Linux 6.9-rc4
[sfrench/cifs-2.6.git] / include / linux / vmw_vmci_defs.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7
8 #ifndef _VMW_VMCI_DEF_H_
9 #define _VMW_VMCI_DEF_H_
10
11 #include <linux/atomic.h>
12 #include <linux/bits.h>
13
14 /* Register offsets. */
15 #define VMCI_STATUS_ADDR      0x00
16 #define VMCI_CONTROL_ADDR     0x04
17 #define VMCI_ICR_ADDR         0x08
18 #define VMCI_IMR_ADDR         0x0c
19 #define VMCI_DATA_OUT_ADDR    0x10
20 #define VMCI_DATA_IN_ADDR     0x14
21 #define VMCI_CAPS_ADDR        0x18
22 #define VMCI_RESULT_LOW_ADDR  0x1c
23 #define VMCI_RESULT_HIGH_ADDR 0x20
24
25 /* Max number of devices. */
26 #define VMCI_MAX_DEVICES 1
27
28 /* Status register bits. */
29 #define VMCI_STATUS_INT_ON     BIT(0)
30
31 /* Control register bits. */
32 #define VMCI_CONTROL_RESET        BIT(0)
33 #define VMCI_CONTROL_INT_ENABLE   BIT(1)
34 #define VMCI_CONTROL_INT_DISABLE  BIT(2)
35
36 /* Capabilities register bits. */
37 #define VMCI_CAPS_HYPERCALL     BIT(0)
38 #define VMCI_CAPS_GUESTCALL     BIT(1)
39 #define VMCI_CAPS_DATAGRAM      BIT(2)
40 #define VMCI_CAPS_NOTIFICATIONS BIT(3)
41 #define VMCI_CAPS_PPN64         BIT(4)
42
43 /* Interrupt Cause register bits. */
44 #define VMCI_ICR_DATAGRAM      BIT(0)
45 #define VMCI_ICR_NOTIFICATION  BIT(1)
46
47 /* Interrupt Mask register bits. */
48 #define VMCI_IMR_DATAGRAM      BIT(0)
49 #define VMCI_IMR_NOTIFICATION  BIT(1)
50
51 /* Maximum MSI/MSI-X interrupt vectors in the device. */
52 #define VMCI_MAX_INTRS 2
53
54 /*
55  * Supported interrupt vectors.  There is one for each ICR value above,
56  * but here they indicate the position in the vector array/message ID.
57  */
58 enum {
59         VMCI_INTR_DATAGRAM = 0,
60         VMCI_INTR_NOTIFICATION = 1,
61 };
62
63 /*
64  * A single VMCI device has an upper limit of 128MB on the amount of
65  * memory that can be used for queue pairs. Since each queue pair
66  * consists of at least two pages, the memory limit also dictates the
67  * number of queue pairs a guest can create.
68  */
69 #define VMCI_MAX_GUEST_QP_MEMORY ((size_t)(128 * 1024 * 1024))
70 #define VMCI_MAX_GUEST_QP_COUNT  (VMCI_MAX_GUEST_QP_MEMORY / PAGE_SIZE / 2)
71
72 /*
73  * There can be at most PAGE_SIZE doorbells since there is one doorbell
74  * per byte in the doorbell bitmap page.
75  */
76 #define VMCI_MAX_GUEST_DOORBELL_COUNT PAGE_SIZE
77
78 /*
79  * Queues with pre-mapped data pages must be small, so that we don't pin
80  * too much kernel memory (especially on vmkernel).  We limit a queuepair to
81  * 32 KB, or 16 KB per queue for symmetrical pairs.
82  */
83 #define VMCI_MAX_PINNED_QP_MEMORY ((size_t)(32 * 1024))
84
85 /*
86  * We have a fixed set of resource IDs available in the VMX.
87  * This allows us to have a very simple implementation since we statically
88  * know how many will create datagram handles. If a new caller arrives and
89  * we have run out of slots we can manually increment the maximum size of
90  * available resource IDs.
91  *
92  * VMCI reserved hypervisor datagram resource IDs.
93  */
94 enum {
95         VMCI_RESOURCES_QUERY = 0,
96         VMCI_GET_CONTEXT_ID = 1,
97         VMCI_SET_NOTIFY_BITMAP = 2,
98         VMCI_DOORBELL_LINK = 3,
99         VMCI_DOORBELL_UNLINK = 4,
100         VMCI_DOORBELL_NOTIFY = 5,
101         /*
102          * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are
103          * obsoleted by the removal of VM to VM communication.
104          */
105         VMCI_DATAGRAM_REQUEST_MAP = 6,
106         VMCI_DATAGRAM_REMOVE_MAP = 7,
107         VMCI_EVENT_SUBSCRIBE = 8,
108         VMCI_EVENT_UNSUBSCRIBE = 9,
109         VMCI_QUEUEPAIR_ALLOC = 10,
110         VMCI_QUEUEPAIR_DETACH = 11,
111
112         /*
113          * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1,
114          * WS 7.0/7.1 and ESX 4.1
115          */
116         VMCI_HGFS_TRANSPORT = 13,
117         VMCI_UNITY_PBRPC_REGISTER = 14,
118         VMCI_RPC_PRIVILEGED = 15,
119         VMCI_RPC_UNPRIVILEGED = 16,
120         VMCI_RESOURCE_MAX = 17,
121 };
122
123 /*
124  * struct vmci_handle - Ownership information structure
125  * @context:    The VMX context ID.
126  * @resource:   The resource ID (used for locating in resource hash).
127  *
128  * The vmci_handle structure is used to track resources used within
129  * vmw_vmci.
130  */
131 struct vmci_handle {
132         u32 context;
133         u32 resource;
134 };
135
136 #define vmci_make_handle(_cid, _rid) \
137         (struct vmci_handle){ .context = _cid, .resource = _rid }
138
139 static inline bool vmci_handle_is_equal(struct vmci_handle h1,
140                                         struct vmci_handle h2)
141 {
142         return h1.context == h2.context && h1.resource == h2.resource;
143 }
144
145 #define VMCI_INVALID_ID ~0
146 static const struct vmci_handle VMCI_INVALID_HANDLE = {
147         .context = VMCI_INVALID_ID,
148         .resource = VMCI_INVALID_ID
149 };
150
151 static inline bool vmci_handle_is_invalid(struct vmci_handle h)
152 {
153         return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE);
154 }
155
156 /*
157  * The below defines can be used to send anonymous requests.
158  * This also indicates that no response is expected.
159  */
160 #define VMCI_ANON_SRC_CONTEXT_ID   VMCI_INVALID_ID
161 #define VMCI_ANON_SRC_RESOURCE_ID  VMCI_INVALID_ID
162 static const struct vmci_handle __maybe_unused VMCI_ANON_SRC_HANDLE = {
163         .context = VMCI_ANON_SRC_CONTEXT_ID,
164         .resource = VMCI_ANON_SRC_RESOURCE_ID
165 };
166
167 /* The lowest 16 context ids are reserved for internal use. */
168 #define VMCI_RESERVED_CID_LIMIT ((u32) 16)
169
170 /*
171  * Hypervisor context id, used for calling into hypervisor
172  * supplied services from the VM.
173  */
174 #define VMCI_HYPERVISOR_CONTEXT_ID 0
175
176 /*
177  * Well-known context id, a logical context that contains a set of
178  * well-known services. This context ID is now obsolete.
179  */
180 #define VMCI_WELL_KNOWN_CONTEXT_ID 1
181
182 /*
183  * Context ID used by host endpoints.
184  */
185 #define VMCI_HOST_CONTEXT_ID  2
186
187 #define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) &&          \
188                                   (_cid) > VMCI_HOST_CONTEXT_ID)
189
190 /*
191  * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make
192  * handles that refer to a specific context.
193  */
194 #define VMCI_CONTEXT_RESOURCE_ID 0
195
196 /*
197  * VMCI error codes.
198  */
199 enum {
200         VMCI_SUCCESS_QUEUEPAIR_ATTACH   = 5,
201         VMCI_SUCCESS_QUEUEPAIR_CREATE   = 4,
202         VMCI_SUCCESS_LAST_DETACH        = 3,
203         VMCI_SUCCESS_ACCESS_GRANTED     = 2,
204         VMCI_SUCCESS_ENTRY_DEAD         = 1,
205         VMCI_SUCCESS                     = 0,
206         VMCI_ERROR_INVALID_RESOURCE      = (-1),
207         VMCI_ERROR_INVALID_ARGS          = (-2),
208         VMCI_ERROR_NO_MEM                = (-3),
209         VMCI_ERROR_DATAGRAM_FAILED       = (-4),
210         VMCI_ERROR_MORE_DATA             = (-5),
211         VMCI_ERROR_NO_MORE_DATAGRAMS     = (-6),
212         VMCI_ERROR_NO_ACCESS             = (-7),
213         VMCI_ERROR_NO_HANDLE             = (-8),
214         VMCI_ERROR_DUPLICATE_ENTRY       = (-9),
215         VMCI_ERROR_DST_UNREACHABLE       = (-10),
216         VMCI_ERROR_PAYLOAD_TOO_LARGE     = (-11),
217         VMCI_ERROR_INVALID_PRIV          = (-12),
218         VMCI_ERROR_GENERIC               = (-13),
219         VMCI_ERROR_PAGE_ALREADY_SHARED   = (-14),
220         VMCI_ERROR_CANNOT_SHARE_PAGE     = (-15),
221         VMCI_ERROR_CANNOT_UNSHARE_PAGE   = (-16),
222         VMCI_ERROR_NO_PROCESS            = (-17),
223         VMCI_ERROR_NO_DATAGRAM           = (-18),
224         VMCI_ERROR_NO_RESOURCES          = (-19),
225         VMCI_ERROR_UNAVAILABLE           = (-20),
226         VMCI_ERROR_NOT_FOUND             = (-21),
227         VMCI_ERROR_ALREADY_EXISTS        = (-22),
228         VMCI_ERROR_NOT_PAGE_ALIGNED      = (-23),
229         VMCI_ERROR_INVALID_SIZE          = (-24),
230         VMCI_ERROR_REGION_ALREADY_SHARED = (-25),
231         VMCI_ERROR_TIMEOUT               = (-26),
232         VMCI_ERROR_DATAGRAM_INCOMPLETE   = (-27),
233         VMCI_ERROR_INCORRECT_IRQL        = (-28),
234         VMCI_ERROR_EVENT_UNKNOWN         = (-29),
235         VMCI_ERROR_OBSOLETE              = (-30),
236         VMCI_ERROR_QUEUEPAIR_MISMATCH    = (-31),
237         VMCI_ERROR_QUEUEPAIR_NOTSET      = (-32),
238         VMCI_ERROR_QUEUEPAIR_NOTOWNER    = (-33),
239         VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34),
240         VMCI_ERROR_QUEUEPAIR_NOSPACE     = (-35),
241         VMCI_ERROR_QUEUEPAIR_NODATA      = (-36),
242         VMCI_ERROR_BUSMEM_INVALIDATION   = (-37),
243         VMCI_ERROR_MODULE_NOT_LOADED     = (-38),
244         VMCI_ERROR_DEVICE_NOT_FOUND      = (-39),
245         VMCI_ERROR_QUEUEPAIR_NOT_READY   = (-40),
246         VMCI_ERROR_WOULD_BLOCK           = (-41),
247
248         /* VMCI clients should return error code within this range */
249         VMCI_ERROR_CLIENT_MIN            = (-500),
250         VMCI_ERROR_CLIENT_MAX            = (-550),
251
252         /* Internal error codes. */
253         VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000),
254 };
255
256 /* VMCI reserved events. */
257 enum {
258         /* Only applicable to guest endpoints */
259         VMCI_EVENT_CTX_ID_UPDATE  = 0,
260
261         /* Applicable to guest and host */
262         VMCI_EVENT_CTX_REMOVED    = 1,
263
264         /* Only applicable to guest endpoints */
265         VMCI_EVENT_QP_RESUMED     = 2,
266
267         /* Applicable to guest and host */
268         VMCI_EVENT_QP_PEER_ATTACH = 3,
269
270         /* Applicable to guest and host */
271         VMCI_EVENT_QP_PEER_DETACH = 4,
272
273         /*
274          * Applicable to VMX and vmk.  On vmk,
275          * this event has the Context payload type.
276          */
277         VMCI_EVENT_MEM_ACCESS_ON  = 5,
278
279         /*
280          * Applicable to VMX and vmk.  Same as
281          * above for the payload type.
282          */
283         VMCI_EVENT_MEM_ACCESS_OFF = 6,
284         VMCI_EVENT_MAX            = 7,
285 };
286
287 /*
288  * Of the above events, a few are reserved for use in the VMX, and
289  * other endpoints (guest and host kernel) should not use them. For
290  * the rest of the events, we allow both host and guest endpoints to
291  * subscribe to them, to maintain the same API for host and guest
292  * endpoints.
293  */
294 #define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \
295                                       (_event) == VMCI_EVENT_MEM_ACCESS_OFF)
296
297 #define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX &&          \
298                                   !VMCI_EVENT_VALID_VMX(_event))
299
300 /* Reserved guest datagram resource ids. */
301 #define VMCI_EVENT_HANDLER 0
302
303 /*
304  * VMCI coarse-grained privileges (per context or host
305  * process/endpoint. An entity with the restricted flag is only
306  * allowed to interact with the hypervisor and trusted entities.
307  */
308 enum {
309         VMCI_NO_PRIVILEGE_FLAGS = 0,
310         VMCI_PRIVILEGE_FLAG_RESTRICTED = 1,
311         VMCI_PRIVILEGE_FLAG_TRUSTED = 2,
312         VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED |
313                                     VMCI_PRIVILEGE_FLAG_TRUSTED),
314         VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS,
315         VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED,
316         VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED,
317 };
318
319 /* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */
320 #define VMCI_RESERVED_RESOURCE_ID_MAX 1023
321
322 /*
323  * Driver version.
324  *
325  * Increment major version when you make an incompatible change.
326  * Compatibility goes both ways (old driver with new executable
327  * as well as new driver with old executable).
328  */
329
330 /* Never change VMCI_VERSION_SHIFT_WIDTH */
331 #define VMCI_VERSION_SHIFT_WIDTH 16
332 #define VMCI_MAKE_VERSION(_major, _minor)                       \
333         ((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor))
334
335 #define VMCI_VERSION_MAJOR(v)  ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH)
336 #define VMCI_VERSION_MINOR(v)  ((u16) (v))
337
338 /*
339  * VMCI_VERSION is always the current version.  Subsequently listed
340  * versions are ways of detecting previous versions of the connecting
341  * application (i.e., VMX).
342  *
343  * VMCI_VERSION_NOVMVM: This version removed support for VM to VM
344  * communication.
345  *
346  * VMCI_VERSION_NOTIFY: This version introduced doorbell notification
347  * support.
348  *
349  * VMCI_VERSION_HOSTQP: This version introduced host end point support
350  * for hosted products.
351  *
352  * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of
353  * support for host end-points.
354  *
355  * VMCI_VERSION_PREVERS2: This fictional version number is intended to
356  * represent the version of a VMX which doesn't call into the driver
357  * with ioctl VERSION2 and thus doesn't establish its version with the
358  * driver.
359  */
360
361 #define VMCI_VERSION                VMCI_VERSION_NOVMVM
362 #define VMCI_VERSION_NOVMVM         VMCI_MAKE_VERSION(11, 0)
363 #define VMCI_VERSION_NOTIFY         VMCI_MAKE_VERSION(10, 0)
364 #define VMCI_VERSION_HOSTQP         VMCI_MAKE_VERSION(9, 0)
365 #define VMCI_VERSION_PREHOSTQP      VMCI_MAKE_VERSION(8, 0)
366 #define VMCI_VERSION_PREVERS2       VMCI_MAKE_VERSION(1, 0)
367
368 #define VMCI_SOCKETS_MAKE_VERSION(_p)                                   \
369         ((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2]))
370
371 /*
372  * The VMCI IOCTLs.  We use identity code 7, as noted in ioctl-number.h, and
373  * we start at sequence 9f.  This gives us the same values that our shipping
374  * products use, starting at 1951, provided we leave out the direction and
375  * structure size.  Note that VMMon occupies the block following us, starting
376  * at 2001.
377  */
378 #define IOCTL_VMCI_VERSION                      _IO(7, 0x9f)    /* 1951 */
379 #define IOCTL_VMCI_INIT_CONTEXT                 _IO(7, 0xa0)
380 #define IOCTL_VMCI_QUEUEPAIR_SETVA              _IO(7, 0xa4)
381 #define IOCTL_VMCI_NOTIFY_RESOURCE              _IO(7, 0xa5)
382 #define IOCTL_VMCI_NOTIFICATIONS_RECEIVE        _IO(7, 0xa6)
383 #define IOCTL_VMCI_VERSION2                     _IO(7, 0xa7)
384 #define IOCTL_VMCI_QUEUEPAIR_ALLOC              _IO(7, 0xa8)
385 #define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE        _IO(7, 0xa9)
386 #define IOCTL_VMCI_QUEUEPAIR_DETACH             _IO(7, 0xaa)
387 #define IOCTL_VMCI_DATAGRAM_SEND                _IO(7, 0xab)
388 #define IOCTL_VMCI_DATAGRAM_RECEIVE             _IO(7, 0xac)
389 #define IOCTL_VMCI_CTX_ADD_NOTIFICATION         _IO(7, 0xaf)
390 #define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION      _IO(7, 0xb0)
391 #define IOCTL_VMCI_CTX_GET_CPT_STATE            _IO(7, 0xb1)
392 #define IOCTL_VMCI_CTX_SET_CPT_STATE            _IO(7, 0xb2)
393 #define IOCTL_VMCI_GET_CONTEXT_ID               _IO(7, 0xb3)
394 #define IOCTL_VMCI_SOCKETS_VERSION              _IO(7, 0xb4)
395 #define IOCTL_VMCI_SOCKETS_GET_AF_VALUE         _IO(7, 0xb8)
396 #define IOCTL_VMCI_SOCKETS_GET_LOCAL_CID        _IO(7, 0xb9)
397 #define IOCTL_VMCI_SET_NOTIFY                   _IO(7, 0xcb)    /* 1995 */
398 /*IOCTL_VMMON_START                             _IO(7, 0xd1)*/  /* 2001 */
399
400 /*
401  * struct vmci_queue_header - VMCI Queue Header information.
402  *
403  * A Queue cannot stand by itself as designed.  Each Queue's header
404  * contains a pointer into itself (the producer_tail) and into its peer
405  * (consumer_head).  The reason for the separation is one of
406  * accessibility: Each end-point can modify two things: where the next
407  * location to enqueue is within its produce_q (producer_tail); and
408  * where the next dequeue location is in its consume_q (consumer_head).
409  *
410  * An end-point cannot modify the pointers of its peer (guest to
411  * guest; NOTE that in the host both queue headers are mapped r/w).
412  * But, each end-point needs read access to both Queue header
413  * structures in order to determine how much space is used (or left)
414  * in the Queue.  This is because for an end-point to know how full
415  * its produce_q is, it needs to use the consumer_head that points into
416  * the produce_q but -that- consumer_head is in the Queue header for
417  * that end-points consume_q.
418  *
419  * Thoroughly confused?  Sorry.
420  *
421  * producer_tail: the point to enqueue new entrants.  When you approach
422  * a line in a store, for example, you walk up to the tail.
423  *
424  * consumer_head: the point in the queue from which the next element is
425  * dequeued.  In other words, who is next in line is he who is at the
426  * head of the line.
427  *
428  * Also, producer_tail points to an empty byte in the Queue, whereas
429  * consumer_head points to a valid byte of data (unless producer_tail ==
430  * consumer_head in which case consumer_head does not point to a valid
431  * byte of data).
432  *
433  * For a queue of buffer 'size' bytes, the tail and head pointers will be in
434  * the range [0, size-1].
435  *
436  * If produce_q_header->producer_tail == consume_q_header->consumer_head
437  * then the produce_q is empty.
438  */
439 struct vmci_queue_header {
440         /* All fields are 64bit and aligned. */
441         struct vmci_handle handle;      /* Identifier. */
442         u64 producer_tail;      /* Offset in this queue. */
443         u64 consumer_head;      /* Offset in peer queue. */
444 };
445
446 /*
447  * struct vmci_datagram - Base struct for vmci datagrams.
448  * @dst:        A vmci_handle that tracks the destination of the datagram.
449  * @src:        A vmci_handle that tracks the source of the datagram.
450  * @payload_size:       The size of the payload.
451  *
452  * vmci_datagram structs are used when sending vmci datagrams.  They include
453  * the necessary source and destination information to properly route
454  * the information along with the size of the package.
455  */
456 struct vmci_datagram {
457         struct vmci_handle dst;
458         struct vmci_handle src;
459         u64 payload_size;
460 };
461
462 /*
463  * Second flag is for creating a well-known handle instead of a per context
464  * handle.  Next flag is for deferring datagram delivery, so that the
465  * datagram callback is invoked in a delayed context (not interrupt context).
466  */
467 #define VMCI_FLAG_DG_NONE          0
468 #define VMCI_FLAG_WELLKNOWN_DG_HND BIT(0)
469 #define VMCI_FLAG_ANYCID_DG_HND    BIT(1)
470 #define VMCI_FLAG_DG_DELAYED_CB    BIT(2)
471
472 /*
473  * Maximum supported size of a VMCI datagram for routable datagrams.
474  * Datagrams going to the hypervisor are allowed to be larger.
475  */
476 #define VMCI_MAX_DG_SIZE (17 * 4096)
477 #define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \
478                                   sizeof(struct vmci_datagram))
479 #define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) +                   \
480                                       sizeof(struct vmci_datagram))
481 #define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram)
482 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
483 #define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7)))
484 #define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2)
485
486 struct vmci_event_payload_qp {
487         struct vmci_handle handle;  /* queue_pair handle. */
488         u32 peer_id;                /* Context id of attaching/detaching VM. */
489         u32 _pad;
490 };
491
492 /* Flags for VMCI queue_pair API. */
493 enum {
494         /* Fail alloc if QP not created by peer. */
495         VMCI_QPFLAG_ATTACH_ONLY = 1 << 0,
496
497         /* Only allow attaches from local context. */
498         VMCI_QPFLAG_LOCAL = 1 << 1,
499
500         /* Host won't block when guest is quiesced. */
501         VMCI_QPFLAG_NONBLOCK = 1 << 2,
502
503         /* Pin data pages in ESX.  Used with NONBLOCK */
504         VMCI_QPFLAG_PINNED = 1 << 3,
505
506         /* Update the following flag when adding new flags. */
507         VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL |
508                              VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
509
510         /* Convenience flags */
511         VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
512         VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM),
513 };
514
515 /*
516  * We allow at least 1024 more event datagrams from the hypervisor past the
517  * normally allowed datagrams pending for a given context.  We define this
518  * limit on event datagrams from the hypervisor to guard against DoS attack
519  * from a malicious VM which could repeatedly attach to and detach from a queue
520  * pair, causing events to be queued at the destination VM.  However, the rate
521  * at which such events can be generated is small since it requires a VM exit
522  * and handling of queue pair attach/detach call at the hypervisor.  Event
523  * datagrams may be queued up at the destination VM if it has interrupts
524  * disabled or if it is not draining events for some other reason.  1024
525  * datagrams is a grossly conservative estimate of the time for which
526  * interrupts may be disabled in the destination VM, but at the same time does
527  * not exacerbate the memory pressure problem on the host by much (size of each
528  * event datagram is small).
529  */
530 #define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE                          \
531         (VMCI_MAX_DATAGRAM_QUEUE_SIZE +                                 \
532          1024 * (sizeof(struct vmci_datagram) +                         \
533                  sizeof(struct vmci_event_data_max)))
534
535 /*
536  * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of
537  * hypervisor resources.  Struct size is 16 bytes. All fields in struct are
538  * aligned to their natural alignment.
539  */
540 struct vmci_resource_query_hdr {
541         struct vmci_datagram hdr;
542         u32 num_resources;
543         u32 _padding;
544 };
545
546 /*
547  * Convenience struct for negotiating vectors. Must match layout of
548  * VMCIResourceQueryHdr minus the struct vmci_datagram header.
549  */
550 struct vmci_resource_query_msg {
551         u32 num_resources;
552         u32 _padding;
553         u32 resources[1];
554 };
555
556 /*
557  * The maximum number of resources that can be queried using
558  * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31
559  * bits of a positive return value. Negative values are reserved for
560  * errors.
561  */
562 #define VMCI_RESOURCE_QUERY_MAX_NUM 31
563
564 /* Maximum size for the VMCI_RESOURCE_QUERY request. */
565 #define VMCI_RESOURCE_QUERY_MAX_SIZE                            \
566         (sizeof(struct vmci_resource_query_hdr) +               \
567          sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM)
568
569 /*
570  * Struct used for setting the notification bitmap.  All fields in
571  * struct are aligned to their natural alignment.
572  */
573 struct vmci_notify_bm_set_msg {
574         struct vmci_datagram hdr;
575         union {
576                 u32 bitmap_ppn32;
577                 u64 bitmap_ppn64;
578         };
579 };
580
581 /*
582  * Struct used for linking a doorbell handle with an index in the
583  * notify bitmap. All fields in struct are aligned to their natural
584  * alignment.
585  */
586 struct vmci_doorbell_link_msg {
587         struct vmci_datagram hdr;
588         struct vmci_handle handle;
589         u64 notify_idx;
590 };
591
592 /*
593  * Struct used for unlinking a doorbell handle from an index in the
594  * notify bitmap. All fields in struct are aligned to their natural
595  * alignment.
596  */
597 struct vmci_doorbell_unlink_msg {
598         struct vmci_datagram hdr;
599         struct vmci_handle handle;
600 };
601
602 /*
603  * Struct used for generating a notification on a doorbell handle. All
604  * fields in struct are aligned to their natural alignment.
605  */
606 struct vmci_doorbell_notify_msg {
607         struct vmci_datagram hdr;
608         struct vmci_handle handle;
609 };
610
611 /*
612  * This struct is used to contain data for events.  Size of this struct is a
613  * multiple of 8 bytes, and all fields are aligned to their natural alignment.
614  */
615 struct vmci_event_data {
616         u32 event;              /* 4 bytes. */
617         u32 _pad;
618         /* Event payload is put here. */
619 };
620
621 /*
622  * Define the different VMCI_EVENT payload data types here.  All structs must
623  * be a multiple of 8 bytes, and fields must be aligned to their natural
624  * alignment.
625  */
626 struct vmci_event_payld_ctx {
627         u32 context_id; /* 4 bytes. */
628         u32 _pad;
629 };
630
631 struct vmci_event_payld_qp {
632         struct vmci_handle handle;  /* queue_pair handle. */
633         u32 peer_id;        /* Context id of attaching/detaching VM. */
634         u32 _pad;
635 };
636
637 /*
638  * We define the following struct to get the size of the maximum event
639  * data the hypervisor may send to the guest.  If adding a new event
640  * payload type above, add it to the following struct too (inside the
641  * union).
642  */
643 struct vmci_event_data_max {
644         struct vmci_event_data event_data;
645         union {
646                 struct vmci_event_payld_ctx context_payload;
647                 struct vmci_event_payld_qp qp_payload;
648         } ev_data_payload;
649 };
650
651 /*
652  * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and
653  * VMCI_EVENT_HANDLER messages.  Struct size is 32 bytes.  All fields
654  * in struct are aligned to their natural alignment.
655  */
656 struct vmci_event_msg {
657         struct vmci_datagram hdr;
658
659         /* Has event type and payload. */
660         struct vmci_event_data event_data;
661
662         /* Payload gets put here. */
663 };
664
665 /* Event with context payload. */
666 struct vmci_event_ctx {
667         struct vmci_event_msg msg;
668         struct vmci_event_payld_ctx payload;
669 };
670
671 /* Event with QP payload. */
672 struct vmci_event_qp {
673         struct vmci_event_msg msg;
674         struct vmci_event_payld_qp payload;
675 };
676
677 /*
678  * Structs used for queue_pair alloc and detach messages.  We align fields of
679  * these structs to 64bit boundaries.
680  */
681 struct vmci_qp_alloc_msg {
682         struct vmci_datagram hdr;
683         struct vmci_handle handle;
684         u32 peer;
685         u32 flags;
686         u64 produce_size;
687         u64 consume_size;
688         u64 num_ppns;
689
690         /* List of PPNs placed here. */
691 };
692
693 struct vmci_qp_detach_msg {
694         struct vmci_datagram hdr;
695         struct vmci_handle handle;
696 };
697
698 /* VMCI Doorbell API. */
699 #define VMCI_FLAG_DELAYED_CB BIT(0)
700
701 typedef void (*vmci_callback) (void *client_data);
702
703 /*
704  * struct vmci_qp - A vmw_vmci queue pair handle.
705  *
706  * This structure is used as a handle to a queue pair created by
707  * VMCI.  It is intentionally left opaque to clients.
708  */
709 struct vmci_qp;
710
711 /* Callback needed for correctly waiting on events. */
712 typedef int (*vmci_datagram_recv_cb) (void *client_data,
713                                       struct vmci_datagram *msg);
714
715 /* VMCI Event API. */
716 typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed,
717                                void *client_data);
718
719 /*
720  * We use the following inline function to access the payload data
721  * associated with an event data.
722  */
723 static inline const void *
724 vmci_event_data_const_payload(const struct vmci_event_data *ev_data)
725 {
726         return (const char *)ev_data + sizeof(*ev_data);
727 }
728
729 static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data)
730 {
731         return (void *)vmci_event_data_const_payload(ev_data);
732 }
733
734 /*
735  * Helper to read a value from a head or tail pointer. For X86_32, the
736  * pointer is treated as a 32bit value, since the pointer value
737  * never exceeds a 32bit value in this case. Also, doing an
738  * atomic64_read on X86_32 uniprocessor systems may be implemented
739  * as a non locked cmpxchg8b, that may end up overwriting updates done
740  * by the VMCI device to the memory location. On 32bit SMP, the lock
741  * prefix will be used, so correctness isn't an issue, but using a
742  * 64bit operation still adds unnecessary overhead.
743  */
744 static inline u64 vmci_q_read_pointer(u64 *var)
745 {
746         return READ_ONCE(*(unsigned long *)var);
747 }
748
749 /*
750  * Helper to set the value of a head or tail pointer. For X86_32, the
751  * pointer is treated as a 32bit value, since the pointer value
752  * never exceeds a 32bit value in this case. On 32bit SMP, using a
753  * locked cmpxchg8b adds unnecessary overhead.
754  */
755 static inline void vmci_q_set_pointer(u64 *var, u64 new_val)
756 {
757         /* XXX buggered on big-endian */
758         WRITE_ONCE(*(unsigned long *)var, (unsigned long)new_val);
759 }
760
761 /*
762  * Helper to add a given offset to a head or tail pointer. Wraps the
763  * value of the pointer around the max size of the queue.
764  */
765 static inline void vmci_qp_add_pointer(u64 *var, size_t add, u64 size)
766 {
767         u64 new_val = vmci_q_read_pointer(var);
768
769         if (new_val >= size - add)
770                 new_val -= size;
771
772         new_val += add;
773
774         vmci_q_set_pointer(var, new_val);
775 }
776
777 /*
778  * Helper routine to get the Producer Tail from the supplied queue.
779  */
780 static inline u64
781 vmci_q_header_producer_tail(const struct vmci_queue_header *q_header)
782 {
783         struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
784         return vmci_q_read_pointer(&qh->producer_tail);
785 }
786
787 /*
788  * Helper routine to get the Consumer Head from the supplied queue.
789  */
790 static inline u64
791 vmci_q_header_consumer_head(const struct vmci_queue_header *q_header)
792 {
793         struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
794         return vmci_q_read_pointer(&qh->consumer_head);
795 }
796
797 /*
798  * Helper routine to increment the Producer Tail.  Fundamentally,
799  * vmci_qp_add_pointer() is used to manipulate the tail itself.
800  */
801 static inline void
802 vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header,
803                                 size_t add,
804                                 u64 queue_size)
805 {
806         vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size);
807 }
808
809 /*
810  * Helper routine to increment the Consumer Head.  Fundamentally,
811  * vmci_qp_add_pointer() is used to manipulate the head itself.
812  */
813 static inline void
814 vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header,
815                                 size_t add,
816                                 u64 queue_size)
817 {
818         vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size);
819 }
820
821 /*
822  * Helper routine for getting the head and the tail pointer for a queue.
823  * Both the VMCIQueues are needed to get both the pointers for one queue.
824  */
825 static inline void
826 vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header,
827                            const struct vmci_queue_header *consume_q_header,
828                            u64 *producer_tail,
829                            u64 *consumer_head)
830 {
831         if (producer_tail)
832                 *producer_tail = vmci_q_header_producer_tail(produce_q_header);
833
834         if (consumer_head)
835                 *consumer_head = vmci_q_header_consumer_head(consume_q_header);
836 }
837
838 static inline void vmci_q_header_init(struct vmci_queue_header *q_header,
839                                       const struct vmci_handle handle)
840 {
841         q_header->handle = handle;
842         q_header->producer_tail = 0;
843         q_header->consumer_head = 0;
844 }
845
846 /*
847  * Finds available free space in a produce queue to enqueue more
848  * data or reports an error if queue pair corruption is detected.
849  */
850 static s64
851 vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header,
852                          const struct vmci_queue_header *consume_q_header,
853                          const u64 produce_q_size)
854 {
855         u64 tail;
856         u64 head;
857         u64 free_space;
858
859         tail = vmci_q_header_producer_tail(produce_q_header);
860         head = vmci_q_header_consumer_head(consume_q_header);
861
862         if (tail >= produce_q_size || head >= produce_q_size)
863                 return VMCI_ERROR_INVALID_SIZE;
864
865         /*
866          * Deduct 1 to avoid tail becoming equal to head which causes
867          * ambiguity. If head and tail are equal it means that the
868          * queue is empty.
869          */
870         if (tail >= head)
871                 free_space = produce_q_size - (tail - head) - 1;
872         else
873                 free_space = head - tail - 1;
874
875         return free_space;
876 }
877
878 /*
879  * vmci_q_header_free_space() does all the heavy lifting of
880  * determing the number of free bytes in a Queue.  This routine,
881  * then subtracts that size from the full size of the Queue so
882  * the caller knows how many bytes are ready to be dequeued.
883  * Results:
884  * On success, available data size in bytes (up to MAX_INT64).
885  * On failure, appropriate error code.
886  */
887 static inline s64
888 vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header,
889                         const struct vmci_queue_header *produce_q_header,
890                         const u64 consume_q_size)
891 {
892         s64 free_space;
893
894         free_space = vmci_q_header_free_space(consume_q_header,
895                                               produce_q_header, consume_q_size);
896         if (free_space < VMCI_SUCCESS)
897                 return free_space;
898
899         return consume_q_size - free_space - 1;
900 }
901
902
903 #endif /* _VMW_VMCI_DEF_H_ */