Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / kernel / cgroup / cgroup.c
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <linux/psi.h>
59 #include <net/sock.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/cgroup.h>
63
64 #define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
65                                          MAX_CFTYPE_NAME + 2)
66 /* let's not notify more than 100 times per second */
67 #define CGROUP_FILE_NOTIFY_MIN_INTV     DIV_ROUND_UP(HZ, 100)
68
69 /*
70  * cgroup_mutex is the master lock.  Any modification to cgroup or its
71  * hierarchy must be performed while holding it.
72  *
73  * css_set_lock protects task->cgroups pointer, the list of css_set
74  * objects, and the chain of tasks off each css_set.
75  *
76  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
77  * cgroup.h can use them for lockdep annotations.
78  */
79 DEFINE_MUTEX(cgroup_mutex);
80 DEFINE_SPINLOCK(css_set_lock);
81
82 #ifdef CONFIG_PROVE_RCU
83 EXPORT_SYMBOL_GPL(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(css_set_lock);
85 #endif
86
87 DEFINE_SPINLOCK(trace_cgroup_path_lock);
88 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
89
90 /*
91  * Protects cgroup_idr and css_idr so that IDs can be released without
92  * grabbing cgroup_mutex.
93  */
94 static DEFINE_SPINLOCK(cgroup_idr_lock);
95
96 /*
97  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
98  * against file removal/re-creation across css hiding.
99  */
100 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
101
102 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
103
104 #define cgroup_assert_mutex_or_rcu_locked()                             \
105         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
106                            !lockdep_is_held(&cgroup_mutex),             \
107                            "cgroup_mutex or RCU read lock required");
108
109 /*
110  * cgroup destruction makes heavy use of work items and there can be a lot
111  * of concurrent destructions.  Use a separate workqueue so that cgroup
112  * destruction work items don't end up filling up max_active of system_wq
113  * which may lead to deadlock.
114  */
115 static struct workqueue_struct *cgroup_destroy_wq;
116
117 /* generate an array of cgroup subsystem pointers */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
119 struct cgroup_subsys *cgroup_subsys[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123
124 /* array of cgroup subsystem names */
125 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
126 static const char *cgroup_subsys_name[] = {
127 #include <linux/cgroup_subsys.h>
128 };
129 #undef SUBSYS
130
131 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
132 #define SUBSYS(_x)                                                              \
133         DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
134         DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
135         EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
136         EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
137 #include <linux/cgroup_subsys.h>
138 #undef SUBSYS
139
140 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
141 static struct static_key_true *cgroup_subsys_enabled_key[] = {
142 #include <linux/cgroup_subsys.h>
143 };
144 #undef SUBSYS
145
146 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
147 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
148 #include <linux/cgroup_subsys.h>
149 };
150 #undef SUBSYS
151
152 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
153
154 /*
155  * The default hierarchy, reserved for the subsystems that are otherwise
156  * unattached - it never has more than a single cgroup, and all tasks are
157  * part of that cgroup.
158  */
159 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
160 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
161
162 /*
163  * The default hierarchy always exists but is hidden until mounted for the
164  * first time.  This is for backward compatibility.
165  */
166 static bool cgrp_dfl_visible;
167
168 /* some controllers are not supported in the default hierarchy */
169 static u16 cgrp_dfl_inhibit_ss_mask;
170
171 /* some controllers are implicitly enabled on the default hierarchy */
172 static u16 cgrp_dfl_implicit_ss_mask;
173
174 /* some controllers can be threaded on the default hierarchy */
175 static u16 cgrp_dfl_threaded_ss_mask;
176
177 /* The list of hierarchy roots */
178 LIST_HEAD(cgroup_roots);
179 static int cgroup_root_count;
180
181 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
182 static DEFINE_IDR(cgroup_hierarchy_idr);
183
184 /*
185  * Assign a monotonically increasing serial number to csses.  It guarantees
186  * cgroups with bigger numbers are newer than those with smaller numbers.
187  * Also, as csses are always appended to the parent's ->children list, it
188  * guarantees that sibling csses are always sorted in the ascending serial
189  * number order on the list.  Protected by cgroup_mutex.
190  */
191 static u64 css_serial_nr_next = 1;
192
193 /*
194  * These bitmasks identify subsystems with specific features to avoid
195  * having to do iterative checks repeatedly.
196  */
197 static u16 have_fork_callback __read_mostly;
198 static u16 have_exit_callback __read_mostly;
199 static u16 have_free_callback __read_mostly;
200 static u16 have_canfork_callback __read_mostly;
201
202 /* cgroup namespace for init task */
203 struct cgroup_namespace init_cgroup_ns = {
204         .count          = REFCOUNT_INIT(2),
205         .user_ns        = &init_user_ns,
206         .ns.ops         = &cgroupns_operations,
207         .ns.inum        = PROC_CGROUP_INIT_INO,
208         .root_cset      = &init_css_set,
209 };
210
211 static struct file_system_type cgroup2_fs_type;
212 static struct cftype cgroup_base_files[];
213
214 static int cgroup_apply_control(struct cgroup *cgrp);
215 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
216 static void css_task_iter_advance(struct css_task_iter *it);
217 static int cgroup_destroy_locked(struct cgroup *cgrp);
218 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
219                                               struct cgroup_subsys *ss);
220 static void css_release(struct percpu_ref *ref);
221 static void kill_css(struct cgroup_subsys_state *css);
222 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
223                               struct cgroup *cgrp, struct cftype cfts[],
224                               bool is_add);
225
226 /**
227  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
228  * @ssid: subsys ID of interest
229  *
230  * cgroup_subsys_enabled() can only be used with literal subsys names which
231  * is fine for individual subsystems but unsuitable for cgroup core.  This
232  * is slower static_key_enabled() based test indexed by @ssid.
233  */
234 bool cgroup_ssid_enabled(int ssid)
235 {
236         if (CGROUP_SUBSYS_COUNT == 0)
237                 return false;
238
239         return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240 }
241
242 /**
243  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244  * @cgrp: the cgroup of interest
245  *
246  * The default hierarchy is the v2 interface of cgroup and this function
247  * can be used to test whether a cgroup is on the default hierarchy for
248  * cases where a subsystem should behave differnetly depending on the
249  * interface version.
250  *
251  * The set of behaviors which change on the default hierarchy are still
252  * being determined and the mount option is prefixed with __DEVEL__.
253  *
254  * List of changed behaviors:
255  *
256  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257  *   and "name" are disallowed.
258  *
259  * - When mounting an existing superblock, mount options should match.
260  *
261  * - Remount is disallowed.
262  *
263  * - rename(2) is disallowed.
264  *
265  * - "tasks" is removed.  Everything should be at process granularity.  Use
266  *   "cgroup.procs" instead.
267  *
268  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
269  *   recycled inbetween reads.
270  *
271  * - "release_agent" and "notify_on_release" are removed.  Replacement
272  *   notification mechanism will be implemented.
273  *
274  * - "cgroup.clone_children" is removed.
275  *
276  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
277  *   and its descendants contain no task; otherwise, 1.  The file also
278  *   generates kernfs notification which can be monitored through poll and
279  *   [di]notify when the value of the file changes.
280  *
281  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282  *   take masks of ancestors with non-empty cpus/mems, instead of being
283  *   moved to an ancestor.
284  *
285  * - cpuset: a task can be moved into an empty cpuset, and again it takes
286  *   masks of ancestors.
287  *
288  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289  *   is not created.
290  *
291  * - blkcg: blk-throttle becomes properly hierarchical.
292  *
293  * - debug: disallowed on the default hierarchy.
294  */
295 bool cgroup_on_dfl(const struct cgroup *cgrp)
296 {
297         return cgrp->root == &cgrp_dfl_root;
298 }
299
300 /* IDR wrappers which synchronize using cgroup_idr_lock */
301 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302                             gfp_t gfp_mask)
303 {
304         int ret;
305
306         idr_preload(gfp_mask);
307         spin_lock_bh(&cgroup_idr_lock);
308         ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
309         spin_unlock_bh(&cgroup_idr_lock);
310         idr_preload_end();
311         return ret;
312 }
313
314 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315 {
316         void *ret;
317
318         spin_lock_bh(&cgroup_idr_lock);
319         ret = idr_replace(idr, ptr, id);
320         spin_unlock_bh(&cgroup_idr_lock);
321         return ret;
322 }
323
324 static void cgroup_idr_remove(struct idr *idr, int id)
325 {
326         spin_lock_bh(&cgroup_idr_lock);
327         idr_remove(idr, id);
328         spin_unlock_bh(&cgroup_idr_lock);
329 }
330
331 static bool cgroup_has_tasks(struct cgroup *cgrp)
332 {
333         return cgrp->nr_populated_csets;
334 }
335
336 bool cgroup_is_threaded(struct cgroup *cgrp)
337 {
338         return cgrp->dom_cgrp != cgrp;
339 }
340
341 /* can @cgrp host both domain and threaded children? */
342 static bool cgroup_is_mixable(struct cgroup *cgrp)
343 {
344         /*
345          * Root isn't under domain level resource control exempting it from
346          * the no-internal-process constraint, so it can serve as a thread
347          * root and a parent of resource domains at the same time.
348          */
349         return !cgroup_parent(cgrp);
350 }
351
352 /* can @cgrp become a thread root? should always be true for a thread root */
353 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
354 {
355         /* mixables don't care */
356         if (cgroup_is_mixable(cgrp))
357                 return true;
358
359         /* domain roots can't be nested under threaded */
360         if (cgroup_is_threaded(cgrp))
361                 return false;
362
363         /* can only have either domain or threaded children */
364         if (cgrp->nr_populated_domain_children)
365                 return false;
366
367         /* and no domain controllers can be enabled */
368         if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
369                 return false;
370
371         return true;
372 }
373
374 /* is @cgrp root of a threaded subtree? */
375 bool cgroup_is_thread_root(struct cgroup *cgrp)
376 {
377         /* thread root should be a domain */
378         if (cgroup_is_threaded(cgrp))
379                 return false;
380
381         /* a domain w/ threaded children is a thread root */
382         if (cgrp->nr_threaded_children)
383                 return true;
384
385         /*
386          * A domain which has tasks and explicit threaded controllers
387          * enabled is a thread root.
388          */
389         if (cgroup_has_tasks(cgrp) &&
390             (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
391                 return true;
392
393         return false;
394 }
395
396 /* a domain which isn't connected to the root w/o brekage can't be used */
397 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
398 {
399         /* the cgroup itself can be a thread root */
400         if (cgroup_is_threaded(cgrp))
401                 return false;
402
403         /* but the ancestors can't be unless mixable */
404         while ((cgrp = cgroup_parent(cgrp))) {
405                 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
406                         return false;
407                 if (cgroup_is_threaded(cgrp))
408                         return false;
409         }
410
411         return true;
412 }
413
414 /* subsystems visibly enabled on a cgroup */
415 static u16 cgroup_control(struct cgroup *cgrp)
416 {
417         struct cgroup *parent = cgroup_parent(cgrp);
418         u16 root_ss_mask = cgrp->root->subsys_mask;
419
420         if (parent) {
421                 u16 ss_mask = parent->subtree_control;
422
423                 /* threaded cgroups can only have threaded controllers */
424                 if (cgroup_is_threaded(cgrp))
425                         ss_mask &= cgrp_dfl_threaded_ss_mask;
426                 return ss_mask;
427         }
428
429         if (cgroup_on_dfl(cgrp))
430                 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
431                                   cgrp_dfl_implicit_ss_mask);
432         return root_ss_mask;
433 }
434
435 /* subsystems enabled on a cgroup */
436 static u16 cgroup_ss_mask(struct cgroup *cgrp)
437 {
438         struct cgroup *parent = cgroup_parent(cgrp);
439
440         if (parent) {
441                 u16 ss_mask = parent->subtree_ss_mask;
442
443                 /* threaded cgroups can only have threaded controllers */
444                 if (cgroup_is_threaded(cgrp))
445                         ss_mask &= cgrp_dfl_threaded_ss_mask;
446                 return ss_mask;
447         }
448
449         return cgrp->root->subsys_mask;
450 }
451
452 /**
453  * cgroup_css - obtain a cgroup's css for the specified subsystem
454  * @cgrp: the cgroup of interest
455  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
456  *
457  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
458  * function must be called either under cgroup_mutex or rcu_read_lock() and
459  * the caller is responsible for pinning the returned css if it wants to
460  * keep accessing it outside the said locks.  This function may return
461  * %NULL if @cgrp doesn't have @subsys_id enabled.
462  */
463 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
464                                               struct cgroup_subsys *ss)
465 {
466         if (ss)
467                 return rcu_dereference_check(cgrp->subsys[ss->id],
468                                         lockdep_is_held(&cgroup_mutex));
469         else
470                 return &cgrp->self;
471 }
472
473 /**
474  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
475  * @cgrp: the cgroup of interest
476  * @ss: the subsystem of interest
477  *
478  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
479  * or is offline, %NULL is returned.
480  */
481 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
482                                                      struct cgroup_subsys *ss)
483 {
484         struct cgroup_subsys_state *css;
485
486         rcu_read_lock();
487         css = cgroup_css(cgrp, ss);
488         if (!css || !css_tryget_online(css))
489                 css = NULL;
490         rcu_read_unlock();
491
492         return css;
493 }
494
495 /**
496  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
497  * @cgrp: the cgroup of interest
498  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
499  *
500  * Similar to cgroup_css() but returns the effective css, which is defined
501  * as the matching css of the nearest ancestor including self which has @ss
502  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
503  * function is guaranteed to return non-NULL css.
504  */
505 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
506                                                 struct cgroup_subsys *ss)
507 {
508         lockdep_assert_held(&cgroup_mutex);
509
510         if (!ss)
511                 return &cgrp->self;
512
513         /*
514          * This function is used while updating css associations and thus
515          * can't test the csses directly.  Test ss_mask.
516          */
517         while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
518                 cgrp = cgroup_parent(cgrp);
519                 if (!cgrp)
520                         return NULL;
521         }
522
523         return cgroup_css(cgrp, ss);
524 }
525
526 /**
527  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
528  * @cgrp: the cgroup of interest
529  * @ss: the subsystem of interest
530  *
531  * Find and get the effective css of @cgrp for @ss.  The effective css is
532  * defined as the matching css of the nearest ancestor including self which
533  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
534  * the root css is returned, so this function always returns a valid css.
535  * The returned css must be put using css_put().
536  */
537 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
538                                              struct cgroup_subsys *ss)
539 {
540         struct cgroup_subsys_state *css;
541
542         rcu_read_lock();
543
544         do {
545                 css = cgroup_css(cgrp, ss);
546
547                 if (css && css_tryget_online(css))
548                         goto out_unlock;
549                 cgrp = cgroup_parent(cgrp);
550         } while (cgrp);
551
552         css = init_css_set.subsys[ss->id];
553         css_get(css);
554 out_unlock:
555         rcu_read_unlock();
556         return css;
557 }
558
559 static void cgroup_get_live(struct cgroup *cgrp)
560 {
561         WARN_ON_ONCE(cgroup_is_dead(cgrp));
562         css_get(&cgrp->self);
563 }
564
565 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
566 {
567         struct cgroup *cgrp = of->kn->parent->priv;
568         struct cftype *cft = of_cft(of);
569
570         /*
571          * This is open and unprotected implementation of cgroup_css().
572          * seq_css() is only called from a kernfs file operation which has
573          * an active reference on the file.  Because all the subsystem
574          * files are drained before a css is disassociated with a cgroup,
575          * the matching css from the cgroup's subsys table is guaranteed to
576          * be and stay valid until the enclosing operation is complete.
577          */
578         if (cft->ss)
579                 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
580         else
581                 return &cgrp->self;
582 }
583 EXPORT_SYMBOL_GPL(of_css);
584
585 /**
586  * for_each_css - iterate all css's of a cgroup
587  * @css: the iteration cursor
588  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
589  * @cgrp: the target cgroup to iterate css's of
590  *
591  * Should be called under cgroup_[tree_]mutex.
592  */
593 #define for_each_css(css, ssid, cgrp)                                   \
594         for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
595                 if (!((css) = rcu_dereference_check(                    \
596                                 (cgrp)->subsys[(ssid)],                 \
597                                 lockdep_is_held(&cgroup_mutex)))) { }   \
598                 else
599
600 /**
601  * for_each_e_css - iterate all effective css's of a cgroup
602  * @css: the iteration cursor
603  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
604  * @cgrp: the target cgroup to iterate css's of
605  *
606  * Should be called under cgroup_[tree_]mutex.
607  */
608 #define for_each_e_css(css, ssid, cgrp)                                 \
609         for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
610                 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
611                         ;                                               \
612                 else
613
614 /**
615  * do_each_subsys_mask - filter for_each_subsys with a bitmask
616  * @ss: the iteration cursor
617  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
618  * @ss_mask: the bitmask
619  *
620  * The block will only run for cases where the ssid-th bit (1 << ssid) of
621  * @ss_mask is set.
622  */
623 #define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
624         unsigned long __ss_mask = (ss_mask);                            \
625         if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
626                 (ssid) = 0;                                             \
627                 break;                                                  \
628         }                                                               \
629         for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
630                 (ss) = cgroup_subsys[ssid];                             \
631                 {
632
633 #define while_each_subsys_mask()                                        \
634                 }                                                       \
635         }                                                               \
636 } while (false)
637
638 /* iterate over child cgrps, lock should be held throughout iteration */
639 #define cgroup_for_each_live_child(child, cgrp)                         \
640         list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
641                 if (({ lockdep_assert_held(&cgroup_mutex);              \
642                        cgroup_is_dead(child); }))                       \
643                         ;                                               \
644                 else
645
646 /* walk live descendants in preorder */
647 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
648         css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
649                 if (({ lockdep_assert_held(&cgroup_mutex);              \
650                        (dsct) = (d_css)->cgroup;                        \
651                        cgroup_is_dead(dsct); }))                        \
652                         ;                                               \
653                 else
654
655 /* walk live descendants in postorder */
656 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
657         css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
658                 if (({ lockdep_assert_held(&cgroup_mutex);              \
659                        (dsct) = (d_css)->cgroup;                        \
660                        cgroup_is_dead(dsct); }))                        \
661                         ;                                               \
662                 else
663
664 /*
665  * The default css_set - used by init and its children prior to any
666  * hierarchies being mounted. It contains a pointer to the root state
667  * for each subsystem. Also used to anchor the list of css_sets. Not
668  * reference-counted, to improve performance when child cgroups
669  * haven't been created.
670  */
671 struct css_set init_css_set = {
672         .refcount               = REFCOUNT_INIT(1),
673         .dom_cset               = &init_css_set,
674         .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
675         .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
676         .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
677         .threaded_csets         = LIST_HEAD_INIT(init_css_set.threaded_csets),
678         .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
679         .mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
680         .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
681
682         /*
683          * The following field is re-initialized when this cset gets linked
684          * in cgroup_init().  However, let's initialize the field
685          * statically too so that the default cgroup can be accessed safely
686          * early during boot.
687          */
688         .dfl_cgrp               = &cgrp_dfl_root.cgrp,
689 };
690
691 static int css_set_count        = 1;    /* 1 for init_css_set */
692
693 static bool css_set_threaded(struct css_set *cset)
694 {
695         return cset->dom_cset != cset;
696 }
697
698 /**
699  * css_set_populated - does a css_set contain any tasks?
700  * @cset: target css_set
701  *
702  * css_set_populated() should be the same as !!cset->nr_tasks at steady
703  * state. However, css_set_populated() can be called while a task is being
704  * added to or removed from the linked list before the nr_tasks is
705  * properly updated. Hence, we can't just look at ->nr_tasks here.
706  */
707 static bool css_set_populated(struct css_set *cset)
708 {
709         lockdep_assert_held(&css_set_lock);
710
711         return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
712 }
713
714 /**
715  * cgroup_update_populated - update the populated count of a cgroup
716  * @cgrp: the target cgroup
717  * @populated: inc or dec populated count
718  *
719  * One of the css_sets associated with @cgrp is either getting its first
720  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
721  * count is propagated towards root so that a given cgroup's
722  * nr_populated_children is zero iff none of its descendants contain any
723  * tasks.
724  *
725  * @cgrp's interface file "cgroup.populated" is zero if both
726  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
727  * 1 otherwise.  When the sum changes from or to zero, userland is notified
728  * that the content of the interface file has changed.  This can be used to
729  * detect when @cgrp and its descendants become populated or empty.
730  */
731 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
732 {
733         struct cgroup *child = NULL;
734         int adj = populated ? 1 : -1;
735
736         lockdep_assert_held(&css_set_lock);
737
738         do {
739                 bool was_populated = cgroup_is_populated(cgrp);
740
741                 if (!child) {
742                         cgrp->nr_populated_csets += adj;
743                 } else {
744                         if (cgroup_is_threaded(child))
745                                 cgrp->nr_populated_threaded_children += adj;
746                         else
747                                 cgrp->nr_populated_domain_children += adj;
748                 }
749
750                 if (was_populated == cgroup_is_populated(cgrp))
751                         break;
752
753                 cgroup1_check_for_release(cgrp);
754                 cgroup_file_notify(&cgrp->events_file);
755
756                 child = cgrp;
757                 cgrp = cgroup_parent(cgrp);
758         } while (cgrp);
759 }
760
761 /**
762  * css_set_update_populated - update populated state of a css_set
763  * @cset: target css_set
764  * @populated: whether @cset is populated or depopulated
765  *
766  * @cset is either getting the first task or losing the last.  Update the
767  * populated counters of all associated cgroups accordingly.
768  */
769 static void css_set_update_populated(struct css_set *cset, bool populated)
770 {
771         struct cgrp_cset_link *link;
772
773         lockdep_assert_held(&css_set_lock);
774
775         list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
776                 cgroup_update_populated(link->cgrp, populated);
777 }
778
779 /**
780  * css_set_move_task - move a task from one css_set to another
781  * @task: task being moved
782  * @from_cset: css_set @task currently belongs to (may be NULL)
783  * @to_cset: new css_set @task is being moved to (may be NULL)
784  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
785  *
786  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
787  * css_set, @from_cset can be NULL.  If @task is being disassociated
788  * instead of moved, @to_cset can be NULL.
789  *
790  * This function automatically handles populated counter updates and
791  * css_task_iter adjustments but the caller is responsible for managing
792  * @from_cset and @to_cset's reference counts.
793  */
794 static void css_set_move_task(struct task_struct *task,
795                               struct css_set *from_cset, struct css_set *to_cset,
796                               bool use_mg_tasks)
797 {
798         lockdep_assert_held(&css_set_lock);
799
800         if (to_cset && !css_set_populated(to_cset))
801                 css_set_update_populated(to_cset, true);
802
803         if (from_cset) {
804                 struct css_task_iter *it, *pos;
805
806                 WARN_ON_ONCE(list_empty(&task->cg_list));
807
808                 /*
809                  * @task is leaving, advance task iterators which are
810                  * pointing to it so that they can resume at the next
811                  * position.  Advancing an iterator might remove it from
812                  * the list, use safe walk.  See css_task_iter_advance*()
813                  * for details.
814                  */
815                 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
816                                          iters_node)
817                         if (it->task_pos == &task->cg_list)
818                                 css_task_iter_advance(it);
819
820                 list_del_init(&task->cg_list);
821                 if (!css_set_populated(from_cset))
822                         css_set_update_populated(from_cset, false);
823         } else {
824                 WARN_ON_ONCE(!list_empty(&task->cg_list));
825         }
826
827         if (to_cset) {
828                 /*
829                  * We are synchronized through cgroup_threadgroup_rwsem
830                  * against PF_EXITING setting such that we can't race
831                  * against cgroup_exit() changing the css_set to
832                  * init_css_set and dropping the old one.
833                  */
834                 WARN_ON_ONCE(task->flags & PF_EXITING);
835
836                 cgroup_move_task(task, to_cset);
837                 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
838                                                              &to_cset->tasks);
839         }
840 }
841
842 /*
843  * hash table for cgroup groups. This improves the performance to find
844  * an existing css_set. This hash doesn't (currently) take into
845  * account cgroups in empty hierarchies.
846  */
847 #define CSS_SET_HASH_BITS       7
848 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
849
850 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
851 {
852         unsigned long key = 0UL;
853         struct cgroup_subsys *ss;
854         int i;
855
856         for_each_subsys(ss, i)
857                 key += (unsigned long)css[i];
858         key = (key >> 16) ^ key;
859
860         return key;
861 }
862
863 void put_css_set_locked(struct css_set *cset)
864 {
865         struct cgrp_cset_link *link, *tmp_link;
866         struct cgroup_subsys *ss;
867         int ssid;
868
869         lockdep_assert_held(&css_set_lock);
870
871         if (!refcount_dec_and_test(&cset->refcount))
872                 return;
873
874         WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
875
876         /* This css_set is dead. unlink it and release cgroup and css refs */
877         for_each_subsys(ss, ssid) {
878                 list_del(&cset->e_cset_node[ssid]);
879                 css_put(cset->subsys[ssid]);
880         }
881         hash_del(&cset->hlist);
882         css_set_count--;
883
884         list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
885                 list_del(&link->cset_link);
886                 list_del(&link->cgrp_link);
887                 if (cgroup_parent(link->cgrp))
888                         cgroup_put(link->cgrp);
889                 kfree(link);
890         }
891
892         if (css_set_threaded(cset)) {
893                 list_del(&cset->threaded_csets_node);
894                 put_css_set_locked(cset->dom_cset);
895         }
896
897         kfree_rcu(cset, rcu_head);
898 }
899
900 /**
901  * compare_css_sets - helper function for find_existing_css_set().
902  * @cset: candidate css_set being tested
903  * @old_cset: existing css_set for a task
904  * @new_cgrp: cgroup that's being entered by the task
905  * @template: desired set of css pointers in css_set (pre-calculated)
906  *
907  * Returns true if "cset" matches "old_cset" except for the hierarchy
908  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
909  */
910 static bool compare_css_sets(struct css_set *cset,
911                              struct css_set *old_cset,
912                              struct cgroup *new_cgrp,
913                              struct cgroup_subsys_state *template[])
914 {
915         struct cgroup *new_dfl_cgrp;
916         struct list_head *l1, *l2;
917
918         /*
919          * On the default hierarchy, there can be csets which are
920          * associated with the same set of cgroups but different csses.
921          * Let's first ensure that csses match.
922          */
923         if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
924                 return false;
925
926
927         /* @cset's domain should match the default cgroup's */
928         if (cgroup_on_dfl(new_cgrp))
929                 new_dfl_cgrp = new_cgrp;
930         else
931                 new_dfl_cgrp = old_cset->dfl_cgrp;
932
933         if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
934                 return false;
935
936         /*
937          * Compare cgroup pointers in order to distinguish between
938          * different cgroups in hierarchies.  As different cgroups may
939          * share the same effective css, this comparison is always
940          * necessary.
941          */
942         l1 = &cset->cgrp_links;
943         l2 = &old_cset->cgrp_links;
944         while (1) {
945                 struct cgrp_cset_link *link1, *link2;
946                 struct cgroup *cgrp1, *cgrp2;
947
948                 l1 = l1->next;
949                 l2 = l2->next;
950                 /* See if we reached the end - both lists are equal length. */
951                 if (l1 == &cset->cgrp_links) {
952                         BUG_ON(l2 != &old_cset->cgrp_links);
953                         break;
954                 } else {
955                         BUG_ON(l2 == &old_cset->cgrp_links);
956                 }
957                 /* Locate the cgroups associated with these links. */
958                 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
959                 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
960                 cgrp1 = link1->cgrp;
961                 cgrp2 = link2->cgrp;
962                 /* Hierarchies should be linked in the same order. */
963                 BUG_ON(cgrp1->root != cgrp2->root);
964
965                 /*
966                  * If this hierarchy is the hierarchy of the cgroup
967                  * that's changing, then we need to check that this
968                  * css_set points to the new cgroup; if it's any other
969                  * hierarchy, then this css_set should point to the
970                  * same cgroup as the old css_set.
971                  */
972                 if (cgrp1->root == new_cgrp->root) {
973                         if (cgrp1 != new_cgrp)
974                                 return false;
975                 } else {
976                         if (cgrp1 != cgrp2)
977                                 return false;
978                 }
979         }
980         return true;
981 }
982
983 /**
984  * find_existing_css_set - init css array and find the matching css_set
985  * @old_cset: the css_set that we're using before the cgroup transition
986  * @cgrp: the cgroup that we're moving into
987  * @template: out param for the new set of csses, should be clear on entry
988  */
989 static struct css_set *find_existing_css_set(struct css_set *old_cset,
990                                         struct cgroup *cgrp,
991                                         struct cgroup_subsys_state *template[])
992 {
993         struct cgroup_root *root = cgrp->root;
994         struct cgroup_subsys *ss;
995         struct css_set *cset;
996         unsigned long key;
997         int i;
998
999         /*
1000          * Build the set of subsystem state objects that we want to see in the
1001          * new css_set. while subsystems can change globally, the entries here
1002          * won't change, so no need for locking.
1003          */
1004         for_each_subsys(ss, i) {
1005                 if (root->subsys_mask & (1UL << i)) {
1006                         /*
1007                          * @ss is in this hierarchy, so we want the
1008                          * effective css from @cgrp.
1009                          */
1010                         template[i] = cgroup_e_css(cgrp, ss);
1011                 } else {
1012                         /*
1013                          * @ss is not in this hierarchy, so we don't want
1014                          * to change the css.
1015                          */
1016                         template[i] = old_cset->subsys[i];
1017                 }
1018         }
1019
1020         key = css_set_hash(template);
1021         hash_for_each_possible(css_set_table, cset, hlist, key) {
1022                 if (!compare_css_sets(cset, old_cset, cgrp, template))
1023                         continue;
1024
1025                 /* This css_set matches what we need */
1026                 return cset;
1027         }
1028
1029         /* No existing cgroup group matched */
1030         return NULL;
1031 }
1032
1033 static void free_cgrp_cset_links(struct list_head *links_to_free)
1034 {
1035         struct cgrp_cset_link *link, *tmp_link;
1036
1037         list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1038                 list_del(&link->cset_link);
1039                 kfree(link);
1040         }
1041 }
1042
1043 /**
1044  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1045  * @count: the number of links to allocate
1046  * @tmp_links: list_head the allocated links are put on
1047  *
1048  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1049  * through ->cset_link.  Returns 0 on success or -errno.
1050  */
1051 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1052 {
1053         struct cgrp_cset_link *link;
1054         int i;
1055
1056         INIT_LIST_HEAD(tmp_links);
1057
1058         for (i = 0; i < count; i++) {
1059                 link = kzalloc(sizeof(*link), GFP_KERNEL);
1060                 if (!link) {
1061                         free_cgrp_cset_links(tmp_links);
1062                         return -ENOMEM;
1063                 }
1064                 list_add(&link->cset_link, tmp_links);
1065         }
1066         return 0;
1067 }
1068
1069 /**
1070  * link_css_set - a helper function to link a css_set to a cgroup
1071  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1072  * @cset: the css_set to be linked
1073  * @cgrp: the destination cgroup
1074  */
1075 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1076                          struct cgroup *cgrp)
1077 {
1078         struct cgrp_cset_link *link;
1079
1080         BUG_ON(list_empty(tmp_links));
1081
1082         if (cgroup_on_dfl(cgrp))
1083                 cset->dfl_cgrp = cgrp;
1084
1085         link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1086         link->cset = cset;
1087         link->cgrp = cgrp;
1088
1089         /*
1090          * Always add links to the tail of the lists so that the lists are
1091          * in choronological order.
1092          */
1093         list_move_tail(&link->cset_link, &cgrp->cset_links);
1094         list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1095
1096         if (cgroup_parent(cgrp))
1097                 cgroup_get_live(cgrp);
1098 }
1099
1100 /**
1101  * find_css_set - return a new css_set with one cgroup updated
1102  * @old_cset: the baseline css_set
1103  * @cgrp: the cgroup to be updated
1104  *
1105  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1106  * substituted into the appropriate hierarchy.
1107  */
1108 static struct css_set *find_css_set(struct css_set *old_cset,
1109                                     struct cgroup *cgrp)
1110 {
1111         struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1112         struct css_set *cset;
1113         struct list_head tmp_links;
1114         struct cgrp_cset_link *link;
1115         struct cgroup_subsys *ss;
1116         unsigned long key;
1117         int ssid;
1118
1119         lockdep_assert_held(&cgroup_mutex);
1120
1121         /* First see if we already have a cgroup group that matches
1122          * the desired set */
1123         spin_lock_irq(&css_set_lock);
1124         cset = find_existing_css_set(old_cset, cgrp, template);
1125         if (cset)
1126                 get_css_set(cset);
1127         spin_unlock_irq(&css_set_lock);
1128
1129         if (cset)
1130                 return cset;
1131
1132         cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1133         if (!cset)
1134                 return NULL;
1135
1136         /* Allocate all the cgrp_cset_link objects that we'll need */
1137         if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1138                 kfree(cset);
1139                 return NULL;
1140         }
1141
1142         refcount_set(&cset->refcount, 1);
1143         cset->dom_cset = cset;
1144         INIT_LIST_HEAD(&cset->tasks);
1145         INIT_LIST_HEAD(&cset->mg_tasks);
1146         INIT_LIST_HEAD(&cset->task_iters);
1147         INIT_LIST_HEAD(&cset->threaded_csets);
1148         INIT_HLIST_NODE(&cset->hlist);
1149         INIT_LIST_HEAD(&cset->cgrp_links);
1150         INIT_LIST_HEAD(&cset->mg_preload_node);
1151         INIT_LIST_HEAD(&cset->mg_node);
1152
1153         /* Copy the set of subsystem state objects generated in
1154          * find_existing_css_set() */
1155         memcpy(cset->subsys, template, sizeof(cset->subsys));
1156
1157         spin_lock_irq(&css_set_lock);
1158         /* Add reference counts and links from the new css_set. */
1159         list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1160                 struct cgroup *c = link->cgrp;
1161
1162                 if (c->root == cgrp->root)
1163                         c = cgrp;
1164                 link_css_set(&tmp_links, cset, c);
1165         }
1166
1167         BUG_ON(!list_empty(&tmp_links));
1168
1169         css_set_count++;
1170
1171         /* Add @cset to the hash table */
1172         key = css_set_hash(cset->subsys);
1173         hash_add(css_set_table, &cset->hlist, key);
1174
1175         for_each_subsys(ss, ssid) {
1176                 struct cgroup_subsys_state *css = cset->subsys[ssid];
1177
1178                 list_add_tail(&cset->e_cset_node[ssid],
1179                               &css->cgroup->e_csets[ssid]);
1180                 css_get(css);
1181         }
1182
1183         spin_unlock_irq(&css_set_lock);
1184
1185         /*
1186          * If @cset should be threaded, look up the matching dom_cset and
1187          * link them up.  We first fully initialize @cset then look for the
1188          * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1189          * to stay empty until we return.
1190          */
1191         if (cgroup_is_threaded(cset->dfl_cgrp)) {
1192                 struct css_set *dcset;
1193
1194                 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1195                 if (!dcset) {
1196                         put_css_set(cset);
1197                         return NULL;
1198                 }
1199
1200                 spin_lock_irq(&css_set_lock);
1201                 cset->dom_cset = dcset;
1202                 list_add_tail(&cset->threaded_csets_node,
1203                               &dcset->threaded_csets);
1204                 spin_unlock_irq(&css_set_lock);
1205         }
1206
1207         return cset;
1208 }
1209
1210 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1211 {
1212         struct cgroup *root_cgrp = kf_root->kn->priv;
1213
1214         return root_cgrp->root;
1215 }
1216
1217 static int cgroup_init_root_id(struct cgroup_root *root)
1218 {
1219         int id;
1220
1221         lockdep_assert_held(&cgroup_mutex);
1222
1223         id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1224         if (id < 0)
1225                 return id;
1226
1227         root->hierarchy_id = id;
1228         return 0;
1229 }
1230
1231 static void cgroup_exit_root_id(struct cgroup_root *root)
1232 {
1233         lockdep_assert_held(&cgroup_mutex);
1234
1235         idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1236 }
1237
1238 void cgroup_free_root(struct cgroup_root *root)
1239 {
1240         if (root) {
1241                 idr_destroy(&root->cgroup_idr);
1242                 kfree(root);
1243         }
1244 }
1245
1246 static void cgroup_destroy_root(struct cgroup_root *root)
1247 {
1248         struct cgroup *cgrp = &root->cgrp;
1249         struct cgrp_cset_link *link, *tmp_link;
1250
1251         trace_cgroup_destroy_root(root);
1252
1253         cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1254
1255         BUG_ON(atomic_read(&root->nr_cgrps));
1256         BUG_ON(!list_empty(&cgrp->self.children));
1257
1258         /* Rebind all subsystems back to the default hierarchy */
1259         WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1260
1261         /*
1262          * Release all the links from cset_links to this hierarchy's
1263          * root cgroup
1264          */
1265         spin_lock_irq(&css_set_lock);
1266
1267         list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1268                 list_del(&link->cset_link);
1269                 list_del(&link->cgrp_link);
1270                 kfree(link);
1271         }
1272
1273         spin_unlock_irq(&css_set_lock);
1274
1275         if (!list_empty(&root->root_list)) {
1276                 list_del(&root->root_list);
1277                 cgroup_root_count--;
1278         }
1279
1280         cgroup_exit_root_id(root);
1281
1282         mutex_unlock(&cgroup_mutex);
1283
1284         kernfs_destroy_root(root->kf_root);
1285         cgroup_free_root(root);
1286 }
1287
1288 /*
1289  * look up cgroup associated with current task's cgroup namespace on the
1290  * specified hierarchy
1291  */
1292 static struct cgroup *
1293 current_cgns_cgroup_from_root(struct cgroup_root *root)
1294 {
1295         struct cgroup *res = NULL;
1296         struct css_set *cset;
1297
1298         lockdep_assert_held(&css_set_lock);
1299
1300         rcu_read_lock();
1301
1302         cset = current->nsproxy->cgroup_ns->root_cset;
1303         if (cset == &init_css_set) {
1304                 res = &root->cgrp;
1305         } else {
1306                 struct cgrp_cset_link *link;
1307
1308                 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1309                         struct cgroup *c = link->cgrp;
1310
1311                         if (c->root == root) {
1312                                 res = c;
1313                                 break;
1314                         }
1315                 }
1316         }
1317         rcu_read_unlock();
1318
1319         BUG_ON(!res);
1320         return res;
1321 }
1322
1323 /* look up cgroup associated with given css_set on the specified hierarchy */
1324 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1325                                             struct cgroup_root *root)
1326 {
1327         struct cgroup *res = NULL;
1328
1329         lockdep_assert_held(&cgroup_mutex);
1330         lockdep_assert_held(&css_set_lock);
1331
1332         if (cset == &init_css_set) {
1333                 res = &root->cgrp;
1334         } else if (root == &cgrp_dfl_root) {
1335                 res = cset->dfl_cgrp;
1336         } else {
1337                 struct cgrp_cset_link *link;
1338
1339                 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1340                         struct cgroup *c = link->cgrp;
1341
1342                         if (c->root == root) {
1343                                 res = c;
1344                                 break;
1345                         }
1346                 }
1347         }
1348
1349         BUG_ON(!res);
1350         return res;
1351 }
1352
1353 /*
1354  * Return the cgroup for "task" from the given hierarchy. Must be
1355  * called with cgroup_mutex and css_set_lock held.
1356  */
1357 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1358                                      struct cgroup_root *root)
1359 {
1360         /*
1361          * No need to lock the task - since we hold cgroup_mutex the
1362          * task can't change groups, so the only thing that can happen
1363          * is that it exits and its css is set back to init_css_set.
1364          */
1365         return cset_cgroup_from_root(task_css_set(task), root);
1366 }
1367
1368 /*
1369  * A task must hold cgroup_mutex to modify cgroups.
1370  *
1371  * Any task can increment and decrement the count field without lock.
1372  * So in general, code holding cgroup_mutex can't rely on the count
1373  * field not changing.  However, if the count goes to zero, then only
1374  * cgroup_attach_task() can increment it again.  Because a count of zero
1375  * means that no tasks are currently attached, therefore there is no
1376  * way a task attached to that cgroup can fork (the other way to
1377  * increment the count).  So code holding cgroup_mutex can safely
1378  * assume that if the count is zero, it will stay zero. Similarly, if
1379  * a task holds cgroup_mutex on a cgroup with zero count, it
1380  * knows that the cgroup won't be removed, as cgroup_rmdir()
1381  * needs that mutex.
1382  *
1383  * A cgroup can only be deleted if both its 'count' of using tasks
1384  * is zero, and its list of 'children' cgroups is empty.  Since all
1385  * tasks in the system use _some_ cgroup, and since there is always at
1386  * least one task in the system (init, pid == 1), therefore, root cgroup
1387  * always has either children cgroups and/or using tasks.  So we don't
1388  * need a special hack to ensure that root cgroup cannot be deleted.
1389  *
1390  * P.S.  One more locking exception.  RCU is used to guard the
1391  * update of a tasks cgroup pointer by cgroup_attach_task()
1392  */
1393
1394 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1395
1396 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1397                               char *buf)
1398 {
1399         struct cgroup_subsys *ss = cft->ss;
1400
1401         if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1402             !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1403                 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1404                          cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1405                          cft->name);
1406         else
1407                 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1408         return buf;
1409 }
1410
1411 /**
1412  * cgroup_file_mode - deduce file mode of a control file
1413  * @cft: the control file in question
1414  *
1415  * S_IRUGO for read, S_IWUSR for write.
1416  */
1417 static umode_t cgroup_file_mode(const struct cftype *cft)
1418 {
1419         umode_t mode = 0;
1420
1421         if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1422                 mode |= S_IRUGO;
1423
1424         if (cft->write_u64 || cft->write_s64 || cft->write) {
1425                 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1426                         mode |= S_IWUGO;
1427                 else
1428                         mode |= S_IWUSR;
1429         }
1430
1431         return mode;
1432 }
1433
1434 /**
1435  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1436  * @subtree_control: the new subtree_control mask to consider
1437  * @this_ss_mask: available subsystems
1438  *
1439  * On the default hierarchy, a subsystem may request other subsystems to be
1440  * enabled together through its ->depends_on mask.  In such cases, more
1441  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1442  *
1443  * This function calculates which subsystems need to be enabled if
1444  * @subtree_control is to be applied while restricted to @this_ss_mask.
1445  */
1446 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1447 {
1448         u16 cur_ss_mask = subtree_control;
1449         struct cgroup_subsys *ss;
1450         int ssid;
1451
1452         lockdep_assert_held(&cgroup_mutex);
1453
1454         cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1455
1456         while (true) {
1457                 u16 new_ss_mask = cur_ss_mask;
1458
1459                 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1460                         new_ss_mask |= ss->depends_on;
1461                 } while_each_subsys_mask();
1462
1463                 /*
1464                  * Mask out subsystems which aren't available.  This can
1465                  * happen only if some depended-upon subsystems were bound
1466                  * to non-default hierarchies.
1467                  */
1468                 new_ss_mask &= this_ss_mask;
1469
1470                 if (new_ss_mask == cur_ss_mask)
1471                         break;
1472                 cur_ss_mask = new_ss_mask;
1473         }
1474
1475         return cur_ss_mask;
1476 }
1477
1478 /**
1479  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1480  * @kn: the kernfs_node being serviced
1481  *
1482  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1483  * the method finishes if locking succeeded.  Note that once this function
1484  * returns the cgroup returned by cgroup_kn_lock_live() may become
1485  * inaccessible any time.  If the caller intends to continue to access the
1486  * cgroup, it should pin it before invoking this function.
1487  */
1488 void cgroup_kn_unlock(struct kernfs_node *kn)
1489 {
1490         struct cgroup *cgrp;
1491
1492         if (kernfs_type(kn) == KERNFS_DIR)
1493                 cgrp = kn->priv;
1494         else
1495                 cgrp = kn->parent->priv;
1496
1497         mutex_unlock(&cgroup_mutex);
1498
1499         kernfs_unbreak_active_protection(kn);
1500         cgroup_put(cgrp);
1501 }
1502
1503 /**
1504  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1505  * @kn: the kernfs_node being serviced
1506  * @drain_offline: perform offline draining on the cgroup
1507  *
1508  * This helper is to be used by a cgroup kernfs method currently servicing
1509  * @kn.  It breaks the active protection, performs cgroup locking and
1510  * verifies that the associated cgroup is alive.  Returns the cgroup if
1511  * alive; otherwise, %NULL.  A successful return should be undone by a
1512  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1513  * cgroup is drained of offlining csses before return.
1514  *
1515  * Any cgroup kernfs method implementation which requires locking the
1516  * associated cgroup should use this helper.  It avoids nesting cgroup
1517  * locking under kernfs active protection and allows all kernfs operations
1518  * including self-removal.
1519  */
1520 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1521 {
1522         struct cgroup *cgrp;
1523
1524         if (kernfs_type(kn) == KERNFS_DIR)
1525                 cgrp = kn->priv;
1526         else
1527                 cgrp = kn->parent->priv;
1528
1529         /*
1530          * We're gonna grab cgroup_mutex which nests outside kernfs
1531          * active_ref.  cgroup liveliness check alone provides enough
1532          * protection against removal.  Ensure @cgrp stays accessible and
1533          * break the active_ref protection.
1534          */
1535         if (!cgroup_tryget(cgrp))
1536                 return NULL;
1537         kernfs_break_active_protection(kn);
1538
1539         if (drain_offline)
1540                 cgroup_lock_and_drain_offline(cgrp);
1541         else
1542                 mutex_lock(&cgroup_mutex);
1543
1544         if (!cgroup_is_dead(cgrp))
1545                 return cgrp;
1546
1547         cgroup_kn_unlock(kn);
1548         return NULL;
1549 }
1550
1551 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1552 {
1553         char name[CGROUP_FILE_NAME_MAX];
1554
1555         lockdep_assert_held(&cgroup_mutex);
1556
1557         if (cft->file_offset) {
1558                 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1559                 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1560
1561                 spin_lock_irq(&cgroup_file_kn_lock);
1562                 cfile->kn = NULL;
1563                 spin_unlock_irq(&cgroup_file_kn_lock);
1564
1565                 del_timer_sync(&cfile->notify_timer);
1566         }
1567
1568         kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1569 }
1570
1571 /**
1572  * css_clear_dir - remove subsys files in a cgroup directory
1573  * @css: taget css
1574  */
1575 static void css_clear_dir(struct cgroup_subsys_state *css)
1576 {
1577         struct cgroup *cgrp = css->cgroup;
1578         struct cftype *cfts;
1579
1580         if (!(css->flags & CSS_VISIBLE))
1581                 return;
1582
1583         css->flags &= ~CSS_VISIBLE;
1584
1585         if (!css->ss) {
1586                 if (cgroup_on_dfl(cgrp))
1587                         cfts = cgroup_base_files;
1588                 else
1589                         cfts = cgroup1_base_files;
1590
1591                 cgroup_addrm_files(css, cgrp, cfts, false);
1592         } else {
1593                 list_for_each_entry(cfts, &css->ss->cfts, node)
1594                         cgroup_addrm_files(css, cgrp, cfts, false);
1595         }
1596 }
1597
1598 /**
1599  * css_populate_dir - create subsys files in a cgroup directory
1600  * @css: target css
1601  *
1602  * On failure, no file is added.
1603  */
1604 static int css_populate_dir(struct cgroup_subsys_state *css)
1605 {
1606         struct cgroup *cgrp = css->cgroup;
1607         struct cftype *cfts, *failed_cfts;
1608         int ret;
1609
1610         if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1611                 return 0;
1612
1613         if (!css->ss) {
1614                 if (cgroup_on_dfl(cgrp))
1615                         cfts = cgroup_base_files;
1616                 else
1617                         cfts = cgroup1_base_files;
1618
1619                 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1620                 if (ret < 0)
1621                         return ret;
1622         } else {
1623                 list_for_each_entry(cfts, &css->ss->cfts, node) {
1624                         ret = cgroup_addrm_files(css, cgrp, cfts, true);
1625                         if (ret < 0) {
1626                                 failed_cfts = cfts;
1627                                 goto err;
1628                         }
1629                 }
1630         }
1631
1632         css->flags |= CSS_VISIBLE;
1633
1634         return 0;
1635 err:
1636         list_for_each_entry(cfts, &css->ss->cfts, node) {
1637                 if (cfts == failed_cfts)
1638                         break;
1639                 cgroup_addrm_files(css, cgrp, cfts, false);
1640         }
1641         return ret;
1642 }
1643
1644 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1645 {
1646         struct cgroup *dcgrp = &dst_root->cgrp;
1647         struct cgroup_subsys *ss;
1648         int ssid, i, ret;
1649
1650         lockdep_assert_held(&cgroup_mutex);
1651
1652         do_each_subsys_mask(ss, ssid, ss_mask) {
1653                 /*
1654                  * If @ss has non-root csses attached to it, can't move.
1655                  * If @ss is an implicit controller, it is exempt from this
1656                  * rule and can be stolen.
1657                  */
1658                 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1659                     !ss->implicit_on_dfl)
1660                         return -EBUSY;
1661
1662                 /* can't move between two non-dummy roots either */
1663                 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1664                         return -EBUSY;
1665         } while_each_subsys_mask();
1666
1667         do_each_subsys_mask(ss, ssid, ss_mask) {
1668                 struct cgroup_root *src_root = ss->root;
1669                 struct cgroup *scgrp = &src_root->cgrp;
1670                 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1671                 struct css_set *cset;
1672
1673                 WARN_ON(!css || cgroup_css(dcgrp, ss));
1674
1675                 /* disable from the source */
1676                 src_root->subsys_mask &= ~(1 << ssid);
1677                 WARN_ON(cgroup_apply_control(scgrp));
1678                 cgroup_finalize_control(scgrp, 0);
1679
1680                 /* rebind */
1681                 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1682                 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1683                 ss->root = dst_root;
1684                 css->cgroup = dcgrp;
1685
1686                 spin_lock_irq(&css_set_lock);
1687                 hash_for_each(css_set_table, i, cset, hlist)
1688                         list_move_tail(&cset->e_cset_node[ss->id],
1689                                        &dcgrp->e_csets[ss->id]);
1690                 spin_unlock_irq(&css_set_lock);
1691
1692                 /* default hierarchy doesn't enable controllers by default */
1693                 dst_root->subsys_mask |= 1 << ssid;
1694                 if (dst_root == &cgrp_dfl_root) {
1695                         static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1696                 } else {
1697                         dcgrp->subtree_control |= 1 << ssid;
1698                         static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1699                 }
1700
1701                 ret = cgroup_apply_control(dcgrp);
1702                 if (ret)
1703                         pr_warn("partial failure to rebind %s controller (err=%d)\n",
1704                                 ss->name, ret);
1705
1706                 if (ss->bind)
1707                         ss->bind(css);
1708         } while_each_subsys_mask();
1709
1710         kernfs_activate(dcgrp->kn);
1711         return 0;
1712 }
1713
1714 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1715                      struct kernfs_root *kf_root)
1716 {
1717         int len = 0;
1718         char *buf = NULL;
1719         struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1720         struct cgroup *ns_cgroup;
1721
1722         buf = kmalloc(PATH_MAX, GFP_KERNEL);
1723         if (!buf)
1724                 return -ENOMEM;
1725
1726         spin_lock_irq(&css_set_lock);
1727         ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1728         len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1729         spin_unlock_irq(&css_set_lock);
1730
1731         if (len >= PATH_MAX)
1732                 len = -ERANGE;
1733         else if (len > 0) {
1734                 seq_escape(sf, buf, " \t\n\\");
1735                 len = 0;
1736         }
1737         kfree(buf);
1738         return len;
1739 }
1740
1741 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1742 {
1743         char *token;
1744
1745         *root_flags = 0;
1746
1747         if (!data)
1748                 return 0;
1749
1750         while ((token = strsep(&data, ",")) != NULL) {
1751                 if (!strcmp(token, "nsdelegate")) {
1752                         *root_flags |= CGRP_ROOT_NS_DELEGATE;
1753                         continue;
1754                 }
1755
1756                 pr_err("cgroup2: unknown option \"%s\"\n", token);
1757                 return -EINVAL;
1758         }
1759
1760         return 0;
1761 }
1762
1763 static void apply_cgroup_root_flags(unsigned int root_flags)
1764 {
1765         if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1766                 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1767                         cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1768                 else
1769                         cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1770         }
1771 }
1772
1773 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1774 {
1775         if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1776                 seq_puts(seq, ",nsdelegate");
1777         return 0;
1778 }
1779
1780 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1781 {
1782         unsigned int root_flags;
1783         int ret;
1784
1785         ret = parse_cgroup_root_flags(data, &root_flags);
1786         if (ret)
1787                 return ret;
1788
1789         apply_cgroup_root_flags(root_flags);
1790         return 0;
1791 }
1792
1793 /*
1794  * To reduce the fork() overhead for systems that are not actually using
1795  * their cgroups capability, we don't maintain the lists running through
1796  * each css_set to its tasks until we see the list actually used - in other
1797  * words after the first mount.
1798  */
1799 static bool use_task_css_set_links __read_mostly;
1800
1801 static void cgroup_enable_task_cg_lists(void)
1802 {
1803         struct task_struct *p, *g;
1804
1805         /*
1806          * We need tasklist_lock because RCU is not safe against
1807          * while_each_thread(). Besides, a forking task that has passed
1808          * cgroup_post_fork() without seeing use_task_css_set_links = 1
1809          * is not guaranteed to have its child immediately visible in the
1810          * tasklist if we walk through it with RCU.
1811          */
1812         read_lock(&tasklist_lock);
1813         spin_lock_irq(&css_set_lock);
1814
1815         if (use_task_css_set_links)
1816                 goto out_unlock;
1817
1818         use_task_css_set_links = true;
1819
1820         do_each_thread(g, p) {
1821                 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1822                              task_css_set(p) != &init_css_set);
1823
1824                 /*
1825                  * We should check if the process is exiting, otherwise
1826                  * it will race with cgroup_exit() in that the list
1827                  * entry won't be deleted though the process has exited.
1828                  * Do it while holding siglock so that we don't end up
1829                  * racing against cgroup_exit().
1830                  *
1831                  * Interrupts were already disabled while acquiring
1832                  * the css_set_lock, so we do not need to disable it
1833                  * again when acquiring the sighand->siglock here.
1834                  */
1835                 spin_lock(&p->sighand->siglock);
1836                 if (!(p->flags & PF_EXITING)) {
1837                         struct css_set *cset = task_css_set(p);
1838
1839                         if (!css_set_populated(cset))
1840                                 css_set_update_populated(cset, true);
1841                         list_add_tail(&p->cg_list, &cset->tasks);
1842                         get_css_set(cset);
1843                         cset->nr_tasks++;
1844                 }
1845                 spin_unlock(&p->sighand->siglock);
1846         } while_each_thread(g, p);
1847 out_unlock:
1848         spin_unlock_irq(&css_set_lock);
1849         read_unlock(&tasklist_lock);
1850 }
1851
1852 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1853 {
1854         struct cgroup_subsys *ss;
1855         int ssid;
1856
1857         INIT_LIST_HEAD(&cgrp->self.sibling);
1858         INIT_LIST_HEAD(&cgrp->self.children);
1859         INIT_LIST_HEAD(&cgrp->cset_links);
1860         INIT_LIST_HEAD(&cgrp->pidlists);
1861         mutex_init(&cgrp->pidlist_mutex);
1862         cgrp->self.cgroup = cgrp;
1863         cgrp->self.flags |= CSS_ONLINE;
1864         cgrp->dom_cgrp = cgrp;
1865         cgrp->max_descendants = INT_MAX;
1866         cgrp->max_depth = INT_MAX;
1867         INIT_LIST_HEAD(&cgrp->rstat_css_list);
1868         prev_cputime_init(&cgrp->prev_cputime);
1869
1870         for_each_subsys(ss, ssid)
1871                 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1872
1873         init_waitqueue_head(&cgrp->offline_waitq);
1874         INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1875 }
1876
1877 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1878 {
1879         struct cgroup *cgrp = &root->cgrp;
1880
1881         INIT_LIST_HEAD(&root->root_list);
1882         atomic_set(&root->nr_cgrps, 1);
1883         cgrp->root = root;
1884         init_cgroup_housekeeping(cgrp);
1885         idr_init(&root->cgroup_idr);
1886
1887         root->flags = opts->flags;
1888         if (opts->release_agent)
1889                 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1890         if (opts->name)
1891                 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1892         if (opts->cpuset_clone_children)
1893                 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1894 }
1895
1896 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1897 {
1898         LIST_HEAD(tmp_links);
1899         struct cgroup *root_cgrp = &root->cgrp;
1900         struct kernfs_syscall_ops *kf_sops;
1901         struct css_set *cset;
1902         int i, ret;
1903
1904         lockdep_assert_held(&cgroup_mutex);
1905
1906         ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1907         if (ret < 0)
1908                 goto out;
1909         root_cgrp->id = ret;
1910         root_cgrp->ancestor_ids[0] = ret;
1911
1912         ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1913                               ref_flags, GFP_KERNEL);
1914         if (ret)
1915                 goto out;
1916
1917         /*
1918          * We're accessing css_set_count without locking css_set_lock here,
1919          * but that's OK - it can only be increased by someone holding
1920          * cgroup_lock, and that's us.  Later rebinding may disable
1921          * controllers on the default hierarchy and thus create new csets,
1922          * which can't be more than the existing ones.  Allocate 2x.
1923          */
1924         ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1925         if (ret)
1926                 goto cancel_ref;
1927
1928         ret = cgroup_init_root_id(root);
1929         if (ret)
1930                 goto cancel_ref;
1931
1932         kf_sops = root == &cgrp_dfl_root ?
1933                 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1934
1935         root->kf_root = kernfs_create_root(kf_sops,
1936                                            KERNFS_ROOT_CREATE_DEACTIVATED |
1937                                            KERNFS_ROOT_SUPPORT_EXPORTOP,
1938                                            root_cgrp);
1939         if (IS_ERR(root->kf_root)) {
1940                 ret = PTR_ERR(root->kf_root);
1941                 goto exit_root_id;
1942         }
1943         root_cgrp->kn = root->kf_root->kn;
1944
1945         ret = css_populate_dir(&root_cgrp->self);
1946         if (ret)
1947                 goto destroy_root;
1948
1949         ret = rebind_subsystems(root, ss_mask);
1950         if (ret)
1951                 goto destroy_root;
1952
1953         ret = cgroup_bpf_inherit(root_cgrp);
1954         WARN_ON_ONCE(ret);
1955
1956         trace_cgroup_setup_root(root);
1957
1958         /*
1959          * There must be no failure case after here, since rebinding takes
1960          * care of subsystems' refcounts, which are explicitly dropped in
1961          * the failure exit path.
1962          */
1963         list_add(&root->root_list, &cgroup_roots);
1964         cgroup_root_count++;
1965
1966         /*
1967          * Link the root cgroup in this hierarchy into all the css_set
1968          * objects.
1969          */
1970         spin_lock_irq(&css_set_lock);
1971         hash_for_each(css_set_table, i, cset, hlist) {
1972                 link_css_set(&tmp_links, cset, root_cgrp);
1973                 if (css_set_populated(cset))
1974                         cgroup_update_populated(root_cgrp, true);
1975         }
1976         spin_unlock_irq(&css_set_lock);
1977
1978         BUG_ON(!list_empty(&root_cgrp->self.children));
1979         BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1980
1981         kernfs_activate(root_cgrp->kn);
1982         ret = 0;
1983         goto out;
1984
1985 destroy_root:
1986         kernfs_destroy_root(root->kf_root);
1987         root->kf_root = NULL;
1988 exit_root_id:
1989         cgroup_exit_root_id(root);
1990 cancel_ref:
1991         percpu_ref_exit(&root_cgrp->self.refcnt);
1992 out:
1993         free_cgrp_cset_links(&tmp_links);
1994         return ret;
1995 }
1996
1997 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1998                                struct cgroup_root *root, unsigned long magic,
1999                                struct cgroup_namespace *ns)
2000 {
2001         struct dentry *dentry;
2002         bool new_sb;
2003
2004         dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2005
2006         /*
2007          * In non-init cgroup namespace, instead of root cgroup's dentry,
2008          * we return the dentry corresponding to the cgroupns->root_cgrp.
2009          */
2010         if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2011                 struct dentry *nsdentry;
2012                 struct cgroup *cgrp;
2013
2014                 mutex_lock(&cgroup_mutex);
2015                 spin_lock_irq(&css_set_lock);
2016
2017                 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2018
2019                 spin_unlock_irq(&css_set_lock);
2020                 mutex_unlock(&cgroup_mutex);
2021
2022                 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2023                 dput(dentry);
2024                 dentry = nsdentry;
2025         }
2026
2027         if (IS_ERR(dentry) || !new_sb)
2028                 cgroup_put(&root->cgrp);
2029
2030         return dentry;
2031 }
2032
2033 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2034                          int flags, const char *unused_dev_name,
2035                          void *data)
2036 {
2037         struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2038         struct dentry *dentry;
2039         int ret;
2040
2041         get_cgroup_ns(ns);
2042
2043         /* Check if the caller has permission to mount. */
2044         if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2045                 put_cgroup_ns(ns);
2046                 return ERR_PTR(-EPERM);
2047         }
2048
2049         /*
2050          * The first time anyone tries to mount a cgroup, enable the list
2051          * linking each css_set to its tasks and fix up all existing tasks.
2052          */
2053         if (!use_task_css_set_links)
2054                 cgroup_enable_task_cg_lists();
2055
2056         if (fs_type == &cgroup2_fs_type) {
2057                 unsigned int root_flags;
2058
2059                 ret = parse_cgroup_root_flags(data, &root_flags);
2060                 if (ret) {
2061                         put_cgroup_ns(ns);
2062                         return ERR_PTR(ret);
2063                 }
2064
2065                 cgrp_dfl_visible = true;
2066                 cgroup_get_live(&cgrp_dfl_root.cgrp);
2067
2068                 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2069                                          CGROUP2_SUPER_MAGIC, ns);
2070                 if (!IS_ERR(dentry))
2071                         apply_cgroup_root_flags(root_flags);
2072         } else {
2073                 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2074                                        CGROUP_SUPER_MAGIC, ns);
2075         }
2076
2077         put_cgroup_ns(ns);
2078         return dentry;
2079 }
2080
2081 static void cgroup_kill_sb(struct super_block *sb)
2082 {
2083         struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2084         struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2085
2086         /*
2087          * If @root doesn't have any mounts or children, start killing it.
2088          * This prevents new mounts by disabling percpu_ref_tryget_live().
2089          * cgroup_mount() may wait for @root's release.
2090          *
2091          * And don't kill the default root.
2092          */
2093         if (!list_empty(&root->cgrp.self.children) ||
2094             root == &cgrp_dfl_root)
2095                 cgroup_put(&root->cgrp);
2096         else
2097                 percpu_ref_kill(&root->cgrp.self.refcnt);
2098
2099         kernfs_kill_sb(sb);
2100 }
2101
2102 struct file_system_type cgroup_fs_type = {
2103         .name = "cgroup",
2104         .mount = cgroup_mount,
2105         .kill_sb = cgroup_kill_sb,
2106         .fs_flags = FS_USERNS_MOUNT,
2107 };
2108
2109 static struct file_system_type cgroup2_fs_type = {
2110         .name = "cgroup2",
2111         .mount = cgroup_mount,
2112         .kill_sb = cgroup_kill_sb,
2113         .fs_flags = FS_USERNS_MOUNT,
2114 };
2115
2116 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2117                           struct cgroup_namespace *ns)
2118 {
2119         struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2120
2121         return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2122 }
2123
2124 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2125                    struct cgroup_namespace *ns)
2126 {
2127         int ret;
2128
2129         mutex_lock(&cgroup_mutex);
2130         spin_lock_irq(&css_set_lock);
2131
2132         ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2133
2134         spin_unlock_irq(&css_set_lock);
2135         mutex_unlock(&cgroup_mutex);
2136
2137         return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2140
2141 /**
2142  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2143  * @task: target task
2144  * @buf: the buffer to write the path into
2145  * @buflen: the length of the buffer
2146  *
2147  * Determine @task's cgroup on the first (the one with the lowest non-zero
2148  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2149  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2150  * cgroup controller callbacks.
2151  *
2152  * Return value is the same as kernfs_path().
2153  */
2154 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2155 {
2156         struct cgroup_root *root;
2157         struct cgroup *cgrp;
2158         int hierarchy_id = 1;
2159         int ret;
2160
2161         mutex_lock(&cgroup_mutex);
2162         spin_lock_irq(&css_set_lock);
2163
2164         root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2165
2166         if (root) {
2167                 cgrp = task_cgroup_from_root(task, root);
2168                 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2169         } else {
2170                 /* if no hierarchy exists, everyone is in "/" */
2171                 ret = strlcpy(buf, "/", buflen);
2172         }
2173
2174         spin_unlock_irq(&css_set_lock);
2175         mutex_unlock(&cgroup_mutex);
2176         return ret;
2177 }
2178 EXPORT_SYMBOL_GPL(task_cgroup_path);
2179
2180 /**
2181  * cgroup_migrate_add_task - add a migration target task to a migration context
2182  * @task: target task
2183  * @mgctx: target migration context
2184  *
2185  * Add @task, which is a migration target, to @mgctx->tset.  This function
2186  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2187  * should have been added as a migration source and @task->cg_list will be
2188  * moved from the css_set's tasks list to mg_tasks one.
2189  */
2190 static void cgroup_migrate_add_task(struct task_struct *task,
2191                                     struct cgroup_mgctx *mgctx)
2192 {
2193         struct css_set *cset;
2194
2195         lockdep_assert_held(&css_set_lock);
2196
2197         /* @task either already exited or can't exit until the end */
2198         if (task->flags & PF_EXITING)
2199                 return;
2200
2201         /* leave @task alone if post_fork() hasn't linked it yet */
2202         if (list_empty(&task->cg_list))
2203                 return;
2204
2205         cset = task_css_set(task);
2206         if (!cset->mg_src_cgrp)
2207                 return;
2208
2209         mgctx->tset.nr_tasks++;
2210
2211         list_move_tail(&task->cg_list, &cset->mg_tasks);
2212         if (list_empty(&cset->mg_node))
2213                 list_add_tail(&cset->mg_node,
2214                               &mgctx->tset.src_csets);
2215         if (list_empty(&cset->mg_dst_cset->mg_node))
2216                 list_add_tail(&cset->mg_dst_cset->mg_node,
2217                               &mgctx->tset.dst_csets);
2218 }
2219
2220 /**
2221  * cgroup_taskset_first - reset taskset and return the first task
2222  * @tset: taskset of interest
2223  * @dst_cssp: output variable for the destination css
2224  *
2225  * @tset iteration is initialized and the first task is returned.
2226  */
2227 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2228                                          struct cgroup_subsys_state **dst_cssp)
2229 {
2230         tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2231         tset->cur_task = NULL;
2232
2233         return cgroup_taskset_next(tset, dst_cssp);
2234 }
2235
2236 /**
2237  * cgroup_taskset_next - iterate to the next task in taskset
2238  * @tset: taskset of interest
2239  * @dst_cssp: output variable for the destination css
2240  *
2241  * Return the next task in @tset.  Iteration must have been initialized
2242  * with cgroup_taskset_first().
2243  */
2244 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2245                                         struct cgroup_subsys_state **dst_cssp)
2246 {
2247         struct css_set *cset = tset->cur_cset;
2248         struct task_struct *task = tset->cur_task;
2249
2250         while (&cset->mg_node != tset->csets) {
2251                 if (!task)
2252                         task = list_first_entry(&cset->mg_tasks,
2253                                                 struct task_struct, cg_list);
2254                 else
2255                         task = list_next_entry(task, cg_list);
2256
2257                 if (&task->cg_list != &cset->mg_tasks) {
2258                         tset->cur_cset = cset;
2259                         tset->cur_task = task;
2260
2261                         /*
2262                          * This function may be called both before and
2263                          * after cgroup_taskset_migrate().  The two cases
2264                          * can be distinguished by looking at whether @cset
2265                          * has its ->mg_dst_cset set.
2266                          */
2267                         if (cset->mg_dst_cset)
2268                                 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2269                         else
2270                                 *dst_cssp = cset->subsys[tset->ssid];
2271
2272                         return task;
2273                 }
2274
2275                 cset = list_next_entry(cset, mg_node);
2276                 task = NULL;
2277         }
2278
2279         return NULL;
2280 }
2281
2282 /**
2283  * cgroup_taskset_migrate - migrate a taskset
2284  * @mgctx: migration context
2285  *
2286  * Migrate tasks in @mgctx as setup by migration preparation functions.
2287  * This function fails iff one of the ->can_attach callbacks fails and
2288  * guarantees that either all or none of the tasks in @mgctx are migrated.
2289  * @mgctx is consumed regardless of success.
2290  */
2291 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2292 {
2293         struct cgroup_taskset *tset = &mgctx->tset;
2294         struct cgroup_subsys *ss;
2295         struct task_struct *task, *tmp_task;
2296         struct css_set *cset, *tmp_cset;
2297         int ssid, failed_ssid, ret;
2298
2299         /* check that we can legitimately attach to the cgroup */
2300         if (tset->nr_tasks) {
2301                 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2302                         if (ss->can_attach) {
2303                                 tset->ssid = ssid;
2304                                 ret = ss->can_attach(tset);
2305                                 if (ret) {
2306                                         failed_ssid = ssid;
2307                                         goto out_cancel_attach;
2308                                 }
2309                         }
2310                 } while_each_subsys_mask();
2311         }
2312
2313         /*
2314          * Now that we're guaranteed success, proceed to move all tasks to
2315          * the new cgroup.  There are no failure cases after here, so this
2316          * is the commit point.
2317          */
2318         spin_lock_irq(&css_set_lock);
2319         list_for_each_entry(cset, &tset->src_csets, mg_node) {
2320                 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2321                         struct css_set *from_cset = task_css_set(task);
2322                         struct css_set *to_cset = cset->mg_dst_cset;
2323
2324                         get_css_set(to_cset);
2325                         to_cset->nr_tasks++;
2326                         css_set_move_task(task, from_cset, to_cset, true);
2327                         put_css_set_locked(from_cset);
2328                         from_cset->nr_tasks--;
2329                 }
2330         }
2331         spin_unlock_irq(&css_set_lock);
2332
2333         /*
2334          * Migration is committed, all target tasks are now on dst_csets.
2335          * Nothing is sensitive to fork() after this point.  Notify
2336          * controllers that migration is complete.
2337          */
2338         tset->csets = &tset->dst_csets;
2339
2340         if (tset->nr_tasks) {
2341                 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2342                         if (ss->attach) {
2343                                 tset->ssid = ssid;
2344                                 ss->attach(tset);
2345                         }
2346                 } while_each_subsys_mask();
2347         }
2348
2349         ret = 0;
2350         goto out_release_tset;
2351
2352 out_cancel_attach:
2353         if (tset->nr_tasks) {
2354                 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2355                         if (ssid == failed_ssid)
2356                                 break;
2357                         if (ss->cancel_attach) {
2358                                 tset->ssid = ssid;
2359                                 ss->cancel_attach(tset);
2360                         }
2361                 } while_each_subsys_mask();
2362         }
2363 out_release_tset:
2364         spin_lock_irq(&css_set_lock);
2365         list_splice_init(&tset->dst_csets, &tset->src_csets);
2366         list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2367                 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2368                 list_del_init(&cset->mg_node);
2369         }
2370         spin_unlock_irq(&css_set_lock);
2371
2372         /*
2373          * Re-initialize the cgroup_taskset structure in case it is reused
2374          * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2375          * iteration.
2376          */
2377         tset->nr_tasks = 0;
2378         tset->csets    = &tset->src_csets;
2379         return ret;
2380 }
2381
2382 /**
2383  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2384  * @dst_cgrp: destination cgroup to test
2385  *
2386  * On the default hierarchy, except for the mixable, (possible) thread root
2387  * and threaded cgroups, subtree_control must be zero for migration
2388  * destination cgroups with tasks so that child cgroups don't compete
2389  * against tasks.
2390  */
2391 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2392 {
2393         /* v1 doesn't have any restriction */
2394         if (!cgroup_on_dfl(dst_cgrp))
2395                 return 0;
2396
2397         /* verify @dst_cgrp can host resources */
2398         if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2399                 return -EOPNOTSUPP;
2400
2401         /* mixables don't care */
2402         if (cgroup_is_mixable(dst_cgrp))
2403                 return 0;
2404
2405         /*
2406          * If @dst_cgrp is already or can become a thread root or is
2407          * threaded, it doesn't matter.
2408          */
2409         if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2410                 return 0;
2411
2412         /* apply no-internal-process constraint */
2413         if (dst_cgrp->subtree_control)
2414                 return -EBUSY;
2415
2416         return 0;
2417 }
2418
2419 /**
2420  * cgroup_migrate_finish - cleanup after attach
2421  * @mgctx: migration context
2422  *
2423  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2424  * those functions for details.
2425  */
2426 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2427 {
2428         LIST_HEAD(preloaded);
2429         struct css_set *cset, *tmp_cset;
2430
2431         lockdep_assert_held(&cgroup_mutex);
2432
2433         spin_lock_irq(&css_set_lock);
2434
2435         list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2436         list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2437
2438         list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2439                 cset->mg_src_cgrp = NULL;
2440                 cset->mg_dst_cgrp = NULL;
2441                 cset->mg_dst_cset = NULL;
2442                 list_del_init(&cset->mg_preload_node);
2443                 put_css_set_locked(cset);
2444         }
2445
2446         spin_unlock_irq(&css_set_lock);
2447 }
2448
2449 /**
2450  * cgroup_migrate_add_src - add a migration source css_set
2451  * @src_cset: the source css_set to add
2452  * @dst_cgrp: the destination cgroup
2453  * @mgctx: migration context
2454  *
2455  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2456  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2457  * up by cgroup_migrate_finish().
2458  *
2459  * This function may be called without holding cgroup_threadgroup_rwsem
2460  * even if the target is a process.  Threads may be created and destroyed
2461  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2462  * into play and the preloaded css_sets are guaranteed to cover all
2463  * migrations.
2464  */
2465 void cgroup_migrate_add_src(struct css_set *src_cset,
2466                             struct cgroup *dst_cgrp,
2467                             struct cgroup_mgctx *mgctx)
2468 {
2469         struct cgroup *src_cgrp;
2470
2471         lockdep_assert_held(&cgroup_mutex);
2472         lockdep_assert_held(&css_set_lock);
2473
2474         /*
2475          * If ->dead, @src_set is associated with one or more dead cgroups
2476          * and doesn't contain any migratable tasks.  Ignore it early so
2477          * that the rest of migration path doesn't get confused by it.
2478          */
2479         if (src_cset->dead)
2480                 return;
2481
2482         src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2483
2484         if (!list_empty(&src_cset->mg_preload_node))
2485                 return;
2486
2487         WARN_ON(src_cset->mg_src_cgrp);
2488         WARN_ON(src_cset->mg_dst_cgrp);
2489         WARN_ON(!list_empty(&src_cset->mg_tasks));
2490         WARN_ON(!list_empty(&src_cset->mg_node));
2491
2492         src_cset->mg_src_cgrp = src_cgrp;
2493         src_cset->mg_dst_cgrp = dst_cgrp;
2494         get_css_set(src_cset);
2495         list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2496 }
2497
2498 /**
2499  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2500  * @mgctx: migration context
2501  *
2502  * Tasks are about to be moved and all the source css_sets have been
2503  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2504  * pins all destination css_sets, links each to its source, and append them
2505  * to @mgctx->preloaded_dst_csets.
2506  *
2507  * This function must be called after cgroup_migrate_add_src() has been
2508  * called on each migration source css_set.  After migration is performed
2509  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2510  * @mgctx.
2511  */
2512 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2513 {
2514         struct css_set *src_cset, *tmp_cset;
2515
2516         lockdep_assert_held(&cgroup_mutex);
2517
2518         /* look up the dst cset for each src cset and link it to src */
2519         list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2520                                  mg_preload_node) {
2521                 struct css_set *dst_cset;
2522                 struct cgroup_subsys *ss;
2523                 int ssid;
2524
2525                 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2526                 if (!dst_cset)
2527                         goto err;
2528
2529                 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2530
2531                 /*
2532                  * If src cset equals dst, it's noop.  Drop the src.
2533                  * cgroup_migrate() will skip the cset too.  Note that we
2534                  * can't handle src == dst as some nodes are used by both.
2535                  */
2536                 if (src_cset == dst_cset) {
2537                         src_cset->mg_src_cgrp = NULL;
2538                         src_cset->mg_dst_cgrp = NULL;
2539                         list_del_init(&src_cset->mg_preload_node);
2540                         put_css_set(src_cset);
2541                         put_css_set(dst_cset);
2542                         continue;
2543                 }
2544
2545                 src_cset->mg_dst_cset = dst_cset;
2546
2547                 if (list_empty(&dst_cset->mg_preload_node))
2548                         list_add_tail(&dst_cset->mg_preload_node,
2549                                       &mgctx->preloaded_dst_csets);
2550                 else
2551                         put_css_set(dst_cset);
2552
2553                 for_each_subsys(ss, ssid)
2554                         if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2555                                 mgctx->ss_mask |= 1 << ssid;
2556         }
2557
2558         return 0;
2559 err:
2560         cgroup_migrate_finish(mgctx);
2561         return -ENOMEM;
2562 }
2563
2564 /**
2565  * cgroup_migrate - migrate a process or task to a cgroup
2566  * @leader: the leader of the process or the task to migrate
2567  * @threadgroup: whether @leader points to the whole process or a single task
2568  * @mgctx: migration context
2569  *
2570  * Migrate a process or task denoted by @leader.  If migrating a process,
2571  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2572  * responsible for invoking cgroup_migrate_add_src() and
2573  * cgroup_migrate_prepare_dst() on the targets before invoking this
2574  * function and following up with cgroup_migrate_finish().
2575  *
2576  * As long as a controller's ->can_attach() doesn't fail, this function is
2577  * guaranteed to succeed.  This means that, excluding ->can_attach()
2578  * failure, when migrating multiple targets, the success or failure can be
2579  * decided for all targets by invoking group_migrate_prepare_dst() before
2580  * actually starting migrating.
2581  */
2582 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2583                    struct cgroup_mgctx *mgctx)
2584 {
2585         struct task_struct *task;
2586
2587         /*
2588          * Prevent freeing of tasks while we take a snapshot. Tasks that are
2589          * already PF_EXITING could be freed from underneath us unless we
2590          * take an rcu_read_lock.
2591          */
2592         spin_lock_irq(&css_set_lock);
2593         rcu_read_lock();
2594         task = leader;
2595         do {
2596                 cgroup_migrate_add_task(task, mgctx);
2597                 if (!threadgroup)
2598                         break;
2599         } while_each_thread(leader, task);
2600         rcu_read_unlock();
2601         spin_unlock_irq(&css_set_lock);
2602
2603         return cgroup_migrate_execute(mgctx);
2604 }
2605
2606 /**
2607  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2608  * @dst_cgrp: the cgroup to attach to
2609  * @leader: the task or the leader of the threadgroup to be attached
2610  * @threadgroup: attach the whole threadgroup?
2611  *
2612  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2613  */
2614 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2615                        bool threadgroup)
2616 {
2617         DEFINE_CGROUP_MGCTX(mgctx);
2618         struct task_struct *task;
2619         int ret;
2620
2621         ret = cgroup_migrate_vet_dst(dst_cgrp);
2622         if (ret)
2623                 return ret;
2624
2625         /* look up all src csets */
2626         spin_lock_irq(&css_set_lock);
2627         rcu_read_lock();
2628         task = leader;
2629         do {
2630                 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2631                 if (!threadgroup)
2632                         break;
2633         } while_each_thread(leader, task);
2634         rcu_read_unlock();
2635         spin_unlock_irq(&css_set_lock);
2636
2637         /* prepare dst csets and commit */
2638         ret = cgroup_migrate_prepare_dst(&mgctx);
2639         if (!ret)
2640                 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2641
2642         cgroup_migrate_finish(&mgctx);
2643
2644         if (!ret)
2645                 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2646
2647         return ret;
2648 }
2649
2650 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2651         __acquires(&cgroup_threadgroup_rwsem)
2652 {
2653         struct task_struct *tsk;
2654         pid_t pid;
2655
2656         if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2657                 return ERR_PTR(-EINVAL);
2658
2659         percpu_down_write(&cgroup_threadgroup_rwsem);
2660
2661         rcu_read_lock();
2662         if (pid) {
2663                 tsk = find_task_by_vpid(pid);
2664                 if (!tsk) {
2665                         tsk = ERR_PTR(-ESRCH);
2666                         goto out_unlock_threadgroup;
2667                 }
2668         } else {
2669                 tsk = current;
2670         }
2671
2672         if (threadgroup)
2673                 tsk = tsk->group_leader;
2674
2675         /*
2676          * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2677          * If userland migrates such a kthread to a non-root cgroup, it can
2678          * become trapped in a cpuset, or RT kthread may be born in a
2679          * cgroup with no rt_runtime allocated.  Just say no.
2680          */
2681         if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2682                 tsk = ERR_PTR(-EINVAL);
2683                 goto out_unlock_threadgroup;
2684         }
2685
2686         get_task_struct(tsk);
2687         goto out_unlock_rcu;
2688
2689 out_unlock_threadgroup:
2690         percpu_up_write(&cgroup_threadgroup_rwsem);
2691 out_unlock_rcu:
2692         rcu_read_unlock();
2693         return tsk;
2694 }
2695
2696 void cgroup_procs_write_finish(struct task_struct *task)
2697         __releases(&cgroup_threadgroup_rwsem)
2698 {
2699         struct cgroup_subsys *ss;
2700         int ssid;
2701
2702         /* release reference from cgroup_procs_write_start() */
2703         put_task_struct(task);
2704
2705         percpu_up_write(&cgroup_threadgroup_rwsem);
2706         for_each_subsys(ss, ssid)
2707                 if (ss->post_attach)
2708                         ss->post_attach();
2709 }
2710
2711 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2712 {
2713         struct cgroup_subsys *ss;
2714         bool printed = false;
2715         int ssid;
2716
2717         do_each_subsys_mask(ss, ssid, ss_mask) {
2718                 if (printed)
2719                         seq_putc(seq, ' ');
2720                 seq_printf(seq, "%s", ss->name);
2721                 printed = true;
2722         } while_each_subsys_mask();
2723         if (printed)
2724                 seq_putc(seq, '\n');
2725 }
2726
2727 /* show controllers which are enabled from the parent */
2728 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2729 {
2730         struct cgroup *cgrp = seq_css(seq)->cgroup;
2731
2732         cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2733         return 0;
2734 }
2735
2736 /* show controllers which are enabled for a given cgroup's children */
2737 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2738 {
2739         struct cgroup *cgrp = seq_css(seq)->cgroup;
2740
2741         cgroup_print_ss_mask(seq, cgrp->subtree_control);
2742         return 0;
2743 }
2744
2745 /**
2746  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2747  * @cgrp: root of the subtree to update csses for
2748  *
2749  * @cgrp's control masks have changed and its subtree's css associations
2750  * need to be updated accordingly.  This function looks up all css_sets
2751  * which are attached to the subtree, creates the matching updated css_sets
2752  * and migrates the tasks to the new ones.
2753  */
2754 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2755 {
2756         DEFINE_CGROUP_MGCTX(mgctx);
2757         struct cgroup_subsys_state *d_css;
2758         struct cgroup *dsct;
2759         struct css_set *src_cset;
2760         int ret;
2761
2762         lockdep_assert_held(&cgroup_mutex);
2763
2764         percpu_down_write(&cgroup_threadgroup_rwsem);
2765
2766         /* look up all csses currently attached to @cgrp's subtree */
2767         spin_lock_irq(&css_set_lock);
2768         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2769                 struct cgrp_cset_link *link;
2770
2771                 list_for_each_entry(link, &dsct->cset_links, cset_link)
2772                         cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2773         }
2774         spin_unlock_irq(&css_set_lock);
2775
2776         /* NULL dst indicates self on default hierarchy */
2777         ret = cgroup_migrate_prepare_dst(&mgctx);
2778         if (ret)
2779                 goto out_finish;
2780
2781         spin_lock_irq(&css_set_lock);
2782         list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2783                 struct task_struct *task, *ntask;
2784
2785                 /* all tasks in src_csets need to be migrated */
2786                 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2787                         cgroup_migrate_add_task(task, &mgctx);
2788         }
2789         spin_unlock_irq(&css_set_lock);
2790
2791         ret = cgroup_migrate_execute(&mgctx);
2792 out_finish:
2793         cgroup_migrate_finish(&mgctx);
2794         percpu_up_write(&cgroup_threadgroup_rwsem);
2795         return ret;
2796 }
2797
2798 /**
2799  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2800  * @cgrp: root of the target subtree
2801  *
2802  * Because css offlining is asynchronous, userland may try to re-enable a
2803  * controller while the previous css is still around.  This function grabs
2804  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2805  */
2806 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2807         __acquires(&cgroup_mutex)
2808 {
2809         struct cgroup *dsct;
2810         struct cgroup_subsys_state *d_css;
2811         struct cgroup_subsys *ss;
2812         int ssid;
2813
2814 restart:
2815         mutex_lock(&cgroup_mutex);
2816
2817         cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2818                 for_each_subsys(ss, ssid) {
2819                         struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2820                         DEFINE_WAIT(wait);
2821
2822                         if (!css || !percpu_ref_is_dying(&css->refcnt))
2823                                 continue;
2824
2825                         cgroup_get_live(dsct);
2826                         prepare_to_wait(&dsct->offline_waitq, &wait,
2827                                         TASK_UNINTERRUPTIBLE);
2828
2829                         mutex_unlock(&cgroup_mutex);
2830                         schedule();
2831                         finish_wait(&dsct->offline_waitq, &wait);
2832
2833                         cgroup_put(dsct);
2834                         goto restart;
2835                 }
2836         }
2837 }
2838
2839 /**
2840  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2841  * @cgrp: root of the target subtree
2842  *
2843  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2844  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2845  * itself.
2846  */
2847 static void cgroup_save_control(struct cgroup *cgrp)
2848 {
2849         struct cgroup *dsct;
2850         struct cgroup_subsys_state *d_css;
2851
2852         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2853                 dsct->old_subtree_control = dsct->subtree_control;
2854                 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2855                 dsct->old_dom_cgrp = dsct->dom_cgrp;
2856         }
2857 }
2858
2859 /**
2860  * cgroup_propagate_control - refresh control masks of a subtree
2861  * @cgrp: root of the target subtree
2862  *
2863  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2864  * ->subtree_control and propagate controller availability through the
2865  * subtree so that descendants don't have unavailable controllers enabled.
2866  */
2867 static void cgroup_propagate_control(struct cgroup *cgrp)
2868 {
2869         struct cgroup *dsct;
2870         struct cgroup_subsys_state *d_css;
2871
2872         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2873                 dsct->subtree_control &= cgroup_control(dsct);
2874                 dsct->subtree_ss_mask =
2875                         cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2876                                                     cgroup_ss_mask(dsct));
2877         }
2878 }
2879
2880 /**
2881  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2882  * @cgrp: root of the target subtree
2883  *
2884  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2885  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2886  * itself.
2887  */
2888 static void cgroup_restore_control(struct cgroup *cgrp)
2889 {
2890         struct cgroup *dsct;
2891         struct cgroup_subsys_state *d_css;
2892
2893         cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2894                 dsct->subtree_control = dsct->old_subtree_control;
2895                 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2896                 dsct->dom_cgrp = dsct->old_dom_cgrp;
2897         }
2898 }
2899
2900 static bool css_visible(struct cgroup_subsys_state *css)
2901 {
2902         struct cgroup_subsys *ss = css->ss;
2903         struct cgroup *cgrp = css->cgroup;
2904
2905         if (cgroup_control(cgrp) & (1 << ss->id))
2906                 return true;
2907         if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2908                 return false;
2909         return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2910 }
2911
2912 /**
2913  * cgroup_apply_control_enable - enable or show csses according to control
2914  * @cgrp: root of the target subtree
2915  *
2916  * Walk @cgrp's subtree and create new csses or make the existing ones
2917  * visible.  A css is created invisible if it's being implicitly enabled
2918  * through dependency.  An invisible css is made visible when the userland
2919  * explicitly enables it.
2920  *
2921  * Returns 0 on success, -errno on failure.  On failure, csses which have
2922  * been processed already aren't cleaned up.  The caller is responsible for
2923  * cleaning up with cgroup_apply_control_disable().
2924  */
2925 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2926 {
2927         struct cgroup *dsct;
2928         struct cgroup_subsys_state *d_css;
2929         struct cgroup_subsys *ss;
2930         int ssid, ret;
2931
2932         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2933                 for_each_subsys(ss, ssid) {
2934                         struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2935
2936                         WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2937
2938                         if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2939                                 continue;
2940
2941                         if (!css) {
2942                                 css = css_create(dsct, ss);
2943                                 if (IS_ERR(css))
2944                                         return PTR_ERR(css);
2945                         }
2946
2947                         if (css_visible(css)) {
2948                                 ret = css_populate_dir(css);
2949                                 if (ret)
2950                                         return ret;
2951                         }
2952                 }
2953         }
2954
2955         return 0;
2956 }
2957
2958 /**
2959  * cgroup_apply_control_disable - kill or hide csses according to control
2960  * @cgrp: root of the target subtree
2961  *
2962  * Walk @cgrp's subtree and kill and hide csses so that they match
2963  * cgroup_ss_mask() and cgroup_visible_mask().
2964  *
2965  * A css is hidden when the userland requests it to be disabled while other
2966  * subsystems are still depending on it.  The css must not actively control
2967  * resources and be in the vanilla state if it's made visible again later.
2968  * Controllers which may be depended upon should provide ->css_reset() for
2969  * this purpose.
2970  */
2971 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2972 {
2973         struct cgroup *dsct;
2974         struct cgroup_subsys_state *d_css;
2975         struct cgroup_subsys *ss;
2976         int ssid;
2977
2978         cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2979                 for_each_subsys(ss, ssid) {
2980                         struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2981
2982                         WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2983
2984                         if (!css)
2985                                 continue;
2986
2987                         if (css->parent &&
2988                             !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2989                                 kill_css(css);
2990                         } else if (!css_visible(css)) {
2991                                 css_clear_dir(css);
2992                                 if (ss->css_reset)
2993                                         ss->css_reset(css);
2994                         }
2995                 }
2996         }
2997 }
2998
2999 /**
3000  * cgroup_apply_control - apply control mask updates to the subtree
3001  * @cgrp: root of the target subtree
3002  *
3003  * subsystems can be enabled and disabled in a subtree using the following
3004  * steps.
3005  *
3006  * 1. Call cgroup_save_control() to stash the current state.
3007  * 2. Update ->subtree_control masks in the subtree as desired.
3008  * 3. Call cgroup_apply_control() to apply the changes.
3009  * 4. Optionally perform other related operations.
3010  * 5. Call cgroup_finalize_control() to finish up.
3011  *
3012  * This function implements step 3 and propagates the mask changes
3013  * throughout @cgrp's subtree, updates csses accordingly and perform
3014  * process migrations.
3015  */
3016 static int cgroup_apply_control(struct cgroup *cgrp)
3017 {
3018         int ret;
3019
3020         cgroup_propagate_control(cgrp);
3021
3022         ret = cgroup_apply_control_enable(cgrp);
3023         if (ret)
3024                 return ret;
3025
3026         /*
3027          * At this point, cgroup_e_css() results reflect the new csses
3028          * making the following cgroup_update_dfl_csses() properly update
3029          * css associations of all tasks in the subtree.
3030          */
3031         ret = cgroup_update_dfl_csses(cgrp);
3032         if (ret)
3033                 return ret;
3034
3035         return 0;
3036 }
3037
3038 /**
3039  * cgroup_finalize_control - finalize control mask update
3040  * @cgrp: root of the target subtree
3041  * @ret: the result of the update
3042  *
3043  * Finalize control mask update.  See cgroup_apply_control() for more info.
3044  */
3045 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3046 {
3047         if (ret) {
3048                 cgroup_restore_control(cgrp);
3049                 cgroup_propagate_control(cgrp);
3050         }
3051
3052         cgroup_apply_control_disable(cgrp);
3053 }
3054
3055 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3056 {
3057         u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3058
3059         /* if nothing is getting enabled, nothing to worry about */
3060         if (!enable)
3061                 return 0;
3062
3063         /* can @cgrp host any resources? */
3064         if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3065                 return -EOPNOTSUPP;
3066
3067         /* mixables don't care */
3068         if (cgroup_is_mixable(cgrp))
3069                 return 0;
3070
3071         if (domain_enable) {
3072                 /* can't enable domain controllers inside a thread subtree */
3073                 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3074                         return -EOPNOTSUPP;
3075         } else {
3076                 /*
3077                  * Threaded controllers can handle internal competitions
3078                  * and are always allowed inside a (prospective) thread
3079                  * subtree.
3080                  */
3081                 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3082                         return 0;
3083         }
3084
3085         /*
3086          * Controllers can't be enabled for a cgroup with tasks to avoid
3087          * child cgroups competing against tasks.
3088          */
3089         if (cgroup_has_tasks(cgrp))
3090                 return -EBUSY;
3091
3092         return 0;
3093 }
3094
3095 /* change the enabled child controllers for a cgroup in the default hierarchy */
3096 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3097                                             char *buf, size_t nbytes,
3098                                             loff_t off)
3099 {
3100         u16 enable = 0, disable = 0;
3101         struct cgroup *cgrp, *child;
3102         struct cgroup_subsys *ss;
3103         char *tok;
3104         int ssid, ret;
3105
3106         /*
3107          * Parse input - space separated list of subsystem names prefixed
3108          * with either + or -.
3109          */
3110         buf = strstrip(buf);
3111         while ((tok = strsep(&buf, " "))) {
3112                 if (tok[0] == '\0')
3113                         continue;
3114                 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3115                         if (!cgroup_ssid_enabled(ssid) ||
3116                             strcmp(tok + 1, ss->name))
3117                                 continue;
3118
3119                         if (*tok == '+') {
3120                                 enable |= 1 << ssid;
3121                                 disable &= ~(1 << ssid);
3122                         } else if (*tok == '-') {
3123                                 disable |= 1 << ssid;
3124                                 enable &= ~(1 << ssid);
3125                         } else {
3126                                 return -EINVAL;
3127                         }
3128                         break;
3129                 } while_each_subsys_mask();
3130                 if (ssid == CGROUP_SUBSYS_COUNT)
3131                         return -EINVAL;
3132         }
3133
3134         cgrp = cgroup_kn_lock_live(of->kn, true);
3135         if (!cgrp)
3136                 return -ENODEV;
3137
3138         for_each_subsys(ss, ssid) {
3139                 if (enable & (1 << ssid)) {
3140                         if (cgrp->subtree_control & (1 << ssid)) {
3141                                 enable &= ~(1 << ssid);
3142                                 continue;
3143                         }
3144
3145                         if (!(cgroup_control(cgrp) & (1 << ssid))) {
3146                                 ret = -ENOENT;
3147                                 goto out_unlock;
3148                         }
3149                 } else if (disable & (1 << ssid)) {
3150                         if (!(cgrp->subtree_control & (1 << ssid))) {
3151                                 disable &= ~(1 << ssid);
3152                                 continue;
3153                         }
3154
3155                         /* a child has it enabled? */
3156                         cgroup_for_each_live_child(child, cgrp) {
3157                                 if (child->subtree_control & (1 << ssid)) {
3158                                         ret = -EBUSY;
3159                                         goto out_unlock;
3160                                 }
3161                         }
3162                 }
3163         }
3164
3165         if (!enable && !disable) {
3166                 ret = 0;
3167                 goto out_unlock;
3168         }
3169
3170         ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3171         if (ret)
3172                 goto out_unlock;
3173
3174         /* save and update control masks and prepare csses */
3175         cgroup_save_control(cgrp);
3176
3177         cgrp->subtree_control |= enable;
3178         cgrp->subtree_control &= ~disable;
3179
3180         ret = cgroup_apply_control(cgrp);
3181         cgroup_finalize_control(cgrp, ret);
3182         if (ret)
3183                 goto out_unlock;
3184
3185         kernfs_activate(cgrp->kn);
3186 out_unlock:
3187         cgroup_kn_unlock(of->kn);
3188         return ret ?: nbytes;
3189 }
3190
3191 /**
3192  * cgroup_enable_threaded - make @cgrp threaded
3193  * @cgrp: the target cgroup
3194  *
3195  * Called when "threaded" is written to the cgroup.type interface file and
3196  * tries to make @cgrp threaded and join the parent's resource domain.
3197  * This function is never called on the root cgroup as cgroup.type doesn't
3198  * exist on it.
3199  */
3200 static int cgroup_enable_threaded(struct cgroup *cgrp)
3201 {
3202         struct cgroup *parent = cgroup_parent(cgrp);
3203         struct cgroup *dom_cgrp = parent->dom_cgrp;
3204         struct cgroup *dsct;
3205         struct cgroup_subsys_state *d_css;
3206         int ret;
3207
3208         lockdep_assert_held(&cgroup_mutex);
3209
3210         /* noop if already threaded */
3211         if (cgroup_is_threaded(cgrp))
3212                 return 0;
3213
3214         /*
3215          * If @cgroup is populated or has domain controllers enabled, it
3216          * can't be switched.  While the below cgroup_can_be_thread_root()
3217          * test can catch the same conditions, that's only when @parent is
3218          * not mixable, so let's check it explicitly.
3219          */
3220         if (cgroup_is_populated(cgrp) ||
3221             cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3222                 return -EOPNOTSUPP;
3223
3224         /* we're joining the parent's domain, ensure its validity */
3225         if (!cgroup_is_valid_domain(dom_cgrp) ||
3226             !cgroup_can_be_thread_root(dom_cgrp))
3227                 return -EOPNOTSUPP;
3228
3229         /*
3230          * The following shouldn't cause actual migrations and should
3231          * always succeed.
3232          */
3233         cgroup_save_control(cgrp);
3234
3235         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3236                 if (dsct == cgrp || cgroup_is_threaded(dsct))
3237                         dsct->dom_cgrp = dom_cgrp;
3238
3239         ret = cgroup_apply_control(cgrp);
3240         if (!ret)
3241                 parent->nr_threaded_children++;
3242
3243         cgroup_finalize_control(cgrp, ret);
3244         return ret;
3245 }
3246
3247 static int cgroup_type_show(struct seq_file *seq, void *v)
3248 {
3249         struct cgroup *cgrp = seq_css(seq)->cgroup;
3250
3251         if (cgroup_is_threaded(cgrp))
3252                 seq_puts(seq, "threaded\n");
3253         else if (!cgroup_is_valid_domain(cgrp))
3254                 seq_puts(seq, "domain invalid\n");
3255         else if (cgroup_is_thread_root(cgrp))
3256                 seq_puts(seq, "domain threaded\n");
3257         else
3258                 seq_puts(seq, "domain\n");
3259
3260         return 0;
3261 }
3262
3263 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3264                                  size_t nbytes, loff_t off)
3265 {
3266         struct cgroup *cgrp;
3267         int ret;
3268
3269         /* only switching to threaded mode is supported */
3270         if (strcmp(strstrip(buf), "threaded"))
3271                 return -EINVAL;
3272
3273         cgrp = cgroup_kn_lock_live(of->kn, false);
3274         if (!cgrp)
3275                 return -ENOENT;
3276
3277         /* threaded can only be enabled */
3278         ret = cgroup_enable_threaded(cgrp);
3279
3280         cgroup_kn_unlock(of->kn);
3281         return ret ?: nbytes;
3282 }
3283
3284 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3285 {
3286         struct cgroup *cgrp = seq_css(seq)->cgroup;
3287         int descendants = READ_ONCE(cgrp->max_descendants);
3288
3289         if (descendants == INT_MAX)
3290                 seq_puts(seq, "max\n");
3291         else
3292                 seq_printf(seq, "%d\n", descendants);
3293
3294         return 0;
3295 }
3296
3297 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3298                                            char *buf, size_t nbytes, loff_t off)
3299 {
3300         struct cgroup *cgrp;
3301         int descendants;
3302         ssize_t ret;
3303
3304         buf = strstrip(buf);
3305         if (!strcmp(buf, "max")) {
3306                 descendants = INT_MAX;
3307         } else {
3308                 ret = kstrtoint(buf, 0, &descendants);
3309                 if (ret)
3310                         return ret;
3311         }
3312
3313         if (descendants < 0)
3314                 return -ERANGE;
3315
3316         cgrp = cgroup_kn_lock_live(of->kn, false);
3317         if (!cgrp)
3318                 return -ENOENT;
3319
3320         cgrp->max_descendants = descendants;
3321
3322         cgroup_kn_unlock(of->kn);
3323
3324         return nbytes;
3325 }
3326
3327 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3328 {
3329         struct cgroup *cgrp = seq_css(seq)->cgroup;
3330         int depth = READ_ONCE(cgrp->max_depth);
3331
3332         if (depth == INT_MAX)
3333                 seq_puts(seq, "max\n");
3334         else
3335                 seq_printf(seq, "%d\n", depth);
3336
3337         return 0;
3338 }
3339
3340 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3341                                       char *buf, size_t nbytes, loff_t off)
3342 {
3343         struct cgroup *cgrp;
3344         ssize_t ret;
3345         int depth;
3346
3347         buf = strstrip(buf);
3348         if (!strcmp(buf, "max")) {
3349                 depth = INT_MAX;
3350         } else {
3351                 ret = kstrtoint(buf, 0, &depth);
3352                 if (ret)
3353                         return ret;
3354         }
3355
3356         if (depth < 0)
3357                 return -ERANGE;
3358
3359         cgrp = cgroup_kn_lock_live(of->kn, false);
3360         if (!cgrp)
3361                 return -ENOENT;
3362
3363         cgrp->max_depth = depth;
3364
3365         cgroup_kn_unlock(of->kn);
3366
3367         return nbytes;
3368 }
3369
3370 static int cgroup_events_show(struct seq_file *seq, void *v)
3371 {
3372         seq_printf(seq, "populated %d\n",
3373                    cgroup_is_populated(seq_css(seq)->cgroup));
3374         return 0;
3375 }
3376
3377 static int cgroup_stat_show(struct seq_file *seq, void *v)
3378 {
3379         struct cgroup *cgroup = seq_css(seq)->cgroup;
3380
3381         seq_printf(seq, "nr_descendants %d\n",
3382                    cgroup->nr_descendants);
3383         seq_printf(seq, "nr_dying_descendants %d\n",
3384                    cgroup->nr_dying_descendants);
3385
3386         return 0;
3387 }
3388
3389 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3390                                                  struct cgroup *cgrp, int ssid)
3391 {
3392         struct cgroup_subsys *ss = cgroup_subsys[ssid];
3393         struct cgroup_subsys_state *css;
3394         int ret;
3395
3396         if (!ss->css_extra_stat_show)
3397                 return 0;
3398
3399         css = cgroup_tryget_css(cgrp, ss);
3400         if (!css)
3401                 return 0;
3402
3403         ret = ss->css_extra_stat_show(seq, css);
3404         css_put(css);
3405         return ret;
3406 }
3407
3408 static int cpu_stat_show(struct seq_file *seq, void *v)
3409 {
3410         struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3411         int ret = 0;
3412
3413         cgroup_base_stat_cputime_show(seq);
3414 #ifdef CONFIG_CGROUP_SCHED
3415         ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3416 #endif
3417         return ret;
3418 }
3419
3420 #ifdef CONFIG_PSI
3421 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3422 {
3423         return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_IO);
3424 }
3425 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3426 {
3427         return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_MEM);
3428 }
3429 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3430 {
3431         return psi_show(seq, &seq_css(seq)->cgroup->psi, PSI_CPU);
3432 }
3433 #endif
3434
3435 static int cgroup_file_open(struct kernfs_open_file *of)
3436 {
3437         struct cftype *cft = of->kn->priv;
3438
3439         if (cft->open)
3440                 return cft->open(of);
3441         return 0;
3442 }
3443
3444 static void cgroup_file_release(struct kernfs_open_file *of)
3445 {
3446         struct cftype *cft = of->kn->priv;
3447
3448         if (cft->release)
3449                 cft->release(of);
3450 }
3451
3452 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3453                                  size_t nbytes, loff_t off)
3454 {
3455         struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3456         struct cgroup *cgrp = of->kn->parent->priv;
3457         struct cftype *cft = of->kn->priv;
3458         struct cgroup_subsys_state *css;
3459         int ret;
3460
3461         /*
3462          * If namespaces are delegation boundaries, disallow writes to
3463          * files in an non-init namespace root from inside the namespace
3464          * except for the files explicitly marked delegatable -
3465          * cgroup.procs and cgroup.subtree_control.
3466          */
3467         if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3468             !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3469             ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3470                 return -EPERM;
3471
3472         if (cft->write)
3473                 return cft->write(of, buf, nbytes, off);
3474
3475         /*
3476          * kernfs guarantees that a file isn't deleted with operations in
3477          * flight, which means that the matching css is and stays alive and
3478          * doesn't need to be pinned.  The RCU locking is not necessary
3479          * either.  It's just for the convenience of using cgroup_css().
3480          */
3481         rcu_read_lock();
3482         css = cgroup_css(cgrp, cft->ss);
3483         rcu_read_unlock();
3484
3485         if (cft->write_u64) {
3486                 unsigned long long v;
3487                 ret = kstrtoull(buf, 0, &v);
3488                 if (!ret)
3489                         ret = cft->write_u64(css, cft, v);
3490         } else if (cft->write_s64) {
3491                 long long v;
3492                 ret = kstrtoll(buf, 0, &v);
3493                 if (!ret)
3494                         ret = cft->write_s64(css, cft, v);
3495         } else {
3496                 ret = -EINVAL;
3497         }
3498
3499         return ret ?: nbytes;
3500 }
3501
3502 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3503 {
3504         return seq_cft(seq)->seq_start(seq, ppos);
3505 }
3506
3507 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3508 {
3509         return seq_cft(seq)->seq_next(seq, v, ppos);
3510 }
3511
3512 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3513 {
3514         if (seq_cft(seq)->seq_stop)
3515                 seq_cft(seq)->seq_stop(seq, v);
3516 }
3517
3518 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3519 {
3520         struct cftype *cft = seq_cft(m);
3521         struct cgroup_subsys_state *css = seq_css(m);
3522
3523         if (cft->seq_show)
3524                 return cft->seq_show(m, arg);
3525
3526         if (cft->read_u64)
3527                 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3528         else if (cft->read_s64)
3529                 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3530         else
3531                 return -EINVAL;
3532         return 0;
3533 }
3534
3535 static struct kernfs_ops cgroup_kf_single_ops = {
3536         .atomic_write_len       = PAGE_SIZE,
3537         .open                   = cgroup_file_open,
3538         .release                = cgroup_file_release,
3539         .write                  = cgroup_file_write,
3540         .seq_show               = cgroup_seqfile_show,
3541 };
3542
3543 static struct kernfs_ops cgroup_kf_ops = {
3544         .atomic_write_len       = PAGE_SIZE,
3545         .open                   = cgroup_file_open,
3546         .release                = cgroup_file_release,
3547         .write                  = cgroup_file_write,
3548         .seq_start              = cgroup_seqfile_start,
3549         .seq_next               = cgroup_seqfile_next,
3550         .seq_stop               = cgroup_seqfile_stop,
3551         .seq_show               = cgroup_seqfile_show,
3552 };
3553
3554 /* set uid and gid of cgroup dirs and files to that of the creator */
3555 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3556 {
3557         struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3558                                .ia_uid = current_fsuid(),
3559                                .ia_gid = current_fsgid(), };
3560
3561         if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3562             gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3563                 return 0;
3564
3565         return kernfs_setattr(kn, &iattr);
3566 }
3567
3568 static void cgroup_file_notify_timer(struct timer_list *timer)
3569 {
3570         cgroup_file_notify(container_of(timer, struct cgroup_file,
3571                                         notify_timer));
3572 }
3573
3574 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3575                            struct cftype *cft)
3576 {
3577         char name[CGROUP_FILE_NAME_MAX];
3578         struct kernfs_node *kn;
3579         struct lock_class_key *key = NULL;
3580         int ret;
3581
3582 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3583         key = &cft->lockdep_key;
3584 #endif
3585         kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3586                                   cgroup_file_mode(cft),
3587                                   GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3588                                   0, cft->kf_ops, cft,
3589                                   NULL, key);
3590         if (IS_ERR(kn))
3591                 return PTR_ERR(kn);
3592
3593         ret = cgroup_kn_set_ugid(kn);
3594         if (ret) {
3595                 kernfs_remove(kn);
3596                 return ret;
3597         }
3598
3599         if (cft->file_offset) {
3600                 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3601
3602                 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3603
3604                 spin_lock_irq(&cgroup_file_kn_lock);
3605                 cfile->kn = kn;
3606                 spin_unlock_irq(&cgroup_file_kn_lock);
3607         }
3608
3609         return 0;
3610 }
3611
3612 /**
3613  * cgroup_addrm_files - add or remove files to a cgroup directory
3614  * @css: the target css
3615  * @cgrp: the target cgroup (usually css->cgroup)
3616  * @cfts: array of cftypes to be added
3617  * @is_add: whether to add or remove
3618  *
3619  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3620  * For removals, this function never fails.
3621  */
3622 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3623                               struct cgroup *cgrp, struct cftype cfts[],
3624                               bool is_add)
3625 {
3626         struct cftype *cft, *cft_end = NULL;
3627         int ret = 0;
3628
3629         lockdep_assert_held(&cgroup_mutex);
3630
3631 restart:
3632         for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3633                 /* does cft->flags tell us to skip this file on @cgrp? */
3634                 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3635                         continue;
3636                 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3637                         continue;
3638                 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3639                         continue;
3640                 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3641                         continue;
3642
3643                 if (is_add) {
3644                         ret = cgroup_add_file(css, cgrp, cft);
3645                         if (ret) {
3646                                 pr_warn("%s: failed to add %s, err=%d\n",
3647                                         __func__, cft->name, ret);
3648                                 cft_end = cft;
3649                                 is_add = false;
3650                                 goto restart;
3651                         }
3652                 } else {
3653                         cgroup_rm_file(cgrp, cft);
3654                 }
3655         }
3656         return ret;
3657 }
3658
3659 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3660 {
3661         struct cgroup_subsys *ss = cfts[0].ss;
3662         struct cgroup *root = &ss->root->cgrp;
3663         struct cgroup_subsys_state *css;
3664         int ret = 0;
3665
3666         lockdep_assert_held(&cgroup_mutex);
3667
3668         /* add/rm files for all cgroups created before */
3669         css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3670                 struct cgroup *cgrp = css->cgroup;
3671
3672                 if (!(css->flags & CSS_VISIBLE))
3673                         continue;
3674
3675                 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3676                 if (ret)
3677                         break;
3678         }
3679
3680         if (is_add && !ret)
3681                 kernfs_activate(root->kn);
3682         return ret;
3683 }
3684
3685 static void cgroup_exit_cftypes(struct cftype *cfts)
3686 {
3687         struct cftype *cft;
3688
3689         for (cft = cfts; cft->name[0] != '\0'; cft++) {
3690                 /* free copy for custom atomic_write_len, see init_cftypes() */
3691                 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3692                         kfree(cft->kf_ops);
3693                 cft->kf_ops = NULL;
3694                 cft->ss = NULL;
3695
3696                 /* revert flags set by cgroup core while adding @cfts */
3697                 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3698         }
3699 }
3700
3701 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3702 {
3703         struct cftype *cft;
3704
3705         for (cft = cfts; cft->name[0] != '\0'; cft++) {
3706                 struct kernfs_ops *kf_ops;
3707
3708                 WARN_ON(cft->ss || cft->kf_ops);
3709
3710                 if (cft->seq_start)
3711                         kf_ops = &cgroup_kf_ops;
3712                 else
3713                         kf_ops = &cgroup_kf_single_ops;
3714
3715                 /*
3716                  * Ugh... if @cft wants a custom max_write_len, we need to
3717                  * make a copy of kf_ops to set its atomic_write_len.
3718                  */
3719                 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3720                         kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3721                         if (!kf_ops) {
3722                                 cgroup_exit_cftypes(cfts);
3723                                 return -ENOMEM;
3724                         }
3725                         kf_ops->atomic_write_len = cft->max_write_len;
3726                 }
3727
3728                 cft->kf_ops = kf_ops;
3729                 cft->ss = ss;
3730         }
3731
3732         return 0;
3733 }
3734
3735 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3736 {
3737         lockdep_assert_held(&cgroup_mutex);
3738
3739         if (!cfts || !cfts[0].ss)
3740                 return -ENOENT;
3741
3742         list_del(&cfts->node);
3743         cgroup_apply_cftypes(cfts, false);
3744         cgroup_exit_cftypes(cfts);
3745         return 0;
3746 }
3747
3748 /**
3749  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3750  * @cfts: zero-length name terminated array of cftypes
3751  *
3752  * Unregister @cfts.  Files described by @cfts are removed from all
3753  * existing cgroups and all future cgroups won't have them either.  This
3754  * function can be called anytime whether @cfts' subsys is attached or not.
3755  *
3756  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3757  * registered.
3758  */
3759 int cgroup_rm_cftypes(struct cftype *cfts)
3760 {
3761         int ret;
3762
3763         mutex_lock(&cgroup_mutex);
3764         ret = cgroup_rm_cftypes_locked(cfts);
3765         mutex_unlock(&cgroup_mutex);
3766         return ret;
3767 }
3768
3769 /**
3770  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3771  * @ss: target cgroup subsystem
3772  * @cfts: zero-length name terminated array of cftypes
3773  *
3774  * Register @cfts to @ss.  Files described by @cfts are created for all
3775  * existing cgroups to which @ss is attached and all future cgroups will
3776  * have them too.  This function can be called anytime whether @ss is
3777  * attached or not.
3778  *
3779  * Returns 0 on successful registration, -errno on failure.  Note that this
3780  * function currently returns 0 as long as @cfts registration is successful
3781  * even if some file creation attempts on existing cgroups fail.
3782  */
3783 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3784 {
3785         int ret;
3786
3787         if (!cgroup_ssid_enabled(ss->id))
3788                 return 0;
3789
3790         if (!cfts || cfts[0].name[0] == '\0')
3791                 return 0;
3792
3793         ret = cgroup_init_cftypes(ss, cfts);
3794         if (ret)
3795                 return ret;
3796
3797         mutex_lock(&cgroup_mutex);
3798
3799         list_add_tail(&cfts->node, &ss->cfts);
3800         ret = cgroup_apply_cftypes(cfts, true);
3801         if (ret)
3802                 cgroup_rm_cftypes_locked(cfts);
3803
3804         mutex_unlock(&cgroup_mutex);
3805         return ret;
3806 }
3807
3808 /**
3809  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3810  * @ss: target cgroup subsystem
3811  * @cfts: zero-length name terminated array of cftypes
3812  *
3813  * Similar to cgroup_add_cftypes() but the added files are only used for
3814  * the default hierarchy.
3815  */
3816 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3817 {
3818         struct cftype *cft;
3819
3820         for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3821                 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3822         return cgroup_add_cftypes(ss, cfts);
3823 }
3824
3825 /**
3826  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3827  * @ss: target cgroup subsystem
3828  * @cfts: zero-length name terminated array of cftypes
3829  *
3830  * Similar to cgroup_add_cftypes() but the added files are only used for
3831  * the legacy hierarchies.
3832  */
3833 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3834 {
3835         struct cftype *cft;
3836
3837         for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3838                 cft->flags |= __CFTYPE_NOT_ON_DFL;
3839         return cgroup_add_cftypes(ss, cfts);
3840 }
3841
3842 /**
3843  * cgroup_file_notify - generate a file modified event for a cgroup_file
3844  * @cfile: target cgroup_file
3845  *
3846  * @cfile must have been obtained by setting cftype->file_offset.
3847  */
3848 void cgroup_file_notify(struct cgroup_file *cfile)
3849 {
3850         unsigned long flags;
3851
3852         spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3853         if (cfile->kn) {
3854                 unsigned long last = cfile->notified_at;
3855                 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3856
3857                 if (time_in_range(jiffies, last, next)) {
3858                         timer_reduce(&cfile->notify_timer, next);
3859                 } else {
3860                         kernfs_notify(cfile->kn);
3861                         cfile->notified_at = jiffies;
3862                 }
3863         }
3864         spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3865 }
3866
3867 /**
3868  * css_next_child - find the next child of a given css
3869  * @pos: the current position (%NULL to initiate traversal)
3870  * @parent: css whose children to walk
3871  *
3872  * This function returns the next child of @parent and should be called
3873  * under either cgroup_mutex or RCU read lock.  The only requirement is
3874  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3875  * be returned regardless of their states.
3876  *
3877  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3878  * css which finished ->css_online() is guaranteed to be visible in the
3879  * future iterations and will stay visible until the last reference is put.
3880  * A css which hasn't finished ->css_online() or already finished
3881  * ->css_offline() may show up during traversal.  It's each subsystem's
3882  * responsibility to synchronize against on/offlining.
3883  */
3884 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3885                                            struct cgroup_subsys_state *parent)
3886 {
3887         struct cgroup_subsys_state *next;
3888
3889         cgroup_assert_mutex_or_rcu_locked();
3890
3891         /*
3892          * @pos could already have been unlinked from the sibling list.
3893          * Once a cgroup is removed, its ->sibling.next is no longer
3894          * updated when its next sibling changes.  CSS_RELEASED is set when
3895          * @pos is taken off list, at which time its next pointer is valid,
3896          * and, as releases are serialized, the one pointed to by the next
3897          * pointer is guaranteed to not have started release yet.  This
3898          * implies that if we observe !CSS_RELEASED on @pos in this RCU
3899          * critical section, the one pointed to by its next pointer is
3900          * guaranteed to not have finished its RCU grace period even if we
3901          * have dropped rcu_read_lock() inbetween iterations.
3902          *
3903          * If @pos has CSS_RELEASED set, its next pointer can't be
3904          * dereferenced; however, as each css is given a monotonically
3905          * increasing unique serial number and always appended to the
3906          * sibling list, the next one can be found by walking the parent's
3907          * children until the first css with higher serial number than
3908          * @pos's.  While this path can be slower, it happens iff iteration
3909          * races against release and the race window is very small.
3910          */
3911         if (!pos) {
3912                 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3913         } else if (likely(!(pos->flags & CSS_RELEASED))) {
3914                 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3915         } else {
3916                 list_for_each_entry_rcu(next, &parent->children, sibling)
3917                         if (next->serial_nr > pos->serial_nr)
3918                                 break;
3919         }
3920
3921         /*
3922          * @next, if not pointing to the head, can be dereferenced and is
3923          * the next sibling.
3924          */
3925         if (&next->sibling != &parent->children)
3926                 return next;
3927         return NULL;
3928 }
3929
3930 /**
3931  * css_next_descendant_pre - find the next descendant for pre-order walk
3932  * @pos: the current position (%NULL to initiate traversal)
3933  * @root: css whose descendants to walk
3934  *
3935  * To be used by css_for_each_descendant_pre().  Find the next descendant
3936  * to visit for pre-order traversal of @root's descendants.  @root is
3937  * included in the iteration and the first node to be visited.
3938  *
3939  * While this function requires cgroup_mutex or RCU read locking, it
3940  * doesn't require the whole traversal to be contained in a single critical
3941  * section.  This function will return the correct next descendant as long
3942  * as both @pos and @root are accessible and @pos is a descendant of @root.
3943  *
3944  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3945  * css which finished ->css_online() is guaranteed to be visible in the
3946  * future iterations and will stay visible until the last reference is put.
3947  * A css which hasn't finished ->css_online() or already finished
3948  * ->css_offline() may show up during traversal.  It's each subsystem's
3949  * responsibility to synchronize against on/offlining.
3950  */
3951 struct cgroup_subsys_state *
3952 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3953                         struct cgroup_subsys_state *root)
3954 {
3955         struct cgroup_subsys_state *next;
3956
3957         cgroup_assert_mutex_or_rcu_locked();
3958
3959         /* if first iteration, visit @root */
3960         if (!pos)
3961                 return root;
3962
3963         /* visit the first child if exists */
3964         next = css_next_child(NULL, pos);
3965         if (next)
3966                 return next;
3967
3968         /* no child, visit my or the closest ancestor's next sibling */
3969         while (pos != root) {
3970                 next = css_next_child(pos, pos->parent);
3971                 if (next)
3972                         return next;
3973                 pos = pos->parent;
3974         }
3975
3976         return NULL;
3977 }
3978
3979 /**
3980  * css_rightmost_descendant - return the rightmost descendant of a css
3981  * @pos: css of interest
3982  *
3983  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3984  * is returned.  This can be used during pre-order traversal to skip
3985  * subtree of @pos.
3986  *
3987  * While this function requires cgroup_mutex or RCU read locking, it
3988  * doesn't require the whole traversal to be contained in a single critical
3989  * section.  This function will return the correct rightmost descendant as
3990  * long as @pos is accessible.
3991  */
3992 struct cgroup_subsys_state *
3993 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3994 {
3995         struct cgroup_subsys_state *last, *tmp;
3996
3997         cgroup_assert_mutex_or_rcu_locked();
3998
3999         do {
4000                 last = pos;
4001                 /* ->prev isn't RCU safe, walk ->next till the end */
4002                 pos = NULL;
4003                 css_for_each_child(tmp, last)
4004                         pos = tmp;
4005         } while (pos);
4006
4007         return last;
4008 }
4009
4010 static struct cgroup_subsys_state *
4011 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4012 {
4013         struct cgroup_subsys_state *last;
4014
4015         do {
4016                 last = pos;
4017                 pos = css_next_child(NULL, pos);
4018         } while (pos);
4019
4020         return last;
4021 }
4022
4023 /**
4024  * css_next_descendant_post - find the next descendant for post-order walk
4025  * @pos: the current position (%NULL to initiate traversal)
4026  * @root: css whose descendants to walk
4027  *
4028  * To be used by css_for_each_descendant_post().  Find the next descendant
4029  * to visit for post-order traversal of @root's descendants.  @root is
4030  * included in the iteration and the last node to be visited.
4031  *
4032  * While this function requires cgroup_mutex or RCU read locking, it
4033  * doesn't require the whole traversal to be contained in a single critical
4034  * section.  This function will return the correct next descendant as long
4035  * as both @pos and @cgroup are accessible and @pos is a descendant of
4036  * @cgroup.
4037  *
4038  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4039  * css which finished ->css_online() is guaranteed to be visible in the
4040  * future iterations and will stay visible until the last reference is put.
4041  * A css which hasn't finished ->css_online() or already finished
4042  * ->css_offline() may show up during traversal.  It's each subsystem's
4043  * responsibility to synchronize against on/offlining.
4044  */
4045 struct cgroup_subsys_state *
4046 css_next_descendant_post(struct cgroup_subsys_state *pos,
4047                          struct cgroup_subsys_state *root)
4048 {
4049         struct cgroup_subsys_state *next;
4050
4051         cgroup_assert_mutex_or_rcu_locked();
4052
4053         /* if first iteration, visit leftmost descendant which may be @root */
4054         if (!pos)
4055                 return css_leftmost_descendant(root);
4056
4057         /* if we visited @root, we're done */
4058         if (pos == root)
4059                 return NULL;
4060
4061         /* if there's an unvisited sibling, visit its leftmost descendant */
4062         next = css_next_child(pos, pos->parent);
4063         if (next)
4064                 return css_leftmost_descendant(next);
4065
4066         /* no sibling left, visit parent */
4067         return pos->parent;
4068 }
4069
4070 /**
4071  * css_has_online_children - does a css have online children
4072  * @css: the target css
4073  *
4074  * Returns %true if @css has any online children; otherwise, %false.  This
4075  * function can be called from any context but the caller is responsible
4076  * for synchronizing against on/offlining as necessary.
4077  */
4078 bool css_has_online_children(struct cgroup_subsys_state *css)
4079 {
4080         struct cgroup_subsys_state *child;
4081         bool ret = false;
4082
4083         rcu_read_lock();
4084         css_for_each_child(child, css) {
4085                 if (child->flags & CSS_ONLINE) {
4086                         ret = true;
4087                         break;
4088                 }
4089         }
4090         rcu_read_unlock();
4091         return ret;
4092 }
4093
4094 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4095 {
4096         struct list_head *l;
4097         struct cgrp_cset_link *link;
4098         struct css_set *cset;
4099
4100         lockdep_assert_held(&css_set_lock);
4101
4102         /* find the next threaded cset */
4103         if (it->tcset_pos) {
4104                 l = it->tcset_pos->next;
4105
4106                 if (l != it->tcset_head) {
4107                         it->tcset_pos = l;
4108                         return container_of(l, struct css_set,
4109                                             threaded_csets_node);
4110                 }
4111
4112                 it->tcset_pos = NULL;
4113         }
4114
4115         /* find the next cset */
4116         l = it->cset_pos;
4117         l = l->next;
4118         if (l == it->cset_head) {
4119                 it->cset_pos = NULL;
4120                 return NULL;
4121         }
4122
4123         if (it->ss) {
4124                 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4125         } else {
4126                 link = list_entry(l, struct cgrp_cset_link, cset_link);
4127                 cset = link->cset;
4128         }
4129
4130         it->cset_pos = l;
4131
4132         /* initialize threaded css_set walking */
4133         if (it->flags & CSS_TASK_ITER_THREADED) {
4134                 if (it->cur_dcset)
4135                         put_css_set_locked(it->cur_dcset);
4136                 it->cur_dcset = cset;
4137                 get_css_set(cset);
4138
4139                 it->tcset_head = &cset->threaded_csets;
4140                 it->tcset_pos = &cset->threaded_csets;
4141         }
4142
4143         return cset;
4144 }
4145
4146 /**
4147  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4148  * @it: the iterator to advance
4149  *
4150  * Advance @it to the next css_set to walk.
4151  */
4152 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4153 {
4154         struct css_set *cset;
4155
4156         lockdep_assert_held(&css_set_lock);
4157
4158         /* Advance to the next non-empty css_set */
4159         do {
4160                 cset = css_task_iter_next_css_set(it);
4161                 if (!cset) {
4162                         it->task_pos = NULL;
4163                         return;
4164                 }
4165         } while (!css_set_populated(cset));
4166
4167         if (!list_empty(&cset->tasks))
4168                 it->task_pos = cset->tasks.next;
4169         else
4170                 it->task_pos = cset->mg_tasks.next;
4171
4172         it->tasks_head = &cset->tasks;
4173         it->mg_tasks_head = &cset->mg_tasks;
4174
4175         /*
4176          * We don't keep css_sets locked across iteration steps and thus
4177          * need to take steps to ensure that iteration can be resumed after
4178          * the lock is re-acquired.  Iteration is performed at two levels -
4179          * css_sets and tasks in them.
4180          *
4181          * Once created, a css_set never leaves its cgroup lists, so a
4182          * pinned css_set is guaranteed to stay put and we can resume
4183          * iteration afterwards.
4184          *
4185          * Tasks may leave @cset across iteration steps.  This is resolved
4186          * by registering each iterator with the css_set currently being
4187          * walked and making css_set_move_task() advance iterators whose
4188          * next task is leaving.
4189          */
4190         if (it->cur_cset) {
4191                 list_del(&it->iters_node);
4192                 put_css_set_locked(it->cur_cset);
4193         }
4194         get_css_set(cset);
4195         it->cur_cset = cset;
4196         list_add(&it->iters_node, &cset->task_iters);
4197 }
4198
4199 static void css_task_iter_advance(struct css_task_iter *it)
4200 {
4201         struct list_head *next;
4202
4203         lockdep_assert_held(&css_set_lock);
4204 repeat:
4205         /*
4206          * Advance iterator to find next entry.  cset->tasks is consumed
4207          * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4208          * next cset.
4209          */
4210         next = it->task_pos->next;
4211
4212         if (next == it->tasks_head)
4213                 next = it->mg_tasks_head->next;
4214
4215         if (next == it->mg_tasks_head)
4216                 css_task_iter_advance_css_set(it);
4217         else
4218                 it->task_pos = next;
4219
4220         /* if PROCS, skip over tasks which aren't group leaders */
4221         if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4222             !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4223                                             cg_list)))
4224                 goto repeat;
4225 }
4226
4227 /**
4228  * css_task_iter_start - initiate task iteration
4229  * @css: the css to walk tasks of
4230  * @flags: CSS_TASK_ITER_* flags
4231  * @it: the task iterator to use
4232  *
4233  * Initiate iteration through the tasks of @css.  The caller can call
4234  * css_task_iter_next() to walk through the tasks until the function
4235  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4236  * called.
4237  */
4238 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4239                          struct css_task_iter *it)
4240 {
4241         /* no one should try to iterate before mounting cgroups */
4242         WARN_ON_ONCE(!use_task_css_set_links);
4243
4244         memset(it, 0, sizeof(*it));
4245
4246         spin_lock_irq(&css_set_lock);
4247
4248         it->ss = css->ss;
4249         it->flags = flags;
4250
4251         if (it->ss)
4252                 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4253         else
4254                 it->cset_pos = &css->cgroup->cset_links;
4255
4256         it->cset_head = it->cset_pos;
4257
4258         css_task_iter_advance_css_set(it);
4259
4260         spin_unlock_irq(&css_set_lock);
4261 }
4262
4263 /**
4264  * css_task_iter_next - return the next task for the iterator
4265  * @it: the task iterator being iterated
4266  *
4267  * The "next" function for task iteration.  @it should have been
4268  * initialized via css_task_iter_start().  Returns NULL when the iteration
4269  * reaches the end.
4270  */
4271 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4272 {
4273         if (it->cur_task) {
4274                 put_task_struct(it->cur_task);
4275                 it->cur_task = NULL;
4276         }
4277
4278         spin_lock_irq(&css_set_lock);
4279
4280         if (it->task_pos) {
4281                 it->cur_task = list_entry(it->task_pos, struct task_struct,
4282                                           cg_list);
4283                 get_task_struct(it->cur_task);
4284                 css_task_iter_advance(it);
4285         }
4286
4287         spin_unlock_irq(&css_set_lock);
4288
4289         return it->cur_task;
4290 }
4291
4292 /**
4293  * css_task_iter_end - finish task iteration
4294  * @it: the task iterator to finish
4295  *
4296  * Finish task iteration started by css_task_iter_start().
4297  */
4298 void css_task_iter_end(struct css_task_iter *it)
4299 {
4300         if (it->cur_cset) {
4301                 spin_lock_irq(&css_set_lock);
4302                 list_del(&it->iters_node);
4303                 put_css_set_locked(it->cur_cset);
4304                 spin_unlock_irq(&css_set_lock);
4305         }
4306
4307         if (it->cur_dcset)
4308                 put_css_set(it->cur_dcset);
4309
4310         if (it->cur_task)
4311                 put_task_struct(it->cur_task);
4312 }
4313
4314 static void cgroup_procs_release(struct kernfs_open_file *of)
4315 {
4316         if (of->priv) {
4317                 css_task_iter_end(of->priv);
4318                 kfree(of->priv);
4319         }
4320 }
4321
4322 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4323 {
4324         struct kernfs_open_file *of = s->private;
4325         struct css_task_iter *it = of->priv;
4326
4327         return css_task_iter_next(it);
4328 }
4329
4330 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4331                                   unsigned int iter_flags)
4332 {
4333         struct kernfs_open_file *of = s->private;
4334         struct cgroup *cgrp = seq_css(s)->cgroup;
4335         struct css_task_iter *it = of->priv;
4336
4337         /*
4338          * When a seq_file is seeked, it's always traversed sequentially
4339          * from position 0, so we can simply keep iterating on !0 *pos.
4340          */
4341         if (!it) {
4342                 if (WARN_ON_ONCE((*pos)++))
4343                         return ERR_PTR(-EINVAL);
4344
4345                 it = kzalloc(sizeof(*it), GFP_KERNEL);
4346                 if (!it)
4347                         return ERR_PTR(-ENOMEM);
4348                 of->priv = it;
4349                 css_task_iter_start(&cgrp->self, iter_flags, it);
4350         } else if (!(*pos)++) {
4351                 css_task_iter_end(it);
4352                 css_task_iter_start(&cgrp->self, iter_flags, it);
4353         }
4354
4355         return cgroup_procs_next(s, NULL, NULL);
4356 }
4357
4358 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4359 {
4360         struct cgroup *cgrp = seq_css(s)->cgroup;
4361
4362         /*
4363          * All processes of a threaded subtree belong to the domain cgroup
4364          * of the subtree.  Only threads can be distributed across the
4365          * subtree.  Reject reads on cgroup.procs in the subtree proper.
4366          * They're always empty anyway.
4367          */
4368         if (cgroup_is_threaded(cgrp))
4369                 return ERR_PTR(-EOPNOTSUPP);
4370
4371         return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4372                                             CSS_TASK_ITER_THREADED);
4373 }
4374
4375 static int cgroup_procs_show(struct seq_file *s, void *v)
4376 {
4377         seq_printf(s, "%d\n", task_pid_vnr(v));
4378         return 0;
4379 }
4380
4381 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4382                                          struct cgroup *dst_cgrp,
4383                                          struct super_block *sb)
4384 {
4385         struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4386         struct cgroup *com_cgrp = src_cgrp;
4387         struct inode *inode;
4388         int ret;
4389
4390         lockdep_assert_held(&cgroup_mutex);
4391
4392         /* find the common ancestor */
4393         while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4394                 com_cgrp = cgroup_parent(com_cgrp);
4395
4396         /* %current should be authorized to migrate to the common ancestor */
4397         inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4398         if (!inode)
4399                 return -ENOMEM;
4400
4401         ret = inode_permission(inode, MAY_WRITE);
4402         iput(inode);
4403         if (ret)
4404                 return ret;
4405
4406         /*
4407          * If namespaces are delegation boundaries, %current must be able
4408          * to see both source and destination cgroups from its namespace.
4409          */
4410         if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4411             (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4412              !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4413                 return -ENOENT;
4414
4415         return 0;
4416 }
4417
4418 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4419                                   char *buf, size_t nbytes, loff_t off)
4420 {
4421         struct cgroup *src_cgrp, *dst_cgrp;
4422         struct task_struct *task;
4423         ssize_t ret;
4424
4425         dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4426         if (!dst_cgrp)
4427                 return -ENODEV;
4428
4429         task = cgroup_procs_write_start(buf, true);
4430         ret = PTR_ERR_OR_ZERO(task);
4431         if (ret)
4432                 goto out_unlock;
4433
4434         /* find the source cgroup */
4435         spin_lock_irq(&css_set_lock);
4436         src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4437         spin_unlock_irq(&css_set_lock);
4438
4439         ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4440                                             of->file->f_path.dentry->d_sb);
4441         if (ret)
4442                 goto out_finish;
4443
4444         ret = cgroup_attach_task(dst_cgrp, task, true);
4445
4446 out_finish:
4447         cgroup_procs_write_finish(task);
4448 out_unlock:
4449         cgroup_kn_unlock(of->kn);
4450
4451         return ret ?: nbytes;
4452 }
4453
4454 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4455 {
4456         return __cgroup_procs_start(s, pos, 0);
4457 }
4458
4459 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4460                                     char *buf, size_t nbytes, loff_t off)
4461 {
4462         struct cgroup *src_cgrp, *dst_cgrp;
4463         struct task_struct *task;
4464         ssize_t ret;
4465
4466         buf = strstrip(buf);
4467
4468         dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4469         if (!dst_cgrp)
4470                 return -ENODEV;
4471
4472         task = cgroup_procs_write_start(buf, false);
4473         ret = PTR_ERR_OR_ZERO(task);
4474         if (ret)
4475                 goto out_unlock;
4476
4477         /* find the source cgroup */
4478         spin_lock_irq(&css_set_lock);
4479         src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4480         spin_unlock_irq(&css_set_lock);
4481
4482         /* thread migrations follow the cgroup.procs delegation rule */
4483         ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4484                                             of->file->f_path.dentry->d_sb);
4485         if (ret)
4486                 goto out_finish;
4487
4488         /* and must be contained in the same domain */
4489         ret = -EOPNOTSUPP;
4490         if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4491                 goto out_finish;
4492
4493         ret = cgroup_attach_task(dst_cgrp, task, false);
4494
4495 out_finish:
4496         cgroup_procs_write_finish(task);
4497 out_unlock:
4498         cgroup_kn_unlock(of->kn);
4499
4500         return ret ?: nbytes;
4501 }
4502
4503 /* cgroup core interface files for the default hierarchy */
4504 static struct cftype cgroup_base_files[] = {
4505         {
4506                 .name = "cgroup.type",
4507                 .flags = CFTYPE_NOT_ON_ROOT,
4508                 .seq_show = cgroup_type_show,
4509                 .write = cgroup_type_write,
4510         },
4511         {
4512                 .name = "cgroup.procs",
4513                 .flags = CFTYPE_NS_DELEGATABLE,
4514                 .file_offset = offsetof(struct cgroup, procs_file),
4515                 .release = cgroup_procs_release,
4516                 .seq_start = cgroup_procs_start,
4517                 .seq_next = cgroup_procs_next,
4518                 .seq_show = cgroup_procs_show,
4519                 .write = cgroup_procs_write,
4520         },
4521         {
4522                 .name = "cgroup.threads",
4523                 .flags = CFTYPE_NS_DELEGATABLE,
4524                 .release = cgroup_procs_release,
4525                 .seq_start = cgroup_threads_start,
4526                 .seq_next = cgroup_procs_next,
4527                 .seq_show = cgroup_procs_show,
4528                 .write = cgroup_threads_write,
4529         },
4530         {
4531                 .name = "cgroup.controllers",
4532                 .seq_show = cgroup_controllers_show,
4533         },
4534         {
4535                 .name = "cgroup.subtree_control",
4536                 .flags = CFTYPE_NS_DELEGATABLE,
4537                 .seq_show = cgroup_subtree_control_show,
4538                 .write = cgroup_subtree_control_write,
4539         },
4540         {
4541                 .name = "cgroup.events",
4542                 .flags = CFTYPE_NOT_ON_ROOT,
4543                 .file_offset = offsetof(struct cgroup, events_file),
4544                 .seq_show = cgroup_events_show,
4545         },
4546         {
4547                 .name = "cgroup.max.descendants",
4548                 .seq_show = cgroup_max_descendants_show,
4549                 .write = cgroup_max_descendants_write,
4550         },
4551         {
4552                 .name = "cgroup.max.depth",
4553                 .seq_show = cgroup_max_depth_show,
4554                 .write = cgroup_max_depth_write,
4555         },
4556         {
4557                 .name = "cgroup.stat",
4558                 .seq_show = cgroup_stat_show,
4559         },
4560         {
4561                 .name = "cpu.stat",
4562                 .flags = CFTYPE_NOT_ON_ROOT,
4563                 .seq_show = cpu_stat_show,
4564         },
4565 #ifdef CONFIG_PSI
4566         {
4567                 .name = "io.pressure",
4568                 .flags = CFTYPE_NOT_ON_ROOT,
4569                 .seq_show = cgroup_io_pressure_show,
4570         },
4571         {
4572                 .name = "memory.pressure",
4573                 .flags = CFTYPE_NOT_ON_ROOT,
4574                 .seq_show = cgroup_memory_pressure_show,
4575         },
4576         {
4577                 .name = "cpu.pressure",
4578                 .flags = CFTYPE_NOT_ON_ROOT,
4579                 .seq_show = cgroup_cpu_pressure_show,
4580         },
4581 #endif
4582         { }     /* terminate */
4583 };
4584
4585 /*
4586  * css destruction is four-stage process.
4587  *
4588  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4589  *    Implemented in kill_css().
4590  *
4591  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4592  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4593  *    offlined by invoking offline_css().  After offlining, the base ref is
4594  *    put.  Implemented in css_killed_work_fn().
4595  *
4596  * 3. When the percpu_ref reaches zero, the only possible remaining
4597  *    accessors are inside RCU read sections.  css_release() schedules the
4598  *    RCU callback.
4599  *
4600  * 4. After the grace period, the css can be freed.  Implemented in
4601  *    css_free_work_fn().
4602  *
4603  * It is actually hairier because both step 2 and 4 require process context
4604  * and thus involve punting to css->destroy_work adding two additional
4605  * steps to the already complex sequence.
4606  */
4607 static void css_free_rwork_fn(struct work_struct *work)
4608 {
4609         struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4610                                 struct cgroup_subsys_state, destroy_rwork);
4611         struct cgroup_subsys *ss = css->ss;
4612         struct cgroup *cgrp = css->cgroup;
4613
4614         percpu_ref_exit(&css->refcnt);
4615
4616         if (ss) {
4617                 /* css free path */
4618                 struct cgroup_subsys_state *parent = css->parent;
4619                 int id = css->id;
4620
4621                 ss->css_free(css);
4622                 cgroup_idr_remove(&ss->css_idr, id);
4623                 cgroup_put(cgrp);
4624
4625                 if (parent)
4626                         css_put(parent);
4627         } else {
4628                 /* cgroup free path */
4629                 atomic_dec(&cgrp->root->nr_cgrps);
4630                 cgroup1_pidlist_destroy_all(cgrp);
4631                 cancel_work_sync(&cgrp->release_agent_work);
4632
4633                 if (cgroup_parent(cgrp)) {
4634                         /*
4635                          * We get a ref to the parent, and put the ref when
4636                          * this cgroup is being freed, so it's guaranteed
4637                          * that the parent won't be destroyed before its
4638                          * children.
4639                          */
4640                         cgroup_put(cgroup_parent(cgrp));
4641                         kernfs_put(cgrp->kn);
4642                         psi_cgroup_free(cgrp);
4643                         if (cgroup_on_dfl(cgrp))
4644                                 cgroup_rstat_exit(cgrp);
4645                         kfree(cgrp);
4646                 } else {
4647                         /*
4648                          * This is root cgroup's refcnt reaching zero,
4649                          * which indicates that the root should be
4650                          * released.
4651                          */
4652                         cgroup_destroy_root(cgrp->root);
4653                 }
4654         }
4655 }
4656
4657 static void css_release_work_fn(struct work_struct *work)
4658 {
4659         struct cgroup_subsys_state *css =
4660                 container_of(work, struct cgroup_subsys_state, destroy_work);
4661         struct cgroup_subsys *ss = css->ss;
4662         struct cgroup *cgrp = css->cgroup;
4663
4664         mutex_lock(&cgroup_mutex);
4665
4666         css->flags |= CSS_RELEASED;
4667         list_del_rcu(&css->sibling);
4668
4669         if (ss) {
4670                 /* css release path */
4671                 if (!list_empty(&css->rstat_css_node)) {
4672                         cgroup_rstat_flush(cgrp);
4673                         list_del_rcu(&css->rstat_css_node);
4674                 }
4675
4676                 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4677                 if (ss->css_released)
4678                         ss->css_released(css);
4679         } else {
4680                 struct cgroup *tcgrp;
4681
4682                 /* cgroup release path */
4683                 TRACE_CGROUP_PATH(release, cgrp);
4684
4685                 if (cgroup_on_dfl(cgrp))
4686                         cgroup_rstat_flush(cgrp);
4687
4688                 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4689                      tcgrp = cgroup_parent(tcgrp))
4690                         tcgrp->nr_dying_descendants--;
4691
4692                 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4693                 cgrp->id = -1;
4694
4695                 /*
4696                  * There are two control paths which try to determine
4697                  * cgroup from dentry without going through kernfs -
4698                  * cgroupstats_build() and css_tryget_online_from_dir().
4699                  * Those are supported by RCU protecting clearing of
4700                  * cgrp->kn->priv backpointer.
4701                  */
4702                 if (cgrp->kn)
4703                         RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4704                                          NULL);
4705
4706                 cgroup_bpf_put(cgrp);
4707         }
4708
4709         mutex_unlock(&cgroup_mutex);
4710
4711         INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4712         queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4713 }
4714
4715 static void css_release(struct percpu_ref *ref)
4716 {
4717         struct cgroup_subsys_state *css =
4718                 container_of(ref, struct cgroup_subsys_state, refcnt);
4719
4720         INIT_WORK(&css->destroy_work, css_release_work_fn);
4721         queue_work(cgroup_destroy_wq, &css->destroy_work);
4722 }
4723
4724 static void init_and_link_css(struct cgroup_subsys_state *css,
4725                               struct cgroup_subsys *ss, struct cgroup *cgrp)
4726 {
4727         lockdep_assert_held(&cgroup_mutex);
4728
4729         cgroup_get_live(cgrp);
4730
4731         memset(css, 0, sizeof(*css));
4732         css->cgroup = cgrp;
4733         css->ss = ss;
4734         css->id = -1;
4735         INIT_LIST_HEAD(&css->sibling);
4736         INIT_LIST_HEAD(&css->children);
4737         INIT_LIST_HEAD(&css->rstat_css_node);
4738         css->serial_nr = css_serial_nr_next++;
4739         atomic_set(&css->online_cnt, 0);
4740
4741         if (cgroup_parent(cgrp)) {
4742                 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4743                 css_get(css->parent);
4744         }
4745
4746         if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4747                 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4748
4749         BUG_ON(cgroup_css(cgrp, ss));
4750 }
4751
4752 /* invoke ->css_online() on a new CSS and mark it online if successful */
4753 static int online_css(struct cgroup_subsys_state *css)
4754 {
4755         struct cgroup_subsys *ss = css->ss;
4756         int ret = 0;
4757
4758         lockdep_assert_held(&cgroup_mutex);
4759
4760         if (ss->css_online)
4761                 ret = ss->css_online(css);
4762         if (!ret) {
4763                 css->flags |= CSS_ONLINE;
4764                 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4765
4766                 atomic_inc(&css->online_cnt);
4767                 if (css->parent)
4768                         atomic_inc(&css->parent->online_cnt);
4769         }
4770         return ret;
4771 }
4772
4773 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4774 static void offline_css(struct cgroup_subsys_state *css)
4775 {
4776         struct cgroup_subsys *ss = css->ss;
4777
4778         lockdep_assert_held(&cgroup_mutex);
4779
4780         if (!(css->flags & CSS_ONLINE))
4781                 return;
4782
4783         if (ss->css_offline)
4784                 ss->css_offline(css);
4785
4786         css->flags &= ~CSS_ONLINE;
4787         RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4788
4789         wake_up_all(&css->cgroup->offline_waitq);
4790 }
4791
4792 /**
4793  * css_create - create a cgroup_subsys_state
4794  * @cgrp: the cgroup new css will be associated with
4795  * @ss: the subsys of new css
4796  *
4797  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4798  * css is online and installed in @cgrp.  This function doesn't create the
4799  * interface files.  Returns 0 on success, -errno on failure.
4800  */
4801 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4802                                               struct cgroup_subsys *ss)
4803 {
4804         struct cgroup *parent = cgroup_parent(cgrp);
4805         struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4806         struct cgroup_subsys_state *css;
4807         int err;
4808
4809         lockdep_assert_held(&cgroup_mutex);
4810
4811         css = ss->css_alloc(parent_css);
4812         if (!css)
4813                 css = ERR_PTR(-ENOMEM);
4814         if (IS_ERR(css))
4815                 return css;
4816
4817         init_and_link_css(css, ss, cgrp);
4818
4819         err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4820         if (err)
4821                 goto err_free_css;
4822
4823         err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4824         if (err < 0)
4825                 goto err_free_css;
4826         css->id = err;
4827
4828         /* @css is ready to be brought online now, make it visible */
4829         list_add_tail_rcu(&css->sibling, &parent_css->children);
4830         cgroup_idr_replace(&ss->css_idr, css, css->id);
4831
4832         err = online_css(css);
4833         if (err)
4834                 goto err_list_del;
4835
4836         if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4837             cgroup_parent(parent)) {
4838                 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4839                         current->comm, current->pid, ss->name);
4840                 if (!strcmp(ss->name, "memory"))
4841                         pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4842                 ss->warned_broken_hierarchy = true;
4843         }
4844
4845         return css;
4846
4847 err_list_del:
4848         list_del_rcu(&css->sibling);
4849 err_free_css:
4850         list_del_rcu(&css->rstat_css_node);
4851         INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4852         queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4853         return ERR_PTR(err);
4854 }
4855
4856 /*
4857  * The returned cgroup is fully initialized including its control mask, but
4858  * it isn't associated with its kernfs_node and doesn't have the control
4859  * mask applied.
4860  */
4861 static struct cgroup *cgroup_create(struct cgroup *parent)
4862 {
4863         struct cgroup_root *root = parent->root;
4864         struct cgroup *cgrp, *tcgrp;
4865         int level = parent->level + 1;
4866         int ret;
4867
4868         /* allocate the cgroup and its ID, 0 is reserved for the root */
4869         cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4870                        GFP_KERNEL);
4871         if (!cgrp)
4872                 return ERR_PTR(-ENOMEM);
4873
4874         ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4875         if (ret)
4876                 goto out_free_cgrp;
4877
4878         if (cgroup_on_dfl(parent)) {
4879                 ret = cgroup_rstat_init(cgrp);
4880                 if (ret)
4881                         goto out_cancel_ref;
4882         }
4883
4884         /*
4885          * Temporarily set the pointer to NULL, so idr_find() won't return
4886          * a half-baked cgroup.
4887          */
4888         cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4889         if (cgrp->id < 0) {
4890                 ret = -ENOMEM;
4891                 goto out_stat_exit;
4892         }
4893
4894         init_cgroup_housekeeping(cgrp);
4895
4896         cgrp->self.parent = &parent->self;
4897         cgrp->root = root;
4898         cgrp->level = level;
4899
4900         ret = psi_cgroup_alloc(cgrp);
4901         if (ret)
4902                 goto out_idr_free;
4903
4904         ret = cgroup_bpf_inherit(cgrp);
4905         if (ret)
4906                 goto out_psi_free;
4907
4908         for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4909                 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4910
4911                 if (tcgrp != cgrp)
4912                         tcgrp->nr_descendants++;
4913         }
4914
4915         if (notify_on_release(parent))
4916                 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4917
4918         if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4919                 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4920
4921         cgrp->self.serial_nr = css_serial_nr_next++;
4922
4923         /* allocation complete, commit to creation */
4924         list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4925         atomic_inc(&root->nr_cgrps);
4926         cgroup_get_live(parent);
4927
4928         /*
4929          * @cgrp is now fully operational.  If something fails after this
4930          * point, it'll be released via the normal destruction path.
4931          */
4932         cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4933
4934         /*
4935          * On the default hierarchy, a child doesn't automatically inherit
4936          * subtree_control from the parent.  Each is configured manually.
4937          */
4938         if (!cgroup_on_dfl(cgrp))
4939                 cgrp->subtree_control = cgroup_control(cgrp);
4940
4941         cgroup_propagate_control(cgrp);
4942
4943         return cgrp;
4944
4945 out_psi_free:
4946         psi_cgroup_free(cgrp);
4947 out_idr_free:
4948         cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4949 out_stat_exit:
4950         if (cgroup_on_dfl(parent))
4951                 cgroup_rstat_exit(cgrp);
4952 out_cancel_ref:
4953         percpu_ref_exit(&cgrp->self.refcnt);
4954 out_free_cgrp:
4955         kfree(cgrp);
4956         return ERR_PTR(ret);
4957 }
4958
4959 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4960 {
4961         struct cgroup *cgroup;
4962         int ret = false;
4963         int level = 1;
4964
4965         lockdep_assert_held(&cgroup_mutex);
4966
4967         for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4968                 if (cgroup->nr_descendants >= cgroup->max_descendants)
4969                         goto fail;
4970
4971                 if (level > cgroup->max_depth)
4972                         goto fail;
4973
4974                 level++;
4975         }
4976
4977         ret = true;
4978 fail:
4979         return ret;
4980 }
4981
4982 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4983 {
4984         struct cgroup *parent, *cgrp;
4985         struct kernfs_node *kn;
4986         int ret;
4987
4988         /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4989         if (strchr(name, '\n'))
4990                 return -EINVAL;
4991
4992         parent = cgroup_kn_lock_live(parent_kn, false);
4993         if (!parent)
4994                 return -ENODEV;
4995
4996         if (!cgroup_check_hierarchy_limits(parent)) {
4997                 ret = -EAGAIN;
4998                 goto out_unlock;
4999         }
5000
5001         cgrp = cgroup_create(parent);
5002         if (IS_ERR(cgrp)) {
5003                 ret = PTR_ERR(cgrp);
5004                 goto out_unlock;
5005         }
5006
5007         /* create the directory */
5008         kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5009         if (IS_ERR(kn)) {
5010                 ret = PTR_ERR(kn);
5011                 goto out_destroy;
5012         }
5013         cgrp->kn = kn;
5014
5015         /*
5016          * This extra ref will be put in cgroup_free_fn() and guarantees
5017          * that @cgrp->kn is always accessible.
5018          */
5019         kernfs_get(kn);
5020
5021         ret = cgroup_kn_set_ugid(kn);
5022         if (ret)
5023                 goto out_destroy;
5024
5025         ret = css_populate_dir(&cgrp->self);
5026         if (ret)
5027                 goto out_destroy;
5028
5029         ret = cgroup_apply_control_enable(cgrp);
5030         if (ret)
5031                 goto out_destroy;
5032
5033         TRACE_CGROUP_PATH(mkdir, cgrp);
5034
5035         /* let's create and online css's */
5036         kernfs_activate(kn);
5037
5038         ret = 0;
5039         goto out_unlock;
5040
5041 out_destroy:
5042         cgroup_destroy_locked(cgrp);
5043 out_unlock:
5044         cgroup_kn_unlock(parent_kn);
5045         return ret;
5046 }
5047
5048 /*
5049  * This is called when the refcnt of a css is confirmed to be killed.
5050  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5051  * initate destruction and put the css ref from kill_css().
5052  */
5053 static void css_killed_work_fn(struct work_struct *work)
5054 {
5055         struct cgroup_subsys_state *css =
5056                 container_of(work, struct cgroup_subsys_state, destroy_work);
5057
5058         mutex_lock(&cgroup_mutex);
5059
5060         do {
5061                 offline_css(css);
5062                 css_put(css);
5063                 /* @css can't go away while we're holding cgroup_mutex */
5064                 css = css->parent;
5065         } while (css && atomic_dec_and_test(&css->online_cnt));
5066
5067         mutex_unlock(&cgroup_mutex);
5068 }
5069
5070 /* css kill confirmation processing requires process context, bounce */
5071 static void css_killed_ref_fn(struct percpu_ref *ref)
5072 {
5073         struct cgroup_subsys_state *css =
5074                 container_of(ref, struct cgroup_subsys_state, refcnt);
5075
5076         if (atomic_dec_and_test(&css->online_cnt)) {
5077                 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5078                 queue_work(cgroup_destroy_wq, &css->destroy_work);
5079         }
5080 }
5081
5082 /**
5083  * kill_css - destroy a css
5084  * @css: css to destroy
5085  *
5086  * This function initiates destruction of @css by removing cgroup interface
5087  * files and putting its base reference.  ->css_offline() will be invoked
5088  * asynchronously once css_tryget_online() is guaranteed to fail and when
5089  * the reference count reaches zero, @css will be released.
5090  */
5091 static void kill_css(struct cgroup_subsys_state *css)
5092 {
5093         lockdep_assert_held(&cgroup_mutex);
5094
5095         if (css->flags & CSS_DYING)
5096                 return;
5097
5098         css->flags |= CSS_DYING;
5099
5100         /*
5101          * This must happen before css is disassociated with its cgroup.
5102          * See seq_css() for details.
5103          */
5104         css_clear_dir(css);
5105
5106         /*
5107          * Killing would put the base ref, but we need to keep it alive
5108          * until after ->css_offline().
5109          */
5110         css_get(css);
5111
5112         /*
5113          * cgroup core guarantees that, by the time ->css_offline() is
5114          * invoked, no new css reference will be given out via
5115          * css_tryget_online().  We can't simply call percpu_ref_kill() and
5116          * proceed to offlining css's because percpu_ref_kill() doesn't
5117          * guarantee that the ref is seen as killed on all CPUs on return.
5118          *
5119          * Use percpu_ref_kill_and_confirm() to get notifications as each
5120          * css is confirmed to be seen as killed on all CPUs.
5121          */
5122         percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5123 }
5124
5125 /**
5126  * cgroup_destroy_locked - the first stage of cgroup destruction
5127  * @cgrp: cgroup to be destroyed
5128  *
5129  * css's make use of percpu refcnts whose killing latency shouldn't be
5130  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5131  * guarantee that css_tryget_online() won't succeed by the time
5132  * ->css_offline() is invoked.  To satisfy all the requirements,
5133  * destruction is implemented in the following two steps.
5134  *
5135  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5136  *     userland visible parts and start killing the percpu refcnts of
5137  *     css's.  Set up so that the next stage will be kicked off once all
5138  *     the percpu refcnts are confirmed to be killed.
5139  *
5140  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5141  *     rest of destruction.  Once all cgroup references are gone, the
5142  *     cgroup is RCU-freed.
5143  *
5144  * This function implements s1.  After this step, @cgrp is gone as far as
5145  * the userland is concerned and a new cgroup with the same name may be
5146  * created.  As cgroup doesn't care about the names internally, this
5147  * doesn't cause any problem.
5148  */
5149 static int cgroup_destroy_locked(struct cgroup *cgrp)
5150         __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5151 {
5152         struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5153         struct cgroup_subsys_state *css;
5154         struct cgrp_cset_link *link;
5155         int ssid;
5156
5157         lockdep_assert_held(&cgroup_mutex);
5158
5159         /*
5160          * Only migration can raise populated from zero and we're already
5161          * holding cgroup_mutex.
5162          */
5163         if (cgroup_is_populated(cgrp))
5164                 return -EBUSY;
5165
5166         /*
5167          * Make sure there's no live children.  We can't test emptiness of
5168          * ->self.children as dead children linger on it while being
5169          * drained; otherwise, "rmdir parent/child parent" may fail.
5170          */
5171         if (css_has_online_children(&cgrp->self))
5172                 return -EBUSY;
5173
5174         /*
5175          * Mark @cgrp and the associated csets dead.  The former prevents
5176          * further task migration and child creation by disabling
5177          * cgroup_lock_live_group().  The latter makes the csets ignored by
5178          * the migration path.
5179          */
5180         cgrp->self.flags &= ~CSS_ONLINE;
5181
5182         spin_lock_irq(&css_set_lock);
5183         list_for_each_entry(link, &cgrp->cset_links, cset_link)
5184                 link->cset->dead = true;
5185         spin_unlock_irq(&css_set_lock);
5186
5187         /* initiate massacre of all css's */
5188         for_each_css(css, ssid, cgrp)
5189                 kill_css(css);
5190
5191         /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5192         css_clear_dir(&cgrp->self);
5193         kernfs_remove(cgrp->kn);
5194
5195         if (parent && cgroup_is_threaded(cgrp))
5196                 parent->nr_threaded_children--;
5197
5198         for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5199                 tcgrp->nr_descendants--;
5200                 tcgrp->nr_dying_descendants++;
5201         }
5202
5203         cgroup1_check_for_release(parent);
5204
5205         /* put the base reference */
5206         percpu_ref_kill(&cgrp->self.refcnt);
5207
5208         return 0;
5209 };
5210
5211 int cgroup_rmdir(struct kernfs_node *kn)
5212 {
5213         struct cgroup *cgrp;
5214         int ret = 0;
5215
5216         cgrp = cgroup_kn_lock_live(kn, false);
5217         if (!cgrp)
5218                 return 0;
5219
5220         ret = cgroup_destroy_locked(cgrp);
5221         if (!ret)
5222                 TRACE_CGROUP_PATH(rmdir, cgrp);
5223
5224         cgroup_kn_unlock(kn);
5225         return ret;
5226 }
5227
5228 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5229         .show_options           = cgroup_show_options,
5230         .remount_fs             = cgroup_remount,
5231         .mkdir                  = cgroup_mkdir,
5232         .rmdir                  = cgroup_rmdir,
5233         .show_path              = cgroup_show_path,
5234 };
5235
5236 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5237 {
5238         struct cgroup_subsys_state *css;
5239
5240         pr_debug("Initializing cgroup subsys %s\n", ss->name);
5241
5242         mutex_lock(&cgroup_mutex);
5243
5244         idr_init(&ss->css_idr);
5245         INIT_LIST_HEAD(&ss->cfts);
5246
5247         /* Create the root cgroup state for this subsystem */
5248         ss->root = &cgrp_dfl_root;
5249         css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5250         /* We don't handle early failures gracefully */
5251         BUG_ON(IS_ERR(css));
5252         init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5253
5254         /*
5255          * Root csses are never destroyed and we can't initialize
5256          * percpu_ref during early init.  Disable refcnting.
5257          */
5258         css->flags |= CSS_NO_REF;
5259
5260         if (early) {
5261                 /* allocation can't be done safely during early init */
5262                 css->id = 1;
5263         } else {
5264                 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5265                 BUG_ON(css->id < 0);
5266         }
5267
5268         /* Update the init_css_set to contain a subsys
5269          * pointer to this state - since the subsystem is
5270          * newly registered, all tasks and hence the
5271          * init_css_set is in the subsystem's root cgroup. */
5272         init_css_set.subsys[ss->id] = css;
5273
5274         have_fork_callback |= (bool)ss->fork << ss->id;
5275         have_exit_callback |= (bool)ss->exit << ss->id;
5276         have_free_callback |= (bool)ss->free << ss->id;
5277         have_canfork_callback |= (bool)ss->can_fork << ss->id;
5278
5279         /* At system boot, before all subsystems have been
5280          * registered, no tasks have been forked, so we don't
5281          * need to invoke fork callbacks here. */
5282         BUG_ON(!list_empty(&init_task.tasks));
5283
5284         BUG_ON(online_css(css));
5285
5286         mutex_unlock(&cgroup_mutex);
5287 }
5288
5289 /**
5290  * cgroup_init_early - cgroup initialization at system boot
5291  *
5292  * Initialize cgroups at system boot, and initialize any
5293  * subsystems that request early init.
5294  */
5295 int __init cgroup_init_early(void)
5296 {
5297         static struct cgroup_sb_opts __initdata opts;
5298         struct cgroup_subsys *ss;
5299         int i;
5300
5301         init_cgroup_root(&cgrp_dfl_root, &opts);
5302         cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5303
5304         RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5305
5306         for_each_subsys(ss, i) {
5307                 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5308                      "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5309                      i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5310                      ss->id, ss->name);
5311                 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5312                      "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5313
5314                 ss->id = i;
5315                 ss->name = cgroup_subsys_name[i];
5316                 if (!ss->legacy_name)
5317                         ss->legacy_name = cgroup_subsys_name[i];
5318
5319                 if (ss->early_init)
5320                         cgroup_init_subsys(ss, true);
5321         }
5322         return 0;
5323 }
5324
5325 static u16 cgroup_disable_mask __initdata;
5326
5327 /**
5328  * cgroup_init - cgroup initialization
5329  *
5330  * Register cgroup filesystem and /proc file, and initialize
5331  * any subsystems that didn't request early init.
5332  */
5333 int __init cgroup_init(void)
5334 {
5335         struct cgroup_subsys *ss;
5336         int ssid;
5337
5338         BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5339         BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5340         BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5341         BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5342
5343         cgroup_rstat_boot();
5344
5345         /*
5346          * The latency of the synchronize_sched() is too high for cgroups,
5347          * avoid it at the cost of forcing all readers into the slow path.
5348          */
5349         rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5350
5351         get_user_ns(init_cgroup_ns.user_ns);
5352
5353         mutex_lock(&cgroup_mutex);
5354
5355         /*
5356          * Add init_css_set to the hash table so that dfl_root can link to
5357          * it during init.
5358          */
5359         hash_add(css_set_table, &init_css_set.hlist,
5360                  css_set_hash(init_css_set.subsys));
5361
5362         BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5363
5364         mutex_unlock(&cgroup_mutex);
5365
5366         for_each_subsys(ss, ssid) {
5367                 if (ss->early_init) {
5368                         struct cgroup_subsys_state *css =
5369                                 init_css_set.subsys[ss->id];
5370
5371                         css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5372                                                    GFP_KERNEL);
5373                         BUG_ON(css->id < 0);
5374                 } else {
5375                         cgroup_init_subsys(ss, false);
5376                 }
5377
5378                 list_add_tail(&init_css_set.e_cset_node[ssid],
5379                               &cgrp_dfl_root.cgrp.e_csets[ssid]);
5380
5381                 /*
5382                  * Setting dfl_root subsys_mask needs to consider the
5383                  * disabled flag and cftype registration needs kmalloc,
5384                  * both of which aren't available during early_init.
5385                  */
5386                 if (cgroup_disable_mask & (1 << ssid)) {
5387                         static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5388                         printk(KERN_INFO "Disabling %s control group subsystem\n",
5389                                ss->name);
5390                         continue;
5391                 }
5392
5393                 if (cgroup1_ssid_disabled(ssid))
5394                         printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5395                                ss->name);
5396
5397                 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5398
5399                 /* implicit controllers must be threaded too */
5400                 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5401
5402                 if (ss->implicit_on_dfl)
5403                         cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5404                 else if (!ss->dfl_cftypes)
5405                         cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5406
5407                 if (ss->threaded)
5408                         cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5409
5410                 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5411                         WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5412                 } else {
5413                         WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5414                         WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5415                 }
5416
5417                 if (ss->bind)
5418                         ss->bind(init_css_set.subsys[ssid]);
5419
5420                 mutex_lock(&cgroup_mutex);
5421                 css_populate_dir(init_css_set.subsys[ssid]);
5422                 mutex_unlock(&cgroup_mutex);
5423         }
5424
5425         /* init_css_set.subsys[] has been updated, re-hash */
5426         hash_del(&init_css_set.hlist);
5427         hash_add(css_set_table, &init_css_set.hlist,
5428                  css_set_hash(init_css_set.subsys));
5429
5430         WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5431         WARN_ON(register_filesystem(&cgroup_fs_type));
5432         WARN_ON(register_filesystem(&cgroup2_fs_type));
5433         WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5434
5435         return 0;
5436 }
5437
5438 static int __init cgroup_wq_init(void)
5439 {
5440         /*
5441          * There isn't much point in executing destruction path in
5442          * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5443          * Use 1 for @max_active.
5444          *
5445          * We would prefer to do this in cgroup_init() above, but that
5446          * is called before init_workqueues(): so leave this until after.
5447          */
5448         cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5449         BUG_ON(!cgroup_destroy_wq);
5450         return 0;
5451 }
5452 core_initcall(cgroup_wq_init);
5453
5454 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5455                                         char *buf, size_t buflen)
5456 {
5457         struct kernfs_node *kn;
5458
5459         kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5460         if (!kn)
5461                 return;
5462         kernfs_path(kn, buf, buflen);
5463         kernfs_put(kn);
5464 }
5465
5466 /*
5467  * proc_cgroup_show()
5468  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5469  *  - Used for /proc/<pid>/cgroup.
5470  */
5471 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5472                      struct pid *pid, struct task_struct *tsk)
5473 {
5474         char *buf;
5475         int retval;
5476         struct cgroup_root *root;
5477
5478         retval = -ENOMEM;
5479         buf = kmalloc(PATH_MAX, GFP_KERNEL);
5480         if (!buf)
5481                 goto out;
5482
5483         mutex_lock(&cgroup_mutex);
5484         spin_lock_irq(&css_set_lock);
5485
5486         for_each_root(root) {
5487                 struct cgroup_subsys *ss;
5488                 struct cgroup *cgrp;
5489                 int ssid, count = 0;
5490
5491                 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5492                         continue;
5493
5494                 seq_printf(m, "%d:", root->hierarchy_id);
5495                 if (root != &cgrp_dfl_root)
5496                         for_each_subsys(ss, ssid)
5497                                 if (root->subsys_mask & (1 << ssid))
5498                                         seq_printf(m, "%s%s", count++ ? "," : "",
5499                                                    ss->legacy_name);
5500                 if (strlen(root->name))
5501                         seq_printf(m, "%sname=%s", count ? "," : "",
5502                                    root->name);
5503                 seq_putc(m, ':');
5504
5505                 cgrp = task_cgroup_from_root(tsk, root);
5506
5507                 /*
5508                  * On traditional hierarchies, all zombie tasks show up as
5509                  * belonging to the root cgroup.  On the default hierarchy,
5510                  * while a zombie doesn't show up in "cgroup.procs" and
5511                  * thus can't be migrated, its /proc/PID/cgroup keeps
5512                  * reporting the cgroup it belonged to before exiting.  If
5513                  * the cgroup is removed before the zombie is reaped,
5514                  * " (deleted)" is appended to the cgroup path.
5515                  */
5516                 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5517                         retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5518                                                 current->nsproxy->cgroup_ns);
5519                         if (retval >= PATH_MAX)
5520                                 retval = -ENAMETOOLONG;
5521                         if (retval < 0)
5522                                 goto out_unlock;
5523
5524                         seq_puts(m, buf);
5525                 } else {
5526                         seq_puts(m, "/");
5527                 }
5528
5529                 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5530                         seq_puts(m, " (deleted)\n");
5531                 else
5532                         seq_putc(m, '\n');
5533         }
5534
5535         retval = 0;
5536 out_unlock:
5537         spin_unlock_irq(&css_set_lock);
5538         mutex_unlock(&cgroup_mutex);
5539         kfree(buf);
5540 out:
5541         return retval;
5542 }
5543
5544 /**
5545  * cgroup_fork - initialize cgroup related fields during copy_process()
5546  * @child: pointer to task_struct of forking parent process.
5547  *
5548  * A task is associated with the init_css_set until cgroup_post_fork()
5549  * attaches it to the parent's css_set.  Empty cg_list indicates that
5550  * @child isn't holding reference to its css_set.
5551  */
5552 void cgroup_fork(struct task_struct *child)
5553 {
5554         RCU_INIT_POINTER(child->cgroups, &init_css_set);
5555         INIT_LIST_HEAD(&child->cg_list);
5556 }
5557
5558 /**
5559  * cgroup_can_fork - called on a new task before the process is exposed
5560  * @child: the task in question.
5561  *
5562  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5563  * returns an error, the fork aborts with that error code. This allows for
5564  * a cgroup subsystem to conditionally allow or deny new forks.
5565  */
5566 int cgroup_can_fork(struct task_struct *child)
5567 {
5568         struct cgroup_subsys *ss;
5569         int i, j, ret;
5570
5571         do_each_subsys_mask(ss, i, have_canfork_callback) {
5572                 ret = ss->can_fork(child);
5573                 if (ret)
5574                         goto out_revert;
5575         } while_each_subsys_mask();
5576
5577         return 0;
5578
5579 out_revert:
5580         for_each_subsys(ss, j) {
5581                 if (j >= i)
5582                         break;
5583                 if (ss->cancel_fork)
5584                         ss->cancel_fork(child);
5585         }
5586
5587         return ret;
5588 }
5589
5590 /**
5591  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5592  * @child: the task in question
5593  *
5594  * This calls the cancel_fork() callbacks if a fork failed *after*
5595  * cgroup_can_fork() succeded.
5596  */
5597 void cgroup_cancel_fork(struct task_struct *child)
5598 {
5599         struct cgroup_subsys *ss;
5600         int i;
5601
5602         for_each_subsys(ss, i)
5603                 if (ss->cancel_fork)
5604                         ss->cancel_fork(child);
5605 }
5606
5607 /**
5608  * cgroup_post_fork - called on a new task after adding it to the task list
5609  * @child: the task in question
5610  *
5611  * Adds the task to the list running through its css_set if necessary and
5612  * call the subsystem fork() callbacks.  Has to be after the task is
5613  * visible on the task list in case we race with the first call to
5614  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5615  * list.
5616  */
5617 void cgroup_post_fork(struct task_struct *child)
5618 {
5619         struct cgroup_subsys *ss;
5620         int i;
5621
5622         /*
5623          * This may race against cgroup_enable_task_cg_lists().  As that
5624          * function sets use_task_css_set_links before grabbing
5625          * tasklist_lock and we just went through tasklist_lock to add
5626          * @child, it's guaranteed that either we see the set
5627          * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5628          * @child during its iteration.
5629          *
5630          * If we won the race, @child is associated with %current's
5631          * css_set.  Grabbing css_set_lock guarantees both that the
5632          * association is stable, and, on completion of the parent's
5633          * migration, @child is visible in the source of migration or
5634          * already in the destination cgroup.  This guarantee is necessary
5635          * when implementing operations which need to migrate all tasks of
5636          * a cgroup to another.
5637          *
5638          * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5639          * will remain in init_css_set.  This is safe because all tasks are
5640          * in the init_css_set before cg_links is enabled and there's no
5641          * operation which transfers all tasks out of init_css_set.
5642          */
5643         if (use_task_css_set_links) {
5644                 struct css_set *cset;
5645
5646                 spin_lock_irq(&css_set_lock);
5647                 cset = task_css_set(current);
5648                 if (list_empty(&child->cg_list)) {
5649                         get_css_set(cset);
5650                         cset->nr_tasks++;
5651                         css_set_move_task(child, NULL, cset, false);
5652                 }
5653                 spin_unlock_irq(&css_set_lock);
5654         }
5655
5656         /*
5657          * Call ss->fork().  This must happen after @child is linked on
5658          * css_set; otherwise, @child might change state between ->fork()
5659          * and addition to css_set.
5660          */
5661         do_each_subsys_mask(ss, i, have_fork_callback) {
5662                 ss->fork(child);
5663         } while_each_subsys_mask();
5664 }
5665
5666 /**
5667  * cgroup_exit - detach cgroup from exiting task
5668  * @tsk: pointer to task_struct of exiting process
5669  *
5670  * Description: Detach cgroup from @tsk and release it.
5671  *
5672  * Note that cgroups marked notify_on_release force every task in
5673  * them to take the global cgroup_mutex mutex when exiting.
5674  * This could impact scaling on very large systems.  Be reluctant to
5675  * use notify_on_release cgroups where very high task exit scaling
5676  * is required on large systems.
5677  *
5678  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5679  * call cgroup_exit() while the task is still competent to handle
5680  * notify_on_release(), then leave the task attached to the root cgroup in
5681  * each hierarchy for the remainder of its exit.  No need to bother with
5682  * init_css_set refcnting.  init_css_set never goes away and we can't race
5683  * with migration path - PF_EXITING is visible to migration path.
5684  */
5685 void cgroup_exit(struct task_struct *tsk)
5686 {
5687         struct cgroup_subsys *ss;
5688         struct css_set *cset;
5689         int i;
5690
5691         /*
5692          * Unlink from @tsk from its css_set.  As migration path can't race
5693          * with us, we can check css_set and cg_list without synchronization.
5694          */
5695         cset = task_css_set(tsk);
5696
5697         if (!list_empty(&tsk->cg_list)) {
5698                 spin_lock_irq(&css_set_lock);
5699                 css_set_move_task(tsk, cset, NULL, false);
5700                 cset->nr_tasks--;
5701                 spin_unlock_irq(&css_set_lock);
5702         } else {
5703                 get_css_set(cset);
5704         }
5705
5706         /* see cgroup_post_fork() for details */
5707         do_each_subsys_mask(ss, i, have_exit_callback) {
5708                 ss->exit(tsk);
5709         } while_each_subsys_mask();
5710 }
5711
5712 void cgroup_free(struct task_struct *task)
5713 {
5714         struct css_set *cset = task_css_set(task);
5715         struct cgroup_subsys *ss;
5716         int ssid;
5717
5718         do_each_subsys_mask(ss, ssid, have_free_callback) {
5719                 ss->free(task);
5720         } while_each_subsys_mask();
5721
5722         put_css_set(cset);
5723 }
5724
5725 static int __init cgroup_disable(char *str)
5726 {
5727         struct cgroup_subsys *ss;
5728         char *token;
5729         int i;
5730
5731         while ((token = strsep(&str, ",")) != NULL) {
5732                 if (!*token)
5733                         continue;
5734
5735                 for_each_subsys(ss, i) {
5736                         if (strcmp(token, ss->name) &&
5737                             strcmp(token, ss->legacy_name))
5738                                 continue;
5739                         cgroup_disable_mask |= 1 << i;
5740                 }
5741         }
5742         return 1;
5743 }
5744 __setup("cgroup_disable=", cgroup_disable);
5745
5746 /**
5747  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5748  * @dentry: directory dentry of interest
5749  * @ss: subsystem of interest
5750  *
5751  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5752  * to get the corresponding css and return it.  If such css doesn't exist
5753  * or can't be pinned, an ERR_PTR value is returned.
5754  */
5755 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5756                                                        struct cgroup_subsys *ss)
5757 {
5758         struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5759         struct file_system_type *s_type = dentry->d_sb->s_type;
5760         struct cgroup_subsys_state *css = NULL;
5761         struct cgroup *cgrp;
5762
5763         /* is @dentry a cgroup dir? */
5764         if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5765             !kn || kernfs_type(kn) != KERNFS_DIR)
5766                 return ERR_PTR(-EBADF);
5767
5768         rcu_read_lock();
5769
5770         /*
5771          * This path doesn't originate from kernfs and @kn could already
5772          * have been or be removed at any point.  @kn->priv is RCU
5773          * protected for this access.  See css_release_work_fn() for details.
5774          */
5775         cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5776         if (cgrp)
5777                 css = cgroup_css(cgrp, ss);
5778
5779         if (!css || !css_tryget_online(css))
5780                 css = ERR_PTR(-ENOENT);
5781
5782         rcu_read_unlock();
5783         return css;
5784 }
5785
5786 /**
5787  * css_from_id - lookup css by id
5788  * @id: the cgroup id
5789  * @ss: cgroup subsys to be looked into
5790  *
5791  * Returns the css if there's valid one with @id, otherwise returns NULL.
5792  * Should be called under rcu_read_lock().
5793  */
5794 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5795 {
5796         WARN_ON_ONCE(!rcu_read_lock_held());
5797         return idr_find(&ss->css_idr, id);
5798 }
5799
5800 /**
5801  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5802  * @path: path on the default hierarchy
5803  *
5804  * Find the cgroup at @path on the default hierarchy, increment its
5805  * reference count and return it.  Returns pointer to the found cgroup on
5806  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5807  * if @path points to a non-directory.
5808  */
5809 struct cgroup *cgroup_get_from_path(const char *path)
5810 {
5811         struct kernfs_node *kn;
5812         struct cgroup *cgrp;
5813
5814         mutex_lock(&cgroup_mutex);
5815
5816         kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5817         if (kn) {
5818                 if (kernfs_type(kn) == KERNFS_DIR) {
5819                         cgrp = kn->priv;
5820                         cgroup_get_live(cgrp);
5821                 } else {
5822                         cgrp = ERR_PTR(-ENOTDIR);
5823                 }
5824                 kernfs_put(kn);
5825         } else {
5826                 cgrp = ERR_PTR(-ENOENT);
5827         }
5828
5829         mutex_unlock(&cgroup_mutex);
5830         return cgrp;
5831 }
5832 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5833
5834 /**
5835  * cgroup_get_from_fd - get a cgroup pointer from a fd
5836  * @fd: fd obtained by open(cgroup2_dir)
5837  *
5838  * Find the cgroup from a fd which should be obtained
5839  * by opening a cgroup directory.  Returns a pointer to the
5840  * cgroup on success. ERR_PTR is returned if the cgroup
5841  * cannot be found.
5842  */
5843 struct cgroup *cgroup_get_from_fd(int fd)
5844 {
5845         struct cgroup_subsys_state *css;
5846         struct cgroup *cgrp;
5847         struct file *f;
5848
5849         f = fget_raw(fd);
5850         if (!f)
5851                 return ERR_PTR(-EBADF);
5852
5853         css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5854         fput(f);
5855         if (IS_ERR(css))
5856                 return ERR_CAST(css);
5857
5858         cgrp = css->cgroup;
5859         if (!cgroup_on_dfl(cgrp)) {
5860                 cgroup_put(cgrp);
5861                 return ERR_PTR(-EBADF);
5862         }
5863
5864         return cgrp;
5865 }
5866 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5867
5868 /*
5869  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5870  * definition in cgroup-defs.h.
5871  */
5872 #ifdef CONFIG_SOCK_CGROUP_DATA
5873
5874 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5875
5876 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5877 static bool cgroup_sk_alloc_disabled __read_mostly;
5878
5879 void cgroup_sk_alloc_disable(void)
5880 {
5881         if (cgroup_sk_alloc_disabled)
5882                 return;
5883         pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5884         cgroup_sk_alloc_disabled = true;
5885 }
5886
5887 #else
5888
5889 #define cgroup_sk_alloc_disabled        false
5890
5891 #endif
5892
5893 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5894 {
5895         if (cgroup_sk_alloc_disabled)
5896                 return;
5897
5898         /* Socket clone path */
5899         if (skcd->val) {
5900                 /*
5901                  * We might be cloning a socket which is left in an empty
5902                  * cgroup and the cgroup might have already been rmdir'd.
5903                  * Don't use cgroup_get_live().
5904                  */
5905                 cgroup_get(sock_cgroup_ptr(skcd));
5906                 return;
5907         }
5908
5909         rcu_read_lock();
5910
5911         while (true) {
5912                 struct css_set *cset;
5913
5914                 cset = task_css_set(current);
5915                 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5916                         skcd->val = (unsigned long)cset->dfl_cgrp;
5917                         break;
5918                 }
5919                 cpu_relax();
5920         }
5921
5922         rcu_read_unlock();
5923 }
5924
5925 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5926 {
5927         cgroup_put(sock_cgroup_ptr(skcd));
5928 }
5929
5930 #endif  /* CONFIG_SOCK_CGROUP_DATA */
5931
5932 #ifdef CONFIG_CGROUP_BPF
5933 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5934                       enum bpf_attach_type type, u32 flags)
5935 {
5936         int ret;
5937
5938         mutex_lock(&cgroup_mutex);
5939         ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5940         mutex_unlock(&cgroup_mutex);
5941         return ret;
5942 }
5943 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5944                       enum bpf_attach_type type, u32 flags)
5945 {
5946         int ret;
5947
5948         mutex_lock(&cgroup_mutex);
5949         ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5950         mutex_unlock(&cgroup_mutex);
5951         return ret;
5952 }
5953 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5954                      union bpf_attr __user *uattr)
5955 {
5956         int ret;
5957
5958         mutex_lock(&cgroup_mutex);
5959         ret = __cgroup_bpf_query(cgrp, attr, uattr);
5960         mutex_unlock(&cgroup_mutex);
5961         return ret;
5962 }
5963 #endif /* CONFIG_CGROUP_BPF */
5964
5965 #ifdef CONFIG_SYSFS
5966 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5967                                       ssize_t size, const char *prefix)
5968 {
5969         struct cftype *cft;
5970         ssize_t ret = 0;
5971
5972         for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5973                 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5974                         continue;
5975
5976                 if (prefix)
5977                         ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5978
5979                 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5980
5981                 if (unlikely(ret >= size)) {
5982                         WARN_ON(1);
5983                         break;
5984                 }
5985         }
5986
5987         return ret;
5988 }
5989
5990 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5991                               char *buf)
5992 {
5993         struct cgroup_subsys *ss;
5994         int ssid;
5995         ssize_t ret = 0;
5996
5997         ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5998                                      NULL);
5999
6000         for_each_subsys(ss, ssid)
6001                 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6002                                               PAGE_SIZE - ret,
6003                                               cgroup_subsys_name[ssid]);
6004
6005         return ret;
6006 }
6007 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6008
6009 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6010                              char *buf)
6011 {
6012         return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6013 }
6014 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6015
6016 static struct attribute *cgroup_sysfs_attrs[] = {
6017         &cgroup_delegate_attr.attr,
6018         &cgroup_features_attr.attr,
6019         NULL,
6020 };
6021
6022 static const struct attribute_group cgroup_sysfs_attr_group = {
6023         .attrs = cgroup_sysfs_attrs,
6024         .name = "cgroup",
6025 };
6026
6027 static int __init cgroup_sysfs_init(void)
6028 {
6029         return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6030 }
6031 subsys_initcall(cgroup_sysfs_init);
6032 #endif /* CONFIG_SYSFS */