baa9344dcd10deb9aaf418a76afa901d2a7f1558
[sfrench/cifs-2.6.git] / include / linux / pagemap.h
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5  * Copyright 1995 Linus Torvalds
6  */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <linux/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17
18 /*
19  * Bits in mapping->flags.
20  */
21 enum mapping_flags {
22         AS_EIO          = 0,    /* IO error on async write */
23         AS_ENOSPC       = 1,    /* ENOSPC on async write */
24         AS_MM_ALL_LOCKS = 2,    /* under mm_take_all_locks() */
25         AS_UNEVICTABLE  = 3,    /* e.g., ramdisk, SHM_LOCK */
26         AS_EXITING      = 4,    /* final truncate in progress */
27         /* writeback related tags are not used */
28         AS_NO_WRITEBACK_TAGS = 5,
29 };
30
31 /**
32  * mapping_set_error - record a writeback error in the address_space
33  * @mapping - the mapping in which an error should be set
34  * @error - the error to set in the mapping
35  *
36  * When writeback fails in some way, we must record that error so that
37  * userspace can be informed when fsync and the like are called.  We endeavor
38  * to report errors on any file that was open at the time of the error.  Some
39  * internal callers also need to know when writeback errors have occurred.
40  *
41  * When a writeback error occurs, most filesystems will want to call
42  * mapping_set_error to record the error in the mapping so that it can be
43  * reported when the application calls fsync(2).
44  */
45 static inline void mapping_set_error(struct address_space *mapping, int error)
46 {
47         if (likely(!error))
48                 return;
49
50         /* Record in wb_err for checkers using errseq_t based tracking */
51         filemap_set_wb_err(mapping, error);
52
53         /* Record it in flags for now, for legacy callers */
54         if (error == -ENOSPC)
55                 set_bit(AS_ENOSPC, &mapping->flags);
56         else
57                 set_bit(AS_EIO, &mapping->flags);
58 }
59
60 static inline void mapping_set_unevictable(struct address_space *mapping)
61 {
62         set_bit(AS_UNEVICTABLE, &mapping->flags);
63 }
64
65 static inline void mapping_clear_unevictable(struct address_space *mapping)
66 {
67         clear_bit(AS_UNEVICTABLE, &mapping->flags);
68 }
69
70 static inline int mapping_unevictable(struct address_space *mapping)
71 {
72         if (mapping)
73                 return test_bit(AS_UNEVICTABLE, &mapping->flags);
74         return !!mapping;
75 }
76
77 static inline void mapping_set_exiting(struct address_space *mapping)
78 {
79         set_bit(AS_EXITING, &mapping->flags);
80 }
81
82 static inline int mapping_exiting(struct address_space *mapping)
83 {
84         return test_bit(AS_EXITING, &mapping->flags);
85 }
86
87 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
88 {
89         set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
90 }
91
92 static inline int mapping_use_writeback_tags(struct address_space *mapping)
93 {
94         return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
95 }
96
97 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
98 {
99         return mapping->gfp_mask;
100 }
101
102 /* Restricts the given gfp_mask to what the mapping allows. */
103 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
104                 gfp_t gfp_mask)
105 {
106         return mapping_gfp_mask(mapping) & gfp_mask;
107 }
108
109 /*
110  * This is non-atomic.  Only to be used before the mapping is activated.
111  * Probably needs a barrier...
112  */
113 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
114 {
115         m->gfp_mask = mask;
116 }
117
118 void release_pages(struct page **pages, int nr, bool cold);
119
120 /*
121  * speculatively take a reference to a page.
122  * If the page is free (_refcount == 0), then _refcount is untouched, and 0
123  * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
124  *
125  * This function must be called inside the same rcu_read_lock() section as has
126  * been used to lookup the page in the pagecache radix-tree (or page table):
127  * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
128  *
129  * Unless an RCU grace period has passed, the count of all pages coming out
130  * of the allocator must be considered unstable. page_count may return higher
131  * than expected, and put_page must be able to do the right thing when the
132  * page has been finished with, no matter what it is subsequently allocated
133  * for (because put_page is what is used here to drop an invalid speculative
134  * reference).
135  *
136  * This is the interesting part of the lockless pagecache (and lockless
137  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
138  * has the following pattern:
139  * 1. find page in radix tree
140  * 2. conditionally increment refcount
141  * 3. check the page is still in pagecache (if no, goto 1)
142  *
143  * Remove-side that cares about stability of _refcount (eg. reclaim) has the
144  * following (with tree_lock held for write):
145  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
146  * B. remove page from pagecache
147  * C. free the page
148  *
149  * There are 2 critical interleavings that matter:
150  * - 2 runs before A: in this case, A sees elevated refcount and bails out
151  * - A runs before 2: in this case, 2 sees zero refcount and retries;
152  *   subsequently, B will complete and 1 will find no page, causing the
153  *   lookup to return NULL.
154  *
155  * It is possible that between 1 and 2, the page is removed then the exact same
156  * page is inserted into the same position in pagecache. That's OK: the
157  * old find_get_page using tree_lock could equally have run before or after
158  * such a re-insertion, depending on order that locks are granted.
159  *
160  * Lookups racing against pagecache insertion isn't a big problem: either 1
161  * will find the page or it will not. Likewise, the old find_get_page could run
162  * either before the insertion or afterwards, depending on timing.
163  */
164 static inline int page_cache_get_speculative(struct page *page)
165 {
166         VM_BUG_ON(in_interrupt());
167
168 #ifdef CONFIG_TINY_RCU
169 # ifdef CONFIG_PREEMPT_COUNT
170         VM_BUG_ON(!in_atomic() && !irqs_disabled());
171 # endif
172         /*
173          * Preempt must be disabled here - we rely on rcu_read_lock doing
174          * this for us.
175          *
176          * Pagecache won't be truncated from interrupt context, so if we have
177          * found a page in the radix tree here, we have pinned its refcount by
178          * disabling preempt, and hence no need for the "speculative get" that
179          * SMP requires.
180          */
181         VM_BUG_ON_PAGE(page_count(page) == 0, page);
182         page_ref_inc(page);
183
184 #else
185         if (unlikely(!get_page_unless_zero(page))) {
186                 /*
187                  * Either the page has been freed, or will be freed.
188                  * In either case, retry here and the caller should
189                  * do the right thing (see comments above).
190                  */
191                 return 0;
192         }
193 #endif
194         VM_BUG_ON_PAGE(PageTail(page), page);
195
196         return 1;
197 }
198
199 /*
200  * Same as above, but add instead of inc (could just be merged)
201  */
202 static inline int page_cache_add_speculative(struct page *page, int count)
203 {
204         VM_BUG_ON(in_interrupt());
205
206 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
207 # ifdef CONFIG_PREEMPT_COUNT
208         VM_BUG_ON(!in_atomic() && !irqs_disabled());
209 # endif
210         VM_BUG_ON_PAGE(page_count(page) == 0, page);
211         page_ref_add(page, count);
212
213 #else
214         if (unlikely(!page_ref_add_unless(page, count, 0)))
215                 return 0;
216 #endif
217         VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
218
219         return 1;
220 }
221
222 #ifdef CONFIG_NUMA
223 extern struct page *__page_cache_alloc(gfp_t gfp);
224 #else
225 static inline struct page *__page_cache_alloc(gfp_t gfp)
226 {
227         return alloc_pages(gfp, 0);
228 }
229 #endif
230
231 static inline struct page *page_cache_alloc(struct address_space *x)
232 {
233         return __page_cache_alloc(mapping_gfp_mask(x));
234 }
235
236 static inline struct page *page_cache_alloc_cold(struct address_space *x)
237 {
238         return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
239 }
240
241 static inline gfp_t readahead_gfp_mask(struct address_space *x)
242 {
243         return mapping_gfp_mask(x) |
244                                   __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN;
245 }
246
247 typedef int filler_t(void *, struct page *);
248
249 pgoff_t page_cache_next_hole(struct address_space *mapping,
250                              pgoff_t index, unsigned long max_scan);
251 pgoff_t page_cache_prev_hole(struct address_space *mapping,
252                              pgoff_t index, unsigned long max_scan);
253
254 #define FGP_ACCESSED            0x00000001
255 #define FGP_LOCK                0x00000002
256 #define FGP_CREAT               0x00000004
257 #define FGP_WRITE               0x00000008
258 #define FGP_NOFS                0x00000010
259 #define FGP_NOWAIT              0x00000020
260
261 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
262                 int fgp_flags, gfp_t cache_gfp_mask);
263
264 /**
265  * find_get_page - find and get a page reference
266  * @mapping: the address_space to search
267  * @offset: the page index
268  *
269  * Looks up the page cache slot at @mapping & @offset.  If there is a
270  * page cache page, it is returned with an increased refcount.
271  *
272  * Otherwise, %NULL is returned.
273  */
274 static inline struct page *find_get_page(struct address_space *mapping,
275                                         pgoff_t offset)
276 {
277         return pagecache_get_page(mapping, offset, 0, 0);
278 }
279
280 static inline struct page *find_get_page_flags(struct address_space *mapping,
281                                         pgoff_t offset, int fgp_flags)
282 {
283         return pagecache_get_page(mapping, offset, fgp_flags, 0);
284 }
285
286 /**
287  * find_lock_page - locate, pin and lock a pagecache page
288  * @mapping: the address_space to search
289  * @offset: the page index
290  *
291  * Looks up the page cache slot at @mapping & @offset.  If there is a
292  * page cache page, it is returned locked and with an increased
293  * refcount.
294  *
295  * Otherwise, %NULL is returned.
296  *
297  * find_lock_page() may sleep.
298  */
299 static inline struct page *find_lock_page(struct address_space *mapping,
300                                         pgoff_t offset)
301 {
302         return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
303 }
304
305 /**
306  * find_or_create_page - locate or add a pagecache page
307  * @mapping: the page's address_space
308  * @index: the page's index into the mapping
309  * @gfp_mask: page allocation mode
310  *
311  * Looks up the page cache slot at @mapping & @offset.  If there is a
312  * page cache page, it is returned locked and with an increased
313  * refcount.
314  *
315  * If the page is not present, a new page is allocated using @gfp_mask
316  * and added to the page cache and the VM's LRU list.  The page is
317  * returned locked and with an increased refcount.
318  *
319  * On memory exhaustion, %NULL is returned.
320  *
321  * find_or_create_page() may sleep, even if @gfp_flags specifies an
322  * atomic allocation!
323  */
324 static inline struct page *find_or_create_page(struct address_space *mapping,
325                                         pgoff_t offset, gfp_t gfp_mask)
326 {
327         return pagecache_get_page(mapping, offset,
328                                         FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
329                                         gfp_mask);
330 }
331
332 /**
333  * grab_cache_page_nowait - returns locked page at given index in given cache
334  * @mapping: target address_space
335  * @index: the page index
336  *
337  * Same as grab_cache_page(), but do not wait if the page is unavailable.
338  * This is intended for speculative data generators, where the data can
339  * be regenerated if the page couldn't be grabbed.  This routine should
340  * be safe to call while holding the lock for another page.
341  *
342  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
343  * and deadlock against the caller's locked page.
344  */
345 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
346                                 pgoff_t index)
347 {
348         return pagecache_get_page(mapping, index,
349                         FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
350                         mapping_gfp_mask(mapping));
351 }
352
353 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
354 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
355 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
356                           unsigned int nr_entries, struct page **entries,
357                           pgoff_t *indices);
358 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
359                         unsigned int nr_pages, struct page **pages);
360 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
361                                unsigned int nr_pages, struct page **pages);
362 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
363                         int tag, unsigned int nr_pages, struct page **pages);
364 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
365                         int tag, unsigned int nr_entries,
366                         struct page **entries, pgoff_t *indices);
367
368 struct page *grab_cache_page_write_begin(struct address_space *mapping,
369                         pgoff_t index, unsigned flags);
370
371 /*
372  * Returns locked page at given index in given cache, creating it if needed.
373  */
374 static inline struct page *grab_cache_page(struct address_space *mapping,
375                                                                 pgoff_t index)
376 {
377         return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
378 }
379
380 extern struct page * read_cache_page(struct address_space *mapping,
381                                 pgoff_t index, filler_t *filler, void *data);
382 extern struct page * read_cache_page_gfp(struct address_space *mapping,
383                                 pgoff_t index, gfp_t gfp_mask);
384 extern int read_cache_pages(struct address_space *mapping,
385                 struct list_head *pages, filler_t *filler, void *data);
386
387 static inline struct page *read_mapping_page(struct address_space *mapping,
388                                 pgoff_t index, void *data)
389 {
390         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
391         return read_cache_page(mapping, index, filler, data);
392 }
393
394 /*
395  * Get index of the page with in radix-tree
396  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
397  */
398 static inline pgoff_t page_to_index(struct page *page)
399 {
400         pgoff_t pgoff;
401
402         if (likely(!PageTransTail(page)))
403                 return page->index;
404
405         /*
406          *  We don't initialize ->index for tail pages: calculate based on
407          *  head page
408          */
409         pgoff = compound_head(page)->index;
410         pgoff += page - compound_head(page);
411         return pgoff;
412 }
413
414 /*
415  * Get the offset in PAGE_SIZE.
416  * (TODO: hugepage should have ->index in PAGE_SIZE)
417  */
418 static inline pgoff_t page_to_pgoff(struct page *page)
419 {
420         if (unlikely(PageHeadHuge(page)))
421                 return page->index << compound_order(page);
422
423         return page_to_index(page);
424 }
425
426 /*
427  * Return byte-offset into filesystem object for page.
428  */
429 static inline loff_t page_offset(struct page *page)
430 {
431         return ((loff_t)page->index) << PAGE_SHIFT;
432 }
433
434 static inline loff_t page_file_offset(struct page *page)
435 {
436         return ((loff_t)page_index(page)) << PAGE_SHIFT;
437 }
438
439 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
440                                      unsigned long address);
441
442 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
443                                         unsigned long address)
444 {
445         pgoff_t pgoff;
446         if (unlikely(is_vm_hugetlb_page(vma)))
447                 return linear_hugepage_index(vma, address);
448         pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
449         pgoff += vma->vm_pgoff;
450         return pgoff;
451 }
452
453 extern void __lock_page(struct page *page);
454 extern int __lock_page_killable(struct page *page);
455 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
456                                 unsigned int flags);
457 extern void unlock_page(struct page *page);
458
459 static inline int trylock_page(struct page *page)
460 {
461         page = compound_head(page);
462         return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
463 }
464
465 /*
466  * lock_page may only be called if we have the page's inode pinned.
467  */
468 static inline void lock_page(struct page *page)
469 {
470         might_sleep();
471         if (!trylock_page(page))
472                 __lock_page(page);
473 }
474
475 /*
476  * lock_page_killable is like lock_page but can be interrupted by fatal
477  * signals.  It returns 0 if it locked the page and -EINTR if it was
478  * killed while waiting.
479  */
480 static inline int lock_page_killable(struct page *page)
481 {
482         might_sleep();
483         if (!trylock_page(page))
484                 return __lock_page_killable(page);
485         return 0;
486 }
487
488 /*
489  * lock_page_or_retry - Lock the page, unless this would block and the
490  * caller indicated that it can handle a retry.
491  *
492  * Return value and mmap_sem implications depend on flags; see
493  * __lock_page_or_retry().
494  */
495 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
496                                      unsigned int flags)
497 {
498         might_sleep();
499         return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
500 }
501
502 /*
503  * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
504  * and should not be used directly.
505  */
506 extern void wait_on_page_bit(struct page *page, int bit_nr);
507 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
508
509 /* 
510  * Wait for a page to be unlocked.
511  *
512  * This must be called with the caller "holding" the page,
513  * ie with increased "page->count" so that the page won't
514  * go away during the wait..
515  */
516 static inline void wait_on_page_locked(struct page *page)
517 {
518         if (PageLocked(page))
519                 wait_on_page_bit(compound_head(page), PG_locked);
520 }
521
522 static inline int wait_on_page_locked_killable(struct page *page)
523 {
524         if (!PageLocked(page))
525                 return 0;
526         return wait_on_page_bit_killable(compound_head(page), PG_locked);
527 }
528
529 /* 
530  * Wait for a page to complete writeback
531  */
532 static inline void wait_on_page_writeback(struct page *page)
533 {
534         if (PageWriteback(page))
535                 wait_on_page_bit(page, PG_writeback);
536 }
537
538 extern void end_page_writeback(struct page *page);
539 void wait_for_stable_page(struct page *page);
540
541 void page_endio(struct page *page, bool is_write, int err);
542
543 /*
544  * Add an arbitrary waiter to a page's wait queue
545  */
546 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
547
548 /*
549  * Fault everything in given userspace address range in.
550  */
551 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
552 {
553         char __user *end = uaddr + size - 1;
554
555         if (unlikely(size == 0))
556                 return 0;
557
558         if (unlikely(uaddr > end))
559                 return -EFAULT;
560         /*
561          * Writing zeroes into userspace here is OK, because we know that if
562          * the zero gets there, we'll be overwriting it.
563          */
564         do {
565                 if (unlikely(__put_user(0, uaddr) != 0))
566                         return -EFAULT;
567                 uaddr += PAGE_SIZE;
568         } while (uaddr <= end);
569
570         /* Check whether the range spilled into the next page. */
571         if (((unsigned long)uaddr & PAGE_MASK) ==
572                         ((unsigned long)end & PAGE_MASK))
573                 return __put_user(0, end);
574
575         return 0;
576 }
577
578 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
579 {
580         volatile char c;
581         const char __user *end = uaddr + size - 1;
582
583         if (unlikely(size == 0))
584                 return 0;
585
586         if (unlikely(uaddr > end))
587                 return -EFAULT;
588
589         do {
590                 if (unlikely(__get_user(c, uaddr) != 0))
591                         return -EFAULT;
592                 uaddr += PAGE_SIZE;
593         } while (uaddr <= end);
594
595         /* Check whether the range spilled into the next page. */
596         if (((unsigned long)uaddr & PAGE_MASK) ==
597                         ((unsigned long)end & PAGE_MASK)) {
598                 return __get_user(c, end);
599         }
600
601         (void)c;
602         return 0;
603 }
604
605 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
606                                 pgoff_t index, gfp_t gfp_mask);
607 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
608                                 pgoff_t index, gfp_t gfp_mask);
609 extern void delete_from_page_cache(struct page *page);
610 extern void __delete_from_page_cache(struct page *page, void *shadow);
611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
612
613 /*
614  * Like add_to_page_cache_locked, but used to add newly allocated pages:
615  * the page is new, so we can just run __SetPageLocked() against it.
616  */
617 static inline int add_to_page_cache(struct page *page,
618                 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
619 {
620         int error;
621
622         __SetPageLocked(page);
623         error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
624         if (unlikely(error))
625                 __ClearPageLocked(page);
626         return error;
627 }
628
629 static inline unsigned long dir_pages(struct inode *inode)
630 {
631         return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
632                                PAGE_SHIFT;
633 }
634
635 #endif /* _LINUX_PAGEMAP_H */