
7500                 struct perf_event_header        header;
7501                 u64                             lost;
7502         } lost_samples_event = {
7503                 .header = {
7504                         .type = PERF_RECORD_LOST_SAMPLES,
7505                         .misc = 0,
7506                         .size = sizeof(lost_samples_event),
7507                 },
7508                 .lost           = lost,
7509         };
7510
7511         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7512
7513         ret = perf_output_begin(&handle, event,
7514                                 lost_samples_event.header.size);
7515         if (ret)
7516                 return;
7517
7518         perf_output_put(&handle, lost_samples_event);
7519         perf_event__output_id_sample(event, &handle, &sample);
7520         perf_output_end(&handle);
7521 }
7522
7523 /*
7524  * context_switch tracking
7525  */
7526
7527 struct perf_switch_event {
7528         struct task_struct      *task;
7529         struct task_struct      *next_prev;
7530
7531         struct {
7532                 struct perf_event_header        header;
7533                 u32                             next_prev_pid;
7534                 u32                             next_prev_tid;
7535         } event_id;
7536 };
7537
7538 static int perf_event_switch_match(struct perf_event *event)
7539 {
7540         return event->attr.context_switch;
7541 }
7542
7543 static void perf_event_switch_output(struct perf_event *event, void *data)
7544 {
7545         struct perf_switch_event *se = data;
7546         struct perf_output_handle handle;
7547         struct perf_sample_data sample;
7548         int ret;
7549
7550         if (!perf_event_switch_match(event))
7551                 return;
7552
7553         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7554         if (event->ctx->task) {
7555                 se->event_id.header.type = PERF_RECORD_SWITCH;
7556                 se->event_id.header.size = sizeof(se->event_id.header);
7557         } else {
7558                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7559                 se->event_id.header.size = sizeof(se->event_id);
7560                 se->event_id.next_prev_pid =
7561                                         perf_event_pid(event, se->next_prev);
7562                 se->event_id.next_prev_tid =
7563                                         perf_event_tid(event, se->next_prev);
7564         }
7565
7566         perf_event_header__init_id(&se->event_id.header, &sample, event);
7567
7568         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7569         if (ret)
7570                 return;
7571
7572         if (event->ctx->task)
7573                 perf_output_put(&handle, se->event_id.header);
7574         else
7575                 perf_output_put(&handle, se->event_id);
7576
7577         perf_event__output_id_sample(event, &handle, &sample);
7578
7579         perf_output_end(&handle);
7580 }
7581
7582 static void perf_event_switch(struct task_struct *task,
7583                               struct task_struct *next_prev, bool sched_in)
7584 {
7585         struct perf_switch_event switch_event;
7586
7587         /* N.B. caller checks nr_switch_events != 0 */
7588
7589         switch_event = (struct perf_switch_event){
7590                 .task           = task,
7591                 .next_prev      = next_prev,
7592                 .event_id       = {
7593                         .header = {
7594                                 /* .type */
7595                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7596                                 /* .size */
7597                         },
7598                         /* .next_prev_pid */
7599                         /* .next_prev_tid */
7600                 },
7601         };
7602
7603         if (!sched_in && task->state == TASK_RUNNING)
7604                 switch_event.event_id.header.misc |=
7605                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7606
7607         perf_iterate_sb(perf_event_switch_output,
7608                        &switch_event,
7609                        NULL);
7610 }
7611
7612 /*
7613  * IRQ throttle logging
7614  */
7615
7616 static void perf_log_throttle(struct perf_event *event, int enable)
7617 {
7618         struct perf_output_handle handle;
7619         struct perf_sample_data sample;
7620         int ret;
7621
7622         struct {
7623                 struct perf_event_header        header;
7624                 u64                             time;
7625                 u64                             id;
7626                 u64                             stream_id;
7627         } throttle_event = {
7628                 .header = {
7629                         .type = PERF_RECORD_THROTTLE,
7630                         .misc = 0,
7631                         .size = sizeof(throttle_event),
7632                 },
7633                 .time           = perf_event_clock(event),
7634                 .id             = primary_event_id(event),
7635                 .stream_id      = event->id,
7636         };
7637
7638         if (enable)
7639                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7640
7641         perf_event_header__init_id(&throttle_event.header, &sample, event);
7642
7643         ret = perf_output_begin(&handle, event,
7644                                 throttle_event.header.size);
7645         if (ret)
7646                 return;
7647
7648         perf_output_put(&handle, throttle_event);
7649         perf_event__output_id_sample(event, &handle, &sample);
7650         perf_output_end(&handle);
7651 }
7652
7653 void perf_event_itrace_started(struct perf_event *event)
7654 {
7655         event->attach_state |= PERF_ATTACH_ITRACE;
7656 }
7657
7658 static void perf_log_itrace_start(struct perf_event *event)
7659 {
7660         struct perf_output_handle handle;
7661         struct perf_sample_data sample;
7662         struct perf_aux_event {
7663                 struct perf_event_header        header;
7664                 u32                             pid;
7665                 u32                             tid;
7666         } rec;
7667         int ret;
7668
7669         if (event->parent)
7670                 event = event->parent;
7671
7672         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7673             event->attach_state & PERF_ATTACH_ITRACE)
7674                 return;
7675
7676         rec.header.type = PERF_RECORD_ITRACE_START;
7677         rec.header.misc = 0;
7678         rec.header.size = sizeof(rec);
7679         rec.pid = perf_event_pid(event, current);
7680         rec.tid = perf_event_tid(event, current);
7681
7682         perf_event_header__init_id(&rec.header, &sample, event);
7683         ret = perf_output_begin(&handle, event, rec.header.size);
7684
7685         if (ret)
7686                 return;
7687
7688         perf_output_put(&handle, rec);
7689         perf_event__output_id_sample(event, &handle, &sample);
7690
7691         perf_output_end(&handle);
7692 }
7693
7694 static int
7695 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7696 {
7697         struct hw_perf_event *hwc = &event->hw;
7698         int ret = 0;
7699         u64 seq;
7700
7701         seq = __this_cpu_read(perf_throttled_seq);
7702         if (seq != hwc->interrupts_seq) {
7703                 hwc->interrupts_seq = seq;
7704                 hwc->interrupts = 1;
7705         } else {
7706                 hwc->interrupts++;
7707                 if (unlikely(throttle
7708                              && hwc->interrupts >= max_samples_per_tick)) {
7709                         __this_cpu_inc(perf_throttled_count);
7710                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7711                         hwc->interrupts = MAX_INTERRUPTS;
7712                         perf_log_throttle(event, 0);
7713                         ret = 1;
7714                 }
7715         }
7716
7717         if (event->attr.freq) {
7718                 u64 now = perf_clock();
7719                 s64 delta = now - hwc->freq_time_stamp;
7720
7721                 hwc->freq_time_stamp = now;
7722
7723                 if (delta > 0 && delta < 2*TICK_NSEC)
7724                         perf_adjust_period(event, delta, hwc->last_period, true);
7725         }
7726
7727         return ret;
7728 }
7729
7730 int perf_event_account_interrupt(struct perf_event *event)
7731 {
7732         return __perf_event_account_interrupt(event, 1);
7733 }
7734
7735 /*
7736  * Generic event overflow handling, sampling.
7737  */
7738
7739 static int __perf_event_overflow(struct perf_event *event,
7740                                    int throttle, struct perf_sample_data *data,
7741                                    struct pt_regs *regs)
7742 {
7743         int events = atomic_read(&event->event_limit);
7744         int ret = 0;
7745
7746         /*
7747          * Non-sampling counters might still use the PMI to fold short
7748          * hardware counters, ignore those.
7749          */
7750         if (unlikely(!is_sampling_event(event)))
7751                 return 0;
7752
7753         ret = __perf_event_account_interrupt(event, throttle);
7754
7755         /*
7756          * XXX event_limit might not quite work as expected on inherited
7757          * events
7758          */
7759
7760         event->pending_kill = POLL_IN;
7761         if (events && atomic_dec_and_test(&event->event_limit)) {
7762                 ret = 1;
7763                 event->pending_kill = POLL_HUP;
7764
7765                 perf_event_disable_inatomic(event);
7766         }
7767
7768         READ_ONCE(event->overflow_handler)(event, data, regs);
7769
7770         if (*perf_event_fasync(event) && event->pending_kill) {
7771                 event->pending_wakeup = 1;
7772                 irq_work_queue(&event->pending);
7773         }
7774
7775         return ret;
7776 }
7777
7778 int perf_event_overflow(struct perf_event *event,
7779                           struct perf_sample_data *data,
7780                           struct pt_regs *regs)
7781 {
7782         return __perf_event_overflow(event, 1, data, regs);
7783 }
7784
7785 /*
7786  * Generic software event infrastructure
7787  */
7788
7789 struct swevent_htable {
7790         struct swevent_hlist            *swevent_hlist;
7791         struct mutex                    hlist_mutex;
7792         int                             hlist_refcount;
7793
7794         /* Recursion avoidance in each contexts */
7795         int                             recursion[PERF_NR_CONTEXTS];
7796 };
7797
7798 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7799
7800 /*
7801  * We directly increment event->count and keep a second value in
7802  * event->hw.period_left to count intervals. This period event
7803  * is kept in the range [-sample_period, 0] so that we can use the
7804  * sign as trigger.
7805  */
7806
7807 u64 perf_swevent_set_period(struct perf_event *event)
7808 {
7809         struct hw_perf_event *hwc = &event->hw;
7810         u64 period = hwc->last_period;
7811         u64 nr, offset;
7812         s64 old, val;
7813
7814         hwc->last_period = hwc->sample_period;
7815
7816 again:
7817         old = val = local64_read(&hwc->period_left);
7818         if (val < 0)
7819                 return 0;
7820
7821         nr = div64_u64(period + val, period);
7822         offset = nr * period;
7823         val -= offset;
7824         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7825                 goto again;
7826
7827         return nr;
7828 }
7829
7830 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7831                                     struct perf_sample_data *data,
7832                                     struct pt_regs *regs)
7833 {
7834         struct hw_perf_event *hwc = &event->hw;
7835         int throttle = 0;
7836
7837         if (!overflow)
7838                 overflow = perf_swevent_set_period(event);
7839
7840         if (hwc->interrupts == MAX_INTERRUPTS)
7841                 return;
7842
7843         for (; overflow; overflow--) {
7844                 if (__perf_event_overflow(event, throttle,
7845                                             data, regs)) {
7846                         /*
7847                          * We inhibit the overflow from happening when
7848                          * hwc->interrupts == MAX_INTERRUPTS.
7849                          */
7850                         break;
7851                 }
7852                 throttle = 1;
7853         }
7854 }
7855
7856 static void perf_swevent_event(struct perf_event *event, u64 nr,
7857                                struct perf_sample_data *data,
7858                                struct pt_regs *regs)
7859 {
7860         struct hw_perf_event *hwc = &event->hw;
7861
7862         local64_add(nr, &event->count);
7863
7864         if (!regs)
7865                 return;
7866
7867         if (!is_sampling_event(event))
7868                 return;
7869
7870         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7871                 data->period = nr;
7872                 return perf_swevent_overflow(event, 1, data, regs);
7873         } else
7874                 data->period = event->hw.last_period;
7875
7876         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7877                 return perf_swevent_overflow(event, 1, data, regs);
7878
7879         if (local64_add_negative(nr, &hwc->period_left))
7880                 return;
7881
7882         perf_swevent_overflow(event, 0, data, regs);
7883 }
7884
7885 static int perf_exclude_event(struct perf_event *event,
7886                               struct pt_regs *regs)
7887 {
7888         if (event->hw.state & PERF_HES_STOPPED)
7889                 return 1;
7890
7891         if (regs) {
7892                 if (event->attr.exclude_user && user_mode(regs))
7893                         return 1;
7894
7895                 if (event->attr.exclude_kernel && !user_mode(regs))
7896                         return 1;
7897         }
7898
7899         return 0;
7900 }
7901
7902 static int perf_swevent_match(struct perf_event *event,
7903                                 enum perf_type_id type,
7904                                 u32 event_id,
7905                                 struct perf_sample_data *data,
7906                                 struct pt_regs *regs)
7907 {
7908         if (event->attr.type != type)
7909                 return 0;
7910
7911         if (event->attr.config != event_id)
7912                 return 0;
7913
7914         if (perf_exclude_event(event, regs))
7915                 return 0;
7916
7917         return 1;
7918 }
7919
7920 static inline u64 swevent_hash(u64 type, u32 event_id)
7921 {
7922         u64 val = event_id | (type << 32);
7923
7924         return hash_64(val, SWEVENT_HLIST_BITS);
7925 }
7926
7927 static inline struct hlist_head *
7928 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7929 {
7930         u64 hash = swevent_hash(type, event_id);
7931
7932         return &hlist->heads[hash];
7933 }
7934
7935 /* For the read side: events when they trigger */
7936 static inline struct hlist_head *
7937 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7938 {
7939         struct swevent_hlist *hlist;
7940
7941         hlist = rcu_dereference(swhash->swevent_hlist);
7942         if (!hlist)
7943                 return NULL;
7944
7945         return __find_swevent_head(hlist, type, event_id);
7946 }
7947
7948 /* For the event head insertion and removal in the hlist */
7949 static inline struct hlist_head *
7950 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7951 {
7952         struct swevent_hlist *hlist;
7953         u32 event_id = event->attr.config;
7954         u64 type = event->attr.type;
7955
7956         /*
7957          * Event scheduling is always serialized against hlist allocation
7958          * and release. Which makes the protected version suitable here.
7959          * The context lock guarantees that.
7960          */
7961         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7962                                           lockdep_is_held(&event->ctx->lock));
7963         if (!hlist)
7964                 return NULL;
7965
7966         return __find_swevent_head(hlist, type, event_id);
7967 }
7968
7969 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7970                                     u64 nr,
7971                                     struct perf_sample_data *data,
7972                                     struct pt_regs *regs)
7973 {
7974         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7975         struct perf_event *event;
7976         struct hlist_head *head;
7977
7978         rcu_read_lock();
7979         head = find_swevent_head_rcu(swhash, type, event_id);
7980         if (!head)
7981                 goto end;
7982
7983         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7984                 if (perf_swevent_match(event, type, event_id, data, regs))
7985                         perf_swevent_event(event, nr, data, regs);
7986         }
7987 end:
7988         rcu_read_unlock();
7989 }
7990
7991 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7992
7993 int perf_swevent_get_recursion_context(void)
7994 {
7995         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7996
7997         return get_recursion_context(swhash->recursion);
7998 }
7999 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8000
8001 void perf_swevent_put_recursion_context(int rctx)
8002 {
8003         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8004
8005         put_recursion_context(swhash->recursion, rctx);
8006 }
8007
8008 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8009 {
8010         struct perf_sample_data data;
8011
8012         if (WARN_ON_ONCE(!regs))
8013                 return;
8014
8015         perf_sample_data_init(&data, addr, 0);
8016         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8017 }
8018
8019 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8020 {
8021         int rctx;
8022
8023         preempt_disable_notrace();
8024         rctx = perf_swevent_get_recursion_context();
8025         if (unlikely(rctx < 0))
8026                 goto fail;
8027
8028         ___perf_sw_event(event_id, nr, regs, addr);
8029
8030         perf_swevent_put_recursion_context(rctx);
8031 fail:
8032         preempt_enable_notrace();
8033 }
8034
8035 static void perf_swevent_read(struct perf_event *event)
8036 {
8037 }
8038
8039 static int perf_swevent_add(struct perf_event *event, int flags)
8040 {
8041         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8042         struct hw_perf_event *hwc = &event->hw;
8043         struct hlist_head *head;
8044
8045         if (is_sampling_event(event)) {
8046                 hwc->last_period = hwc->sample_period;
8047                 perf_swevent_set_period(event);
8048         }
8049
8050         hwc->state = !(flags & PERF_EF_START);
8051
8052         head = find_swevent_head(swhash, event);
8053         if (WARN_ON_ONCE(!head))
8054                 return -EINVAL;
8055
8056         hlist_add_head_rcu(&event->hlist_entry, head);
8057         perf_event_update_userpage(event);
8058
8059         return 0;
8060 }
8061
8062 static void perf_swevent_del(struct perf_event *event, int flags)
8063 {
8064         hlist_del_rcu(&event->hlist_entry);
8065 }
8066
8067 static void perf_swevent_start(struct perf_event *event, int flags)
8068 {
8069         event->hw.state = 0;
8070 }
8071
8072 static void perf_swevent_stop(struct perf_event *event, int flags)
8073 {
8074         event->hw.state = PERF_HES_STOPPED;
8075 }
8076
8077 /* Deref the hlist from the update side */
8078 static inline struct swevent_hlist *
8079 swevent_hlist_deref(struct swevent_htable *swhash)
8080 {
8081         return rcu_dereference_protected(swhash->swevent_hlist,
8082                                          lockdep_is_held(&swhash->hlist_mutex));
8083 }
8084
8085 static void swevent_hlist_release(struct swevent_htable *swhash)
8086 {
8087         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8088
8089         if (!hlist)
8090                 return;
8091
8092         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8093         kfree_rcu(hlist, rcu_head);
8094 }
8095
8096 static void swevent_hlist_put_cpu(int cpu)
8097 {
8098         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8099
8100         mutex_lock(&swhash->hlist_mutex);
8101
8102         if (!--swhash->hlist_refcount)
8103                 swevent_hlist_release(swhash);
8104
8105         mutex_unlock(&swhash->hlist_mutex);
8106 }
8107
8108 static void swevent_hlist_put(void)
8109 {
8110         int cpu;
8111
8112         for_each_possible_cpu(cpu)
8113                 swevent_hlist_put_cpu(cpu);
8114 }
8115
8116 static int swevent_hlist_get_cpu(int cpu)
8117 {
8118         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8119         int err = 0;
8120
8121         mutex_lock(&swhash->hlist_mutex);
8122         if (!swevent_hlist_deref(swhash) &&
8123             cpumask_test_cpu(cpu, perf_online_mask)) {
8124                 struct swevent_hlist *hlist;
8125
8126                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8127                 if (!hlist) {
8128                         err = -ENOMEM;
8129                         goto exit;
8130                 }
8131                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8132         }
8133         swhash->hlist_refcount++;
8134 exit:
8135         mutex_unlock(&swhash->hlist_mutex);
8136
8137         return err;
8138 }
8139
8140 static int swevent_hlist_get(void)
8141 {
8142         int err, cpu, failed_cpu;
8143
8144         mutex_lock(&pmus_lock);
8145         for_each_possible_cpu(cpu) {
8146                 err = swevent_hlist_get_cpu(cpu);
8147                 if (err) {
8148                         failed_cpu = cpu;
8149                         goto fail;
8150                 }
8151         }
8152         mutex_unlock(&pmus_lock);
8153         return 0;
8154 fail:
8155         for_each_possible_cpu(cpu) {
8156                 if (cpu == failed_cpu)
8157                         break;
8158                 swevent_hlist_put_cpu(cpu);
8159         }
8160         mutex_unlock(&pmus_lock);
8161         return err;
8162 }
8163
8164 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8165
8166 static void sw_perf_event_destroy(struct perf_event *event)
8167 {
8168         u64 event_id = event->attr.config;
8169
8170         WARN_ON(event->parent);
8171
8172         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8173         swevent_hlist_put();
8174 }
8175
8176 static int perf_swevent_init(struct perf_event *event)
8177 {
8178         u64 event_id = event->attr.config;
8179
8180         if (event->attr.type != PERF_TYPE_SOFTWARE)
8181                 return -ENOENT;
8182
8183         /*
8184          * no branch sampling for software events
8185          */
8186         if (has_branch_stack(event))
8187                 return -EOPNOTSUPP;
8188
8189         switch (event_id) {
8190         case PERF_COUNT_SW_CPU_CLOCK:
8191         case PERF_COUNT_SW_TASK_CLOCK:
8192                 return -ENOENT;
8193
8194         default:
8195                 break;
8196         }
8197
8198         if (event_id >= PERF_COUNT_SW_MAX)
8199                 return -ENOENT;
8200
8201         if (!event->parent) {
8202                 int err;
8203
8204                 err = swevent_hlist_get();
8205                 if (err)
8206                         return err;
8207
8208                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8209                 event->destroy = sw_perf_event_destroy;
8210         }
8211
8212         return 0;
8213 }
8214
8215 static struct pmu perf_swevent = {
8216         .task_ctx_nr    = perf_sw_context,
8217
8218         .capabilities   = PERF_PMU_CAP_NO_NMI,
8219
8220         .event_init     = perf_swevent_init,
8221         .add            = perf_swevent_add,
8222         .del            = perf_swevent_del,
8223         .start          = perf_swevent_start,
8224         .stop           = perf_swevent_stop,
8225         .read           = perf_swevent_read,
8226 };
8227
8228 #ifdef CONFIG_EVENT_TRACING
8229
8230 static int perf_tp_filter_match(struct perf_event *event,
8231                                 struct perf_sample_data *data)
8232 {
8233         void *record = data->raw->frag.data;
8234
8235         /* only top level events have filters set */
8236         if (event->parent)
8237                 event = event->parent;
8238
8239         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8240                 return 1;
8241         return 0;
8242 }
8243
8244 static int perf_tp_event_match(struct perf_event *event,
8245                                 struct perf_sample_data *data,
8246                                 struct pt_regs *regs)
8247 {
8248         if (event->hw.state & PERF_HES_STOPPED)
8249                 return 0;
8250         /*
8251          * All tracepoints are from kernel-space.
8252          */
8253         if (event->attr.exclude_kernel)
8254                 return 0;
8255
8256         if (!perf_tp_filter_match(event, data))
8257                 return 0;
8258
8259         return 1;
8260 }
8261
8262 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8263                                struct trace_event_call *call, u64 count,
8264                                struct pt_regs *regs, struct hlist_head *head,
8265                                struct task_struct *task)
8266 {
8267         if (bpf_prog_array_valid(call)) {
8268                 *(struct pt_regs **)raw_data = regs;
8269                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8270                         perf_swevent_put_recursion_context(rctx);
8271                         return;
8272                 }
8273         }
8274         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8275                       rctx, task);
8276 }
8277 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8278
8279 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8280                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8281                    struct task_struct *task)
8282 {
8283         struct perf_sample_data data;
8284         struct perf_event *event;
8285
8286         struct perf_raw_record raw = {
8287                 .frag = {
8288                         .size = entry_size,
8289                         .data = record,
8290                 },
8291         };
8292
8293         perf_sample_data_init(&data, 0, 0);
8294         data.raw = &raw;
8295
8296         perf_trace_buf_update(record, event_type);
8297
8298         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8299                 if (perf_tp_event_match(event, &data, regs))
8300                         perf_swevent_event(event, count, &data, regs);
8301         }
8302
8303         /*
8304          * If we got specified a target task, also iterate its context and
8305          * deliver this event there too.
8306          */
8307         if (task && task != current) {
8308                 struct perf_event_context *ctx;
8309                 struct trace_entry *entry = record;
8310
8311                 rcu_read_lock();
8312                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8313                 if (!ctx)
8314                         goto unlock;
8315
8316                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8317                         if (event->cpu != smp_processor_id())
8318                                 continue;
8319                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8320                                 continue;
8321                         if (event->attr.config != entry->type)
8322                                 continue;
8323                         if (perf_tp_event_match(event, &data, regs))
8324                                 perf_swevent_event(event, count, &data, regs);
8325                 }
8326 unlock:
8327                 rcu_read_unlock();
8328         }
8329
8330         perf_swevent_put_recursion_context(rctx);
8331 }
8332 EXPORT_SYMBOL_GPL(perf_tp_event);
8333
8334 static void tp_perf_event_destroy(struct perf_event *event)
8335 {
8336         perf_trace_destroy(event);
8337 }
8338
8339 static int perf_tp_event_init(struct perf_event *event)
8340 {
8341         int err;
8342
8343         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8344                 return -ENOENT;
8345
8346         /*
8347          * no branch sampling for tracepoint events
8348          */
8349         if (has_branch_stack(event))
8350                 return -EOPNOTSUPP;
8351
8352         err = perf_trace_init(event);
8353         if (err)
8354                 return err;
8355
8356         event->destroy = tp_perf_event_destroy;
8357
8358         return 0;
8359 }
8360
8361 static struct pmu perf_tracepoint = {
8362         .task_ctx_nr    = perf_sw_context,
8363
8364         .event_init     = perf_tp_event_init,
8365         .add            = perf_trace_add,
8366         .del            = perf_trace_del,
8367         .start          = perf_swevent_start,
8368         .stop           = perf_swevent_stop,
8369         .read           = perf_swevent_read,
8370 };
8371
8372 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8373 /*
8374  * Flags in config, used by dynamic PMU kprobe and uprobe
8375  * The flags should match following PMU_FORMAT_ATTR().
8376  *
8377  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8378  *                               if not set, create kprobe/uprobe
8379  */
8380 enum perf_probe_config {
8381         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8382 };
8383
8384 PMU_FORMAT_ATTR(retprobe, "config:0");
8385
8386 static struct attribute *probe_attrs[] = {
8387         &format_attr_retprobe.attr,
8388         NULL,
8389 };
8390
8391 static struct attribute_group probe_format_group = {
8392         .name = "format",
8393         .attrs = probe_attrs,
8394 };
8395
8396 static const struct attribute_group *probe_attr_groups[] = {
8397         &probe_format_group,
8398         NULL,
8399 };
8400 #endif
8401
8402 #ifdef CONFIG_KPROBE_EVENTS
8403 static int perf_kprobe_event_init(struct perf_event *event);
8404 static struct pmu perf_kprobe = {
8405         .task_ctx_nr    = perf_sw_context,
8406         .event_init     = perf_kprobe_event_init,
8407         .add            = perf_trace_add,
8408         .del            = perf_trace_del,
8409         .start          = perf_swevent_start,
8410         .stop           = perf_swevent_stop,
8411         .read           = perf_swevent_read,
8412         .attr_groups    = probe_attr_groups,
8413 };
8414
8415 static int perf_kprobe_event_init(struct perf_event *event)
8416 {
8417         int err;
8418         bool is_retprobe;
8419
8420         if (event->attr.type != perf_kprobe.type)
8421                 return -ENOENT;
8422
8423         if (!capable(CAP_SYS_ADMIN))
8424                 return -EACCES;
8425
8426         /*
8427          * no branch sampling for probe events
8428          */
8429         if (has_branch_stack(event))
8430                 return -EOPNOTSUPP;
8431
8432         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8433         err = perf_kprobe_init(event, is_retprobe);
8434         if (err)
8435                 return err;
8436
8437         event->destroy = perf_kprobe_destroy;
8438
8439         return 0;
8440 }
8441 #endif /* CONFIG_KPROBE_EVENTS */
8442
8443 #ifdef CONFIG_UPROBE_EVENTS
8444 static int perf_uprobe_event_init(struct perf_event *event);
8445 static struct pmu perf_uprobe = {
8446         .task_ctx_nr    = perf_sw_context,
8447         .event_init     = perf_uprobe_event_init,
8448         .add            = perf_trace_add,
8449         .del            = perf_trace_del,
8450         .start          = perf_swevent_start,
8451         .stop           = perf_swevent_stop,
8452         .read           = perf_swevent_read,
8453         .attr_groups    = probe_attr_groups,
8454 };
8455
8456 static int perf_uprobe_event_init(struct perf_event *event)
8457 {
8458         int err;
8459         bool is_retprobe;
8460
8461         if (event->attr.type != perf_uprobe.type)
8462                 return -ENOENT;
8463
8464         if (!capable(CAP_SYS_ADMIN))
8465                 return -EACCES;
8466
8467         /*
8468          * no branch sampling for probe events
8469          */
8470         if (has_branch_stack(event))
8471                 return -EOPNOTSUPP;
8472
8473         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8474         err = perf_uprobe_init(event, is_retprobe);
8475         if (err)
8476                 return err;
8477
8478         event->destroy = perf_uprobe_destroy;
8479
8480         return 0;
8481 }
8482 #endif /* CONFIG_UPROBE_EVENTS */
8483
8484 static inline void perf_tp_register(void)
8485 {
8486         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8487 #ifdef CONFIG_KPROBE_EVENTS
8488         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8489 #endif
8490 #ifdef CONFIG_UPROBE_EVENTS
8491         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8492 #endif
8493 }
8494
8495 static void perf_event_free_filter(struct perf_event *event)
8496 {
8497         ftrace_profile_free_filter(event);
8498 }
8499
8500 #ifdef CONFIG_BPF_SYSCALL
8501 static void bpf_overflow_handler(struct perf_event *event,
8502                                  struct perf_sample_data *data,
8503                                  struct pt_regs *regs)
8504 {
8505         struct bpf_perf_event_data_kern ctx = {
8506                 .data = data,
8507                 .event = event,
8508         };
8509         int ret = 0;
8510
8511         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8512         preempt_disable();
8513         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8514                 goto out;
8515         rcu_read_lock();
8516         ret = BPF_PROG_RUN(event->prog, &ctx);
8517         rcu_read_unlock();
8518 out:
8519         __this_cpu_dec(bpf_prog_active);
8520         preempt_enable();
8521         if (!ret)
8522                 return;
8523
8524         event->orig_overflow_handler(event, data, regs);
8525 }
8526
8527 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8528 {
8529         struct bpf_prog *prog;
8530
8531         if (event->overflow_handler_context)
8532                 /* hw breakpoint or kernel counter */
8533                 return -EINVAL;
8534
8535         if (event->prog)
8536                 return -EEXIST;
8537
8538         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8539         if (IS_ERR(prog))
8540                 return PTR_ERR(prog);
8541
8542         event->prog = prog;
8543         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8544         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8545         return 0;
8546 }
8547
8548 static void perf_event_free_bpf_handler(struct perf_event *event)
8549 {
8550         struct bpf_prog *prog = event->prog;
8551
8552         if (!prog)
8553                 return;
8554
8555         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8556         event->prog = NULL;
8557         bpf_prog_put(prog);
8558 }
8559 #else
8560 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8561 {
8562         return -EOPNOTSUPP;
8563 }
8564 static void perf_event_free_bpf_handler(struct perf_event *event)
8565 {
8566 }
8567 #endif
8568
8569 /*
8570  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8571  * with perf_event_open()
8572  */
8573 static inline bool perf_event_is_tracing(struct perf_event *event)
8574 {
8575         if (event->pmu == &perf_tracepoint)
8576                 return true;
8577 #ifdef CONFIG_KPROBE_EVENTS
8578         if (event->pmu == &perf_kprobe)
8579                 return true;
8580 #endif
8581 #ifdef CONFIG_UPROBE_EVENTS
8582         if (event->pmu == &perf_uprobe)
8583                 return true;
8584 #endif
8585         return false;
8586 }
8587
8588 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8589 {
8590         bool is_kprobe, is_tracepoint, is_syscall_tp;
8591         struct bpf_prog *prog;
8592         int ret;
8593
8594         if (!perf_event_is_tracing(event))
8595                 return perf_event_set_bpf_handler(event, prog_fd);
8596
8597         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8598         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8599         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8600         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8601                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8602                 return -EINVAL;
8603
8604         prog = bpf_prog_get(prog_fd);
8605         if (IS_ERR(prog))
8606                 return PTR_ERR(prog);
8607
8608         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8609             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8610             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8611                 /* valid fd, but invalid bpf program type */
8612                 bpf_prog_put(prog);
8613                 return -EINVAL;
8614         }
8615
8616         /* Kprobe override only works for kprobes, not uprobes. */
8617         if (prog->kprobe_override &&
8618             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8619                 bpf_prog_put(prog);
8620                 return -EINVAL;
8621         }
8622
8623         if (is_tracepoint || is_syscall_tp) {
8624                 int off = trace_event_get_offsets(event->tp_event);
8625
8626                 if (prog->aux->max_ctx_offset > off) {
8627                         bpf_prog_put(prog);
8628                         return -EACCES;
8629                 }
8630         }
8631
8632         ret = perf_event_attach_bpf_prog(event, prog);
8633         if (ret)
8634                 bpf_prog_put(prog);
8635         return ret;
8636 }
8637
8638 static void perf_event_free_bpf_prog(struct perf_event *event)
8639 {
8640         if (!perf_event_is_tracing(event)) {
8641                 perf_event_free_bpf_handler(event);
8642                 return;
8643         }
8644         perf_event_detach_bpf_prog(event);
8645 }
8646
8647 #else
8648
8649 static inline void perf_tp_register(void)
8650 {
8651 }
8652
8653 static void perf_event_free_filter(struct perf_event *event)
8654 {
8655 }
8656
8657 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8658 {
8659         return -ENOENT;
8660 }
8661
8662 static void perf_event_free_bpf_prog(struct perf_event *event)
8663 {
8664 }
8665 #endif /* CONFIG_EVENT_TRACING */
8666
8667 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8668 void perf_bp_event(struct perf_event *bp, void *data)
8669 {
8670         struct perf_sample_data sample;
8671         struct pt_regs *regs = data;
8672
8673         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8674
8675         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8676                 perf_swevent_event(bp, 1, &sample, regs);
8677 }
8678 #endif
8679
8680 /*
8681  * Allocate a new address filter
8682  */
8683 static struct perf_addr_filter *
8684 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8685 {
8686         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8687         struct perf_addr_filter *filter;
8688
8689         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8690         if (!filter)
8691                 return NULL;
8692
8693         INIT_LIST_HEAD(&filter->entry);
8694         list_add_tail(&filter->entry, filters);
8695
8696         return filter;
8697 }
8698
8699 static void free_filters_list(struct list_head *filters)
8700 {
8701         struct perf_addr_filter *filter, *iter;
8702
8703         list_for_each_entry_safe(filter, iter, filters, entry) {
8704                 path_put(&filter->path);
8705                 list_del(&filter->entry);
8706                 kfree(filter);
8707         }
8708 }
8709
8710 /*
8711  * Free existing address filters and optionally install new ones
8712  */
8713 static void perf_addr_filters_splice(struct perf_event *event,
8714                                      struct list_head *head)
8715 {
8716         unsigned long flags;
8717         LIST_HEAD(list);
8718
8719         if (!has_addr_filter(event))
8720                 return;
8721
8722         /* don't bother with children, they don't have their own filters */
8723         if (event->parent)
8724                 return;
8725
8726         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8727
8728         list_splice_init(&event->addr_filters.list, &list);
8729         if (head)
8730                 list_splice(head, &event->addr_filters.list);
8731
8732         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8733
8734         free_filters_list(&list);
8735 }
8736
8737 /*
8738  * Scan through mm's vmas and see if one of them matches the
8739  * @filter; if so, adjust filter's address range.
8740  * Called with mm::mmap_sem down for reading.
8741  */
8742 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8743                                             struct mm_struct *mm)
8744 {
8745         struct vm_area_struct *vma;
8746
8747         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8748                 struct file *file = vma->vm_file;
8749                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8750                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8751
8752                 if (!file)
8753                         continue;
8754
8755                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8756                         continue;
8757
8758                 return vma->vm_start;
8759         }
8760
8761         return 0;
8762 }
8763
8764 /*
8765  * Update event's address range filters based on the
8766  * task's existing mappings, if any.
8767  */
8768 static void perf_event_addr_filters_apply(struct perf_event *event)
8769 {
8770         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8771         struct task_struct *task = READ_ONCE(event->ctx->task);
8772         struct perf_addr_filter *filter;
8773         struct mm_struct *mm = NULL;
8774         unsigned int count = 0;
8775         unsigned long flags;
8776
8777         /*
8778          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8779          * will stop on the parent's child_mutex that our caller is also holding
8780          */
8781         if (task == TASK_TOMBSTONE)
8782                 return;
8783
8784         if (!ifh->nr_file_filters)
8785                 return;
8786
8787         mm = get_task_mm(event->ctx->task);
8788         if (!mm)
8789                 goto restart;
8790
8791         down_read(&mm->mmap_sem);
8792
8793         raw_spin_lock_irqsave(&ifh->lock, flags);
8794         list_for_each_entry(filter, &ifh->list, entry) {
8795                 event->addr_filters_offs[count] = 0;
8796
8797                 /*
8798                  * Adjust base offset if the filter is associated to a binary
8799                  * that needs to be mapped:
8800                  */
8801                 if (filter->path.dentry)
8802                         event->addr_filters_offs[count] =
8803                                 perf_addr_filter_apply(filter, mm);
8804
8805                 count++;
8806         }
8807
8808         event->addr_filters_gen++;
8809         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8810
8811         up_read(&mm->mmap_sem);
8812
8813         mmput(mm);
8814
8815 restart:
8816         perf_event_stop(event, 1);
8817 }
8818
8819 /*
8820  * Address range filtering: limiting the data to certain
8821  * instruction address ranges. Filters are ioctl()ed to us from
8822  * userspace as ascii strings.
8823  *
8824  * Filter string format:
8825  *
8826  * ACTION RANGE_SPEC
8827  * where ACTION is one of the
8828  *  * "filter": limit the trace to this region
8829  *  * "start": start tracing from this address
8830  *  * "stop": stop tracing at this address/region;
8831  * RANGE_SPEC is
8832  *  * for kernel addresses: <start address>[/<size>]
8833  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8834  *
8835  * if <size> is not specified or is zero, the range is treated as a single
8836  * address; not valid for ACTION=="filter".
8837  */
8838 enum {
8839         IF_ACT_NONE = -1,
8840         IF_ACT_FILTER,
8841         IF_ACT_START,
8842         IF_ACT_STOP,
8843         IF_SRC_FILE,
8844         IF_SRC_KERNEL,
8845         IF_SRC_FILEADDR,
8846         IF_SRC_KERNELADDR,
8847 };
8848
8849 enum {
8850         IF_STATE_ACTION = 0,
8851         IF_STATE_SOURCE,
8852         IF_STATE_END,
8853 };
8854
8855 static const match_table_t if_tokens = {
8856         { IF_ACT_FILTER,        "filter" },
8857         { IF_ACT_START,         "start" },
8858         { IF_ACT_STOP,          "stop" },
8859         { IF_SRC_FILE,          "%u/%u@%s" },
8860         { IF_SRC_KERNEL,        "%u/%u" },
8861         { IF_SRC_FILEADDR,      "%u@%s" },
8862         { IF_SRC_KERNELADDR,    "%u" },
8863         { IF_ACT_NONE,          NULL },
8864 };
8865
8866 /*
8867  * Address filter string parser
8868  */
8869 static int
8870 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8871                              struct list_head *filters)
8872 {
8873         struct perf_addr_filter *filter = NULL;
8874         char *start, *orig, *filename = NULL;
8875         substring_t args[MAX_OPT_ARGS];
8876         int state = IF_STATE_ACTION, token;
8877         unsigned int kernel = 0;
8878         int ret = -EINVAL;
8879
8880         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8881         if (!fstr)
8882                 return -ENOMEM;
8883
8884         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8885                 static const enum perf_addr_filter_action_t actions[] = {
8886                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8887                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
8888                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
8889                 };
8890                 ret = -EINVAL;
8891
8892                 if (!*start)
8893                         continue;
8894
8895                 /* filter definition begins */
8896                 if (state == IF_STATE_ACTION) {
8897                         filter = perf_addr_filter_new(event, filters);
8898                         if (!filter)
8899                                 goto fail;
8900                 }
8901
8902                 token = match_token(start, if_tokens, args);
8903                 switch (token) {
8904                 case IF_ACT_FILTER:
8905                 case IF_ACT_START:
8906                 case IF_ACT_STOP:
8907                         if (state != IF_STATE_ACTION)
8908                                 goto fail;
8909
8910                         filter->action = actions[token];
8911                         state = IF_STATE_SOURCE;
8912                         break;
8913
8914                 case IF_SRC_KERNELADDR:
8915                 case IF_SRC_KERNEL:
8916                         kernel = 1;
8917
8918                 case IF_SRC_FILEADDR:
8919                 case IF_SRC_FILE:
8920                         if (state != IF_STATE_SOURCE)
8921                                 goto fail;
8922
8923                         *args[0].to = 0;
8924                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8925                         if (ret)
8926                                 goto fail;
8927
8928                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8929                                 *args[1].to = 0;
8930                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8931                                 if (ret)
8932                                         goto fail;
8933                         }
8934
8935                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8936                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
8937
8938                                 filename = match_strdup(&args[fpos]);
8939                                 if (!filename) {
8940                                         ret = -ENOMEM;
8941                                         goto fail;
8942                                 }
8943                         }
8944
8945                         state = IF_STATE_END;
8946                         break;
8947
8948                 default:
8949                         goto fail;
8950                 }
8951
8952                 /*
8953                  * Filter definition is fully parsed, validate and install it.
8954                  * Make sure that it doesn't contradict itself or the event's
8955                  * attribute.
8956                  */
8957                 if (state == IF_STATE_END) {
8958                         ret = -EINVAL;
8959                         if (kernel && event->attr.exclude_kernel)
8960                                 goto fail;
8961
8962                         /*
8963                          * ACTION "filter" must have a non-zero length region
8964                          * specified.
8965                          */
8966                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8967                             !filter->size)
8968                                 goto fail;
8969
8970                         if (!kernel) {
8971                                 if (!filename)
8972                                         goto fail;
8973
8974                                 /*
8975                                  * For now, we only support file-based filters
8976                                  * in per-task events; doing so for CPU-wide
8977                                  * events requires additional context switching
8978                                  * trickery, since same object code will be
8979                                  * mapped at different virtual addresses in
8980                                  * different processes.
8981                                  */
8982                                 ret = -EOPNOTSUPP;
8983                                 if (!event->ctx->task)
8984                                         goto fail_free_name;
8985
8986                                 /* look up the path and grab its inode */
8987                                 ret = kern_path(filename, LOOKUP_FOLLOW,
8988                                                 &filter->path);
8989                                 if (ret)
8990                                         goto fail_free_name;
8991
8992                                 kfree(filename);
8993                                 filename = NULL;
8994
8995                                 ret = -EINVAL;
8996                                 if (!filter->path.dentry ||
8997                                     !S_ISREG(d_inode(filter->path.dentry)
8998                                              ->i_mode))
8999                                         goto fail;
9000
9001                                 event->addr_filters.nr_file_filters++;
9002                         }
9003
9004                         /* ready to consume more filters */
9005                         state = IF_STATE_ACTION;
9006                         filter = NULL;
9007                 }
9008         }
9009
9010         if (state != IF_STATE_ACTION)
9011                 goto fail;
9012
9013         kfree(orig);
9014
9015         return 0;
9016
9017 fail_free_name:
9018         kfree(filename);
9019 fail:
9020         free_filters_list(filters);
9021         kfree(orig);
9022
9023         return ret;
9024 }
9025
9026 static int
9027 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9028 {
9029         LIST_HEAD(filters);
9030         int ret;
9031
9032         /*
9033          * Since this is called in perf_ioctl() path, we're already holding
9034          * ctx::mutex.
9035          */
9036         lockdep_assert_held(&event->ctx->mutex);
9037
9038         if (WARN_ON_ONCE(event->parent))
9039                 return -EINVAL;
9040
9041         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9042         if (ret)
9043                 goto fail_clear_files;
9044
9045         ret = event->pmu->addr_filters_validate(&filters);
9046         if (ret)
9047                 goto fail_free_filters;
9048
9049         /* remove existing filters, if any */
9050         perf_addr_filters_splice(event, &filters);
9051
9052         /* install new filters */
9053         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9054
9055         return ret;
9056
9057 fail_free_filters:
9058         free_filters_list(&filters);
9059
9060 fail_clear_files:
9061         event->addr_filters.nr_file_filters = 0;
9062
9063         return ret;
9064 }
9065
9066 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9067 {
9068         int ret = -EINVAL;
9069         char *filter_str;
9070
9071         filter_str = strndup_user(arg, PAGE_SIZE);
9072         if (IS_ERR(filter_str))
9073                 return PTR_ERR(filter_str);
9074
9075 #ifdef CONFIG_EVENT_TRACING
9076         if (perf_event_is_tracing(event)) {
9077                 struct perf_event_context *ctx = event->ctx;
9078
9079                 /*
9080                  * Beware, here be dragons!!
9081                  *
9082                  * the tracepoint muck will deadlock against ctx->mutex, but
9083                  * the tracepoint stuff does not actually need it. So
9084                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9085                  * already have a reference on ctx.
9086                  *
9087                  * This can result in event getting moved to a different ctx,
9088                  * but that does not affect the tracepoint state.
9089                  */
9090                 mutex_unlock(&ctx->mutex);
9091                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9092                 mutex_lock(&ctx->mutex);
9093         } else
9094 #endif
9095         if (has_addr_filter(event))
9096                 ret = perf_event_set_addr_filter(event, filter_str);
9097
9098         kfree(filter_str);
9099         return ret;
9100 }
9101
9102 /*
9103  * hrtimer based swevent callback
9104  */
9105
9106 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9107 {
9108         enum hrtimer_restart ret = HRTIMER_RESTART;
9109         struct perf_sample_data data;
9110         struct pt_regs *regs;
9111         struct perf_event *event;
9112         u64 period;
9113
9114         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9115
9116         if (event->state != PERF_EVENT_STATE_ACTIVE)
9117                 return HRTIMER_NORESTART;
9118
9119         event->pmu->read(event);
9120
9121         perf_sample_data_init(&data, 0, event->hw.last_period);
9122         regs = get_irq_regs();
9123
9124         if (regs && !perf_exclude_event(event, regs)) {
9125                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9126                         if (__perf_event_overflow(event, 1, &data, regs))
9127                                 ret = HRTIMER_NORESTART;
9128         }
9129
9130         period = max_t(u64, 10000, event->hw.sample_period);
9131         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9132
9133         return ret;
9134 }
9135
9136 static void perf_swevent_start_hrtimer(struct perf_event *event)
9137 {
9138         struct hw_perf_event *hwc = &event->hw;
9139         s64 period;
9140
9141         if (!is_sampling_event(event))
9142                 return;
9143
9144         period = local64_read(&hwc->period_left);
9145         if (period) {
9146                 if (period < 0)
9147                         period = 10000;
9148
9149                 local64_set(&hwc->period_left, 0);
9150         } else {
9151                 period = max_t(u64, 10000, hwc->sample_period);
9152         }
9153         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9154                       HRTIMER_MODE_REL_PINNED);
9155 }
9156
9157 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9158 {
9159         struct hw_perf_event *hwc = &event->hw;
9160
9161         if (is_sampling_event(event)) {
9162                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9163                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9164
9165                 hrtimer_cancel(&hwc->hrtimer);
9166         }
9167 }
9168
9169 static void perf_swevent_init_hrtimer(struct perf_event *event)
9170 {
9171         struct hw_perf_event *hwc = &event->hw;
9172
9173         if (!is_sampling_event(event))
9174                 return;
9175
9176         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9177         hwc->hrtimer.function = perf_swevent_hrtimer;
9178
9179         /*
9180          * Since hrtimers have a fixed rate, we can do a static freq->period
9181          * mapping and avoid the whole period adjust feedback stuff.
9182          */
9183         if (event->attr.freq) {
9184                 long freq = event->attr.sample_freq;
9185
9186                 event->attr.sample_period = NSEC_PER_SEC / freq;
9187                 hwc->sample_period = event->attr.sample_period;
9188                 local64_set(&hwc->period_left, hwc->sample_period);
9189                 hwc->last_period = hwc->sample_period;
9190                 event->attr.freq = 0;
9191         }
9192 }
9193
9194 /*
9195  * Software event: cpu wall time clock
9196  */
9197
9198 static void cpu_clock_event_update(struct perf_event *event)
9199 {
9200         s64 prev;
9201         u64 now;
9202
9203         now = local_clock();
9204         prev = local64_xchg(&event->hw.prev_count, now);
9205         local64_add(now - prev, &event->count);
9206 }
9207
9208 static void cpu_clock_event_start(struct perf_event *event, int flags)
9209 {
9210         local64_set(&event->hw.prev_count, local_clock());
9211         perf_swevent_start_hrtimer(event);
9212 }
9213
9214 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9215 {
9216         perf_swevent_cancel_hrtimer(event);
9217         cpu_clock_event_update(event);
9218 }
9219
9220 static int cpu_clock_event_add(struct perf_event *event, int flags)
9221 {
9222         if (flags & PERF_EF_START)
9223                 cpu_clock_event_start(event, flags);
9224         perf_event_update_userpage(event);
9225
9226         return 0;
9227 }
9228
9229 static void cpu_clock_event_del(struct perf_event *event, int flags)
9230 {
9231         cpu_clock_event_stop(event, flags);
9232 }
9233
9234 static void cpu_clock_event_read(struct perf_event *event)
9235 {
9236         cpu_clock_event_update(event);
9237 }
9238
9239 static int cpu_clock_event_init(struct perf_event *event)
9240 {
9241         if (event->attr.type != PERF_TYPE_SOFTWARE)
9242                 return -ENOENT;
9243
9244         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9245                 return -ENOENT;
9246
9247         /*
9248          * no branch sampling for software events
9249          */
9250         if (has_branch_stack(event))
9251                 return -EOPNOTSUPP;
9252
9253         perf_swevent_init_hrtimer(event);
9254
9255         return 0;
9256 }
9257
9258 static struct pmu perf_cpu_clock = {
9259         .task_ctx_nr    = perf_sw_context,
9260
9261         .capabilities   = PERF_PMU_CAP_NO_NMI,
9262
9263         .event_init     = cpu_clock_event_init,
9264         .add            = cpu_clock_event_add,
9265         .del            = cpu_clock_event_del,
9266         .start          = cpu_clock_event_start,
9267         .stop           = cpu_clock_event_stop,
9268         .read           = cpu_clock_event_read,
9269 };
9270
9271 /*
9272  * Software event: task time clock
9273  */
9274
9275 static void task_clock_event_update(struct perf_event *event, u64 now)
9276 {
9277         u64 prev;
9278         s64 delta;
9279
9280         prev = local64_xchg(&event->hw.prev_count, now);
9281         delta = now - prev;
9282         local64_add(delta, &event->count);
9283 }
9284
9285 static void task_clock_event_start(struct perf_event *event, int flags)
9286 {
9287         local64_set(&event->hw.prev_count, event->ctx->time);
9288         perf_swevent_start_hrtimer(event);
9289 }
9290
9291 static void task_clock_event_stop(struct perf_event *event, int flags)
9292 {
9293         perf_swevent_cancel_hrtimer(event);
9294         task_clock_event_update(event, event->ctx->time);
9295 }
9296
9297 static int task_clock_event_add(struct perf_event *event, int flags)
9298 {
9299         if (flags & PERF_EF_START)
9300                 task_clock_event_start(event, flags);
9301         perf_event_update_userpage(event);
9302
9303         return 0;
9304 }
9305
9306 static void task_clock_event_del(struct perf_event *event, int flags)
9307 {
9308         task_clock_event_stop(event, PERF_EF_UPDATE);
9309 }
9310
9311 static void task_clock_event_read(struct perf_event *event)
9312 {
9313         u64 now = perf_clock();
9314         u64 delta = now - event->ctx->timestamp;
9315         u64 time = event->ctx->time + delta;
9316
9317         task_clock_event_update(event, time);
9318 }
9319
9320 static int task_clock_event_init(struct perf_event *event)
9321 {
9322         if (event->attr.type != PERF_TYPE_SOFTWARE)
9323                 return -ENOENT;
9324
9325         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9326                 return -ENOENT;
9327
9328         /*
9329          * no branch sampling for software events
9330          */
9331         if (has_branch_stack(event))
9332                 return -EOPNOTSUPP;
9333
9334         perf_swevent_init_hrtimer(event);
9335
9336         return 0;
9337 }
9338
9339 static struct pmu perf_task_clock = {
9340         .task_ctx_nr    = perf_sw_context,
9341
9342         .capabilities   = PERF_PMU_CAP_NO_NMI,
9343
9344         .event_init     = task_clock_event_init,
9345         .add            = task_clock_event_add,
9346         .del            = task_clock_event_del,
9347         .start          = task_clock_event_start,
9348         .stop           = task_clock_event_stop,
9349         .read           = task_clock_event_read,
9350 };
9351
9352 static void perf_pmu_nop_void(struct pmu *pmu)
9353 {
9354 }
9355
9356 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9357 {
9358 }
9359
9360 static int perf_pmu_nop_int(struct pmu *pmu)
9361 {
9362         return 0;
9363 }
9364
9365 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9366
9367 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9368 {
9369         __this_cpu_write(nop_txn_flags, flags);
9370
9371         if (flags & ~PERF_PMU_TXN_ADD)
9372                 return;
9373
9374         perf_pmu_disable(pmu);
9375 }
9376
9377 static int perf_pmu_commit_txn(struct pmu *pmu)
9378 {
9379         unsigned int flags = __this_cpu_read(nop_txn_flags);
9380
9381         __this_cpu_write(nop_txn_flags, 0);
9382
9383         if (flags & ~PERF_PMU_TXN_ADD)
9384                 return 0;
9385
9386         perf_pmu_enable(pmu);
9387         return 0;
9388 }
9389
9390 static void perf_pmu_cancel_txn(struct pmu *pmu)
9391 {
9392         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9393
9394         __this_cpu_write(nop_txn_flags, 0);
9395
9396         if (flags & ~PERF_PMU_TXN_ADD)
9397                 return;
9398
9399         perf_pmu_enable(pmu);
9400 }
9401
9402 static int perf_event_idx_default(struct perf_event *event)
9403 {
9404         return 0;
9405 }
9406
9407 /*
9408  * Ensures all contexts with the same task_ctx_nr have the same
9409  * pmu_cpu_context too.
9410  */
9411 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9412 {
9413         struct pmu *pmu;
9414
9415         if (ctxn < 0)
9416                 return NULL;
9417
9418         list_for_each_entry(pmu, &pmus, entry) {
9419                 if (pmu->task_ctx_nr == ctxn)
9420                         return pmu->pmu_cpu_context;
9421         }
9422
9423         return NULL;
9424 }
9425
9426 static void free_pmu_context(struct pmu *pmu)
9427 {
9428         /*
9429          * Static contexts such as perf_sw_context have a global lifetime
9430          * and may be shared between different PMUs. Avoid freeing them
9431          * when a single PMU is going away.
9432          */
9433         if (pmu->task_ctx_nr > perf_invalid_context)
9434                 return;
9435
9436         free_percpu(pmu->pmu_cpu_context);
9437 }
9438
9439 /*
9440  * Let userspace know that this PMU supports address range filtering:
9441  */
9442 static ssize_t nr_addr_filters_show(struct device *dev,
9443                                     struct device_attribute *attr,
9444                                     char *page)
9445 {
9446         struct pmu *pmu = dev_get_drvdata(dev);
9447
9448         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9449 }
9450 DEVICE_ATTR_RO(nr_addr_filters);
9451
9452 static struct idr pmu_idr;
9453
9454 static ssize_t
9455 type_show(struct device *dev, struct device_attribute *attr, char *page)
9456 {
9457         struct pmu *pmu = dev_get_drvdata(dev);
9458
9459         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9460 }
9461 static DEVICE_ATTR_RO(type);
9462
9463 static ssize_t
9464 perf_event_mux_interval_ms_show(struct device *dev,
9465                                 struct device_attribute *attr,
9466                                 char *page)
9467 {
9468         struct pmu *pmu = dev_get_drvdata(dev);
9469
9470         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9471 }
9472
9473 static DEFINE_MUTEX(mux_interval_mutex);
9474
9475 static ssize_t
9476 perf_event_mux_interval_ms_store(struct device *dev,
9477                                  struct device_attribute *attr,
9478                                  const char *buf, size_t count)
9479 {
9480         struct pmu *pmu = dev_get_drvdata(dev);
9481         int timer, cpu, ret;
9482
9483         ret = kstrtoint(buf, 0, &timer);
9484         if (ret)
9485                 return ret;
9486
9487         if (timer < 1)
9488                 return -EINVAL;
9489
9490         /* same value, noting to do */
9491         if (timer == pmu->hrtimer_interval_ms)
9492                 return count;
9493
9494         mutex_lock(&mux_interval_mutex);
9495         pmu->hrtimer_interval_ms = timer;
9496
9497         /* update all cpuctx for this PMU */
9498         cpus_read_lock();
9499         for_each_online_cpu(cpu) {
9500                 struct perf_cpu_context *cpuctx;
9501                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9502                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9503
9504                 cpu_function_call(cpu,
9505                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9506         }
9507         cpus_read_unlock();
9508         mutex_unlock(&mux_interval_mutex);
9509
9510         return count;
9511 }
9512 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9513
9514 static struct attribute *pmu_dev_attrs[] = {
9515         &dev_attr_type.attr,
9516         &dev_attr_perf_event_mux_interval_ms.attr,
9517         NULL,
9518 };
9519 ATTRIBUTE_GROUPS(pmu_dev);
9520
9521 static int pmu_bus_running;
9522 static struct bus_type pmu_bus = {
9523         .name           = "event_source",
9524         .dev_groups     = pmu_dev_groups,
9525 };
9526
9527 static void pmu_dev_release(struct device *dev)
9528 {
9529         kfree(dev);
9530 }
9531
9532 static int pmu_dev_alloc(struct pmu *pmu)
9533 {
9534         int ret = -ENOMEM;
9535
9536         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9537         if (!pmu->dev)
9538                 goto out;
9539
9540         pmu->dev->groups = pmu->attr_groups;
9541         device_initialize(pmu->dev);
9542         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9543         if (ret)
9544                 goto free_dev;
9545
9546         dev_set_drvdata(pmu->dev, pmu);
9547         pmu->dev->bus = &pmu_bus;
9548         pmu->dev->release = pmu_dev_release;
9549         ret = device_add(pmu->dev);
9550         if (ret)
9551                 goto free_dev;
9552
9553         /* For PMUs with address filters, throw in an extra attribute: */
9554         if (pmu->nr_addr_filters)
9555                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9556
9557         if (ret)
9558                 goto del_dev;
9559
9560 out:
9561         return ret;
9562
9563 del_dev:
9564         device_del(pmu->dev);
9565
9566 free_dev:
9567         put_device(pmu->dev);
9568         goto out;
9569 }
9570
9571 static struct lock_class_key cpuctx_mutex;
9572 static struct lock_class_key cpuctx_lock;
9573
9574 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9575 {
9576         int cpu, ret;
9577
9578         mutex_lock(&pmus_lock);
9579         ret = -ENOMEM;
9580         pmu->pmu_disable_count = alloc_percpu(int);
9581         if (!pmu->pmu_disable_count)
9582                 goto unlock;
9583
9584         pmu->type = -1;
9585         if (!name)
9586                 goto skip_type;
9587         pmu->name = name;
9588
9589         if (type < 0) {
9590                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9591                 if (type < 0) {
9592                         ret = type;
9593                         goto free_pdc;
9594                 }
9595         }
9596         pmu->type = type;
9597
9598         if (pmu_bus_running) {
9599                 ret = pmu_dev_alloc(pmu);
9600                 if (ret)
9601                         goto free_idr;
9602         }
9603
9604 skip_type:
9605         if (pmu->task_ctx_nr == perf_hw_context) {
9606                 static int hw_context_taken = 0;
9607
9608                 /*
9609                  * Other than systems with heterogeneous CPUs, it never makes
9610                  * sense for two PMUs to share perf_hw_context. PMUs which are
9611                  * uncore must use perf_invalid_context.
9612                  */
9613                 if (WARN_ON_ONCE(hw_context_taken &&
9614                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9615                         pmu->task_ctx_nr = perf_invalid_context;
9616
9617                 hw_context_taken = 1;
9618         }
9619
9620         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9621         if (pmu->pmu_cpu_context)
9622                 goto got_cpu_context;
9623
9624         ret = -ENOMEM;
9625         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9626         if (!pmu->pmu_cpu_context)
9627                 goto free_dev;
9628
9629         for_each_possible_cpu(cpu) {
9630                 struct perf_cpu_context *cpuctx;
9631
9632                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9633                 __perf_event_init_context(&cpuctx->ctx);
9634                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9635                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9636                 cpuctx->ctx.pmu = pmu;
9637                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9638
9639                 __perf_mux_hrtimer_init(cpuctx, cpu);
9640         }
9641
9642 got_cpu_context:
9643         if (!pmu->start_txn) {
9644                 if (pmu->pmu_enable) {
9645                         /*
9646                          * If we have pmu_enable/pmu_disable calls, install
9647                          * transaction stubs that use that to try and batch
9648                          * hardware accesses.
9649                          */
9650                         pmu->start_txn  = perf_pmu_start_txn;
9651                         pmu->commit_txn = perf_pmu_commit_txn;
9652                         pmu->cancel_txn = perf_pmu_cancel_txn;
9653                 } else {
9654                         pmu->start_txn  = perf_pmu_nop_txn;
9655                         pmu->commit_txn = perf_pmu_nop_int;
9656                         pmu->cancel_txn = perf_pmu_nop_void;
9657                 }
9658         }
9659
9660         if (!pmu->pmu_enable) {
9661                 pmu->pmu_enable  = perf_pmu_nop_void;
9662                 pmu->pmu_disable = perf_pmu_nop_void;
9663         }
9664
9665         if (!pmu->event_idx)
9666                 pmu->event_idx = perf_event_idx_default;
9667
9668         list_add_rcu(&pmu->entry, &pmus);
9669         atomic_set(&pmu->exclusive_cnt, 0);
9670         ret = 0;
9671 unlock:
9672         mutex_unlock(&pmus_lock);
9673
9674         return ret;
9675
9676 free_dev:
9677         device_del(pmu->dev);
9678         put_device(pmu->dev);
9679
9680 free_idr:
9681         if (pmu->type >= PERF_TYPE_MAX)
9682                 idr_remove(&pmu_idr, pmu->type);
9683
9684 free_pdc:
9685         free_percpu(pmu->pmu_disable_count);
9686         goto unlock;
9687 }
9688 EXPORT_SYMBOL_GPL(perf_pmu_register);
9689
9690 void perf_pmu_unregister(struct pmu *pmu)
9691 {
9692         mutex_lock(&pmus_lock);
9693         list_del_rcu(&pmu->entry);
9694
9695         /*
9696          * We dereference the pmu list under both SRCU and regular RCU, so
9697          * synchronize against both of those.
9698          */
9699         synchronize_srcu(&pmus_srcu);
9700         synchronize_rcu();
9701
9702         free_percpu(pmu->pmu_disable_count);
9703         if (pmu->type >= PERF_TYPE_MAX)
9704                 idr_remove(&pmu_idr, pmu->type);
9705         if (pmu_bus_running) {
9706                 if (pmu->nr_addr_filters)
9707                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9708                 device_del(pmu->dev);
9709                 put_device(pmu->dev);
9710         }
9711         free_pmu_context(pmu);
9712         mutex_unlock(&pmus_lock);
9713 }
9714 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9715
9716 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9717 {
9718         struct perf_event_context *ctx = NULL;
9719         int ret;
9720
9721         if (!try_module_get(pmu->module))
9722                 return -ENODEV;
9723
9724         /*
9725          * A number of pmu->event_init() methods iterate the sibling_list to,
9726          * for example, validate if the group fits on the PMU. Therefore,
9727          * if this is a sibling event, acquire the ctx->mutex to protect
9728          * the sibling_list.
9729          */
9730         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9731                 /*
9732                  * This ctx->mutex can nest when we're called through
9733                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9734                  */
9735                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9736                                                  SINGLE_DEPTH_NESTING);
9737                 BUG_ON(!ctx);
9738         }
9739
9740         event->pmu = pmu;
9741         ret = pmu->event_init(event);
9742
9743         if (ctx)
9744                 perf_event_ctx_unlock(event->group_leader, ctx);
9745
9746         if (ret)
9747                 module_put(pmu->module);
9748
9749         return ret;
9750 }
9751
9752 static struct pmu *perf_init_event(struct perf_event *event)
9753 {
9754         struct pmu *pmu;
9755         int idx;
9756         int ret;
9757
9758         idx = srcu_read_lock(&pmus_srcu);
9759
9760         /* Try parent's PMU first: */
9761         if (event->parent && event->parent->pmu) {
9762                 pmu = event->parent->pmu;
9763                 ret = perf_try_init_event(pmu, event);
9764                 if (!ret)
9765                         goto unlock;
9766         }
9767
9768         rcu_read_lock();
9769         pmu = idr_find(&pmu_idr, event->attr.type);
9770         rcu_read_unlock();
9771         if (pmu) {
9772                 ret = perf_try_init_event(pmu, event);
9773                 if (ret)
9774                         pmu = ERR_PTR(ret);
9775                 goto unlock;
9776         }
9777
9778         list_for_each_entry_rcu(pmu, &pmus, entry) {
9779                 ret = perf_try_init_event(pmu, event);
9780                 if (!ret)
9781                         goto unlock;
9782
9783                 if (ret != -ENOENT) {
9784                         pmu = ERR_PTR(ret);
9785                         goto unlock;
9786                 }
9787         }
9788         pmu = ERR_PTR(-ENOENT);
9789 unlock:
9790         srcu_read_unlock(&pmus_srcu, idx);
9791
9792         return pmu;
9793 }
9794
9795 static void attach_sb_event(struct perf_event *event)
9796 {
9797         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9798
9799         raw_spin_lock(&pel->lock);
9800         list_add_rcu(&event->sb_list, &pel->list);
9801         raw_spin_unlock(&pel->lock);
9802 }
9803
9804 /*
9805  * We keep a list of all !task (and therefore per-cpu) events
9806  * that need to receive side-band records.
9807  *
9808  * This avoids having to scan all the various PMU per-cpu contexts
9809  * looking for them.
9810  */
9811 static void account_pmu_sb_event(struct perf_event *event)
9812 {
9813         if (is_sb_event(event))
9814                 attach_sb_event(event);
9815 }
9816
9817 static void account_event_cpu(struct perf_event *event, int cpu)
9818 {
9819         if (event->parent)
9820                 return;
9821
9822         if (is_cgroup_event(event))
9823                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9824 }
9825
9826 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9827 static void account_freq_event_nohz(void)
9828 {
9829 #ifdef CONFIG_NO_HZ_FULL
9830         /* Lock so we don't race with concurrent unaccount */
9831         spin_lock(&nr_freq_lock);
9832         if (atomic_inc_return(&nr_freq_events) == 1)
9833                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9834         spin_unlock(&nr_freq_lock);
9835 #endif
9836 }
9837
9838 static void account_freq_event(void)
9839 {
9840         if (tick_nohz_full_enabled())
9841                 account_freq_event_nohz();
9842         else
9843                 atomic_inc(&nr_freq_events);
9844 }
9845
9846
9847 static void account_event(struct perf_event *event)
9848 {
9849         bool inc = false;
9850
9851         if (event->parent)
9852                 return;
9853
9854         if (event->attach_state & PERF_ATTACH_TASK)
9855                 inc = true;
9856         if (event->attr.mmap || event->attr.mmap_data)
9857                 atomic_inc(&nr_mmap_events);
9858         if (event->attr.comm)
9859                 atomic_inc(&nr_comm_events);
9860         if (event->attr.namespaces)
9861                 atomic_inc(&nr_namespaces_events);
9862         if (event->attr.task)
9863                 atomic_inc(&nr_task_events);
9864         if (event->attr.freq)
9865                 account_freq_event();
9866         if (event->attr.context_switch) {
9867                 atomic_inc(&nr_switch_events);
9868                 inc = true;
9869         }
9870         if (has_branch_stack(event))
9871                 inc = true;
9872         if (is_cgroup_event(event))
9873                 inc = true;
9874
9875         if (inc) {
9876                 /*
9877                  * We need the mutex here because static_branch_enable()
9878                  * must complete *before* the perf_sched_count increment
9879                  * becomes visible.
9880                  */
9881                 if (atomic_inc_not_zero(&perf_sched_count))
9882                         goto enabled;
9883
9884                 mutex_lock(&perf_sched_mutex);
9885                 if (!atomic_read(&perf_sched_count)) {
9886                         static_branch_enable(&perf_sched_events);
9887                         /*
9888                          * Guarantee that all CPUs observe they key change and
9889                          * call the perf scheduling hooks before proceeding to
9890                          * install events that need them.
9891                          */
9892                         synchronize_sched();
9893                 }
9894                 /*
9895                  * Now that we have waited for the sync_sched(), allow further
9896                  * increments to by-pass the mutex.
9897                  */
9898                 atomic_inc(&perf_sched_count);
9899                 mutex_unlock(&perf_sched_mutex);
9900         }
9901 enabled:
9902
9903         account_event_cpu(event, event->cpu);
9904
9905         account_pmu_sb_event(event);
9906 }
9907
9908 /*
9909  * Allocate and initialize an event structure
9910  */
9911 static struct perf_event *
9912 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9913                  struct task_struct *task,
9914                  struct perf_event *group_leader,
9915                  struct perf_event *parent_event,
9916                  perf_overflow_handler_t overflow_handler,
9917                  void *context, int cgroup_fd)
9918 {
9919         struct pmu *pmu;
9920         struct perf_event *event;
9921         struct hw_perf_event *hwc;
9922         long err = -EINVAL;
9923
9924         if ((unsigned)cpu >= nr_cpu_ids) {
9925                 if (!task || cpu != -1)
9926                         return ERR_PTR(-EINVAL);
9927         }
9928
9929         event = kzalloc(sizeof(*event), GFP_KERNEL);
9930         if (!event)
9931                 return ERR_PTR(-ENOMEM);
9932
9933         /*
9934          * Single events are their own group leaders, with an
9935          * empty sibling list:
9936          */
9937         if (!group_leader)
9938                 group_leader = event;
9939
9940         mutex_init(&event->child_mutex);
9941         INIT_LIST_HEAD(&event->child_list);
9942
9943         INIT_LIST_HEAD(&event->event_entry);
9944         INIT_LIST_HEAD(&event->sibling_list);
9945         INIT_LIST_HEAD(&event->active_list);
9946         init_event_group(event);
9947         INIT_LIST_HEAD(&event->rb_entry);
9948         INIT_LIST_HEAD(&event->active_entry);
9949         INIT_LIST_HEAD(&event->addr_filters.list);
9950         INIT_HLIST_NODE(&event->hlist_entry);
9951
9952
9953         init_waitqueue_head(&event->waitq);
9954         init_irq_work(&event->pending, perf_pending_event);
9955
9956         mutex_init(&event->mmap_mutex);
9957         raw_spin_lock_init(&event->addr_filters.lock);
9958
9959         atomic_long_set(&event->refcount, 1);
9960         event->cpu              = cpu;
9961         event->attr             = *attr;
9962         event->group_leader     = group_leader;
9963         event->pmu              = NULL;
9964         event->oncpu            = -1;
9965
9966         event->parent           = parent_event;
9967
9968         event->ns               = get_pid_ns(task_active_pid_ns(current));
9969         event->id               = atomic64_inc_return(&perf_event_id);
9970
9971         event->state            = PERF_EVENT_STATE_INACTIVE;
9972
9973         if (task) {
9974                 event->attach_state = PERF_ATTACH_TASK;
9975                 /*
9976                  * XXX pmu::event_init needs to know what task to account to
9977                  * and we cannot use the ctx information because we need the
9978                  * pmu before we get a ctx.
9979                  */
9980                 get_task_struct(task);
9981                 event->hw.target = task;
9982         }
9983
9984         event->clock = &local_clock;
9985         if (parent_event)
9986                 event->clock = parent_event->clock;
9987
9988         if (!overflow_handler && parent_event) {
9989                 overflow_handler = parent_event->overflow_handler;
9990                 context = parent_event->overflow_handler_context;
9991 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9992                 if (overflow_handler == bpf_overflow_handler) {
9993                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9994
9995                         if (IS_ERR(prog)) {
9996                                 err = PTR_ERR(prog);
9997                                 goto err_ns;
9998                         }
9999                         event->prog = prog;
10000                         event->orig_overflow_handler =
10001                                 parent_event->orig_overflow_handler;
10002                 }
10003 #endif
10004         }
10005
10006         if (overflow_handler) {
10007                 event->overflow_handler = overflow_handler;
10008                 event->overflow_handler_context = context;
10009         } else if (is_write_backward(event)){
10010                 event->overflow_handler = perf_event_output_backward;
10011                 event->overflow_handler_context = NULL;
10012         } else {
10013                 event->overflow_handler = perf_event_output_forward;
10014                 event->overflow_handler_context = NULL;
10015         }
10016
10017         perf_event__state_init(event);
10018
10019         pmu = NULL;
10020
10021         hwc = &event->hw;
10022         hwc->sample_period = attr->sample_period;
10023         if (attr->freq && attr->sample_freq)
10024                 hwc->sample_period = 1;
10025         hwc->last_period = hwc->sample_period;
10026
10027         local64_set(&hwc->period_left, hwc->sample_period);
10028
10029         /*
10030          * We currently do not support PERF_SAMPLE_READ on inherited events.
10031          * See perf_output_read().
10032          */
10033         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10034                 goto err_ns;
10035
10036         if (!has_branch_stack(event))
10037                 event->attr.branch_sample_type = 0;
10038
10039         if (cgroup_fd != -1) {
10040                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10041                 if (err)
10042                         goto err_ns;
10043         }
10044
10045         pmu = perf_init_event(event);
10046         if (IS_ERR(pmu)) {
10047                 err = PTR_ERR(pmu);
10048                 goto err_ns;
10049         }
10050
10051         err = exclusive_event_init(event);
10052         if (err)
10053                 goto err_pmu;
10054
10055         if (has_addr_filter(event)) {
10056                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10057                                                    sizeof(unsigned long),
10058                                                    GFP_KERNEL);
10059                 if (!event->addr_filters_offs) {
10060                         err = -ENOMEM;
10061                         goto err_per_task;
10062                 }
10063
10064                 /* force hw sync on the address filters */
10065                 event->addr_filters_gen = 1;
10066         }
10067
10068         if (!event->parent) {
10069                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10070                         err = get_callchain_buffers(attr->sample_max_stack);
10071                         if (err)
10072                                 goto err_addr_filters;
10073                 }
10074         }
10075
10076         /* symmetric to unaccount_event() in _free_event() */
10077         account_event(event);
10078
10079         return event;
10080
10081 err_addr_filters:
10082         kfree(event->addr_filters_offs);
10083
10084 err_per_task:
10085         exclusive_event_destroy(event);
10086
10087 err_pmu:
10088         if (event->destroy)
10089                 event->destroy(event);
10090         module_put(pmu->module);
10091 err_ns:
10092         if (is_cgroup_event(event))
10093                 perf_detach_cgroup(event);
10094         if (event->ns)
10095                 put_pid_ns(event->ns);
10096         if (event->hw.target)
10097                 put_task_struct(event->hw.target);
10098         kfree(event);
10099
10100         return ERR_PTR(err);
10101 }
10102
10103 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10104                           struct perf_event_attr *attr)
10105 {
10106         u32 size;
10107         int ret;
10108
10109         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10110                 return -EFAULT;
10111
10112         /*
10113          * zero the full structure, so that a short copy will be nice.
10114          */
10115         memset(attr, 0, sizeof(*attr));
10116
10117         ret = get_user(size, &uattr->size);
10118         if (ret)
10119                 return ret;
10120
10121         if (size > PAGE_SIZE)   /* silly large */
10122                 goto err_size;
10123
10124         if (!size)              /* abi compat */
10125                 size = PERF_ATTR_SIZE_VER0;
10126
10127         if (size < PERF_ATTR_SIZE_VER0)
10128                 goto err_size;
10129
10130         /*
10131          * If we're handed a bigger struct than we know of,
10132          * ensure all the unknown bits are 0 - i.e. new
10133          * user-space does not rely on any kernel feature
10134          * extensions we dont know about yet.
10135          */
10136         if (size > sizeof(*attr)) {
10137                 unsigned char __user *addr;
10138                 unsigned char __user *end;
10139                 unsigned char val;
10140
10141                 addr = (void __user *)uattr + sizeof(*attr);
10142                 end  = (void __user *)uattr + size;
10143
10144                 for (; addr < end; addr++) {
10145                         ret = get_user(val, addr);
10146                         if (ret)
10147                                 return ret;
10148                         if (val)
10149                                 goto err_size;
10150                 }
10151                 size = sizeof(*attr);
10152         }
10153
10154         ret = copy_from_user(attr, uattr, size);
10155         if (ret)
10156                 return -EFAULT;
10157
10158         attr->size = size;
10159
10160         if (attr->__reserved_1)
10161                 return -EINVAL;
10162
10163         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10164                 return -EINVAL;
10165
10166         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10167                 return -EINVAL;
10168
10169         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10170                 u64 mask = attr->branch_sample_type;
10171
10172                 /* only using defined bits */
10173                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10174                         return -EINVAL;
10175
10176                 /* at least one branch bit must be set */
10177                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10178                         return -EINVAL;
10179
10180                 /* propagate priv level, when not set for branch */
10181                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10182
10183                         /* exclude_kernel checked on syscall entry */
10184                         if (!attr->exclude_kernel)
10185                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10186
10187                         if (!attr->exclude_user)
10188                                 mask |= PERF_SAMPLE_BRANCH_USER;
10189
10190                         if (!attr->exclude_hv)
10191                                 mask |= PERF_SAMPLE_BRANCH_HV;
10192                         /*
10193                          * adjust user setting (for HW filter setup)
10194                          */
10195                         attr->branch_sample_type = mask;
10196                 }
10197                 /* privileged levels capture (kernel, hv): check permissions */
10198                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10199                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10200                         return -EACCES;
10201         }
10202
10203         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10204                 ret = perf_reg_validate(attr->sample_regs_user);
10205                 if (ret)
10206                         return ret;
10207         }
10208
10209         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10210                 if (!arch_perf_have_user_stack_dump())
10211                         return -ENOSYS;
10212
10213                 /*
10214                  * We have __u32 type for the size, but so far
10215                  * we can only use __u16 as maximum due to the
10216                  * __u16 sample size limit.
10217                  */
10218                 if (attr->sample_stack_user >= USHRT_MAX)
10219                         return -EINVAL;
10220                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10221                         return -EINVAL;
10222         }
10223
10224         if (!attr->sample_max_stack)
10225                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10226
10227         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10228                 ret = perf_reg_validate(attr->sample_regs_intr);
10229 out:
10230         return ret;
10231
10232 err_size:
10233         put_user(sizeof(*attr), &uattr->size);
10234         ret = -E2BIG;
10235         goto out;
10236 }
10237
10238 static int
10239 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10240 {
10241         struct ring_buffer *rb = NULL;
10242         int ret = -EINVAL;
10243
10244         if (!output_event)
10245                 goto set;
10246
10247         /* don't allow circular references */
10248         if (event == output_event)
10249                 goto out;
10250
10251         /*
10252          * Don't allow cross-cpu buffers
10253          */
10254         if (output_event->cpu != event->cpu)
10255                 goto out;
10256
10257         /*
10258          * If its not a per-cpu rb, it must be the same task.
10259          */
10260         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10261                 goto out;
10262
10263         /*
10264          * Mixing clocks in the same buffer is trouble you don't need.
10265          */
10266         if (output_event->clock != event->clock)
10267                 goto out;
10268
10269         /*
10270          * Either writing ring buffer from beginning or from end.
10271          * Mixing is not allowed.
10272          */
10273         if (is_write_backward(output_event) != is_write_backward(event))
10274                 goto out;
10275
10276         /*
10277          * If both events generate aux data, they must be on the same PMU
10278          */
10279         if (has_aux(event) && has_aux(output_event) &&
10280             event->pmu != output_event->pmu)
10281                 goto out;
10282
10283 set:
10284         mutex_lock(&event->mmap_mutex);
10285         /* Can't redirect output if we've got an active mmap() */
10286         if (atomic_read(&event->mmap_count))
10287                 goto unlock;
10288
10289         if (output_event) {
10290                 /* get the rb we want to redirect to */
10291                 rb = ring_buffer_get(output_event);
10292                 if (!rb)
10293                         goto unlock;
10294         }
10295
10296         ring_buffer_attach(event, rb);
10297
10298         ret = 0;
10299 unlock:
10300         mutex_unlock(&event->mmap_mutex);
10301
10302 out:
10303         return ret;
10304 }
10305
10306 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10307 {
10308         if (b < a)
10309                 swap(a, b);
10310
10311         mutex_lock(a);
10312         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10313 }
10314
10315 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10316 {
10317         bool nmi_safe = false;
10318
10319         switch (clk_id) {
10320         case CLOCK_MONOTONIC:
10321                 event->clock = &ktime_get_mono_fast_ns;
10322                 nmi_safe = true;
10323                 break;
10324
10325         case CLOCK_MONOTONIC_RAW:
10326                 event->clock = &ktime_get_raw_fast_ns;
10327                 nmi_safe = true;
10328                 break;
10329
10330         case CLOCK_REALTIME:
10331                 event->clock = &ktime_get_real_ns;
10332                 break;
10333
10334         case CLOCK_BOOTTIME:
10335                 event->clock = &ktime_get_boot_ns;
10336                 break;
10337
10338         case CLOCK_TAI:
10339                 event->clock = &ktime_get_tai_ns;
10340                 break;
10341
10342         default:
10343                 return -EINVAL;
10344         }
10345
10346         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10347                 return -EINVAL;
10348
10349         return 0;
10350 }
10351
10352 /*
10353  * Variation on perf_event_ctx_lock_nested(), except we take two context
10354  * mutexes.
10355  */
10356 static struct perf_event_context *
10357 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10358                              struct perf_event_context *ctx)
10359 {
10360         struct perf_event_context *gctx;
10361
10362 again:
10363         rcu_read_lock();
10364         gctx = READ_ONCE(group_leader->ctx);
10365         if (!atomic_inc_not_zero(&gctx->refcount)) {
10366                 rcu_read_unlock();
10367                 goto again;
10368         }
10369         rcu_read_unlock();
10370
10371         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10372
10373         if (group_leader->ctx != gctx) {
10374                 mutex_unlock(&ctx->mutex);
10375                 mutex_unlock(&gctx->mutex);
10376                 put_ctx(gctx);
10377                 goto again;
10378         }
10379
10380         return gctx;
10381 }
10382
10383 /**
10384  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10385  *
10386  * @attr_uptr:  event_id type attributes for monitoring/sampling
10387  * @pid:                target pid
10388  * @cpu:                target cpu
10389  * @group_fd:           group leader event fd
10390  */
10391 SYSCALL_DEFINE5(perf_event_open,
10392                 struct perf_event_attr __user *, attr_uptr,
10393                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10394 {
10395         struct perf_event *group_leader = NULL, *output_event = NULL;
10396         struct perf_event *event, *sibling;
10397         struct perf_event_attr attr;
10398         struct perf_event_context *ctx, *uninitialized_var(gctx);
10399         struct file *event_file = NULL;
10400         struct fd group = {NULL, 0};
10401         struct task_struct *task = NULL;
10402         struct pmu *pmu;
10403         int event_fd;
10404         int move_group = 0;
10405         int err;
10406         int f_flags = O_RDWR;
10407         int cgroup_fd = -1;
10408
10409         /* for future expandability... */
10410         if (flags & ~PERF_FLAG_ALL)
10411                 return -EINVAL;
10412
10413         err = perf_copy_attr(attr_uptr, &attr);
10414         if (err)
10415                 return err;
10416
10417         if (!attr.exclude_kernel) {
10418                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10419                         return -EACCES;
10420         }
10421
10422         if (attr.namespaces) {
10423                 if (!capable(CAP_SYS_ADMIN))
10424                         return -EACCES;
10425         }
10426
10427         if (attr.freq) {
10428                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10429                         return -EINVAL;
10430         } else {
10431                 if (attr.sample_period & (1ULL << 63))
10432                         return -EINVAL;
10433         }
10434
10435         /* Only privileged users can get physical addresses */
10436         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10437             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10438                 return -EACCES;
10439
10440         /*
10441          * In cgroup mode, the pid argument is used to pass the fd
10442          * opened to the cgroup directory in cgroupfs. The cpu argument
10443          * designates the cpu on which to monitor threads from that
10444          * cgroup.
10445          */
10446         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10447                 return -EINVAL;
10448
10449         if (flags & PERF_FLAG_FD_CLOEXEC)
10450                 f_flags |= O_CLOEXEC;
10451
10452         event_fd = get_unused_fd_flags(f_flags);
10453         if (event_fd < 0)
10454                 return event_fd;
10455
10456         if (group_fd != -1) {
10457                 err = perf_fget_light(group_fd, &group);
10458                 if (err)
10459                         goto err_fd;
10460                 group_leader = group.file->private_data;
10461                 if (flags & PERF_FLAG_FD_OUTPUT)
10462                         output_event = group_leader;
10463                 if (flags & PERF_FLAG_FD_NO_GROUP)
10464                         group_leader = NULL;
10465         }
10466
10467         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10468                 task = find_lively_task_by_vpid(pid);
10469                 if (IS_ERR(task)) {
10470                         err = PTR_ERR(task);
10471                         goto err_group_fd;
10472                 }
10473         }
10474
10475         if (task && group_leader &&
10476             group_leader->attr.inherit != attr.inherit) {
10477                 err = -EINVAL;
10478                 goto err_task;
10479         }
10480
10481         if (task) {
10482                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10483                 if (err)
10484                         goto err_task;
10485
10486                 /*
10487                  * Reuse ptrace permission checks for now.
10488                  *
10489                  * We must hold cred_guard_mutex across this and any potential
10490                  * perf_install_in_context() call for this new event to
10491                  * serialize against exec() altering our credentials (and the
10492                  * perf_event_exit_task() that could imply).
10493                  */
10494                 err = -EACCES;
10495                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10496                         goto err_cred;
10497         }
10498
10499         if (flags & PERF_FLAG_PID_CGROUP)
10500                 cgroup_fd = pid;
10501
10502         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10503                                  NULL, NULL, cgroup_fd);
10504         if (IS_ERR(event)) {
10505                 err = PTR_ERR(event);
10506                 goto err_cred;
10507         }
10508
10509         if (is_sampling_event(event)) {
10510                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10511                         err = -EOPNOTSUPP;
10512                         goto err_alloc;
10513                 }
10514         }
10515
10516         /*
10517          * Special case software events and allow them to be part of
10518          * any hardware group.
10519          */
10520         pmu = event->pmu;
10521
10522         if (attr.use_clockid) {
10523                 err = perf_event_set_clock(event, attr.clockid);
10524                 if (err)
10525                         goto err_alloc;
10526         }
10527
10528         if (pmu->task_ctx_nr == perf_sw_context)
10529                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10530
10531         if (group_leader) {
10532                 if (is_software_event(event) &&
10533                     !in_software_context(group_leader)) {
10534                         /*
10535                          * If the event is a sw event, but the group_leader
10536                          * is on hw context.
10537                          *
10538                          * Allow the addition of software events to hw
10539                          * groups, this is safe because software events
10540                          * never fail to schedule.
10541                          */
10542                         pmu = group_leader->ctx->pmu;
10543                 } else if (!is_software_event(event) &&
10544                            is_software_event(group_leader) &&
10545                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10546                         /*
10547                          * In case the group is a pure software group, and we
10548                          * try to add a hardware event, move the whole group to
10549                          * the hardware context.
10550                          */
10551                         move_group = 1;
10552                 }
10553         }
10554
10555         /*
10556          * Get the target context (task or percpu):
10557          */
10558         ctx = find_get_context(pmu, task, event);
10559         if (IS_ERR(ctx)) {
10560                 err = PTR_ERR(ctx);
10561                 goto err_alloc;
10562         }
10563
10564         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10565                 err = -EBUSY;
10566                 goto err_context;
10567         }
10568
10569         /*
10570          * Look up the group leader (we will attach this event to it):
10571          */
10572         if (group_leader) {
10573                 err = -EINVAL;
10574
10575                 /*
10576                  * Do not allow a recursive hierarchy (this new sibling
10577                  * becoming part of another group-sibling):
10578                  */
10579                 if (group_leader->group_leader != group_leader)
10580                         goto err_context;
10581
10582                 /* All events in a group should have the same clock */
10583                 if (group_leader->clock != event->clock)
10584                         goto err_context;
10585
10586                 /*
10587                  * Make sure we're both events for the same CPU;
10588                  * grouping events for different CPUs is broken; since
10589                  * you can never concurrently schedule them anyhow.
10590                  */
10591                 if (group_leader->cpu != event->cpu)
10592                         goto err_context;
10593
10594                 /*
10595                  * Make sure we're both on the same task, or both
10596                  * per-CPU events.
10597                  */
10598                 if (group_leader->ctx->task != ctx->task)
10599                         goto err_context;
10600
10601                 /*
10602                  * Do not allow to attach to a group in a different task
10603                  * or CPU context. If we're moving SW events, we'll fix
10604                  * this up later, so allow that.
10605                  */
10606                 if (!move_group && group_leader->ctx != ctx)
10607                         goto err_context;
10608
10609                 /*
10610                  * Only a group leader can be exclusive or pinned
10611                  */
10612                 if (attr.exclusive || attr.pinned)
10613                         goto err_context;
10614         }
10615
10616         if (output_event) {
10617                 err = perf_event_set_output(event, output_event);
10618                 if (err)
10619                         goto err_context;
10620         }
10621
10622         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10623                                         f_flags);
10624         if (IS_ERR(event_file)) {
10625                 err = PTR_ERR(event_file);
10626                 event_file = NULL;
10627                 goto err_context;
10628         }
10629
10630         if (move_group) {
10631                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10632
10633                 if (gctx->task == TASK_TOMBSTONE) {
10634                         err = -ESRCH;
10635                         goto err_locked;
10636                 }
10637
10638                 /*
10639                  * Check if we raced against another sys_perf_event_open() call
10640                  * moving the software group underneath us.
10641                  */
10642                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10643                         /*
10644                          * If someone moved the group out from under us, check
10645                          * if this new event wound up on the same ctx, if so
10646                          * its the regular !move_group case, otherwise fail.
10647                          */
10648                         if (gctx != ctx) {
10649                                 err = -EINVAL;
10650                                 goto err_locked;
10651                         } else {
10652                                 perf_event_ctx_unlock(group_leader, gctx);
10653                                 move_group = 0;
10654                         }
10655                 }
10656         } else {
10657                 mutex_lock(&ctx->mutex);
10658         }
10659
10660         if (ctx->task == TASK_TOMBSTONE) {
10661                 err = -ESRCH;
10662                 goto err_locked;
10663         }
10664
10665         if (!perf_event_validate_size(event)) {
10666                 err = -E2BIG;
10667                 goto err_locked;
10668         }
10669
10670         if (!task) {
10671                 /*
10672                  * Check if the @cpu we're creating an event for is online.
10673                  *
10674                  * We use the perf_cpu_context::ctx::mutex to serialize against
10675                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10676                  */
10677                 struct perf_cpu_context *cpuctx =
10678                         container_of(ctx, struct perf_cpu_context, ctx);
10679
10680                 if (!cpuctx->online) {
10681                         err = -ENODEV;
10682                         goto err_locked;
10683                 }
10684         }
10685
10686
10687         /*
10688          * Must be under the same ctx::mutex as perf_install_in_context(),
10689          * because we need to serialize with concurrent event creation.
10690          */
10691         if (!exclusive_event_installable(event, ctx)) {
10692                 /* exclusive and group stuff are assumed mutually exclusive */
10693                 WARN_ON_ONCE(move_group);
10694
10695                 err = -EBUSY;
10696                 goto err_locked;
10697         }
10698
10699         WARN_ON_ONCE(ctx->parent_ctx);
10700
10701         /*
10702          * This is the point on no return; we cannot fail hereafter. This is
10703          * where we start modifying current state.
10704          */
10705
10706         if (move_group) {
10707                 /*
10708                  * See perf_event_ctx_lock() for comments on the details
10709                  * of swizzling perf_event::ctx.
10710                  */
10711                 perf_remove_from_context(group_leader, 0);
10712                 put_ctx(gctx);
10713
10714                 for_each_sibling_event(sibling, group_leader) {
10715                         perf_remove_from_context(sibling, 0);
10716                         put_ctx(gctx);
10717                 }
10718
10719                 /*
10720                  * Wait for everybody to stop referencing the events through
10721                  * the old lists, before installing it on new lists.
10722                  */
10723                 synchronize_rcu();
10724
10725                 /*
10726                  * Install the group siblings before the group leader.
10727                  *
10728                  * Because a group leader will try and install the entire group
10729                  * (through the sibling list, which is still in-tact), we can
10730                  * end up with siblings installed in the wrong context.
10731                  *
10732                  * By installing siblings first we NO-OP because they're not
10733                  * reachable through the group lists.
10734                  */
10735                 for_each_sibling_event(sibling, group_leader) {
10736                         perf_event__state_init(sibling);
10737                         perf_install_in_context(ctx, sibling, sibling->cpu);
10738                         get_ctx(ctx);
10739                 }
10740
10741                 /*
10742                  * Removing from the context ends up with disabled
10743                  * event. What we want here is event in the initial
10744                  * startup state, ready to be add into new context.
10745                  */
10746                 perf_event__state_init(group_leader);
10747                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10748                 get_ctx(ctx);
10749         }
10750
10751         /*
10752          * Precalculate sample_data sizes; do while holding ctx::mutex such
10753          * that we're serialized against further additions and before
10754          * perf_install_in_context() which is the point the event is active and
10755          * can use these values.
10756          */
10757         perf_event__header_size(event);
10758         perf_event__id_header_size(event);
10759
10760         event->owner = current;
10761
10762         perf_install_in_context(ctx, event, event->cpu);
10763         perf_unpin_context(ctx);
10764
10765         if (move_group)
10766                 perf_event_ctx_unlock(group_leader, gctx);
10767         mutex_unlock(&ctx->mutex);
10768
10769         if (task) {
10770                 mutex_unlock(&task->signal->cred_guard_mutex);
10771                 put_task_struct(task);
10772         }
10773
10774         mutex_lock(&current->perf_event_mutex);
10775         list_add_tail(&event->owner_entry, &current->perf_event_list);
10776         mutex_unlock(&current->perf_event_mutex);
10777
10778         /*
10779          * Drop the reference on the group_event after placing the
10780          * new event on the sibling_list. This ensures destruction
10781          * of the group leader will find the pointer to itself in
10782          * perf_group_detach().
10783          */
10784         fdput(group);
10785         fd_install(event_fd, event_file);
10786         return event_fd;
10787
10788 err_locked:
10789         if (move_group)
10790                 perf_event_ctx_unlock(group_leader, gctx);
10791         mutex_unlock(&ctx->mutex);
10792 /* err_file: */
10793         fput(event_file);
10794 err_context:
10795         perf_unpin_context(ctx);
10796         put_ctx(ctx);
10797 err_alloc:
10798         /*
10799          * If event_file is set, the fput() above will have called ->release()
10800          * and that will take care of freeing the event.
10801          */
10802         if (!event_file)
10803                 free_event(event);
10804 err_cred:
10805         if (task)
10806                 mutex_unlock(&task->signal->cred_guard_mutex);
10807 err_task:
10808         if (task)
10809                 put_task_struct(task);
10810 err_group_fd:
10811         fdput(group);
10812 err_fd:
10813         put_unused_fd(event_fd);
10814         return err;
10815 }
10816
10817 /**
10818  * perf_event_create_kernel_counter
10819  *
10820  * @attr: attributes of the counter to create
10821  * @cpu: cpu in which the counter is bound
10822  * @task: task to profile (NULL for percpu)
10823  */
10824 struct perf_event *
10825 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10826                                  struct task_struct *task,
10827                                  perf_overflow_handler_t overflow_handler,
10828                                  void *context)
10829 {
10830         struct perf_event_context *ctx;
10831         struct perf_event *event;
10832         int err;
10833
10834         /*
10835          * Get the target context (task or percpu):
10836          */
10837
10838         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10839                                  overflow_handler, context, -1);
10840         if (IS_ERR(event)) {
10841                 err = PTR_ERR(event);
10842                 goto err;
10843         }
10844
10845         /* Mark owner so we could distinguish it from user events. */
10846         event->owner = TASK_TOMBSTONE;
10847
10848         ctx = find_get_context(event->pmu, task, event);
10849         if (IS_ERR(ctx)) {
10850                 err = PTR_ERR(ctx);
10851                 goto err_free;
10852         }
10853
10854         WARN_ON_ONCE(ctx->parent_ctx);
10855         mutex_lock(&ctx->mutex);
10856         if (ctx->task == TASK_TOMBSTONE) {
10857                 err = -ESRCH;
10858                 goto err_unlock;
10859         }
10860
10861         if (!task) {
10862                 /*
10863                  * Check if the @cpu we're creating an event for is online.
10864                  *
10865                  * We use the perf_cpu_context::ctx::mutex to serialize against
10866                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10867                  */
10868                 struct perf_cpu_context *cpuctx =
10869                         container_of(ctx, struct perf_cpu_context, ctx);
10870                 if (!cpuctx->online) {
10871                         err = -ENODEV;
10872                         goto err_unlock;
10873                 }
10874         }
10875
10876         if (!exclusive_event_installable(event, ctx)) {
10877                 err = -EBUSY;
10878                 goto err_unlock;
10879         }
10880
10881         perf_install_in_context(ctx, event, cpu);
10882         perf_unpin_context(ctx);
10883         mutex_unlock(&ctx->mutex);
10884
10885         return event;
10886
10887 err_unlock:
10888         mutex_unlock(&ctx->mutex);
10889         perf_unpin_context(ctx);
10890         put_ctx(ctx);
10891 err_free:
10892         free_event(event);
10893 err:
10894         return ERR_PTR(err);
10895 }
10896 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10897
10898 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10899 {
10900         struct perf_event_context *src_ctx;
10901         struct perf_event_context *dst_ctx;
10902         struct perf_event *event, *tmp;
10903         LIST_HEAD(events);
10904
10905         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10906         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10907
10908         /*
10909          * See perf_event_ctx_lock() for comments on the details
10910          * of swizzling perf_event::ctx.
10911          */
10912         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10913         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10914                                  event_entry) {
10915                 perf_remove_from_context(event, 0);
10916                 unaccount_event_cpu(event, src_cpu);
10917                 put_ctx(src_ctx);
10918                 list_add(&event->migrate_entry, &events);
10919         }
10920
10921         /*
10922          * Wait for the events to quiesce before re-instating them.
10923          */
10924         synchronize_rcu();
10925
10926         /*
10927          * Re-instate events in 2 passes.
10928          *
10929          * Skip over group leaders and only install siblings on this first
10930          * pass, siblings will not get enabled without a leader, however a
10931          * leader will enable its siblings, even if those are still on the old
10932          * context.
10933          */
10934         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10935                 if (event->group_leader == event)
10936                         continue;
10937
10938                 list_del(&event->migrate_entry);
10939                 if (event->state >= PERF_EVENT_STATE_OFF)
10940                         event->state = PERF_EVENT_STATE_INACTIVE;
10941                 account_event_cpu(event, dst_cpu);
10942                 perf_install_in_context(dst_ctx, event, dst_cpu);
10943                 get_ctx(dst_ctx);
10944         }
10945
10946         /*
10947          * Once all the siblings are setup properly, install the group leaders
10948          * to make it go.
10949          */
10950         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10951                 list_del(&event->migrate_entry);
10952                 if (event->state >= PERF_EVENT_STATE_OFF)
10953                         event->state = PERF_EVENT_STATE_INACTIVE;
10954                 account_event_cpu(event, dst_cpu);
10955                 perf_install_in_context(dst_ctx, event, dst_cpu);
10956                 get_ctx(dst_ctx);
10957         }
10958         mutex_unlock(&dst_ctx->mutex);
10959         mutex_unlock(&src_ctx->mutex);
10960 }
10961 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10962
10963 static void sync_child_event(struct perf_event *child_event,
10964                                struct task_struct *child)
10965 {
10966         struct perf_event *parent_event = child_event->parent;
10967         u64 child_val;
10968
10969         if (child_event->attr.inherit_stat)
10970                 perf_event_read_event(child_event, child);
10971
10972         child_val = perf_event_count(child_event);
10973
10974         /*
10975          * Add back the child's count to the parent's count:
10976          */
10977         atomic64_add(child_val, &parent_event->child_count);
10978         atomic64_add(child_event->total_time_enabled,
10979                      &parent_event->child_total_time_enabled);
10980         atomic64_add(child_event->total_time_running,
10981                      &parent_event->child_total_time_running);
10982 }
10983
10984 static void
10985 perf_event_exit_event(struct perf_event *child_event,
10986                       struct perf_event_context *child_ctx,
10987                       struct task_struct *child)
10988 {
10989         struct perf_event *parent_event = child_event->parent;
10990
10991         /*
10992          * Do not destroy the 'original' grouping; because of the context
10993          * switch optimization the original events could've ended up in a
10994          * random child task.
10995          *
10996          * If we were to destroy the original group, all group related
10997          * operations would cease to function properly after this random
10998          * child dies.
10999          *
11000          * Do destroy all inherited groups, we don't care about those
11001          * and being thorough is better.
11002          */
11003         raw_spin_lock_irq(&child_ctx->lock);
11004         WARN_ON_ONCE(child_ctx->is_active);
11005
11006         if (parent_event)
11007                 perf_group_detach(child_event);
11008         list_del_event(child_event, child_ctx);
11009         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11010         raw_spin_unlock_irq(&child_ctx->lock);
11011
11012         /*
11013          * Parent events are governed by their filedesc, retain them.
11014          */
11015         if (!parent_event) {
11016                 perf_event_wakeup(child_event);
11017                 return;
11018         }
11019         /*
11020          * Child events can be cleaned up.
11021          */
11022
11023         sync_child_event(child_event, child);
11024
11025         /*
11026          * Remove this event from the parent's list
11027          */
11028         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11029         mutex_lock(&parent_event->child_mutex);
11030         list_del_init(&child_event->child_list);
11031         mutex_unlock(&parent_event->child_mutex);
11032
11033         /*
11034          * Kick perf_poll() for is_event_hup().
11035          */
11036         perf_event_wakeup(parent_event);
11037         free_event(child_event);
11038         put_event(parent_event);
11039 }
11040
11041 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11042 {
11043         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11044         struct perf_event *child_event, *next;
11045
11046         WARN_ON_ONCE(child != current);
11047
11048         child_ctx = perf_pin_task_context(child, ctxn);
11049         if (!child_ctx)
11050                 return;
11051
11052         /*
11053          * In order to reduce the amount of tricky in ctx tear-down, we hold
11054          * ctx::mutex over the entire thing. This serializes against almost
11055          * everything that wants to access the ctx.
11056          *
11057          * The exception is sys_perf_event_open() /
11058          * perf_event_create_kernel_count() which does find_get_context()
11059          * without ctx::mutex (it cannot because of the move_group double mutex
11060          * lock thing). See the comments in perf_install_in_context().
11061          */
11062         mutex_lock(&child_ctx->mutex);
11063
11064         /*
11065          * In a single ctx::lock section, de-schedule the events and detach the
11066          * context from the task such that we cannot ever get it scheduled back
11067          * in.
11068          */
11069         raw_spin_lock_irq(&child_ctx->lock);
11070         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11071
11072         /*
11073          * Now that the context is inactive, destroy the task <-> ctx relation
11074          * and mark the context dead.
11075          */
11076         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11077         put_ctx(child_ctx); /* cannot be last */
11078         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11079         put_task_struct(current); /* cannot be last */
11080
11081         clone_ctx = unclone_ctx(child_ctx);
11082         raw_spin_unlock_irq(&child_ctx->lock);
11083
11084         if (clone_ctx)
11085                 put_ctx(clone_ctx);
11086
11087         /*
11088          * Report the task dead after unscheduling the events so that we
11089          * won't get any samples after PERF_RECORD_EXIT. We can however still
11090          * get a few PERF_RECORD_READ events.
11091          */
11092         perf_event_task(child, child_ctx, 0);
11093
11094         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11095                 perf_event_exit_event(child_event, child_ctx, child);
11096
11097         mutex_unlock(&child_ctx->mutex);
11098
11099         put_ctx(child_ctx);
11100 }
11101
11102 /*
11103  * When a child task exits, feed back event values to parent events.
11104  *
11105  * Can be called with cred_guard_mutex held when called from
11106  * install_exec_creds().
11107  */
11108 void perf_event_exit_task(struct task_struct *child)
11109 {
11110         struct perf_event *event, *tmp;
11111         int ctxn;
11112
11113         mutex_lock(&child->perf_event_mutex);
11114         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11115                                  owner_entry) {
11116                 list_del_init(&event->owner_entry);
11117
11118                 /*
11119                  * Ensure the list deletion is visible before we clear
11120                  * the owner, closes a race against perf_release() where
11121                  * we need to serialize on the owner->perf_event_mutex.
11122                  */
11123                 smp_store_release(&event->owner, NULL);
11124         }
11125         mutex_unlock(&child->perf_event_mutex);
11126
11127         for_each_task_context_nr(ctxn)
11128                 perf_event_exit_task_context(child, ctxn);
11129
11130         /*
11131          * The perf_event_exit_task_context calls perf_event_task
11132          * with child's task_ctx, which generates EXIT events for
11133          * child contexts and sets child->perf_event_ctxp[] to NULL.
11134          * At this point we need to send EXIT events to cpu contexts.
11135          */
11136         perf_event_task(child, NULL, 0);
11137 }
11138
11139 static void perf_free_event(struct perf_event *event,
11140                             struct perf_event_context *ctx)
11141 {
11142         struct perf_event *parent = event->parent;
11143
11144         if (WARN_ON_ONCE(!parent))
11145                 return;
11146
11147         mutex_lock(&parent->child_mutex);
11148         list_del_init(&event->child_list);
11149         mutex_unlock(&parent->child_mutex);
11150
11151         put_event(parent);
11152
11153         raw_spin_lock_irq(&ctx->lock);
11154         perf_group_detach(event);
11155         list_del_event(event, ctx);
11156         raw_spin_unlock_irq(&ctx->lock);
11157         free_event(event);
11158 }
11159
11160 /*
11161  * Free an unexposed, unused context as created by inheritance by
11162  * perf_event_init_task below, used by fork() in case of fail.
11163  *
11164  * Not all locks are strictly required, but take them anyway to be nice and
11165  * help out with the lockdep assertions.
11166  */
11167 void perf_event_free_task(struct task_struct *task)
11168 {
11169         struct perf_event_context *ctx;
11170         struct perf_event *event, *tmp;
11171         int ctxn;
11172
11173         for_each_task_context_nr(ctxn) {
11174                 ctx = task->perf_event_ctxp[ctxn];
11175                 if (!ctx)
11176                         continue;
11177
11178                 mutex_lock(&ctx->mutex);
11179                 raw_spin_lock_irq(&ctx->lock);
11180                 /*
11181                  * Destroy the task <-> ctx relation and mark the context dead.
11182                  *
11183                  * This is important because even though the task hasn't been
11184                  * exposed yet the context has been (through child_list).
11185                  */
11186                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11187                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11188                 put_task_struct(task); /* cannot be last */
11189                 raw_spin_unlock_irq(&ctx->lock);
11190
11191                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11192                         perf_free_event(event, ctx);
11193
11194                 mutex_unlock(&ctx->mutex);
11195                 put_ctx(ctx);
11196         }
11197 }
11198
11199 void perf_event_delayed_put(struct task_struct *task)
11200 {
11201         int ctxn;
11202
11203         for_each_task_context_nr(ctxn)
11204                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11205 }
11206
11207 struct file *perf_event_get(unsigned int fd)
11208 {
11209         struct file *file;
11210
11211         file = fget_raw(fd);
11212         if (!file)
11213                 return ERR_PTR(-EBADF);
11214
11215         if (file->f_op != &perf_fops) {
11216                 fput(file);
11217                 return ERR_PTR(-EBADF);
11218         }
11219
11220         return file;
11221 }
11222
11223 const struct perf_event *perf_get_event(struct file *file)
11224 {
11225         if (file->f_op != &perf_fops)
11226                 return ERR_PTR(-EINVAL);
11227
11228         return file->private_data;
11229 }
11230
11231 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11232 {
11233         if (!event)
11234                 return ERR_PTR(-EINVAL);
11235
11236         return &event->attr;
11237 }
11238
11239 /*
11240  * Inherit an event from parent task to child task.
11241  *
11242  * Returns:
11243  *  - valid pointer on success
11244  *  - NULL for orphaned events
11245  *  - IS_ERR() on error
11246  */
11247 static struct perf_event *
11248 inherit_event(struct perf_event *parent_event,
11249               struct task_struct *parent,
11250               struct perf_event_context *parent_ctx,
11251               struct task_struct *child,
11252               struct perf_event *group_leader,
11253               struct perf_event_context *child_ctx)
11254 {
11255         enum perf_event_state parent_state = parent_event->state;
11256         struct perf_event *child_event;
11257         unsigned long flags;
11258
11259         /*
11260          * Instead of creating recursive hierarchies of events,
11261          * we link inherited events back to the original parent,
11262          * which has a filp for sure, which we use as the reference
11263          * count:
11264          */
11265         if (parent_event->parent)
11266                 parent_event = parent_event->parent;
11267
11268         child_event = perf_event_alloc(&parent_event->attr,
11269                                            parent_event->cpu,
11270                                            child,
11271                                            group_leader, parent_event,
11272                                            NULL, NULL, -1);
11273         if (IS_ERR(child_event))
11274                 return child_event;
11275
11276
11277         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11278             !child_ctx->task_ctx_data) {
11279                 struct pmu *pmu = child_event->pmu;
11280
11281                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11282                                                    GFP_KERNEL);
11283                 if (!child_ctx->task_ctx_data) {
11284                         free_event(child_event);
11285                         return NULL;
11286                 }
11287         }
11288
11289         /*
11290          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11291          * must be under the same lock in order to serialize against
11292          * perf_event_release_kernel(), such that either we must observe
11293          * is_orphaned_event() or they will observe us on the child_list.
11294          */
11295         mutex_lock(&parent_event->child_mutex);
11296         if (is_orphaned_event(parent_event) ||
11297             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11298                 mutex_unlock(&parent_event->child_mutex);
11299                 /* task_ctx_data is freed with child_ctx */
11300                 free_event(child_event);
11301                 return NULL;
11302         }
11303
11304         get_ctx(child_ctx);
11305
11306         /*
11307          * Make the child state follow the state of the parent event,
11308          * not its attr.disabled bit.  We hold the parent's mutex,
11309          * so we won't race with perf_event_{en, dis}able_family.
11310          */
11311         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11312                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11313         else
11314                 child_event->state = PERF_EVENT_STATE_OFF;
11315
11316         if (parent_event->attr.freq) {
11317                 u64 sample_period = parent_event->hw.sample_period;
11318                 struct hw_perf_event *hwc = &child_event->hw;
11319
11320                 hwc->sample_period = sample_period;
11321                 hwc->last_period   = sample_period;
11322
11323                 local64_set(&hwc->period_left, sample_period);
11324         }
11325
11326         child_event->ctx = child_ctx;
11327         child_event->overflow_handler = parent_event->overflow_handler;
11328         child_event->overflow_handler_context
11329                 = parent_event->overflow_handler_context;
11330
11331         /*
11332          * Precalculate sample_data sizes
11333          */
11334         perf_event__header_size(child_event);
11335         perf_event__id_header_size(child_event);
11336
11337         /*
11338          * Link it up in the child's context:
11339          */
11340         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11341         add_event_to_ctx(child_event, child_ctx);
11342         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11343
11344         /*
11345          * Link this into the parent event's child list
11346          */
11347         list_add_tail(&child_event->child_list, &parent_event->child_list);
11348         mutex_unlock(&parent_event->child_mutex);
11349
11350         return child_event;
11351 }
11352
11353 /*
11354  * Inherits an event group.
11355  *
11356  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11357  * This matches with perf_event_release_kernel() removing all child events.
11358  *
11359  * Returns:
11360  *  - 0 on success
11361  *  - <0 on error
11362  */
11363 static int inherit_group(struct perf_event *parent_event,
11364               struct task_struct *parent,
11365               struct perf_event_context *parent_ctx,
11366               struct task_struct *child,
11367               struct perf_event_context *child_ctx)
11368 {
11369         struct perf_event *leader;
11370         struct perf_event *sub;
11371         struct perf_event *child_ctr;
11372
11373         leader = inherit_event(parent_event, parent, parent_ctx,
11374                                  child, NULL, child_ctx);
11375         if (IS_ERR(leader))
11376                 return PTR_ERR(leader);
11377         /*
11378          * @leader can be NULL here because of is_orphaned_event(). In this
11379          * case inherit_event() will create individual events, similar to what
11380          * perf_group_detach() would do anyway.
11381          */
11382         for_each_sibling_event(sub, parent_event) {
11383                 child_ctr = inherit_event(sub, parent, parent_ctx,
11384                                             child, leader, child_ctx);
11385                 if (IS_ERR(child_ctr))
11386                         return PTR_ERR(child_ctr);
11387         }
11388         return 0;
11389 }
11390
11391 /*
11392  * Creates the child task context and tries to inherit the event-group.
11393  *
11394  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11395  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11396  * consistent with perf_event_release_kernel() removing all child events.
11397  *
11398  * Returns:
11399  *  - 0 on success
11400  *  - <0 on error
11401  */
11402 static int
11403 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11404                    struct perf_event_context *parent_ctx,
11405                    struct task_struct *child, int ctxn,
11406                    int *inherited_all)
11407 {
11408         int ret;
11409         struct perf_event_context *child_ctx;
11410
11411         if (!event->attr.inherit) {
11412                 *inherited_all = 0;
11413                 return 0;
11414         }
11415
11416         child_ctx = child->perf_event_ctxp[ctxn];
11417         if (!child_ctx) {
11418                 /*
11419                  * This is executed from the parent task context, so
11420                  * inherit events that have been marked for cloning.
11421                  * First allocate and initialize a context for the
11422                  * child.
11423                  */
11424                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11425                 if (!child_ctx)
11426                         return -ENOMEM;
11427
11428                 child->perf_event_ctxp[ctxn] = child_ctx;
11429         }
11430
11431         ret = inherit_group(event, parent, parent_ctx,
11432                             child, child_ctx);
11433
11434         if (ret)
11435                 *inherited_all = 0;
11436
11437         return ret;
11438 }
11439
11440 /*
11441  * Initialize the perf_event context in task_struct
11442  */
11443 static int perf_event_init_context(struct task_struct *child, int ctxn)
11444 {
11445         struct perf_event_context *child_ctx, *parent_ctx;
11446         struct perf_event_context *cloned_ctx;
11447         struct perf_event *event;
11448         struct task_struct *parent = current;
11449         int inherited_all = 1;
11450         unsigned long flags;
11451         int ret = 0;
11452
11453         if (likely(!parent->perf_event_ctxp[ctxn]))
11454                 return 0;
11455
11456         /*
11457          * If the parent's context is a clone, pin it so it won't get
11458          * swapped under us.
11459          */
11460         parent_ctx = perf_pin_task_context(parent, ctxn);
11461         if (!parent_ctx)
11462                 return 0;
11463
11464         /*
11465          * No need to check if parent_ctx != NULL here; since we saw
11466          * it non-NULL earlier, the only reason for it to become NULL
11467          * is if we exit, and since we're currently in the middle of
11468          * a fork we can't be exiting at the same time.
11469          */
11470
11471         /*
11472          * Lock the parent list. No need to lock the child - not PID
11473          * hashed yet and not running, so nobody can access it.
11474          */
11475         mutex_lock(&parent_ctx->mutex);
11476
11477         /*
11478          * We dont have to disable NMIs - we are only looking at
11479          * the list, not manipulating it:
11480          */
11481         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11482                 ret = inherit_task_group(event, parent, parent_ctx,
11483                                          child, ctxn, &inherited_all);
11484                 if (ret)
11485                         goto out_unlock;
11486         }
11487
11488         /*
11489          * We can't hold ctx->lock when iterating the ->flexible_group list due
11490          * to allocations, but we need to prevent rotation because
11491          * rotate_ctx() will change the list from interrupt context.
11492          */
11493         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11494         parent_ctx->rotate_disable = 1;
11495         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11496
11497         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11498                 ret = inherit_task_group(event, parent, parent_ctx,
11499                                          child, ctxn, &inherited_all);
11500                 if (ret)
11501                         goto out_unlock;
11502         }
11503
11504         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11505         parent_ctx->rotate_disable = 0;
11506
11507         child_ctx = child->perf_event_ctxp[ctxn];
11508
11509         if (child_ctx && inherited_all) {
11510                 /*
11511                  * Mark the child context as a clone of the parent
11512                  * context, or of whatever the parent is a clone of.
11513                  *
11514                  * Note that if the parent is a clone, the holding of
11515                  * parent_ctx->lock avoids it from being uncloned.
11516                  */
11517                 cloned_ctx = parent_ctx->parent_ctx;
11518                 if (cloned_ctx) {
11519                         child_ctx->parent_ctx = cloned_ctx;
11520                         child_ctx->parent_gen = parent_ctx->parent_gen;
11521                 } else {
11522                         child_ctx->parent_ctx = parent_ctx;
11523                         child_ctx->parent_gen = parent_ctx->generation;
11524                 }
11525                 get_ctx(child_ctx->parent_ctx);
11526         }
11527
11528         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11529 out_unlock:
11530         mutex_unlock(&parent_ctx->mutex);
11531
11532         perf_unpin_context(parent_ctx);
11533         put_ctx(parent_ctx);
11534
11535         return ret;
11536 }
11537
11538 /*
11539  * Initialize the perf_event context in task_struct
11540  */
11541 int perf_event_init_task(struct task_struct *child)
11542 {
11543         int ctxn, ret;
11544
11545         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11546         mutex_init(&child->perf_event_mutex);
11547         INIT_LIST_HEAD(&child->perf_event_list);
11548
11549         for_each_task_context_nr(ctxn) {
11550                 ret = perf_event_init_context(child, ctxn);
11551                 if (ret) {
11552                         perf_event_free_task(child);
11553                         return ret;
11554                 }
11555         }
11556
11557         return 0;
11558 }
11559
11560 static void __init perf_event_init_all_cpus(void)
11561 {
11562         struct swevent_htable *swhash;
11563         int cpu;
11564
11565         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11566
11567         for_each_possible_cpu(cpu) {
11568                 swhash = &per_cpu(swevent_htable, cpu);
11569                 mutex_init(&swhash->hlist_mutex);
11570                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11571
11572                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11573                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11574
11575 #ifdef CONFIG_CGROUP_PERF
11576                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11577 #endif
11578                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11579         }
11580 }
11581
11582 void perf_swevent_init_cpu(unsigned int cpu)
11583 {
11584         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11585
11586         mutex_lock(&swhash->hlist_mutex);
11587         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11588                 struct swevent_hlist *hlist;
11589
11590                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11591                 WARN_ON(!hlist);
11592                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11593         }
11594         mutex_unlock(&swhash->hlist_mutex);
11595 }
11596
11597 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11598 static void __perf_event_exit_context(void *__info)
11599 {
11600         struct perf_event_context *ctx = __info;
11601         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11602         struct perf_event *event;
11603
11604         raw_spin_lock(&ctx->lock);
11605         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11606         list_for_each_entry(event, &ctx->event_list, event_entry)
11607                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11608         raw_spin_unlock(&ctx->lock);
11609 }
11610
11611 static void perf_event_exit_cpu_context(int cpu)
11612 {
11613         struct perf_cpu_context *cpuctx;
11614         struct perf_event_context *ctx;
11615         struct pmu *pmu;
11616
11617         mutex_lock(&pmus_lock);
11618         list_for_each_entry(pmu, &pmus, entry) {
11619                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11620                 ctx = &cpuctx->ctx;
11621
11622                 mutex_lock(&ctx->mutex);
11623                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11624                 cpuctx->online = 0;
11625                 mutex_unlock(&ctx->mutex);
11626         }
11627         cpumask_clear_cpu(cpu, perf_online_mask);
11628         mutex_unlock(&pmus_lock);
11629 }
11630 #else
11631
11632 static void perf_event_exit_cpu_context(int cpu) { }
11633
11634 #endif
11635
11636 int perf_event_init_cpu(unsigned int cpu)
11637 {
11638         struct perf_cpu_context *cpuctx;
11639         struct perf_event_context *ctx;
11640         struct pmu *pmu;
11641
11642         perf_swevent_init_cpu(cpu);
11643
11644         mutex_lock(&pmus_lock);
11645         cpumask_set_cpu(cpu, perf_online_mask);
11646         list_for_each_entry(pmu, &pmus, entry) {
11647                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11648                 ctx = &cpuctx->ctx;
11649
11650                 mutex_lock(&ctx->mutex);
11651                 cpuctx->online = 1;
11652                 mutex_unlock(&ctx->mutex);
11653         }
11654         mutex_unlock(&pmus_lock);
11655
11656         return 0;
11657 }
11658
11659 int perf_event_exit_cpu(unsigned int cpu)
11660 {
11661         perf_event_exit_cpu_context(cpu);
11662         return 0;
11663 }
11664
11665 static int
11666 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11667 {
11668         int cpu;
11669
11670         for_each_online_cpu(cpu)
11671                 perf_event_exit_cpu(cpu);
11672
11673         return NOTIFY_OK;
11674 }
11675
11676 /*
11677  * Run the perf reboot notifier at the very last possible moment so that
11678  * the generic watchdog code runs as long as possible.
11679  */
11680 static struct notifier_block perf_reboot_notifier = {
11681         .notifier_call = perf_reboot,
11682         .priority = INT_MIN,
11683 };
11684
11685 void __init perf_event_init(void)
11686 {
11687         int ret;
11688
11689         idr_init(&pmu_idr);
11690
11691         perf_event_init_all_cpus();
11692         init_srcu_struct(&pmus_srcu);
11693         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11694         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11695         perf_pmu_register(&perf_task_clock, NULL, -1);
11696         perf_tp_register();
11697         perf_event_init_cpu(smp_processor_id());
11698         register_reboot_notifier(&perf_reboot_notifier);
11699
11700         ret = init_hw_breakpoint();
11701         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11702
11703         /*
11704          * Build time assertion that we keep the data_head at the intended
11705          * location.  IOW, validation we got the __reserved[] size right.
11706          */
11707         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11708                      != 1024);
11709 }
11710
11711 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11712                               char *page)
11713 {
11714         struct perf_pmu_events_attr *pmu_attr =
11715                 container_of(attr, struct perf_pmu_events_attr, attr);
11716
11717         if (pmu_attr->event_str)
11718                 return sprintf(page, "%s\n", pmu_attr->event_str);
11719
11720         return 0;
11721 }
11722 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11723
11724 static int __init perf_event_sysfs_init(void)
11725 {
11726         struct pmu *pmu;
11727         int ret;
11728
11729         mutex_lock(&pmus_lock);
11730
11731         ret = bus_register(&pmu_bus);
11732         if (ret)
11733                 goto unlock;
11734
11735         list_for_each_entry(pmu, &pmus, entry) {
11736                 if (!pmu->name || pmu->type < 0)
11737                         continue;
11738
11739                 ret = pmu_dev_alloc(pmu);
11740                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11741         }
11742         pmu_bus_running = 1;
11743         ret = 0;
11744
11745 unlock:
11746         mutex_unlock(&pmus_lock);
11747
11748         return ret;
11749 }
11750 device_initcall(perf_event_sysfs_init);
11751
11752 #ifdef CONFIG_CGROUP_PERF
11753 static struct cgroup_subsys_state *
11754 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11755 {
11756         struct perf_cgroup *jc;
11757
11758         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11759         if (!jc)
11760                 return ERR_PTR(-ENOMEM);
11761
11762         jc->info = alloc_percpu(struct perf_cgroup_info);
11763         if (!jc->info) {
11764                 kfree(jc);
11765                 return ERR_PTR(-ENOMEM);
11766         }
11767
11768         return &jc->css;
11769 }
11770
11771 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11772 {
11773         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11774
11775         free_percpu(jc->info);
11776         kfree(jc);
11777 }
11778
11779 static int __perf_cgroup_move(void *info)
11780 {
11781         struct task_struct *task = info;
11782         rcu_read_lock();
11783         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11784         rcu_read_unlock();
11785         return 0;
11786 }
11787
11788 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11789 {
11790         struct task_struct *task;
11791         struct cgroup_subsys_state *css;
11792
11793         cgroup_taskset_for_each(task, css, tset)
11794                 task_function_call(task, __perf_cgroup_move, task);
11795 }
11796
11797 struct cgroup_subsys perf_event_cgrp_subsys = {
11798         .css_alloc      = perf_cgroup_css_alloc,
11799         .css_free       = perf_cgroup_css_free,
11800         .attach         = perf_cgroup_attach,
11801         /*
11802          * Implicitly enable on dfl hierarchy so that perf events can
11803          * always be filtered by cgroup2 path as long as perf_event
11804          * controller is not mounted on a legacy hierarchy.
11805          */
11806         .implicit_on_dfl = true,
11807         .threaded       = true,
11808 };
11809 #endif /* CONFIG_CGROUP_PERF */