Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[sfrench/cifs-2.6.git] / kernel / bpf / core.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34
35 #include <asm/unaligned.h>
36
37 /* Registers */
38 #define BPF_R0  regs[BPF_REG_0]
39 #define BPF_R1  regs[BPF_REG_1]
40 #define BPF_R2  regs[BPF_REG_2]
41 #define BPF_R3  regs[BPF_REG_3]
42 #define BPF_R4  regs[BPF_REG_4]
43 #define BPF_R5  regs[BPF_REG_5]
44 #define BPF_R6  regs[BPF_REG_6]
45 #define BPF_R7  regs[BPF_REG_7]
46 #define BPF_R8  regs[BPF_REG_8]
47 #define BPF_R9  regs[BPF_REG_9]
48 #define BPF_R10 regs[BPF_REG_10]
49
50 /* Named registers */
51 #define DST     regs[insn->dst_reg]
52 #define SRC     regs[insn->src_reg]
53 #define FP      regs[BPF_REG_FP]
54 #define ARG1    regs[BPF_REG_ARG1]
55 #define CTX     regs[BPF_REG_CTX]
56 #define IMM     insn->imm
57
58 /* No hurry in this branch
59  *
60  * Exported for the bpf jit load helper.
61  */
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
63 {
64         u8 *ptr = NULL;
65
66         if (k >= SKF_NET_OFF)
67                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68         else if (k >= SKF_LL_OFF)
69                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
70
71         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
72                 return ptr;
73
74         return NULL;
75 }
76
77 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
78 {
79         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
80                           gfp_extra_flags;
81         struct bpf_prog_aux *aux;
82         struct bpf_prog *fp;
83
84         size = round_up(size, PAGE_SIZE);
85         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
86         if (fp == NULL)
87                 return NULL;
88
89         kmemcheck_annotate_bitfield(fp, meta);
90
91         aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
92         if (aux == NULL) {
93                 vfree(fp);
94                 return NULL;
95         }
96
97         fp->pages = size / PAGE_SIZE;
98         fp->aux = aux;
99         fp->aux->prog = fp;
100
101         INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
102
103         return fp;
104 }
105 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
106
107 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
108                                   gfp_t gfp_extra_flags)
109 {
110         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
111                           gfp_extra_flags;
112         struct bpf_prog *fp;
113         u32 pages, delta;
114         int ret;
115
116         BUG_ON(fp_old == NULL);
117
118         size = round_up(size, PAGE_SIZE);
119         pages = size / PAGE_SIZE;
120         if (pages <= fp_old->pages)
121                 return fp_old;
122
123         delta = pages - fp_old->pages;
124         ret = __bpf_prog_charge(fp_old->aux->user, delta);
125         if (ret)
126                 return NULL;
127
128         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
129         if (fp == NULL) {
130                 __bpf_prog_uncharge(fp_old->aux->user, delta);
131         } else {
132                 kmemcheck_annotate_bitfield(fp, meta);
133
134                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
135                 fp->pages = pages;
136                 fp->aux->prog = fp;
137
138                 /* We keep fp->aux from fp_old around in the new
139                  * reallocated structure.
140                  */
141                 fp_old->aux = NULL;
142                 __bpf_prog_free(fp_old);
143         }
144
145         return fp;
146 }
147
148 void __bpf_prog_free(struct bpf_prog *fp)
149 {
150         kfree(fp->aux);
151         vfree(fp);
152 }
153
154 int bpf_prog_calc_tag(struct bpf_prog *fp)
155 {
156         const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
157         u32 raw_size = bpf_prog_tag_scratch_size(fp);
158         u32 digest[SHA_DIGEST_WORDS];
159         u32 ws[SHA_WORKSPACE_WORDS];
160         u32 i, bsize, psize, blocks;
161         struct bpf_insn *dst;
162         bool was_ld_map;
163         u8 *raw, *todo;
164         __be32 *result;
165         __be64 *bits;
166
167         raw = vmalloc(raw_size);
168         if (!raw)
169                 return -ENOMEM;
170
171         sha_init(digest);
172         memset(ws, 0, sizeof(ws));
173
174         /* We need to take out the map fd for the digest calculation
175          * since they are unstable from user space side.
176          */
177         dst = (void *)raw;
178         for (i = 0, was_ld_map = false; i < fp->len; i++) {
179                 dst[i] = fp->insnsi[i];
180                 if (!was_ld_map &&
181                     dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
182                     dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
183                         was_ld_map = true;
184                         dst[i].imm = 0;
185                 } else if (was_ld_map &&
186                            dst[i].code == 0 &&
187                            dst[i].dst_reg == 0 &&
188                            dst[i].src_reg == 0 &&
189                            dst[i].off == 0) {
190                         was_ld_map = false;
191                         dst[i].imm = 0;
192                 } else {
193                         was_ld_map = false;
194                 }
195         }
196
197         psize = bpf_prog_insn_size(fp);
198         memset(&raw[psize], 0, raw_size - psize);
199         raw[psize++] = 0x80;
200
201         bsize  = round_up(psize, SHA_MESSAGE_BYTES);
202         blocks = bsize / SHA_MESSAGE_BYTES;
203         todo   = raw;
204         if (bsize - psize >= sizeof(__be64)) {
205                 bits = (__be64 *)(todo + bsize - sizeof(__be64));
206         } else {
207                 bits = (__be64 *)(todo + bsize + bits_offset);
208                 blocks++;
209         }
210         *bits = cpu_to_be64((psize - 1) << 3);
211
212         while (blocks--) {
213                 sha_transform(digest, todo, ws);
214                 todo += SHA_MESSAGE_BYTES;
215         }
216
217         result = (__force __be32 *)digest;
218         for (i = 0; i < SHA_DIGEST_WORDS; i++)
219                 result[i] = cpu_to_be32(digest[i]);
220         memcpy(fp->tag, result, sizeof(fp->tag));
221
222         vfree(raw);
223         return 0;
224 }
225
226 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
227 {
228         return BPF_CLASS(insn->code) == BPF_JMP  &&
229                /* Call and Exit are both special jumps with no
230                 * target inside the BPF instruction image.
231                 */
232                BPF_OP(insn->code) != BPF_CALL &&
233                BPF_OP(insn->code) != BPF_EXIT;
234 }
235
236 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
237 {
238         struct bpf_insn *insn = prog->insnsi;
239         u32 i, insn_cnt = prog->len;
240
241         for (i = 0; i < insn_cnt; i++, insn++) {
242                 if (!bpf_is_jmp_and_has_target(insn))
243                         continue;
244
245                 /* Adjust offset of jmps if we cross boundaries. */
246                 if (i < pos && i + insn->off + 1 > pos)
247                         insn->off += delta;
248                 else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
249                         insn->off -= delta;
250         }
251 }
252
253 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
254                                        const struct bpf_insn *patch, u32 len)
255 {
256         u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
257         struct bpf_prog *prog_adj;
258
259         /* Since our patchlet doesn't expand the image, we're done. */
260         if (insn_delta == 0) {
261                 memcpy(prog->insnsi + off, patch, sizeof(*patch));
262                 return prog;
263         }
264
265         insn_adj_cnt = prog->len + insn_delta;
266
267         /* Several new instructions need to be inserted. Make room
268          * for them. Likely, there's no need for a new allocation as
269          * last page could have large enough tailroom.
270          */
271         prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
272                                     GFP_USER);
273         if (!prog_adj)
274                 return NULL;
275
276         prog_adj->len = insn_adj_cnt;
277
278         /* Patching happens in 3 steps:
279          *
280          * 1) Move over tail of insnsi from next instruction onwards,
281          *    so we can patch the single target insn with one or more
282          *    new ones (patching is always from 1 to n insns, n > 0).
283          * 2) Inject new instructions at the target location.
284          * 3) Adjust branch offsets if necessary.
285          */
286         insn_rest = insn_adj_cnt - off - len;
287
288         memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
289                 sizeof(*patch) * insn_rest);
290         memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
291
292         bpf_adj_branches(prog_adj, off, insn_delta);
293
294         return prog_adj;
295 }
296
297 #ifdef CONFIG_BPF_JIT
298 static __always_inline void
299 bpf_get_prog_addr_region(const struct bpf_prog *prog,
300                          unsigned long *symbol_start,
301                          unsigned long *symbol_end)
302 {
303         const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
304         unsigned long addr = (unsigned long)hdr;
305
306         WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
307
308         *symbol_start = addr;
309         *symbol_end   = addr + hdr->pages * PAGE_SIZE;
310 }
311
312 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
313 {
314         BUILD_BUG_ON(sizeof("bpf_prog_") +
315                      sizeof(prog->tag) * 2 + 1 > KSYM_NAME_LEN);
316
317         sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
318         sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
319         *sym = 0;
320 }
321
322 static __always_inline unsigned long
323 bpf_get_prog_addr_start(struct latch_tree_node *n)
324 {
325         unsigned long symbol_start, symbol_end;
326         const struct bpf_prog_aux *aux;
327
328         aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
329         bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
330
331         return symbol_start;
332 }
333
334 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
335                                           struct latch_tree_node *b)
336 {
337         return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
338 }
339
340 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
341 {
342         unsigned long val = (unsigned long)key;
343         unsigned long symbol_start, symbol_end;
344         const struct bpf_prog_aux *aux;
345
346         aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
347         bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
348
349         if (val < symbol_start)
350                 return -1;
351         if (val >= symbol_end)
352                 return  1;
353
354         return 0;
355 }
356
357 static const struct latch_tree_ops bpf_tree_ops = {
358         .less   = bpf_tree_less,
359         .comp   = bpf_tree_comp,
360 };
361
362 static DEFINE_SPINLOCK(bpf_lock);
363 static LIST_HEAD(bpf_kallsyms);
364 static struct latch_tree_root bpf_tree __cacheline_aligned;
365
366 int bpf_jit_kallsyms __read_mostly;
367
368 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
369 {
370         WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
371         list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
372         latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
373 }
374
375 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
376 {
377         if (list_empty(&aux->ksym_lnode))
378                 return;
379
380         latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
381         list_del_rcu(&aux->ksym_lnode);
382 }
383
384 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
385 {
386         return fp->jited && !bpf_prog_was_classic(fp);
387 }
388
389 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
390 {
391         return list_empty(&fp->aux->ksym_lnode) ||
392                fp->aux->ksym_lnode.prev == LIST_POISON2;
393 }
394
395 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
396 {
397         unsigned long flags;
398
399         if (!bpf_prog_kallsyms_candidate(fp) ||
400             !capable(CAP_SYS_ADMIN))
401                 return;
402
403         spin_lock_irqsave(&bpf_lock, flags);
404         bpf_prog_ksym_node_add(fp->aux);
405         spin_unlock_irqrestore(&bpf_lock, flags);
406 }
407
408 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
409 {
410         unsigned long flags;
411
412         if (!bpf_prog_kallsyms_candidate(fp))
413                 return;
414
415         spin_lock_irqsave(&bpf_lock, flags);
416         bpf_prog_ksym_node_del(fp->aux);
417         spin_unlock_irqrestore(&bpf_lock, flags);
418 }
419
420 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
421 {
422         struct latch_tree_node *n;
423
424         if (!bpf_jit_kallsyms_enabled())
425                 return NULL;
426
427         n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
428         return n ?
429                container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
430                NULL;
431 }
432
433 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
434                                  unsigned long *off, char *sym)
435 {
436         unsigned long symbol_start, symbol_end;
437         struct bpf_prog *prog;
438         char *ret = NULL;
439
440         rcu_read_lock();
441         prog = bpf_prog_kallsyms_find(addr);
442         if (prog) {
443                 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
444                 bpf_get_prog_name(prog, sym);
445
446                 ret = sym;
447                 if (size)
448                         *size = symbol_end - symbol_start;
449                 if (off)
450                         *off  = addr - symbol_start;
451         }
452         rcu_read_unlock();
453
454         return ret;
455 }
456
457 bool is_bpf_text_address(unsigned long addr)
458 {
459         bool ret;
460
461         rcu_read_lock();
462         ret = bpf_prog_kallsyms_find(addr) != NULL;
463         rcu_read_unlock();
464
465         return ret;
466 }
467
468 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
469                     char *sym)
470 {
471         unsigned long symbol_start, symbol_end;
472         struct bpf_prog_aux *aux;
473         unsigned int it = 0;
474         int ret = -ERANGE;
475
476         if (!bpf_jit_kallsyms_enabled())
477                 return ret;
478
479         rcu_read_lock();
480         list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
481                 if (it++ != symnum)
482                         continue;
483
484                 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
485                 bpf_get_prog_name(aux->prog, sym);
486
487                 *value = symbol_start;
488                 *type  = BPF_SYM_ELF_TYPE;
489
490                 ret = 0;
491                 break;
492         }
493         rcu_read_unlock();
494
495         return ret;
496 }
497
498 struct bpf_binary_header *
499 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
500                      unsigned int alignment,
501                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
502 {
503         struct bpf_binary_header *hdr;
504         unsigned int size, hole, start;
505
506         /* Most of BPF filters are really small, but if some of them
507          * fill a page, allow at least 128 extra bytes to insert a
508          * random section of illegal instructions.
509          */
510         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
511         hdr = module_alloc(size);
512         if (hdr == NULL)
513                 return NULL;
514
515         /* Fill space with illegal/arch-dep instructions. */
516         bpf_fill_ill_insns(hdr, size);
517
518         hdr->pages = size / PAGE_SIZE;
519         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
520                      PAGE_SIZE - sizeof(*hdr));
521         start = (get_random_int() % hole) & ~(alignment - 1);
522
523         /* Leave a random number of instructions before BPF code. */
524         *image_ptr = &hdr->image[start];
525
526         return hdr;
527 }
528
529 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
530 {
531         module_memfree(hdr);
532 }
533
534 /* This symbol is only overridden by archs that have different
535  * requirements than the usual eBPF JITs, f.e. when they only
536  * implement cBPF JIT, do not set images read-only, etc.
537  */
538 void __weak bpf_jit_free(struct bpf_prog *fp)
539 {
540         if (fp->jited) {
541                 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
542
543                 bpf_jit_binary_unlock_ro(hdr);
544                 bpf_jit_binary_free(hdr);
545
546                 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
547         }
548
549         bpf_prog_unlock_free(fp);
550 }
551
552 int bpf_jit_harden __read_mostly;
553
554 static int bpf_jit_blind_insn(const struct bpf_insn *from,
555                               const struct bpf_insn *aux,
556                               struct bpf_insn *to_buff)
557 {
558         struct bpf_insn *to = to_buff;
559         u32 imm_rnd = get_random_int();
560         s16 off;
561
562         BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
563         BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
564
565         if (from->imm == 0 &&
566             (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
567              from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
568                 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
569                 goto out;
570         }
571
572         switch (from->code) {
573         case BPF_ALU | BPF_ADD | BPF_K:
574         case BPF_ALU | BPF_SUB | BPF_K:
575         case BPF_ALU | BPF_AND | BPF_K:
576         case BPF_ALU | BPF_OR  | BPF_K:
577         case BPF_ALU | BPF_XOR | BPF_K:
578         case BPF_ALU | BPF_MUL | BPF_K:
579         case BPF_ALU | BPF_MOV | BPF_K:
580         case BPF_ALU | BPF_DIV | BPF_K:
581         case BPF_ALU | BPF_MOD | BPF_K:
582                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
583                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
584                 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
585                 break;
586
587         case BPF_ALU64 | BPF_ADD | BPF_K:
588         case BPF_ALU64 | BPF_SUB | BPF_K:
589         case BPF_ALU64 | BPF_AND | BPF_K:
590         case BPF_ALU64 | BPF_OR  | BPF_K:
591         case BPF_ALU64 | BPF_XOR | BPF_K:
592         case BPF_ALU64 | BPF_MUL | BPF_K:
593         case BPF_ALU64 | BPF_MOV | BPF_K:
594         case BPF_ALU64 | BPF_DIV | BPF_K:
595         case BPF_ALU64 | BPF_MOD | BPF_K:
596                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
597                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
598                 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
599                 break;
600
601         case BPF_JMP | BPF_JEQ  | BPF_K:
602         case BPF_JMP | BPF_JNE  | BPF_K:
603         case BPF_JMP | BPF_JGT  | BPF_K:
604         case BPF_JMP | BPF_JGE  | BPF_K:
605         case BPF_JMP | BPF_JSGT | BPF_K:
606         case BPF_JMP | BPF_JSGE | BPF_K:
607         case BPF_JMP | BPF_JSET | BPF_K:
608                 /* Accommodate for extra offset in case of a backjump. */
609                 off = from->off;
610                 if (off < 0)
611                         off -= 2;
612                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
613                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
614                 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
615                 break;
616
617         case BPF_LD | BPF_ABS | BPF_W:
618         case BPF_LD | BPF_ABS | BPF_H:
619         case BPF_LD | BPF_ABS | BPF_B:
620                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
621                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
622                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
623                 break;
624
625         case BPF_LD | BPF_IND | BPF_W:
626         case BPF_LD | BPF_IND | BPF_H:
627         case BPF_LD | BPF_IND | BPF_B:
628                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
629                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
630                 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
631                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
632                 break;
633
634         case BPF_LD | BPF_IMM | BPF_DW:
635                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
636                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
637                 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
638                 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
639                 break;
640         case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
641                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
642                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
643                 *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
644                 break;
645
646         case BPF_ST | BPF_MEM | BPF_DW:
647         case BPF_ST | BPF_MEM | BPF_W:
648         case BPF_ST | BPF_MEM | BPF_H:
649         case BPF_ST | BPF_MEM | BPF_B:
650                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
651                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
652                 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
653                 break;
654         }
655 out:
656         return to - to_buff;
657 }
658
659 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
660                                               gfp_t gfp_extra_flags)
661 {
662         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
663                           gfp_extra_flags;
664         struct bpf_prog *fp;
665
666         fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
667         if (fp != NULL) {
668                 kmemcheck_annotate_bitfield(fp, meta);
669
670                 /* aux->prog still points to the fp_other one, so
671                  * when promoting the clone to the real program,
672                  * this still needs to be adapted.
673                  */
674                 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
675         }
676
677         return fp;
678 }
679
680 static void bpf_prog_clone_free(struct bpf_prog *fp)
681 {
682         /* aux was stolen by the other clone, so we cannot free
683          * it from this path! It will be freed eventually by the
684          * other program on release.
685          *
686          * At this point, we don't need a deferred release since
687          * clone is guaranteed to not be locked.
688          */
689         fp->aux = NULL;
690         __bpf_prog_free(fp);
691 }
692
693 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
694 {
695         /* We have to repoint aux->prog to self, as we don't
696          * know whether fp here is the clone or the original.
697          */
698         fp->aux->prog = fp;
699         bpf_prog_clone_free(fp_other);
700 }
701
702 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
703 {
704         struct bpf_insn insn_buff[16], aux[2];
705         struct bpf_prog *clone, *tmp;
706         int insn_delta, insn_cnt;
707         struct bpf_insn *insn;
708         int i, rewritten;
709
710         if (!bpf_jit_blinding_enabled())
711                 return prog;
712
713         clone = bpf_prog_clone_create(prog, GFP_USER);
714         if (!clone)
715                 return ERR_PTR(-ENOMEM);
716
717         insn_cnt = clone->len;
718         insn = clone->insnsi;
719
720         for (i = 0; i < insn_cnt; i++, insn++) {
721                 /* We temporarily need to hold the original ld64 insn
722                  * so that we can still access the first part in the
723                  * second blinding run.
724                  */
725                 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
726                     insn[1].code == 0)
727                         memcpy(aux, insn, sizeof(aux));
728
729                 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
730                 if (!rewritten)
731                         continue;
732
733                 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
734                 if (!tmp) {
735                         /* Patching may have repointed aux->prog during
736                          * realloc from the original one, so we need to
737                          * fix it up here on error.
738                          */
739                         bpf_jit_prog_release_other(prog, clone);
740                         return ERR_PTR(-ENOMEM);
741                 }
742
743                 clone = tmp;
744                 insn_delta = rewritten - 1;
745
746                 /* Walk new program and skip insns we just inserted. */
747                 insn = clone->insnsi + i + insn_delta;
748                 insn_cnt += insn_delta;
749                 i        += insn_delta;
750         }
751
752         return clone;
753 }
754 #endif /* CONFIG_BPF_JIT */
755
756 /* Base function for offset calculation. Needs to go into .text section,
757  * therefore keeping it non-static as well; will also be used by JITs
758  * anyway later on, so do not let the compiler omit it.
759  */
760 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
761 {
762         return 0;
763 }
764 EXPORT_SYMBOL_GPL(__bpf_call_base);
765
766 /**
767  *      __bpf_prog_run - run eBPF program on a given context
768  *      @ctx: is the data we are operating on
769  *      @insn: is the array of eBPF instructions
770  *
771  * Decode and execute eBPF instructions.
772  */
773 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
774 {
775         u64 stack[MAX_BPF_STACK / sizeof(u64)];
776         u64 regs[MAX_BPF_REG], tmp;
777         static const void *jumptable[256] = {
778                 [0 ... 255] = &&default_label,
779                 /* Now overwrite non-defaults ... */
780                 /* 32 bit ALU operations */
781                 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
782                 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
783                 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
784                 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
785                 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
786                 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
787                 [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
788                 [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
789                 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
790                 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
791                 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
792                 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
793                 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
794                 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
795                 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
796                 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
797                 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
798                 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
799                 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
800                 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
801                 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
802                 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
803                 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
804                 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
805                 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
806                 /* 64 bit ALU operations */
807                 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
808                 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
809                 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
810                 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
811                 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
812                 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
813                 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
814                 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
815                 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
816                 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
817                 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
818                 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
819                 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
820                 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
821                 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
822                 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
823                 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
824                 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
825                 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
826                 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
827                 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
828                 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
829                 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
830                 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
831                 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
832                 /* Call instruction */
833                 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
834                 [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
835                 /* Jumps */
836                 [BPF_JMP | BPF_JA] = &&JMP_JA,
837                 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
838                 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
839                 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
840                 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
841                 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
842                 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
843                 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
844                 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
845                 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
846                 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
847                 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
848                 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
849                 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
850                 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
851                 /* Program return */
852                 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
853                 /* Store instructions */
854                 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
855                 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
856                 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
857                 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
858                 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
859                 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
860                 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
861                 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
862                 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
863                 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
864                 /* Load instructions */
865                 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
866                 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
867                 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
868                 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
869                 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
870                 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
871                 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
872                 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
873                 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
874                 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
875                 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
876         };
877         u32 tail_call_cnt = 0;
878         void *ptr;
879         int off;
880
881 #define CONT     ({ insn++; goto select_insn; })
882 #define CONT_JMP ({ insn++; goto select_insn; })
883
884         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
885         ARG1 = (u64) (unsigned long) ctx;
886
887 select_insn:
888         goto *jumptable[insn->code];
889
890         /* ALU */
891 #define ALU(OPCODE, OP)                 \
892         ALU64_##OPCODE##_X:             \
893                 DST = DST OP SRC;       \
894                 CONT;                   \
895         ALU_##OPCODE##_X:               \
896                 DST = (u32) DST OP (u32) SRC;   \
897                 CONT;                   \
898         ALU64_##OPCODE##_K:             \
899                 DST = DST OP IMM;               \
900                 CONT;                   \
901         ALU_##OPCODE##_K:               \
902                 DST = (u32) DST OP (u32) IMM;   \
903                 CONT;
904
905         ALU(ADD,  +)
906         ALU(SUB,  -)
907         ALU(AND,  &)
908         ALU(OR,   |)
909         ALU(LSH, <<)
910         ALU(RSH, >>)
911         ALU(XOR,  ^)
912         ALU(MUL,  *)
913 #undef ALU
914         ALU_NEG:
915                 DST = (u32) -DST;
916                 CONT;
917         ALU64_NEG:
918                 DST = -DST;
919                 CONT;
920         ALU_MOV_X:
921                 DST = (u32) SRC;
922                 CONT;
923         ALU_MOV_K:
924                 DST = (u32) IMM;
925                 CONT;
926         ALU64_MOV_X:
927                 DST = SRC;
928                 CONT;
929         ALU64_MOV_K:
930                 DST = IMM;
931                 CONT;
932         LD_IMM_DW:
933                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
934                 insn++;
935                 CONT;
936         ALU64_ARSH_X:
937                 (*(s64 *) &DST) >>= SRC;
938                 CONT;
939         ALU64_ARSH_K:
940                 (*(s64 *) &DST) >>= IMM;
941                 CONT;
942         ALU64_MOD_X:
943                 if (unlikely(SRC == 0))
944                         return 0;
945                 div64_u64_rem(DST, SRC, &tmp);
946                 DST = tmp;
947                 CONT;
948         ALU_MOD_X:
949                 if (unlikely(SRC == 0))
950                         return 0;
951                 tmp = (u32) DST;
952                 DST = do_div(tmp, (u32) SRC);
953                 CONT;
954         ALU64_MOD_K:
955                 div64_u64_rem(DST, IMM, &tmp);
956                 DST = tmp;
957                 CONT;
958         ALU_MOD_K:
959                 tmp = (u32) DST;
960                 DST = do_div(tmp, (u32) IMM);
961                 CONT;
962         ALU64_DIV_X:
963                 if (unlikely(SRC == 0))
964                         return 0;
965                 DST = div64_u64(DST, SRC);
966                 CONT;
967         ALU_DIV_X:
968                 if (unlikely(SRC == 0))
969                         return 0;
970                 tmp = (u32) DST;
971                 do_div(tmp, (u32) SRC);
972                 DST = (u32) tmp;
973                 CONT;
974         ALU64_DIV_K:
975                 DST = div64_u64(DST, IMM);
976                 CONT;
977         ALU_DIV_K:
978                 tmp = (u32) DST;
979                 do_div(tmp, (u32) IMM);
980                 DST = (u32) tmp;
981                 CONT;
982         ALU_END_TO_BE:
983                 switch (IMM) {
984                 case 16:
985                         DST = (__force u16) cpu_to_be16(DST);
986                         break;
987                 case 32:
988                         DST = (__force u32) cpu_to_be32(DST);
989                         break;
990                 case 64:
991                         DST = (__force u64) cpu_to_be64(DST);
992                         break;
993                 }
994                 CONT;
995         ALU_END_TO_LE:
996                 switch (IMM) {
997                 case 16:
998                         DST = (__force u16) cpu_to_le16(DST);
999                         break;
1000                 case 32:
1001                         DST = (__force u32) cpu_to_le32(DST);
1002                         break;
1003                 case 64:
1004                         DST = (__force u64) cpu_to_le64(DST);
1005                         break;
1006                 }
1007                 CONT;
1008
1009         /* CALL */
1010         JMP_CALL:
1011                 /* Function call scratches BPF_R1-BPF_R5 registers,
1012                  * preserves BPF_R6-BPF_R9, and stores return value
1013                  * into BPF_R0.
1014                  */
1015                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1016                                                        BPF_R4, BPF_R5);
1017                 CONT;
1018
1019         JMP_TAIL_CALL: {
1020                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1021                 struct bpf_array *array = container_of(map, struct bpf_array, map);
1022                 struct bpf_prog *prog;
1023                 u64 index = BPF_R3;
1024
1025                 if (unlikely(index >= array->map.max_entries))
1026                         goto out;
1027                 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1028                         goto out;
1029
1030                 tail_call_cnt++;
1031
1032                 prog = READ_ONCE(array->ptrs[index]);
1033                 if (!prog)
1034                         goto out;
1035
1036                 /* ARG1 at this point is guaranteed to point to CTX from
1037                  * the verifier side due to the fact that the tail call is
1038                  * handeled like a helper, that is, bpf_tail_call_proto,
1039                  * where arg1_type is ARG_PTR_TO_CTX.
1040                  */
1041                 insn = prog->insnsi;
1042                 goto select_insn;
1043 out:
1044                 CONT;
1045         }
1046         /* JMP */
1047         JMP_JA:
1048                 insn += insn->off;
1049                 CONT;
1050         JMP_JEQ_X:
1051                 if (DST == SRC) {
1052                         insn += insn->off;
1053                         CONT_JMP;
1054                 }
1055                 CONT;
1056         JMP_JEQ_K:
1057                 if (DST == IMM) {
1058                         insn += insn->off;
1059                         CONT_JMP;
1060                 }
1061                 CONT;
1062         JMP_JNE_X:
1063                 if (DST != SRC) {
1064                         insn += insn->off;
1065                         CONT_JMP;
1066                 }
1067                 CONT;
1068         JMP_JNE_K:
1069                 if (DST != IMM) {
1070                         insn += insn->off;
1071                         CONT_JMP;
1072                 }
1073                 CONT;
1074         JMP_JGT_X:
1075                 if (DST > SRC) {
1076                         insn += insn->off;
1077                         CONT_JMP;
1078                 }
1079                 CONT;
1080         JMP_JGT_K:
1081                 if (DST > IMM) {
1082                         insn += insn->off;
1083                         CONT_JMP;
1084                 }
1085                 CONT;
1086         JMP_JGE_X:
1087                 if (DST >= SRC) {
1088                         insn += insn->off;
1089                         CONT_JMP;
1090                 }
1091                 CONT;
1092         JMP_JGE_K:
1093                 if (DST >= IMM) {
1094                         insn += insn->off;
1095                         CONT_JMP;
1096                 }
1097                 CONT;
1098         JMP_JSGT_X:
1099                 if (((s64) DST) > ((s64) SRC)) {
1100                         insn += insn->off;
1101                         CONT_JMP;
1102                 }
1103                 CONT;
1104         JMP_JSGT_K:
1105                 if (((s64) DST) > ((s64) IMM)) {
1106                         insn += insn->off;
1107                         CONT_JMP;
1108                 }
1109                 CONT;
1110         JMP_JSGE_X:
1111                 if (((s64) DST) >= ((s64) SRC)) {
1112                         insn += insn->off;
1113                         CONT_JMP;
1114                 }
1115                 CONT;
1116         JMP_JSGE_K:
1117                 if (((s64) DST) >= ((s64) IMM)) {
1118                         insn += insn->off;
1119                         CONT_JMP;
1120                 }
1121                 CONT;
1122         JMP_JSET_X:
1123                 if (DST & SRC) {
1124                         insn += insn->off;
1125                         CONT_JMP;
1126                 }
1127                 CONT;
1128         JMP_JSET_K:
1129                 if (DST & IMM) {
1130                         insn += insn->off;
1131                         CONT_JMP;
1132                 }
1133                 CONT;
1134         JMP_EXIT:
1135                 return BPF_R0;
1136
1137         /* STX and ST and LDX*/
1138 #define LDST(SIZEOP, SIZE)                                              \
1139         STX_MEM_##SIZEOP:                                               \
1140                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
1141                 CONT;                                                   \
1142         ST_MEM_##SIZEOP:                                                \
1143                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
1144                 CONT;                                                   \
1145         LDX_MEM_##SIZEOP:                                               \
1146                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
1147                 CONT;
1148
1149         LDST(B,   u8)
1150         LDST(H,  u16)
1151         LDST(W,  u32)
1152         LDST(DW, u64)
1153 #undef LDST
1154         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1155                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1156                            (DST + insn->off));
1157                 CONT;
1158         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1159                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1160                              (DST + insn->off));
1161                 CONT;
1162         LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1163                 off = IMM;
1164 load_word:
1165                 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1166                  * appearing in the programs where ctx == skb
1167                  * (see may_access_skb() in the verifier). All programs
1168                  * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1169                  * bpf_convert_filter() saves it in BPF_R6, internal BPF
1170                  * verifier will check that BPF_R6 == ctx.
1171                  *
1172                  * BPF_ABS and BPF_IND are wrappers of function calls,
1173                  * so they scratch BPF_R1-BPF_R5 registers, preserve
1174                  * BPF_R6-BPF_R9, and store return value into BPF_R0.
1175                  *
1176                  * Implicit input:
1177                  *   ctx == skb == BPF_R6 == CTX
1178                  *
1179                  * Explicit input:
1180                  *   SRC == any register
1181                  *   IMM == 32-bit immediate
1182                  *
1183                  * Output:
1184                  *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1185                  */
1186
1187                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1188                 if (likely(ptr != NULL)) {
1189                         BPF_R0 = get_unaligned_be32(ptr);
1190                         CONT;
1191                 }
1192
1193                 return 0;
1194         LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1195                 off = IMM;
1196 load_half:
1197                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1198                 if (likely(ptr != NULL)) {
1199                         BPF_R0 = get_unaligned_be16(ptr);
1200                         CONT;
1201                 }
1202
1203                 return 0;
1204         LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1205                 off = IMM;
1206 load_byte:
1207                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1208                 if (likely(ptr != NULL)) {
1209                         BPF_R0 = *(u8 *)ptr;
1210                         CONT;
1211                 }
1212
1213                 return 0;
1214         LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1215                 off = IMM + SRC;
1216                 goto load_word;
1217         LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1218                 off = IMM + SRC;
1219                 goto load_half;
1220         LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1221                 off = IMM + SRC;
1222                 goto load_byte;
1223
1224         default_label:
1225                 /* If we ever reach this, we have a bug somewhere. */
1226                 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1227                 return 0;
1228 }
1229 STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
1230
1231 bool bpf_prog_array_compatible(struct bpf_array *array,
1232                                const struct bpf_prog *fp)
1233 {
1234         if (!array->owner_prog_type) {
1235                 /* There's no owner yet where we could check for
1236                  * compatibility.
1237                  */
1238                 array->owner_prog_type = fp->type;
1239                 array->owner_jited = fp->jited;
1240
1241                 return true;
1242         }
1243
1244         return array->owner_prog_type == fp->type &&
1245                array->owner_jited == fp->jited;
1246 }
1247
1248 static int bpf_check_tail_call(const struct bpf_prog *fp)
1249 {
1250         struct bpf_prog_aux *aux = fp->aux;
1251         int i;
1252
1253         for (i = 0; i < aux->used_map_cnt; i++) {
1254                 struct bpf_map *map = aux->used_maps[i];
1255                 struct bpf_array *array;
1256
1257                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1258                         continue;
1259
1260                 array = container_of(map, struct bpf_array, map);
1261                 if (!bpf_prog_array_compatible(array, fp))
1262                         return -EINVAL;
1263         }
1264
1265         return 0;
1266 }
1267
1268 /**
1269  *      bpf_prog_select_runtime - select exec runtime for BPF program
1270  *      @fp: bpf_prog populated with internal BPF program
1271  *      @err: pointer to error variable
1272  *
1273  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1274  * The BPF program will be executed via BPF_PROG_RUN() macro.
1275  */
1276 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1277 {
1278         fp->bpf_func = (void *) __bpf_prog_run;
1279
1280         /* eBPF JITs can rewrite the program in case constant
1281          * blinding is active. However, in case of error during
1282          * blinding, bpf_int_jit_compile() must always return a
1283          * valid program, which in this case would simply not
1284          * be JITed, but falls back to the interpreter.
1285          */
1286         fp = bpf_int_jit_compile(fp);
1287         bpf_prog_lock_ro(fp);
1288
1289         /* The tail call compatibility check can only be done at
1290          * this late stage as we need to determine, if we deal
1291          * with JITed or non JITed program concatenations and not
1292          * all eBPF JITs might immediately support all features.
1293          */
1294         *err = bpf_check_tail_call(fp);
1295
1296         return fp;
1297 }
1298 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1299
1300 static void bpf_prog_free_deferred(struct work_struct *work)
1301 {
1302         struct bpf_prog_aux *aux;
1303
1304         aux = container_of(work, struct bpf_prog_aux, work);
1305         bpf_jit_free(aux->prog);
1306 }
1307
1308 /* Free internal BPF program */
1309 void bpf_prog_free(struct bpf_prog *fp)
1310 {
1311         struct bpf_prog_aux *aux = fp->aux;
1312
1313         INIT_WORK(&aux->work, bpf_prog_free_deferred);
1314         schedule_work(&aux->work);
1315 }
1316 EXPORT_SYMBOL_GPL(bpf_prog_free);
1317
1318 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1319 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1320
1321 void bpf_user_rnd_init_once(void)
1322 {
1323         prandom_init_once(&bpf_user_rnd_state);
1324 }
1325
1326 BPF_CALL_0(bpf_user_rnd_u32)
1327 {
1328         /* Should someone ever have the rather unwise idea to use some
1329          * of the registers passed into this function, then note that
1330          * this function is called from native eBPF and classic-to-eBPF
1331          * transformations. Register assignments from both sides are
1332          * different, f.e. classic always sets fn(ctx, A, X) here.
1333          */
1334         struct rnd_state *state;
1335         u32 res;
1336
1337         state = &get_cpu_var(bpf_user_rnd_state);
1338         res = prandom_u32_state(state);
1339         put_cpu_var(bpf_user_rnd_state);
1340
1341         return res;
1342 }
1343
1344 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1345 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1346 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1347 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1348
1349 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1350 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1351 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1352 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1353
1354 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1355 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1356 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1357
1358 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1359 {
1360         return NULL;
1361 }
1362
1363 u64 __weak
1364 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1365                  void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1366 {
1367         return -ENOTSUPP;
1368 }
1369
1370 /* Always built-in helper functions. */
1371 const struct bpf_func_proto bpf_tail_call_proto = {
1372         .func           = NULL,
1373         .gpl_only       = false,
1374         .ret_type       = RET_VOID,
1375         .arg1_type      = ARG_PTR_TO_CTX,
1376         .arg2_type      = ARG_CONST_MAP_PTR,
1377         .arg3_type      = ARG_ANYTHING,
1378 };
1379
1380 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1381  * It is encouraged to implement bpf_int_jit_compile() instead, so that
1382  * eBPF and implicitly also cBPF can get JITed!
1383  */
1384 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1385 {
1386         return prog;
1387 }
1388
1389 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1390  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1391  */
1392 void __weak bpf_jit_compile(struct bpf_prog *prog)
1393 {
1394 }
1395
1396 bool __weak bpf_helper_changes_pkt_data(void *func)
1397 {
1398         return false;
1399 }
1400
1401 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1402  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1403  */
1404 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1405                          int len)
1406 {
1407         return -EFAULT;
1408 }
1409
1410 /* All definitions of tracepoints related to BPF. */
1411 #define CREATE_TRACE_POINTS
1412 #include <linux/bpf_trace.h>
1413
1414 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1415
1416 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1417 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);