Merge tag 'mac80211-for-davem-2018-05-09' of git://git.kernel.org/pub/scm/linux/kerne...
[sfrench/cifs-2.6.git] / kernel / bpf / core.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34
35 #include <asm/unaligned.h>
36
37 /* Registers */
38 #define BPF_R0  regs[BPF_REG_0]
39 #define BPF_R1  regs[BPF_REG_1]
40 #define BPF_R2  regs[BPF_REG_2]
41 #define BPF_R3  regs[BPF_REG_3]
42 #define BPF_R4  regs[BPF_REG_4]
43 #define BPF_R5  regs[BPF_REG_5]
44 #define BPF_R6  regs[BPF_REG_6]
45 #define BPF_R7  regs[BPF_REG_7]
46 #define BPF_R8  regs[BPF_REG_8]
47 #define BPF_R9  regs[BPF_REG_9]
48 #define BPF_R10 regs[BPF_REG_10]
49
50 /* Named registers */
51 #define DST     regs[insn->dst_reg]
52 #define SRC     regs[insn->src_reg]
53 #define FP      regs[BPF_REG_FP]
54 #define ARG1    regs[BPF_REG_ARG1]
55 #define CTX     regs[BPF_REG_CTX]
56 #define IMM     insn->imm
57
58 /* No hurry in this branch
59  *
60  * Exported for the bpf jit load helper.
61  */
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
63 {
64         u8 *ptr = NULL;
65
66         if (k >= SKF_NET_OFF)
67                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68         else if (k >= SKF_LL_OFF)
69                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
70
71         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
72                 return ptr;
73
74         return NULL;
75 }
76
77 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
78 {
79         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
80         struct bpf_prog_aux *aux;
81         struct bpf_prog *fp;
82
83         size = round_up(size, PAGE_SIZE);
84         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
85         if (fp == NULL)
86                 return NULL;
87
88         aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
89         if (aux == NULL) {
90                 vfree(fp);
91                 return NULL;
92         }
93
94         fp->pages = size / PAGE_SIZE;
95         fp->aux = aux;
96         fp->aux->prog = fp;
97         fp->jit_requested = ebpf_jit_enabled();
98
99         INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
100
101         return fp;
102 }
103 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
104
105 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
106                                   gfp_t gfp_extra_flags)
107 {
108         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
109         struct bpf_prog *fp;
110         u32 pages, delta;
111         int ret;
112
113         BUG_ON(fp_old == NULL);
114
115         size = round_up(size, PAGE_SIZE);
116         pages = size / PAGE_SIZE;
117         if (pages <= fp_old->pages)
118                 return fp_old;
119
120         delta = pages - fp_old->pages;
121         ret = __bpf_prog_charge(fp_old->aux->user, delta);
122         if (ret)
123                 return NULL;
124
125         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
126         if (fp == NULL) {
127                 __bpf_prog_uncharge(fp_old->aux->user, delta);
128         } else {
129                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
130                 fp->pages = pages;
131                 fp->aux->prog = fp;
132
133                 /* We keep fp->aux from fp_old around in the new
134                  * reallocated structure.
135                  */
136                 fp_old->aux = NULL;
137                 __bpf_prog_free(fp_old);
138         }
139
140         return fp;
141 }
142
143 void __bpf_prog_free(struct bpf_prog *fp)
144 {
145         kfree(fp->aux);
146         vfree(fp);
147 }
148
149 int bpf_prog_calc_tag(struct bpf_prog *fp)
150 {
151         const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
152         u32 raw_size = bpf_prog_tag_scratch_size(fp);
153         u32 digest[SHA_DIGEST_WORDS];
154         u32 ws[SHA_WORKSPACE_WORDS];
155         u32 i, bsize, psize, blocks;
156         struct bpf_insn *dst;
157         bool was_ld_map;
158         u8 *raw, *todo;
159         __be32 *result;
160         __be64 *bits;
161
162         raw = vmalloc(raw_size);
163         if (!raw)
164                 return -ENOMEM;
165
166         sha_init(digest);
167         memset(ws, 0, sizeof(ws));
168
169         /* We need to take out the map fd for the digest calculation
170          * since they are unstable from user space side.
171          */
172         dst = (void *)raw;
173         for (i = 0, was_ld_map = false; i < fp->len; i++) {
174                 dst[i] = fp->insnsi[i];
175                 if (!was_ld_map &&
176                     dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
177                     dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
178                         was_ld_map = true;
179                         dst[i].imm = 0;
180                 } else if (was_ld_map &&
181                            dst[i].code == 0 &&
182                            dst[i].dst_reg == 0 &&
183                            dst[i].src_reg == 0 &&
184                            dst[i].off == 0) {
185                         was_ld_map = false;
186                         dst[i].imm = 0;
187                 } else {
188                         was_ld_map = false;
189                 }
190         }
191
192         psize = bpf_prog_insn_size(fp);
193         memset(&raw[psize], 0, raw_size - psize);
194         raw[psize++] = 0x80;
195
196         bsize  = round_up(psize, SHA_MESSAGE_BYTES);
197         blocks = bsize / SHA_MESSAGE_BYTES;
198         todo   = raw;
199         if (bsize - psize >= sizeof(__be64)) {
200                 bits = (__be64 *)(todo + bsize - sizeof(__be64));
201         } else {
202                 bits = (__be64 *)(todo + bsize + bits_offset);
203                 blocks++;
204         }
205         *bits = cpu_to_be64((psize - 1) << 3);
206
207         while (blocks--) {
208                 sha_transform(digest, todo, ws);
209                 todo += SHA_MESSAGE_BYTES;
210         }
211
212         result = (__force __be32 *)digest;
213         for (i = 0; i < SHA_DIGEST_WORDS; i++)
214                 result[i] = cpu_to_be32(digest[i]);
215         memcpy(fp->tag, result, sizeof(fp->tag));
216
217         vfree(raw);
218         return 0;
219 }
220
221 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
222 {
223         struct bpf_insn *insn = prog->insnsi;
224         u32 i, insn_cnt = prog->len;
225         bool pseudo_call;
226         u8 code;
227         int off;
228
229         for (i = 0; i < insn_cnt; i++, insn++) {
230                 code = insn->code;
231                 if (BPF_CLASS(code) != BPF_JMP)
232                         continue;
233                 if (BPF_OP(code) == BPF_EXIT)
234                         continue;
235                 if (BPF_OP(code) == BPF_CALL) {
236                         if (insn->src_reg == BPF_PSEUDO_CALL)
237                                 pseudo_call = true;
238                         else
239                                 continue;
240                 } else {
241                         pseudo_call = false;
242                 }
243                 off = pseudo_call ? insn->imm : insn->off;
244
245                 /* Adjust offset of jmps if we cross boundaries. */
246                 if (i < pos && i + off + 1 > pos)
247                         off += delta;
248                 else if (i > pos + delta && i + off + 1 <= pos + delta)
249                         off -= delta;
250
251                 if (pseudo_call)
252                         insn->imm = off;
253                 else
254                         insn->off = off;
255         }
256 }
257
258 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
259                                        const struct bpf_insn *patch, u32 len)
260 {
261         u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
262         struct bpf_prog *prog_adj;
263
264         /* Since our patchlet doesn't expand the image, we're done. */
265         if (insn_delta == 0) {
266                 memcpy(prog->insnsi + off, patch, sizeof(*patch));
267                 return prog;
268         }
269
270         insn_adj_cnt = prog->len + insn_delta;
271
272         /* Several new instructions need to be inserted. Make room
273          * for them. Likely, there's no need for a new allocation as
274          * last page could have large enough tailroom.
275          */
276         prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
277                                     GFP_USER);
278         if (!prog_adj)
279                 return NULL;
280
281         prog_adj->len = insn_adj_cnt;
282
283         /* Patching happens in 3 steps:
284          *
285          * 1) Move over tail of insnsi from next instruction onwards,
286          *    so we can patch the single target insn with one or more
287          *    new ones (patching is always from 1 to n insns, n > 0).
288          * 2) Inject new instructions at the target location.
289          * 3) Adjust branch offsets if necessary.
290          */
291         insn_rest = insn_adj_cnt - off - len;
292
293         memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
294                 sizeof(*patch) * insn_rest);
295         memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
296
297         bpf_adj_branches(prog_adj, off, insn_delta);
298
299         return prog_adj;
300 }
301
302 #ifdef CONFIG_BPF_JIT
303 /* All BPF JIT sysctl knobs here. */
304 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
305 int bpf_jit_harden   __read_mostly;
306 int bpf_jit_kallsyms __read_mostly;
307
308 static __always_inline void
309 bpf_get_prog_addr_region(const struct bpf_prog *prog,
310                          unsigned long *symbol_start,
311                          unsigned long *symbol_end)
312 {
313         const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
314         unsigned long addr = (unsigned long)hdr;
315
316         WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
317
318         *symbol_start = addr;
319         *symbol_end   = addr + hdr->pages * PAGE_SIZE;
320 }
321
322 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
323 {
324         const char *end = sym + KSYM_NAME_LEN;
325
326         BUILD_BUG_ON(sizeof("bpf_prog_") +
327                      sizeof(prog->tag) * 2 +
328                      /* name has been null terminated.
329                       * We should need +1 for the '_' preceding
330                       * the name.  However, the null character
331                       * is double counted between the name and the
332                       * sizeof("bpf_prog_") above, so we omit
333                       * the +1 here.
334                       */
335                      sizeof(prog->aux->name) > KSYM_NAME_LEN);
336
337         sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
338         sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
339         if (prog->aux->name[0])
340                 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
341         else
342                 *sym = 0;
343 }
344
345 static __always_inline unsigned long
346 bpf_get_prog_addr_start(struct latch_tree_node *n)
347 {
348         unsigned long symbol_start, symbol_end;
349         const struct bpf_prog_aux *aux;
350
351         aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
352         bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
353
354         return symbol_start;
355 }
356
357 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
358                                           struct latch_tree_node *b)
359 {
360         return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
361 }
362
363 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
364 {
365         unsigned long val = (unsigned long)key;
366         unsigned long symbol_start, symbol_end;
367         const struct bpf_prog_aux *aux;
368
369         aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
370         bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
371
372         if (val < symbol_start)
373                 return -1;
374         if (val >= symbol_end)
375                 return  1;
376
377         return 0;
378 }
379
380 static const struct latch_tree_ops bpf_tree_ops = {
381         .less   = bpf_tree_less,
382         .comp   = bpf_tree_comp,
383 };
384
385 static DEFINE_SPINLOCK(bpf_lock);
386 static LIST_HEAD(bpf_kallsyms);
387 static struct latch_tree_root bpf_tree __cacheline_aligned;
388
389 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
390 {
391         WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
392         list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
393         latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
394 }
395
396 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
397 {
398         if (list_empty(&aux->ksym_lnode))
399                 return;
400
401         latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
402         list_del_rcu(&aux->ksym_lnode);
403 }
404
405 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
406 {
407         return fp->jited && !bpf_prog_was_classic(fp);
408 }
409
410 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
411 {
412         return list_empty(&fp->aux->ksym_lnode) ||
413                fp->aux->ksym_lnode.prev == LIST_POISON2;
414 }
415
416 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
417 {
418         if (!bpf_prog_kallsyms_candidate(fp) ||
419             !capable(CAP_SYS_ADMIN))
420                 return;
421
422         spin_lock_bh(&bpf_lock);
423         bpf_prog_ksym_node_add(fp->aux);
424         spin_unlock_bh(&bpf_lock);
425 }
426
427 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
428 {
429         if (!bpf_prog_kallsyms_candidate(fp))
430                 return;
431
432         spin_lock_bh(&bpf_lock);
433         bpf_prog_ksym_node_del(fp->aux);
434         spin_unlock_bh(&bpf_lock);
435 }
436
437 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
438 {
439         struct latch_tree_node *n;
440
441         if (!bpf_jit_kallsyms_enabled())
442                 return NULL;
443
444         n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
445         return n ?
446                container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
447                NULL;
448 }
449
450 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
451                                  unsigned long *off, char *sym)
452 {
453         unsigned long symbol_start, symbol_end;
454         struct bpf_prog *prog;
455         char *ret = NULL;
456
457         rcu_read_lock();
458         prog = bpf_prog_kallsyms_find(addr);
459         if (prog) {
460                 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
461                 bpf_get_prog_name(prog, sym);
462
463                 ret = sym;
464                 if (size)
465                         *size = symbol_end - symbol_start;
466                 if (off)
467                         *off  = addr - symbol_start;
468         }
469         rcu_read_unlock();
470
471         return ret;
472 }
473
474 bool is_bpf_text_address(unsigned long addr)
475 {
476         bool ret;
477
478         rcu_read_lock();
479         ret = bpf_prog_kallsyms_find(addr) != NULL;
480         rcu_read_unlock();
481
482         return ret;
483 }
484
485 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
486                     char *sym)
487 {
488         unsigned long symbol_start, symbol_end;
489         struct bpf_prog_aux *aux;
490         unsigned int it = 0;
491         int ret = -ERANGE;
492
493         if (!bpf_jit_kallsyms_enabled())
494                 return ret;
495
496         rcu_read_lock();
497         list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
498                 if (it++ != symnum)
499                         continue;
500
501                 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
502                 bpf_get_prog_name(aux->prog, sym);
503
504                 *value = symbol_start;
505                 *type  = BPF_SYM_ELF_TYPE;
506
507                 ret = 0;
508                 break;
509         }
510         rcu_read_unlock();
511
512         return ret;
513 }
514
515 struct bpf_binary_header *
516 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
517                      unsigned int alignment,
518                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
519 {
520         struct bpf_binary_header *hdr;
521         unsigned int size, hole, start;
522
523         /* Most of BPF filters are really small, but if some of them
524          * fill a page, allow at least 128 extra bytes to insert a
525          * random section of illegal instructions.
526          */
527         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
528         hdr = module_alloc(size);
529         if (hdr == NULL)
530                 return NULL;
531
532         /* Fill space with illegal/arch-dep instructions. */
533         bpf_fill_ill_insns(hdr, size);
534
535         hdr->pages = size / PAGE_SIZE;
536         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
537                      PAGE_SIZE - sizeof(*hdr));
538         start = (get_random_int() % hole) & ~(alignment - 1);
539
540         /* Leave a random number of instructions before BPF code. */
541         *image_ptr = &hdr->image[start];
542
543         return hdr;
544 }
545
546 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
547 {
548         module_memfree(hdr);
549 }
550
551 /* This symbol is only overridden by archs that have different
552  * requirements than the usual eBPF JITs, f.e. when they only
553  * implement cBPF JIT, do not set images read-only, etc.
554  */
555 void __weak bpf_jit_free(struct bpf_prog *fp)
556 {
557         if (fp->jited) {
558                 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
559
560                 bpf_jit_binary_unlock_ro(hdr);
561                 bpf_jit_binary_free(hdr);
562
563                 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
564         }
565
566         bpf_prog_unlock_free(fp);
567 }
568
569 static int bpf_jit_blind_insn(const struct bpf_insn *from,
570                               const struct bpf_insn *aux,
571                               struct bpf_insn *to_buff)
572 {
573         struct bpf_insn *to = to_buff;
574         u32 imm_rnd = get_random_int();
575         s16 off;
576
577         BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
578         BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
579
580         if (from->imm == 0 &&
581             (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
582              from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
583                 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
584                 goto out;
585         }
586
587         switch (from->code) {
588         case BPF_ALU | BPF_ADD | BPF_K:
589         case BPF_ALU | BPF_SUB | BPF_K:
590         case BPF_ALU | BPF_AND | BPF_K:
591         case BPF_ALU | BPF_OR  | BPF_K:
592         case BPF_ALU | BPF_XOR | BPF_K:
593         case BPF_ALU | BPF_MUL | BPF_K:
594         case BPF_ALU | BPF_MOV | BPF_K:
595         case BPF_ALU | BPF_DIV | BPF_K:
596         case BPF_ALU | BPF_MOD | BPF_K:
597                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
598                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
599                 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
600                 break;
601
602         case BPF_ALU64 | BPF_ADD | BPF_K:
603         case BPF_ALU64 | BPF_SUB | BPF_K:
604         case BPF_ALU64 | BPF_AND | BPF_K:
605         case BPF_ALU64 | BPF_OR  | BPF_K:
606         case BPF_ALU64 | BPF_XOR | BPF_K:
607         case BPF_ALU64 | BPF_MUL | BPF_K:
608         case BPF_ALU64 | BPF_MOV | BPF_K:
609         case BPF_ALU64 | BPF_DIV | BPF_K:
610         case BPF_ALU64 | BPF_MOD | BPF_K:
611                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
612                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
613                 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
614                 break;
615
616         case BPF_JMP | BPF_JEQ  | BPF_K:
617         case BPF_JMP | BPF_JNE  | BPF_K:
618         case BPF_JMP | BPF_JGT  | BPF_K:
619         case BPF_JMP | BPF_JLT  | BPF_K:
620         case BPF_JMP | BPF_JGE  | BPF_K:
621         case BPF_JMP | BPF_JLE  | BPF_K:
622         case BPF_JMP | BPF_JSGT | BPF_K:
623         case BPF_JMP | BPF_JSLT | BPF_K:
624         case BPF_JMP | BPF_JSGE | BPF_K:
625         case BPF_JMP | BPF_JSLE | BPF_K:
626         case BPF_JMP | BPF_JSET | BPF_K:
627                 /* Accommodate for extra offset in case of a backjump. */
628                 off = from->off;
629                 if (off < 0)
630                         off -= 2;
631                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
632                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
633                 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
634                 break;
635
636         case BPF_LD | BPF_ABS | BPF_W:
637         case BPF_LD | BPF_ABS | BPF_H:
638         case BPF_LD | BPF_ABS | BPF_B:
639                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
640                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
641                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
642                 break;
643
644         case BPF_LD | BPF_IND | BPF_W:
645         case BPF_LD | BPF_IND | BPF_H:
646         case BPF_LD | BPF_IND | BPF_B:
647                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
648                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
649                 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
650                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
651                 break;
652
653         case BPF_LD | BPF_IMM | BPF_DW:
654                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
655                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
656                 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
657                 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
658                 break;
659         case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
660                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
661                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
662                 *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
663                 break;
664
665         case BPF_ST | BPF_MEM | BPF_DW:
666         case BPF_ST | BPF_MEM | BPF_W:
667         case BPF_ST | BPF_MEM | BPF_H:
668         case BPF_ST | BPF_MEM | BPF_B:
669                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
670                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
671                 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
672                 break;
673         }
674 out:
675         return to - to_buff;
676 }
677
678 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
679                                               gfp_t gfp_extra_flags)
680 {
681         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
682         struct bpf_prog *fp;
683
684         fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
685         if (fp != NULL) {
686                 /* aux->prog still points to the fp_other one, so
687                  * when promoting the clone to the real program,
688                  * this still needs to be adapted.
689                  */
690                 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
691         }
692
693         return fp;
694 }
695
696 static void bpf_prog_clone_free(struct bpf_prog *fp)
697 {
698         /* aux was stolen by the other clone, so we cannot free
699          * it from this path! It will be freed eventually by the
700          * other program on release.
701          *
702          * At this point, we don't need a deferred release since
703          * clone is guaranteed to not be locked.
704          */
705         fp->aux = NULL;
706         __bpf_prog_free(fp);
707 }
708
709 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
710 {
711         /* We have to repoint aux->prog to self, as we don't
712          * know whether fp here is the clone or the original.
713          */
714         fp->aux->prog = fp;
715         bpf_prog_clone_free(fp_other);
716 }
717
718 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
719 {
720         struct bpf_insn insn_buff[16], aux[2];
721         struct bpf_prog *clone, *tmp;
722         int insn_delta, insn_cnt;
723         struct bpf_insn *insn;
724         int i, rewritten;
725
726         if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
727                 return prog;
728
729         clone = bpf_prog_clone_create(prog, GFP_USER);
730         if (!clone)
731                 return ERR_PTR(-ENOMEM);
732
733         insn_cnt = clone->len;
734         insn = clone->insnsi;
735
736         for (i = 0; i < insn_cnt; i++, insn++) {
737                 /* We temporarily need to hold the original ld64 insn
738                  * so that we can still access the first part in the
739                  * second blinding run.
740                  */
741                 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
742                     insn[1].code == 0)
743                         memcpy(aux, insn, sizeof(aux));
744
745                 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
746                 if (!rewritten)
747                         continue;
748
749                 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
750                 if (!tmp) {
751                         /* Patching may have repointed aux->prog during
752                          * realloc from the original one, so we need to
753                          * fix it up here on error.
754                          */
755                         bpf_jit_prog_release_other(prog, clone);
756                         return ERR_PTR(-ENOMEM);
757                 }
758
759                 clone = tmp;
760                 insn_delta = rewritten - 1;
761
762                 /* Walk new program and skip insns we just inserted. */
763                 insn = clone->insnsi + i + insn_delta;
764                 insn_cnt += insn_delta;
765                 i        += insn_delta;
766         }
767
768         clone->blinded = 1;
769         return clone;
770 }
771 #endif /* CONFIG_BPF_JIT */
772
773 /* Base function for offset calculation. Needs to go into .text section,
774  * therefore keeping it non-static as well; will also be used by JITs
775  * anyway later on, so do not let the compiler omit it. This also needs
776  * to go into kallsyms for correlation from e.g. bpftool, so naming
777  * must not change.
778  */
779 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
780 {
781         return 0;
782 }
783 EXPORT_SYMBOL_GPL(__bpf_call_base);
784
785 /* All UAPI available opcodes. */
786 #define BPF_INSN_MAP(INSN_2, INSN_3)            \
787         /* 32 bit ALU operations. */            \
788         /*   Register based. */                 \
789         INSN_3(ALU, ADD, X),                    \
790         INSN_3(ALU, SUB, X),                    \
791         INSN_3(ALU, AND, X),                    \
792         INSN_3(ALU, OR,  X),                    \
793         INSN_3(ALU, LSH, X),                    \
794         INSN_3(ALU, RSH, X),                    \
795         INSN_3(ALU, XOR, X),                    \
796         INSN_3(ALU, MUL, X),                    \
797         INSN_3(ALU, MOV, X),                    \
798         INSN_3(ALU, DIV, X),                    \
799         INSN_3(ALU, MOD, X),                    \
800         INSN_2(ALU, NEG),                       \
801         INSN_3(ALU, END, TO_BE),                \
802         INSN_3(ALU, END, TO_LE),                \
803         /*   Immediate based. */                \
804         INSN_3(ALU, ADD, K),                    \
805         INSN_3(ALU, SUB, K),                    \
806         INSN_3(ALU, AND, K),                    \
807         INSN_3(ALU, OR,  K),                    \
808         INSN_3(ALU, LSH, K),                    \
809         INSN_3(ALU, RSH, K),                    \
810         INSN_3(ALU, XOR, K),                    \
811         INSN_3(ALU, MUL, K),                    \
812         INSN_3(ALU, MOV, K),                    \
813         INSN_3(ALU, DIV, K),                    \
814         INSN_3(ALU, MOD, K),                    \
815         /* 64 bit ALU operations. */            \
816         /*   Register based. */                 \
817         INSN_3(ALU64, ADD,  X),                 \
818         INSN_3(ALU64, SUB,  X),                 \
819         INSN_3(ALU64, AND,  X),                 \
820         INSN_3(ALU64, OR,   X),                 \
821         INSN_3(ALU64, LSH,  X),                 \
822         INSN_3(ALU64, RSH,  X),                 \
823         INSN_3(ALU64, XOR,  X),                 \
824         INSN_3(ALU64, MUL,  X),                 \
825         INSN_3(ALU64, MOV,  X),                 \
826         INSN_3(ALU64, ARSH, X),                 \
827         INSN_3(ALU64, DIV,  X),                 \
828         INSN_3(ALU64, MOD,  X),                 \
829         INSN_2(ALU64, NEG),                     \
830         /*   Immediate based. */                \
831         INSN_3(ALU64, ADD,  K),                 \
832         INSN_3(ALU64, SUB,  K),                 \
833         INSN_3(ALU64, AND,  K),                 \
834         INSN_3(ALU64, OR,   K),                 \
835         INSN_3(ALU64, LSH,  K),                 \
836         INSN_3(ALU64, RSH,  K),                 \
837         INSN_3(ALU64, XOR,  K),                 \
838         INSN_3(ALU64, MUL,  K),                 \
839         INSN_3(ALU64, MOV,  K),                 \
840         INSN_3(ALU64, ARSH, K),                 \
841         INSN_3(ALU64, DIV,  K),                 \
842         INSN_3(ALU64, MOD,  K),                 \
843         /* Call instruction. */                 \
844         INSN_2(JMP, CALL),                      \
845         /* Exit instruction. */                 \
846         INSN_2(JMP, EXIT),                      \
847         /* Jump instructions. */                \
848         /*   Register based. */                 \
849         INSN_3(JMP, JEQ,  X),                   \
850         INSN_3(JMP, JNE,  X),                   \
851         INSN_3(JMP, JGT,  X),                   \
852         INSN_3(JMP, JLT,  X),                   \
853         INSN_3(JMP, JGE,  X),                   \
854         INSN_3(JMP, JLE,  X),                   \
855         INSN_3(JMP, JSGT, X),                   \
856         INSN_3(JMP, JSLT, X),                   \
857         INSN_3(JMP, JSGE, X),                   \
858         INSN_3(JMP, JSLE, X),                   \
859         INSN_3(JMP, JSET, X),                   \
860         /*   Immediate based. */                \
861         INSN_3(JMP, JEQ,  K),                   \
862         INSN_3(JMP, JNE,  K),                   \
863         INSN_3(JMP, JGT,  K),                   \
864         INSN_3(JMP, JLT,  K),                   \
865         INSN_3(JMP, JGE,  K),                   \
866         INSN_3(JMP, JLE,  K),                   \
867         INSN_3(JMP, JSGT, K),                   \
868         INSN_3(JMP, JSLT, K),                   \
869         INSN_3(JMP, JSGE, K),                   \
870         INSN_3(JMP, JSLE, K),                   \
871         INSN_3(JMP, JSET, K),                   \
872         INSN_2(JMP, JA),                        \
873         /* Store instructions. */               \
874         /*   Register based. */                 \
875         INSN_3(STX, MEM,  B),                   \
876         INSN_3(STX, MEM,  H),                   \
877         INSN_3(STX, MEM,  W),                   \
878         INSN_3(STX, MEM,  DW),                  \
879         INSN_3(STX, XADD, W),                   \
880         INSN_3(STX, XADD, DW),                  \
881         /*   Immediate based. */                \
882         INSN_3(ST, MEM, B),                     \
883         INSN_3(ST, MEM, H),                     \
884         INSN_3(ST, MEM, W),                     \
885         INSN_3(ST, MEM, DW),                    \
886         /* Load instructions. */                \
887         /*   Register based. */                 \
888         INSN_3(LDX, MEM, B),                    \
889         INSN_3(LDX, MEM, H),                    \
890         INSN_3(LDX, MEM, W),                    \
891         INSN_3(LDX, MEM, DW),                   \
892         /*   Immediate based. */                \
893         INSN_3(LD, IMM, DW),                    \
894         /*   Misc (old cBPF carry-over). */     \
895         INSN_3(LD, ABS, B),                     \
896         INSN_3(LD, ABS, H),                     \
897         INSN_3(LD, ABS, W),                     \
898         INSN_3(LD, IND, B),                     \
899         INSN_3(LD, IND, H),                     \
900         INSN_3(LD, IND, W)
901
902 bool bpf_opcode_in_insntable(u8 code)
903 {
904 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
905 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
906         static const bool public_insntable[256] = {
907                 [0 ... 255] = false,
908                 /* Now overwrite non-defaults ... */
909                 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
910         };
911 #undef BPF_INSN_3_TBL
912 #undef BPF_INSN_2_TBL
913         return public_insntable[code];
914 }
915
916 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
917 /**
918  *      __bpf_prog_run - run eBPF program on a given context
919  *      @ctx: is the data we are operating on
920  *      @insn: is the array of eBPF instructions
921  *
922  * Decode and execute eBPF instructions.
923  */
924 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
925 {
926         u64 tmp;
927 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
928 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
929         static const void *jumptable[256] = {
930                 [0 ... 255] = &&default_label,
931                 /* Now overwrite non-defaults ... */
932                 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
933                 /* Non-UAPI available opcodes. */
934                 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
935                 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
936         };
937 #undef BPF_INSN_3_LBL
938 #undef BPF_INSN_2_LBL
939         u32 tail_call_cnt = 0;
940         void *ptr;
941         int off;
942
943 #define CONT     ({ insn++; goto select_insn; })
944 #define CONT_JMP ({ insn++; goto select_insn; })
945
946 select_insn:
947         goto *jumptable[insn->code];
948
949         /* ALU */
950 #define ALU(OPCODE, OP)                 \
951         ALU64_##OPCODE##_X:             \
952                 DST = DST OP SRC;       \
953                 CONT;                   \
954         ALU_##OPCODE##_X:               \
955                 DST = (u32) DST OP (u32) SRC;   \
956                 CONT;                   \
957         ALU64_##OPCODE##_K:             \
958                 DST = DST OP IMM;               \
959                 CONT;                   \
960         ALU_##OPCODE##_K:               \
961                 DST = (u32) DST OP (u32) IMM;   \
962                 CONT;
963
964         ALU(ADD,  +)
965         ALU(SUB,  -)
966         ALU(AND,  &)
967         ALU(OR,   |)
968         ALU(LSH, <<)
969         ALU(RSH, >>)
970         ALU(XOR,  ^)
971         ALU(MUL,  *)
972 #undef ALU
973         ALU_NEG:
974                 DST = (u32) -DST;
975                 CONT;
976         ALU64_NEG:
977                 DST = -DST;
978                 CONT;
979         ALU_MOV_X:
980                 DST = (u32) SRC;
981                 CONT;
982         ALU_MOV_K:
983                 DST = (u32) IMM;
984                 CONT;
985         ALU64_MOV_X:
986                 DST = SRC;
987                 CONT;
988         ALU64_MOV_K:
989                 DST = IMM;
990                 CONT;
991         LD_IMM_DW:
992                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
993                 insn++;
994                 CONT;
995         ALU64_ARSH_X:
996                 (*(s64 *) &DST) >>= SRC;
997                 CONT;
998         ALU64_ARSH_K:
999                 (*(s64 *) &DST) >>= IMM;
1000                 CONT;
1001         ALU64_MOD_X:
1002                 div64_u64_rem(DST, SRC, &tmp);
1003                 DST = tmp;
1004                 CONT;
1005         ALU_MOD_X:
1006                 tmp = (u32) DST;
1007                 DST = do_div(tmp, (u32) SRC);
1008                 CONT;
1009         ALU64_MOD_K:
1010                 div64_u64_rem(DST, IMM, &tmp);
1011                 DST = tmp;
1012                 CONT;
1013         ALU_MOD_K:
1014                 tmp = (u32) DST;
1015                 DST = do_div(tmp, (u32) IMM);
1016                 CONT;
1017         ALU64_DIV_X:
1018                 DST = div64_u64(DST, SRC);
1019                 CONT;
1020         ALU_DIV_X:
1021                 tmp = (u32) DST;
1022                 do_div(tmp, (u32) SRC);
1023                 DST = (u32) tmp;
1024                 CONT;
1025         ALU64_DIV_K:
1026                 DST = div64_u64(DST, IMM);
1027                 CONT;
1028         ALU_DIV_K:
1029                 tmp = (u32) DST;
1030                 do_div(tmp, (u32) IMM);
1031                 DST = (u32) tmp;
1032                 CONT;
1033         ALU_END_TO_BE:
1034                 switch (IMM) {
1035                 case 16:
1036                         DST = (__force u16) cpu_to_be16(DST);
1037                         break;
1038                 case 32:
1039                         DST = (__force u32) cpu_to_be32(DST);
1040                         break;
1041                 case 64:
1042                         DST = (__force u64) cpu_to_be64(DST);
1043                         break;
1044                 }
1045                 CONT;
1046         ALU_END_TO_LE:
1047                 switch (IMM) {
1048                 case 16:
1049                         DST = (__force u16) cpu_to_le16(DST);
1050                         break;
1051                 case 32:
1052                         DST = (__force u32) cpu_to_le32(DST);
1053                         break;
1054                 case 64:
1055                         DST = (__force u64) cpu_to_le64(DST);
1056                         break;
1057                 }
1058                 CONT;
1059
1060         /* CALL */
1061         JMP_CALL:
1062                 /* Function call scratches BPF_R1-BPF_R5 registers,
1063                  * preserves BPF_R6-BPF_R9, and stores return value
1064                  * into BPF_R0.
1065                  */
1066                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1067                                                        BPF_R4, BPF_R5);
1068                 CONT;
1069
1070         JMP_CALL_ARGS:
1071                 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1072                                                             BPF_R3, BPF_R4,
1073                                                             BPF_R5,
1074                                                             insn + insn->off + 1);
1075                 CONT;
1076
1077         JMP_TAIL_CALL: {
1078                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1079                 struct bpf_array *array = container_of(map, struct bpf_array, map);
1080                 struct bpf_prog *prog;
1081                 u32 index = BPF_R3;
1082
1083                 if (unlikely(index >= array->map.max_entries))
1084                         goto out;
1085                 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1086                         goto out;
1087
1088                 tail_call_cnt++;
1089
1090                 prog = READ_ONCE(array->ptrs[index]);
1091                 if (!prog)
1092                         goto out;
1093
1094                 /* ARG1 at this point is guaranteed to point to CTX from
1095                  * the verifier side due to the fact that the tail call is
1096                  * handeled like a helper, that is, bpf_tail_call_proto,
1097                  * where arg1_type is ARG_PTR_TO_CTX.
1098                  */
1099                 insn = prog->insnsi;
1100                 goto select_insn;
1101 out:
1102                 CONT;
1103         }
1104         /* JMP */
1105         JMP_JA:
1106                 insn += insn->off;
1107                 CONT;
1108         JMP_JEQ_X:
1109                 if (DST == SRC) {
1110                         insn += insn->off;
1111                         CONT_JMP;
1112                 }
1113                 CONT;
1114         JMP_JEQ_K:
1115                 if (DST == IMM) {
1116                         insn += insn->off;
1117                         CONT_JMP;
1118                 }
1119                 CONT;
1120         JMP_JNE_X:
1121                 if (DST != SRC) {
1122                         insn += insn->off;
1123                         CONT_JMP;
1124                 }
1125                 CONT;
1126         JMP_JNE_K:
1127                 if (DST != IMM) {
1128                         insn += insn->off;
1129                         CONT_JMP;
1130                 }
1131                 CONT;
1132         JMP_JGT_X:
1133                 if (DST > SRC) {
1134                         insn += insn->off;
1135                         CONT_JMP;
1136                 }
1137                 CONT;
1138         JMP_JGT_K:
1139                 if (DST > IMM) {
1140                         insn += insn->off;
1141                         CONT_JMP;
1142                 }
1143                 CONT;
1144         JMP_JLT_X:
1145                 if (DST < SRC) {
1146                         insn += insn->off;
1147                         CONT_JMP;
1148                 }
1149                 CONT;
1150         JMP_JLT_K:
1151                 if (DST < IMM) {
1152                         insn += insn->off;
1153                         CONT_JMP;
1154                 }
1155                 CONT;
1156         JMP_JGE_X:
1157                 if (DST >= SRC) {
1158                         insn += insn->off;
1159                         CONT_JMP;
1160                 }
1161                 CONT;
1162         JMP_JGE_K:
1163                 if (DST >= IMM) {
1164                         insn += insn->off;
1165                         CONT_JMP;
1166                 }
1167                 CONT;
1168         JMP_JLE_X:
1169                 if (DST <= SRC) {
1170                         insn += insn->off;
1171                         CONT_JMP;
1172                 }
1173                 CONT;
1174         JMP_JLE_K:
1175                 if (DST <= IMM) {
1176                         insn += insn->off;
1177                         CONT_JMP;
1178                 }
1179                 CONT;
1180         JMP_JSGT_X:
1181                 if (((s64) DST) > ((s64) SRC)) {
1182                         insn += insn->off;
1183                         CONT_JMP;
1184                 }
1185                 CONT;
1186         JMP_JSGT_K:
1187                 if (((s64) DST) > ((s64) IMM)) {
1188                         insn += insn->off;
1189                         CONT_JMP;
1190                 }
1191                 CONT;
1192         JMP_JSLT_X:
1193                 if (((s64) DST) < ((s64) SRC)) {
1194                         insn += insn->off;
1195                         CONT_JMP;
1196                 }
1197                 CONT;
1198         JMP_JSLT_K:
1199                 if (((s64) DST) < ((s64) IMM)) {
1200                         insn += insn->off;
1201                         CONT_JMP;
1202                 }
1203                 CONT;
1204         JMP_JSGE_X:
1205                 if (((s64) DST) >= ((s64) SRC)) {
1206                         insn += insn->off;
1207                         CONT_JMP;
1208                 }
1209                 CONT;
1210         JMP_JSGE_K:
1211                 if (((s64) DST) >= ((s64) IMM)) {
1212                         insn += insn->off;
1213                         CONT_JMP;
1214                 }
1215                 CONT;
1216         JMP_JSLE_X:
1217                 if (((s64) DST) <= ((s64) SRC)) {
1218                         insn += insn->off;
1219                         CONT_JMP;
1220                 }
1221                 CONT;
1222         JMP_JSLE_K:
1223                 if (((s64) DST) <= ((s64) IMM)) {
1224                         insn += insn->off;
1225                         CONT_JMP;
1226                 }
1227                 CONT;
1228         JMP_JSET_X:
1229                 if (DST & SRC) {
1230                         insn += insn->off;
1231                         CONT_JMP;
1232                 }
1233                 CONT;
1234         JMP_JSET_K:
1235                 if (DST & IMM) {
1236                         insn += insn->off;
1237                         CONT_JMP;
1238                 }
1239                 CONT;
1240         JMP_EXIT:
1241                 return BPF_R0;
1242
1243         /* STX and ST and LDX*/
1244 #define LDST(SIZEOP, SIZE)                                              \
1245         STX_MEM_##SIZEOP:                                               \
1246                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
1247                 CONT;                                                   \
1248         ST_MEM_##SIZEOP:                                                \
1249                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
1250                 CONT;                                                   \
1251         LDX_MEM_##SIZEOP:                                               \
1252                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
1253                 CONT;
1254
1255         LDST(B,   u8)
1256         LDST(H,  u16)
1257         LDST(W,  u32)
1258         LDST(DW, u64)
1259 #undef LDST
1260         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1261                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1262                            (DST + insn->off));
1263                 CONT;
1264         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1265                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1266                              (DST + insn->off));
1267                 CONT;
1268         LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1269                 off = IMM;
1270 load_word:
1271                 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1272                  * appearing in the programs where ctx == skb
1273                  * (see may_access_skb() in the verifier). All programs
1274                  * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1275                  * bpf_convert_filter() saves it in BPF_R6, internal BPF
1276                  * verifier will check that BPF_R6 == ctx.
1277                  *
1278                  * BPF_ABS and BPF_IND are wrappers of function calls,
1279                  * so they scratch BPF_R1-BPF_R5 registers, preserve
1280                  * BPF_R6-BPF_R9, and store return value into BPF_R0.
1281                  *
1282                  * Implicit input:
1283                  *   ctx == skb == BPF_R6 == CTX
1284                  *
1285                  * Explicit input:
1286                  *   SRC == any register
1287                  *   IMM == 32-bit immediate
1288                  *
1289                  * Output:
1290                  *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1291                  */
1292
1293                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1294                 if (likely(ptr != NULL)) {
1295                         BPF_R0 = get_unaligned_be32(ptr);
1296                         CONT;
1297                 }
1298
1299                 return 0;
1300         LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1301                 off = IMM;
1302 load_half:
1303                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1304                 if (likely(ptr != NULL)) {
1305                         BPF_R0 = get_unaligned_be16(ptr);
1306                         CONT;
1307                 }
1308
1309                 return 0;
1310         LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1311                 off = IMM;
1312 load_byte:
1313                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1314                 if (likely(ptr != NULL)) {
1315                         BPF_R0 = *(u8 *)ptr;
1316                         CONT;
1317                 }
1318
1319                 return 0;
1320         LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1321                 off = IMM + SRC;
1322                 goto load_word;
1323         LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1324                 off = IMM + SRC;
1325                 goto load_half;
1326         LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1327                 off = IMM + SRC;
1328                 goto load_byte;
1329
1330         default_label:
1331                 /* If we ever reach this, we have a bug somewhere. Die hard here
1332                  * instead of just returning 0; we could be somewhere in a subprog,
1333                  * so execution could continue otherwise which we do /not/ want.
1334                  *
1335                  * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1336                  */
1337                 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1338                 BUG_ON(1);
1339                 return 0;
1340 }
1341 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1342
1343 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1344 #define DEFINE_BPF_PROG_RUN(stack_size) \
1345 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1346 { \
1347         u64 stack[stack_size / sizeof(u64)]; \
1348         u64 regs[MAX_BPF_REG]; \
1349 \
1350         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1351         ARG1 = (u64) (unsigned long) ctx; \
1352         return ___bpf_prog_run(regs, insn, stack); \
1353 }
1354
1355 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1356 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1357 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1358                                       const struct bpf_insn *insn) \
1359 { \
1360         u64 stack[stack_size / sizeof(u64)]; \
1361         u64 regs[MAX_BPF_REG]; \
1362 \
1363         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1364         BPF_R1 = r1; \
1365         BPF_R2 = r2; \
1366         BPF_R3 = r3; \
1367         BPF_R4 = r4; \
1368         BPF_R5 = r5; \
1369         return ___bpf_prog_run(regs, insn, stack); \
1370 }
1371
1372 #define EVAL1(FN, X) FN(X)
1373 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1374 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1375 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1376 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1377 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1378
1379 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1380 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1381 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1382
1383 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1384 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1385 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1386
1387 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1388
1389 static unsigned int (*interpreters[])(const void *ctx,
1390                                       const struct bpf_insn *insn) = {
1391 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1392 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1393 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1394 };
1395 #undef PROG_NAME_LIST
1396 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1397 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1398                                   const struct bpf_insn *insn) = {
1399 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1400 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1401 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1402 };
1403 #undef PROG_NAME_LIST
1404
1405 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1406 {
1407         stack_depth = max_t(u32, stack_depth, 1);
1408         insn->off = (s16) insn->imm;
1409         insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1410                 __bpf_call_base_args;
1411         insn->code = BPF_JMP | BPF_CALL_ARGS;
1412 }
1413
1414 #else
1415 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1416                                          const struct bpf_insn *insn)
1417 {
1418         /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1419          * is not working properly, so warn about it!
1420          */
1421         WARN_ON_ONCE(1);
1422         return 0;
1423 }
1424 #endif
1425
1426 bool bpf_prog_array_compatible(struct bpf_array *array,
1427                                const struct bpf_prog *fp)
1428 {
1429         if (fp->kprobe_override)
1430                 return false;
1431
1432         if (!array->owner_prog_type) {
1433                 /* There's no owner yet where we could check for
1434                  * compatibility.
1435                  */
1436                 array->owner_prog_type = fp->type;
1437                 array->owner_jited = fp->jited;
1438
1439                 return true;
1440         }
1441
1442         return array->owner_prog_type == fp->type &&
1443                array->owner_jited == fp->jited;
1444 }
1445
1446 static int bpf_check_tail_call(const struct bpf_prog *fp)
1447 {
1448         struct bpf_prog_aux *aux = fp->aux;
1449         int i;
1450
1451         for (i = 0; i < aux->used_map_cnt; i++) {
1452                 struct bpf_map *map = aux->used_maps[i];
1453                 struct bpf_array *array;
1454
1455                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1456                         continue;
1457
1458                 array = container_of(map, struct bpf_array, map);
1459                 if (!bpf_prog_array_compatible(array, fp))
1460                         return -EINVAL;
1461         }
1462
1463         return 0;
1464 }
1465
1466 /**
1467  *      bpf_prog_select_runtime - select exec runtime for BPF program
1468  *      @fp: bpf_prog populated with internal BPF program
1469  *      @err: pointer to error variable
1470  *
1471  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1472  * The BPF program will be executed via BPF_PROG_RUN() macro.
1473  */
1474 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1475 {
1476 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1477         u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1478
1479         fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1480 #else
1481         fp->bpf_func = __bpf_prog_ret0_warn;
1482 #endif
1483
1484         /* eBPF JITs can rewrite the program in case constant
1485          * blinding is active. However, in case of error during
1486          * blinding, bpf_int_jit_compile() must always return a
1487          * valid program, which in this case would simply not
1488          * be JITed, but falls back to the interpreter.
1489          */
1490         if (!bpf_prog_is_dev_bound(fp->aux)) {
1491                 fp = bpf_int_jit_compile(fp);
1492 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1493                 if (!fp->jited) {
1494                         *err = -ENOTSUPP;
1495                         return fp;
1496                 }
1497 #endif
1498         } else {
1499                 *err = bpf_prog_offload_compile(fp);
1500                 if (*err)
1501                         return fp;
1502         }
1503         bpf_prog_lock_ro(fp);
1504
1505         /* The tail call compatibility check can only be done at
1506          * this late stage as we need to determine, if we deal
1507          * with JITed or non JITed program concatenations and not
1508          * all eBPF JITs might immediately support all features.
1509          */
1510         *err = bpf_check_tail_call(fp);
1511
1512         return fp;
1513 }
1514 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1515
1516 static unsigned int __bpf_prog_ret1(const void *ctx,
1517                                     const struct bpf_insn *insn)
1518 {
1519         return 1;
1520 }
1521
1522 static struct bpf_prog_dummy {
1523         struct bpf_prog prog;
1524 } dummy_bpf_prog = {
1525         .prog = {
1526                 .bpf_func = __bpf_prog_ret1,
1527         },
1528 };
1529
1530 /* to avoid allocating empty bpf_prog_array for cgroups that
1531  * don't have bpf program attached use one global 'empty_prog_array'
1532  * It will not be modified the caller of bpf_prog_array_alloc()
1533  * (since caller requested prog_cnt == 0)
1534  * that pointer should be 'freed' by bpf_prog_array_free()
1535  */
1536 static struct {
1537         struct bpf_prog_array hdr;
1538         struct bpf_prog *null_prog;
1539 } empty_prog_array = {
1540         .null_prog = NULL,
1541 };
1542
1543 struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1544 {
1545         if (prog_cnt)
1546                 return kzalloc(sizeof(struct bpf_prog_array) +
1547                                sizeof(struct bpf_prog *) * (prog_cnt + 1),
1548                                flags);
1549
1550         return &empty_prog_array.hdr;
1551 }
1552
1553 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1554 {
1555         if (!progs ||
1556             progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1557                 return;
1558         kfree_rcu(progs, rcu);
1559 }
1560
1561 int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1562 {
1563         struct bpf_prog **prog;
1564         u32 cnt = 0;
1565
1566         rcu_read_lock();
1567         prog = rcu_dereference(progs)->progs;
1568         for (; *prog; prog++)
1569                 if (*prog != &dummy_bpf_prog.prog)
1570                         cnt++;
1571         rcu_read_unlock();
1572         return cnt;
1573 }
1574
1575 static bool bpf_prog_array_copy_core(struct bpf_prog **prog,
1576                                      u32 *prog_ids,
1577                                      u32 request_cnt)
1578 {
1579         int i = 0;
1580
1581         for (; *prog; prog++) {
1582                 if (*prog == &dummy_bpf_prog.prog)
1583                         continue;
1584                 prog_ids[i] = (*prog)->aux->id;
1585                 if (++i == request_cnt) {
1586                         prog++;
1587                         break;
1588                 }
1589         }
1590
1591         return !!(*prog);
1592 }
1593
1594 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1595                                 __u32 __user *prog_ids, u32 cnt)
1596 {
1597         struct bpf_prog **prog;
1598         unsigned long err = 0;
1599         bool nospc;
1600         u32 *ids;
1601
1602         /* users of this function are doing:
1603          * cnt = bpf_prog_array_length();
1604          * if (cnt > 0)
1605          *     bpf_prog_array_copy_to_user(..., cnt);
1606          * so below kcalloc doesn't need extra cnt > 0 check, but
1607          * bpf_prog_array_length() releases rcu lock and
1608          * prog array could have been swapped with empty or larger array,
1609          * so always copy 'cnt' prog_ids to the user.
1610          * In a rare race the user will see zero prog_ids
1611          */
1612         ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1613         if (!ids)
1614                 return -ENOMEM;
1615         rcu_read_lock();
1616         prog = rcu_dereference(progs)->progs;
1617         nospc = bpf_prog_array_copy_core(prog, ids, cnt);
1618         rcu_read_unlock();
1619         err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1620         kfree(ids);
1621         if (err)
1622                 return -EFAULT;
1623         if (nospc)
1624                 return -ENOSPC;
1625         return 0;
1626 }
1627
1628 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1629                                 struct bpf_prog *old_prog)
1630 {
1631         struct bpf_prog **prog = progs->progs;
1632
1633         for (; *prog; prog++)
1634                 if (*prog == old_prog) {
1635                         WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1636                         break;
1637                 }
1638 }
1639
1640 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1641                         struct bpf_prog *exclude_prog,
1642                         struct bpf_prog *include_prog,
1643                         struct bpf_prog_array **new_array)
1644 {
1645         int new_prog_cnt, carry_prog_cnt = 0;
1646         struct bpf_prog **existing_prog;
1647         struct bpf_prog_array *array;
1648         int new_prog_idx = 0;
1649
1650         /* Figure out how many existing progs we need to carry over to
1651          * the new array.
1652          */
1653         if (old_array) {
1654                 existing_prog = old_array->progs;
1655                 for (; *existing_prog; existing_prog++) {
1656                         if (*existing_prog != exclude_prog &&
1657                             *existing_prog != &dummy_bpf_prog.prog)
1658                                 carry_prog_cnt++;
1659                         if (*existing_prog == include_prog)
1660                                 return -EEXIST;
1661                 }
1662         }
1663
1664         /* How many progs (not NULL) will be in the new array? */
1665         new_prog_cnt = carry_prog_cnt;
1666         if (include_prog)
1667                 new_prog_cnt += 1;
1668
1669         /* Do we have any prog (not NULL) in the new array? */
1670         if (!new_prog_cnt) {
1671                 *new_array = NULL;
1672                 return 0;
1673         }
1674
1675         /* +1 as the end of prog_array is marked with NULL */
1676         array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1677         if (!array)
1678                 return -ENOMEM;
1679
1680         /* Fill in the new prog array */
1681         if (carry_prog_cnt) {
1682                 existing_prog = old_array->progs;
1683                 for (; *existing_prog; existing_prog++)
1684                         if (*existing_prog != exclude_prog &&
1685                             *existing_prog != &dummy_bpf_prog.prog)
1686                                 array->progs[new_prog_idx++] = *existing_prog;
1687         }
1688         if (include_prog)
1689                 array->progs[new_prog_idx++] = include_prog;
1690         array->progs[new_prog_idx] = NULL;
1691         *new_array = array;
1692         return 0;
1693 }
1694
1695 int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1696                              u32 *prog_ids, u32 request_cnt,
1697                              u32 *prog_cnt)
1698 {
1699         struct bpf_prog **prog;
1700         u32 cnt = 0;
1701
1702         if (array)
1703                 cnt = bpf_prog_array_length(array);
1704
1705         *prog_cnt = cnt;
1706
1707         /* return early if user requested only program count or nothing to copy */
1708         if (!request_cnt || !cnt)
1709                 return 0;
1710
1711         /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1712         prog = rcu_dereference_check(array, 1)->progs;
1713         return bpf_prog_array_copy_core(prog, prog_ids, request_cnt) ? -ENOSPC
1714                                                                      : 0;
1715 }
1716
1717 static void bpf_prog_free_deferred(struct work_struct *work)
1718 {
1719         struct bpf_prog_aux *aux;
1720         int i;
1721
1722         aux = container_of(work, struct bpf_prog_aux, work);
1723         if (bpf_prog_is_dev_bound(aux))
1724                 bpf_prog_offload_destroy(aux->prog);
1725         for (i = 0; i < aux->func_cnt; i++)
1726                 bpf_jit_free(aux->func[i]);
1727         if (aux->func_cnt) {
1728                 kfree(aux->func);
1729                 bpf_prog_unlock_free(aux->prog);
1730         } else {
1731                 bpf_jit_free(aux->prog);
1732         }
1733 }
1734
1735 /* Free internal BPF program */
1736 void bpf_prog_free(struct bpf_prog *fp)
1737 {
1738         struct bpf_prog_aux *aux = fp->aux;
1739
1740         INIT_WORK(&aux->work, bpf_prog_free_deferred);
1741         schedule_work(&aux->work);
1742 }
1743 EXPORT_SYMBOL_GPL(bpf_prog_free);
1744
1745 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1746 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1747
1748 void bpf_user_rnd_init_once(void)
1749 {
1750         prandom_init_once(&bpf_user_rnd_state);
1751 }
1752
1753 BPF_CALL_0(bpf_user_rnd_u32)
1754 {
1755         /* Should someone ever have the rather unwise idea to use some
1756          * of the registers passed into this function, then note that
1757          * this function is called from native eBPF and classic-to-eBPF
1758          * transformations. Register assignments from both sides are
1759          * different, f.e. classic always sets fn(ctx, A, X) here.
1760          */
1761         struct rnd_state *state;
1762         u32 res;
1763
1764         state = &get_cpu_var(bpf_user_rnd_state);
1765         res = prandom_u32_state(state);
1766         put_cpu_var(bpf_user_rnd_state);
1767
1768         return res;
1769 }
1770
1771 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1772 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1773 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1774 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1775
1776 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1777 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1778 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1779 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1780
1781 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1782 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1783 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1784 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1785
1786 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1787 {
1788         return NULL;
1789 }
1790
1791 u64 __weak
1792 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1793                  void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1794 {
1795         return -ENOTSUPP;
1796 }
1797
1798 /* Always built-in helper functions. */
1799 const struct bpf_func_proto bpf_tail_call_proto = {
1800         .func           = NULL,
1801         .gpl_only       = false,
1802         .ret_type       = RET_VOID,
1803         .arg1_type      = ARG_PTR_TO_CTX,
1804         .arg2_type      = ARG_CONST_MAP_PTR,
1805         .arg3_type      = ARG_ANYTHING,
1806 };
1807
1808 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1809  * It is encouraged to implement bpf_int_jit_compile() instead, so that
1810  * eBPF and implicitly also cBPF can get JITed!
1811  */
1812 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1813 {
1814         return prog;
1815 }
1816
1817 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1818  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1819  */
1820 void __weak bpf_jit_compile(struct bpf_prog *prog)
1821 {
1822 }
1823
1824 bool __weak bpf_helper_changes_pkt_data(void *func)
1825 {
1826         return false;
1827 }
1828
1829 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1830  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1831  */
1832 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1833                          int len)
1834 {
1835         return -EFAULT;
1836 }
1837
1838 /* All definitions of tracepoints related to BPF. */
1839 #define CREATE_TRACE_POINTS
1840 #include <linux/bpf_trace.h>
1841
1842 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1843
1844 /* These are only used within the BPF_SYSCALL code */
1845 #ifdef CONFIG_BPF_SYSCALL
1846 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1847 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1848 #endif