3cc5b92de765afef41e17d2012908b5d42bd0983
[sfrench/cifs-2.6.git] / kernel / audit_tree.c
1 #include "audit.h"
2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
7
8 struct audit_tree;
9 struct audit_chunk;
10
11 struct audit_tree {
12         atomic_t count;
13         int goner;
14         struct audit_chunk *root;
15         struct list_head chunks;
16         struct list_head rules;
17         struct list_head list;
18         struct list_head same_root;
19         struct rcu_head head;
20         char pathname[];
21 };
22
23 struct audit_chunk {
24         struct list_head hash;
25         struct fsnotify_mark mark;
26         struct list_head trees;         /* with root here */
27         int dead;
28         int count;
29         atomic_long_t refs;
30         struct rcu_head head;
31         struct node {
32                 struct list_head list;
33                 struct audit_tree *owner;
34                 unsigned index;         /* index; upper bit indicates 'will prune' */
35         } owners[];
36 };
37
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40 static struct task_struct *prune_thread;
41
42 /*
43  * One struct chunk is attached to each inode of interest.
44  * We replace struct chunk on tagging/untagging.
45  * Rules have pointer to struct audit_tree.
46  * Rules have struct list_head rlist forming a list of rules over
47  * the same tree.
48  * References to struct chunk are collected at audit_inode{,_child}()
49  * time and used in AUDIT_TREE rule matching.
50  * These references are dropped at the same time we are calling
51  * audit_free_names(), etc.
52  *
53  * Cyclic lists galore:
54  * tree.chunks anchors chunk.owners[].list                      hash_lock
55  * tree.rules anchors rule.rlist                                audit_filter_mutex
56  * chunk.trees anchors tree.same_root                           hash_lock
57  * chunk.hash is a hash with middle bits of watch.inode as
58  * a hash function.                                             RCU, hash_lock
59  *
60  * tree is refcounted; one reference for "some rules on rules_list refer to
61  * it", one for each chunk with pointer to it.
62  *
63  * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
64  * of watch contributes 1 to .refs).
65  *
66  * node.index allows to get from node.list to containing chunk.
67  * MSB of that sucker is stolen to mark taggings that we might have to
68  * revert - several operations have very unpleasant cleanup logics and
69  * that makes a difference.  Some.
70  */
71
72 static struct fsnotify_group *audit_tree_group;
73
74 static struct audit_tree *alloc_tree(const char *s)
75 {
76         struct audit_tree *tree;
77
78         tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
79         if (tree) {
80                 atomic_set(&tree->count, 1);
81                 tree->goner = 0;
82                 INIT_LIST_HEAD(&tree->chunks);
83                 INIT_LIST_HEAD(&tree->rules);
84                 INIT_LIST_HEAD(&tree->list);
85                 INIT_LIST_HEAD(&tree->same_root);
86                 tree->root = NULL;
87                 strcpy(tree->pathname, s);
88         }
89         return tree;
90 }
91
92 static inline void get_tree(struct audit_tree *tree)
93 {
94         atomic_inc(&tree->count);
95 }
96
97 static inline void put_tree(struct audit_tree *tree)
98 {
99         if (atomic_dec_and_test(&tree->count))
100                 kfree_rcu(tree, head);
101 }
102
103 /* to avoid bringing the entire thing in audit.h */
104 const char *audit_tree_path(struct audit_tree *tree)
105 {
106         return tree->pathname;
107 }
108
109 static void free_chunk(struct audit_chunk *chunk)
110 {
111         int i;
112
113         for (i = 0; i < chunk->count; i++) {
114                 if (chunk->owners[i].owner)
115                         put_tree(chunk->owners[i].owner);
116         }
117         kfree(chunk);
118 }
119
120 void audit_put_chunk(struct audit_chunk *chunk)
121 {
122         if (atomic_long_dec_and_test(&chunk->refs))
123                 free_chunk(chunk);
124 }
125
126 static void __put_chunk(struct rcu_head *rcu)
127 {
128         struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
129         audit_put_chunk(chunk);
130 }
131
132 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
133 {
134         struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
135         call_rcu(&chunk->head, __put_chunk);
136 }
137
138 static struct audit_chunk *alloc_chunk(int count)
139 {
140         struct audit_chunk *chunk;
141         size_t size;
142         int i;
143
144         size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
145         chunk = kzalloc(size, GFP_KERNEL);
146         if (!chunk)
147                 return NULL;
148
149         INIT_LIST_HEAD(&chunk->hash);
150         INIT_LIST_HEAD(&chunk->trees);
151         chunk->count = count;
152         atomic_long_set(&chunk->refs, 1);
153         for (i = 0; i < count; i++) {
154                 INIT_LIST_HEAD(&chunk->owners[i].list);
155                 chunk->owners[i].index = i;
156         }
157         fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
158         chunk->mark.mask = FS_IN_IGNORED;
159         return chunk;
160 }
161
162 enum {HASH_SIZE = 128};
163 static struct list_head chunk_hash_heads[HASH_SIZE];
164 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
165
166 /* Function to return search key in our hash from inode. */
167 static unsigned long inode_to_key(const struct inode *inode)
168 {
169         return (unsigned long)inode;
170 }
171
172 /*
173  * Function to return search key in our hash from chunk. Key 0 is special and
174  * should never be present in the hash.
175  */
176 static unsigned long chunk_to_key(struct audit_chunk *chunk)
177 {
178         /*
179          * We have a reference to the mark so it should be attached to a
180          * connector.
181          */
182         if (WARN_ON_ONCE(!chunk->mark.connector))
183                 return 0;
184         return (unsigned long)chunk->mark.connector->inode;
185 }
186
187 static inline struct list_head *chunk_hash(unsigned long key)
188 {
189         unsigned long n = key / L1_CACHE_BYTES;
190         return chunk_hash_heads + n % HASH_SIZE;
191 }
192
193 /* hash_lock & entry->lock is held by caller */
194 static void insert_hash(struct audit_chunk *chunk)
195 {
196         unsigned long key = chunk_to_key(chunk);
197         struct list_head *list;
198
199         if (!(chunk->mark.flags & FSNOTIFY_MARK_FLAG_ATTACHED))
200                 return;
201         list = chunk_hash(key);
202         list_add_rcu(&chunk->hash, list);
203 }
204
205 /* called under rcu_read_lock */
206 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
207 {
208         unsigned long key = inode_to_key(inode);
209         struct list_head *list = chunk_hash(key);
210         struct audit_chunk *p;
211
212         list_for_each_entry_rcu(p, list, hash) {
213                 if (chunk_to_key(p) == key) {
214                         atomic_long_inc(&p->refs);
215                         return p;
216                 }
217         }
218         return NULL;
219 }
220
221 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
222 {
223         int n;
224         for (n = 0; n < chunk->count; n++)
225                 if (chunk->owners[n].owner == tree)
226                         return true;
227         return false;
228 }
229
230 /* tagging and untagging inodes with trees */
231
232 static struct audit_chunk *find_chunk(struct node *p)
233 {
234         int index = p->index & ~(1U<<31);
235         p -= index;
236         return container_of(p, struct audit_chunk, owners[0]);
237 }
238
239 static void untag_chunk(struct node *p)
240 {
241         struct audit_chunk *chunk = find_chunk(p);
242         struct fsnotify_mark *entry = &chunk->mark;
243         struct audit_chunk *new = NULL;
244         struct audit_tree *owner;
245         int size = chunk->count - 1;
246         int i, j;
247
248         fsnotify_get_mark(entry);
249
250         spin_unlock(&hash_lock);
251
252         if (size)
253                 new = alloc_chunk(size);
254
255         mutex_lock(&entry->group->mark_mutex);
256         spin_lock(&entry->lock);
257         /*
258          * mark_mutex protects mark from getting detached and thus also from
259          * mark->connector->inode getting NULL.
260          */
261         if (chunk->dead || !(entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
262                 spin_unlock(&entry->lock);
263                 mutex_unlock(&entry->group->mark_mutex);
264                 if (new)
265                         free_chunk(new);
266                 goto out;
267         }
268
269         owner = p->owner;
270
271         if (!size) {
272                 chunk->dead = 1;
273                 spin_lock(&hash_lock);
274                 list_del_init(&chunk->trees);
275                 if (owner->root == chunk)
276                         owner->root = NULL;
277                 list_del_init(&p->list);
278                 list_del_rcu(&chunk->hash);
279                 spin_unlock(&hash_lock);
280                 spin_unlock(&entry->lock);
281                 mutex_unlock(&entry->group->mark_mutex);
282                 fsnotify_destroy_mark(entry, audit_tree_group);
283                 goto out;
284         }
285
286         if (!new)
287                 goto Fallback;
288
289         if (fsnotify_add_mark_locked(&new->mark, entry->group,
290                                      entry->connector->inode, NULL, 1)) {
291                 fsnotify_put_mark(&new->mark);
292                 goto Fallback;
293         }
294
295         chunk->dead = 1;
296         spin_lock(&hash_lock);
297         list_replace_init(&chunk->trees, &new->trees);
298         if (owner->root == chunk) {
299                 list_del_init(&owner->same_root);
300                 owner->root = NULL;
301         }
302
303         for (i = j = 0; j <= size; i++, j++) {
304                 struct audit_tree *s;
305                 if (&chunk->owners[j] == p) {
306                         list_del_init(&p->list);
307                         i--;
308                         continue;
309                 }
310                 s = chunk->owners[j].owner;
311                 new->owners[i].owner = s;
312                 new->owners[i].index = chunk->owners[j].index - j + i;
313                 if (!s) /* result of earlier fallback */
314                         continue;
315                 get_tree(s);
316                 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
317         }
318
319         list_replace_rcu(&chunk->hash, &new->hash);
320         list_for_each_entry(owner, &new->trees, same_root)
321                 owner->root = new;
322         spin_unlock(&hash_lock);
323         spin_unlock(&entry->lock);
324         mutex_unlock(&entry->group->mark_mutex);
325         fsnotify_destroy_mark(entry, audit_tree_group);
326         fsnotify_put_mark(&new->mark);  /* drop initial reference */
327         goto out;
328
329 Fallback:
330         // do the best we can
331         spin_lock(&hash_lock);
332         if (owner->root == chunk) {
333                 list_del_init(&owner->same_root);
334                 owner->root = NULL;
335         }
336         list_del_init(&p->list);
337         p->owner = NULL;
338         put_tree(owner);
339         spin_unlock(&hash_lock);
340         spin_unlock(&entry->lock);
341         mutex_unlock(&entry->group->mark_mutex);
342 out:
343         fsnotify_put_mark(entry);
344         spin_lock(&hash_lock);
345 }
346
347 static int create_chunk(struct inode *inode, struct audit_tree *tree)
348 {
349         struct fsnotify_mark *entry;
350         struct audit_chunk *chunk = alloc_chunk(1);
351         if (!chunk)
352                 return -ENOMEM;
353
354         entry = &chunk->mark;
355         if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
356                 fsnotify_put_mark(entry);
357                 return -ENOSPC;
358         }
359
360         spin_lock(&entry->lock);
361         spin_lock(&hash_lock);
362         if (tree->goner) {
363                 spin_unlock(&hash_lock);
364                 chunk->dead = 1;
365                 spin_unlock(&entry->lock);
366                 fsnotify_destroy_mark(entry, audit_tree_group);
367                 fsnotify_put_mark(entry);
368                 return 0;
369         }
370         chunk->owners[0].index = (1U << 31);
371         chunk->owners[0].owner = tree;
372         get_tree(tree);
373         list_add(&chunk->owners[0].list, &tree->chunks);
374         if (!tree->root) {
375                 tree->root = chunk;
376                 list_add(&tree->same_root, &chunk->trees);
377         }
378         insert_hash(chunk);
379         spin_unlock(&hash_lock);
380         spin_unlock(&entry->lock);
381         fsnotify_put_mark(entry);       /* drop initial reference */
382         return 0;
383 }
384
385 /* the first tagged inode becomes root of tree */
386 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
387 {
388         struct fsnotify_mark *old_entry, *chunk_entry;
389         struct audit_tree *owner;
390         struct audit_chunk *chunk, *old;
391         struct node *p;
392         int n;
393
394         old_entry = fsnotify_find_mark(&inode->i_fsnotify_marks,
395                                        audit_tree_group);
396         if (!old_entry)
397                 return create_chunk(inode, tree);
398
399         old = container_of(old_entry, struct audit_chunk, mark);
400
401         /* are we already there? */
402         spin_lock(&hash_lock);
403         for (n = 0; n < old->count; n++) {
404                 if (old->owners[n].owner == tree) {
405                         spin_unlock(&hash_lock);
406                         fsnotify_put_mark(old_entry);
407                         return 0;
408                 }
409         }
410         spin_unlock(&hash_lock);
411
412         chunk = alloc_chunk(old->count + 1);
413         if (!chunk) {
414                 fsnotify_put_mark(old_entry);
415                 return -ENOMEM;
416         }
417
418         chunk_entry = &chunk->mark;
419
420         mutex_lock(&old_entry->group->mark_mutex);
421         spin_lock(&old_entry->lock);
422         /*
423          * mark_mutex protects mark from getting detached and thus also from
424          * mark->connector->inode getting NULL.
425          */
426         if (!(old_entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
427                 /* old_entry is being shot, lets just lie */
428                 spin_unlock(&old_entry->lock);
429                 mutex_unlock(&old_entry->group->mark_mutex);
430                 fsnotify_put_mark(old_entry);
431                 free_chunk(chunk);
432                 return -ENOENT;
433         }
434
435         if (fsnotify_add_mark_locked(chunk_entry, old_entry->group,
436                              old_entry->connector->inode, NULL, 1)) {
437                 spin_unlock(&old_entry->lock);
438                 mutex_unlock(&old_entry->group->mark_mutex);
439                 fsnotify_put_mark(chunk_entry);
440                 fsnotify_put_mark(old_entry);
441                 return -ENOSPC;
442         }
443
444         /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
445         spin_lock(&chunk_entry->lock);
446         spin_lock(&hash_lock);
447
448         /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
449         if (tree->goner) {
450                 spin_unlock(&hash_lock);
451                 chunk->dead = 1;
452                 spin_unlock(&chunk_entry->lock);
453                 spin_unlock(&old_entry->lock);
454                 mutex_unlock(&old_entry->group->mark_mutex);
455
456                 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
457
458                 fsnotify_put_mark(chunk_entry);
459                 fsnotify_put_mark(old_entry);
460                 return 0;
461         }
462         list_replace_init(&old->trees, &chunk->trees);
463         for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
464                 struct audit_tree *s = old->owners[n].owner;
465                 p->owner = s;
466                 p->index = old->owners[n].index;
467                 if (!s) /* result of fallback in untag */
468                         continue;
469                 get_tree(s);
470                 list_replace_init(&old->owners[n].list, &p->list);
471         }
472         p->index = (chunk->count - 1) | (1U<<31);
473         p->owner = tree;
474         get_tree(tree);
475         list_add(&p->list, &tree->chunks);
476         list_replace_rcu(&old->hash, &chunk->hash);
477         list_for_each_entry(owner, &chunk->trees, same_root)
478                 owner->root = chunk;
479         old->dead = 1;
480         if (!tree->root) {
481                 tree->root = chunk;
482                 list_add(&tree->same_root, &chunk->trees);
483         }
484         spin_unlock(&hash_lock);
485         spin_unlock(&chunk_entry->lock);
486         spin_unlock(&old_entry->lock);
487         mutex_unlock(&old_entry->group->mark_mutex);
488         fsnotify_destroy_mark(old_entry, audit_tree_group);
489         fsnotify_put_mark(chunk_entry); /* drop initial reference */
490         fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
491         return 0;
492 }
493
494 static void audit_tree_log_remove_rule(struct audit_krule *rule)
495 {
496         struct audit_buffer *ab;
497
498         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
499         if (unlikely(!ab))
500                 return;
501         audit_log_format(ab, "op=remove_rule");
502         audit_log_format(ab, " dir=");
503         audit_log_untrustedstring(ab, rule->tree->pathname);
504         audit_log_key(ab, rule->filterkey);
505         audit_log_format(ab, " list=%d res=1", rule->listnr);
506         audit_log_end(ab);
507 }
508
509 static void kill_rules(struct audit_tree *tree)
510 {
511         struct audit_krule *rule, *next;
512         struct audit_entry *entry;
513
514         list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
515                 entry = container_of(rule, struct audit_entry, rule);
516
517                 list_del_init(&rule->rlist);
518                 if (rule->tree) {
519                         /* not a half-baked one */
520                         audit_tree_log_remove_rule(rule);
521                         if (entry->rule.exe)
522                                 audit_remove_mark(entry->rule.exe);
523                         rule->tree = NULL;
524                         list_del_rcu(&entry->list);
525                         list_del(&entry->rule.list);
526                         call_rcu(&entry->rcu, audit_free_rule_rcu);
527                 }
528         }
529 }
530
531 /*
532  * finish killing struct audit_tree
533  */
534 static void prune_one(struct audit_tree *victim)
535 {
536         spin_lock(&hash_lock);
537         while (!list_empty(&victim->chunks)) {
538                 struct node *p;
539
540                 p = list_entry(victim->chunks.next, struct node, list);
541
542                 untag_chunk(p);
543         }
544         spin_unlock(&hash_lock);
545         put_tree(victim);
546 }
547
548 /* trim the uncommitted chunks from tree */
549
550 static void trim_marked(struct audit_tree *tree)
551 {
552         struct list_head *p, *q;
553         spin_lock(&hash_lock);
554         if (tree->goner) {
555                 spin_unlock(&hash_lock);
556                 return;
557         }
558         /* reorder */
559         for (p = tree->chunks.next; p != &tree->chunks; p = q) {
560                 struct node *node = list_entry(p, struct node, list);
561                 q = p->next;
562                 if (node->index & (1U<<31)) {
563                         list_del_init(p);
564                         list_add(p, &tree->chunks);
565                 }
566         }
567
568         while (!list_empty(&tree->chunks)) {
569                 struct node *node;
570
571                 node = list_entry(tree->chunks.next, struct node, list);
572
573                 /* have we run out of marked? */
574                 if (!(node->index & (1U<<31)))
575                         break;
576
577                 untag_chunk(node);
578         }
579         if (!tree->root && !tree->goner) {
580                 tree->goner = 1;
581                 spin_unlock(&hash_lock);
582                 mutex_lock(&audit_filter_mutex);
583                 kill_rules(tree);
584                 list_del_init(&tree->list);
585                 mutex_unlock(&audit_filter_mutex);
586                 prune_one(tree);
587         } else {
588                 spin_unlock(&hash_lock);
589         }
590 }
591
592 static void audit_schedule_prune(void);
593
594 /* called with audit_filter_mutex */
595 int audit_remove_tree_rule(struct audit_krule *rule)
596 {
597         struct audit_tree *tree;
598         tree = rule->tree;
599         if (tree) {
600                 spin_lock(&hash_lock);
601                 list_del_init(&rule->rlist);
602                 if (list_empty(&tree->rules) && !tree->goner) {
603                         tree->root = NULL;
604                         list_del_init(&tree->same_root);
605                         tree->goner = 1;
606                         list_move(&tree->list, &prune_list);
607                         rule->tree = NULL;
608                         spin_unlock(&hash_lock);
609                         audit_schedule_prune();
610                         return 1;
611                 }
612                 rule->tree = NULL;
613                 spin_unlock(&hash_lock);
614                 return 1;
615         }
616         return 0;
617 }
618
619 static int compare_root(struct vfsmount *mnt, void *arg)
620 {
621         return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
622                (unsigned long)arg;
623 }
624
625 void audit_trim_trees(void)
626 {
627         struct list_head cursor;
628
629         mutex_lock(&audit_filter_mutex);
630         list_add(&cursor, &tree_list);
631         while (cursor.next != &tree_list) {
632                 struct audit_tree *tree;
633                 struct path path;
634                 struct vfsmount *root_mnt;
635                 struct node *node;
636                 int err;
637
638                 tree = container_of(cursor.next, struct audit_tree, list);
639                 get_tree(tree);
640                 list_del(&cursor);
641                 list_add(&cursor, &tree->list);
642                 mutex_unlock(&audit_filter_mutex);
643
644                 err = kern_path(tree->pathname, 0, &path);
645                 if (err)
646                         goto skip_it;
647
648                 root_mnt = collect_mounts(&path);
649                 path_put(&path);
650                 if (IS_ERR(root_mnt))
651                         goto skip_it;
652
653                 spin_lock(&hash_lock);
654                 list_for_each_entry(node, &tree->chunks, list) {
655                         struct audit_chunk *chunk = find_chunk(node);
656                         /* this could be NULL if the watch is dying else where... */
657                         node->index |= 1U<<31;
658                         if (iterate_mounts(compare_root,
659                                            (void *)chunk_to_key(chunk),
660                                            root_mnt))
661                                 node->index &= ~(1U<<31);
662                 }
663                 spin_unlock(&hash_lock);
664                 trim_marked(tree);
665                 drop_collected_mounts(root_mnt);
666 skip_it:
667                 put_tree(tree);
668                 mutex_lock(&audit_filter_mutex);
669         }
670         list_del(&cursor);
671         mutex_unlock(&audit_filter_mutex);
672 }
673
674 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
675 {
676
677         if (pathname[0] != '/' ||
678             rule->listnr != AUDIT_FILTER_EXIT ||
679             op != Audit_equal ||
680             rule->inode_f || rule->watch || rule->tree)
681                 return -EINVAL;
682         rule->tree = alloc_tree(pathname);
683         if (!rule->tree)
684                 return -ENOMEM;
685         return 0;
686 }
687
688 void audit_put_tree(struct audit_tree *tree)
689 {
690         put_tree(tree);
691 }
692
693 static int tag_mount(struct vfsmount *mnt, void *arg)
694 {
695         return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
696 }
697
698 /*
699  * That gets run when evict_chunk() ends up needing to kill audit_tree.
700  * Runs from a separate thread.
701  */
702 static int prune_tree_thread(void *unused)
703 {
704         for (;;) {
705                 if (list_empty(&prune_list)) {
706                         set_current_state(TASK_INTERRUPTIBLE);
707                         schedule();
708                 }
709
710                 mutex_lock(&audit_cmd_mutex);
711                 mutex_lock(&audit_filter_mutex);
712
713                 while (!list_empty(&prune_list)) {
714                         struct audit_tree *victim;
715
716                         victim = list_entry(prune_list.next,
717                                         struct audit_tree, list);
718                         list_del_init(&victim->list);
719
720                         mutex_unlock(&audit_filter_mutex);
721
722                         prune_one(victim);
723
724                         mutex_lock(&audit_filter_mutex);
725                 }
726
727                 mutex_unlock(&audit_filter_mutex);
728                 mutex_unlock(&audit_cmd_mutex);
729         }
730         return 0;
731 }
732
733 static int audit_launch_prune(void)
734 {
735         if (prune_thread)
736                 return 0;
737         prune_thread = kthread_run(prune_tree_thread, NULL,
738                                 "audit_prune_tree");
739         if (IS_ERR(prune_thread)) {
740                 pr_err("cannot start thread audit_prune_tree");
741                 prune_thread = NULL;
742                 return -ENOMEM;
743         }
744         return 0;
745 }
746
747 /* called with audit_filter_mutex */
748 int audit_add_tree_rule(struct audit_krule *rule)
749 {
750         struct audit_tree *seed = rule->tree, *tree;
751         struct path path;
752         struct vfsmount *mnt;
753         int err;
754
755         rule->tree = NULL;
756         list_for_each_entry(tree, &tree_list, list) {
757                 if (!strcmp(seed->pathname, tree->pathname)) {
758                         put_tree(seed);
759                         rule->tree = tree;
760                         list_add(&rule->rlist, &tree->rules);
761                         return 0;
762                 }
763         }
764         tree = seed;
765         list_add(&tree->list, &tree_list);
766         list_add(&rule->rlist, &tree->rules);
767         /* do not set rule->tree yet */
768         mutex_unlock(&audit_filter_mutex);
769
770         if (unlikely(!prune_thread)) {
771                 err = audit_launch_prune();
772                 if (err)
773                         goto Err;
774         }
775
776         err = kern_path(tree->pathname, 0, &path);
777         if (err)
778                 goto Err;
779         mnt = collect_mounts(&path);
780         path_put(&path);
781         if (IS_ERR(mnt)) {
782                 err = PTR_ERR(mnt);
783                 goto Err;
784         }
785
786         get_tree(tree);
787         err = iterate_mounts(tag_mount, tree, mnt);
788         drop_collected_mounts(mnt);
789
790         if (!err) {
791                 struct node *node;
792                 spin_lock(&hash_lock);
793                 list_for_each_entry(node, &tree->chunks, list)
794                         node->index &= ~(1U<<31);
795                 spin_unlock(&hash_lock);
796         } else {
797                 trim_marked(tree);
798                 goto Err;
799         }
800
801         mutex_lock(&audit_filter_mutex);
802         if (list_empty(&rule->rlist)) {
803                 put_tree(tree);
804                 return -ENOENT;
805         }
806         rule->tree = tree;
807         put_tree(tree);
808
809         return 0;
810 Err:
811         mutex_lock(&audit_filter_mutex);
812         list_del_init(&tree->list);
813         list_del_init(&tree->rules);
814         put_tree(tree);
815         return err;
816 }
817
818 int audit_tag_tree(char *old, char *new)
819 {
820         struct list_head cursor, barrier;
821         int failed = 0;
822         struct path path1, path2;
823         struct vfsmount *tagged;
824         int err;
825
826         err = kern_path(new, 0, &path2);
827         if (err)
828                 return err;
829         tagged = collect_mounts(&path2);
830         path_put(&path2);
831         if (IS_ERR(tagged))
832                 return PTR_ERR(tagged);
833
834         err = kern_path(old, 0, &path1);
835         if (err) {
836                 drop_collected_mounts(tagged);
837                 return err;
838         }
839
840         mutex_lock(&audit_filter_mutex);
841         list_add(&barrier, &tree_list);
842         list_add(&cursor, &barrier);
843
844         while (cursor.next != &tree_list) {
845                 struct audit_tree *tree;
846                 int good_one = 0;
847
848                 tree = container_of(cursor.next, struct audit_tree, list);
849                 get_tree(tree);
850                 list_del(&cursor);
851                 list_add(&cursor, &tree->list);
852                 mutex_unlock(&audit_filter_mutex);
853
854                 err = kern_path(tree->pathname, 0, &path2);
855                 if (!err) {
856                         good_one = path_is_under(&path1, &path2);
857                         path_put(&path2);
858                 }
859
860                 if (!good_one) {
861                         put_tree(tree);
862                         mutex_lock(&audit_filter_mutex);
863                         continue;
864                 }
865
866                 failed = iterate_mounts(tag_mount, tree, tagged);
867                 if (failed) {
868                         put_tree(tree);
869                         mutex_lock(&audit_filter_mutex);
870                         break;
871                 }
872
873                 mutex_lock(&audit_filter_mutex);
874                 spin_lock(&hash_lock);
875                 if (!tree->goner) {
876                         list_del(&tree->list);
877                         list_add(&tree->list, &tree_list);
878                 }
879                 spin_unlock(&hash_lock);
880                 put_tree(tree);
881         }
882
883         while (barrier.prev != &tree_list) {
884                 struct audit_tree *tree;
885
886                 tree = container_of(barrier.prev, struct audit_tree, list);
887                 get_tree(tree);
888                 list_del(&tree->list);
889                 list_add(&tree->list, &barrier);
890                 mutex_unlock(&audit_filter_mutex);
891
892                 if (!failed) {
893                         struct node *node;
894                         spin_lock(&hash_lock);
895                         list_for_each_entry(node, &tree->chunks, list)
896                                 node->index &= ~(1U<<31);
897                         spin_unlock(&hash_lock);
898                 } else {
899                         trim_marked(tree);
900                 }
901
902                 put_tree(tree);
903                 mutex_lock(&audit_filter_mutex);
904         }
905         list_del(&barrier);
906         list_del(&cursor);
907         mutex_unlock(&audit_filter_mutex);
908         path_put(&path1);
909         drop_collected_mounts(tagged);
910         return failed;
911 }
912
913
914 static void audit_schedule_prune(void)
915 {
916         wake_up_process(prune_thread);
917 }
918
919 /*
920  * ... and that one is done if evict_chunk() decides to delay until the end
921  * of syscall.  Runs synchronously.
922  */
923 void audit_kill_trees(struct list_head *list)
924 {
925         mutex_lock(&audit_cmd_mutex);
926         mutex_lock(&audit_filter_mutex);
927
928         while (!list_empty(list)) {
929                 struct audit_tree *victim;
930
931                 victim = list_entry(list->next, struct audit_tree, list);
932                 kill_rules(victim);
933                 list_del_init(&victim->list);
934
935                 mutex_unlock(&audit_filter_mutex);
936
937                 prune_one(victim);
938
939                 mutex_lock(&audit_filter_mutex);
940         }
941
942         mutex_unlock(&audit_filter_mutex);
943         mutex_unlock(&audit_cmd_mutex);
944 }
945
946 /*
947  *  Here comes the stuff asynchronous to auditctl operations
948  */
949
950 static void evict_chunk(struct audit_chunk *chunk)
951 {
952         struct audit_tree *owner;
953         struct list_head *postponed = audit_killed_trees();
954         int need_prune = 0;
955         int n;
956
957         if (chunk->dead)
958                 return;
959
960         chunk->dead = 1;
961         mutex_lock(&audit_filter_mutex);
962         spin_lock(&hash_lock);
963         while (!list_empty(&chunk->trees)) {
964                 owner = list_entry(chunk->trees.next,
965                                    struct audit_tree, same_root);
966                 owner->goner = 1;
967                 owner->root = NULL;
968                 list_del_init(&owner->same_root);
969                 spin_unlock(&hash_lock);
970                 if (!postponed) {
971                         kill_rules(owner);
972                         list_move(&owner->list, &prune_list);
973                         need_prune = 1;
974                 } else {
975                         list_move(&owner->list, postponed);
976                 }
977                 spin_lock(&hash_lock);
978         }
979         list_del_rcu(&chunk->hash);
980         for (n = 0; n < chunk->count; n++)
981                 list_del_init(&chunk->owners[n].list);
982         spin_unlock(&hash_lock);
983         mutex_unlock(&audit_filter_mutex);
984         if (need_prune)
985                 audit_schedule_prune();
986 }
987
988 static int audit_tree_handle_event(struct fsnotify_group *group,
989                                    struct inode *to_tell,
990                                    struct fsnotify_mark *inode_mark,
991                                    struct fsnotify_mark *vfsmount_mark,
992                                    u32 mask, const void *data, int data_type,
993                                    const unsigned char *file_name, u32 cookie,
994                                    struct fsnotify_iter_info *iter_info)
995 {
996         return 0;
997 }
998
999 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
1000 {
1001         struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
1002
1003         evict_chunk(chunk);
1004
1005         /*
1006          * We are guaranteed to have at least one reference to the mark from
1007          * either the inode or the caller of fsnotify_destroy_mark().
1008          */
1009         BUG_ON(atomic_read(&entry->refcnt) < 1);
1010 }
1011
1012 static const struct fsnotify_ops audit_tree_ops = {
1013         .handle_event = audit_tree_handle_event,
1014         .freeing_mark = audit_tree_freeing_mark,
1015 };
1016
1017 static int __init audit_tree_init(void)
1018 {
1019         int i;
1020
1021         audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1022         if (IS_ERR(audit_tree_group))
1023                 audit_panic("cannot initialize fsnotify group for rectree watches");
1024
1025         for (i = 0; i < HASH_SIZE; i++)
1026                 INIT_LIST_HEAD(&chunk_hash_heads[i]);
1027
1028         return 0;
1029 }
1030 __initcall(audit_tree_init);